TWI709360B - Plasma control system and plasma control system program - Google Patents

Plasma control system and plasma control system program Download PDF

Info

Publication number
TWI709360B
TWI709360B TW108109127A TW108109127A TWI709360B TW I709360 B TWI709360 B TW I709360B TW 108109127 A TW108109127 A TW 108109127A TW 108109127 A TW108109127 A TW 108109127A TW I709360 B TWI709360 B TW I709360B
Authority
TW
Taiwan
Prior art keywords
antenna
current value
current
movable
unit
Prior art date
Application number
TW108109127A
Other languages
Chinese (zh)
Other versions
TW201941668A (en
Inventor
岩苔翼
Original Assignee
日商日新電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日新電機股份有限公司 filed Critical 日商日新電機股份有限公司
Publication of TW201941668A publication Critical patent/TW201941668A/en
Application granted granted Critical
Publication of TWI709360B publication Critical patent/TWI709360B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/327Arrangements for generating the plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/4652Radiofrequency discharges using inductive coupling means, e.g. coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits
    • H05H2242/26Matching networks

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本發明可使用長尺寸狀的天線來應對基板的大型化,並沿著天線的長邊方向產生均勻的電漿。本發明包括:高頻電源;第一天線,一端部與高頻電源連接;第二天線,一端部與第一天線的另一端部連接;第一電抗可變元件,設置於第一天線與第二天線之間,電抗藉由可動部件移動而改變;第一驅動部,使第一電抗可變元件的可動部件移動;第二電抗可變元件,與第二天線的另一端部連接,電抗藉由可動部件移動而改變;第二驅動部,使第二電抗可變元件的可動部件移動;第一電流檢測部,檢測流入第一天線的一端部中的電流;第二電流檢測部,檢測於第一天線與第二天線之間流動的電流;第三電流檢測部,檢測流入第二天線的另一端部中的電流;以及控制裝置,輸出用於以由第一電流檢測部所獲得的第一電流值、由第二電流檢測部所獲得的第二電流值、及由第三電流檢測部所獲得的第三電流值相互變成相等的方式,分別控制第一驅動部及第二驅動部的控制訊號。The present invention can use a long-sized antenna to cope with the increase in the size of the substrate and generate uniform plasma along the long side of the antenna. The present invention includes: a high-frequency power supply; a first antenna, one end of which is connected to the high-frequency power supply; a second antenna, one end of which is connected to the other end of the first antenna; and a first variable reactance element arranged on the first antenna Between the antenna and the second antenna, the reactance is changed by the movement of the movable part; the first driving part moves the movable part of the first variable reactance element; the second variable reactance element is the other part of the second antenna One end is connected, and the reactance is changed by the movement of the movable part; the second driving part moves the movable part of the second reactance variable element; the first current detection part detects the current flowing into one end of the first antenna; The second current detection part detects the current flowing between the first antenna and the second antenna; the third current detection part detects the current flowing in the other end of the second antenna; and the control device outputs the The first current value obtained by the first current detecting unit, the second current value obtained by the second current detecting unit, and the third current value obtained by the third current detecting unit become equal to each other, which are controlled separately Control signals for the first driving part and the second driving part.

Description

電漿控制系統以及電漿控制系統用程式Plasma control system and plasma control system program

本發明是有關於一種對使高頻電流流入天線中所產生的感應耦合型的電漿進行控制的電漿控制系統及用於該電漿控制系統的程式。 The present invention relates to a plasma control system for controlling inductively coupled plasma generated by flowing high-frequency current into an antenna, and a program used in the plasma control system.

作為產生感應耦合型的電漿(略稱為ICP(Inductively Coupled Plasma))者,如專利文獻1所示,已知有以將多根天線配置於真空容器內的基板的四角上,並使高頻電流流入該些天線中的方式構成的電漿處理裝置。 As a generator of inductively coupled plasma (abbreviated as ICP (Inductively Coupled Plasma)), as shown in Patent Document 1, it is known that a plurality of antennas are arranged on the four corners of a substrate in a vacuum vessel, and the height The plasma processing device is constructed in such a way that high-frequency current flows into these antennas.

若更詳細地進行說明,則該電漿處理裝置包括:與多根天線分別連接的可變阻抗元件、及設置於多根天線各自的供電側的拾波線圈或電容器。而且,根據來自拾波線圈或電容器的輸出值來對可變阻抗元件的阻抗值進行反饋控制,藉此將於各個天線的周圍產生的電漿的密度控制於規定範圍內,而謀求於真空容器內產生的電漿密度的空間的均勻化。 To explain in more detail, this plasma processing apparatus includes variable impedance elements connected to the plurality of antennas, and pickup coils or capacitors provided on the power supply sides of the plurality of antennas. Furthermore, the impedance value of the variable impedance element is feedback controlled based on the output value from the pickup coil or the capacitor, thereby controlling the density of the plasma generated around each antenna within a predetermined range, and achieving a vacuum container The spatial homogenization of the plasma density generated inside.

然而,若基板變成大型的基板,則無法藉由將如專利文獻1的電漿處理裝置中所使用般的尺寸比較短的天線配置於基板的四角上來應對,於此情況下,可使用如專利文獻2所示般的長尺寸狀的天線。 However, if the substrate becomes a large substrate, it cannot be dealt with by arranging relatively short antennas on the four corners of the substrate as used in the plasma processing apparatus of Patent Document 1. In this case, the patent A long antenna as shown in Document 2.

於將此種長尺寸狀的天線配置於真空容器內來生成感應耦合型電漿的情況下,藉由在天線與電漿之間產生的靜電耦合,而使電流經由電漿而在天線與真空容器的壁之間流動、或使電流經由電漿而於相互鄰接的天線間流動。 When such a long antenna is arranged in a vacuum container to generate inductively coupled plasma, the electrostatic coupling between the antenna and the plasma causes current to flow between the antenna and the vacuum through the plasma. Flow between the walls of the container, or allow current to flow between adjacent antennas via plasma.

其結果,產生沿著天線的長邊方向的電流量的分布變得不均勻、且沿著天線的長邊方向的電漿密度變得不均勻這一問題。 As a result, there is a problem that the distribution of the amount of current along the longitudinal direction of the antenna becomes uneven, and the plasma density along the longitudinal direction of the antenna becomes uneven.

[現有技術文獻] [Prior Art Literature]

[專利文獻] [Patent Literature]

專利文獻1:日本專利特開2004-228354號公報 Patent Document 1: Japanese Patent Laid-Open No. 2004-228354

專利文獻2:日本專利特開2016-138598號公報 Patent Document 2: Japanese Patent Laid-Open No. 2016-138598

因此,本發明是為了解決所述問題點而成者,其將可使用長尺寸狀的天線來應對基板的大型化,並沿著天線的長邊方向產生均勻的電漿作為其主要的課題。 Therefore, the present invention was developed to solve the above-mentioned problems, and its main problem is that a long antenna can be used to cope with the increase in the size of the substrate, and the generation of uniform plasma along the longitudinal direction of the antenna is its main problem.

即,本發明的電漿控制系統的特徵在於包括:高頻電源;第一天線,一端部與所述高頻電源連接;第二天線,一端部與所述第一天線的另一端部連接;第一電抗可變元件,設置於所述第一天線與所述第二天線之間,電抗藉由可動部件移動而改變;第一驅動部,使所述第一電抗可變元件的所述可動部件移動;第二電抗可變元件,與所述第二天線的另一端部連接,電抗藉由 可動部件移動而改變;第二驅動部,使所述第二電抗可變元件的所述可動部件移動;第一電流檢測部,檢測流入所述第一天線的一端部中的電流;第二電流檢測部,檢測於所述第一天線與所述第二天線之間流動的電流;第三電流檢測部,檢測流入所述第二天線的另一端部中的電流;以及控制裝置,輸出用於以由所述第一電流檢測部所獲得的第一電流值、由所述第二電流檢測部所獲得的第二電流值、及由所述第三電流檢測部所獲得的第三電流值相互變成相等的方式,分別控制所述第一驅動部及所述第二驅動部的控制訊號。 That is, the plasma control system of the present invention is characterized by comprising: a high-frequency power supply; a first antenna, one end of which is connected to the high-frequency power supply; a second antenna, one end of which is connected to the other end of the first antenna Section connection; a first variable reactance element, arranged between the first antenna and the second antenna, the reactance is changed by the movement of the movable part; the first driving part makes the first reactance variable The movable part of the element moves; the second variable reactance element is connected to the other end of the second antenna, and the reactance is The movable member moves and changes; a second driving part moves the movable part of the second variable reactance element; a first current detection part detects the current flowing into one end of the first antenna; second A current detection unit that detects the current flowing between the first antenna and the second antenna; a third current detection unit that detects the current that flows into the other end of the second antenna; and a control device , The output is used to use the first current value obtained by the first current detection unit, the second current value obtained by the second current detection unit, and the first current value obtained by the third current detection unit The three current values become equal to each other, and the control signals of the first driving part and the second driving part are respectively controlled.

根據此種電漿控制系統,控制裝置輸出用於以第一電流值、第二電流值、及第三電流值相互變成相等的方式,分別控制第一驅動部及第二驅動部的控制訊號,因此可使流入第一天線及第二天線中的電流沿著長邊方向儘可能地變得均勻。 According to this plasma control system, the control device outputs control signals for controlling the first driving part and the second driving part so that the first current value, the second current value, and the third current value become equal to each other. Therefore, the current flowing in the first antenna and the second antenna can be made as uniform as possible along the longitudinal direction.

其結果,可使用長尺寸狀的天線來應對基板的大型化,並可沿著天線的長邊方向產生均勻的電漿。 As a result, a long antenna can be used to cope with an increase in the size of the substrate, and a uniform plasma can be generated along the longitudinal direction of the antenna.

再者,本發明中的「第一電流值、第二電流值、及第三電流值相互變成相等」是指除第一電流值、第二電流值、及第三電流值變成相同的情況以外,亦包括使流入第一天線及第二天線中的電流沿著長邊方向儘可能地變得均勻後,於第一電流值、第二電流值、及第三電流值之間產生可無視的誤差或檢測不到的誤差的情況。 Furthermore, in the present invention, "the first current value, the second current value, and the third current value become equal to each other" means except for the case where the first current value, the second current value, and the third current value become the same , It also includes making the current flowing in the first antenna and the second antenna as uniform as possible along the long side direction, and then generating a variable between the first current value, the second current value, and the third current value. Disregarded errors or undetectable errors.

作為用於使第一電流值、第二電流值、及第三電流值相 互變成相等的控制裝置的具體的結構,可列舉如下的結構,其包括:第一比較部,對所述第一檢測值與所述第二檢測值進行比較;第二比較部,對所述第二檢測值與所述第三檢測值進行比較;以及控制部,根據所述第一比較部的比較結果,輸出用於以所述第一電流值與所述第二電流值變成相等的方式控制所述第一驅動部的控制訊號,並且根據所述第二比較部的比較結果,輸出用於以所述第二電流值與所述第三電流值變成相等的方式控制所述第二驅動部的控制訊號。 As used to phase the first current value, the second current value, and the third current value The specific structure of the control device that becomes equal to each other may include the following structure, which includes: a first comparison unit that compares the first detection value with the second detection value; and a second comparison unit that compares the The second detection value is compared with the third detection value; and the control unit, based on the comparison result of the first comparison unit, outputs a signal for outputting the first current value and the second current value to become equal Control the control signal of the first driving part, and according to the comparison result of the second comparing part, output for controlling the second driving in such a way that the second current value and the third current value become equal Department of control signal.

若為此種結構,則可使第一電流值與第二電流值變成相等,並且使第二電流值與第三電流值變成相等,作為其結果,可使第一電流值、第二電流值、及第三電流值相互變成相等。 With this structure, the first current value and the second current value can be made equal, and the second current value and the third current value can be made equal, and as a result, the first current value and the second current value can be made equal , And the third current value become equal to each other.

作為控制裝置的另一結構,可列舉如下的結構,其包括:模式資料存儲部,存儲已將表示所述第一電流值、所述第二電流值、及所述第三電流值的大小關係的多種基準電流值模式與對應於各個基準電流值模式而事先決定,用於以所述各電流值相互變成相等的方式控制所述第一驅動部及所述第二驅動部的控制模式結合的模式資料;實際電流值模式判斷部,判斷作為所述第一電流值、所述第二電流值、及所述第三電流值的實際的大小關係的實際電流值模式;以及控制部,判斷與所述實際電流值模式對應的所述基準電流值模式,並且根據已與該基準電流值模式結合的所述控制模式,輸出用於分別控制所述第一驅動部及所述第二驅動部的控制訊號。 As another structure of the control device, the following structure can be cited, which includes: a mode data storage unit that stores the relationship between the first current value, the second current value, and the third current value. The multiple reference current value modes and the corresponding reference current value modes are determined in advance, and are used to control the first drive unit and the second drive unit in such a way that the current values become equal to each other. Mode data; an actual current value mode judging unit that judges the actual current value mode as the actual magnitude relationship of the first current value, the second current value, and the third current value; and the control unit, judging and The reference current value mode corresponding to the actual current value mode, and according to the control mode that has been combined with the reference current value mode, output for controlling the first driving part and the second driving part respectively Control signal.

若為此種結構,則根據對應於實際電流值模式的控制模式,輸出用於分別控制第一驅動部及第二驅動部的控制訊號,藉此可使第一電流值、第二電流值、及第三電流值相互變成相等。 With this structure, according to the control mode corresponding to the actual current value mode, a control signal for controlling the first driving part and the second driving part respectively is output, so that the first current value, the second current value, and the And the third current value becomes equal to each other.

此外,於第一天線及第二天線分別貫穿收容基板的真空容器的相向的側壁,並且將各天線的相同側的端部電性連接而串聯連接的結構中,當變更了各電抗元件的電抗時,第二電流值的變動比第一電流值或第三電流值的變動小。可認為其原因在於:於第一天線與第二天線之間流動的電流比流入各天線中的電流更難以受到電漿的影響。 In addition, in the structure in which the first antenna and the second antenna respectively penetrate the opposed side walls of the vacuum container containing the substrate, and the ends of the antennas on the same side are electrically connected and connected in series, when each reactance element is changed In the case of reactance, the variation of the second current value is smaller than the variation of the first current value or the third current value. The reason for this is considered to be that the current flowing between the first antenna and the second antenna is less affected by the plasma than the current flowing in each antenna.

因此,所述控制裝置較佳為以如下方式構成:於所述第一電流值與所述第二電流值互不相同的情況下,輸出用於以使所述第一電流值接近所述第二電流值的方式控制所述第一驅動部的控制訊號,於所述第二電流值及所述第三電流值互不相同的情況下,輸出用於以使所述第三電流值接近所述第二電流值的方式控制所述第二驅動部的控制訊號。 Therefore, the control device is preferably configured as follows: when the first current value and the second current value are different from each other, output is used to make the first current value close to the first current value. The control signal of the first driving unit is controlled in a two-current value mode. When the second current value and the third current value are different from each other, the output is used to make the third current value close to all The second current value is used to control the control signal of the second driving unit.

