TWI711700B - Improved methods for enterovirus inactivation, adjuvant adsorption and dose reduced vaccine compositions obtained thereof - Google Patents

Improved methods for enterovirus inactivation, adjuvant adsorption and dose reduced vaccine compositions obtained thereof Download PDF

Info

Publication number
TWI711700B
TWI711700B TW106122622A TW106122622A TWI711700B TW I711700 B TWI711700 B TW I711700B TW 106122622 A TW106122622 A TW 106122622A TW 106122622 A TW106122622 A TW 106122622A TW I711700 B TWI711700 B TW I711700B
Authority
TW
Taiwan
Prior art keywords
type
dose
ipv
shaker
poliovirus
Prior art date
Application number
TW106122622A
Other languages
Chinese (zh)
Other versions
TW201908481A (en
Inventor
拉傑夫 德赫爾
薩哈吉 皮薩
賈格迪許 札德
拉金德拉 薩柏爾
Original Assignee
印度商印度血清研究公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 印度商印度血清研究公司 filed Critical 印度商印度血清研究公司
Priority to TW106122622A priority Critical patent/TWI711700B/en
Publication of TW201908481A publication Critical patent/TW201908481A/en
Application granted granted Critical
Publication of TWI711700B publication Critical patent/TWI711700B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The present invention is directed to improved methods of Enterovirus inactivation by formaldehyde in presence of tromethamine buffer resulting in maximum recovery of D-antigen. Subsequent adsorption of said sIPV on aluminium hydroxide provides significantly dose reduced sIPV compositions.

Description

使腸病毒去活化之改良方法、佐劑吸附及所獲得之劑量減少的疫苗組成物 Improved method of inactivating enterovirus, adjuvant adsorption and vaccine composition with reduced dose obtained

本發明關於使腸病毒滅活的改良方法、佐劑吸附及所獲得之劑量減少的疫苗組合物。 The present invention relates to an improved method for inactivating enterovirus, adjuvant adsorption and a vaccine composition with reduced dose obtained.

通過使用基於減毒活的沙賓(Sabin)脊髓灰質炎病毒株的口服的脊髓灰質炎疫苗(OPV)已大大地減少脊髓灰質炎病毒的流行。然而,OPV對於後根除時代具有局限性。因此,開發沙賓滅活型脊髓灰質炎疫苗(沙賓IPV;sIPV)在世界衛生組織(WHO)脊髓灰質炎根除戰略中發揮重要作用。使用減毒的沙賓代替野生型沙克(Salk)脊髓灰質炎病毒株將在疫苗生產過程中提供額外的安全性。此外,為了防止可傳播的疫苗衍生的脊髓灰質炎病毒(cVDPVs)的出現,應在脊髓灰質炎根除後停止使用OPV並以IPV取代。這些cVDPVs是可傳播的且可變成神經毒性的(類似於野生 型脊髓灰質炎病毒)而引起與疫苗相關的麻痹性脊髓灰質炎。這樣的病毒株潛在地可以在世界重新傳播脊髓灰質炎病毒並使根除成果無效。 The prevalence of poliovirus has been greatly reduced by using an oral polio vaccine (OPV) based on live attenuated Sabin poliovirus strain. However, OPV has limitations for the post-eradication era. Therefore, the development of Sabin inactivated polio vaccine (Sabin IPV; sIPV) plays an important role in the World Health Organization (WHO) polio eradication strategy. The use of attenuated sabine instead of the wild-type Salk poliovirus strain will provide additional safety during vaccine production. In addition, in order to prevent the emergence of transmissible vaccine-derived polioviruses (cVDPVs), OPV should be stopped and replaced with IPV after eradication of polio. These cVDPVs are transmissible and can become neurotoxic (similar to wild Type poliovirus) and cause paralytic poliomyelitis associated with the vaccine. Such virus strains could potentially re-spread poliovirus in the world and invalidate the eradication efforts.

IPV通過肌內(IM)或深層皮下(SC)注射遞送。IPV目前可以呈非佐劑化的獨立配製物或以不同的組合使用,該等組合包括DT-IPV(具有白喉和破傷風類毒素)和六價DTPHepB-Hib-IPV疫苗(另外具有百日咳、B型肝炎和流感嗜血桿菌b)。目前可接受的脊髓灰質炎疫苗的標準劑量含有D抗原,諸如40單位的滅活的脊髓灰質炎病毒1型(Mahoney)、8單位的滅活的脊髓灰質炎病毒2型(MEF-1)和32單位的滅活的脊髓灰質炎病毒3型(Saukett)(例如Infanrix-IPVTM)。現有的獨立IPV製備不包含佐劑。 IPV is delivered by intramuscular (IM) or deep subcutaneous (SC) injection. IPV can currently be used in a non-adjuvanted independent formulation or in different combinations, including DT-IPV (with diphtheria and tetanus toxoid) and the hexavalent DTPHepB-Hib-IPV vaccine (with pertussis, type B) Hepatitis and Haemophilus influenzae b). The standard dose of currently accepted polio vaccine contains D antigen, such as 40 units of inactivated poliovirus type 1 (Mahoney), 8 units of inactivated poliovirus type 2 (MEF-1) and 32 units of inactivated poliovirus type 3 (Saukett) (e.g. Infanrix-IPV ). The existing stand-alone IPV preparation does not contain adjuvants.

大多數專家認同全球使用IPV是優選的,因為彼之被證明的保護性追蹤記錄和安全性。然而,當與OPV比較時,IPV的成本價格明顯較高。這主要是因為下述要求:(i)每劑中更多病毒;(ii)額外的下游處理(即濃縮、純化和滅活)和相關的品管(QC)檢驗;(iii)抗原損失或下游回收差及(iv)容量(containment)。到目前為止,中低收入國家的財務上的挑戰一直是IPV創新和實施的主要不利條件。sIPV的生產成本目前估計等同於IPV的生產成本,其比OPV的生產成本高約20倍。根除脊髓灰質炎病毒後,未來全球對於IPV的需求可能從目前的每年8000萬劑水平增加到每年4.5億劑。因此,將需要“擴大”IPV供應的方法。 Most experts agree that the global use of IPV is preferable because of its proven protective tracking records and security. However, when compared with OPV, the cost price of IPV is significantly higher. This is mainly due to the following requirements: (i) more viruses per dose; (ii) additional downstream processing (ie concentration, purification and inactivation) and related quality control (QC) inspections; (iii) loss of antigen or Poor downstream recovery and (iv) containment. So far, financial challenges in low- and middle-income countries have been the main disadvantages of IPV innovation and implementation. The production cost of SIPV is currently estimated to be equivalent to that of IPV, which is about 20 times higher than that of OPV. After eradication of poliovirus, the global demand for IPV in the future may increase from the current level of 80 million doses per year to 450 million doses per year. Therefore, methods to "expand" the supply of IPV will be needed.

在常規疫苗供應不足以滿足全球需要或生產常規疫苗 的成本阻礙疫苗在開發中國家以其可承受的價格銷售的情況下,需要劑量減少的有效疫苗製劑,其使用較低劑量的IPV抗原以提供對抗感染的保護。相較於現有的市場販售製劑,接受較低劑量的IPV可能更為安全。因此,需要評估以更能承受的價格製備IPV的多種策略。 Insufficient supply of conventional vaccines to meet global needs or production of conventional vaccines The cost of preventing vaccines from being sold at affordable prices in developing countries requires effective vaccine formulations with reduced doses, which use lower doses of IPV antigen to provide protection against infection. Compared with the existing market-sold preparations, it may be safer to receive lower doses of IPV. Therefore, multiple strategies for preparing IPV at a more affordable price need to be evaluated.

