TWI708157B - Data processing device, data processing method, and manufacturing method of solar cell module - Google Patents

Data processing device, data processing method, and manufacturing method of solar cell module Download PDF

Info

Publication number
TWI708157B
TWI708157B TW108120434A TW108120434A TWI708157B TW I708157 B TWI708157 B TW I708157B TW 108120434 A TW108120434 A TW 108120434A TW 108120434 A TW108120434 A TW 108120434A TW I708157 B TWI708157 B TW I708157B
Authority
TW
Taiwan
Prior art keywords
correlation
solar cell
parameters
cell module
data processing
Prior art date
Application number
TW108120434A
Other languages
Chinese (zh)
Other versions
TW202001631A (en
Inventor
森川浩昭
濱篤郎
藤原敏彦
Original Assignee
日商三菱電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱電機股份有限公司 filed Critical 日商三菱電機股份有限公司
Publication of TW202001631A publication Critical patent/TW202001631A/en
Application granted granted Critical
Publication of TWI708157B publication Critical patent/TWI708157B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

資料處理裝置(100),處理在用以評價太陽能電池模組的耐久性的試驗中所獲得的測量資料。資料處理裝置(100),包括:相關保持部(21),針對成為太陽能電池模組的劣化原因的事項,保持表示出太陽能電池模組的輸出特性的複數的參數中所包含的兩個參數的相關關係;以及推定處理部(16),藉由比較兩個參數的測量資料及相關關係,推定劣化原因。The data processing device (100) processes the measurement data obtained in the test for evaluating the durability of the solar cell module. The data processing device (100) includes: a related holding unit (21) that holds two parameters included in a plurality of parameters indicating the output characteristics of the solar cell module for items that cause deterioration of the solar cell module Correlation; and the estimation processing unit (16) compares the measurement data of the two parameters and the correlation to estimate the cause of deterioration.

Description

資料處理裝置、資料處理方法及太陽能電池模組的製造方法Data processing device, data processing method, and manufacturing method of solar cell module

本發明係有關於處理用來評價太陽能電池模組的耐久性的試驗中獲得的資料之資料處理裝置、資料處理方法及太陽能電池模組。The present invention relates to a data processing device, a data processing method, and a solar battery module for processing data obtained in a test for evaluating the durability of a solar battery module.

太陽能電池模組會透過用來評價各種環境狀態下的耐久性的耐久試驗來進行可靠度的確認。耐久試驗中,會進行太陽能電池模組的輸出特性的測量、太陽能電池模組的外觀的目視檢查。輸出特性的測量中,會以疑似太陽光的照射使太陽能電池模組發電,求出各種參數的測量值,然後比較預先設定的基準值及測量值來評價輸出特性。關於用來評價太陽能電池模組的耐久性的耐久試驗的細節,規範於各種工業規格。The reliability of solar cell modules is confirmed through endurance tests to evaluate durability in various environmental conditions. In the durability test, the output characteristics of the solar cell module are measured and the appearance of the solar cell module is visually inspected. In the measurement of output characteristics, the solar cell module is irradiated by suspected sunlight to generate power to obtain the measured values of various parameters, and then the preset reference values and measured values are compared to evaluate the output characteristics. The details of the durability test used to evaluate the durability of the solar cell module are regulated in various industrial standards.

從事太陽能電池模組的生產的技術人員,要確認是否為了能夠確保產品要滿足的耐久性而進行了材料的選定及製造條件的設定,有時候會實施工業規格規範的耐久試驗。又,技術人員為了在短期間內獲得有用的資訊來檢討太陽能電池模組的材料及太陽能電池模組的製造條件,有時候會進行加速試驗,也就是在工業規格規定的耐久試驗上加上刻意加速劣化的條件。技術人員在確認到有對產品的使用期間內的耐久性造成影響的劣化的情況下,檢驗劣化的原因。藉由消除因檢驗而特定出的原因,能夠生產出具備產品該滿足的耐久性的太陽能電池模組。Technicians engaged in the production of solar cell modules must confirm whether they have selected materials and set manufacturing conditions in order to ensure the durability of the product, and sometimes perform durability tests according to industrial specifications. In addition, in order to obtain useful information in a short period of time to review the materials of solar cell modules and the manufacturing conditions of solar cell modules, technicians sometimes conduct accelerated tests, that is, add deliberately to the durability test specified in industrial specifications. Conditions for accelerated degradation. When the technician confirms that there is deterioration that affects the durability of the product during its use, the technician examines the cause of the deterioration. By eliminating the causes specified by the inspection, it is possible to produce solar cell modules with durability that the product should satisfy.

過去,劣化原因的檢驗中,有時候會解析拍攝被施加電壓而在激發光狀態的太陽能電池模組而獲得的影像,也就是進行所謂的EL(Electro-Luminescence)檢查。專利文獻1中,揭露了根據使太陽能電池模組發光並拍攝的影像所進行的資料處理,對檢查對象的缺陷進行檢查的技術。 先行技術文獻In the past, in the inspection of the cause of deterioration, sometimes the image obtained by capturing the solar cell module in the excited light state under the applied voltage was analyzed, that is, the so-called EL (Electro-Luminescence) inspection was performed. Patent Document 1 discloses a technique for inspecting defects in inspection objects based on data processing performed on images taken by making solar cell modules emit light. Advanced technical literature

專利文獻1:國際公開2011/016420號Patent Document 1: International Publication No. 2011/016420

上述專利文獻1所揭露的習知的EL檢查的情況下,當劣化的進行沒有到達作為耐久試驗中的合格判定的基準之劣化程度時,有時會很難檢驗出劣化的原因。因此,有些時候在獲得用來驗證劣化的原因的資料之前必須等待劣化的進行。又,有關於太陽能電池模組上可能發生的大多的劣化,要從習知的耐久試驗中的輸出特性的測量下獲得得每個參數的測量值中,特定出原因是很困難的。因此,習知的技術,在用來評價太陽能電池模組的耐久性的試驗中,存在有難以檢驗出發生於太陽能模組上的劣化原因的問題。In the case of the conventional EL inspection disclosed in Patent Document 1, when the deterioration has not progressed to the degree of deterioration used as a criterion for pass judgment in the endurance test, it may be difficult to detect the cause of the deterioration. Therefore, it is sometimes necessary to wait for the deterioration to proceed before obtaining information to verify the cause of the deterioration. In addition, regarding most of the degradations that may occur in the solar cell module, it is difficult to identify the cause of the measured value of each parameter obtained from the measurement of the output characteristics in the conventional endurance test. Therefore, the conventional technology has a problem that it is difficult to detect the cause of deterioration that occurs in the solar cell module in a test for evaluating the durability of the solar cell module.

本發明有鑑於上述問題,目的是獲得一種資料處理裝置,能夠在用以評價太陽能電池模組的耐久性的試驗中,容易地檢驗出發生在太陽能電池模組上的劣化的原因。In view of the above-mentioned problems, the purpose of the present invention is to obtain a data processing device that can easily detect the cause of the deterioration of the solar cell module in a test for evaluating the durability of the solar cell module.

為了解決上述問題並達成目的,本發明的資料處理裝置,處理在用以評價太陽能電池模組的耐久性的試驗中所獲得的測量資料。本發明的資料處理裝置,包括:相關保持部,針對成為太陽能電池模組的劣化原因的事項,保持表示出太陽能電池模組的輸出特性的複數的參數中所包含的兩個參數的相關關係;以及推定處理部,藉由比較兩個參數的測量資料及相關關係,推定劣化原因。In order to solve the above-mentioned problems and achieve the objective, the data processing device of the present invention processes the measurement data obtained in the test for evaluating the durability of the solar cell module. The data processing device of the present invention includes: a correlation holding unit that holds the correlation between two parameters included in a plurality of parameters indicating the output characteristics of the solar cell module for matters that cause degradation of the solar cell module; And the estimation processing unit compares the measurement data and correlation between the two parameters to estimate the cause of deterioration.

本發明的資料處理裝置,會達成在用以評價太陽能電池模組的耐久性的試驗中,容易地檢驗出發生在太陽能電池模組上的劣化的原因的效果。The data processing device of the present invention achieves the effect of easily detecting the cause of the deterioration occurring in the solar cell module in a test for evaluating the durability of the solar cell module.

以下,根據圖式詳細說明本發明的實施型態的資料處理裝置、資料處理方法及太陽能電池模組的製造方法。另外,本發明並不限定於這個實施型態。 [實施型態1]Hereinafter, the data processing device, the data processing method and the manufacturing method of the solar cell module of the embodiment of the present invention will be described in detail based on the drawings. In addition, the present invention is not limited to this embodiment. [Implementation Type 1]

第1圖係顯示具有本發明實施型態1的資料處理裝置100之評價系統110的構造的方塊圖。評價系統110是用來評價製作的太陽能電池模組的耐久性的系統。評價系統110具備輸出測量器101、EL檢查裝置102、資料處理裝置100。輸出測量器101進行太陽能電池模組的輸出特性的測量。EL檢查裝置102進行太陽能電池模組的EL檢查。資料處理裝置100處理從輸出測量器101輸入的資料以及從EL檢查裝置102輸入的資料。以下的說明中,太陽能電池模組的製造中,包含了太陽能電池模組的製作以及製作的太陽能電池模組的耐久性評價。FIG. 1 is a block diagram showing the structure of an evaluation system 110 having a data processing device 100 according to Embodiment 1 of the present invention. The evaluation system 110 is a system for evaluating the durability of the produced solar cell module. The evaluation system 110 includes an output measuring device 101, an EL inspection device 102, and a data processing device 100. The output measuring device 101 measures the output characteristics of the solar cell module. The EL inspection device 102 performs EL inspection of the solar cell module. The data processing device 100 processes the data input from the output measuring device 101 and the data input from the EL inspection device 102. In the following description, the manufacture of solar cell modules includes the manufacture of solar cell modules and the durability evaluation of the manufactured solar cell modules.

評價系統110基於耐久試驗或者是加速試驗的試驗結果,評價太陽能電池模組的耐久性。耐久試驗是用以評價各種環境狀態下的太陽能電池模組的耐久性的試驗,被各種工業規格所規範。耐久試驗例如依據國際電氣標準會議(International Electrotechnical Commission,IEC)所訂定的關於太陽能電池模組的試驗規格IEC61215及IEC61701。加速試驗是在工業規格所規範的耐久試驗上再加上刻意加速劣化的條件的試驗。以下的說明中,不區別耐久試驗及加速試驗,單純稱之為「試驗」。The evaluation system 110 evaluates the durability of the solar cell module based on the test result of the durability test or the accelerated test. The endurance test is a test used to evaluate the durability of solar cell modules under various environmental conditions, and is regulated by various industrial standards. The durability test is based on, for example, the test specifications IEC61215 and IEC61701 for solar cell modules set by the International Electrotechnical Commission (IEC). The accelerated test is a test in which conditions for deliberately accelerated deterioration are added to the endurance test specified in the industrial specifications. In the following description, the durability test and the accelerated test are not distinguished, and are simply referred to as "tests".

試驗中,定期地透過疑似太陽光的照射使太陽能電池模組發電。輸出測量器101測量太陽能電池模組所輸出的電流及電壓。EL檢查裝置102每隔預先設定的期間,拍攝被施加電壓而處於激發光狀態的太陽能電池模組。In the test, the solar cell module is periodically irradiated with suspected sunlight to generate electricity. The output measuring device 101 measures the current and voltage output by the solar cell module. The EL inspection device 102 takes an image of the solar cell module in the excitation light state by applying a voltage every predetermined period.

資料處理裝置100是安裝了用來實行實施型態1的資料處理方法的程式(也就是資料處理程式)的電腦。資料處理裝置100處理製作的太陽能電池模組的試驗中獲得的資料。第1圖所示的資料處理裝置100的各功能部會透過電腦(硬體)執行資料處理程式來實現。The data processing device 100 is a computer installed with a program (that is, a data processing program) for implementing the data processing method of the implementation pattern 1. The data processing device 100 processes the data obtained in the test of the manufactured solar cell module. The functional parts of the data processing device 100 shown in FIG. 1 are implemented by a computer (hardware) executing a data processing program.

資料處理裝置100具備控制部10,控制部10是控制資料處理裝置100全體的功能部。控制部10具有計算部14、資料加工部15、推定處理部16、關聯連結設定部17。計算部14是對輸出測量器101的測量結果進行計算處理以及進行耐久性的合格判定的功能部。資料加工部15是將試驗中獲得的測量資料進行加工的功能部。推定處理部16是推定試驗中確認到劣化的太陽能電池模組的劣化原因的功能部。關聯連結設定部17是設定參數的關聯連結的功能部。參數的說明將在後述。The data processing device 100 includes a control unit 10, and the control unit 10 is a functional unit that controls the entire data processing device 100. The control unit 10 includes a calculation unit 14, a data processing unit 15, an estimation processing unit 16, and a connection setting unit 17. The calculation unit 14 is a functional unit that performs calculation processing on the measurement result of the output measuring device 101 and performs a pass judgment of durability. The data processing unit 15 is a functional unit that processes the measurement data obtained in the test. The estimation processing unit 16 is a functional unit for determining the cause of deterioration of the solar cell module that has been deteriorated in the estimation test. The relational connection setting unit 17 is a functional unit that sets relational connections of parameters. The description of the parameters will be described later.

資料處理裝置100具備記憶部11,記憶部11是儲存資訊的功能部。記憶部11具有測量資料儲存部18、影像資料儲存部19。測量資料儲存部18是儲存試驗中獲得的測量資料的功能部。影像資料儲存部19是儲存試驗中的EL檢查所獲得的影像資料的功能部。測量資料儲存部18會儲存試驗中使用複數的參數分別獲得的測量資料。記憶部11具有加工資料儲存部20、相關保持部21、設定保持部22。加工資料儲存部20是儲存資料加工部15進行資料加工後獲得的加工資料的功能部。相關保持部21是對於每個成為太陽能電池模組的劣化原因的事項,保持表示出太陽能電池模組的輸出特性的複數參數中所包含的兩參數的相關關係的資訊的功能部。設定保持部22是保持關聯連結的設定的功能部。推定處理部16會藉由兩參數的測量資料與相關關係的比較來推定劣化的原因。The data processing device 100 includes a storage unit 11, which is a functional unit for storing information. The storage unit 11 has a measurement data storage unit 18 and an image data storage unit 19. The measurement data storage unit 18 is a functional unit that stores measurement data obtained in the test. The image data storage unit 19 is a functional unit that stores image data obtained by the EL inspection in the test. The measurement data storage unit 18 stores the measurement data respectively obtained by using plural parameters in the test. The storage unit 11 has a processing data storage unit 20, a related holding unit 21, and a setting holding unit 22. The processing data storage unit 20 is a functional unit that stores processing data obtained after data processing by the data processing unit 15. The correlation holding unit 21 is a functional unit that holds information indicating the correlation between the two parameters included in the plural parameters of the output characteristics of the solar cell module for each item that is the cause of deterioration of the solar cell module. The setting holding unit 22 is a functional unit that holds the setting of the association connection. The estimation processing unit 16 estimates the cause of the deterioration by comparing the measurement data of the two parameters and the correlation relationship.

資料處理裝置100具備接收部12及提示部13。接收部12是接收輸出測量器101所測量的測量值以及EL檢查裝置102所取得的影像的功能部。提示部13會提示有關耐久性評價的資訊以及推定處理部16所推定的結果。The data processing device 100 includes a receiving unit 12 and a presentation unit 13. The receiving unit 12 is a functional unit that receives and outputs the measured value measured by the measuring device 101 and the image obtained by the EL inspection device 102. The presentation unit 13 presents information about durability evaluation and the result estimated by the estimation processing unit 16.

第2圖係顯示實施型態1的資料處理裝置100的硬體構造的方塊圖。資料處理裝置100具備執行各種處理的CPU(Central Processing Unit)41、包含資料儲存領域的RAM(Random Access Memory)42、為非揮發性記憶體的ROM(Read Only Memory)43、外部記憶裝置44。資料處理裝置100具備通信介面(Interface,I/F)45、輸入裝置46、顯示器47。通信介面45是與資料處理裝置100與外部的裝置之間的連接介面。輸入裝置46會按照技術者的操作來輸入資訊。顯示器47是以畫面來顯示資訊的輸出裝置。第2圖所示的資料處理裝置100的各部會透過匯流排48彼此連接。FIG. 2 is a block diagram showing the hardware structure of the data processing device 100 of the first embodiment. The data processing device 100 includes a CPU (Central Processing Unit) 41 that executes various processes, a RAM (Random Access Memory) 42 including a data storage area, a ROM (Read Only Memory) 43 that is a non-volatile memory, and an external memory device 44. The data processing device 100 includes a communication interface (Interface, I/F) 45, an input device 46, and a display 47. The communication interface 45 is a connection interface between the data processing device 100 and external devices. The input device 46 inputs information according to the operation of the technician. The display 47 is an output device that displays information on a screen. The various parts of the data processing device 100 shown in FIG. 2 are connected to each other through a bus 48.