若為此種結構,則使第一電流值或第三電流值接近比較穩定的第二電流值,因此可於比較短的時間內使第一電流值、第二電流值、及第三電流值相互變成相等。 With this structure, the first current value or the third current value is made close to the relatively stable second current value, so the first current value, the second current value, and the third current value can be adjusted in a relatively short time. Become equal to each other.

作為所述第一電抗可變元件,可列舉如下的可變電容器,其具有:第一固定電極,與所述第一天線電性連接;第二固定電極,與所述第二天線電性連接;以及作為所述可動部件的可動電極,與所述第一固定電極之間形成第一電容器,並且與所述 第二固定電極之間形成第二電容器;且以藉由所述可動電極環繞規定的旋轉軸進行旋轉,而可變更其靜電電容的方式構成。 As the first variable reactance element, the following variable capacitor can be cited, which has: a first fixed electrode electrically connected to the first antenna; a second fixed electrode electrically connected to the second antenna Sexual connection; and as the movable electrode of the movable member, a first capacitor is formed between the first fixed electrode and the A second capacitor is formed between the second fixed electrodes; and the movable electrode is configured to change its electrostatic capacitance by rotating around a predetermined rotation axis.

於此種結構中,例如於靜電電容為零,即設為可動電極與各固定電極於俯視下不互相重疊的狀態的情況下,若在可動電極與各固定電極之間產生間隙,則有時於該間隙中產生電弧放電,存在導致電容元件的破損之虞。 In this structure, for example, when the electrostatic capacitance is zero, that is, when the movable electrode and each fixed electrode do not overlap each other in a plan view, if a gap is formed between the movable electrode and each fixed electrode, sometimes Arc discharge occurs in the gap, which may cause damage to the capacitor element.

因此,於所述結構中,較佳為所述控制裝置包括於所述可動電極的旋轉角度已變成規定的臨限值的情況下,使所述可動電極的旋轉停止的控制停止部。 Therefore, in the above configuration, it is preferable that the control device includes a control stop portion that stops the rotation of the movable electrode when the rotation angle of the movable electrode has reached a predetermined threshold value.

若為此種結構,則可於到達可能產生電弧放電的旋轉角度之前使可動電極的旋轉停止,而可防止電弧放電的產生。 With this structure, the rotation of the movable electrode can be stopped before reaching the rotation angle at which arc discharge may occur, and the generation of arc discharge can be prevented.

較佳為所述第一天線及所述第二天線分別貫穿收容基板的真空容器的相向的側壁,並且藉由介於所述各天線的相同側的端部之間的連接導體而串聯連接,所述各天線於內部具有冷卻液進行流動的流路,所述連接導體具有:作為所述第一電抗可變元件的第一可變電容器;第一連接部,將所述第一可變電容器與所述第一天線的端部連接,並且將自形成於所述端部的開口部中流出的所述冷卻液引導至所述第一可變電容器中;以及第二連接部,將所述第一可變電容器與所述第二天線的端部連接,並且將已穿過所述第一可變電容器的所述冷卻液引導至形成於所述端部的開口部中;且所述冷卻液是所述第一可變電容器的電介質。 Preferably, the first antenna and the second antenna respectively penetrate the opposing side walls of the vacuum container accommodating the substrate, and are connected in series by a connecting conductor interposed between ends of the same side of each antenna , Each of the antennas has a flow path in which a cooling liquid flows, and the connecting conductor has: a first variable capacitor as the first variable reactance element; a first connecting portion for connecting the first variable A capacitor is connected to the end of the first antenna, and the coolant flowing out of the opening formed in the end is guided to the first variable capacitor; and a second connection part The first variable capacitor is connected to an end of the second antenna, and the coolant that has passed through the first variable capacitor is guided into an opening formed at the end; and The coolant is the dielectric of the first variable capacitor.

若為此種結構,則對於高頻電流的電抗簡言之變成自天線的 感應性電抗減去第一可變電容器的電容性電抗而成者,因此可將一對天線串聯連接,並降低天線的阻抗。其結果,即便於使天線變長的情況下,亦可抑制其阻抗的增大,高頻電流容易流入天線中,可高效率地產生電漿。而且,由於將天線的冷卻液用作第一可變電容器的電介質,因此可對第一可變電容器進行冷卻,並抑制其靜電電容的突然的變動。 With this structure, the reactance for high-frequency currents in short becomes from the antenna The inductive reactance is obtained by subtracting the capacitive reactance of the first variable capacitor. Therefore, a pair of antennas can be connected in series and the impedance of the antenna can be reduced. As a result, even when the antenna is made longer, the increase in impedance can be suppressed, high-frequency current can easily flow into the antenna, and plasma can be generated efficiently. Furthermore, since the cooling liquid of the antenna is used as the dielectric of the first variable capacitor, the first variable capacitor can be cooled and sudden changes in its electrostatic capacitance can be suppressed.

另外,本發明的電漿控制系統用程式是用於如下的電漿控制系統的程式,所述電漿控制系統包括:高頻電源;第一天線,一端部與所述高頻電源連接;第二天線,一端部與所述第一天線的另一端部連接;第一電抗可變元件,設置於所述第一天線與所述第二天線之間,電抗藉由可動部件移動而改變;第一驅動部,使所述第一電抗可變元件的所述可動部件移動;第二電抗可變元件,與所述第二天線的另一端部連接,電抗藉由可動部件移動而改變;第二驅動部,使所述第二電抗可變元件的所述可動部件移動;第一電流檢測部,檢測流入所述第一天線的一端部中的電流;第二電流檢測部,檢測於所述第一天線與所述第二天線之間流動的電流;以及第三電流檢測部,檢測流入所述第二天線的另一端部中的電流;且所述電漿控制系統用程式的特徵在於:使電腦發揮輸出用於以由所述第一電流檢測部所獲得的第一電流值,由所述第二電流檢測部所獲得的第二電流值,及由所述第三電流檢測部所獲得的第三電流值相互變成相等的方式,分別控制所述第一驅動部及所述第二驅動部的控制訊號的功能。 In addition, the plasma control system program of the present invention is a program for the plasma control system, the plasma control system includes: a high-frequency power supply; a first antenna, one end of which is connected to the high-frequency power supply; The second antenna has one end connected to the other end of the first antenna; the first variable reactance element is arranged between the first antenna and the second antenna, and the reactance is provided by a movable part The first driving part moves the movable part of the first variable reactance element; the second variable reactance element is connected to the other end of the second antenna, and the reactance passes through the movable part Move and change; a second drive part to move the movable part of the second variable reactance element; a first current detection part to detect a current flowing into one end of the first antenna; a second current detection Section, detecting the current flowing between the first antenna and the second antenna; and a third current detecting section, detecting the current flowing into the other end of the second antenna; and the electrical The program for the pulp control system is characterized in that: the computer is used to output the first current value obtained by the first current detection unit, the second current value obtained by the second current detection unit, and The third current values obtained by the third current detecting unit become equal to each other, and the functions of the control signals of the first driving unit and the second driving unit are respectively controlled.

根據此種電漿控制系統用程式,可發揮與所述電漿控制系統相同的作用效果。 According to such a plasma control system program, the same functions and effects as the plasma control system can be exerted.

根據如所述般構成的本發明,可使用長尺寸狀的天線來應對基板的大型化,並可沿著天線的長邊方向產生均勻的電漿。 According to the present invention configured as described above, a long antenna can be used to cope with an increase in the size of the substrate, and uniform plasma can be generated along the longitudinal direction of the antenna.

2:真空容器 2: Vacuum container

3:天線 3: antenna

3(A):第一天線 3(A): The first antenna

3a1:一端部(供電側端部) 3a1: One end (end on the power supply side)

3a2:另一端部 3a2: the other end

3(B):第二天線 3(B): second antenna

3b1:一端部 3b1: one end

3b2:另一端部(終端部) 3b2: The other end (terminal part)

3H:開口部 3H: Opening

3s:流路 3s: flow path

4:高頻電源 4: High frequency power supply

5:真空排氣裝置 5: Vacuum exhaust device

6:基板固定器 6: substrate holder

7:偏置電源 7: Bias power supply

8:絕緣構件 8: Insulating member

10:絕緣罩 10: Insulating cover

11:循環流路 11: Circulating flow path

12:連接導體 12: connecting conductor

13:可變電容器 13: Variable capacitor

14:第一連接部 14: The first connection part

15:第二連接部 15: The second connecting part

16:第一固定電極 16: first fixed electrode

17:第二固定電極 17: Second fixed electrode

18:可動電極(可動部件) 18: Movable electrode (movable part)

19:收容容器 19: Containment container

21:氣體導入口 21: Gas inlet

41:匹配電路 41: matching circuit

61:加熱器 61: heater

91、92:襯墊 91, 92: liner

100:電漿處理裝置 100: Plasma processing device

101:直流轉換電路 101: DC conversion circuit

102:AD轉換器 102: AD converter

103:馬達驅動電路 103: Motor drive circuit

111:調溫機構 111: Thermostat

112:循環機構 112: Circulation mechanism

161:第一固定金屬板 161: The first fixed metal plate

161a、171a、182a、183a:端邊 161a, 171a, 182a, 183a: end edge

161b、171b:前端邊 161b, 171b: front edge

162:第一凸緣構件 162: first flange member

162H、172H:貫穿孔 162H, 172H: through hole

171:第二固定金屬板 171: The second fixed metal plate

172:第二凸緣構件 172: second flange member

181:旋轉軸體 181: Rotating shaft

181x:支持第一可動金屬板182及第二可動金屬板183的部分 181x: The part that supports the first movable metal plate 182 and the second movable metal plate 183

181y:自收容容器19朝外部延伸出的部分 181y: The part extending outward from the container 19

182:第一可動金屬板 182: The first movable metal plate

183:第二可動金屬板 183: The second movable metal plate

191:定位凹部 191: positioning recess

200:電漿控制系統 200: Plasma control system

A1:第一相向面積 A1: The first facing area

A2:第二相向面積 A2: The second facing area

C:旋轉軸 C: Rotation axis

CL:冷卻液(液體的電介質) CL: Coolant (liquid dielectric)

G:氣體 G: Gas

IR:高頻電流 IR: high frequency current

I1:第一電流值 I1: the first current value

I2:第二電流值 I2: second current value

I3:第三電流值 I3: Third current value

M1:第一驅動部(馬達) M1: The first drive unit (motor)

M2:第二驅動部(馬達) M2: The second drive unit (motor)

P:感應耦合型電漿 P: Inductively coupled plasma

P1:導入埠 P1: Import port

P2:導出埠 P2: Export port

S1:第一電流檢測部 S1: The first current detection part

S2:第二電流檢測部 S2: The second current detection part

S3:第三電流檢測部 S3: The third current detection unit

Sa、Sb:密封構件 Sa, Sb: sealing components

VC1:第一可變電容器 VC1: The first variable capacitor

VC2:第二可變電容器 VC2: second variable capacitor

VC3:第三可變電容器 VC3: Third variable capacitor

W:基板 W: substrate

X:控制裝置 X: control device

X1:電流值獲取部 X1: Current value acquisition section

X2:第一比較部 X2: The first comparison section

X3:第二比較部 X3: The second comparison section

X4:控制部 X4: Control Department

X5:控制停止部 X5: Control stop

X6:模式資料存儲部 X6: Pattern data storage section

X7:實際電流值模式判斷部 X7: Actual current value mode judgment unit

θ:旋轉角度 θ: rotation angle

S1~S6:步驟 S1~S6: steps

Z:間隙 Z: gap

圖1是表示本實施方式的電漿控制系統的結構的示意圖。 FIG. 1 is a schematic diagram showing the configuration of a plasma control system of this embodiment.

圖2是示意性地表示本實施方式的電漿處理裝置的結構的縱剖面圖。 FIG. 2 is a longitudinal sectional view schematically showing the structure of the plasma processing apparatus of the present embodiment.

圖3是示意性地表示本實施方式的電漿處理裝置的結構的橫剖面圖。 FIG. 3 is a cross-sectional view schematically showing the structure of the plasma processing apparatus of the present embodiment.

圖4是示意性地表示本實施方式的連接導體的橫剖面圖。 FIG. 4 is a cross-sectional view schematically showing the connecting conductor of the present embodiment.

圖5是示意性地表示本實施方式的連接導體的縱剖面圖。 Fig. 5 is a longitudinal sectional view schematically showing the connecting conductor of the present embodiment.

圖6是從導入埠側觀察本實施方式的可變電容器的側面圖。 Fig. 6 is a side view of the variable capacitor of this embodiment viewed from the inlet port side.

圖7是表示本實施方式的固定金屬板及可動金屬板不相向的狀態的示意圖。 Fig. 7 is a schematic diagram showing a state where the fixed metal plate and the movable metal plate of the present embodiment are not facing each other.

圖8是表示本實施方式的固定金屬板及可動金屬板相向的狀態的示意圖。 FIG. 8 is a schematic diagram showing a state where the fixed metal plate and the movable metal plate of this embodiment face each other.

圖9是表示本實施方式的控制裝置的功能的功能框圖。 FIG. 9 is a functional block diagram showing the functions of the control device of this embodiment.

圖10是用於說明本實施方式的控制裝置的動作的流程圖。 FIG. 10 is a flowchart for explaining the operation of the control device of this embodiment.

圖11是表示第二實施方式的控制裝置的功能的功能框圖。 Fig. 11 is a functional block diagram showing the functions of the control device of the second embodiment.

圖12是用於說明第二實施方式的基準電流值模式的圖。 Fig. 12 is a diagram for explaining a reference current value pattern of the second embodiment.

圖13是表示其他實施方式中的電漿控制系統的結構的示意圖。 FIG. 13 is a schematic diagram showing the configuration of a plasma control system in another embodiment.

以下,參照圖式對本發明的電漿控制系統的一實施方式進行說明。 Hereinafter, an embodiment of the plasma control system of the present invention will be described with reference to the drawings.

<系統結構> <System structure>

如圖1所示,本實施方式的電漿控制系統200至少包括利用感應耦合型的電漿對基板實施處理的電漿處理裝置100,及用於控制所述電漿的控制裝置X。 As shown in FIG. 1, the plasma control system 200 of this embodiment at least includes a plasma processing device 100 that uses inductively coupled plasma to process a substrate, and a control device X for controlling the plasma.

首先,對電漿處理裝置100進行說明。 First, the plasma processing apparatus 100 will be described.