對於大流行性流感疫苗的情況,使用佐劑以允許減少劑量、增加可利用性及降低疫苗成本。因此,據推測,sIPV的佐劑化疫苗製劑將降低成本並增加全球可使用的sIPV劑的數量。 In the case of pandemic influenza vaccines, adjuvants are used to allow dose reduction, increase availability, and reduce vaccine costs. Therefore, it is speculated that adjuvanted vaccine formulations of sIPV will reduce costs and increase the number of sIPV agents available worldwide.

全球不同的研究團隊業已進行評估通過使用若干佐劑以使疫苗(特別是流感疫苗)劑量減少(dose sparing),該等佐劑計有鋁、乳液、TLR激動劑(MPL、CpG、poly-IC、咪喹莫特)、dmLT、1,25-二羥維生素D3、CAF01、聚[二(羧基苯氧基)-磷腈](PCPP)和委內瑞拉馬腦炎(VEE)複製子顆粒。大多數正被研究的佐劑類型遇到下述障礙:i)未知安全性或被監管機構分類為具有毒性、ii)對於施用途徑有限制、iii)缺乏製造再現性及iv)佐劑穩定性。 Different research teams around the world have evaluated the use of several adjuvants to reduce the dose of vaccines (especially influenza vaccines). These adjuvants include aluminum, emulsions, and TLR agonists (MPL, CpG, poly-IC). , Imiquimod), dmLT, 1,25-dihydroxyvitamin D3, CAF01, poly[bis(carboxyphenoxy)-phosphazene] (PCPP) and Venezuelan equine encephalitis (VEE) replicon particles. Most types of adjuvants being studied encounter the following obstacles: i) unknown safety or classified as toxic by regulatory agencies, ii) restrictions on the route of administration, iii) lack of manufacturing reproducibility, and iv) adjuvant stability .

先前已報導乳液佐劑(MF-59、AS03、AF3)為流感和B型肝炎疫苗提供很強的劑量減少作用(>30倍)。這些佐劑通過在注射部位形成貯存庫而發揮作用,使得抗原物質分配釋放並刺激產生抗體的漿細胞。然而,該等佐劑被認為對於廣泛使用的人類預防性疫苗的使用來說毒性太大且通常被保留用於那些對於副作用具有較高耐受性的嚴重和/或晚期病症,例如癌症。 It has been previously reported that emulsion adjuvants (MF-59, AS03, AF3) provide strong dose reduction effects (>30 times) for influenza and hepatitis B vaccines. These adjuvants work by forming a reservoir at the injection site, allowing the distribution and release of antigenic substances and stimulating plasma cells that produce antibodies. However, these adjuvants are considered to be too toxic for the use of widely used human preventive vaccines and are generally reserved for severe and/or advanced conditions that have a high tolerance for side effects, such as cancer.

此外,鋁鹽被認為是安全的且已經用於包含sIPV的組合疫苗,並具有最低的開發障礙且能便宜的生產。然而,鋁佐劑對於允許顯著的劑量減少是未知的。 In addition, aluminum salts are considered safe and have been used in combination vaccines containing sIPV, and have the lowest development barriers and can be produced inexpensively. However, aluminum adjuvants are not known to allow a significant dose reduction.

生產針對病原體的疫苗(特別是病毒疫苗)的最關鍵步驟之一是病毒滅活。在病毒滅活的情況下,福馬林是生產疫苗中最常用的滅活劑。甲醛通過-CH2-鍵不可逆地交聯表面蛋白質的一級胺基與蛋白質或DNA中的其他鄰近氮原子而滅活病毒。使用福馬林進行病毒滅活的潛在問題是涉及一系列化學反應,這些化學反應產生的反應產物可誘導病毒蛋白的交聯與病毒顆粒的聚集。這可能妨礙福馬林的滅活效率且亦可能導致疫苗中抗原的免疫原性遭受部分破壞。因此,先前已經報導脊髓灰質炎病毒的福馬林滅活可能影響病毒免疫原性及抗原性。參見文獻Morag Ferguson et al.,Journal of General Virology(1993),74,685-690。最重要的是,先前公開的甲醛滅活方法特別是於存在磷酸鹽緩衝液的情況下實施,其中與沙賓I/II/III型的表位修飾一起觀察到顯著的D-抗原損失(滅活後D-抗原回收:對於沙賓I型為22%,對於沙賓II型為15%且對於沙賓Ⅲ型為25%),因而未能保持表位構象。因此,由經福馬林滅活的脊髓灰質炎病毒(在磷酸鹽緩衝液存在下)的接受者產生的抗體可能不會有助於保護性免疫應答。 One of the most critical steps to produce vaccines against pathogens (especially viral vaccines) is virus inactivation. In the case of virus inactivation, formalin is the most commonly used inactivator in vaccine production. Formaldehyde irreversibly cross-links the primary amine group of the surface protein with other adjacent nitrogen atoms in the protein or DNA through the -CH 2 -bond to inactivate the virus. The potential problem of using formalin for virus inactivation involves a series of chemical reactions. The reaction products produced by these chemical reactions can induce cross-linking of viral proteins and aggregation of viral particles. This may hinder the inactivation efficiency of formalin and may also lead to partial destruction of the immunogenicity of the antigen in the vaccine. Therefore, it has previously been reported that formalin inactivation of polio virus may affect the immunogenicity and antigenicity of the virus. See the literature Morag Ferguson et al., Journal of General Virology (1993), 74, 685-690. Most importantly, the previously disclosed formaldehyde inactivation method is especially implemented in the presence of phosphate buffer, in which a significant loss of D-antigen (inactivation) is observed with the epitope modification of Sabin I/II/III. D-antigen recovery after live: 22% for Sabin I, 15% for Sabin II and 25% for Sabin III), thus failing to maintain the epitope conformation. Therefore, antibodies produced by recipients of formalin-inactivated poliovirus (in the presence of phosphate buffered saline) may not contribute to a protective immune response.

當滅活特別有恢復能力的脊髓灰質炎病毒時,通過福馬林與紫外線之組合滅活,科學家們試圖克服單獨的紫外線滅活或福馬林滅活的限制。參見文獻例如McLean,et al.,“Experiences in the Production of Poliovirus Vaccines,”Prog.Med.Virol.,vol 1,pp.122-164(1958)。文獻Taylor et al.,J.Immunol.(1957)79:265-75描述使用福馬林與紫外線之組合滅活脊髓灰質炎病毒。文獻Molner et al.,Am.J.Pub.Health(1958)48:590-8描述在使用紫外線-福馬林滅活的脊髓灰質炎疫苗接種的受試者的血液中生成可測量水平的循環性抗體。文獻Truffelli et al.,Appl.Microbiol.(1967)15:516-27報導通過由福馬林、紫外光和β-丙內酯(BPL)組成的三階段滅活方法滅活腺病毒和猿猴病毒40在倉鼠中的致腫瘤性。文獻Miyamae,Microbiol.Immunol.(1986)30:213-23描述通過紫外線和福馬林處理以製備仙台病毒的免疫原。然而,先前討論的有前景的甲醛替代品,如β-丙內酯(BPL),被報導在與狂犬病疫苗的其他組分結合時會產生免疫複合物反應。此外,已經顯示在小鼠中產生鱗狀細胞癌、淋巴瘤和肝細胞瘤。 When inactivating the polio virus, which is particularly capable of recovery, through the combination of formalin and ultraviolet light, scientists try to overcome the limitation of ultraviolet inactivation alone or formalin inactivation. See literature e.g. McLean, et al., "Experiences in the Production of Poliovirus Vaccines," Prog. Med. Virol., vol 1, pp. 122-164 (1958). The document Taylor et al., J. Immunol. (1957) 79: 265-75 describes the use of a combination of formalin and ultraviolet light to inactivate polio virus. The document Molner et al., Am.J.Pub.Health (1958) 48:590-8 describes the generation of measurable levels of circulation in the blood of subjects vaccinated with ultraviolet-formalin inactivated polio vaccine Antibody. The document Truffelli et al., Appl. Microbiol. (1967) 15: 516-27 reported the inactivation of adenovirus and simian virus by a three-stage inactivation method consisting of formalin, ultraviolet light and β-propiolactone (BPL) 40 Tumorogenicity in hamsters. The document Miyamae, Microbiol. Immunol. (1986) 30: 213-23 describes the preparation of Sendai virus immunogens by treatment with ultraviolet light and formalin. However, the promising formaldehyde substitutes discussed previously, such as β-propiolactone (BPL), have been reported to produce immune complex reactions when combined with other components of the rabies vaccine. In addition, it has been shown to produce squamous cell carcinoma, lymphoma and hepatocellular carcinoma in mice.