CPU41會執行儲存於ROM43及外部記憶裝置44中的程式。第1圖所示的控制部10的功能會使用CPU41來實現。外部記憶裝置44是HDD(Hard Disk Drive)或者是SSD(Solid State Drive)。外部記憶裝置44會儲存資料處理程式、各種資料。第1圖所示的記憶部11的功能會使用外部記憶裝置44來實現。ROM43中儲存有成為資料處理裝置100(也就是電腦)的基礎之控制用的程式BIOS(Basic Input/Output System)或者是UEFI(Unified Extensible Firmware Interface)。另外,資料處理程式也可以儲存於ROM43。The CPU 41 executes programs stored in the ROM 43 and the external memory device 44. The functions of the control unit 10 shown in FIG. 1 are realized by the CPU 41. The external memory device 44 is a HDD (Hard Disk Drive) or an SSD (Solid State Drive). The external memory device 44 stores data processing programs and various data. The function of the storage unit 11 shown in FIG. 1 is realized by the external storage device 44. The ROM 43 stores a basic control program BIOS (Basic Input/Output System) or UEFI (Unified Extensible Firmware Interface) that becomes the basis of the data processing device 100 (that is, a computer). In addition, the data processing program can also be stored in ROM43.

儲存於ROM43及外部記憶裝置44的程式會載入到RAM42。CPU41會將資料處理程式展開於RAM42並進行各種處理。輸入裝置46包括鍵盤及指向裝置。第1圖所示的提示部13的功能會使用顯示器47來實現。第1圖所是的接收部12的功能會使用通信I/F45來實現。The programs stored in the ROM 43 and the external memory device 44 are loaded into the RAM 42. The CPU 41 expands the data processing program in the RAM 42 and performs various processing. The input device 46 includes a keyboard and a pointing device. The function of the notification unit 13 shown in FIG. 1 is realized using the display 47. The function of the receiving unit 12 shown in Fig. 1 is realized by the communication I/F 45.

資料處理程式也可以是儲存於電腦可讀取的記憶媒體中的程式。資料處理裝置100也可以將儲存於記憶媒體中的資料處理程式儲存到外部記憶裝置44。記憶媒體也可以是可撓性碟片的可搬型記憶媒體、或者是半導體記憶體的快閃記憶體。資料處理程式也可以從其他的電腦或者是伺服裝置透過通訊網路而安裝到成為資料處理裝置100的電腦。The data processing program may also be a program stored in a computer-readable memory medium. The data processing device 100 may also store the data processing program stored in the storage medium to the external storage device 44. The storage medium can also be a portable storage medium such as a flexible disc, or a flash memory such as a semiconductor memory. The data processing program can also be installed to the computer that becomes the data processing device 100 from another computer or a server device through a communication network.

資料處理裝置100的功能可以透過評價太陽能電池模組的耐久性用的專用的硬體(處理電路)來實現。處理電路是單一電路、複合電路、程式化的處理器、平行程式化的處理器、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、或者是它們的組合。The function of the data processing device 100 can be realized by a dedicated hardware (processing circuit) for evaluating the durability of the solar cell module. The processing circuit is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or a combination of them.

接著,說明關於被評價系統110作為評價對象的太陽能電池模組。第3圖係被第1圖所示的評價系統110評價其耐久性的太陽能電池模組50的主要部分剖面圖。第4圖係顯示第3圖所示的太陽能電池模組50所具有的太陽能電池單元51之中受光面側的構造的平面圖。第5圖係顯示第3圖所示的太陽能電池模組50所具有的太陽能電池單元51之中與受光面側相反的裏面側的構造的平面圖。Next, a description will be given of the solar cell module to be evaluated by the system 110 to be evaluated. Fig. 3 is a cross-sectional view of the main part of the solar cell module 50 whose durability is evaluated by the evaluation system 110 shown in Fig. 1. Fig. 4 is a plan view showing the structure on the light-receiving surface side of the solar battery cell 51 included in the solar battery module 50 shown in Fig. 3. Fig. 5 is a plan view showing the structure of the back side opposite to the light-receiving surface side of the solar battery cells 51 included in the solar battery module 50 shown in Fig. 3.

太陽能電池模組50具有複數的太陽能電池單元51。複數的太陽能電池單元51會被連接配線52電性連接。複數的太陽能電池單元51在第3圖至第5圖所示的X方向上串聯。太陽能電池單元51具有半導體基板53、反射防止膜及受光面電極54、裏面電極55。半導體基板53是具有光電變化功能的太陽能電池基板,並具有pn接合。反射防止膜及受光面電極54是形成於半導體基板53的受光面。裏面電極55形成於半導體基板53的裏面。The solar battery module 50 has a plurality of solar battery cells 51. The plurality of solar battery units 51 are electrically connected by the connecting wires 52. The plural solar battery cells 51 are connected in series in the X direction shown in FIGS. 3 to 5. The solar cell 51 has a semiconductor substrate 53, an anti-reflection film, a light-receiving surface electrode 54, and a back surface electrode 55. The semiconductor substrate 53 is a solar cell substrate having a photoelectric conversion function, and has a pn junction. The anti-reflection film and the light-receiving surface electrode 54 are formed on the light-receiving surface of the semiconductor substrate 53. The back surface electrode 55 is formed on the back surface of the semiconductor substrate 53.

半導體基板53的受光面形成有用以提高集光效率的凹凸狀的紋理構造。紋理構造是四角錐形狀的微小的構造體的集合。受光面電極54被反射防止膜包圍設置。第3圖及第4圖中,省略了紋理構造及反射防止膜的圖示。The light-receiving surface of the semiconductor substrate 53 is formed with an uneven texture structure useful for improving light collection efficiency. The texture structure is a collection of tiny structures in a quadrangular pyramid shape. The light-receiving surface electrode 54 is provided surrounded by an anti-reflection film. In Figs. 3 and 4, the illustration of the texture structure and the anti-reflection film is omitted.

受光面電極54具有集電電極54A、連接電極54B。集電電極54A是收集因為半導體基板53上的光電轉換而產生的電子的線狀柵電極。連接電極54B與集電電極54A正交設置,是從集電電極54A取出電子的總線電極。裏面電極55具有集電電極55A及連接電極55B。集電電極55A會收集因為半導體基板53上的光電轉換而產生的電洞。連接電極55B會從集電電極55A取出電洞。集電電極55A設置於太陽能電池單元51的裏面全體。集電電極55A包含鋁。連接電極55B分散在太陽能電池單元51的裏面。連接電極55B設置於挾著半導體基板53與連接電極54B相向的位置。連接電極55B包含銀。X方向上彼此相鄰的太陽能電池單元51當中的一個太陽能電池單元51的連接電極54B與另一個太陽能電池單元51的連接電極55B會透過連接配線52連接。The light-receiving surface electrode 54 has a collecting electrode 54A and a connection electrode 54B. The collector electrode 54A is a linear gate electrode that collects electrons generated due to photoelectric conversion on the semiconductor substrate 53. The connection electrode 54B is arranged orthogonal to the collecting electrode 54A, and is a bus electrode that takes out electrons from the collecting electrode 54A. The back electrode 55 has a collector electrode 55A and a connection electrode 55B. The collector electrode 55A collects the holes generated by the photoelectric conversion on the semiconductor substrate 53. The connecting electrode 55B takes out holes from the collecting electrode 55A. The collector electrode 55A is provided on the entire back surface of the solar battery cell 51. The collector electrode 55A contains aluminum. The connection electrodes 55B are scattered inside the solar cell 51. The connection electrode 55B is provided at a position facing the connection electrode 54B with the semiconductor substrate 53 interposed therebetween. The connection electrode 55B contains silver. The connecting electrode 54B of one solar battery cell 51 and the connecting electrode 55B of the other solar battery cell 51 among the solar battery cells 51 adjacent to each other in the X direction are connected through the connecting wire 52.

複數的太陽能電池單元51會被密封材的透明樹脂56所密封。作為保護零件的蓋玻璃57會覆蓋被透明樹脂56所密封的複數的太陽能電池單元51的受光面側。作為保護零件的背板58會覆蓋被透明樹脂56所密封的複數的太陽能電池單元51的裏面側。The plural solar battery cells 51 are sealed by the transparent resin 56 of the sealing material. The cover glass 57 as a protective part covers the light-receiving surface side of the plural solar battery cells 51 sealed by the transparent resin 56. The back sheet 58 as a protective part covers the back side of the plurality of solar battery cells 51 sealed by the transparent resin 56.

接著,說明太陽能電池模組50的輸出特性的測量。評價系統110藉由解析各種顯示出將太陽能電池模組50置換成等效電路後的特性的參數,評價太陽能電池模組50的輸出特性。資料處理裝置100根據試驗中獲得的各種參數的測量值的經過時間的變化,進行判定太陽能電池模組50是否具有產品應該滿足的耐久性。計算部14使用電流及電壓的測量結果,算出使用於評價太陽能電池模組50的耐久性的各種參數之測量值。Next, the measurement of the output characteristics of the solar cell module 50 will be described. The evaluation system 110 evaluates the output characteristics of the solar battery module 50 by analyzing various parameters showing the characteristics after replacing the solar battery module 50 with an equivalent circuit. The data processing device 100 determines whether the solar cell module 50 has the durability that the product should satisfy based on changes in the elapsed time of the measured values of various parameters obtained in the test. The calculation unit 14 uses the measurement results of current and voltage to calculate measurement values of various parameters used to evaluate the durability of the solar cell module 50.

第6圖係顯示第3圖所示的太陽能電池模組的等效電路。太陽能電池模組50置換成具有電流源61、並聯阻抗62、串聯阻抗63及二極體64的等效電路。電流源61是光電流流出的電源。並聯阻抗62表示在pn接合的周邊因漏電流等所產生的阻抗。串聯阻抗63表示電流流過元件各部時的阻抗。太陽能電池模組50的輸出特性會由包含於等效電路中的二極體64所具有的電流I及電壓V的特性來表示。以下的說明中,有時會將電流I及電壓V的特性稱為IV特性。計算部14會根據電流I及電壓V的測量結果,求出太陽能電池模組50的輸出特性(IV特性)。Figure 6 shows the equivalent circuit of the solar cell module shown in Figure 3. The solar cell module 50 is replaced with an equivalent circuit having a current source 61, a parallel impedance 62, a series impedance 63, and a diode 64. The current source 61 is a power source from which photocurrent flows. The parallel impedance 62 represents the impedance generated by leakage current and the like around the pn junction. The series impedance 63 represents the impedance when current flows through each part of the element. The output characteristic of the solar cell module 50 is represented by the characteristics of the current I and the voltage V of the diode 64 included in the equivalent circuit. In the following description, the characteristics of current I and voltage V may be referred to as IV characteristics. The calculation unit 14 obtains the output characteristics (IV characteristics) of the solar cell module 50 based on the measurement results of the current I and the voltage V.

第7圖係顯示第3圖所示的太陽能電池模組50的IV特性的圖形的例子。第7圖所示的圖形中,縱軸表示電流I,橫軸表示電壓V。在連接到太陽能電池模組50的輸出端之負載的偏壓電壓變化的情況下,資料處理裝置100會測量從太陽能電池模組50的輸出端輸出的電流I及電壓V,求出表示電流I及電壓V的關係之圖形(曲線)。這個曲線表示太陽能電池模組50的IV特性。在第7圖中,顯示了表示將光照射到太陽能電池模組50時的IV特性的曲線、表示沒有將光照射到太陽能電池模組50時的IV特性的曲線。Fig. 7 is an example of a graph showing the IV characteristic of the solar cell module 50 shown in Fig. 3. In the graph shown in Fig. 7, the vertical axis represents current I and the horizontal axis represents voltage V. When the bias voltage of the load connected to the output terminal of the solar cell module 50 changes, the data processing device 100 measures the current I and the voltage V output from the output terminal of the solar cell module 50 to obtain the representative current I The graph (curve) of the relationship with the voltage V. This curve represents the IV characteristic of the solar cell module 50. In FIG. 7, a curve showing the IV characteristic when the solar cell module 50 is irradiated with light, and a curve showing the IV characteristic when the solar cell module 50 is not irradiated with light is shown.

計算部14根據照射光時的IV特性,計算出關於最大輸出電力Pmax、開路電壓Voc、短路電流Isc這幾個參數的測量值。Pmax表示曲線上的電由I及電壓V的積(也就是電力)的最大值。Voc是I=0時的電壓V。Voc表示太陽能電池模組50的輸出端沒有連接負載的狀態下的電壓V。Isc是V=0時的電流I。Isc表示使太陽能電池模組50的輸出端短路的狀態下的電流I。Pmax是最大輸出電力時的電流I=Ipm與最大輸出電力時的電壓V=Vpm的乘積Ipm×Vpm。The calculation unit 14 calculates the measured values of the parameters of the maximum output power Pmax, the open circuit voltage Voc, and the short circuit current Isc based on the IV characteristics when the light is irradiated. Pmax represents the maximum value of the product of the electric power I and the voltage V (that is, electric power) on the curve. Voc is the voltage V when I=0. Voc represents the voltage V when the output terminal of the solar cell module 50 is not connected to a load. Isc is the current I when V=0. Isc represents the current I when the output terminal of the solar cell module 50 is short-circuited. Pmax is the product Ipm×Vpm of the current I=Ipm at the maximum output power and the voltage V=Vpm at the maximum output power.

計算部14算出短路電流密度Jsc、轉換效率Eff、曲線因子FF(Fill Factor)、串聯阻抗Rs、並聯阻抗Rsh、電流值Id這幾個參數的測量值。Jsc是將Isc除以太陽能電池單元51所具有的受光面的面積的結果。Eff是將Pmax除以照射太陽能電池單元51的光的強度的結果。FF是將Pmax除以Voc及Isc的乘積的結果。FF的值越接近1,太陽能電池模組50的轉換效率越高。The calculation unit 14 calculates the measured values of the short-circuit current density Jsc, the conversion efficiency Eff, the curve factor FF (Fill Factor), the series impedance Rs, the parallel impedance Rsh, and the current value Id. Jsc is the result of dividing Isc by the area of the light-receiving surface of the solar cell 51. Eff is the result of dividing Pmax by the intensity of the light irradiating the solar battery cell 51. FF is the result of dividing Pmax by the product of Voc and Isc. The closer the FF value is to 1, the higher the conversion efficiency of the solar cell module 50 is.

串聯阻抗Rs是以表示照射光時IV特性的曲線當中,在Voc,也就是在I=0附近的斜率來表示。並聯阻抗Rsh是以表示照射光時的IV特性的曲線當中在I=Isc的斜率來表示。電流值Id是在沒有照射光到太陽能電池模組50時將預先決定的負的偏壓電壓施加於太陽能電池模組50的情況下,朝向與順方向相反的方向流動的電流I的值。The series impedance Rs is represented by the slope at Voc, that is, around I=0 among the curves representing the IV characteristics when irradiated with light. The parallel impedance Rsh is represented by the slope of I=Isc in the curve representing the IV characteristic when light is irradiated. The current value Id is the value of the current I flowing in the direction opposite to the forward direction when a predetermined negative bias voltage is applied to the solar battery module 50 when the solar battery module 50 is not irradiated with light.

計算部14透過計算處理算出Pmax、Voc、Isc或者是Jsc、Eff、FF、Rs、Rsh及Id各個參數的測量值。測量資料儲存部18儲存算出的測量值。另外,由計算部14算出測量值的參數,並不限定於實施型態1中所說明的參數。計算部14也可以算出實施型態1中說明的參數以外的參數的測量值。The calculation unit 14 calculates the measured values of Pmax, Voc, Isc or Jsc, Eff, FF, Rs, Rsh, and Id through calculation processing. The measurement data storage unit 18 stores the calculated measurement value. In addition, the parameters of the measurement value calculated by the calculation unit 14 are not limited to the parameters described in the first embodiment. The calculation unit 14 may also calculate the measured values of parameters other than the parameters described in the first embodiment.

實驗中,每隔預先設定的期間使太陽能電池模組50發電,以輸出測定器101進行測量。輸出測量器101會將太陽能電池模組50所輸出的電流及電壓的測量值傳送到資料處理裝置100。計算部14會根據接收部12所接收的測量值,算出每個該期間中的各種參數的測量值。計算部14會檢測出每個參數的測量值的經過時間的變化。當確認到隨著時間的經過,從試驗一開始時的測量值的降低的情況下,推定出太陽能電池模組50發生了使輸出特性下降的劣化。計算部14會根據每個參數的測量值的時間變化,判定太陽能電池模組50的劣化有無。測量資料儲存部18會儲存各種參數的測量結果(測量資料)。In the experiment, the solar cell module 50 was generated to generate electricity every predetermined period, and the output measuring device 101 was used for measurement. The output measuring device 101 transmits the measured values of the current and voltage output by the solar cell module 50 to the data processing device 100. The calculation unit 14 calculates the measurement values of various parameters in each period based on the measurement values received by the receiving unit 12. The calculation unit 14 detects changes in the elapsed time of the measured value of each parameter. When a decrease in the measured value from the beginning of the test is confirmed with the passage of time, it is estimated that the solar cell module 50 has deteriorated to reduce the output characteristics. The calculation unit 14 determines the presence or absence of deterioration of the solar cell module 50 based on the time change of the measured value of each parameter. The measurement data storage unit 18 stores measurement results (measurement data) of various parameters.