如圖2所示,電漿處理裝置100是對基板W實施例如利用電漿化學氣相沈積(Chemical Vapor Deposition,CVD)法的膜形成、蝕刻、灰化、濺鍍等處理者。基板W例如為液晶顯示器或有機電致發光(Electroluminescence,EL)顯示器等平板顯示器(Flat Panel Display,FPD)用的基板,可撓性顯示器用的可撓性基板等。 As shown in FIG. 2, the plasma processing apparatus 100 is a device that performs, for example, film formation, etching, ashing, and sputtering on the substrate W using a plasma chemical vapor deposition (CVD) method. The substrate W is, for example, a substrate for a flat panel display (FPD) such as a liquid crystal display or an organic electroluminescence (Electroluminescence, EL) display, a flexible substrate for a flexible display, and the like.

再者,該電漿處理裝置100於利用電漿CVD法進行膜形成的情況下亦被稱為電漿CVD裝置,於進行蝕刻的情況下亦被稱為電漿蝕刻裝置,於進行灰化的情況下亦被稱為電漿灰化裝置,於進行濺鍍的情況下亦被稱為電漿濺鍍裝置。 Furthermore, the plasma processing device 100 is also called a plasma CVD device when the plasma CVD method is used for film formation, and when etching is performed, it is also called a plasma etching device. In this case, it is also called a plasma ashing device, and in the case of sputtering, it is also called a plasma sputtering device.

具體而言,電漿處理裝置100包括:真空容器2,進行真空排氣且導入氣體G;長尺寸狀的天線3,配置於真空容器2內; 以及高頻電源4,對天線3施加用於在真空容器2內生成感應耦合型的電漿P的高頻。再者,自高頻電源4對天線3施加高頻,藉此高頻電流IR流入天線3中,於真空容器2內產生感應電場而生成感應耦合型的電漿P。 Specifically, the plasma processing apparatus 100 includes: a vacuum container 2 for performing vacuum exhaust and introducing gas G; a long antenna 3 arranged in the vacuum container 2; And the high-frequency power source 4 applies a high frequency to the antenna 3 for generating inductively coupled plasma P in the vacuum container 2. Furthermore, when a high frequency is applied to the antenna 3 from the high frequency power supply 4, a high frequency current IR flows into the antenna 3, an induced electric field is generated in the vacuum container 2 and an inductive coupling type plasma P is generated.

真空容器2例如為金屬製的容器,其內部藉由真空排氣裝置5來進行真空排氣。於本例中,真空容器2電性接地。 The vacuum container 2 is, for example, a metal container, and the inside thereof is evacuated by a vacuum exhaust device 5. In this example, the vacuum container 2 is electrically grounded.

於真空容器2內,例如經由流量調整器(省略圖示)及形成於真空容器2的側壁上的氣體導入口21而導入氣體G。氣體G只要設為對應於對基板W實施的處理內容者即可。 In the vacuum container 2, the gas G is introduced through, for example, a flow regulator (not shown) and a gas inlet 21 formed on the side wall of the vacuum container 2. The gas G only needs to be set to correspond to the content of the processing performed on the substrate W.

另外,於真空容器2內設置有保持基板W的基板固定器6。亦可如本例般,自偏置電源7對基板固定器6施加偏置電壓。偏置電壓例如為負的直流電壓、負的脈衝電壓等,但並不限定於此。藉由此種偏置電壓,例如可控制電漿P中的正離子射入基板W時的能量,而進行形成於基板W的表面上的膜的結晶度的控制等。於基板固定器6內,亦可設置對基板W進行加熱的加熱器61。 In addition, a substrate holder 6 holding the substrate W is provided in the vacuum container 2. The self-bias power supply 7 may also apply a bias voltage to the substrate holder 6 as in this example. The bias voltage is, for example, a negative DC voltage, a negative pulse voltage, etc., but it is not limited to this. With such a bias voltage, for example, the energy of the positive ions in the plasma P when the substrate W is incident on the substrate W can be controlled, and the crystallinity of the film formed on the surface of the substrate W can be controlled. A heater 61 for heating the substrate W may be provided in the substrate holder 6.

此處,天線3是直線狀的天線,於真空容器2內的基板W的上方,以沿著基板W的表面的方式(例如,與基板W的表面實質上平行地)配置有多根。 Here, the antenna 3 is a linear antenna, and a plurality of antennas are arranged above the substrate W in the vacuum container 2 along the surface of the substrate W (for example, substantially parallel to the surface of the substrate W).

天線3的兩端部附近分別貫穿真空容器2的彼此相對的側壁。於使天線3的兩端部朝真空容器2外貫穿的部分上分別設置有絕緣構件8。天線3的兩端部貫穿所述各絕緣構件8,其貫穿部例如藉由襯墊91來真空密封。各絕緣構件8與真空容器2之間 亦藉由例如襯墊92來真空密封。再者,絕緣構件8的材質例如為氧化鋁等陶瓷,石英,或聚苯硫醚(Polyphenylene sulfide,PPS)、聚醚醚酮(Polyether-ether-ketone,PEEK)等工程塑膠等。 The vicinity of both ends of the antenna 3 penetrates the mutually opposed side walls of the vacuum container 2 respectively. Insulating members 8 are respectively provided on the portions through which both ends of the antenna 3 penetrate the vacuum container 2. Both ends of the antenna 3 penetrate the insulating members 8, and the penetration portions are vacuum-sealed by, for example, gaskets 91. Between each insulating member 8 and the vacuum container 2 It is also vacuum sealed by a gasket 92, for example. Furthermore, the material of the insulating member 8 is, for example, ceramics such as alumina, quartz, or engineering plastics such as polyphenylene sulfide (PPS) or polyether-ether-ketone (PEEK).

進而,於天線3中,位於真空容器2內的部分由直管狀的絕緣罩10覆蓋。該絕緣罩10的兩端部由絕緣構件8支持。再者,絕緣罩10的材質例如為石英、氧化鋁、氟樹脂、氮化矽、碳化矽、矽等。 Furthermore, in the antenna 3, a portion located in the vacuum container 2 is covered by a straight tubular insulating cover 10. Both ends of the insulating cover 10 are supported by insulating members 8. Furthermore, the material of the insulating cover 10 is, for example, quartz, alumina, fluororesin, silicon nitride, silicon carbide, silicon, etc.

而且,多根天線3是於內部具有冷卻液CL進行流通的流路3s的中空結構的天線。於本實施方式中,天線3是呈直管狀的金屬管。金屬管的材質例如為銅、鋁、該些的合金、不銹鋼等。 In addition, the plurality of antennas 3 are antennas of a hollow structure having a flow path 3s through which the coolant CL flows. In this embodiment, the antenna 3 is a metal tube having a straight tubular shape. The material of the metal pipe is, for example, copper, aluminum, these alloys, and stainless steel.

再者,冷卻液CL是藉由設置於真空容器2的外部的循環流路11而於天線3中進行流通者,於所述循環流路11中設置有用於將冷卻液CL調整成固定溫度的熱交換器等調溫機構111,及用於使冷卻液CL在循環流路11中進行循環的泵等循環機構112。作為冷卻液CL,就電絕緣的觀點而言,較佳為高電阻的水,例如較佳為純水或接近純水的水。此外,例如亦可使用氟系惰性液體等水以外的液體冷媒。 Furthermore, the cooling liquid CL is circulated through the antenna 3 through the circulation flow path 11 provided outside the vacuum vessel 2, and the circulation flow path 11 is provided with a device for adjusting the cooling liquid CL to a fixed temperature. A temperature adjustment mechanism 111 such as a heat exchanger, and a circulation mechanism 112 such as a pump for circulating the cooling liquid CL in the circulation flow path 11. As the coolant CL, from the viewpoint of electrical insulation, high-resistance water is preferable, for example, pure water or water close to pure water is preferable. In addition, for example, a liquid refrigerant other than water such as a fluorine-based inert liquid may also be used.

另外,如圖3所示,多根天線3以由連接導體12連接而變成一根天線結構的方式構成。即,利用連接導體12將相互鄰接的天線3中的朝真空容器2的外部延伸出的端部彼此電性連接。若更具體地進行說明,則於本實施方式中,兩根天線3由連接導體12連接,且其中一根天線3(以下,亦稱為第一天線3A) 的端部與另一根天線3(以下,亦稱為第二天線3B)的端部經電性連接。 In addition, as shown in FIG. 3, a plurality of antennas 3 are connected by connecting conductors 12 to form a single antenna structure. In other words, the end portions of the antennas 3 that are adjacent to each other that extend toward the outside of the vacuum container 2 are electrically connected to each other by the connecting conductor 12. To describe in more detail, in this embodiment, two antennas 3 are connected by a connecting conductor 12, and one of the antennas 3 (hereinafter, also referred to as the first antenna 3A) The end of is electrically connected to the end of another antenna 3 (hereinafter, also referred to as the second antenna 3B).

此處,由連接導體12連接的第一天線3A及第二天線3B的端部是位於相同側壁側的端部。藉此,相互反向的高頻電流IR流入第一天線3A及第二天線3B中。 Here, the ends of the first antenna 3A and the second antenna 3B connected by the connecting conductor 12 are the ends on the same side wall. As a result, the high-frequency currents IR opposite to each other flow into the first antenna 3A and the second antenna 3B.

而且,連接導體12於內部具有流路,以冷卻液CL流入所述流路中的方式構成。具體而言,連接導體12的一端部與第一天線3A的流路連通,連接導體12的另一端部與第二天線3B的流路連通。藉此,於相互鄰接的天線3A、天線3B中,已於第一天線3A中流動的冷卻液CL經由連接導體12的流路而流入第二天線3B中。藉此,可藉由共同的冷卻液CL來對多根天線3進行冷卻。另外,可藉由一根流路來對多根天線3進行冷卻,因此可將循環流路11的結構簡化。 In addition, the connecting conductor 12 has a flow path inside, and is configured such that the cooling liquid CL flows into the flow path. Specifically, one end of the connecting conductor 12 communicates with the flow path of the first antenna 3A, and the other end of the connecting conductor 12 communicates with the flow path of the second antenna 3B. Thereby, in the antennas 3A and 3B adjacent to each other, the coolant CL that has flowed in the first antenna 3A flows into the second antenna 3B through the flow path of the connection conductor 12. In this way, the plurality of antennas 3 can be cooled by the common cooling liquid CL. In addition, the plurality of antennas 3 can be cooled by one flow path, so the structure of the circulation flow path 11 can be simplified.

各天線3A、天線3B中的未由連接導體12連接的一側的端部(此處,第一天線3A的一端部)變成供電側端部3a1,該供電側端部3a1經由匹配電路41而與高頻電源4連接。另外,作為另一側的端部(此處,第二天線3B的另一端部)的終端部3b2經由可變電容器VC2而接地。再者,作為可變電容器VC2,可使用各種結構的可變電容器,作為一例,是包括固定電極(未圖示)、及與該固定電極之間形成電容器的作為可動部件的可動電極(未圖示),並以藉由可動電極環繞規定的旋轉軸進行旋轉,而可變更其靜電電容的方式構成者。 The end of the antenna 3A and the antenna 3B on the side not connected by the connecting conductor 12 (here, the end of the first antenna 3A) becomes the power supply side end 3a1, and the power supply side end 3a1 passes through the matching circuit 41 And connected to the high-frequency power source 4. In addition, the terminal portion 3b2 which is the other end portion (here, the other end portion of the second antenna 3B) is grounded via the variable capacitor VC2. Furthermore, as the variable capacitor VC2, variable capacitors of various structures can be used. As an example, it includes a fixed electrode (not shown) and a movable electrode (not shown) as a movable member forming a capacitor between the fixed electrode and the fixed electrode. Show), and is constructed in a way that the movable electrode rotates around a predetermined axis of rotation to change its electrostatic capacitance.

藉由所述結構,可使高頻電流IR自高頻電源4經由匹配電路41而流入天線3中。高頻的頻率例如為一般的13.56MHz,但並不限定於此。 With this structure, the high-frequency current IR can flow from the high-frequency power source 4 through the matching circuit 41 into the antenna 3. The high-frequency frequency is, for example, a general 13.56 MHz, but it is not limited to this.

<連接導體12的結構> <Structure of Connection Conductor 12>

繼而,參照圖4~圖8對連接導體12進行詳細說明。再者,於圖4及圖5等中,一部分的密封構件等省略記載。 Next, the connecting conductor 12 will be described in detail with reference to FIGS. 4 to 8. In addition, in FIGS. 4 and 5, a part of the sealing member and the like are omitted.

如圖4及圖5所示,連接導體12包括:可變電容器VC1,與各天線3A、天線3B電性連接;第一連接部14,將該可變電容器VC1與第一天線3A的另一端部3a2連接;以及第二連接部15,將可變電容器VC1與第二天線3B的一端部3b1連接。再者,為了將該可變電容器VC1與圖1及圖2中所示的與第二天線3B的終端部3b2連接的可變電容器VC2加以區分,以下,將前者稱為第一可變電容器VC1,將後者稱為第二可變電容器VC2。 As shown in FIGS. 4 and 5, the connecting conductor 12 includes: a variable capacitor VC1, which is electrically connected to each antenna 3A and antenna 3B; and a first connecting portion 14, which is connected to the variable capacitor VC1 and the other of the first antenna 3A. One end portion 3a2 is connected; and the second connection portion 15 connects the variable capacitor VC1 and one end portion 3b1 of the second antenna 3B. In addition, in order to distinguish the variable capacitor VC1 from the variable capacitor VC2 connected to the terminal portion 3b2 of the second antenna 3B shown in FIGS. 1 and 2, the former will be referred to as the first variable capacitor below. VC1, the latter is called the second variable capacitor VC2.

第一連接部14是藉由包圍第一天線3A的另一端部3a2而與該天線3A電性接觸,並且將冷卻液CL自形成於該天線3A的另一端部3a2中的開口部3H引導至第一可變電容器VC1中者。 The first connecting portion 14 is in electrical contact with the antenna 3A by surrounding the other end 3a2 of the first antenna 3A, and guides the coolant CL from the opening 3H formed in the other end 3a2 of the antenna 3A To the first variable capacitor VC1.

第二連接部15是藉由包圍第二天線3B的一端部3b1而與該天線3B電性接觸,並且將已穿過第一可變電容器VC1的冷卻液CL引導至形成於該天線3B的一端部3b1中的開口部3H中者。 The second connecting portion 15 is in electrical contact with the antenna 3B by surrounding the one end 3b1 of the second antenna 3B, and guides the coolant CL that has passed through the first variable capacitor VC1 to the antenna 3B. One of the openings 3H in the one end 3b1.

該些連接部14、連接部15的材質例如為銅、鋁、該些的合金、不銹鋼等。 The materials of the connecting portions 14 and 15 are, for example, copper, aluminum, these alloys, and stainless steel.