因此,特別希望採用能夠維持沙賓病毒株的抗原結構的結構完整性的有利的甲醛滅活條件及利用可導致顯著劑量減少(即8至10倍減少)的sIPV(沙賓IPV)疫苗組合物的安全且具成本效益的佐劑,使得能降低生產成本、增加疫苗供應且為開發中國家提供可負擔的疫苗。 Therefore, it is particularly desirable to adopt favorable formaldehyde inactivation conditions that can maintain the structural integrity of the antigenic structure of the Sabin virus strain and to utilize a sIPV (Sabin IPV) vaccine composition that can lead to a significant dose reduction (ie 8 to 10 times reduction) The safe and cost-effective adjuvants that can reduce production costs, increase vaccine supply and provide affordable vaccines to developing countries.

本案發明人出人意料地發現甲醛滅活後的D-抗原損失可能是由於磷酸鹽緩衝液的存在,此意外地導致脊髓灰質炎病毒的不期望的聚集。本發明提供在TRIS緩衝液的存在下甲醛滅活的改良方法,使得確保最小的表位修飾及隨後 最小化D-抗原損失。隨後,可獲得劑量顯著減少的沙賓IPV疫苗組合物,其中對於沙賓1型至少8倍劑量減少且對於沙賓3型至少3倍劑量減少。 The inventors of this case unexpectedly discovered that the loss of D-antigen after formaldehyde inactivation may be due to the presence of phosphate buffer, which unexpectedly caused undesired aggregation of poliovirus. The present invention provides an improved method of inactivation of formaldehyde in the presence of TRIS buffer so as to ensure minimal epitope modification and subsequent Minimize the loss of D-antigen. Subsequently, a Sabin IPV vaccine composition with a significantly reduced dose can be obtained, wherein the dose is reduced by at least 8 times for Sabin type 1 and at least 3 times for Sabin type 3.

本發明的一個重要方面是福馬林滅活和吸附在鋁鹽上的改良方法,該方法包含下述步驟:a)將純化的沙賓IPV產品加入pH介於6.8至7.2之間的TRIS緩衝液(30至50mM),b)將含有甘胺酸(5gm/l)的M-199培養基加入到(a)的混合物,c)混合時加入0.025%甲醛,d)在磁力攪拌器上,將步驟(c)得到的混合物在37℃下溫育5至13天,e)在第7天將溫育後的混合物進行中度0.22μ過濾並在第13天進行最後過濾,f)將步驟(e)後得到的產物在2至8℃下儲存,g)進行D-Ag ELISA以測定D-抗原單位,h)取所需體積的經高壓滅菌的Al(OH)3以在50ml容器中得到鋁(Al+++)的最終濃度為0.8至1.2mg/劑,i)加入具有經調整的D-Ag單位的sIPV產品並使用稀釋劑(10x M-199+0.5甘胺酸%)補充體積,j)調節最終製劑pH並獲得pH介於6至6.5之間的最終製劑, k)將該製劑產物在2至8℃下經隔夜磁力攪拌,且其中步驟(a)的福馬林滅活未在磷酸鹽緩衝液之存在下進行。 An important aspect of the present invention is an improved method for inactivating and adsorbing formalin on aluminum salts. The method includes the following steps: a) adding purified sabin IPV product to a TRIS buffer with a pH between 6.8 and 7.2 (30 to 50mM), b) add M-199 medium containing glycine (5gm/l) to the mixture of (a), c) add 0.025% formaldehyde while mixing, d) place the step on a magnetic stirrer (c) The resulting mixture was incubated at 37°C for 5 to 13 days, e) The incubated mixture was subjected to moderate 0.22μ filtration on the 7th day and the final filtration on the 13th day, f) the step (e ) Store the resulting product at 2 to 8°C, g) Perform D-Ag ELISA to determine D-antigen unit, h) Take the required volume of autoclaved Al(OH) 3 to obtain aluminum in a 50 ml container The final concentration of (Al +++ ) is 0.8 to 1.2 mg/dose, i) Add sIPV product with adjusted D-Ag unit and use diluent (10x M-199+0.5 glycine%) to make up the volume, j) Adjust the pH of the final formulation and obtain a final formulation with a pH between 6 and 6.5, k) The formulation product is magnetically stirred overnight at 2 to 8°C, and the formalin inactivation in step (a) is not Carry out in the presence of phosphate buffer.

本發明的第一個實施方案是在甲醛滅活期間使用的所述緩衝液可選自由TRIS、TBS、MOPS、HEPES和碳酸氫鹽緩衝液組成的組。 The first embodiment of the present invention is that the buffer used during formaldehyde inactivation can be selected from the group consisting of TRIS, TBS, MOPS, HEPES and bicarbonate buffers.

該第一個實施方案的優選方面是所述甲醛滅活可在TRIS緩衝液或TBS(TRIS緩衝鹽水)存在下進行,其中該TRIS緩衝液或TBS的濃度選自30mM、40mM和50mM,優選40mM,且該甲醛滅活可在選自6.8、6.9、7、7.1和7.2(優選介於6.8至7.2)之pH下進行,其中所述滅活不使用任何磷酸鹽緩衝液。 The preferred aspect of this first embodiment is that the formaldehyde inactivation can be carried out in the presence of TRIS buffer or TBS (TRIS buffered saline), wherein the concentration of the TRIS buffer or TBS is selected from 30mM, 40mM and 50mM, preferably 40mM And the formaldehyde inactivation can be carried out at a pH selected from 6.8, 6.9, 7, 7.1 and 7.2 (preferably between 6.8 to 7.2), wherein the inactivation does not use any phosphate buffer.

本發明的第二個實施方案是經福馬林滅活的sIPV的吸附可在氫氧化鋁上完成,其中該氫氧化鋁的濃度選自1.5mg/劑、1.8mg/劑、2.2mg/劑,優選2mg/劑至2.4mg/劑,且該吸附的pH選自6.2、6.3、6.4和6.5,優選pH為6.5。 The second embodiment of the present invention is that the adsorption of sIPV inactivated by formalin can be completed on aluminum hydroxide, wherein the concentration of the aluminum hydroxide is selected from 1.5 mg/dose, 1.8 mg/dose, 2.2 mg/dose, Preferably, it is 2 mg/dose to 2.4 mg/dose, and the adsorption pH is selected from 6.2, 6.3, 6.4 and 6.5, preferably the pH is 6.5.

本發明的第三個實施方案是所述的福馬林滅活和氫氧化鋁吸附的改良方法可導致滅活後D-抗原回收介於50%至80%之間且氫氧化鋁的吸附百分比可介於85至99%之間。 The third embodiment of the present invention is that the improved method of formalin inactivation and aluminum hydroxide adsorption can lead to the recovery of D-antigen after inactivation between 50% and 80% and the adsorption percentage of aluminum hydroxide can be Between 85 and 99%.