接著,說明EL檢查裝置102所進行的EL檢查。第8圖係概要顯示第1圖所示的評價系統110所具有的EL檢查裝置102所取得的EL影像65。EL檢查裝置102拍攝因為電壓的施加而處於激發光狀態的太陽能電池模組50。計算部14解析因太陽能電池模組50的拍攝而獲得的影像(EL影像65)。第8圖顯示了太陽能電池模組50當中的1個太陽能電池單元51的EL影像65。Next, the EL inspection performed by the EL inspection device 102 will be described. Fig. 8 schematically shows the EL image 65 obtained by the EL inspection device 102 included in the evaluation system 110 shown in Fig. 1. The EL inspection device 102 photographs the solar cell module 50 in the excitation light state due to the application of voltage. The calculation unit 14 analyzes an image (EL image 65) obtained by shooting of the solar cell module 50. FIG. 8 shows the EL image 65 of one solar cell unit 51 in the solar cell module 50.

藉由太陽能電池模組50成為激發光狀態,太陽能電池單元51之中的半導體基板53發光。EL影像65顯示了太陽能電池單元51當中受光面電極54及裏面電極55的影像。集電電極54A因為成為比EL影像65的解析度更小的寬度,所以在EL影像65中不會確認到集電電極54A的影像。EL影像65顯示了連接電極54B及連接電極55B的影像。EL影像65之中受光面電極54及裏面電極55的影像以外的領域,有電流過的部位會發光而變亮,沒有電流過的部分會變暗。當發生了半導體基板53的裂縫等的缺陷的情況下,產生缺陷的部分不會流過電流,因此確認到EL影像65形成有暗部。計算部14會透過EL影像65的解析來檢測出太陽能電池模組50的缺陷。計算部14也可以將EL影像65當中亮度在閾值以下的部分定義為暗部,並觀察暗部。When the solar cell module 50 is in an excited light state, the semiconductor substrate 53 in the solar cell unit 51 emits light. The EL image 65 shows the image of the light-receiving surface electrode 54 and the back electrode 55 of the solar cell 51. Since the collecting electrode 54A has a width smaller than the resolution of the EL image 65, the image of the collecting electrode 54A is not confirmed in the EL image 65. The EL image 65 shows the image of the connecting electrode 54B and the connecting electrode 55B. In the EL image 65, in areas other than the image of the light-receiving surface electrode 54 and the back electrode 55, the part where the current passes will light up and become brighter, and the part where no current passes will become dark. When a defect such as a crack of the semiconductor substrate 53 occurred, no current would flow in the portion where the defect occurred. Therefore, it was confirmed that a dark portion was formed in the EL image 65. The calculation unit 14 detects the defects of the solar cell module 50 through the analysis of the EL image 65. The calculation unit 14 may define a portion of the EL image 65 whose brightness is below the threshold value as a dark portion, and observe the dark portion.

在試驗的EL檢查中,EL檢查裝置102每隔預先設定的期間拍攝太陽能電池模組50。EL檢查裝置102會將拍攝而得的EL影像65的資料(影像資料)傳送到資料處理裝置100。計算部14會解析接收部12所接收到的影像資料。計算部14會藉由影像資料的解析,來觀察EL影像65的經過時間的變化。EL影像65當中試驗一開始時亮的部分隨著時間經過而變暗的情況下,會推定這個部分發生了使光電轉換的性能下降的劣化。計算部14會根據EL影像65的經過時間的變化,判定太陽能電池模組50的劣化的有無。影像資料儲存部19會儲存影像資料。In the EL inspection of the test, the EL inspection device 102 photographs the solar cell module 50 every predetermined period. The EL inspection device 102 transmits the data (image data) of the EL image 65 obtained by shooting to the data processing device 100. The calculation unit 14 analyzes the image data received by the receiving unit 12. The calculation unit 14 observes the change of the elapsed time of the EL image 65 by analyzing the image data. In the case where the bright part of the EL image 65 at the beginning of the test becomes darker with the passage of time, it is presumed that this part has been degraded to degrade the performance of photoelectric conversion. The calculation unit 14 determines the presence or absence of deterioration of the solar cell module 50 based on changes in the elapsed time of the EL image 65. The image data storage unit 19 stores image data.

像這樣,資料處理裝置100會根據每個參數的測量值隨時間的變化以及EL影像65中的暗部隨時間的變化,判定太陽能電池模組50有無劣化。評價系統110會根據劣化有無的判定,來評價太陽能電池模組50的耐久性。提示部13會提示耐久性的評價結果。In this way, the data processing device 100 determines whether the solar cell module 50 has deteriorated based on the changes over time in the measured values of each parameter and the changes over time in the dark part in the EL image 65. The evaluation system 110 evaluates the durability of the solar cell module 50 based on the determination of the presence or absence of deterioration. The presentation unit 13 presents the durability evaluation result.

第9圖係顯示第1圖所示的評價系統110的第1動作步驟的流程圖。第1動作步驟是用來提示試驗所做的耐久性評價的結果的步驟。Fig. 9 is a flowchart showing the first operation procedure of the evaluation system 110 shown in Fig. 1. The first operation step is a step for presenting the results of the durability evaluation performed by the test.

在步驟S1,評價系統110對製作的太陽能電池模組50,實施試驗開始時的輸出特性的測量及EL檢查。計算部14會根據輸出測量器101所做的電流及電壓的測量結果,算出各種參數的測量值。測量資料儲存部18會儲存算出的測量值(測量資料)。EL檢查裝置102會拍攝處於激發光狀態的太陽能電池模組50。影像資料儲存部19會儲存拍攝中獲得的EL影像65的資料(影像資料)。In step S1, the evaluation system 110 performs the measurement of the output characteristics and the EL inspection at the start of the test on the produced solar cell module 50. The calculation unit 14 calculates the measured values of various parameters based on the current and voltage measurement results made by the output measuring device 101. The measurement data storage unit 18 stores the calculated measurement value (measurement data). The EL inspection device 102 photographs the solar cell module 50 in the excitation light state. The image data storage unit 19 stores data (image data) of the EL image 65 obtained during shooting.

當步驟S1的輸出特性的測量及EL檢查結束,會開始太陽能電池模組50的耐久試驗或者是加速試驗。在步驟S2中,評價系統110每隔試驗時間內的設定時間,會實施輸出特性的測量及EL檢查。測量資料儲存部18會儲存算出的測量值(測量資料)。資料加工部15會根據測量資料儲存部18中所儲存的測量資料,製作出每個參數的時間序列資料。加工資料儲存部20會儲存資料加工部15所製作的時間序列資料。又,資料加工部15製作表示出每個參數的測量資料的推移的圖形。影像資料儲存部19會儲存拍攝而得的影像資料。When the measurement of the output characteristics and the EL inspection in step S1 are completed, the durability test or the accelerated test of the solar cell module 50 is started. In step S2, the evaluation system 110 performs output characteristic measurement and EL inspection every set time within the test time. The measurement data storage unit 18 stores the calculated measurement value (measurement data). The data processing unit 15 will create time series data of each parameter based on the measurement data stored in the measurement data storage unit 18. The processing data storage unit 20 stores the time series data created by the data processing unit 15. In addition, the data processing unit 15 creates a graph showing the transition of the measurement data for each parameter. The image data storage unit 19 stores image data obtained by shooting.

計算部14根據加工資料儲存部20所儲存的時間序列資料,求出每個參數的測量資料隨時間變化的比例。計算部14根據影像資料儲存部19所儲存的影像資料,確認EL影像65中有無暗部的領域隨時間變化。在步驟S3中,計算部14會根據每個參數的測量資料隨時間的變化與EL影像65中的暗部隨時間的變化,判定太陽能電池模組50有無劣化。計算部14判定耐久性的評價(試驗)是否合格。在步驟S4,提示部13提示步驟S3中的耐久性的評價結果。藉此,評價系統110結束第9圖所示的第1動作步驟。The calculation unit 14 obtains the ratio of the change over time of the measurement data of each parameter based on the time series data stored in the processing data storage unit 20. Based on the image data stored in the image data storage unit 19, the calculation unit 14 confirms whether there is a dark area in the EL image 65 that changes with time. In step S3, the calculation unit 14 will determine whether the solar cell module 50 has deteriorated based on the change over time of the measurement data of each parameter and the change over time of the dark part in the EL image 65. The calculation unit 14 determines whether the durability evaluation (test) is acceptable. In step S4, the presentation unit 13 presents the durability evaluation result in step S3. Thereby, the evaluation system 110 ends the first operation step shown in FIG. 9.

耐久試驗之一的耐濕試驗中,會評價太陽能電池模組50在高溫且多濕的狀態下被使用及儲存的情況下的耐久性。這個耐濕試驗也被稱為濕熱(Damp Heat,DH)試驗。舉例來說,在耐濕試驗中,試驗條件設定為溫度85℃及相對濕度85%,試驗時間設定為1000小時。在耐濕試驗中,每隔500小時進行輸出特性的測量。In the humidity resistance test, which is one of the durability tests, the durability of the solar cell module 50 when used and stored in a high temperature and high humidity state is evaluated. This humidity resistance test is also called the Damp Heat (DH) test. For example, in the humidity resistance test, the test conditions are set to a temperature of 85°C and a relative humidity of 85%, and the test time is set to 1000 hours. In the humidity resistance test, the output characteristics are measured every 500 hours.

實施型態1中,取代規格所規定的耐濕試驗,而實施有關耐濕性的加速試驗。加速試驗的試驗條件會設定比耐久試驗更嚴格的試驗條件。舉例來說,在有關耐濕性的加速試驗中,試驗條件設定為溫度105℃以及相對濕度設定為100%,試驗時間設定成比1000小時短的時間。評價系統110每隔115小時進行輸出特性的測量。在有關耐濕性的加速試驗中,可以考慮能夠滿足試驗條件的試驗槽的尺寸,將太陽能電池模組50當中相當於1片的太陽能電池單元51的部分當作是檢體。有關耐濕性的加速試驗會將複數的檢體投入試驗槽中來實施。In Embodiment 1, instead of the humidity resistance test specified in the specifications, an accelerated test related to humidity resistance is implemented. The test conditions of the accelerated test will be more stringent than the endurance test. For example, in an accelerated test related to humidity resistance, the test conditions are set to a temperature of 105°C and relative humidity to 100%, and the test time is set to be shorter than 1000 hours. The evaluation system 110 measures the output characteristics every 115 hours. In the accelerated test related to humidity resistance, the size of the test tank that can satisfy the test conditions can be considered, and the part of the solar cell module 50 equivalent to one solar cell 51 is regarded as the sample. The accelerated test of moisture resistance is carried out by putting a plurality of specimens into a test tank.

接著,說明關於資料處理裝置100所做的劣化原因的推定。資料處理裝置100對於被判定有劣化的太陽能電池模組50,實行用來推定劣化原因的資料處理,並提示推定結果。技術人員會根據提示的推定結果的內容來特定劣化的原因。成為劣化原因的材料或製造條件的重新評估會由技術人員來進行,將劣化的原因消除,就能夠對於今後要生產的太陽能電池模組50,確保其具有產品應該滿足的耐久性。Next, the estimation of the cause of deterioration performed by the data processing device 100 will be described. The data processing device 100 performs data processing for estimating the cause of the deterioration for the solar cell module 50 determined to be deteriorated, and presents the estimation result. The technician will specify the cause of the deterioration according to the content of the suggested result. The re-evaluation of materials or manufacturing conditions that are the cause of deterioration will be carried out by technicians, and by eliminating the cause of deterioration, it is possible to ensure that the solar cell module 50 to be produced in the future has the durability that the product should satisfy.

關聯連結設定部17會設定兩參數的關聯連結,這些參數包含於用來評價太陽能電池模組50的耐久性的複數的參數中。設定保持部22保持關聯連結設定部17所設定的關聯連結的內容。資料加工部15依照設定保持部22所保持的設定來組合兩參數的測量資料,藉此進行資料加工,將兩參數的測量資料進行關聯連結。加工資料儲存部20儲存資料加工後獲得的測量資料的組合。The relational connection setting unit 17 sets the relational connection of two parameters, and these parameters are included in the plural parameters used to evaluate the durability of the solar cell module 50. The setting holding unit 22 holds the content of the related link set by the related link setting unit 17. The data processing unit 15 combines the measurement data of the two parameters in accordance with the settings held by the setting holding unit 22, thereby performing data processing and associating the measurement data of the two parameters. The processing data storage unit 20 stores a combination of measurement data obtained after data processing.

相關保持部21對於設定了關聯連結的兩參數,保持顯示出針對每個劣化原因而預先把握的相關關係之函數(相關函數)。在相關保持部21中,表示劣化原因的資訊會被對應連結於相關函數而被保持。推定處理部16會依照設定保持部22所保持的設定,而將關聯連結的兩參數的測量資料的分布,與相關保持部21所保持的相關函數相比較,推定出劣化的原因。The correlation holding unit 21 holds a function (correlation function) showing a correlation relationship grasped in advance for each deterioration cause for the two parameters for which the correlation is set. In the correlation holding unit 21, information indicating the cause of deterioration is correspondingly linked to the correlation function and held. The estimation processing unit 16 compares the distribution of the measurement data of the two related parameters with the correlation function held by the correlation holding unit 21 in accordance with the settings held by the setting holding unit 22 to estimate the cause of the deterioration.

資料處理裝置100提示出包含於複數的參數中的兩參數被關聯連結的關聯圖,藉此針對從IV特性及各個參數的時間序列資料中難以推定的原因,會提供能夠更容易縮小可能是原因的事項的範圍的資料。關聯連結設定部17所做的兩參數的關聯連結,會透過技術人員對輸入裝置46的手動輸入來進行。技術人員可將有用於更容易縮小可能是原因的事項的範圍的關聯連結設定到資料處理裝置100。資料處理裝置100會因為關聯連結設定部17,而能夠設定任意的內容的關聯連結。能夠設定的關聯連結的數目假設是任意的。The data processing device 100 presents a correlation diagram in which the two parameters included in the plural parameters are related and connected, so as to provide for the reasons that are difficult to estimate from the IV characteristics and the time series data of each parameter, and provide the possibility of easier reduction. Information on the scope of the matter. The associative connection of the two parameters made by the associative connection setting unit 17 will be performed through manual input of the input device 46 by a technician. The technician can set to the data processing device 100 an association link that is useful for narrowing down the scope of the possible cause more easily. The data processing device 100 can set the related link of arbitrary content due to the related link setting unit 17. The number of association links that can be set is assumed to be arbitrary.

第10圖係顯示第1圖所示的評價系統110的第2動作步驟的流程圖。第2動作步驟作為用以提示劣化原因的推定結果的步驟。步驟S11中,關聯連結設定部17設定兩參數的關聯連結,這兩參數包含於表示太陽能電池模組50的輸出特性的複數的參數中。設定保持部22保持關聯連結設定部17所設定的關聯連結的內容。資料處理裝置100在試驗的開始之前,進行關聯連結的設定以及關聯連結內容的保持。上述的相關函數被預先保持於相關保持部21。相關函數也可以是由技術人員設定於資料處理裝置100,也可以預先設定於資料處理程式。技術人員即使在相關函數預先設定到資料處理程式的情況下,也能夠設定任意的相關函數到資料處理裝置100。Fig. 10 is a flowchart showing the second operation procedure of the evaluation system 110 shown in Fig. 1. The second operation step is a step for presenting the estimation result of the cause of deterioration. In step S11, the relational connection setting unit 17 sets the relational connection of two parameters included in a plurality of parameters representing the output characteristics of the solar cell module 50. The setting holding unit 22 holds the content of the related link set by the related link setting unit 17. The data processing device 100 performs related link setting and related link content retention before the start of the test. The correlation function described above is held in the correlation holding unit 21 in advance. The correlation function may also be set in the data processing device 100 by a technician, or may be set in a data processing program in advance. A technician can set an arbitrary correlation function to the data processing device 100 even if the correlation function is preset to the data processing program.