本實施方式的各連接部14、連接部15是於天線3的端部,經由O形環等密封構件Sa而液密地安裝於比開口部3H更靠近真空容器2側者,並以不限制比開口部3H更外側的方式構成(參照圖4)。藉此,變成容許相對於連接部14、連接部15的天線3的略微的傾斜的結構。 The connecting portions 14 and 15 of the present embodiment are at the end of the antenna 3, and are mounted liquid-tightly on the side closer to the vacuum container 2 than the opening 3H via a sealing member Sa such as an O-ring, and are not limited It is configured to be outside the opening 3H (see FIG. 4). Thereby, it becomes a structure which allows a slight tilt of the antenna 3 with respect to the connection part 14 and the connection part 15.

第一可變電容器VC1包括:第一固定電極16,與第一天線3A電性連接;第二固定電極17,與第二天線3B電性連接;以及作為可動部件的可動電極18,與第一固定電極16之間形成第一電容器,並且與第二固定電極17之間形成第二電容器。 The first variable capacitor VC1 includes: a first fixed electrode 16 electrically connected to the first antenna 3A; a second fixed electrode 17 electrically connected to the second antenna 3B; and a movable electrode 18 as a movable component, and A first capacitor is formed between the first fixed electrode 16 and a second capacitor is formed between the first fixed electrode 17.

本實施方式的第一可變電容器VC1是以藉由可動電極18環繞規定的旋轉軸C進行旋轉,而可變更其靜電電容的方式構成。而且,第一可變電容器VC1包括收容第一固定電極16、第二固定電極17及可動電極18的具有絕緣性的收容容器19。 The first variable capacitor VC1 of the present embodiment is configured such that the movable electrode 18 rotates around a predetermined rotation axis C, so that the electrostatic capacitance thereof can be changed. Furthermore, the first variable capacitor VC1 includes an insulating container 19 that houses the first fixed electrode 16, the second fixed electrode 17, and the movable electrode 18.

收容容器19具有導入來自第一天線3A的冷卻液CL的導入埠P1,及將冷卻液CI朝第二天線3B中導出的導出埠P2。導入埠P1形成於收容容器19的一側的側壁(圖4中左側壁)上,導出埠P2形成於收容容器19的另一側的側壁(圖4中右側壁)上,且導入埠P1及導出埠P2設置於相互相向的位置上。再者,本實施方式的收容容器19是形成內部具有中空部的大致長方體形狀者,但亦可為其他形狀。 The storage container 19 has an introduction port P1 through which the cooling liquid CL from the first antenna 3A is introduced, and an exit port P2 through which the cooling liquid CI is led out to the second antenna 3B. The inlet port P1 is formed on one side wall (the left side wall in FIG. 4) of the container 19, the outlet port P2 is formed on the other side wall (the right side wall in FIG. 4) of the container 19, and the inlet ports P1 and The outlet ports P2 are arranged at positions facing each other. In addition, the storage container 19 of this embodiment is formed in the substantially rectangular parallelepiped shape which has a hollow part inside, but may be another shape.

第一固定電極16及第二固定電極17環繞可動電極18的旋轉軸C設置於互不相同的位置上。於本實施方式中,第一固 定電極16是自收容容器19的導入埠P1插入收容容器19的內部來設置。另外,第二固定電極17是自收容容器19的導出埠P2插入收容容器19的內部來設置。藉此,第一固定電極16及第二固定電極17設置於關於旋轉軸C對稱的位置上。 The first fixed electrode 16 and the second fixed electrode 17 are arranged at different positions around the rotation axis C of the movable electrode 18. In this embodiment, the first solid The fixed electrode 16 is inserted into the inside of the storage container 19 from the introduction port P1 of the storage container 19 and installed. In addition, the second fixed electrode 17 is inserted into the inside of the storage container 19 from the outlet port P2 of the storage container 19 and installed. Thereby, the first fixed electrode 16 and the second fixed electrode 17 are arranged at symmetrical positions with respect to the rotation axis C.

如圖5及圖6所示,第一固定電極16具有以相互相向的方式設置的多個第一固定金屬板161。另外,第二固定電極17具有以相互相向的方式設置的多個第二固定金屬板171。該些固定金屬板161、固定金屬板171分別沿著旋轉軸C相互大致等間隔地設置。 As shown in FIGS. 5 and 6, the first fixed electrode 16 has a plurality of first fixed metal plates 161 arranged to face each other. In addition, the second fixed electrode 17 has a plurality of second fixed metal plates 171 that are arranged to face each other. The fixed metal plates 161 and the fixed metal plates 171 are arranged along the rotation axis C at substantially equal intervals.

而且,多個第一固定金屬板161是相互形成同一形狀者,由第一凸緣構件162支持。第一凸緣構件162被固定於收容容器19的形成有導入埠P1的左側壁上。此處,於第一凸緣構件162中形成有與導入埠P1連通的貫穿孔162H。另外,多個第二固定金屬板171是相互形成同一形狀者,由第二凸緣構件172支持。第二凸緣構件172被固定於收容容器19的形成有導出埠P2的右側壁上。此處,於第二凸緣構件172中形成有與導出埠P2連通的貫穿孔172H。所述多個第一固定金屬板161及多個第二固定金屬板171以已被固定於收容容器19上的狀態,設置於關於旋轉軸C對稱的位置上。 In addition, the plurality of first fixed metal plates 161 are mutually formed in the same shape and are supported by the first flange member 162. The first flange member 162 is fixed to the left side wall of the storage container 19 where the introduction port P1 is formed. Here, a through hole 162H communicating with the introduction port P1 is formed in the first flange member 162. In addition, the plurality of second fixed metal plates 171 are mutually formed in the same shape, and are supported by the second flange member 172. The second flange member 172 is fixed to the right side wall of the storage container 19 where the outlet port P2 is formed. Here, a through hole 172H communicating with the outlet port P2 is formed in the second flange member 172. The plurality of first fixed metal plates 161 and the plurality of second fixed metal plates 171 are fixed to the storage container 19 and are arranged at positions symmetrical about the rotation axis C.

另外,第一固定金屬板161及第二固定金屬板171是形成平板狀者,如圖7所示,於俯視下,形成寬度隨著朝向旋轉軸C而縮小的形狀。而且,於各固定金屬板161、固定金屬板171中, 寬度縮小的端邊161a、端邊171a沿著旋轉軸C的徑向而形成。再者,相互相向的端邊161a、端邊171a形成的角度為90度。另外,各固定金屬板161、固定金屬板171的旋轉軸C側的前端邊161b、前端邊171b形成圓弧狀。 In addition, the first fixed metal plate 161 and the second fixed metal plate 171 are formed in a flat plate shape. As shown in FIG. 7, in a plan view, they have a shape whose width decreases toward the rotation axis C. Moreover, in each of the fixed metal plate 161 and the fixed metal plate 171, The end side 161a and the end side 171a having a reduced width are formed along the radial direction of the rotation axis C. Furthermore, the angle formed by the end side 161a and the end side 171a facing each other is 90 degrees. In addition, each of the fixed metal plate 161, the front end side 161b of the fixed metal plate 171 on the side of the rotation axis C, and the front end side 171b form an arc shape.

如圖4及圖5所示,可動電極18包括:旋轉軸體181,可環繞旋轉軸C進行旋轉地軸支於收容容器19的側壁(圖4中前側壁)上;第一可動金屬板182,由該旋轉軸體181支持並與第一固定電極16相向;以及第二可動金屬板183,由旋轉軸體181支持並與第二固定電極17相向。 As shown in FIGS. 4 and 5, the movable electrode 18 includes a rotating shaft body 181, which is pivotally supported on the side wall (the front side wall in FIG. 4) of the container 19 so as to be rotatable around the rotating shaft C; and a first movable metal plate 182, It is supported by the rotating shaft body 181 and facing the first fixed electrode 16; and the second movable metal plate 183 is supported by the rotating shaft body 181 and facing the second fixed electrode 17.

旋轉軸體181是形成沿著旋轉軸C延長的直線狀者。該旋轉軸體181以其一端部自收容容器19的前側壁朝外部延伸出的方式構成。而且,於該收容容器19的前側壁中,由O形環等密封構件Sb可旋轉地支持。此處,於前側壁中,由兩個O形環進行兩點支持。另外,旋轉軸體181的另一端部可旋轉地接觸設置於收容容器19的內表面上的定位凹部191。 The rotating shaft body 181 has a linear shape extending along the rotating shaft C. The rotating shaft body 181 is configured such that one end portion thereof extends outward from the front side wall of the container 19. In addition, the front side wall of the storage container 19 is rotatably supported by a sealing member Sb such as an O-ring. Here, in the front side wall, two O-rings support at two points. In addition, the other end of the rotating shaft body 181 rotatably contacts the positioning recess 191 provided on the inner surface of the storage container 19.

另外,旋轉軸體181的支持第一可動金屬板182及第二可動金屬板183的部分181x由金屬製等的導電材料形成,自收容容器19朝外部延伸出的部分181y由樹脂製等的絕緣材料形成。 In addition, the portion 181x of the rotating shaft body 181 that supports the first movable metal plate 182 and the second movable metal plate 183 is formed of a conductive material such as metal, and the portion 181y extending from the container 19 to the outside is insulated by resin or the like. Material formation.

對應於第一固定金屬板161而設置有多個第一可動金屬板182。再者,第一可動金屬板182分別是形成同一形狀者。另外,對應於第二固定金屬板171而設置有多個第二可動金屬板183。再者,第二可動金屬板183分別是形成同一形狀者。該些可動金屬 板182、可動金屬板183分別沿著旋轉軸C相互大致等間隔地設置。另外,於本實施方式中,將各可動金屬板182、可動金屬板183設為夾在各固定金屬板161、固定金屬板171之間的結構。於圖4中,將固定金屬板161、固定金屬板171設為六塊,將可動金屬板182、可動金屬板183設為五塊,但並不限定於此。再者,可動金屬板182、可動金屬板183與固定金屬板161、固定金屬板171的間距例如為1mm。 A plurality of first movable metal plates 182 are provided corresponding to the first fixed metal plate 161. In addition, the first movable metal plates 182 have the same shape. In addition, a plurality of second movable metal plates 183 are provided corresponding to the second fixed metal plates 171. Furthermore, the second movable metal plates 183 are formed in the same shape. These movable metals The plate 182 and the movable metal plate 183 are provided along the rotation axis C at substantially equal intervals. In addition, in this embodiment, the movable metal plates 182 and the movable metal plates 183 are sandwiched between the fixed metal plates 161 and the fixed metal plates 171. In FIG. 4, the fixed metal plate 161 and the fixed metal plate 171 are set to six pieces, and the movable metal plate 182 and the movable metal plate 183 are set to five pieces, but it is not limited to this. In addition, the distance between the movable metal plate 182 and the movable metal plate 183 and the fixed metal plate 161 and the fixed metal plate 171 is, for example, 1 mm.

如圖5所示,第一可動金屬板182及第二可動金屬板183是設置於關於旋轉軸C對稱的位置上,並且相互形成同一形狀者。具體而言,如圖7所示,各可動金屬板182、可動金屬板183是於俯視下,形成隨著自旋轉軸C前往徑向外側而展開的扇形狀者。於本實施方式中,各可動金屬板182、可動金屬板183是形成中心角為90度的扇形狀者。 As shown in FIG. 5, the first movable metal plate 182 and the second movable metal plate 183 are provided at positions symmetrical about the rotation axis C and have the same shape. Specifically, as shown in FIG. 7, each movable metal plate 182 and the movable metal plate 183 are formed in a fan shape that expands from the rotation axis C to the radially outer side in a plan view. In this embodiment, each movable metal plate 182 and the movable metal plate 183 are those formed in a fan shape with a center angle of 90 degrees.

於如此構成的第一可變電容器VC1中,藉由使可動電極18旋轉,如圖8所示,第一固定金屬板161與第一可動金屬板182的相向面積(第一相向面積A1)變化,且第二固定金屬板171與第二可動金屬板183的相向面積(第二相向面積A2)變化。於本實施方式中,第一相向面積A1與第二相向面積A2同樣地變化。另外,各固定金屬板161、固定金屬板171的旋轉軸C側的前端邊161b、前端邊171b為圓弧狀,藉由使可動電極18旋轉,第一相向面積A1與第二相向面積A2與可動電極18的旋轉角度θ成比例地變化。 In the first variable capacitor VC1 configured in this way, by rotating the movable electrode 18, as shown in FIG. 8, the facing area (first facing area A1) of the first fixed metal plate 161 and the first movable metal plate 182 changes , And the facing area (second facing area A2) of the second fixed metal plate 171 and the second movable metal plate 183 changes. In this embodiment, the first facing area A1 and the second facing area A2 are changed similarly. In addition, each of the fixed metal plate 161, the front end side 161b of the fixed metal plate 171 on the side of the rotation axis C, and the front end side 171b are arc-shaped. By rotating the movable electrode 18, the first facing area A1 and the second facing area A2 are equal to The rotation angle θ of the movable electrode 18 changes proportionally.

另外,於本實施方式中,如圖7所示,於各固定金屬板161、固定金屬板171與各可動金屬板182、可動金屬板183不相向的狀態下,於俯視下,在可動金屬板182、可動金屬板183的展開的端邊182a、端邊183a與固定金屬板161、固定金屬板171的縮小的端邊161a、端邊171a之間設置有間隙Z。藉此,可於軸方向上卸下可動電極18。於本實施方式中,藉由沿著軸方向卸下支持可動電極18的前側壁而卸下可動電極18。 In addition, in this embodiment, as shown in FIG. 7, in a state where the fixed metal plates 161 and 171 are not opposed to the movable metal plates 182 and 183, in a plan view, the movable metal plates 182. A gap Z is provided between the expanded end 182a and the end 183a of the movable metal plate 183 and the fixed metal plate 161 and the reduced end 161a and the end 171a of the fixed metal plate 171. Thereby, the movable electrode 18 can be removed in the axial direction. In this embodiment, the movable electrode 18 is removed by removing the front wall supporting the movable electrode 18 along the axial direction.