該第三個實施方案的一個方面是本發明提供福馬林滅活和氫氧化鋁吸附的改良方法,其導致與標準劑量的40 DU-8 DU-32 DU相比,沙賓I型至少8倍的劑量減少且沙賓III型至少3倍的劑量減少。 One aspect of this third embodiment is that the present invention provides an improved method of formalin inactivation and aluminum hydroxide adsorption, which results in at least 8 times the sabin type I compared to the standard dose of 40 DU-8 DU-32 DU The dose of Sabin III was reduced and the dose of Sabin III was reduced by at least 3 times.

該第三實施方案的第二方面是本發明提供甲醛滅活和氫氧化鋁吸附的改良方法,其導致疫苗組合物包含i)至少5 D-抗原單位劑量的滅活的1型脊髓灰質炎病毒,ii)至少8 D-抗原單位劑量的滅活的2型脊髓灰質炎病毒,和iii)至少10 D-抗原單位劑量的滅活的3型脊髓灰質炎病毒。 The second aspect of this third embodiment is that the present invention provides an improved method of formaldehyde inactivation and aluminum hydroxide adsorption, which results in a vaccine composition comprising i) at least a 5 D-antigen unit dose of inactivated poliovirus type 1 , Ii) at least 8 D-antigen unit dose of inactivated type 2 poliovirus, and iii) at least 10 D-antigen unit dose of inactivated type 3 poliovirus.

本發明的第四個實施方案是所述鋁鹽佐劑是氫氧化鋁,其在約6.5的pH下的濃度為介於1.5mg/0.5ml劑至2.5mg/0.5ml劑之間,優選為介於2.100mg/0.5ml劑至2.4mg/0.5ml劑之間。 The fourth embodiment of the present invention is that the aluminum salt adjuvant is aluminum hydroxide, and its concentration at a pH of about 6.5 is between 1.5mg/0.5ml agent to 2.5mg/0.5ml agent, preferably Between 2.100mg/0.5ml dose to 2.4mg/0.5ml dose.

該第四個實施方案的一個方面是三價疫苗(1型、2型和3型)中總鋁含量可為每0.5ml劑中800至1000μg(優選800μg)Al3+,其特徵在於至少400μg Al3+用於1型、至少200μg Al3+用於2型且至少200μg Al3+用於3型。 An aspect of this fourth embodiment is that the total aluminum content in the trivalent vaccine (type 1, type 2 and type 3) can be 800 to 1000 μg (preferably 800 μg) Al 3+ per 0.5 ml dose, characterized by at least 400 μg Al 3+ is used for type 1, at least 200 μg Al 3+ is used for type 2 and at least 200 μg Al 3+ is used for type 3.

該第四個實施方案的另一方面是所述劑量減少的脊髓灰質炎病毒疫苗組合物可由1型和3型組成且不含2型,其中劑體積可介於0.1至0.4ml之間。 Another aspect of this fourth embodiment is that the reduced-dose poliovirus vaccine composition may consist of type 1 and type 3 without type 2, wherein the dose volume may be between 0.1 and 0.4 ml.

通過本發明之方法製備的所述劑量減少的疫苗組合物可為i)“獨立的sIPV”,其中抗原可包含1型sIPV或2型sIPV或3型sIPV,或1型和2型sIPV,或1型和3型sIPV,或2型和3型sIPV,或1型、2型和3型Sipv,或ii)“包含sIPV的組合疫苗”,其中所述組合疫苗的非IPV抗原可選自但不限於白喉類毒素、破傷風類毒素、全細胞百日咳抗原、無細胞百日咳抗原、B型肝炎表面抗原、流感嗜血桿菌(Haemophilus influenzae)b抗原、腦膜炎奈瑟氏菌 (Neisseria meningitidis)A抗原、腦膜炎奈瑟氏菌C抗原、腦膜炎奈瑟氏菌W-135抗原、腦膜炎奈瑟氏菌Y抗原、腦膜炎奈瑟氏菌X抗原、腦膜炎奈瑟氏菌B泡或純化的抗原、A型肝炎抗原、傷寒沙門氏菌(Salmonella typhi)抗原、肺炎鏈球菌(Streptococcus pneumoniae)抗原。 The reduced-dose vaccine composition prepared by the method of the present invention may be i) "independent sIPV", wherein the antigen may include type 1 sIPV or type 2 sIPV or type 3 sIPV, or type 1 and type 2 sIPV, or Type 1 and Type 3 sIPV, or Type 2 and Type 3 sIPV, or Type 1, Type 2 and Type 3 SIPV, or ii) "combination vaccine containing sIPV", wherein the non-IPV antigen of the combination vaccine can be selected from but Not limited to diphtheria toxoid, tetanus toxoid, whole cell pertussis antigen, acellular pertussis antigen, hepatitis B surface antigen, Haemophilus influenzae b antigen, Neisseria meningitidis A antigen, Neisseria meningitidis C antigen, Neisseria meningitidis W-135 antigen, Neisseria meningitidis Y antigen, Neisseria meningitidis X antigen, Neisseria meningitidis B vesicle or purified antigen , Hepatitis A antigen, Salmonella typhi ( Salmonella typhi ) antigen, Streptococcus pneumoniae ( Streptococcus pneumoniae ) antigen.

該等非IPV抗原可被吸附到鋁鹽(諸如氫氧化鋁)、鋁鹽(諸如磷酸鋁)或氫氧化鋁和磷酸鋁兩者的混合物上,或者可未被吸附。 The non-IPV antigens may be adsorbed on aluminum salts (such as aluminum hydroxide), aluminum salts (such as aluminum phosphate), or a mixture of both aluminum hydroxide and aluminum phosphate, or may not be adsorbed.

脊髓灰質炎病毒可在細胞培養物中生長。該細胞培養物可以是來自猴腎的連續細胞系的VERO細胞系或PMKC。VERO細胞可以方便地在微載體中培養。生長後,可使用超濾、滲濾和層析等技術純化病毒粒子。在給患者施用之前,病毒必須經滅活,該滅活可通過甲醛處理實現。 The polio virus can be grown in cell culture. The cell culture may be a VERO cell line or PMKC derived from a continuous cell line of monkey kidney. VERO cells can be conveniently cultured in microcarriers. After growth, ultrafiltration, diafiltration, and chromatography can be used to purify virus particles. Before administration to the patient, the virus must be inactivated, which can be achieved by formaldehyde treatment.

組合物可存在於小瓶中或可存在於預填充的(ready filled)注射器中。注射器可裝備或不裝備針頭。注射器包含單劑組合物,而小瓶可包括單劑或多劑(例如2劑)。在一個實施方案中,所述劑用於人。在另一個實施方案中,所述劑用於成年人、青少年、幼兒、嬰兒或少於一歲的人且可以通過注射施用。 The composition may be present in a vial or may be present in a ready filled syringe. The syringe can be equipped with or without a needle. The syringe contains a single dose of the composition, while the vial may contain a single dose or multiple doses (e.g., 2 doses). In one embodiment, the agent is used in humans. In another embodiment, the agent is for adults, adolescents, young children, infants, or people less than one year old and can be administered by injection.

本發明的疫苗可以單位劑形式或多劑形式(例如2劑)包裝。所述多劑組合物可選自2劑、5劑和10劑。對於多劑形式,小瓶優選於預填充的注射器。可常規地建立有效的劑體積,但用於給人注射的常規劑組合物的體積為0.5 ml。 The vaccine of the present invention can be packaged in unit dose form or multiple dose form (for example, 2 doses). The multi-dose composition may be selected from 2 doses, 5 doses and 10 doses. For multiple dose forms, vials are preferred to pre-filled syringes. An effective dose volume can be established conventionally, but the volume of a conventional dose composition for injection into a human is 0.5 ml.