當進行上述步驟S1及步驟S2中的輸出特性的測量,測量資料儲存部18會儲存針對每一個複數的參數所得的測量資料。在步驟S12,資料加工部15依照保持的設定,將兩參數的測量資料做關聯連結的資料加工,藉此產生測量資料的組合。加工資料儲存部20儲存資料加工而得的測量資料的組合。測量資料的組合會由關聯圖的座標來表示。關聯圖是具有2個軸用來表示彼此關聯連結的參數的散布圖。提示部13會提示資料加工部15所製作的關聯圖。When the measurement of the output characteristics in the above steps S1 and S2 is performed, the measurement data storage unit 18 will store the measurement data obtained for each plural parameter. In step S12, the data processing unit 15 processes the measurement data of the two parameters in a relational connection according to the retained settings, thereby generating a combination of measurement data. The processing data storage unit 20 stores a combination of measurement data obtained by data processing. The combination of measurement data will be represented by the coordinates of the correlation diagram. The correlation diagram is a scatter diagram with two axes used to represent parameters that are related to each other. The presentation unit 13 presents the correlation diagram created by the data processing unit 15.

試驗時間中的測量資料的組合的製作及儲存結束後,在步驟S13中,推定處理部16會比較被關聯連結的兩參數的測量資料的關係以及保持於相關保持部21的相關函數,藉此判斷測量資料的關係中是否有類似的相關函數。推定處理部16會算出表示關聯圖中的測量資料的分布與相關函數的類似度的指標,根據算出的指標來判斷是否有類似。推定處理部16能夠使用任意的手法來判斷是否類似。After the creation and storage of the combination of measurement data during the test time is completed, in step S13, the estimation processing unit 16 compares the relationship between the measurement data of the two related parameters and the correlation function held in the correlation holding unit 21, thereby Determine whether there are similar correlation functions in the relationship of the measurement data. The estimation processing unit 16 calculates an index indicating the degree of similarity between the distribution of the measurement data in the correlation graph and the correlation function, and determines whether there is a similarity based on the calculated index. The estimation processing unit 16 can use any method to determine whether they are similar.

當有類似於測量資料的關係的相關函數存在的情況下(步驟S13:Yes),在步驟S14中,推定處理部16會從相關保持部21中抽出具有與該相關函數有對應連結的原因資訊,藉此推定劣化的原因。推定處理部16會輸出步驟S14中獲得的推定結果。像這樣,推定處理部16會從相關保持部21獲得具有與類似於測量資料的關係的相關函數之間有對應連結的原因資訊,藉此實行用以推定劣化原因的處理。在步驟S15中,提示部13提示推定處理部16所輸出的推定結果。When there is a correlation function with a relationship similar to the measurement data (step S13: Yes), in step S14, the estimation processing unit 16 extracts from the correlation holding unit 21 cause information that has a corresponding link with the correlation function , In order to infer the cause of deterioration. The estimation processing unit 16 outputs the estimation result obtained in step S14. In this manner, the estimation processing unit 16 obtains from the correlation holding unit 21 cause information that has a corresponding connection with the correlation function that is similar to the measurement data, and executes processing for estimating the cause of deterioration. In step S15, the presentation unit 13 presents the estimation result output by the estimation processing unit 16.

沒有類似於測量資料的關係的相關函數的情況下(步驟S13,No),推定處理部16會輸出「要推定的原因是無」的推定結果。在步驟S15中,提示部13會提示「要推定的原因是無」的推定結果。藉此,評價系統110會結束第10圖所示的步驟。When there is no correlation function similar to the relationship of the measurement data (step S13, No), the estimation processing unit 16 outputs an estimation result of "the reason to be estimated is no." In step S15, the presentation unit 13 presents the estimation result that "the reason to be estimated is none". With this, the evaluation system 110 ends the steps shown in FIG. 10.

技術人員會參照提示部13所提示的推定結果,進行用以驗證劣化原因的檢查。舉例來說,技術人員會藉由太陽能電池模組50的切斷或相當於切斷的方法,進行破壞檢查來觀察太陽能電池模組50的內部。提示部13提示出原因資訊的情況下,技術人員會對於提示的原因資訊縮小對象的範圍來進行檢查,藉此能夠容易地驗證劣化的原因。提示部13沒有提示原因資訊的情況下,技術人員能夠對相關保持部21所保持著資訊的原因以外,縮小對象的範圍來進行檢查。The technician will refer to the estimation result presented by the presentation unit 13 to perform an inspection to verify the cause of deterioration. For example, a technician will perform a damage inspection to observe the inside of the solar cell module 50 by cutting off the solar cell module 50 or a method equivalent to that of cutting off. When the presentation unit 13 presents the cause information, the technician will narrow down the scope of the presented cause information and perform an inspection, thereby making it possible to easily verify the cause of the deterioration. When the presentation unit 13 does not present the cause information, the technician can narrow down the scope of the object and perform inspections other than the cause of the information held by the relevant holding unit 21.

技術人員也可以根據因為劣化原因的驗證而新找出的兩參數的相關,進行兩參數的新的關聯連結的設定、以及兩參數的新的相關函數的設定。藉由重複這樣的考察,資料處理裝置100會累積用以推定及特定劣化原因的有用的資訊。資料處理裝置100會因為有用的資訊的累積,而能夠進行劣化原因的高精度的推定。The technician can also set the new correlation connection of the two parameters and the new correlation function of the two parameters based on the correlation between the two parameters newly found due to the verification of the deterioration reason. By repeating such investigations, the data processing device 100 accumulates useful information for estimating and specifying the cause of deterioration. The data processing device 100 can perform high-precision estimation of the cause of deterioration due to the accumulation of useful information.

接著,說明兩參數的關聯連結及劣化原因的推定的具體例。第11圖係說明關於第1圖所示的資料處理裝置100所設定的兩參數的關聯連結的第1例。第1例是曲線因子FF與串聯阻抗Rs相關聯連結的例子。設定保持部22會保持有關於第1參數FF及第2參數Rs的關聯連結的設定。第11圖顯示出FF及Rs的測量資料被描繪之前的狀態下的關聯圖。第11圖所示的圖形中,縱軸表示Rs,橫軸表示FF。Next, specific examples of the correlation between the two parameters and the estimation of the cause of deterioration will be described. FIG. 11 illustrates the first example of the association between two parameters set by the data processing device 100 shown in FIG. 1. The first example is an example in which the curve factor FF and the series impedance Rs are linked and connected. The setting holding unit 22 holds the setting regarding the correlation between the first parameter FF and the second parameter Rs. Figure 11 shows the correlation diagram in the state before the measurement data of FF and Rs are drawn. In the graph shown in Fig. 11, the vertical axis represents Rs and the horizontal axis represents FF.

資料處理裝置100中,設定有針對FF及Rs的3個相關函數,這3個相關函數顯示出每個劣化原因被把握的相關性。相關保持部21保持3個相關函數、以及對應連結於各相關函數的原因資訊。第11圖所示的關聯圖中,被附加了相關保持部21所保持的3個相關函數的圖形C1、C2、C3。FF及Rs的關聯圖中,圖形C1、C2、C3會以直線表示。以下,將以圖形C1所表示的相關函數做為第1相關函數,以圖形C2所表示的相關函數做為第2相關函數、以圖形C3所表示的相關函數做為第3相關函數。In the data processing device 100, three correlation functions for FF and Rs are set, and these three correlation functions show the correlation that can be grasped for each deterioration cause. The correlation holding unit 21 holds three correlation functions and cause information corresponding to each correlation function. In the correlation diagram shown in FIG. 11, graphs C1, C2, and C3 of three correlation functions held by the correlation holding unit 21 are added. In the correlation diagram of FF and Rs, the graphs C1, C2, and C3 will be represented by straight lines. Hereinafter, the correlation function represented by the graph C1 is taken as the first correlation function, the correlation function represented by the graph C2 is taken as the second correlation function, and the correlation function represented by the graph C3 is taken as the third correlation function.

第1相關函數是表示出串聯阻抗的單獨增加及單調減少這樣的串聯阻抗的變動所形成的相關性的函數。第1相關函數所表示的劣化的傾向是起因於第3圖至第5圖所示的太陽能電池單元51之中面方向全體的耐濕性的劣化而出現。面方向是指與太陽能電池單元51的受光面及裏面平行的方向。太陽能電池單元51的製造步驟中使連接配線52的剖面積比原本小,藉此意圖增大太陽能電池模組50的串聯阻抗的情況下,會在FF及Rs之間確認該相關性。根據該相關性,太陽能電池模組50的架構再加上0.001Ω的串聯阻抗的情況下,FF的數值會降低0.01。相關保持部21會將太陽能電池單元51的全體的耐濕性劣化而造成的串列阻抗增大的原因資訊,與第1相關函數對應連結並保持。The first correlation function is a function that expresses the correlation formed by the variation of series impedance such as an individual increase in series impedance and a monotonous decrease. The deterioration tendency indicated by the first correlation function appears due to the deterioration of the humidity resistance of the entire solar battery cell 51 in the plane direction shown in FIGS. 3 to 5. The surface direction refers to a direction parallel to the light-receiving surface and the back surface of the solar cell 51. In the manufacturing process of the solar battery cell 51, when the cross-sectional area of the connection wiring 52 is made smaller than the original one to increase the series impedance of the solar battery module 50, this correlation is confirmed between FF and Rs. According to this correlation, when the structure of the solar cell module 50 is coupled with a series impedance of 0.001Ω, the value of FF will be reduced by 0.01. The correlation holding unit 21 associates and holds information on the cause of the increase in the serial impedance caused by the deterioration of the moisture resistance of the entire solar battery cell 51 with the first correlation function.

圖形C1所表示的第1相關函數相當於太陽能電池單元51上產生串聯阻抗的單調增加的情況的相關性。這個相關性例如會出現在裏面的連接電極55B劣化時。具體來說,出現於在裏面的連接電極55B及集電電極55A之間的接觸阻抗增加時。或者是,出現於在裏面的連接電極55B及連接配線52之間的接觸阻抗增加時。因為連接配線52本身的阻抗低,集電電極55A、連接電極55B及連接配線52之間的接觸發生異常的情況下,會出現與串聯阻抗單調增加的情況下相同的相關性。The first correlation function represented by the graph C1 corresponds to the correlation in the case where a monotonous increase in the series impedance of the solar battery cell 51 occurs. This correlation may occur when the connecting electrode 55B inside deteriorates, for example. Specifically, it appears when the contact resistance between the connection electrode 55B and the collector electrode 55A inside increases. Or, it appears when the contact resistance between the connection electrode 55B and the connection wiring 52 inside increases. Because the impedance of the connection wiring 52 itself is low, when the contact between the collector electrode 55A, the connection electrode 55B, and the connection wiring 52 is abnormal, the same correlation as when the series impedance increases monotonously occurs.

第2相關函數是表示受光面電極54的阻抗與裏面電極55的阻抗在面方向上分布所形成的相關性的函數。由第2相關關係所表示的劣化的傾向,會起因於太陽能電池單元51之中在面方向上的部分的耐濕性的劣化而出現。在1mm以上的尺寸的領域上產生阻抗的分布的情況下,會在FF及Rs之間確認到該相關性。在這個情況下,太陽能電池模組50的IV特性會與串聯阻抗Rs彼此不同的太陽能電池單元51並聯連接的電路的IV特性相同。第2相關函數中,與第1相關函數的情況相比,FF的降低相對於Rs的增加較大。The second correlation function is a function representing the correlation between the impedance of the light-receiving surface electrode 54 and the impedance of the back electrode 55 in the surface direction. The deterioration tendency represented by the second correlation appears due to the deterioration of the moisture resistance of the solar battery cell 51 in the surface direction. When an impedance distribution occurs in a region with a size of 1 mm or more, the correlation is confirmed between FF and Rs. In this case, the IV characteristic of the solar cell module 50 will be the same as the IV characteristic of the circuit in which the solar cell units 51 having different series impedances Rs are connected in parallel. In the second correlation function, compared with the case of the first correlation function, the decrease in FF is larger than the increase in Rs.

太陽能電池模組50的周圍的水從太陽能電池模組50的一端進入到太陽能電池模組50的內部的情況下,位於太陽能電池模組50該端的太陽能電池單元51中,會從太陽能電池單元51的一端進水。進水造成的太陽能電池單元51的劣化大多從太陽能電池單元51的一端開始進行。太陽能電池單元51的製造步驟中,意圖地使第4圖所示的集電電極54A的一部分斷線的情況下,或者是使裏面電極55的一部分比本來的厚度更薄的情況下,會在FF及Rs之間確認到該相關性。相關保持部21會將太陽能電池單元51的部分的耐濕性劣化而造成的阻抗分布的原因資訊,與第2相關函數對應連結並保持。When the water around the solar cell module 50 enters the inside of the solar cell module 50 from one end of the solar cell module 50, the solar cell 51 located at the end of the solar cell module 50 will flow from the solar cell 51 Water enters at one end. The deterioration of the solar battery unit 51 caused by water ingress usually starts from one end of the solar battery unit 51. In the manufacturing process of the solar battery cell 51, when a part of the collector electrode 54A shown in Fig. 4 is intentionally disconnected, or when a part of the back electrode 55 is made thinner than the original thickness, the This correlation was confirmed between FF and Rs. The correlation holding unit 21 associates and holds the cause information of the impedance distribution caused by the deterioration of the moisture resistance of the solar battery cell 51 with the second correlation function.

圖形C2所表示的第2相關函數的相關性,例如會出現在電極的一部分劣化時。具體來說,受光面側的柵電極(集電電極54A)當中只有在太陽能電池單元51的端部發生劣化的情況下,或者是出現於在受光面的連接電極54B及受光面的集電電極54A中的一部分之間的接觸阻抗增加情況下。也就是說,會出現於受光面的連接電極54B與受光面的集電電極54A接觸的全部的位置當中,一部分接觸正常,且其他一部分發生劣化接觸阻抗增加時。受光面的連接電極54B及受光面的集電電極54A之中的一部分之間的接觸阻抗增加的情況下,會發生電流集電於接觸正常的部分(集電電極54A)的現象。因為Rs是I=0附近的斜率,所以即使在一部分位置的接觸阻抗增加,在接觸正常的部分有電流流過的情況下Rs不會出現顯著的變化,但由於在一部分位置的接觸阻抗的增加,最大輸出電力時的Vpm及Ipm降低。因為Vpm及Ipm的降低,使得最大輸出電力Pmax降低的情況下,FF會降低。因此,第2相關函數中,與表示串聯阻抗單純增加的情況的相關性的第1相關函數的情況相比,FF的降低相對於Rs的增加較大。The correlation of the second correlation function represented by the graph C2 appears when a part of the electrode is deteriorated, for example. Specifically, among the gate electrodes (collecting electrodes 54A) on the light-receiving surface side, only when the end of the solar cell 51 is deteriorated, or the connecting electrode 54B on the light-receiving surface and the current-collecting electrode on the light-receiving surface The contact resistance between a part of 54A increases. In other words, it appears in all the positions where the connecting electrode 54B on the light receiving surface and the collecting electrode 54A on the light receiving surface are in contact with one part being normal, and the other part is degraded when the contact resistance increases. When the contact resistance between a part of the connection electrode 54B on the light-receiving surface and the collecting electrode 54A on the light-receiving surface increases, a phenomenon occurs that current is collected in the normal contact portion (collector electrode 54A). Because Rs has a slope near I=0, even if the contact resistance increases at a part of the position, Rs will not change significantly when current flows through the normal contact part, but due to the increase of the contact resistance at some positions , Vpm and Ipm at maximum output power are reduced. Because of the decrease in Vpm and Ipm, if the maximum output power Pmax decreases, FF will decrease. Therefore, in the second correlation function, the decrease in FF relative to the increase in Rs is larger than in the case of the first correlation function, which represents the correlation when the series impedance simply increases.

第3相關函數表示受光面電極54的接觸阻抗的增加與減少這樣的接觸阻抗的變動所形成的相關性。該阻抗會出現在受光面電極54當中的集電電極54A及半導體基板53(射極)的接觸阻抗變化的情況。第3相關函數所表示的劣化的傾向是一般發生於太陽能電池模組50的劣化,出現在面方向上接觸阻抗部分地增加的情況下。藉由太陽能電池單元51的製造步驟中的電極燒製的燒製條件的變化,意圖使集電電極54A的接觸阻抗變化的情況下,會在FF及Rs之間確認到該相關性。The third correlation function represents the correlation between the increase in the contact resistance of the light-receiving surface electrode 54 and the decrease in the change in the contact resistance. This impedance may change in the contact impedance between the collector electrode 54A of the light-receiving surface electrode 54 and the semiconductor substrate 53 (emitter). The deterioration tendency indicated by the third correlation function generally occurs in the deterioration of the solar cell module 50, and appears when the contact resistance partially increases in the surface direction. In the case where the contact resistance of the collector electrode 54A is intended to be changed due to the change in the firing conditions of the electrode firing in the manufacturing step of the solar battery cell 51, the correlation between FF and Rs is confirmed.

集電電極54A的接觸阻抗的變化會在太陽能電池單元的受光面上部分地發生。半導體基板53之中與集電電極54A接觸的領域上,接觸阻抗比周圍更高的部分會以1μm量級或10μm量級的尺寸出現多個。The change in the contact resistance of the collector electrode 54A partially occurs on the light-receiving surface of the solar cell. In the area of the semiconductor substrate 53 that is in contact with the collector electrode 54A, there are many parts with a higher contact resistance than the surrounding area in the order of 1 μm or 10 μm.