於所述結構中,若冷卻液CL自收容容器19的導入埠P1流入,則收容容器19的內部由冷卻液CL填滿。此時,第一固定金屬板161與第一可動金屬板182之間由冷卻液CL填滿,並且第二固定金屬板171與第二可動金屬板183之間由冷卻液CL填滿。藉此,冷卻液CL成為第一電容器的電介質及第二電容器的電介質。於本實施方式中,第一電容器的靜電電容與第二電容器的靜電電容相同。另外,如此構成的第一電容器及第二電容器經串聯連接,第一可變電容器VC1的靜電電容變成第一電容器(或第二電容器)的靜電電容的一半。 In the above structure, if the cooling liquid CL flows in from the introduction port P1 of the storage container 19, the inside of the storage container 19 is filled with the cooling liquid CL. At this time, the space between the first fixed metal plate 161 and the first movable metal plate 182 is filled with the coolant CL, and the space between the second fixed metal plate 171 and the second movable metal plate 183 is filled with the coolant CL. Thereby, the coolant CL becomes the dielectric of the first capacitor and the dielectric of the second capacitor. In this embodiment, the electrostatic capacitance of the first capacitor is the same as the electrostatic capacitance of the second capacitor. In addition, the first capacitor and the second capacitor configured in this way are connected in series, and the electrostatic capacitance of the first variable capacitor VC1 becomes half of the electrostatic capacitance of the first capacitor (or the second capacitor).

此處,於本實施方式中,以第一固定電極16及第二固定電極17與可動電極18的相向方向和導入埠P1與導出埠P2的相向方向正交的方式構成。即,固定金屬板161、固定金屬板171及可動金屬板182、可動金屬板183沿著導入埠P1及導出埠P2的相向方向而設置。藉由該結構,冷卻液CL容易於收容容器19的內部流動。其結果,收容容器19內的冷卻液CL的置換變得容 易,可高效率地進行第一可變電容器VC1的冷卻。另外,已自導入埠P1流入的冷卻液CL容易流入固定金屬板161、固定金屬板171與可動金屬板182、可動金屬板183之間,且容易自固定金屬板161、固定金屬板171與可動金屬板182、可動金屬板183之間流出。其結果,固定金屬板161、固定金屬板171與可動金屬板182、可動金屬板183之間的冷卻液的置換變得容易,可抑制成為電介質的冷卻液CL的溫度變化。藉此,容易將第一可變電容器VC1的靜電電容維持成固定。進而,氣泡難以停留於固定金屬板161、固定金屬板171與可動金屬板182、可動金屬板183之間。 Here, in this embodiment, the opposing direction of the first fixed electrode 16 and the second fixed electrode 17 and the movable electrode 18 and the opposing direction of the inlet port P1 and the outlet port P2 are configured to be orthogonal. That is, the fixed metal plate 161, the fixed metal plate 171, the movable metal plate 182, and the movable metal plate 183 are provided along the opposing direction of the inlet port P1 and the outlet port P2. With this structure, the cooling liquid CL easily flows inside the storage container 19. As a result, the replacement of the cooling liquid CL in the storage container 19 becomes accommodating. It is easy, and the first variable capacitor VC1 can be cooled efficiently. In addition, the coolant CL that has flowed in from the introduction port P1 easily flows into the space between the fixed metal plate 161, the fixed metal plate 171 and the movable metal plate 182, and the movable metal plate 183, and can easily self-fix the metal plate 161, the fixed metal plate 171 and the movable metal plate Flow out between the metal plate 182 and the movable metal plate 183. As a result, the replacement of the coolant between the fixed metal plate 161, the fixed metal plate 171, the movable metal plate 182, and the movable metal plate 183 becomes easy, and the temperature change of the coolant CL used as a dielectric can be suppressed. Thereby, the electrostatic capacitance of the first variable capacitor VC1 can be easily maintained constant. Furthermore, it is difficult for air bubbles to stay between the fixed metal plate 161, the fixed metal plate 171, and the movable metal plate 182 and the movable metal plate 183.

而且,如圖1所示,本實施方式的電漿控制系統200進而包括:第一電流檢測部S1,檢測流入第一天線3A的一端部3a1(即,所述供電側端部3a1)中的電流;第二電流檢測部S2,檢測於第一天線3A與第二天線3B之間流動的電流;第三電流檢測部S3,檢測流入第二天線3B的另一端部3b2(即,所述終端部3b2)中的電流;以及控制裝置X,控制第一可變電容器VC1及第二可變電容器VC2。再者,為了便於說明,於圖1中,省略真空容器2等天線3的周邊結構的記載。 Moreover, as shown in FIG. 1, the plasma control system 200 of this embodiment further includes: a first current detection unit S1 that detects the flow into the end portion 3a1 of the first antenna 3A (ie, the power supply side end portion 3a1) The second current detection unit S2, which detects the current flowing between the first antenna 3A and the second antenna 3B; the third current detection unit S3, which detects the other end 3b2 (ie , The current in the terminal portion 3b2); and the control device X controls the first variable capacitor VC1 and the second variable capacitor VC2. In addition, for convenience of description, in FIG. 1, the description of the peripheral structure of the antenna 3 such as the vacuum container 2 is omitted.

第一電流檢測部S1是安裝於第一天線3A的一端部3a1或其附近的例如電流互感器(current transformer)等電流監測器。由該第一電流檢測部S1所檢測到的檢測訊號藉由直流轉換電路101而自交流轉換成直流,並藉由類比/數位(Analog/Digital,A/D)轉換器102而自類比訊號轉換成數位訊號後,被輸出至控制裝置X 中。 The first current detection unit S1 is a current monitor such as a current transformer that is installed at or near the end 3a1 of the first antenna 3A. The detection signal detected by the first current detection unit S1 is converted from AC to DC by a DC conversion circuit 101, and converted from an analog signal by an analog/digital (Analog/Digital, A/D) converter 102 After being digital signal, it is output to control device X in.

第二電流檢測部S2是設置於第一可變電容器VC1與第二天線3B的一端部3b1之間的例如電流互感器等電流監測器。由該第二電流檢測部S2所檢測到的檢測訊號藉由直流轉換電路101而自交流轉換成直流,並藉由AD轉換器102而自類比訊號轉換成數位訊號後,被輸出至控制裝置X中。再者,第二電流檢測部S2亦可為設置於第一天線3A的另一端部3a2與第一可變電容器VC1之間,輸出與流入第一天線3A的另一端部3a2中的電流的大小對應的檢測訊號者。 The second current detection unit S2 is a current monitor such as a current transformer provided between the first variable capacitor VC1 and one end 3b1 of the second antenna 3B. The detection signal detected by the second current detection unit S2 is converted from AC to DC by the DC conversion circuit 101, and converted from the analog signal to the digital signal by the AD converter 102, and then output to the control device X in. Furthermore, the second current detection unit S2 may also be provided between the other end 3a2 of the first antenna 3A and the first variable capacitor VC1, and output and flow the current into the other end 3a2 of the first antenna 3A. The size corresponds to the detection signal.

第三電流檢測部S3是安裝於第二天線3B的另一端部3b2或其附近的例如電流互感器等電流監測器。由該第三電流檢測部S3所檢測到的檢測訊號藉由直流轉換電路101而自交流轉換成直流,並藉由AD轉換器102而自類比訊號轉換成數位訊號後,被輸出至控制裝置X中。 The third current detection unit S3 is a current monitor, such as a current transformer, installed at or near the other end 3b2 of the second antenna 3B. The detection signal detected by the third current detection unit S3 is converted from AC to DC by the DC conversion circuit 101, and converted from the analog signal to the digital signal by the AD converter 102, and then output to the control device X in.

控制裝置X是控制第一可變電容器VC1的靜電電容及第二可變電容器VC2的靜電電容者。此處,如圖1所示,第一可變電容器VC1的可動電極18藉由作為第一驅動部M1的馬達來驅動,第二可變電容器VC2的未圖示的可動部件藉由作為第二驅動部M2的馬達來驅動。各馬達M1、馬達M2是藉由來自馬達驅動電路103的驅動訊號而進行旋轉者,該馬達驅動電路103由控制裝置X控制。 The control device X controls the electrostatic capacitance of the first variable capacitor VC1 and the electrostatic capacitance of the second variable capacitor VC2. Here, as shown in FIG. 1, the movable electrode 18 of the first variable capacitor VC1 is driven by the motor as the first driving unit M1, and the unillustrated movable member of the second variable capacitor VC2 is used as the second The motor of the driving part M2 is driven. The motors M1 and M2 are rotated by a drive signal from a motor drive circuit 103, and the motor drive circuit 103 is controlled by the control device X.

該控制裝置X於物理上是包括中央處理單元(Central Processing Unit,CPU)、記憶體、輸入輸出介面等的可編程邏輯控制器(Programmable Logic Controller,PLC)等電腦,其以如下方式構成:藉由執行已被存儲於所述記憶體中的程式,且各設備進行協作,而如圖9所示般,發揮作為電流值獲取部X1、第一比較部X2、第二比較部X3、及控制部X4的功能。 The control device X physically includes a central processing unit (Central A computer such as a Programmable Logic Controller (PLC) such as a Processing Unit (CPU), memory, input and output interface, etc., is constructed in the following manner: by executing a program that has been stored in the memory, In addition, each device cooperates and functions as a current value acquisition unit X1, a first comparison unit X2, a second comparison unit X3, and a control unit X4 as shown in FIG. 9.

以下,對各部進行說明。 Hereinafter, each part will be described.

電流值獲取部X1是獲取表示由各電流檢測部S1~電流檢測部S3所檢測到的電流的大小的訊號者。 The current value acquisition unit X1 acquires a signal indicating the magnitude of the current detected by each current detection unit S1 to current detection unit S3.

具體而言,該電流值獲取部X1獲取表示由第一電流檢測部S1所檢測到的第一電流值I1的數位訊號,表示由第二電流檢測部S2所檢測到的第二電流值I2的數位訊號,及表示由第三電流檢測部S3所檢測到的第三電流值I3的數位訊號。而且,將第一電流值I1及第二電流值I2輸出至第一比較部X2中,將第二電流值I2及第三電流值I3輸出至第二比較部X3中。 Specifically, the current value acquiring unit X1 acquires a digital signal representing the first current value I1 detected by the first current detecting unit S1, and representing the second current value I2 detected by the second current detecting unit S2. A digital signal, and a digital signal representing the third current value I3 detected by the third current detection unit S3. Then, the first current value I1 and the second current value I2 are output to the first comparison unit X2, and the second current value I2 and the third current value I3 are output to the second comparison unit X3.

第一比較部X2是對第一電流值I1與第二電流值I2進行比較者。具體而言,以判斷自第二電流值I2減去第一電流值I1所得的第一電流差△I1是否大於0的方式構成。 The first comparison unit X2 compares the first current value I1 with the second current value I2. Specifically, it is configured to determine whether the first current difference ΔI1 obtained by subtracting the first current value I1 from the second current value I2 is greater than zero.

第二比較部X3是對第二電流值I2與第三電流值I3進行比較者。具體而言,以判斷自第二電流值I2減去第三電流值I3所得的第二電流差△I2是否大於0的方式構成。 The second comparison unit X3 compares the second current value I2 with the third current value I3. Specifically, it is configured to determine whether the second current difference ΔI2 obtained by subtracting the third current value I3 from the second current value I2 is greater than zero.

控制部X4是根據第一電流值I1、第二電流值I2、及第三電流值I3,對第一可變電容器VC1的靜電電容及第二可變電容 器VC2的靜電電容進行反饋控制者。具體而言,以第一電流值I1、第二電流值I2、及第三電流值I3相互變成相等的方式,將控制訊號輸出至馬達驅動電路103中。 The control unit X4 controls the electrostatic capacitance and the second variable capacitance of the first variable capacitor VC1 based on the first current value I1, the second current value I2, and the third current value I3. The electrostatic capacitance of the VC2 feedback controller. Specifically, the control signal is output to the motor drive circuit 103 such that the first current value I1, the second current value I2, and the third current value I3 become equal to each other.

以下,一面參照圖10的流程圖,一面對更詳細的控制內容進行說明。 Hereinafter, while referring to the flowchart of FIG. 10, more detailed control contents will be described.

首先,第一比較部X2判斷第二電流值I2是否大於第一電流值I1,即第一電流差△I1是否大於0(S1) First, the first comparison unit X2 determines whether the second current value I2 is greater than the first current value I1, that is, whether the first current difference ΔI1 is greater than 0 (S1)

當於S1中已判斷第一電流差△I1大於0時,控制部X4以第一可變電容器VC1的靜電電容變大的方式,將控制訊號輸出至馬達驅動電路103中(S2)。而且,基於該控制訊號的驅動訊號被自馬達驅動電路103輸出至第一驅動部M1中。 When it has been determined in S1 that the first current difference ΔI1 is greater than 0, the control unit X4 outputs a control signal to the motor drive circuit 103 in such a way that the electrostatic capacitance of the first variable capacitor VC1 increases (S2). Furthermore, the drive signal based on the control signal is output from the motor drive circuit 103 to the first drive part M1.

另一方面,當於S1中已判斷第一電流差△I1不大於0時,即第一電流差△I1為0以下時,控制部X4以第一可變電容器VC1的靜電電容變小的方式,將控制訊號輸出至馬達驅動電路103中(S3)。而且,基於該控制訊號的驅動訊號被自馬達驅動電路103輸出至第一驅動部M1中。 On the other hand, when it is determined in S1 that the first current difference ΔI1 is not greater than 0, that is, when the first current difference ΔI1 is 0 or less, the control unit X4 reduces the capacitance of the first variable capacitor VC1 , Output the control signal to the motor drive circuit 103 (S3). Furthermore, the drive signal based on the control signal is output from the motor drive circuit 103 to the first drive part M1.

當於S2、S3中變更了第一可變電容器VC1的靜電電容時,第二電流值I2的變化比較小,第一電流值I1以接近第二電流值I2的方式比較大地增減。可認為其原因在於:於第一天線3A與第二天線3B之間流動的電流比流入第一天線3A中的電流更難以受到電漿的影響。 When the electrostatic capacitance of the first variable capacitor VC1 is changed in S2 and S3, the change in the second current value I2 is relatively small, and the first current value I1 relatively greatly increases and decreases so as to approach the second current value I2. The reason for this is considered to be that the current flowing between the first antenna 3A and the second antenna 3B is less affected by the plasma than the current flowing into the first antenna 3A.

繼而,第二比較部X3判斷第二電流值I2是否大於第三 電流值I1,即第二電流差△I2是否大於0(S4) Then, the second comparison unit X3 determines whether the second current value I2 is greater than the third The current value I1, that is, whether the second current difference △I2 is greater than 0 (S4)

當於S4中已判斷第二電流差△I2大於0時,控制部X4以第二可變電容器VC2的靜電電容變小的方式,將控制訊號輸出至馬達驅動電路103中(S5)。而且,基於該控制訊號的驅動訊號被自馬達驅動電路103輸出至第二驅動部M2中。 When it is determined in S4 that the second current difference ΔI2 is greater than 0, the control unit X4 outputs a control signal to the motor drive circuit 103 in such a way that the electrostatic capacitance of the second variable capacitor VC2 becomes smaller (S5). In addition, the drive signal based on the control signal is output from the motor drive circuit 103 to the second drive part M2.