圖1:在0.9% NaCl中製備的磷酸鋁凝膠(在不同濃度的磷酸鋁凝膠下pH與ζ電位之關係)。 Figure 1: Aluminum phosphate gel prepared in 0.9% NaCl (relationship between pH and zeta potential under different concentrations of aluminum phosphate gel).

圖2:在WFI中製備的磷酸鋁凝膠(在不同濃度的磷酸鋁凝膠下pH與ζ電位之關係)。 Figure 2: Aluminum phosphate gel prepared in WFI (relationship between pH and zeta potential under different concentrations of aluminum phosphate gel).

圖3:在0.9% NaCl中製備的氫氧化鋁凝膠(在不同濃度的氫氧化鋁凝膠下pH與ζ電位之關係)。 Figure 3: Aluminum hydroxide gel prepared in 0.9% NaCl (relationship between pH and zeta potential under different concentrations of aluminum hydroxide gel).

圖4:在WFI中製備的氫氧化鋁凝膠(在不同濃度的氫氧化鋁凝膠下pH與ζ電位之關係)。 Figure 4: Aluminum hydroxide gel prepared in WFI (relationship between pH and zeta potential under different concentrations of aluminum hydroxide gel).

實施例1Example 1 沙賓IPV(sIPV)的純化Purification of Sabine IPV (sIPV)

1)切向流過濾(TFF):使用具有100Kda盒(0.5m2)的切向流過濾系統將澄清的收穫池濃縮10倍,然後使用磷酸鹽緩衝液(40mM,pH 7.0)滲濾收穫液3次。 1) Tangential flow filtration (TFF): Use a tangential flow filtration system with a 100Kda box (0.5m 2 ) to concentrate the clarified harvest tank 10 times, and then use phosphate buffer (40mM, pH 7.0) to percolate the harvest solution 3 times.

2)柱層析:通過離子交換層析(IEC)進行純化。使用Akta探測器(GE Healthcare),將10倍TFF濃縮物通過裝在層析柱xk-26中的DEAE Sepharose速流(弱陰離子交換劑)。發現負電荷的雜質與層析柱結合,而使用40mM磷酸鹽緩衝液以收 集流過液中的脊髓灰質炎病毒。 2) Column chromatography: Purification by ion exchange chromatography (IEC). Using an Akta detector (GE Healthcare), the 10-fold TFF concentrate was passed through DEAE Sepharose fast flow (weak anion exchanger) packed in a chromatography column xk-26. It was found that the negatively charged impurities were bound to the chromatography column, and 40mM phosphate buffer was used to recover Collect the polio virus in the fluid.

3)TRIS緩衝液交換:為了使非常麻煩的滅活方法(13天)中抗原損失最小化,將經純化的病毒池經TFF系統(100KDa,0.1m2)從磷酸鹽緩衝液交換為TRIS緩衝液(40mM,pH 7)。將經純化的病毒池經3倍體積的TRIS緩衝液交換。 3) TRIS buffer exchange: In order to minimize the loss of antigen in the very troublesome inactivation method (13 days), the purified virus pool was exchanged from phosphate buffer to TRIS buffer via a TFF system (100KDa, 0.1m 2 ) Solution (40mM, pH 7). The purified virus pool was exchanged with 3 times volume of TRIS buffer.

實施例2 Example 2 A)sIPV的滅活A) Inactivation of sIPV

加入具有0.5%甘胺酸的10倍濃縮的M-199以得到最終1倍的濃度。在持續攪拌的同時,將滅活劑福馬林(0.025%)加入到經純化的病毒產物。在37℃連續攪拌下進行滅活13天,其包括在第7天和第13天進行0.22 u的過濾。 A 10-fold concentrated M-199 with 0.5% glycine was added to obtain a final 1-fold concentration. While continuing to stir, the inactivator formalin (0.025%) was added to the purified virus product. The inactivation was carried out at 37°C under continuous stirring for 13 days, which included 0.22 u filtration on the 7th and 13th days.

B)在TRIS緩衝液和磷酸鹽緩衝液中sIPV的滅活B) Inactivation of sIPV in TRIS buffer and phosphate buffer

在37℃下使用0.025%甲醛滅活13天。 Inactivate with 0.025% formaldehyde at 37°C for 13 days.

Figure 106122622-A0202-12-0011-1
Figure 106122622-A0202-12-0011-1

當在磷酸鹽緩衝液存在下特別地進行甲醛滅活方法時,對沙賓1型觀察到顯著的D-抗原損失。然而,發現在TRIS緩衝液存在下甲醛滅活導致最小的D-抗原損失。 When the formaldehyde inactivation method was specifically performed in the presence of phosphate buffer, significant D-antigen loss was observed for Sabin type 1. However, it was found that inactivation of formaldehyde in the presence of TRIS buffer resulted in minimal loss of D-antigen.

Figure 106122622-A0202-12-0012-2
Figure 106122622-A0202-12-0012-2

對於sIPV 1、2和3型的D-抗原含量保存,發現40mM濃度的TRIS緩衝液是最有效的。 For the preservation of D-antigen content of sIPV 1, 2 and 3, it was found that TRIS buffer at a concentration of 40 mM was the most effective.

C)通過ELISA測定D-抗原含量C) Determination of D-antigen content by ELISA 第1天:平板塗覆Day 1: Flat coating

1.吸取100μl特異性牛抗脊髓灰質炎抗體至每個孔槽的PBS。 1. Pipet 100 μl of specific bovine anti-polio antibody to PBS in each well.

2.將微量滴定板密封並在室溫培育過夜。 2. Seal the microtiter plate and incubate overnight at room temperature.

第2天:封閉Day 2: Closed

1.將該板清洗3次(洗滌/稀釋緩衝液0.05%吐溫(Tween)20於1倍PBS中)。 1. Wash the plate 3 times (washing/dilution buffer 0.05% Tween 20 in 1x PBS).

2.每孔槽吸取加入300μl封閉緩衝液(PBS中1%BSA)。 2. Add 300μl blocking buffer (1% BSA in PBS) to each well.

3.將該板密封並在37±1℃下培育45分鐘。 3. Seal the plate and incubate at 37±1°C for 45 minutes.

樣品添加:Sample addition:

1.將該板清洗3次。 1. Wash the plate 3 times.

2.對除了A行孔槽的所有孔槽加入100μl樣品稀釋液。 2. Add 100μl of sample diluent to all wells except the wells of row A.

3.對2和3列的前兩個孔槽加入100μl標準品。 3. Add 100μl of standard to the first two wells in columns 2 and 3.

4.對4至12列的前兩個孔槽加入100μl樣品。 4. Add 100μl of sample to the first two wells in columns 4 to 12.

5.預先稀釋樣品至合適的濃度。 5. Dilute the sample in advance to an appropriate concentration.

6.對1列的前兩個孔槽加入100μl樣品稀釋液。 6. Add 100μl of sample diluent to the first two wells in column 1.

7.通過從每個孔槽轉移100μl到同列的相鄰孔槽並從最後一個孔槽丟棄100μl,將該列連續兩倍稀釋。 7. By transferring 100 μl from each well to the adjacent well in the same column and discarding 100 μl from the last well, the column is serially two-fold diluted.

8.在37℃下培育2小時。 8. Incubate at 37°C for 2 hours.

9.令該板在4℃下保持過夜。 9. Keep the plate at 4°C overnight.

第3天:加入單株抗體Day 3: Add monoclonal antibody

1.將該板清洗3次。 1. Wash the plate 3 times.