構成形成於半導體基板53的紋理構造之構造體的頂點或稜線與集電電極54A接觸的部分上,形成有包含於集電電極54A的銀及包含於半導體基板53的矽反應而產生的合金層。集電電極54A與半導體基板53之間的電性連接會透過該合金層來確保。構成構造體的底面之底邊的長度、從底面到頂點的高度在以1μm量級到10μm量級是任意的,因此集電電極54A及半導體基板53的接觸也會產生每個1μm量級或10μm量級的領域的變異。因為這個接觸的變異,可能產生集電電極54A的接觸阻抗的變化。相關保持部21會將面方向上的受光面電極54的接觸阻抗部分增大的原因資訊,與第3相關函數對應連結並保持。The apex or ridge of the structure forming the texture structure formed on the semiconductor substrate 53 is in contact with the current collector electrode 54A, and an alloy layer formed by the reaction of silver included in the current collector electrode 54A and silicon included in the semiconductor substrate 53 is formed . The electrical connection between the collector electrode 54A and the semiconductor substrate 53 is ensured through the alloy layer. The length of the bottom side of the bottom surface and the height from the bottom surface to the apex of the structure are arbitrary in the order of 1 μm to the order of 10 μm. Therefore, the contact between the collector electrode 54A and the semiconductor substrate 53 will also occur every 1 μm or Field variation of the order of 10μm. Because of this contact variation, the contact resistance of the collector electrode 54A may vary. The correlation holding unit 21 associates and holds information on the cause of the increase in the contact resistance portion of the light-receiving surface electrode 54 in the surface direction with the third correlation function.

第3相關函數中,與第1相關函數的情況相比,FF的降低相對於Rs的增加較大。第3相關函數中,與第2相關函數的情況相比,FF的降低相對於Rs的增加較小。In the third correlation function, compared with the case of the first correlation function, the decrease in FF is larger than the increase in Rs. In the third correlation function, the decrease in FF relative to the increase in Rs is smaller than in the case of the second correlation function.

圖形C3所表示的第3相關函數的相關性,例如出現在受光面的集電電極54A與半導體基板53的接觸阻抗部分增加時。受光面的集電電極54A與半導體基板53的接觸阻抗部分增加的情況下,會發生電流集電於具有正常接觸阻抗上的集電電極54A上的現象。集電電極54A與半導體基板53接觸的部分在受光面的全體廣範圍存在,因此第3相關函數中,與顯示出電極的一部分劣化的情況下的相關性的第2相關函數的情況相比,FF的降低相對於Rs的增加變小。The correlation of the third correlation function represented by the graph C3 appears when, for example, the contact resistance between the collector electrode 54A of the light-receiving surface and the semiconductor substrate 53 increases. When the contact resistance between the collector electrode 54A of the light-receiving surface and the semiconductor substrate 53 increases, a phenomenon occurs that current is collected on the collector electrode 54A having a normal contact resistance. The portion where the collector electrode 54A contacts the semiconductor substrate 53 is present in a wide area on the entire light-receiving surface. Therefore, the third correlation function is compared with the case of the second correlation function which shows the correlation when a part of the electrode is deteriorated. The decrease in FF becomes smaller relative to the increase in Rs.

另外,相關函數並不限定於直線的圖形所表示,也可以是曲線的圖形來表示。In addition, the correlation function is not limited to being represented by a linear graph, and may be represented by a curved graph.

第12圖係顯示被第1圖所示的資料處理裝置100設定關聯連結的參數之一的曲線因子的時間序列資料的例子。第12圖所示的圖形中,縱軸表示曲線因子FF,橫軸表示時間。Fig. 12 shows an example of time-series data in which a curve factor, which is one of the related parameters, is set by the data processing device 100 shown in Fig. 1. In the graph shown in Figure 12, the vertical axis represents the curve factor FF, and the horizontal axis represents time.

資料加工部15會根據測量資料儲存部18所儲存的測量資料,製作出關於含有FF的複數參數的時間序列資料。資料加工部15會製作出表示每個參數的時間序列資料的推移的圖形。資料加工部15對於FF會製作出如第12圖所示的圖形。第12圖中顯示了5個檢體的時間序列資料。時間序列資料會以顯示出每115小時的測量資料的描點來表示。Based on the measurement data stored in the measurement data storage unit 18, the data processing unit 15 creates time series data about complex parameters including FF. The data processing unit 15 creates a graph showing the transition of time series data for each parameter. The data processing unit 15 creates a figure as shown in Fig. 12 for the FF. Figure 12 shows the time series data of 5 specimens. Time series data will be represented by trace points showing the measurement data every 115 hours.

第12圖中,時間「0h」表示試驗的開始時。從試驗開始時經過115小時後,FF緩慢下降。從試驗開始時經過920小時後,各檢體中的FF下降了2%~3%左右。In Figure 12, the time "0h" indicates the start of the test. After 115 hours from the start of the test, FF slowly decreased. After 920 hours from the start of the test, the FF in each sample dropped by about 2% to 3%.

第13圖係顯示因第11圖所示的第1例的兩參數的關聯連結而產生的曲線因子與串聯阻抗的測量資料的分布的例子之第1圖。第13圖是第11圖所示的關聯圖上追加測量資料的描點。資料加工部15產生表示FF的測量值及Rs的測量值的組合之座標,藉此製作出FF及Rs的測量資料的組合。資料加工部15會將產生的座標描繪於關聯圖。Fig. 13 is a first diagram showing an example of the distribution of measurement data of the curve factor and series impedance due to the correlation and connection of the two parameters of the first example shown in Fig. 11. Figure 13 is the trace point of the additional measurement data on the correlation diagram shown in Figure 11. The data processing unit 15 generates coordinates representing the combination of the measured value of FF and the measured value of Rs, thereby creating a combination of measured data of FF and Rs. The data processing unit 15 draws the generated coordinates on the correlation diagram.

像這樣,資料加工部15針對被設定了關聯連結的第1參數FF及第2參數Rs,產生出在表示FF的橫軸及表示Rs的縱軸的圖形上描繪表示FF的測量值及Rs的測量值的組合的座標之關聯圖。提示部13提示出資料加工部15所產生的關聯圖。藉此,資料處理裝置100能夠將彼此關聯連結的FF及Rs的測量資料的關係,以視覺上容易了解的型態提示出來。In this way, the data processing unit 15 generates a graph representing the measured value of FF and Rs on the graph representing the horizontal axis of FF and the vertical axis of Rs for the first parameter FF and the second parameter Rs that have been set to be linked. The correlation diagram of the coordinate of the combination of measured values. The presentation unit 13 presents the correlation diagram generated by the data processing unit 15. In this way, the data processing device 100 can present the relationship between the measurement data of FF and Rs that are associated with each other in a visually easy-to-understand type.

第13圖所示的關聯圖中,描繪了從試驗開始時經過920小時的FF及Rs的測量資料。資料加工部15針對FF及Rs製作出如第13圖所示的關聯圖。第13圖中,顯示了5個檢體的測量資料。描點分散的領域之中位於右下端的描點,表示試驗開始時的測量資料。隨著時間經過,FF隨著Rs的增加而下降。描點分散的領域之中位於左上端的描點,表示經過920小時的測量資料。The correlation diagram shown in Figure 13 depicts the measured data of FF and Rs for 920 hours from the start of the test. The data processing unit 15 creates a correlation diagram as shown in FIG. 13 for FF and Rs. Figure 13 shows the measurement data of 5 specimens. The dots at the bottom right in the area where the dots are scattered indicate the measurement data at the beginning of the experiment. As time passes, FF decreases as Rs increases. In the area where the trace points are scattered, the trace point at the upper left end represents the measurement data after 920 hours.

推定處理部16比較描點的線性近似而得的直線L1的斜率以及各相關函數的圖形C1、C2、C3的斜率,藉此判斷類似於測量資料的關係的相關函數的有無。根據第13圖所示的關聯圖,直線L1的斜率最接近圖形C1、C2、C3中的圖形C3的斜率。The estimation processing unit 16 compares the slope of the straight line L1 obtained by the linear approximation of the drawing points and the slopes of the graphs C1, C2, and C3 of the respective correlation functions, thereby judging whether there is a correlation function similar to the measurement data. According to the correlation diagram shown in FIG. 13, the slope of the straight line L1 is closest to the slope of the graph C3 among the graphs C1, C2, and C3.

當太陽能電池單元51的製造步驟中的電極燒製的燒製溫度變高,集電電極54A的接觸阻抗下降,Rs變低。當燒製溫度變低,接觸阻抗變高,Rs變高。發明人們確認到,將燒製溫度提昇到最高時升降燒製溫度的同時燒製溫度比通常降低更多的情況下,太陽能電池單元51的耐濕性下降,表示FF及Rs的測量資料的描點形成第13圖所示的傾斜分布。這樣的耐濕性的下降也能夠透過規格所規範的耐濕試驗來確認。When the firing temperature of electrode firing in the manufacturing step of the solar battery cell 51 becomes higher, the contact resistance of the collector electrode 54A decreases, and Rs becomes lower. When the firing temperature becomes lower, the contact resistance becomes higher and Rs becomes higher. The inventors have confirmed that when the firing temperature is raised and lowered when the firing temperature is the highest, and the firing temperature is lowered more than usual, the moisture resistance of the solar battery cell 51 decreases, indicating the description of the measurement data of FF and Rs. The dots form the inclined distribution shown in Figure 13. Such a drop in moisture resistance can also be confirmed by the moisture resistance test specified in the specifications.

推定處理部16判斷FF和Rs的測量資料的關係與第3相關關係類似,從相關保持部21取得具有與第3相關函數的對應連結的原因資訊。在這個情況下,原因資訊會這樣地使用,推定處理部16藉由比較FF和Rs的測量資料與被保持的相關函數來推定劣化的原因。The estimation processing unit 16 determines that the relationship between the measurement data of FF and Rs is similar to the third correlation relationship, and obtains the cause information having the corresponding connection with the third correlation function from the correlation holding unit 21. In this case, the cause information is used in this way, and the estimation processing unit 16 compares the measurement data of FF and Rs with the stored correlation function to estimate the cause of the deterioration.

提示部13將設定有關聯連結的兩參數的測量資料的關係,與相關函數的圖形一起顯示於關聯圖上。藉此,資料處理裝置100能夠容易理解地提示出關於彼此關聯連結的兩參數的測量資料的關係。The presentation unit 13 displays the relationship between the measurement data of the two parameters set to be linked together on the correlation graph together with the graph of the correlation function. In this way, the data processing device 100 can easily comprehendly present the relationship between the measurement data of the two parameters related to each other.

相關保持部21也可以儲存FF和Rs的測量資料的關係以及被保持的相關關係的比較結果,隨時累積測量資料的分布的傾向以及被特定的原因。資料處理裝置100能夠參照過去獲得的傾向,藉此提高劣化原因的推定精準度。The correlation holding unit 21 may also store the relationship between the measurement data of FF and Rs and the comparison result of the maintained correlation, and accumulate the tendency of the distribution of the measurement data and the specified reason at any time. The data processing device 100 can refer to trends obtained in the past, thereby improving the accuracy of estimating the cause of deterioration.

第14圖係顯示因第11圖所示的第1例的兩參數的關聯連結而產生的曲線因子與串聯阻抗的測量資料的分布的例子之第2圖。第15圖係顯示第14圖所示的曲線因子的時間序列資料。第15圖係顯示與第12顯示出時間序列資料的檢體不同的5個檢體的時間序列資料。Fig. 14 is a second diagram showing an example of the distribution of the curve factor and the measurement data of series impedance due to the associative connection of the two parameters in the first example shown in Fig. 11. Figure 15 shows the time series data of the curve factor shown in Figure 14. Figure 15 shows the time-series data of five specimens that are different from the specimen that displayed time-series data on the 12th.

第15圖所示的時間序列資料中,經過115小時後的FF下降的比例會比第12圖所示的情況更大。FF在經過115小時與經過230小時之間大幅地下降,在經過230小時後就緩緩地下降。In the time series data shown in Figure 15, the percentage of FF decline after 115 hours has passed is greater than that shown in Figure 12. The FF dropped sharply between 115 hours and 230 hours, and then slowly dropped after 230 hours.

第14圖所示的關聯圖上,描繪出從試驗開始時到920小時的FF及Rs的測量資料。第14圖顯示出5個檢體的測量資料。第14圖中,直線L2是試驗開始到經過115小時的描點的線性近似而得的圖形。直線L3是經過115小時到經過230小時的描點的線性近似而得的圖形。直線L4是經過230小時以後的描點的線性近似而得的圖形。The correlation diagram shown in Figure 14 plots the measurement data of FF and Rs from the start of the test to 920 hours. Figure 14 shows the measurement data of 5 specimens. In Fig. 14, the straight line L2 is a graph obtained by linear approximation of the plot point from the beginning of the test to 115 hours. The straight line L3 is a graph obtained by linear approximation of the plot point from 115 hours to 230 hours. The straight line L4 is a graph obtained by linear approximation of the drawing point after 230 hours.

根據第14圖所示的關聯圖,直線L2的斜率最接近圖形C1、C2、C3中的圖形C3的斜率。從試驗開始到經過115小時為止,能夠判斷FF與Rs的測量資料的關係類似於第3相關關係。直線L3的斜率最接近形C1、C2、C3中的圖形C2的斜率。從經過115小時到經過230小時為止,能夠判斷FF與Rs的測量資料的關係類似於第2相關關係。產生這樣的耐濕性下降的情況下,第8圖所示的EL影像65之中,會確認到構成太陽能電池單元51的外形(矩形)的各邊附近產生了暗部。藉由這個EL影像65,能夠從太陽能電池單元51的邊緣,先行把握到太陽能電池單元51發生了耐濕性的劣化。According to the correlation diagram shown in Fig. 14, the slope of the straight line L2 is closest to the slope of the graph C3 among the graphs C1, C2, and C3. From the beginning of the test to 115 hours, it can be judged that the relationship between the measurement data of FF and Rs is similar to the third correlation. The slope of the straight line L3 is closest to the slope of the figure C2 in the shapes C1, C2, and C3. From 115 hours to 230 hours, it can be judged that the relationship between FF and Rs measurement data is similar to the second correlation. When such a drop in moisture resistance occurs, in the EL image 65 shown in FIG. 8, it can be confirmed that dark portions are generated near each side of the outer shape (rectangular) of the solar battery cell 51. With this EL image 65, it can be grasped from the edge of the solar battery cell 51 that the solar battery cell 51 has deteriorated in moisture resistance.

直線L4的斜率最接近圖形C1、C2、C3中的圖形C3的斜率。從經過230小時以後,能夠判斷FF與Rs的測量資料的關係類似於第3相關關係。在從經過230小時以後,推定受光面電極54的接觸阻抗在面方向上一致地增大。如第15圖所示,FF在經過230小時時大約0.72左右,在經過920小時時大約0.69。經過230小時後的FF的降低會停在3%~4%左右。經過230小時到經過920小時為止,各EL影像中的暗部的分布沒有顯著的變化,因此會確認到經過230小時到經過920小時為止的耐濕性的劣化較少。The slope of the straight line L4 is closest to the slope of the graph C3 among the graphs C1, C2, and C3. After 230 hours, it can be judged that the relationship between FF and Rs measurement data is similar to the third correlation. After 230 hours have passed, it is estimated that the contact resistance of the light-receiving surface electrode 54 uniformly increases in the surface direction. As shown in Figure 15, FF is about 0.72 when 230 hours have passed, and about 0.69 when 920 hours have passed. After 230 hours, the reduction of FF will stop at about 3% to 4%. After 230 hours to 920 hours, the distribution of dark parts in each EL image did not change significantly. Therefore, it was confirmed that the moisture resistance from 230 hours to 920 hours was less deteriorated.

像這樣,即使是因為試驗的經過時間不同而劣化原因各異的情況下,推定處理部16能夠比較兩參數的測量資料的分布及所保持的相關關係,來推定每個經過時間的劣化原因。又,技術人員能夠把握每個經過時間的測量資料的傾向。資料處理裝置100能夠透過關聯圖容易理解地提示出經過時間不同而劣化原因各異的狀況。In this way, even when the factors of deterioration are different due to different elapsed time of the test, the estimation processing unit 16 can compare the distribution of the measurement data of the two parameters and the maintained correlation to estimate the cause of deterioration for each elapsed time. In addition, the technician can grasp the trend of the measurement data for each elapsed time. The data processing device 100 can easily comprehend the situation in which the cause of deterioration varies depending on the elapsed time through the correlation diagram.