另一方面,當於S4中已判斷第二電流差△I2不大於0時,即第二電流差△I2為0以下時,控制部X4以第二可變電容器VC2的靜電電容變大的方式,將控制訊號輸出至馬達驅動電路103中(S6)。而且,基於該控制訊號的驅動訊號被自馬達驅動電路103輸出至第二驅動部M2中。 On the other hand, when it has been determined in S4 that the second current difference ΔI2 is not greater than 0, that is, when the second current difference ΔI2 is 0 or less, the control unit X4 increases the capacitance of the second variable capacitor VC2 , Output the control signal to the motor drive circuit 103 (S6). In addition, the drive signal based on the control signal is output from the motor drive circuit 103 to the second drive part M2.

當於S5、S6中變更了第二可變電容器VC2的靜電電容時,第二電流值I2的變化比較小,第三電流值I3以接近第二電流值I2的方式比較大地增減。可認為其原因在於:於第一天線3A與第二天線3B之間流動的電流比流入第二天線3B中的電流更難以受到電漿的影響。 When the electrostatic capacitance of the second variable capacitor VC2 is changed in S5 and S6, the change in the second current value I2 is relatively small, and the third current value I3 relatively increases or decreases so as to approach the second current value I2. The reason for this is considered to be that the current flowing between the first antenna 3A and the second antenna 3B is less affected by the plasma than the current flowing into the second antenna 3B.

以下,控制部X4重覆S1~S6,以第一電流值I1與第二電流值I2相互變成相等、且第二電流值I2與第三電流值I3相互變成相等的方式,將控制訊號持續輸出至馬達驅動電路103中。 Hereinafter, the control unit X4 repeats S1 to S6, and continuously outputs the control signal in such a way that the first current value I1 and the second current value I2 become equal to each other, and the second current value I2 and the third current value I3 become equal to each other. To the motor drive circuit 103.

進而,如圖9所示,本實施方式的控制裝置X具備作為控制停止部X5的功能。 Furthermore, as shown in FIG. 9, the control apparatus X of this embodiment has the function as a control stop part X5.

該控制停止部X5是於至少第一可變電容器VC1的可動電極18的旋轉角度已變成規定的臨限值的情況下,使可動電極18的旋 轉停止者。 This control stop part X5 makes the rotation of the movable electrode 18 when at least the rotation angle of the movable electrode 18 of the first variable capacitor VC1 has reached a predetermined threshold value. Transfer stopper.

若更具體地進行說明,則於可動電極18中設置有例如編碼器等未圖示的角度檢測部,自該角度檢測部朝控制停止部X5中輸出表示可動電極18的旋轉角度的檢測角度訊號。再者,例如如圖7及圖8所示,此處的旋轉角度是將於俯視下各可動金屬板182、可動金屬板183與各固定金屬板161、固定金屬板171不互相重疊的狀態,即靜電電容為零的狀態設為0度時的旋轉角度θ。 More specifically, the movable electrode 18 is provided with an angle detection unit (not shown) such as an encoder, and a detection angle signal indicating the rotation angle of the movable electrode 18 is output from the angle detection unit to the control stop part X5 . Furthermore, for example, as shown in FIGS. 7 and 8, the rotation angle here is a state where the movable metal plates 182, the movable metal plates 183, and the fixed metal plates 161 and 171 will not overlap each other when viewed from above. That is, the state where the electrostatic capacitance is zero is set to the rotation angle θ at 0 degrees.

所述臨限值被設定成於俯視下各可動金屬板182、可動金屬板183的一部分與第一固定金屬板161或第二固定金屬板171的一部分互相重疊的狀態的角度。 The threshold value is set to an angle in a state where each movable metal plate 182 and a part of the movable metal plate 183 and a part of the first fixed metal plate 161 or the second fixed metal plate 171 overlap each other in a plan view.

具體而言,臨限值是使各可動金屬板182、可動金屬板183自與各固定金屬板161、固定金屬板171不互相重疊的0度起旋轉,自各可動金屬板182、可動金屬板183開始與第一固定金屬板161或第二固定金屬板171重疊至到達90度為止的旋轉角度,例如為10度。再者,此處設想可動金屬板182、可動金屬板183在0度與90度之間進行正反旋轉的結構,但於可動金屬板182、可動金屬板183超過90度進行旋轉的結構中,亦可設定上限值及下限值作為臨限值。 Specifically, the threshold value is to rotate each movable metal plate 182 and the movable metal plate 183 from 0 degrees at which they do not overlap each other with the fixed metal plate 161 and the fixed metal plate 171. The angle of rotation until the first fixed metal plate 161 or the second fixed metal plate 171 overlaps with the first fixed metal plate 161 or the second fixed metal plate 171 is 90 degrees, for example, 10 degrees. Furthermore, here is assumed to be a structure in which the movable metal plate 182 and the movable metal plate 183 rotate forward and backward between 0 degrees and 90 degrees. However, in the structure where the movable metal plate 182 and the movable metal plate 183 rotate more than 90 degrees, The upper limit and lower limit can also be set as the threshold.

而且,於可動電極18的旋轉角度大於臨限值的情況下,進行所述由控制部X4所進行的控制,於使可動電極18的旋轉角度變小而已達到臨限值的情況下,不論由控制部X4所進行的判斷,控制停止部X5均將停止訊號輸出至馬達驅動電路103中而強 制性地使可動電極18的旋轉停止。 In addition, when the rotation angle of the movable electrode 18 is greater than the threshold value, the control performed by the control unit X4 is performed. When the rotation angle of the movable electrode 18 is reduced to reach the threshold value, regardless of The judgment made by the control part X4, the control stop part X5 outputs the stop signal to the motor drive circuit 103, and is strong The rotation of the movable electrode 18 is systematically stopped.

再者,控制停止部X5亦可與第一可變電容器VC1同樣地,以於第二可變電容器VC2的未圖示的可動電極的旋轉角度已變成規定的臨限值的情況下,使該可動電極的旋轉停止的方式構成。 Furthermore, the control stop part X5 may be the same as the first variable capacitor VC1, so that when the rotation angle of the movable electrode (not shown) of the second variable capacitor VC2 has reached a predetermined threshold, It is constructed in a way that the rotation of the movable electrode is stopped.

<本實施方式的效果> <Effects of this embodiment>

如此,根據本實施方式的電漿控制系統200,控制部X4將用於以第一電流值I1、第二電流值I2、及第三電流值I3相互變成相等的方式,分別控制第一驅動部M1及第二驅動部M2的控制訊號輸出至馬達驅動電路103中,因此可使流入第一天線3A及第二天線3B中的高頻電流IR沿著長邊方向儘可能地變得均勻。 In this way, according to the plasma control system 200 of this embodiment, the control unit X4 is used to control the first driving unit so that the first current value I1, the second current value I2, and the third current value I3 become equal to each other. The control signals of M1 and the second driving part M2 are output to the motor driving circuit 103, so the high-frequency current IR flowing in the first antenna 3A and the second antenna 3B can be made uniform as much as possible along the longitudinal direction .

其結果,可使用長尺寸狀的天線3來應對基板W的大型化,並可沿著天線3的長邊方向產生均勻的電漿P。 As a result, the long antenna 3 can be used to cope with the increase in the size of the substrate W, and uniform plasma P can be generated along the longitudinal direction of the antenna 3.

再者,此處所述的「第一電流值I1、第二電流值I2、及第三電流值I3相互變成相等」只要所述第一電流差△I1及第二電流差△I2分別實質上變成零即可,只要可使流入第一天線3A及第二天線3B中的電流沿著長邊方向儘可能地變得均勻,則第一電流差△I1或第二電流差△I2亦可略微大於零或略微小於零。 Furthermore, the "first current value I1, second current value I2, and third current value I3 are mutually equal" as long as the first current difference ΔI1 and the second current difference ΔI2 are substantially It is sufficient to change to zero, as long as the current flowing in the first antenna 3A and the second antenna 3B can be made uniform as much as possible along the longitudinal direction, the first current difference ΔI1 or the second current difference ΔI2 is also Can be slightly greater than zero or slightly less than zero.

另外,於可動電極18的旋轉角度已達到臨限值的情況下,控制停止部X5使可動電極18的旋轉停止,因此於俯視下在各可動金屬板182、可動金屬板183與各固定金屬板161、固定金屬板171之間產生間隙Z前,可動電極18的旋轉停止。藉此,不 會產生可能於電漿P的產生過程中產生電弧放電的所述間隙Z,而可防止由電弧放電所引起的第一可變電容器VC1的破損。 In addition, when the rotation angle of the movable electrode 18 has reached the threshold value, the stop part X5 is controlled to stop the rotation of the movable electrode 18. Therefore, the movable metal plate 182, the movable metal plate 183, and the fixed metal plate 161. Before a gap Z is formed between the fixed metal plates 171, the rotation of the movable electrode 18 stops. Take this, not The gap Z that may generate arc discharge during the generation of the plasma P is generated, and the damage of the first variable capacitor VC1 caused by the arc discharge can be prevented.

進而,可利用冷卻液CL對天線3進行冷卻,因此可穩定地產生電漿P。另外,利用於天線3中流動的冷卻液CL來構成第一可變電容器VC1的電介質,因此可對第一可變電容器VC1進行冷卻,並抑制其靜電電容的突然的變動。 Furthermore, since the antenna 3 can be cooled by the cooling liquid CL, the plasma P can be generated stably. In addition, since the coolant CL flowing in the antenna 3 constitutes the dielectric of the first variable capacitor VC1, it is possible to cool the first variable capacitor VC1 and suppress sudden changes in its electrostatic capacitance.

此外,第一固定電極16及第二固定電極17環繞旋轉軸C設置於互不相同的位置上,因此可使旋轉軸C的軸方向上的尺寸變得小型。 In addition, the first fixed electrode 16 and the second fixed electrode 17 are disposed at different positions around the rotation axis C, so that the size of the rotation axis C in the axial direction can be reduced.

而且,各固定電極16、固定電極17具有多個固定金屬板161、固定金屬板171,可動電極具有多個可動金屬板182、可動金屬板183,因此可不增大固定金屬板161、固定金屬板171及可動金屬板182、可動金屬板183的面積,而增大電極間的相向面積的最大值。 Moreover, each of the fixed electrode 16 and the fixed electrode 17 has a plurality of fixed metal plates 161 and a fixed metal plate 171, and the movable electrode has a plurality of movable metal plates 182 and a movable metal plate 183. Therefore, the fixed metal plate 161 and the fixed metal plate may not be enlarged. The areas of 171, the movable metal plate 182, and the movable metal plate 183 increase the maximum value of the facing area between the electrodes.

<第二實施方式> <Second Embodiment>

第二實施方式中的電漿控制系統200的控制裝置X的結構與所述實施方式不同。 The structure of the control device X of the plasma control system 200 in the second embodiment is different from that in the above-mentioned embodiment.

具體而言,如圖11所示,第二實施方式中的控制裝置X具備作為電流值獲取部X1、模式資料存儲部X6、實際電流值模式判斷部X7、控制部X4、及控制停止部X5的功能。 Specifically, as shown in FIG. 11, the control device X in the second embodiment includes a current value acquisition unit X1, a mode data storage unit X6, an actual current value mode determination unit X7, a control unit X4, and a control stop unit X5. Function.

以下,對各部進行說明,電流值獲取部X1及控制停止部X5的功能與所述實施方式相同,因此省略詳細的說明。 Hereinafter, each section will be described. The functions of the current value acquisition section X1 and the control stop section X5 are the same as those of the above-mentioned embodiment, and therefore detailed descriptions are omitted.

模式資料存儲部X6設定於構成控制裝置X的記憶體的規定區域中,存儲有已將表示第一電流值I1、第二電流值I2、及第三電流值I3的大小關係的多種基準電流值模式與對應於各個基準電流值模式而事先決定的用於控制第一驅動部M1及第二驅動部M2的控制模式結合的模式資料。 The pattern data storage unit X6 is set in a predetermined area of the memory constituting the control device X, and stores a variety of reference current values indicating the magnitude relationship between the first current value I1, the second current value I2, and the third current value I3. The mode is combined with the control mode for controlling the first driving unit M1 and the second driving unit M2, which is determined in advance corresponding to each reference current value mode.

多種基準電流值模式是可作為第一電流值I1、第二電流值I2、及第三電流值I3的大小關係來設想的互不相同的模式,此處為圖12中所示的四個基準電流值模式,具體如下。 The multiple reference current value modes are different modes that can be conceived as the magnitude relationship between the first current value I1, the second current value I2, and the third current value I3. Here are the four reference modes shown in FIG. 12 The current value mode is as follows.

[第一基準電流值模式] [First reference current value mode]

第一電流值I1<第二電流值I2<第三電流值I3 First current value I1<second current value I2<third current value I3

[第二基準電流值模式] [Second reference current value mode]

第一電流值I1>第二電流值I2<第三電流值I3 First current value I1>second current value I2<third current value I3

[第三基準電流值模式] [Third reference current value mode]

第一電流值I1>第二電流值I2>第三電流值I3 First current value I1>second current value I2>third current value I3

[第四基準電流值模式] [Fourth reference current value mode]

第一電流值I1<第二電流值I2>第三電流值I3 First current value I1<second current value I2> third current value I3

再者,亦可考慮第一電流值I1=第二電流值I2的情況或第二電流值I2=第三電流值I3的情況等,而視情況將基準電流值模式分成更多的種類。 Furthermore, the case where the first current value I1=the second current value I2 or the case where the second current value I2=the third current value I3 can also be considered, and the reference current value patterns can be divided into more types as appropriate.

控制模式是針對各基準電流值模式,事先決定為了使電流值I1、電流值I2、電流值I3相互變成相等而需要的第一可變電容器VC1及第二可變電容器VC2的電抗的增減方向(換言之,靜 電電容的增減方向)者。具體而言,針對第一基準電流值模式~第四基準電流值模式的第一控制模式~第四控制模式如下。 The control mode is for each reference current value mode. The direction of increase or decrease of the reactance of the first variable capacitor VC1 and the second variable capacitor VC2 required to make the current value I1, the current value I2, and the current value I3 equal to each other is determined in advance (In other words, static The direction of increase or decrease of capacitance). Specifically, the first control mode to the fourth control mode for the first reference current value mode to the fourth reference current value mode are as follows.

[第一控制模式] [First control mode]

減小第一可變電容器VC1的電抗,並減小第二可變電容器VC2的電抗。換言之,減小第一可變電容器VC1的靜電電容,並減小第二可變電容器VC2的靜電電容。 The reactance of the first variable capacitor VC1 is reduced, and the reactance of the second variable capacitor VC2 is reduced. In other words, the electrostatic capacitance of the first variable capacitor VC1 is reduced, and the electrostatic capacitance of the second variable capacitor VC2 is reduced.