2.加入100μl經稀釋(1:240)的特異性單株抗體。 2. Add 100 μl of diluted (1:240) specific monoclonal antibody.

3.將該板密封並在37℃下培育2小時。 3. Seal the plate and incubate at 37°C for 2 hours.

共軛物:Conjugate:

1.將該板清洗3次。 1. Wash the plate 3 times.

2.加入100μl經稀釋的共軛物(1型1:2400,2型1:1500,3型1:4800)。 2. Add 100 μl of the diluted conjugate (1 type 1: 2400, type 2 1: 1500, type 3 1: 4800).

3.將該板密封並在37℃下培育1小時。 3. Seal the plate and incubate at 37°C for 1 hour.

加入受質:Join the pledge:

1.加入100μl TMB受質到所有孔槽。 1. Add 100μl TMB substrate to all wells.

2.令混合物在室溫下經培育10分鐘。 2. Incubate the mixture for 10 minutes at room temperature.

3.通過加入100μl 2M H2SO4終止反應。 3. Stop the reaction by adding 100 μl 2M H 2 SO 4 .

4.在450/630nm下讀取該板。 4. Read the plate at 450/630nm.

5.使用KC4軟體計算D-抗原濃度。 5. Use KC4 software to calculate the D-antigen concentration.

實施例3 Example 3 sIPV的吸附sIPV adsorption

1.使用經高壓滅菌的1%Al(OH)3和AlPO4儲存液以製備製劑。 1. Use autoclaved 1% Al(OH) 3 and AlPO 4 stock solutions to prepare formulations.

2.取所需體積的Al(OH)3/AlPO4以在100ml的玻璃瓶中獲得所需的鋁濃度。 2. Take the required volume of Al(OH) 3 /AlPO 4 to obtain the required aluminum concentration in a 100 ml glass bottle.

3.加入已知D-Ag單位的滅活的脊髓灰質炎病毒樣品並使用稀釋液進行體積補充。 3. Add inactivated poliovirus samples with known D-Ag units and use diluents for volume supplementation.

4.使用1N HCl/NaOH將最終製劑的pH調節至6.5。 4. Adjust the pH of the final formulation to 6.5 using 1N HCl/NaOH.

5.在2至8℃下將該製劑產物保持於磁力攪拌器上過夜。 5. Keep the formulation product on a magnetic stirrer at 2 to 8°C overnight.

實施例4Example 4 預製劑研究Pre-formulation studies

在0.9%鹽水和WFI中製備不同濃度的Al(OH)3和AlPO4以檢驗尺寸和ζ電位隨pH的變化。 Different concentrations of Al(OH) 3 and AlPO 4 were prepared in 0.9% brine and WFI to examine the changes in size and zeta potential with pH.

觀察到在WFI和鹽水存在下,隨pH從5增加到7.5,AlPO4的ζ電位降低(負電)(參見圖1和圖2)。 It was observed that in the presence of WFI and brine, as the pH increased from 5 to 7.5, the zeta potential of AlPO 4 decreased (negative charge) (see Figures 1 and 2).

然而,Al(OH)3在鹽水中的ζ電位保持不變且與pH和Al(OH)3的鹽濃度無關(參見圖3和圖4)。 However, the zeta potential of Al(OH) 3 in brine remains unchanged and is independent of pH and the salt concentration of Al(OH) 3 (see Figures 3 and 4).

實施例5 Example 5 sIPV在磷酸鋁和氫氧化鋁上的吸附研究Study on the adsorption of sIPV on aluminum phosphate and aluminum hydroxide

Figure 106122622-A0202-12-0015-3
Figure 106122622-A0202-12-0015-3

發現沙賓3型脊髓灰質炎病毒使用磷酸鋁(AlPO4)僅僅吸附50至60%。然而,沙賓3型脊髓灰質炎病毒使用Al(OH)3顯示至少90%吸附。因此,與磷酸鋁相比,發現氫氧化鋁分別對於沙賓1、2和3型吸附更有效。 It was found that Sabin 3 poliovirus uses aluminum phosphate (AlPO 4 ) to adsorb only 50 to 60%. However, Sabin 3 poliovirus using Al(OH) 3 shows at least 90% adsorption. Therefore, compared with aluminum phosphate, aluminum hydroxide was found to be more effective for the adsorption of Sabin 1, 2 and 3, respectively.

實施例6Example 6 經鋁吸附的sIPV的免疫原性研究Study on the immunogenicity of aluminum-adsorbed sIPV

為了檢測大鼠中經佐劑化的sIPV的免疫反應,進行SNT測試(血清中和測試)。分離血清並用於測試特異性脊髓灰質炎病毒的中和抗體的存在。對照組血清用於驗證該測試。亦進行病毒反滴定以獲得加入挑戰病毒顆粒數量。 In order to detect the immune response of adjuvanted sIPV in rats, an SNT test (serum neutralization test) was performed. The serum is separated and used to test the presence of neutralizing antibodies against specific poliovirus. The control serum was used to validate the test. Virus anti-titration was also performed to obtain the number of challenge virus particles added.

動物模型:每組50%雄性和50%雌性Wistar大鼠(8周大,約200gm)。 Animal model: 50% male and 50% female Wistar rats (8 weeks old, about 200gm) in each group.

接種途徑:肌肉內。 Vaccination route: intramuscular.

體積:0.5ml Volume: 0.5ml

抽血:第21天。 Blood draw: 21st day.

出血部位:眼眶後血管叢。 Bleeding site: posterior orbital plexus

Figure 106122622-A0202-12-0016-4
Figure 106122622-A0202-12-0016-4

出人意料地發現,與具有40 DU/劑的沙克IPV疫苗和具有5 DU/劑的磷酸鋁佐劑的沙賓IPV相比,具有5 DU/劑的氫氧化鋁佐劑的沙賓1型IPV具有較佳的血清轉化。 Surprisingly, it was found that, compared to Sabine IPV with 40 DU/dose of Shaq IPV vaccine and 5 DU/dose of aluminum phosphate adjuvant, Sabin 1 IPV with 5 DU/dose of aluminum hydroxide adjuvant Has better seroconversion.

Figure 106122622-A0202-12-0017-5
Figure 106122622-A0202-12-0017-5

與8 DU/劑的沙克IPV疫苗相比,8 DU/劑的具有佐劑的2型sIPV得到相等的血清轉化。 Compared with 8 DU/dose of Shaq IPV vaccine, 8 DU/dose of adjuvanted type 2 sIPV resulted in equivalent seroconversion.

Figure 106122622-A0202-12-0017-6
Figure 106122622-A0202-12-0017-6

與具有32 DU/劑的沙克IPV疫苗相比,發現10 DU/劑的具有佐劑的3型sIPV產生相等的血清轉化。 Compared with the Shaq IPV vaccine with 32 DU/dose, it was found that 10 DU/dose of type 3 sIPV with adjuvant produced equivalent seroconversion.

Figure 106122622-A0202-12-0018-7
Figure 106122622-A0202-12-0018-7

佐劑化的沙賓脊髓灰質炎病毒的免疫應答 Immune response to adjuvanted Sabin poliovirus

我們觀察到,如果病毒經Al(OH)3佐劑化,則顯示極好的劑量減少。 We have observed that if the virus is adjuvanted with Al(OH) 3 , it shows an excellent dose reduction.

如果我們考慮單劑方案以進行免疫,則分別對於沙賓脊髓灰質炎1、2和3型,5-16-10 D-Ag是最好的組合。 If we consider a single-dose regimen for immunization, 5-16-10 D-Ag is the best combination for Sabin polio 1, 2 and 3, respectively.

如果我們考慮使用兩劑進行免疫,則2.5-8-5給出極好的免疫性。 If we consider using two doses for immunization, 2.5-8-5 gives excellent immunity.