第16圖係顯示因第11圖所示的第1例的兩參數的關聯連結而產生的曲線因子與串聯阻抗的測量資料的分布的例子之第3圖。第17圖係顯示第16圖所示的例子中的曲線因子的時間序列資料。第17圖係顯示與第12顯示出時間序列資料的檢體及第15顯示出時間序列資料的檢體不同的5個檢體的時間序列資料。Fig. 16 is a third diagram showing an example of the distribution of the curve factor and the measurement data of series impedance due to the associative connection of the two parameters in the first example shown in Fig. 11. Figure 17 shows the time series data of the curve factor in the example shown in Figure 16. Figure 17 shows the time series data of five samples that are different from the sample showing time series data on the 12th and 15th sample showing the time series data.

第17圖所示的時間序列資料中,經過230小時後的FF下降的比例比第12圖所示的情況更大。從試驗的開始到920小時為止,各檢體的FF會降低10%~15%左右。第17圖所示的時間序列資料中,比起第12圖所示的情況下,FF顯著地下降。In the time series data shown in Figure 17, the percentage of FF decline after 230 hours has passed is greater than that shown in Figure 12. From the start of the test to 920 hours, the FF of each sample will decrease by about 10% to 15%. In the time-series data shown in Fig. 17, FF is significantly lower than in the case shown in Fig. 12.

第16圖所示的關聯圖中,描繪了試驗開始到920小時為止的FF與RS的測量資料。第16圖顯示了5個檢體的測量資料。第16圖中,直線L5是試驗開始到經過115小時為止的描點的線性近似而得的圖形。直線L6是經過115小時到經過230小時為止的描點的線性近似而得的圖形。直線L7是經過345小時以後的描點的線性近似而得的圖形。The correlation chart shown in Figure 16 depicts the measurement data of FF and RS from the start of the test to 920 hours. Figure 16 shows the measurement data of 5 specimens. In Fig. 16, the straight line L5 is a graph obtained by linear approximation of the plot points from the beginning of the test to the elapse of 115 hours. The straight line L6 is a graph obtained by linear approximation of the drawing points from 115 hours to 230 hours. The straight line L7 is a graph obtained by linear approximation of the drawing point after 345 hours.

根據第16圖所示的關聯圖,直線L5的斜率最接近圖形C1、C2、C3中的圖形C3的斜率。從試驗開始到經過115小時為止,能夠判斷FF與Rs的測量資料的關係類似於第3相關關係。直線L6的斜率最接近圖形C1、C2、C3中的圖形C2的斜率。從經過115小時到經過230小時為止,能夠判斷FF與Rs的測量資料的關係類似於第2相關關係。直線L7的斜率最接近圖形C1、C2、C3中的圖形C1的斜率。經過345小時以後,能夠判斷FF與Rs的測量資料的關係類似於第1相關關係。According to the correlation diagram shown in Fig. 16, the slope of the straight line L5 is closest to the slope of the graph C3 among the graphs C1, C2, and C3. From the beginning of the test to 115 hours, it can be judged that the relationship between the measurement data of FF and Rs is similar to the third correlation. The slope of the straight line L6 is closest to the slope of the graph C2 among the graphs C1, C2, and C3. From 115 hours to 230 hours, it can be judged that the relationship between FF and Rs measurement data is similar to the second correlation. The slope of the straight line L7 is closest to the slope of the graph C1 among the graphs C1, C2, and C3. After 345 hours, it can be judged that the relationship between the measurement data of FF and Rs is similar to the first correlation.

試驗開始時的EL影像65中,太陽能電池單元51之中連接電極54B及連接電極55B以外的全體看來起變白。藉由這個EL影像65,確認了太陽電池單元51之中連接電極54B及連接電極55B以外的部分的全體對發光帶來貢獻。將試驗的開始到經過230小時為止的EL影像65與試驗開始時的EL影像65相比,確認到構成太陽能電池單元51的外形(矩形)的各邊附近產生了暗部。隨著時間的經過,暗部朝向太陽能電池單元51的中心擴大暗部。EL影像65中暗部產生的態樣與經過時間無關而維持一致,因此只有EL影像65的解析要特定劣化的原因較困難。In the EL image 65 at the start of the test, the entire solar battery cell 51 except for the connection electrode 54B and the connection electrode 55B appeared white. Based on this EL image 65, it was confirmed that the entire part of the solar battery cell 51 other than the connecting electrode 54B and the connecting electrode 55B contributes to light emission. Comparing the EL image 65 from the start of the test to the elapse of 230 hours with the EL image 65 at the start of the test, it was confirmed that dark parts were generated near each side of the outer shape (rectangular) of the solar cell 51. As time passes, the dark portion expands toward the center of the solar cell 51. The appearance of the dark part in the EL image 65 remains the same regardless of the elapsed time. Therefore, it is difficult to identify the cause of the deterioration only in the analysis of the EL image 65.

根據第16圖所示的關聯圖,經過345小時以後,FF與Rs的測量資料的關係類似於第1相關關係的狀態會持續。根據測量資料的這樣的傾向,能夠推定出全部的連接電極55B中從半導體基板53的剝離在同時期發生。在試驗的結束後以檢體的破壞檢查來進行故障解析時,觀察到全部的連接電極55B有剝離,能夠實際驗證前述的推定是有效的。According to the correlation diagram shown in Figure 16, after 345 hours, the relationship between the measurement data of FF and Rs is similar to that of the first correlation. From such a tendency of the measurement data, it can be estimated that peeling from the semiconductor substrate 53 in all the connection electrodes 55B occurred at the same time. After the end of the test, when the failure analysis was performed by the destruction inspection of the specimen, it was observed that all the connecting electrodes 55B were peeled off, and it was possible to actually verify that the aforementioned estimation was effective.

像這樣,即使是難以用EL影像65的解析來特定原因,且不用破壞檢查就難以確認原因的情況下,推定處理部16能夠藉由比較兩參數的測量資料的分布及所保持的相關關係,容易地推定出劣化原因。In this way, even if it is difficult to identify the cause by the analysis of the EL image 65, and it is difficult to confirm the cause without breaking the inspection, the estimation processing unit 16 can compare the distribution of the measurement data of the two parameters and the correlation relationship maintained. The cause of deterioration can be easily estimated.

第18圖係說明關於第1圖所示的資料處理裝置100所設定的兩參數的關聯連結的第2例。第2例是短路電流密度Jsc與開路電壓Voc關聯連結的例子。設定保持部22會保持有關於第1參數Jsc及第2參數Voc的關聯連結的設定。第18圖顯示在描繪Jsc及Voc的測量資料之前的狀態的關聯圖。第18圖所示的圖表中,縱軸表示Voc,橫軸表示Jsc。FIG. 18 is a diagram illustrating a second example of the associative connection between two parameters set by the data processing device 100 shown in FIG. 1. The second example is an example in which the short-circuit current density Jsc and the open circuit voltage Voc are correlated and connected. The setting holding unit 22 holds the setting regarding the related connection of the first parameter Jsc and the second parameter Voc. Figure 18 shows a correlation diagram of the state before plotting the measurement data of Jsc and Voc. In the graph shown in Fig. 18, the vertical axis represents Voc and the horizontal axis represents Jsc.

第19圖係顯示被第1圖所示的資料處理裝置100設定關聯連結的參數之短路電流密度及開路電壓的時間序列資料的例子。第19圖的上段所示的圖的縱軸表示短路電路密度Jsc。第19圖的中段所示的圖的縱軸表示開路電壓Voc。第19圖的下段顯示曲線因子FF的時間序列資料的例子。第19圖的下段所示的圖的縱軸表示FF。第19圖所示的各圖的橫軸表示時間。第2例中,與第1例同樣地,設定了FF與Rs的關聯連結。Fig. 19 shows an example of time-series data of short-circuit current density and open-circuit voltage, which are set by the data processing device 100 shown in Fig. 1 as the parameters related to the connection. The vertical axis of the graph shown in the upper part of Fig. 19 represents the short circuit density Jsc. The vertical axis of the graph shown in the middle part of Fig. 19 represents the open circuit voltage Voc. The lower part of Figure 19 shows an example of time series data for the curve factor FF. The vertical axis of the graph shown in the lower part of FIG. 19 represents FF. The horizontal axis of each graph shown in Fig. 19 represents time. In the second example, as in the first example, the associative link between FF and Rs is set.

第19圖顯示了3個檢體的時間序列資料。時間序列資料會描點顯示試驗開始時、試驗開始到經過115小時、經過345小時及經過460小時的各時間點的測量資料。Figure 19 shows the time series data of 3 specimens. The time series data will show the measurement data at each time point from the beginning of the test, to 115 hours, 345 hours, and 460 hours.

關於第11圖至第17圖所示的上述的第1例的說明中,試驗時間內每隔設定時間所執行的輸出特性的測量中未認定Jsc與Voc的下降。第2例中,說明輸出特性的測量中認定Jsc與Voc下降的情況。根據第19圖所示的圖,Jsc與Voc會與FF同樣地,從試驗開始時隨著時間的經過而下降。In the description of the above-mentioned first example shown in Figs. 11 to 17, the decrease in Jsc and Voc was not recognized in the measurement of the output characteristics performed at every set time during the test period. In the second example, it is assumed that Jsc and Voc are decreased in the measurement of output characteristics. According to the graph shown in Fig. 19, Jsc and Voc will decrease with the passage of time from the beginning of the test, like FF.

第18圖中,追加了表示使半導體基板53的受光面上的表面結合速度從10cm/s變化到100000cm/s為止的情況下的Jsc及Voc的關係的2個圖C4、C5。Jsc及Voc的關係也可以是由模擬所得。在模擬中, 作為太陽能電池單元51的模擬器,會使用一般的一次元半導體裝置模擬器。圖C4顯示太陽能電池單元51中只變化半導體基板53(p型矽基板)的表面再結合速度之模擬所獲得的關係。圖C5顯示使設置於半導體基板53的受光面上的反射防止膜成為比平常還要薄的狀態,且變化p型矽基板的表面再結合速度的情況下的關係。相關保持部21會保持圖C4所表示的相關函數(第4相關函數)及圖C5所表示的相關函數(第5相關函數)。In FIG. 18, two graphs C4 and C5 showing the relationship between Jsc and Voc when the surface bonding speed on the light-receiving surface of the semiconductor substrate 53 is changed from 10 cm/s to 100000 cm/s are added. The relationship between Jsc and Voc can also be obtained by simulation. In the simulation, as a simulator of the solar battery cell 51, a general one-dimensional semiconductor device simulator is used. FIG. C4 shows the relationship obtained by the simulation of changing only the surface recombination speed of the semiconductor substrate 53 (p-type silicon substrate) in the solar cell unit 51. FIG. C5 shows the relationship when the antireflection film provided on the light-receiving surface of the semiconductor substrate 53 is made thinner than usual, and the surface recombination speed of the p-type silicon substrate is changed. The correlation holding unit 21 holds the correlation function (fourth correlation function) shown in FIG. C4 and the correlation function (fifth correlation function) shown in FIG. C5.

第5相關函數是表示半導體基板53的界面上的表面再結合速度的變化及反射防止膜的厚度減少之間的相關性的函數。第5相關函數所表示出的劣化傾向會出現在反射防止膜的溶出在進行的情況下。反射防止膜因為溶出而變薄,使得反射防止膜的反射防止功能下降。如同圖C5的Jsc的下降比起圖C4較為顯著,反射防止膜變薄使得Jsc的下降變大。又,反射防止膜變薄使得反射防止膜對半導體基板53的表面鈍化效果也受損。表面鈍化效果的下降,使得半導體基板53的表面的載子再結合的抑制變得不充分,因此Voc的下降也變大。相關保持部21會將反射防止膜的溶出之原因資訊,與第5相關函數對應連結並保持。The fifth correlation function is a function representing the correlation between the change in the surface recombination speed at the interface of the semiconductor substrate 53 and the decrease in the thickness of the antireflection film. The deterioration tendency indicated by the fifth correlation function appears when the elution of the antireflection film is proceeding. The anti-reflection film becomes thin due to elution, so that the anti-reflection function of the anti-reflection film decreases. As in Figure C5, the decrease in Jsc is more significant than that in Figure C4, and the thinning of the anti-reflection film makes the decrease in Jsc larger. In addition, the thinning of the anti-reflection film also impairs the passivation effect of the anti-reflection film on the surface of the semiconductor substrate 53. The decrease in the surface passivation effect makes the suppression of carrier recombination on the surface of the semiconductor substrate 53 insufficient, and therefore the decrease in Voc also increases. The correlation holding unit 21 associates and holds the information on the cause of the elution of the anti-reflection film with the fifth correlation function.

第20圖顯示因第18圖所示的第2例的兩參數的關聯連結而產生的短路電流密度與開路電壓的測量資料的分布的例子。第20圖是第18圖所示的關聯圖追加了測量資料的描點。資料加工部15針對設定了關聯連結的第1參數Jsc及第2參數Voc,產生了在以Jsc為橫軸以Voc為縱軸的圖表中描繪出表示Jsc的測量值及Voc的測量值的組合的座標的關聯圖。提示部13提示資料加工部15所產生的關聯圖。第20圖所示的關聯圖中描繪了從試驗開始到460小時的Jsc及Voc的測量資料。第20圖顯示了3個檢體的測量資料。Figure 20 shows an example of the distribution of measurement data of short-circuit current density and open-circuit voltage due to the associative connection of the two parameters in the second example shown in Figure 18. Fig. 20 is the correlation diagram shown in Fig. 18 with additional traces of measurement data. For the first parameter Jsc and the second parameter Voc that are set to be linked, the data processing unit 15 generates a combination of the measured value of Jsc and the measured value of Voc in a graph with Jsc as the horizontal axis and Voc as the vertical axis. The correlation diagram of the coordinates. The presentation unit 13 presents the correlation diagram generated by the data processing unit 15. The correlation graph shown in Figure 20 depicts the measured data of Jsc and Voc from the start of the test to 460 hours. Figure 20 shows the measurement data of 3 specimens.

直線L8是試驗開始到460小時為止的描點的線性近似所得的圖形。根據第20圖所示的關聯圖,測量資料的描點會沿著圖形C5分布。能夠判斷Jsc與Voc的測量資料的關係類似於第5相關關係。反射防止膜的溶出造成的劣化,也能夠透過時間序列資料中Jsc及Voc同時下降來確認。藉由這個測量資料與時間序列資料,能夠推定出劣化的原因是反射防止膜的溶出。The straight line L8 is a graph obtained by linear approximation of the drawn points from the start of the test to 460 hours. According to the correlation diagram shown in Figure 20, the trace points of the measurement data will be distributed along the graph C5. It can be judged that the relationship between the measurement data of Jsc and Voc is similar to the fifth correlation. The degradation caused by the elution of the anti-reflection film can also be confirmed by the simultaneous decrease of Jsc and Voc in the time series data. With this measurement data and time series data, it can be inferred that the cause of the deterioration is the elution of the anti-reflection film.

第21圖係顯示因第18圖所示的第2例的兩參數的關聯連結而產生的曲線因子與串聯阻抗的測量資料的分布的例子。第21圖顯示了描繪FF及Rs的測量資料的關聯圖。直線L9是試驗開始到460小時為止的描點的線性近似所得的圖形。Fig. 21 shows an example of the distribution of the measurement data of the curve factor and the series impedance due to the associative connection of the two parameters in the second example shown in Fig. 18. Figure 21 shows a correlation diagram depicting the measurement data of FF and Rs. The straight line L9 is a graph obtained by linear approximation of the drawn points from the start of the test to 460 hours.

根據第21圖的關聯圖,直線L9的斜率比起圖形C3的斜率更接近圖形C1的斜率。因此,可知反射防止膜的溶出造成劣化的情況下,Rs的增加相對於FF的降低的比例,會比起顯示出一般發生於太陽能電池模組50的劣化的傾向之第3相關函數的情況變得更大。又,可知反射防止膜的溶出造成劣化的情況下的測量資料的關係,會類似於顯示出太陽能電池單元51的全體的耐濕性劣化造成的串聯阻抗的增大的傾向之第1相關函數。According to the correlation diagram in Fig. 21, the slope of the straight line L9 is closer to the slope of the graph C1 than the slope of the graph C3. Therefore, it can be seen that when the anti-reflection film is degraded due to elution, the ratio of the increase in Rs to the decrease in FF is different from the case of the third correlation function, which generally shows the tendency of deterioration of the solar cell module 50. Get bigger. In addition, it can be seen that the relationship of the measurement data when the antireflection film is deteriorated due to elution of the antireflection film is similar to the first correlation function showing the tendency of the increase in series impedance due to the deterioration of the moisture resistance of the entire solar battery cell 51.

相關保持部21也可以將比較被關聯連結的兩參數的測量資料的關係與被保持的相關關係的結果加以儲存,藉此隨時累積測量資料的分布傾向與被特定的原因。資料處理裝置100能夠參照過去獲得的傾向,提高推定劣化原因的精確度。The correlation holding unit 21 may also store the result of comparing the relationship between the measurement data of the two parameters that are related and connected with the maintained correlation relationship, thereby accumulating the distribution tendency of the measurement data and the specified reason at any time. The data processing device 100 can improve the accuracy of estimating the cause of deterioration by referring to trends obtained in the past.