[第二控制模式] [Second control mode]

增大第一可變電容器VC1的電抗,並減小第二可變電容器VC2的電抗。換言之,增大第一可變電容器VC1的靜電電容,並減小第二可變電容器VC2的靜電電容。 The reactance of the first variable capacitor VC1 is increased, and the reactance of the second variable capacitor VC2 is decreased. In other words, the electrostatic capacitance of the first variable capacitor VC1 is increased, and the electrostatic capacitance of the second variable capacitor VC2 is decreased.

[第三控制模式] [Third control mode]

增大第一可變電容器VC1的電抗,並增大第二可變電容器VC2的電抗。換言之,增大第一可變電容器VC1的靜電電容,並增大第二可變電容器VC2的靜電電容。 The reactance of the first variable capacitor VC1 is increased, and the reactance of the second variable capacitor VC2 is increased. In other words, the electrostatic capacitance of the first variable capacitor VC1 is increased, and the electrostatic capacitance of the second variable capacitor VC2 is increased.

[第四控制模式] [Fourth control mode]

減小第一可變電容器VC1的電抗,並增大第二可變電容器VC2的電抗。換言之,減小第一可變電容器VC1的靜電電容,並增大第二可變電容器VC2的靜電電容。 The reactance of the first variable capacitor VC1 is reduced, and the reactance of the second variable capacitor VC2 is increased. In other words, the electrostatic capacitance of the first variable capacitor VC1 is reduced, and the electrostatic capacitance of the second variable capacitor VC2 is increased.

再者,於各控制模式中,可於變更第一可變電容器VC1的靜電電容後,變更第二可變電容器VC2的靜電電容,相反地,亦可於變更第二可變電容器VC2的靜電電容後,變更第一可變電容器VC1的靜電電容。 Furthermore, in each control mode, after changing the electrostatic capacitance of the first variable capacitor VC1, the electrostatic capacitance of the second variable capacitor VC2 can be changed. Conversely, the electrostatic capacitance of the second variable capacitor VC2 can also be changed. After that, the capacitance of the first variable capacitor VC1 is changed.

實際電流值模式判斷部X7是根據電流值獲取部X1已輸出的第一電流值I1、第二電流值I2、及第三電流值I3,判斷作為第一電流值I1、第二電流值I2、及第三電流值I3的實際的大小關係的實際電流值模式者。 The actual current value pattern judgment unit X7 judges as the first current value I1, the second current value I2, and the third current value I3 based on the first current value I1, the second current value I2, and the third current value I3 output by the current value acquisition unit X1. And the actual current value model of the actual magnitude relationship of the third current value I3.

具體而言,實際電流值模式判斷部X7判斷第一電流值I1與第二電流值I2的大小關係,並且判斷第二電流值I2與第三電流值I3的大小關係。 Specifically, the actual current value pattern determining unit X7 determines the magnitude relationship between the first current value I1 and the second current value I2, and also determines the magnitude relationship between the second current value I2 and the third current value I3.

控制部X4判斷與實際電流值模式對應的基準電流值模式,並且根據已與該基準電流值模式結合的控制模式,將控制訊號輸出至馬達驅動電路103中。而且,馬達驅動電路103根據該控制訊號,將驅動訊號分別輸出至第一驅動部M1及第二驅動部M2中。 The control unit X4 determines the reference current value mode corresponding to the actual current value mode, and outputs a control signal to the motor drive circuit 103 according to the control mode combined with the reference current value mode. Furthermore, the motor driving circuit 103 outputs driving signals to the first driving part M1 and the second driving part M2 respectively according to the control signal.

具體而言,首先選擇所述多種基準電流值模式之中,與第一電流值I1、第二電流值I2、及第三電流值I3的大小關係一致的基準電流值模式。 Specifically, firstly, among the multiple reference current value modes, a reference current value mode consistent with the magnitude relationship of the first current value I1, the second current value I2, and the third current value I3 is selected.

而且,以第一可變電容器及第二可變電容器的靜電電容的增減方向變成已與所選擇的基準電流值模式結合的控制模式所示的增減方向的方式,將控制訊號輸出至馬達驅動電路103中。更詳細而言,於第一電流值I1與第二電流值I2互不相同的情況下,以使第一電流值I1接近第二電流值I2的方式將控制訊號輸出至馬達驅動電路103中,於第二電流值I2與第三電流值I3互不相同的情況下,以使第三電流值I3接近第二電流值I2的方式將控制訊號輸 出至馬達驅動電路103中。 Furthermore, the control signal is output to the motor so that the increase or decrease direction of the electrostatic capacitance of the first variable capacitor and the second variable capacitor becomes the increase or decrease direction shown in the control mode combined with the selected reference current value mode In the driving circuit 103. In more detail, when the first current value I1 and the second current value I2 are different from each other, the control signal is output to the motor drive circuit 103 in such a way that the first current value I1 is close to the second current value I2, When the second current value I2 and the third current value I3 are different from each other, the control signal is output in such a way that the third current value I3 is close to the second current value I2 Out to the motor drive circuit 103.

根據所述結構,判斷與實際電流值模式的大小關係一致的基準電流值模式,並根據已與該基準電流值模式的控制模式將控制訊號輸出至馬達驅動電路103中,因此可使第一電流值I1、第二電流值I2、及第三電流值I3相互變成相等。 According to the structure, the reference current value mode that is consistent with the actual current value mode is determined, and the control signal is output to the motor drive circuit 103 according to the control mode that has been matched with the reference current value mode, so that the first current value The value I1, the second current value I2, and the third current value I3 become equal to each other.

<其他變形實施方式> <Other Modified Embodiments>

再者,本發明並不限定於所述各實施方式。 In addition, the present invention is not limited to each embodiment described above.

例如,於所述實施方式中,電漿控制系統200是包括兩根天線3者,但如圖13所示,亦可將經串聯連接的多根(例如兩根)天線3並列地設置多組。再者,進行串聯連接的天線3的根數亦可為三根以上。 For example, in the above embodiment, the plasma control system 200 includes two antennas 3, but as shown in FIG. 13, multiple (for example, two) antennas 3 connected in series may also be arranged in parallel. . Furthermore, the number of antennas 3 connected in series may be three or more.

進而,圖13中所示的電漿控制系統200進而包括與第一天線3A的供電側端部3a1分別連接的第三可變電容器VC3。 Furthermore, the plasma control system 200 shown in FIG. 13 further includes a third variable capacitor VC3 respectively connected to the power supply side end 3a1 of the first antenna 3A.

若為此種結構,則與所述實施方式同樣地,以第一電流值I1、第二電流值I2、及第三電流值I3變成相等的方式,控制第一可變電容器VC1的靜電電容及第二可變電容器VC2的靜電電容,藉此可沿著第一天線3A及第二天線3B的長邊方向產生均勻的電漿P。 With such a structure, similar to the above-mentioned embodiment, the capacitance and the capacitance of the first variable capacitor VC1 are controlled so that the first current value I1, the second current value I2, and the third current value I3 become equal. The electrostatic capacitance of the second variable capacitor VC2 can thereby generate uniform plasma P along the longitudinal direction of the first antenna 3A and the second antenna 3B.

進而,利用第一電流檢測部S1檢測流入各第一天線3A的供電側端部3a1中的第一電流值I1,因此可掌握對於多個第一天線3A的高頻電流IR的分配比。因此,藉由根據各第一電流值I1來變更各第三可變電容器VC3的靜電電容,可調整對於各第一 天線3A所供給的高頻電流IR的分配比。 Furthermore, the first current value I1 flowing into the power feeding side end 3a1 of each first antenna 3A is detected by the first current detection unit S1, so that the distribution ratio of the high-frequency current IR to the plurality of first antennas 3A can be grasped . Therefore, by changing the capacitance of each third variable capacitor VC3 according to each first current value I1, it is possible to adjust the The distribution ratio of the high-frequency current IR supplied by the antenna 3A.

其結果,可使流入第一天線3A及第二天線3B中的高頻電流IR沿著長邊方向均勻化,並將來自高頻電源4的高頻電流IR均等地分配至經並列設置的各第一天線3A中,而可產生於空間上均勻的電漿P。 As a result, the high-frequency current IR flowing into the first antenna 3A and the second antenna 3B can be made uniform along the longitudinal direction, and the high-frequency current IR from the high-frequency power source 4 can be evenly distributed to the parallel arrangement. In each of the first antennas 3A, the plasma P can be generated uniformly in space.

於所述實施方式的第一可變電容器中,可動電極18是環繞旋轉軸C進行旋轉者,但可動電極亦可為朝一方向進行滑動移動者。此處,作為可動電極進行滑動的結構,可為可動電極朝和與固定電極的相向方向正交的方向滑動而使相向面積變化者,亦可為可動電極沿著與固定電極的相向方向滑動而使相向面積變化者。 In the first variable capacitor of the above-mentioned embodiment, the movable electrode 18 is one that rotates around the rotation axis C, but the movable electrode may be one that slides in one direction. Here, as the structure in which the movable electrode slides, the movable electrode may slide in a direction orthogonal to the facing direction of the fixed electrode to change the facing area, or the movable electrode may slide in the facing direction of the fixed electrode. Those who change the facing area.

於該結構中,作為第一驅動部,可如所述實施方式般為馬達,亦可為氣缸等。 In this structure, as the first drive unit, it may be a motor as in the above-mentioned embodiment, or an air cylinder or the like.

再者,於第二可變電容器中,可動電極亦同樣地可為朝一方向進行滑動移動者,於此情況下,作為第二驅動部,亦可使用氣缸等。 Furthermore, in the second variable capacitor, the movable electrode may also be one that slides in one direction. In this case, an air cylinder or the like may also be used as the second driving unit.

亦可使用可變阻抗元件或可變電阻元件等電抗藉由可動部件移動而改變的第一電抗可變元件來代替所述實施方式中的第一可變電容器。 It is also possible to use a first variable reactance element, such as a variable impedance element or a variable resistance element, whose reactance is changed by the movement of a movable member, instead of the first variable capacitor in the embodiment.

另外,亦可使用可變阻抗元件或可變電阻元件等電抗藉由可動部件移動而改變的第二電抗可變元件來代替所述實施方式中的第二可變電容器。 In addition, a second variable reactance element, such as a variable impedance element or a variable resistive element, whose reactance is changed by the movement of a movable member may be used instead of the second variable capacitor in the above embodiment.

於所述實施方式中,天線是呈直線狀的天線,但亦可為彎曲或屈曲的形狀。於此情況下,可為金屬管是彎曲或屈曲的形狀,亦可為絕緣管是彎曲或屈曲的形狀。 In the above embodiment, the antenna is a linear antenna, but it may also be a curved or flexed shape. In this case, the metal pipe may be bent or buckled, or the insulating pipe may be bent or buckled.

此外,本發明並不限定於所述實施方式,當然可於不脫離其主旨的範圍內進行各種變形。 In addition, the present invention is not limited to the above-mentioned embodiments, and of course various modifications can be made without departing from the spirit thereof.

3(A)‧‧‧第一天線 3(A)‧‧‧First antenna

3a1‧‧‧一端部(供電側端部) 3a1‧‧‧One end (end of power supply side)

3a2‧‧‧另一端部 3a2‧‧‧The other end

3(B)‧‧‧第二天線 3(B)‧‧‧Second antenna

3b1‧‧‧一端部 3b1‧‧‧One end

3b2‧‧‧另一端部(終端部) 3b2‧‧‧The other end (terminal part)

4‧‧‧高頻電源 4‧‧‧High frequency power supply

41‧‧‧匹配電路 41‧‧‧Matching circuit

100‧‧‧電漿處理裝置 100‧‧‧Plasma processing device

101‧‧‧直流轉換電路 101‧‧‧DC conversion circuit

102‧‧‧AD轉換器 102‧‧‧AD converter

103‧‧‧馬達驅動電路 103‧‧‧Motor drive circuit

200‧‧‧電漿控制系統 200‧‧‧Plasma Control System

I1‧‧‧第一電流值 I1‧‧‧First current value

I2‧‧‧第二電流值 I2‧‧‧Second current value

I3‧‧‧第三電流值 I3‧‧‧The third current value

M1‧‧‧第一驅動部(馬達) M1‧‧‧First drive unit (motor)

M2‧‧‧第二驅動部(馬達) M2‧‧‧Second drive unit (motor)

S1‧‧‧第一電流檢測部 S1‧‧‧First current detection unit

S2‧‧‧第二電流檢測部 S2‧‧‧Second current detection unit

S3‧‧‧第三電流檢測部 S3‧‧‧The third current detection unit

VC1‧‧‧第一可變電容器 VC1‧‧‧The first variable capacitor

VC2‧‧‧第二可變電容器 VC2‧‧‧Second variable capacitor

X‧‧‧控制裝置 X‧‧‧Control device

Claims (7)