Figure 106122622-A0202-12-0018-8
Figure 106122622-A0202-12-0018-8

沙賓的支持性實驗數據 Supporting experimental data for Sabine

Figure 106122622-A0202-12-0018-23
Figure 106122622-A0202-12-0018-23
Figure 106122622-A0202-12-0019-9
Figure 106122622-A0202-12-0019-9

佐劑化的沙克脊髓灰質炎病毒的免疫應答 Immune response to adjuvanted Shaq poliovirus

我們觀察到,如果病毒經Al(OH)3佐劑化,則顯示極好的劑量減少。 We have observed that if the virus is adjuvanted with Al(OH) 3 , it shows an excellent dose reduction.

如果我們考慮單劑方案以進行免疫,則分別對於沙克脊髓灰質炎1、2和3型,8-2-5 D-Ag是最好的組合。 If we consider a single-dose regimen for immunization, 8-2-5 D-Ag is the best combination for Shaq polio types 1, 2 and 3, respectively.

如果我們考慮使用兩劑進行免疫,則5-2-5給出極好的免疫性。 If we consider using two doses for immunization, 5-2-5 gives excellent immunity.

Figure 106122622-A0202-12-0019-10
Figure 106122622-A0202-12-0019-10

沙克的支持性實驗數據 Shaq's supporting experimental data

Figure 106122622-A0202-12-0020-19
Figure 106122622-A0202-12-0020-19

沙克(10-2-5)單劑的支持性實驗數據 Supporting experimental data of Shaq (10-2-5) single dose

Figure 106122622-A0202-12-0020-24
Figure 106122622-A0202-12-0020-24

沙克(10-2-12)單劑的支持性實驗數據 Supporting experimental data of Shaq (10-2-12) single dose

Figure 106122622-A0202-12-0021-20
Figure 106122622-A0202-12-0021-20

沙克(5-8-10)單劑的支持性實驗數據 Supporting experimental data of Shaq (5-8-10) single dose

Figure 106122622-A0202-12-0021-22
Figure 106122622-A0202-12-0021-22

沙克(7.5-16-10)單劑的支持性實驗數據 Supporting experimental data of Shaq (7.5-16-10) single dose

Figure 106122622-A0202-12-0021-28
Figure 106122622-A0202-12-0021-28
Figure 106122622-A0202-12-0022-14
Figure 106122622-A0202-12-0022-14

鑒於可應用本發明之原理的許多可能的實施方式,應當認為所描述的實施方案僅是本發明的優選實施例,而不應被認為是對本發明範圍的限制。相反地,本發明的範圍係由所附之申請專利範圍限定。因此,本發明包含在該申請專利範圍的範圍和精神內的所有內容。 In view of the many possible implementations to which the principles of the present invention can be applied, the described implementations should be regarded as only preferred examples of the present invention, and should not be regarded as limiting the scope of the present invention. On the contrary, the scope of the present invention is defined by the scope of the attached patent application. Therefore, the present invention includes all contents within the scope and spirit of the patent application.

Claims (10)