太陽能電池單元1也可以不用第5圖所示的集電電極55A,而採用具有鈍化膜(絕緣膜)的PERC(Passivated Emitter AND Rear Cell)構造的太陽能電池單元。PERC構造下,因為絕緣膜的溶出,會發生Jsc不下降只有Voc下降的現象。能夠預測絕緣膜的溶出導致劣化的情況下的Jsc和Voc的測量資料的關係,類似於顯示出將反射防止膜維持在一般的厚度並變化表面再結合速度的情況下的傾向之第4相關函數。像這樣,資料處理裝置100也能夠根據劣化原因及測量資料的關係的傾向之預測,來推定劣化的原因。The solar battery cell 1 may not use the collector electrode 55A shown in FIG. 5 but a solar battery cell with a PERC (Passivated Emitter AND Rear Cell) structure with a passivation film (insulating film). Under the PERC structure, due to the elution of the insulating film, the phenomenon that Jsc does not decrease but Voc decreases. It is possible to predict the relationship between the measured data of Jsc and Voc when the insulation film deteriorates due to elution, similar to the fourth correlation function that shows the tendency of the anti-reflection film to maintain a normal thickness and change the surface recombination speed . In this manner, the data processing device 100 can also estimate the cause of deterioration based on the prediction of the tendency of the relationship between the cause of deterioration and the measurement data.

技術人員能夠參照將被保持的相關關係作為指標而來定劣化原因之結果、以及時間序列資料、測量資料及影像資料等的各種資料所表達出的意義,以高精確度特定出劣化的原因。用以特定劣化原因的實績會儲存於資料處理裝置100,藉此資料處理裝置100能夠以高精確度推定出劣化的原因。因為能夠簡單地驗證劣化原因,技術人員能夠透過簡單地驗證劣化原因來加以特定,因此能夠將為了提昇耐久性的措施立即反映到開發設計或者是製造條件上。Technicians can refer to the maintained correlation as an indicator to determine the cause of deterioration, as well as the meaning expressed by various data such as time series data, measurement data, and image data, and specify the cause of deterioration with high accuracy. The actual performance for identifying the cause of deterioration is stored in the data processing device 100, whereby the data processing device 100 can estimate the cause of the deterioration with high accuracy. Because the cause of deterioration can be easily verified, technicians can specify the cause by simply verifying the cause of deterioration, so measures to improve durability can be immediately reflected in the development design or manufacturing conditions.

根據實施型態1,資料處理裝置100藉由比較被關聯連結的兩參數的測量資料及相關函數來推定劣化的原因,並提示推定的結果。藉此,資料處理裝置100在用來評價太陽能電池模組50的耐久性的試驗中,達成了能夠容易驗證發生於太陽能電池模組50上的劣化原因的效果。 [實施型態2]According to the first embodiment, the data processing device 100 estimates the cause of the deterioration by comparing the measurement data and the correlation function of the two related parameters, and presents the estimated result. As a result, the data processing device 100 achieves an effect of being able to easily verify the cause of deterioration occurring in the solar cell module 50 in a test for evaluating the durability of the solar cell module 50. [Implementation Type 2]

第22圖係顯示本發明實施型態2的太陽能電池模組50的製造方法的步驟的流程圖。太陽能電池模組50的製造步驟中,包含了評價系統110所做的耐久性評價的步驟。實施型態2中,與上述實施型態1相同的構成要素會標示相同的符號,主要說明與實施型態1不同的構造。FIG. 22 is a flowchart showing the steps of the manufacturing method of the solar cell module 50 according to Embodiment 2 of the present invention. The manufacturing process of the solar cell module 50 includes the process of durability evaluation performed by the evaluation system 110. In the second embodiment, the same constituent elements as those in the first embodiment will be marked with the same symbols, and mainly explain the different structures from the first embodiment.

步驟S21到步驟S23表示製作太陽能電池模組50的步驟。在步驟S21中,製作太陽能電池51。在步驟S21中,洗淨準備的矽基板的表面,洗淨後的表面形成紋理構造。接著,在形成有紋理構造的矽基板上,藉由n型不純物的擴散而形成n型擴散層。藉由n型擴散層的形成,形成pn接合。接著,進行pn分離,以乾蝕刻除去形成在矽基板的側面的n型擴散層。藉此,形成半導體基板53。Steps S21 to S23 represent the steps of manufacturing the solar cell module 50. In step S21, the solar cell 51 is produced. In step S21, the surface of the prepared silicon substrate is cleaned, and the cleaned surface forms a texture structure. Next, on the silicon substrate with the texture structure formed, an n-type diffusion layer is formed by the diffusion of n-type impurities. Through the formation of the n-type diffusion layer, a pn junction is formed. Next, pn separation is performed, and the n-type diffusion layer formed on the side surface of the silicon substrate is removed by dry etching. Thereby, the semiconductor substrate 53 is formed.

pn分離之後,半導體基板53之中成為受光面的側表面,會形成有反射防止膜(SiN層)。半導體基板53的受光面與裏面,會透過網版印刷來印刷電極膠。將印刷的電極膠進行乾燥,再進行電極的燒製,藉此形成受光面電極54及裏面電極55。藉此製作太陽能電池單元51。After the pn is separated, an anti-reflection film (SiN layer) is formed on the side surface of the semiconductor substrate 53 that becomes the light receiving surface. Electrode glue is printed on the light-receiving surface and the back surface of the semiconductor substrate 53 through screen printing. The printed electrode paste is dried, and then the electrodes are fired, thereby forming the light-receiving surface electrode 54 and the back surface electrode 55. In this way, the solar battery unit 51 is produced.

步驟S22中,兩太陽能電池單元51之間藉由連接配線52連接,製作太陽能電池陣列。在步驟S23,將被透明樹脂56所夾的狀態的太陽能電池陣列,進一步以蓋玻璃57及背板58夾起來,實施層壓加工。藉此,製作太陽能電池模組50。另外,實施型態2中,製作太陽能電池模組50的步驟並不限定於與步驟S21至步驟S23相同的步驟。製作太陽能電池模組50的步驟能夠製作出具有接收照射光而發電的功能的太陽能電池模組50即可,也可以是與步驟S21至步驟S23不同的步驟。In step S22, the two solar battery units 51 are connected by connecting wires 52 to form a solar battery array. In step S23, the solar cell array in the state of being sandwiched by the transparent resin 56 is further sandwiched by the cover glass 57 and the back sheet 58 to perform lamination processing. In this way, the solar cell module 50 is produced. In addition, in the second embodiment, the steps of manufacturing the solar cell module 50 are not limited to the same steps as the steps S21 to S23. The step of manufacturing the solar cell module 50 only needs to be capable of manufacturing the solar cell module 50 having the function of receiving irradiated light and generating electricity, and it may be a step different from step S21 to step S23.

接著,實施太陽能電池模組50的試驗。在步驟S24中,評價系統110會實施試驗中的輸出特性的測量及EL檢查,評價步驟S21至步驟S23中製作的太陽能電池模組50的耐久性。評價系統110會透過計算部14對劣化有無的判定來評價耐久性。資料處理裝置100會儲存試驗中獲得的測量資料及影像資料。Next, a test of the solar cell module 50 is carried out. In step S24, the evaluation system 110 performs the measurement of the output characteristics and the EL inspection during the test, and evaluates the durability of the solar cell module 50 produced in steps S21 to S23. The evaluation system 110 evaluates durability through the determination of the presence or absence of deterioration by the calculation unit 14. The data processing device 100 stores measurement data and image data obtained in the test.

判定有劣化的情況下(步驟S25:Yes),在步驟S26中,資料處理裝置100推定劣化的原因,提示推定結果。劣化原因的推定以及推定結果的提示會與實施型態1一樣的方式進行。藉由提示出推定結果,第22圖所示的製造步驟結束。判定沒有劣化的情況下(步驟S25,No),第22圖所示的製造步驟也會結束。When it is determined that there is deterioration (step S25: Yes), in step S26, the data processing device 100 estimates the cause of the deterioration and presents the estimation result. The estimation of the cause of deterioration and presentation of the estimation result will be carried out in the same way as in the first embodiment. By presenting the estimated result, the manufacturing step shown in Fig. 22 ends. When it is determined that there is no deterioration (step S25, No), the manufacturing step shown in FIG. 22 is also ended.

得到有劣化的評價結果的情況下,技術人員會參照提示部13所提示的推定結果的資訊,特定出劣化的原因。技術人員會根據特定出的原因的內容,考量開發設計的變更或者是製造條件的調整等的措施,藉此試圖改善原因。這樣一來,藉由特定出劣化原因、改善被特定出的原因,能夠試圖提昇太陽能電池模組50的耐久性。When a degraded evaluation result is obtained, the technician refers to the information of the estimated result presented by the presentation unit 13 to identify the cause of the degradation. The technicians will consider measures such as changes in development and design or adjustment of manufacturing conditions based on the content of the specified cause, and try to improve the cause. In this way, it is possible to try to improve the durability of the solar cell module 50 by identifying the cause of deterioration and improving the identified cause.

根據實施型態2,資料處理裝置100會根據由太陽能電池模組50的製造步驟中包含的耐久性評價而獲得的測量資料,推定劣化的原因。技術人員能夠透過簡單地驗證劣化原因來加以特定,藉此立即將用以提昇耐久性的措施反映到開發設計或製造條件。藉此,藉由簡單地驗證劣化原因,達成了能夠試圖使直到可製造出具有高耐久性的太陽能電池模組50為止的檢討簡單化的效果。According to the second embodiment, the data processing device 100 estimates the cause of the deterioration based on the measurement data obtained from the durability evaluation included in the manufacturing steps of the solar cell module 50. Technicians can specify the cause of deterioration by simply verifying the reason, thereby immediately reflecting the measures to improve durability to the development design or manufacturing conditions. In this way, by simply verifying the cause of the deterioration, it is possible to achieve the effect of simplifying the review until the solar cell module 50 with high durability can be manufactured.

以上實施型態中所示的架構是本發明的內容的一例,能夠與其他的公知的技術組合,在不脫離本發明的要旨的範圍內也能夠省略、變更架構的一部分。The architecture shown in the above embodiment is an example of the content of the present invention, and can be combined with other known technologies, and part of the architecture can be omitted or changed without departing from the gist of the present invention.

10‧‧‧控制部 11‧‧‧記憶部 12‧‧‧接收部 13‧‧‧提示部 14‧‧‧計算部 15‧‧‧資料加工部 16‧‧‧推定處理部 17‧‧‧關聯連結設定部 18‧‧‧測量資料儲存部 19‧‧‧影像資料儲存部 20‧‧‧加工資料儲存部 21‧‧‧相關保持部 22‧‧‧設定保持部 41‧‧‧CPU 42‧‧‧RAM 43‧‧‧ROM 44‧‧‧外部記憶裝置 45‧‧‧通信I/F 46‧‧‧輸入裝置 47‧‧‧顯示器 48‧‧‧匯流排 50‧‧‧太陽能電池模組 51‧‧‧太陽能電池單元 52‧‧‧連接配線 53‧‧‧半導體基板 54‧‧‧受光面電極 54A、55A‧‧‧集電電極 54B、55B‧‧‧連接電極 55‧‧‧裏面電極 56‧‧‧透明樹脂 57‧‧‧蓋玻璃 58‧‧‧背板 61‧‧‧電流源 62‧‧‧並聯阻抗 63‧‧‧串聯阻抗 64‧‧‧二極體 65‧‧‧EL影像 100‧‧‧資料處理裝置 101‧‧‧輸出測量器 102‧‧‧EL檢查裝置 110‧‧‧評價系統 10‧‧‧Control Department 11‧‧‧Memory Department 12‧‧‧Receiving Department 13‧‧‧Reminder Department 14‧‧‧Calculation Department 15‧‧‧Data Processing Department 16‧‧‧Presumption Processing Department 17‧‧‧Related Link Setting Department 18‧‧‧Measurement data storage department 19‧‧‧Image Data Storage Department 20‧‧‧Processing data storage department 21‧‧‧Related Maintenance Department 22‧‧‧Setting holding section 41‧‧‧CPU 42‧‧‧RAM 43‧‧‧ROM 44‧‧‧External memory device 45‧‧‧Communication I/F 46‧‧‧Input device 47‧‧‧Display 48‧‧‧Bus 50‧‧‧Solar battery module 51‧‧‧Solar battery unit 52‧‧‧Connection wiring 53‧‧‧Semiconductor substrate 54‧‧‧Light-receiving surface electrode 54A, 55A‧‧‧ Collector electrode 54B, 55B‧‧‧Connecting electrode 55‧‧‧Inside electrode 56‧‧‧Transparent resin 57‧‧‧Cover glass 58‧‧‧Back plate 61‧‧‧Current source 62‧‧‧Parallel impedance 63‧‧‧Series impedance 64‧‧‧Diode 65‧‧‧EL image 100‧‧‧Data Processing Device 101‧‧‧Output measuring instrument 102‧‧‧EL inspection device 110‧‧‧Evaluation System

第1圖係顯示具有本發明實施型態1的資料處理裝置之評價系統的構造的方塊圖。 第2圖係顯示實施型態1的資料處理裝置的硬體構造的方塊圖。 第3圖係被第1圖所示的評價系統評價其耐久性的太陽能電池模組的主要部分剖面圖。 第4圖係顯示第3圖所示的太陽能電池模組所具有的太陽能電池單元之中受光面側的構造的平面圖。 第5圖係顯示第3圖所示的太陽能電池模組所具有的太陽能電池單元之中與受光面側相反的裏面側的構造的平面圖。 第6圖係顯示第3圖所示的太陽能電池模組的等效電路。 第7圖係顯示第3圖所示的太陽能電池模組的IV特性的圖形的例子。 第8圖係概要顯示第1圖所示的評價系統所具有的EL檢查裝置所取得的EL影像。 第9圖係顯示第1圖所示的評價系統的第1動作步驟的流程圖。 第10圖係顯示第1圖所示的評價系統的第2動作步驟的流程圖。 第11圖係說明關於第1圖所示的資料處理裝置所設定的兩參數的關聯連結的第1例。 第12圖係顯示被第1圖所示的資料處理裝置設定關聯連結的參數之一的曲線因子的時間序列資料的例子。 第13圖係顯示因第11圖所示的第1例的兩參數的關聯連結而產生的曲線因子與串聯阻抗的測量資料的分布的例子之第1圖。 第14圖係顯示因第11圖所示的第1例的兩參數的關聯連結而產生的曲線因子與串聯阻抗的測量資料的分布的例子之第2圖。 第15圖係顯示第14圖所示的曲線因子的時間序列資料。 第16圖係顯示因第11圖所示的第1例的兩參數的關聯連結而產生的曲線因子與串聯阻抗的測量資料的分布的例子之第3圖。 第17圖係顯示第16圖所示的例子中的曲線因子的時間序列資料。 第18圖係說明關於第1圖所示的資料處理裝置所設定的兩參數的關聯連結的第2例。 第19圖係顯示被第1圖所示的資料處理裝置設定關聯連結的參數之短路電流密度及開路電壓的時間序列資料的例子。 第20圖顯示因第18圖所示的第2例的兩參數的關聯連結而產生的短路電流密度與開路電壓的測量資料的分布的例子。 第21圖係顯示因第18圖所示的第2例的兩參數的關聯連結而產生的曲線因子與串聯阻抗的測量資料的分布的例子。 第22圖係顯示本發明實施型態2的太陽能電池模組的製造方法的步驟的流程圖。FIG. 1 is a block diagram showing the structure of an evaluation system having a data processing device according to Embodiment 1 of the present invention. FIG. 2 is a block diagram showing the hardware structure of the data processing device of Embodiment 1. Fig. 3 is a cross-sectional view of the main part of the solar cell module whose durability has been evaluated by the evaluation system shown in Fig. 1. Fig. 4 is a plan view showing the structure on the light-receiving surface side of the solar battery cells included in the solar battery module shown in Fig. 3. Fig. 5 is a plan view showing the structure of the back side opposite to the light-receiving surface side of the solar battery cells included in the solar battery module shown in Fig. 3. Figure 6 shows the equivalent circuit of the solar cell module shown in Figure 3. Fig. 7 is an example of a graph showing the IV characteristic of the solar cell module shown in Fig. 3. Fig. 8 schematically shows the EL image obtained by the EL inspection device included in the evaluation system shown in Fig. 1. Fig. 9 is a flowchart showing the first operation procedure of the evaluation system shown in Fig. 1. Fig. 10 is a flowchart showing the second operation procedure of the evaluation system shown in Fig. 1. Fig. 11 is a diagram illustrating a first example of the association between two parameters set by the data processing device shown in Fig. 1. Fig. 12 shows an example of time-series data of a curve factor, which is one of the related parameters, set by the data processing device shown in Fig. 1. Fig. 13 is a first diagram showing an example of the distribution of measurement data of the curve factor and series impedance due to the correlation and connection of the two parameters of the first example shown in Fig. 11. Fig. 14 is a second diagram showing an example of the distribution of the curve factor and the measurement data of series impedance due to the associative connection of the two parameters in the first example shown in Fig. 11. Figure 15 shows the time series data of the curve factor shown in Figure 14. Fig. 16 is a third diagram showing an example of the distribution of the curve factor and the measurement data of series impedance due to the associative connection of the two parameters in the first example shown in Fig. 11. Figure 17 shows the time series data of the curve factor in the example shown in Figure 16. Fig. 18 illustrates a second example of the association between two parameters set by the data processing device shown in Fig. 1. Fig. 19 shows an example of time-series data of the short-circuit current density and open-circuit voltage of the parameters set by the data processing device shown in Fig. 1 in relation to the connection. Figure 20 shows an example of the distribution of measurement data of short-circuit current density and open-circuit voltage due to the associative connection of the two parameters in the second example shown in Figure 18. Fig. 21 shows an example of the distribution of the measurement data of the curve factor and the series impedance due to the associative connection of the two parameters in the second example shown in Fig. 18. FIG. 22 is a flowchart showing the steps of the manufacturing method of the solar cell module according to Embodiment 2 of the present invention.