一種電漿控制系統,其包括:高頻電源;第一天線,一端部與所述高頻電源連接;第二天線,一端部與所述第一天線的另一端部連接;第一電抗可變元件,設置於所述第一天線與所述第二天線之間,電抗藉由可動部件移動而改變;第一驅動部,使所述第一電抗可變元件的所述可動部件移動;第二電抗可變元件,與所述第二天線的另一端部連接,電抗藉由可動部件移動而改變;第二驅動部,使所述第二電抗可變元件的所述可動部件移動;第一電流檢測部,檢測流入所述第一天線的一端部中的電流;第二電流檢測部,檢測於所述第一天線與所述第二天線之間流動的電流;第三電流檢測部,檢測流入所述第二天線的另一端部中的電流;以及控制裝置,輸出用於以由所述第一電流檢測部所獲得的第一電流值,由所述第二電流檢測部所獲得的第二電流值,及由所述第三電流檢測部所獲得的第三電流值相互變成相等的方式,分別控制所述第一驅動部及所述第二驅動部的控制訊號。 A plasma control system, comprising: a high-frequency power supply; a first antenna, one end of which is connected to the high-frequency power supply; a second antenna, one end of which is connected to the other end of the first antenna; The variable reactance element is arranged between the first antenna and the second antenna, and the reactance is changed by the movement of a movable member; the first driving part makes the movable element of the first variable reactance element move The component moves; the second variable reactance element is connected to the other end of the second antenna, and the reactance is changed by the movement of the movable member; the second driving part makes the movable of the second variable reactance element The component moves; a first current detection unit detects the current flowing into one end of the first antenna; a second current detection unit detects the current flowing between the first antenna and the second antenna A third current detection unit, which detects the current flowing into the other end of the second antenna; and a control device, which outputs a first current value obtained by the first current detection unit, by the The second current value obtained by the second current detection unit and the third current value obtained by the third current detection unit become equal to each other, respectively controlling the first driving unit and the second driving unit Control signal. 如申請專利範圍第1項所述的電漿控制系統,其中所述控制裝置包括: 第一比較部,對所述第一檢測值與所述第二檢測值進行比較;第二比較部,對所述第二檢測值與所述第三檢測值進行比較;以及控制部,根據所述第一比較部的比較結果,輸出用於以所述第一電流值與所述第二電流值變成相等的方式控制所述第一驅動部的控制訊號,並且根據所述第二比較部的比較結果,輸出用於以所述第二電流值與所述第三電流值變成相等的方式控制所述第二驅動部的控制訊號。 The plasma control system described in item 1 of the scope of patent application, wherein the control device includes: A first comparison unit, which compares the first detection value with the second detection value; a second comparison unit, which compares the second detection value with the third detection value; and a control unit, according to the The comparison result of the first comparing unit outputs a control signal for controlling the first driving unit in such a way that the first current value and the second current value become equal, and according to the second comparing unit The result of the comparison is to output a control signal for controlling the second driving unit in such a way that the second current value and the third current value become equal. 如申請專利範圍第1項所述的電漿控制系統,其中所述控制裝置包括:模式資料存儲部,存儲已將表示所述第一電流值、所述第二電流值,及所述第三電流值的大小關係的多種基準電流值模式與對應於各個基準電流值模式而事先決定,用於以所述各電流值相互變成相等的方式控制所述第一驅動部及所述第二驅動部的控制模式結合的模式資料;實際電流值模式判斷部,判斷作為所述第一電流值、所述第二電流值,及所述第三電流值的實際的大小關係的實際電流值模式;以及控制部,判斷與所述實際電流值模式對應的所述基準電流值模式,並且根據已與所述基準電流值模式結合的所述控制模式,輸出用於分別控制所述第一驅動部及所述第二驅動部的控制訊號。 The plasma control system described in claim 1, wherein the control device includes: a mode data storage unit that stores the first current value, the second current value, and the third The multiple reference current value patterns of the magnitude relationship of the current values and the respective reference current value patterns are determined in advance, and are used to control the first drive section and the second drive section such that the current values become equal to each other Mode data combined with the control mode; an actual current value mode judging unit that judges the actual current value mode as the actual magnitude relationship between the first current value, the second current value, and the third current value; and The control unit judges the reference current value mode corresponding to the actual current value mode, and according to the control mode that has been combined with the reference current value mode, outputs an output for separately controlling the first driving unit and the The control signal of the second driving part. 如申請專利範圍第1項至第3項中任一項所述的電漿控制系統,其中所述控制裝置以如下方式構成:於所述第一電流值與所述第二電流值互不相同的情況下,輸出用於以使所述第一電流值接近所述第二電流值的方式控制所述第一驅動部的控制訊號,於所述第二電流值及所述第三電流值互不相同的情況下,輸出用於以使所述第三電流值接近所述第二電流值的方式控制所述第二驅動部的控制訊號。 The plasma control system according to any one of items 1 to 3 in the scope of the patent application, wherein the control device is configured as follows: the first current value and the second current value are different from each other In the case of outputting a control signal for controlling the first driving unit in such a way that the first current value is close to the second current value, the second current value and the third current value are mutually If they are not the same, output a control signal for controlling the second driving unit in such a way that the third current value is close to the second current value. 如申請專利範圍第1項至第3項中任一項所述的電漿控制系統,其中所述第一電抗可變元件是可變電容器,其具有:第一固定電極,與所述第一天線電性連接;第二固定電極,與所述第二天線電性連接;以及作為所述可動部件的可動電極,與所述第一固定電極之間形成第一電容器,並且與所述第二固定電極之間形成第二電容器;且以藉由所述可動電極環繞規定的旋轉軸進行旋轉,而可變更其靜電電容的方式構成,所述控制裝置包括於所述可動電極的旋轉角度已變成規定的臨限值的情況下,使所述可動電極的旋轉停止的控制停止部。 The plasma control system according to any one of items 1 to 3 in the scope of the patent application, wherein the first variable reactance element is a variable capacitor having: a first fixed electrode, and the first The antenna is electrically connected; the second fixed electrode is electrically connected to the second antenna; and the movable electrode as the movable component forms a first capacitor with the first fixed electrode, and is connected to the A second capacitor is formed between the second fixed electrodes; and the movable electrode is rotated around a predetermined axis of rotation to change its electrostatic capacitance, and the control device is included in the rotation angle of the movable electrode When it has reached the predetermined threshold value, a control stop unit that stops the rotation of the movable electrode. 如申請專利範圍第1項至第3項中任一項所述的電漿控制系統,其中所述第一天線及所述第二天線分別貫穿收容基板的真空容器的相向的側壁,並且藉由介於所述各天線的相同側的 端部之間的連接導體而串聯連接,所述各天線於內部具有冷卻液進行流動的流路,所述連接導體具有:作為所述第一電抗可變元件的第一可變電容器;第一連接部,將所述第一可變電容器與所述第一天線的端部連接,並且將自形成於所述端部的開口部中流出的所述冷卻液引導至所述第一可變電容器中;以及第二連接部,將所述第一可變電容器與所述第二天線的端部連接,並且將已穿過所述第一可變電容器的所述冷卻液引導至形成於所述端部的開口部中;且所述冷卻液是所述第一可變電容器的電介質。 The plasma control system according to any one of items 1 to 3 of the scope of patent application, wherein the first antenna and the second antenna respectively penetrate the opposite side walls of the vacuum container containing the substrate, and By the same side of each antenna The connecting conductors between the ends are connected in series, each of the antennas has a flow path through which a cooling liquid flows inside, and the connecting conductor has: a first variable capacitor as the first variable reactance element; A connecting portion that connects the first variable capacitor to the end of the first antenna, and guides the coolant flowing out of the opening formed in the end to the first variable And a second connecting portion that connects the first variable capacitor to the end of the second antenna, and guides the coolant that has passed through the first variable capacitor to be formed in And the coolant is the dielectric of the first variable capacitor. 一種電漿控制系統用程式,其是用於如下的電漿控制系統的程式,所述電漿控制系統包括:高頻電源;第一天線,一端部與所述高頻電源連接;第二天線,一端部與所述第一天線的另一端部連接;第一電抗可變元件,設置於所述第一天線與所述第二天線之間,電抗藉由可動部件移動而改變;第一驅動部,使所述第一電抗可變元件的所述可動部件移動;第二電抗可變元件,與所述第二天線的另一端部連接,電抗藉由可動部件移動而改變;第二驅動部,使所述第二電抗可變元件的所述可動部件移動;第一電流檢測部,檢測流入所述第一天線的一端部中的電流;第二電流檢測部,檢測於所述第一天線與所述第二天線之間流動的電流;以及第三電流檢測部,檢測流入所述第二天線的另一端 部中的電流;且使電腦發揮輸出用於以由所述第一電流檢測部所獲得的第一電流值,由所述第二電流檢測部所獲得的第二電流值,及由所述第三電流檢測部所獲得的第三電流值相互變成相等的方式,分別控制所述第一驅動部及所述第二驅動部的控制訊號的功能。 A program for a plasma control system, which is a program for a plasma control system including: a high-frequency power supply; a first antenna, one end of which is connected to the high-frequency power supply; The antenna has one end connected to the other end of the first antenna; a first variable reactance element is arranged between the first antenna and the second antenna, and the reactance is moved by the movable part Change; a first driving part to move the movable part of the first variable reactance element; a second variable reactance element connected to the other end of the second antenna, and the reactance is moved by the movable part Change; a second drive part to move the movable part of the second variable reactance element; a first current detection part to detect current flowing into one end of the first antenna; a second current detection part, Detecting the current flowing between the first antenna and the second antenna; and a third current detecting unit that detects the other end flowing into the second antenna Part of the current; and the computer is used to output the first current value obtained by the first current detection part, the second current value obtained by the second current detection part, and the first current value The third current values obtained by the three current detecting parts become equal to each other, and the functions of the control signals of the first driving part and the second driving part are respectively controlled.
TW108109127A 2018-03-20 2019-03-18 Plasma control system and plasma control system program TWI709360B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018052234A JP7061264B2 (en) 2018-03-20 2018-03-20 Programs for plasma control systems and plasma control systems
JP2018-052234 2018-03-20

Publications (2)

Publication Number Publication Date
TW201941668A TW201941668A (en) 2019-10-16
TWI709360B true TWI709360B (en) 2020-11-01

Family

ID=67987302

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108109127A TWI709360B (en) 2018-03-20 2019-03-18 Plasma control system and plasma control system program

Country Status (6)

Country Link
US (1) US11140766B2 (en)
JP (1) JP7061264B2 (en)
KR (1) KR102435177B1 (en)
CN (1) CN111886936B (en)
TW (1) TWI709360B (en)
WO (1) WO2019181777A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7352068B2 (en) * 2019-07-12 2023-09-28 日新電機株式会社 plasma control system
JP7306221B2 (en) * 2019-10-29 2023-07-11 日新電機株式会社 Sputtering apparatus, sputtering method, and program for sputtering apparatus
TWI796564B (en) * 2020-05-12 2023-03-21 緯穎科技服務股份有限公司 Electronic apparatus and hot-pluggable storage device thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064460A1 (en) * 2003-01-16 2004-07-29 Japan Science And Technology Agency High frequency power supply device and plasma generator
CN1662114A (en) * 2004-02-25 2005-08-31 周星工程股份有限公司 Plasma antenna
TW200850082A (en) * 2007-03-30 2008-12-16 Mitsui Engineering & Shipbuilding Co Ltd Plasma generator and film forming apparatus using plasma
CN101345114A (en) * 2007-07-11 2009-01-14 北京北方微电子基地设备工艺研究中心有限责任公司 Inductance coupling coil and inductance coupling plasma apparatus using the same
KR20090022564A (en) * 2007-08-31 2009-03-04 최대규 Inductively coupled plasma reactor having multi rf antenna
US8098016B2 (en) * 2006-03-29 2012-01-17 Mitsui Engineering & Shipbuilding Co., Ltd. Plasma generating apparatus and plasma generating method
KR101826883B1 (en) * 2016-11-03 2018-02-08 인투코어테크놀로지 주식회사 Inductive Coil Structure And Inductively Coupled Plasma Apparatus

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710055B1 (en) * 1994-10-31 1999-06-23 Applied Materials, Inc. Plasma reactors for processing semi-conductor wafers
JP4852189B2 (en) * 1999-03-09 2012-01-11 株式会社日立製作所 Plasma processing apparatus and plasma processing method
JP2004228354A (en) 2003-01-23 2004-08-12 Japan Science & Technology Agency Plasma producing device
CN101043786A (en) * 2006-12-06 2007-09-26 中国科学技术大学 Inductively coupled plasma generating equipment for concave cavity coil antenna
JP5278148B2 (en) * 2008-11-05 2013-09-04 東京エレクトロン株式会社 Plasma processing equipment
KR101197023B1 (en) * 2009-10-23 2012-11-06 주성엔지니어링(주) Apparatus and method for plasma processing
JP5851681B2 (en) * 2009-10-27 2016-02-03 東京エレクトロン株式会社 Plasma processing equipment
JP5723130B2 (en) * 2010-09-28 2015-05-27 東京エレクトロン株式会社 Plasma processing equipment
JP5916044B2 (en) * 2010-09-28 2016-05-11 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP2013105543A (en) * 2011-11-10 2013-05-30 Tokyo Electron Ltd Substrate processing apparatus
JP5713354B2 (en) * 2012-02-07 2015-05-07 株式会社日本製鋼所 Plasma generator
KR101328520B1 (en) * 2012-05-17 2013-11-20 한양대학교 산학협력단 Plasma apparatus
JP6078419B2 (en) * 2013-02-12 2017-02-08 株式会社日立ハイテクノロジーズ Control method of plasma processing apparatus, plasma processing method and plasma processing apparatus
KR101554306B1 (en) * 2013-12-27 2015-09-18 엘아이지인베니아 주식회사 Apparatus for processing inductively coupled plasma
JP6471515B2 (en) 2015-01-28 2019-02-20 日新電機株式会社 Pipe holding connection structure and high-frequency antenna device including the same
JP2017033788A (en) * 2015-08-03 2017-02-09 日新電機株式会社 Plasma processing apparatus
JP7562668B2 (en) * 2019-12-05 2024-10-07 ラム リサーチ コーポレーション SYSTEM AND METHOD FOR USE OF TRANSFORMERS TO ACHIEVE UNIFORMITY IN SUBSTRATE PROCESSING - Patent application

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064460A1 (en) * 2003-01-16 2004-07-29 Japan Science And Technology Agency High frequency power supply device and plasma generator
CN1662114A (en) * 2004-02-25 2005-08-31 周星工程股份有限公司 Plasma antenna
US8098016B2 (en) * 2006-03-29 2012-01-17 Mitsui Engineering & Shipbuilding Co., Ltd. Plasma generating apparatus and plasma generating method
TW200850082A (en) * 2007-03-30 2008-12-16 Mitsui Engineering & Shipbuilding Co Ltd Plasma generator and film forming apparatus using plasma
CN101345114A (en) * 2007-07-11 2009-01-14 北京北方微电子基地设备工艺研究中心有限责任公司 Inductance coupling coil and inductance coupling plasma apparatus using the same
KR20090022564A (en) * 2007-08-31 2009-03-04 최대규 Inductively coupled plasma reactor having multi rf antenna
KR101826883B1 (en) * 2016-11-03 2018-02-08 인투코어테크놀로지 주식회사 Inductive Coil Structure And Inductively Coupled Plasma Apparatus

Also Published As

Publication number Publication date
CN111886936A (en) 2020-11-03
JP2019164934A (en) 2019-09-26
WO2019181777A1 (en) 2019-09-26
CN111886936B (en) 2023-03-28
US11140766B2 (en) 2021-10-05
TW201941668A (en) 2019-10-16
KR20200123233A (en) 2020-10-28
JP7061264B2 (en) 2022-04-28
KR102435177B1 (en) 2022-08-23
US20210022236A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
TWI709360B (en) Plasma control system and plasma control system program
US11569073B2 (en) Assembly provided with coolant flow channel, method of controlling assembly provided with coolant flow channel, and substrate processing apparatus
US11217429B2 (en) Plasma processing device
US20190051501A1 (en) Plasma processing apparatus
JP7290065B2 (en) Plasma processing equipment
TWI700390B (en) Plasma processing device, plasma processing method and plasma processing device program
TWI752549B (en) Plasma Control System and Plasma Control Program
TWI708525B (en) Plasma processing device
JP7290080B2 (en) Plasma processing equipment
JP7298320B2 (en) PLASMA PROCESSING APPARATUS, PLASMA PROCESSING METHOD AND PROGRAM FOR PLASMA PROCESSING APPARATUS
JP7022313B2 (en) Capacitive elements and plasma processing equipment
JP2020205383A (en) Variable capacitor and plasma processing apparatus