一種製備包含腸病毒顆粒的疫苗組合物的方法,其中該方法包含下述步驟:a)製備含有腸病毒顆粒的培養基;b)從該培養基純化該腸病毒顆粒;c)於具有pH為6.8至7.2且濃度範圍為30mM至70mM的緩衝液收集該腸病毒顆粒;d)藉由加入含有甘胺酸的M-199培養基至最終濃度為含有0.05%甘胺酸的1X M-199以穩定所純化的腸病毒顆粒;e)藉由使用0.025%甲醛在37℃下滅活該腸病毒顆粒5至13天;及f)吸附該腸病毒顆粒在鋁鹽佐劑上,其中在鋁上的吸附百分率為至少95%,其中包含該腸病毒顆粒的疫苗組合物是劑量減少的滅活型脊髓灰質炎疫苗(IPV),該劑量減少的IPV包含下述之沙克(Salk)血清型脊髓灰質炎病毒:i)劑量少於15D-抗原單位(DU)而非標準劑量40DU的滅活的1型脊髓灰質炎病毒;和/或ii)劑量少於18DU的滅活的2型脊髓灰質炎病毒;和/或iii)劑量少於17DU而非標準劑量32DU的滅活的3型脊髓灰質炎病毒。 A method for preparing a vaccine composition containing enterovirus particles, wherein the method comprises the following steps: a) preparing a medium containing enterovirus particles; b) purifying the enterovirus particles from the medium; c) having a pH of 6.8 to 7.2 Collect the enterovirus particles with a buffer with a concentration range of 30mM to 70mM; d) Stabilize the purification by adding M-199 medium containing glycine to a final concentration of 1X M-199 containing 0.05% glycine E) Inactivate the enterovirus particles by using 0.025% formaldehyde at 37°C for 5 to 13 days; and f) adsorb the enterovirus particles on an aluminum salt adjuvant, where the adsorption percentage on aluminum is At least 95%, the vaccine composition containing the enterovirus particles is a reduced-dose inactivated polio vaccine (IPV), and the reduced-dose IPV contains the following Salk serotype poliovirus: i) Inactivated type 1 poliovirus with a dose of less than 15D-antigen units (DU) instead of the standard dose of 40DU; and/or ii) inactivated type 2 poliovirus with a dose of less than 18DU; and/ Or iii) Inactivated poliovirus type 3 with a dose of less than 17 DU instead of the standard dose of 32 DU. 如請求項1所述的方法,其中步驟c)的該緩衝液選自:TRIS、TBS、MOPS、HEPES、碳酸氫鹽緩衝液及彼等之組合。 The method according to claim 1, wherein the buffer in step c) is selected from the group consisting of TRIS, TBS, MOPS, HEPES, bicarbonate buffer, and combinations thereof. 如請求項2所述的方法,其中步驟c)的該緩衝液是TRIS緩衝液。 The method according to claim 2, wherein the buffer in step c) is a TRIS buffer. 如請求項1所述的方法,其中步驟f)的該鋁鹽佐劑選自氫氧化鋁或磷酸鋁或該兩者的混合物。 The method according to claim 1, wherein the aluminum salt adjuvant in step f) is selected from aluminum hydroxide or aluminum phosphate or a mixture of the two. 如請求項4所述的方法,其中該鋁鹽佐劑是氫氧化鋁,其在約6.5的pH下的濃度為介於1.5mg/0.5ml劑至2.5mg/0.5ml劑。 The method according to claim 4, wherein the aluminum salt adjuvant is aluminum hydroxide, and its concentration at a pH of about 6.5 is between 1.5 mg/0.5 ml agent to 2.5 mg/0.5 ml agent. 如請求項5所述的方法,其中在該疫苗組合物中總鋁含量為每0.5ml劑低於1.2mg Al3+The method according to claim 5, wherein the total aluminum content in the vaccine composition is less than 1.2 mg Al 3+ per 0.5 ml dose. 如請求項1所述的方法,其中該沙克(Salk)血清型1型IPV是Mahoney毒株,該沙克(Salk)血清型2型IPV是MEF-1毒株且該沙克(Salk)血清型3型IPV是Saukett毒株。 The method according to claim 1, wherein the Salk serotype 1 IPV is a Mahoney strain, the Salk serotype 2 IPV is a MEF-1 strain, and the Salk Serotype 3 IPV is the Saukett strain. 如請求項1所述的方法,其中該劑量減少的滅活型脊髓灰質炎疫苗(IPV)包含: i)沙克單劑組合物,其具有選自8-2-5的沙克1型、2型及3型組合;ii)沙克兩劑組合物,其具有選自5-2-5的沙克1型、2型及3型組合;iii)沙克單劑組合物,其具有選自10-2-5的沙克1型、2型及3型組合;iv)沙克單劑組合物,其具有選自10-2-12的沙克1型、2型及3型組合;v)沙克單劑組合物,其具有選自7.5-16-10的沙克1型、2型及3型組合;vi)沙克單劑組合物,其具有選自10-2-10的沙克1型、2型及3型組合;或vii)沙克單劑組合物,其具有選自10-2-16的沙克1型、2型及3型組合。 The method according to claim 1, wherein the reduced-dose inactivated polio vaccine (IPV) comprises: i) Shaker single-dose composition, which has a combination of Shaker 1, 2 and 3 selected from 8-2-5; ii) Shaker two-dose composition, which has a Shaker selected from 5-2-5 Shaker type 1, type 2 and type 3 combinations; iii) Shaker single-dose composition having a combination of Shaker type 1, type 2 and type 3 selected from 10-2-5; iv) Shaker single-dose combination A combination of Shaker type 1, type 2 and type 3 selected from 10-2-12; v) a single-dose composition of Shaker having type 1 and type 2 selected from 7.5-16-10 And type 3 combination; vi) a single-dose composition of Shak, which has a combination of Shak 1, 2 and 3 selected from 10-2-10; or vii) a single-dose composition of Shak, which has a combination selected from 10-2-16 combination of Shaq 1, 2 and 3 types. 如請求項1至8中任一項所述的方法,其中該用於製備含有沙克脊髓灰質炎病毒的劑量減少的滅活型脊髓灰質炎疫苗(IPV)的方法包含下述步驟:a)製備含有該脊髓灰質炎病毒的培養基;b)從該培養基純化該脊髓灰質炎病毒;c)於具有pH為6.8至7.2且濃度範圍為30mM至70mM的TRIS緩衝液收集該脊髓灰質炎病毒;d)藉由加入含有甘胺酸的M-199培養基至最終濃度為含有0.05%甘胺酸的1X M-199以穩定所純化的脊髓灰質炎 病毒;e)藉由使用0.025%甲醛在37℃下滅活該脊髓灰質炎病毒5至13天;及f)在具有濃度介於1.5mg/0.5ml劑至2.5mg/0.5ml劑的氫氧化鋁佐劑上吸附該脊髓灰質炎病毒,其中對於沙克血清型IPV 1型、IPV 2型及IPV 3型,氫氧化鋁佐劑上的吸附百分比為至少95%。 The method according to any one of claims 1 to 8, wherein the method for preparing an inactivated polio vaccine (IPV) containing a reduced dose of Saq polio virus comprises the following steps: a) Preparing a medium containing the polio virus; b) purifying the polio virus from the medium; c) collecting the polio virus in a TRIS buffer with a pH of 6.8 to 7.2 and a concentration range of 30 mM to 70 mM; d ) Stabilize the purified polio by adding M-199 medium containing glycine to a final concentration of 1X M-199 containing 0.05% glycine Virus; e) inactivate the poliovirus by using 0.025% formaldehyde at 37°C for 5 to 13 days; and f) in aluminum hydroxide with a concentration of 1.5mg/0.5ml agent to 2.5mg/0.5ml agent The poliovirus is adsorbed on the adjuvant, and the adsorption percentage on the aluminum hydroxide adjuvant is at least 95% for Shaq serotypes IPV type 1, IPV type 2, and IPV type 3. 如請求項1至8中任一項所述的方法,其中由該劑量減少的IPV組成的多價疫苗進一步包含源自病原體的一或多種抗原,該病原體選自:流感嗜血桿菌(Haemophilus influenzae)b、腦膜炎奈瑟氏菌(Neisseria meningitidis)A型、腦膜炎奈瑟氏菌C型、腦膜炎奈瑟氏菌W型、腦膜炎奈瑟氏菌Y型、腦膜炎奈瑟氏菌X型、腦膜炎奈瑟氏菌B型、肺炎鏈球菌(Streptococcus pneumoniae)、傷寒沙門氏菌(Salmonella typhi)、A型肝炎、B型肝炎、白喉類毒素、破傷風類毒素、全細胞百日咳及無細胞百日咳。 The method according to any one of claims 1 to 8, wherein the multivalent vaccine composed of the reduced dose of IPV further comprises one or more antigens derived from a pathogen selected from the group consisting of Haemophilus influenzae ) b, Neisseria meningitidis type A, Neisseria meningitidis type C, Neisseria meningitidis type W, Neisseria meningitidis type Y, Neisseria meningitidis type X Type, Neisseria meningitidis type B, Streptococcus pneumoniae , Salmonella typhi , hepatitis A, hepatitis B, diphtheria toxoid, tetanus toxoid, whole cell pertussis and acellular pertussis.
TW106122622A 2017-07-10 2017-07-10 Improved methods for enterovirus inactivation, adjuvant adsorption and dose reduced vaccine compositions obtained thereof TWI711700B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106122622A TWI711700B (en) 2017-07-10 2017-07-10 Improved methods for enterovirus inactivation, adjuvant adsorption and dose reduced vaccine compositions obtained thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106122622A TWI711700B (en) 2017-07-10 2017-07-10 Improved methods for enterovirus inactivation, adjuvant adsorption and dose reduced vaccine compositions obtained thereof

Publications (2)

Publication Number Publication Date
TW201908481A TW201908481A (en) 2019-03-01
TWI711700B true TWI711700B (en) 2020-12-01

Family

ID=66590036

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106122622A TWI711700B (en) 2017-07-10 2017-07-10 Improved methods for enterovirus inactivation, adjuvant adsorption and dose reduced vaccine compositions obtained thereof

Country Status (1)

Country Link
TW (1) TWI711700B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063291A1 (en) * 2014-10-07 2016-04-28 Serum Institute Of India Private Limited Improved methods for enterovirus inactivation, adjuvant adsorption and dose reduced vaccine compositions obtained thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063291A1 (en) * 2014-10-07 2016-04-28 Serum Institute Of India Private Limited Improved methods for enterovirus inactivation, adjuvant adsorption and dose reduced vaccine compositions obtained thereof

Also Published As

Publication number Publication date
TW201908481A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
JP7063957B2 (en) Improved methods for enterovirus inactivation and adjuvant adsorption, as well as the resulting dose-reducing vaccine compositions.
RU2641969C2 (en) Multiple vaccination including serogroup c meningococci
JP2017533899A5 (en)
RU2444374C2 (en) Preparation of vaccines containing hepatitis type b virus surface antigen and surface-active material
US20110206726A1 (en) Combination vaccine with acellular pertussis
BRPI9710460B1 (en) multivalent immunogenic composition and vaccine composition
JP2014510129A (en) Method for producing an immunogenic composition comprising tetanus toxoid
US20110195087A1 (en) Combination vaccine with whole cell pertussis
JP2023091085A (en) mucosal adjuvant
TWI711700B (en) Improved methods for enterovirus inactivation, adjuvant adsorption and dose reduced vaccine compositions obtained thereof
US11793869B2 (en) Methods for enterovirus inactivation, adjuvant adsorption and dose reduced vaccine compositions obtained thereof
EA040305B1 (en) POLIOVACCINE COMPOSITION WITH REDUCED DOSE OF ANTIGEN D AND METHOD FOR ITS PRODUCTION
BR112017007089B1 (en) METHOD FOR PRODUCING A COMPOSITION COMPRISING ENTEROVIRAL PARTICLES
OA18258A (en) Improved methods for enterovirus inactivation, adjuvant adsorption and dose reduced vaccine compositions obtained thereof.
OA20569A (en) Improved methods for enterovirus inactivation, adjuvant adsorption and dose reduced vaccine compositions obtained thereof.