10‧‧‧控制部 10‧‧‧Control Department

11‧‧‧記憶部 11‧‧‧Memory Department

12‧‧‧接收部 12‧‧‧Receiving Department

13‧‧‧提示部 13‧‧‧Reminder Department

14‧‧‧計算部 14‧‧‧Calculation Department

15‧‧‧資料加工部 15‧‧‧Data Processing Department

16‧‧‧推定處理部 16‧‧‧Presumption Processing Department

17‧‧‧關聯連結設定部 17‧‧‧Related Link Setting Department

18‧‧‧測量資料儲存部 18‧‧‧Measurement data storage department

19‧‧‧影像資料儲存部 19‧‧‧Image Data Storage Department

20‧‧‧加工資料儲存部 20‧‧‧Processing data storage department

21‧‧‧相關保持部 21‧‧‧Related Maintenance Department

22‧‧‧設定保持部 22‧‧‧Setting holding section

100‧‧‧資料處理裝置 100‧‧‧Data Processing Device

101‧‧‧輸出測量器 101‧‧‧Output measuring instrument

102‧‧‧EL檢查裝置 102‧‧‧EL inspection device

110‧‧‧評價系統 110‧‧‧Evaluation System

Claims (13)

一種資料處理裝置,處理在用以評價太陽能電池模組的耐久性的試驗中所獲得的測量資料,包括:相關保持部,針對成為該太陽能電池模組的劣化原因的事項,保持表示出該太陽能電池模組的輸出特性的複數的參數中所包含的兩個參數的相關關係;推定處理部,藉由比較該兩個參數的該測量資料及該相關關係,推定劣化原因;設定保持部,保持該複數的參數中所包含的兩個參數的關聯連結的設定;測量資料儲存部,儲存該複數的參數的每一者的該測量資料;以及提示部,提示該推定處理部所推定的結果,其中該相關保持部,保持顯示出設定有該關聯連結的該兩個參數的該相關關係的函數,該推定處理部,比較依照該設定保持部所保持的該設定而被關聯連結的該兩參數的該測量資料及該函數,藉此推定劣化原因。 A data processing device that processes measurement data obtained in a test for evaluating the durability of a solar cell module, and includes: a related holding part that maintains and shows the solar cell module for items that cause deterioration of the solar cell module The correlation relationship between the two parameters included in the plural parameters of the output characteristics of the battery module; the estimation processing unit compares the measurement data of the two parameters and the correlation relationship to estimate the cause of deterioration; sets the holding unit to maintain The setting of the association link of the two parameters included in the plural parameters; a measurement data storage section storing the measurement data for each of the plural parameters; and a prompting section presenting the result estimated by the estimation processing section, Wherein the correlation holding section holds a function showing the correlation relationship of the two parameters set with the association connection, and the estimation processing section compares the two parameters associated and connected according to the setting held by the setting holding section The measurement data and the function of, to infer the cause of deterioration. 如申請專利範圍第1項所述之資料處理裝置,其中:該相關保持部將原因資訊對應連結於該函數並加以保持,其中該原因資訊是表示劣化原因的資訊,該推定處理部獲得具有與接近該兩個參數的該測量資料的關係之該函數對應連結的該原因資訊,藉此執行該推定所需的處理。 For example, the data processing device described in item 1 of the scope of patent application, wherein: the related holding section links cause information to the function and holds it, wherein the cause information is information indicating the cause of deterioration, and the presumption processing section obtains The function close to the relationship of the measurement data of the two parameters corresponds to the linked cause information, thereby executing the processing required for the estimation. 如申請專利範圍第1或2項所述之資料處理裝置,更包括:關聯連結設定部,執行該關聯連結的設定,其中該設定保持部保持該關聯連結設定部所設定的該關聯連結的設定。 For example, the data processing device described in item 1 or 2 of the scope of patent application further includes: an associative link setting part that executes the setting of the associative link, wherein the setting holding part holds the setting of the associative link set by the associative link setting part . 如申請專利範圍第1或2項所述之資料處理裝置,更包括:資料加工部,對於依照該設定保持部所保持的設定而關聯連結的該兩個參 數,加工該測量資料,其中該資料加工部,針對設定了該關聯連結的第1參數及第2參數產生關聯圖,該關聯圖是在以該第1參數為軸及以該第2參數為軸的圖表上描繪表示該第1參數的測量值及該第2參數的測量值的組合的座標,該提示部提示該資料加工部所產生的該關聯圖。 For example, the data processing device described in item 1 or 2 of the scope of patent application further includes: a data processing unit for the two parameters connected in association with the setting held by the setting holding unit Number, process the measurement data, where the data processing part generates a correlation diagram for the first parameter and the second parameter that set the correlation link. The correlation diagram is based on the first parameter as the axis and the second parameter as the A coordinate representing the combination of the measured value of the first parameter and the measured value of the second parameter is drawn on the graph of the axis, and the presentation unit presents the correlation diagram generated by the data processing unit. 如申請專利範圍第1或2項所述之資料處理裝置,其中:該設定保持部保持作為該第1參數的曲線因子以及作為該第2參數的串列阻抗的該關聯連結的設定。 According to the data processing device described in item 1 or 2 of the scope of patent application, wherein: the setting holding unit holds the setting of the correlation connection of the curve factor as the first parameter and the serial impedance as the second parameter. 如申請專利範圍第5項所述之資料處理裝置,其中:該相關保持部保持表示串聯阻抗的變動的相關性之該函數,也就是相關函數。 In the data processing device described in item 5 of the scope of patent application, the correlation holding section holds the function representing the correlation of the variation of the series impedance, that is, the correlation function. 如申請專利範圍第5項所述之資料處理裝置,其中:該相關保持部保持表示該太陽能電池模組具有的受光面電極的阻抗及裏面電極的阻抗在面方向上分布的相關性之該函數,也就是相關函數。 The data processing device described in item 5 of the scope of patent application, wherein: the relevant holding portion holds the function representing the correlation between the impedance of the light-receiving surface electrode and the impedance of the back electrode of the solar cell module in the surface direction , Which is the correlation function. 如申請專利範圍第5項所述之資料處理裝置,其中:該相關保持部保持表示該太陽能電池模組具有的受光面電極的接觸阻抗的變動的相關性之該函數,也就是相關函數。 According to the data processing device described in item 5 of the patent application, the correlation holding portion holds the function representing the correlation of the change in the contact resistance of the light-receiving surface electrode of the solar cell module, that is, the correlation function. 如申請專利範圍第1或2項所述之資料處理裝置,其中:該設定保持部保持作為該第1參數的短路電流密度以及作為該第2參數的開路電壓的該關聯連結的設定。 The data processing device described in item 1 or 2 of the scope of patent application, wherein: the setting holding unit holds the setting of the related connection of the short-circuit current density as the first parameter and the open circuit voltage as the second parameter. 如申請專利範圍第9項所述之資料處理裝置,其中:該相關保持部保持表示該太陽能電池模組具有的半導體基板的表面再結晶速度的變化及該太陽能電池模組所具有的反射防止膜的厚度減少的相關性之該函數,也就是相關函數。 The data processing device according to claim 9, wherein: the related holding portion holds the change in the surface recrystallization speed of the semiconductor substrate of the solar cell module and the anti-reflection film of the solar cell module This function of the correlation of the thickness reduction is the correlation function. 如申請專利範圍第9項所述之資料處理裝置,其中:該相關保持部保持該太陽能電池模組具有的半導體基板的表面再結晶速度的變化的相關性之該函數,也就是相關函數。 The data processing device described in claim 9, wherein: the correlation holding portion holds the function of the correlation of the change in the surface recrystallization rate of the semiconductor substrate of the solar cell module, that is, the correlation function. 一種資料處理方法,藉由資料處理裝置來處理在用以評價太陽能電池模組的耐久性的試驗中所獲得的測量資料,包括:針對成為該太陽能電池模組的劣化原因的事項,保持表示出該太陽能電池模組的輸出特性的複數的參數中所包含的兩個參數的相關關係;藉由比較該兩個參數的該測量資料及該相關關係,推定劣化原因;保持該複數的參數中所包含的兩個參數的關聯連結的設定;儲存該複數的參數的每一者的該測量資料;以及提示劣化原因的推定結果,其中更保持顯示出設定有該關聯連結的該兩個參數的該相關關係的函數,比較依照所保持的該設定而被關聯連結的該兩個參數的該測量資料及該函數,藉此推定劣化原因。 A data processing method that uses a data processing device to process the measurement data obtained in a test for evaluating the durability of a solar cell module, including: maintaining and displaying the items that are the cause of deterioration of the solar cell module The correlation between the two parameters included in the multiple parameters of the output characteristics of the solar cell module; by comparing the measurement data of the two parameters and the correlation, the reason for the deterioration is estimated; keeping the complex parameters The setting of the association link of the two parameters included; the measurement data of each of the plural parameters are stored; and the inferred result prompting the cause of deterioration, wherein the two parameters of the association link are kept displayed The correlation function compares the measurement data and the function of the two parameters that are linked in accordance with the maintained setting, thereby inferring the cause of deterioration. 一種太陽能電池模組的製造方法,包括:製作太陽能電池模組;針對成為該太陽能電池模組的劣化原因的事項,保持表示出該太陽能電池模組的輸出特性的複數的參數中所包含的兩個參數的相關關係;藉由比較在用以評價太陽能電池模組的耐久性的試驗中所獲得的該兩個參數的該測量資料的分布及該被保持的該相關關係,推定劣化原因;保持顯示該太陽能電池模組的輸出特性的複數的參數中所包含的兩個參數的關聯連結的設定;儲存該複數的參數的每一者的該測量資料;以及提示劣化原因的推定結果, 其中保持顯示出設定有該關聯連結的該兩個參數的該相關關係的函數,比較依照所保持的該設定而被關聯連結的該兩參數的該測量資料及該函數,藉此推定劣化原因。 A method for manufacturing a solar cell module includes: manufacturing a solar cell module; for matters that cause deterioration of the solar cell module, maintaining two parameters included in a plurality of parameters indicating the output characteristics of the solar cell module The correlation relationship of the two parameters; by comparing the distribution of the measurement data of the two parameters obtained in the test for evaluating the durability of the solar cell module and the maintained correlation relationship, infer the cause of deterioration; The setting of the correlation connection of the two parameters included in the plural parameters showing the output characteristics of the solar cell module; storing the measurement data of each of the plural parameters; and the estimation result that prompts the cause of deterioration, A function showing the correlation relationship of the two parameters of the association connection is maintained, and the measurement data and the function of the two parameters that are associated and connected according to the maintained setting are compared to estimate the cause of deterioration.
TW108120434A 2018-06-21 2019-06-13 Data processing device, data processing method, and manufacturing method of solar cell module TWI708157B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/023702 WO2019244313A1 (en) 2018-06-21 2018-06-21 Data processing device, data processing method, and method for manufacturing solar cell module
WOPCT/JP2018/023702 2018-06-21

Publications (2)

Publication Number Publication Date
TW202001631A TW202001631A (en) 2020-01-01
TWI708157B true TWI708157B (en) 2020-10-21

Family

ID=68982788

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108120434A TWI708157B (en) 2018-06-21 2019-06-13 Data processing device, data processing method, and manufacturing method of solar cell module

Country Status (3)

Country Link
JP (1) JPWO2019244313A1 (en)
TW (1) TWI708157B (en)
WO (1) WO2019244313A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7425444B2 (en) 2020-07-15 2024-01-31 株式会社トーエネック Power generation performance evaluation device, power generation performance evaluation method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201506458A (en) * 2013-07-05 2015-02-16 Kaneka Corp Anti-glare film for solar cell module, solar cell module provided with anti-glare film, and method for manufacturing same
TW201515381A (en) * 2013-10-11 2015-04-16 Yokogawa Electric Corp Photoelectric conversion element evaluation apparatus
TW201635570A (en) * 2014-12-09 2016-10-01 三菱電機股份有限公司 Solar cell, solar cell module, and manufacturing method of solar cell
TW201705509A (en) * 2015-05-27 2017-02-01 Toray Industries Film for solar-cell back sheet, solar-cell back sheet including same, and solar cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098252A (en) * 2006-10-06 2008-04-24 Eko Instruments Trading Co Ltd Information processing device for characteristic evaluation of solar cell, program for characteristic evaluation of solar cell and characteristic evaluation system for solar cell
JP5509414B2 (en) * 2010-01-28 2014-06-04 大日本スクリーン製造株式会社 Solar cell evaluation apparatus and solar cell evaluation method
WO2014081695A1 (en) * 2012-11-20 2014-05-30 University Of Central Florida Research Foundation Inc. Method, system and program product for photovoltaic cell monitoring via current-voltage measurements
JP6209412B2 (en) * 2013-09-27 2017-10-04 株式会社日立製作所 Fault diagnosis system and fault diagnosis method for photovoltaic power generation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201506458A (en) * 2013-07-05 2015-02-16 Kaneka Corp Anti-glare film for solar cell module, solar cell module provided with anti-glare film, and method for manufacturing same
TW201515381A (en) * 2013-10-11 2015-04-16 Yokogawa Electric Corp Photoelectric conversion element evaluation apparatus
TW201635570A (en) * 2014-12-09 2016-10-01 三菱電機股份有限公司 Solar cell, solar cell module, and manufacturing method of solar cell
TW201705509A (en) * 2015-05-27 2017-02-01 Toray Industries Film for solar-cell back sheet, solar-cell back sheet including same, and solar cell

Also Published As

Publication number Publication date
TW202001631A (en) 2020-01-01
JPWO2019244313A1 (en) 2020-12-17
WO2019244313A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
JP5243785B2 (en) Solar cell inspection apparatus and solar cell defect determination method
US8355563B2 (en) Photovoltaic devices inspection apparatus and method of determining defects in photovoltaic device
AU2018101083B4 (en) Determining the Condition of Photovoltaic Modules
Høiaas et al. Inspection and condition monitoring of large-scale photovoltaic power plants: A review of imaging technologies
WO2007125778A1 (en) Solar battery module evaluation device, solar battery module evaluating method, and solar battery module manufacturing method
US20180159469A1 (en) Determining the condition of photovoltaic modules
US9876468B2 (en) Method, system and program product for photovoltaic cell monitoring via current-voltage measurements
JP2011222735A (en) Inspection method and inspection device for solar battery
US20180159468A1 (en) Determining the condition of photovoltaic modules
Seapan et al. Detection of shading effect by using the current and voltage at maximum power point of crystalline silicon PV modules
CN104067512A (en) Qualification of silicon wafers for photo-voltaic cells by optical imaging
Luo et al. Photovoltaic module failures after 10 years of operation in the tropics
JP3203781U (en) Solar simulator
TWI708157B (en) Data processing device, data processing method, and manufacturing method of solar cell module
Du et al. Modeling, imaging and resistance analysis for crystalline silicon photovoltaic modules failure on thermal cycle test
Mik et al. The evaluation of the snail track affected photovoltaic modules by different methods after 3-year operating in central Poland
TEVI et al. Solar photovoltaic panels failures causing power losses: a review
Meena et al. Investigation and Differentiation of Degradation Modes Affecting Series Resistance in Photovoltaic Cells and Modules
Al Mahdi et al. Experimentally derived models to detect onset of shunt resistance degradation in photovoltaic modules
JP5922429B2 (en) Solar simulator and solar cell defect determination method
TW201944608A (en) Data processing device, data processing method and manufacturing method for solar battery cell
WO2018079657A1 (en) Solar cell inspection method and inspection device, method for manufacturing solar cell, method for manufacturing solar cell module, inspection program, and storage medium
Dolara et al. Impact of cell microcracks size and spatial distribution on output power of PV modules
Schneller et al. Spatially resolved characterization of optical and recombination losses for different industrial silicon solar cell architectures
JP2012043870A (en) Method for manufacturing photovoltaic module

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees