TWI706169B - Infrared band pass filter structure and infrared band pass filter using the structure - Google Patents
Infrared band pass filter structure and infrared band pass filter using the structure Download PDFInfo
- Publication number
- TWI706169B TWI706169B TW108129146A TW108129146A TWI706169B TW I706169 B TWI706169 B TW I706169B TW 108129146 A TW108129146 A TW 108129146A TW 108129146 A TW108129146 A TW 108129146A TW I706169 B TWI706169 B TW I706169B
- Authority
- TW
- Taiwan
- Prior art keywords
- pass filter
- infrared band
- filter structure
- refractive index
- infrared
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 21
- KMWBBMXGHHLDKL-UHFFFAOYSA-N [AlH3].[Si] Chemical compound [AlH3].[Si] KMWBBMXGHHLDKL-UHFFFAOYSA-N 0.000 claims abstract description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 26
- 230000008033 biological extinction Effects 0.000 claims description 25
- 239000000377 silicon dioxide Substances 0.000 claims description 13
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 claims description 10
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 9
- 235000012239 silicon dioxide Nutrition 0.000 claims description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 8
- AUEXTLUUHCZFSX-UHFFFAOYSA-N alumane;silane Chemical compound [AlH3].[SiH4] AUEXTLUUHCZFSX-UHFFFAOYSA-N 0.000 claims description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 claims description 6
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 6
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 6
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims description 6
- YAIQCYZCSGLAAN-UHFFFAOYSA-N [Si+4].[O-2].[Al+3] Chemical compound [Si+4].[O-2].[Al+3] YAIQCYZCSGLAAN-UHFFFAOYSA-N 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- -1 aluminum silicon dioxide Chemical compound 0.000 claims description 4
- 238000002310 reflectometry Methods 0.000 claims description 4
- 238000002834 transmittance Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims 2
- 238000004544 sputter deposition Methods 0.000 abstract description 10
- 238000005520 cutting process Methods 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000002474 experimental method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000000576 coating method Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 150000003376 silicon Chemical class 0.000 description 4
- MHZSKGLYHVBBKB-UHFFFAOYSA-N aluminum oxygen(2-) silicon(4+) Chemical compound [O-2].[O-2].[Al+3].[Si+4] MHZSKGLYHVBBKB-UHFFFAOYSA-N 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000003667 anti-reflective effect Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000003086 colorant Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/285—Interference filters comprising deposited thin solid films
- G02B5/288—Interference filters comprising deposited thin solid films comprising at least one thin film resonant cavity, e.g. in bandpass filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/281—Interference filters designed for the infrared light
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Filters (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
一種紅外帶通濾波結構係由複數氫化矽鋁層及複數較低折射率層交互堆疊形成,該複數較低折射率層係一氧化物,該紅外帶通濾波結構具有800nm至1600nm之波長範圍內至少部分重疊之一通帶,該通帶具有一中心波長,且該中心波長在入射角自0°改變至30°時,在量值上偏移幅度小於11nm;一種紅外帶通濾波器則係於一基板的第一側面形成上述之紅外帶通濾波結構,於該基板之相反該第一側面的一第二側面上形成有一抗反射層;藉此係可提昇濺鍍效率以大幅降低製作成本,以及可減小膜層的翹曲量以解決後製切割易崩角之問題。 An infrared bandpass filter structure is formed by alternately stacking a plurality of silicon aluminum hydride layers and a plurality of lower refractive index layers. The plurality of lower refractive index layers are oxides. The infrared bandpass filter structure has a wavelength range of 800nm to 1600nm. At least partially overlapping a passband, the passband has a center wavelength, and when the incident angle changes from 0° to 30°, the magnitude of the deviation is less than 11nm; an infrared bandpass filter is attached to The first side surface of a substrate forms the above-mentioned infrared bandpass filter structure, and an anti-reflection layer is formed on a second side surface of the first side opposite to the substrate; thereby, the sputtering efficiency can be improved and the manufacturing cost can be greatly reduced. And it can reduce the warpage of the film to solve the problem of easy chipping after cutting.
Description
本發明係一種紅外帶通濾波結構及濾波器之結構方面的技術領域,尤指一種可提昇濺鍍效率以大幅降低製作成本,以及可減小膜層的翹曲量以解決後製切割易崩角問題之紅外帶通濾波結構及應用該結構之紅外帶通濾波器者。 The present invention relates to an infrared bandpass filter structure and the technical field of the filter structure, in particular to a technology that can improve sputtering efficiency to greatly reduce production costs, and can reduce the amount of warpage of the film to solve the problem of easy collapse in post-cutting The infrared band-pass filter structure for angle problems and the infrared band-pass filter using this structure.
一般濾光器按光譜特性可分為帶通濾光器、短波截止濾光器、長波截止濾光器。帶通型濾光器指選定特定波段的光通過,通帶以外的光截止,按頻寬分為窄帶和寬頻,通常按頻寬比中心波長的值來區分,小於5%為窄帶,大於5%則為寬頻。為了減少環境可見光線的干擾,普遍採用窄帶干涉濾波器。傳統的RGB可見光攝像頭,需要採用紅外截止濾波器,將不必要的低頻近紅外光過濾掉,以免紅外光線對可見光部分造成影響,產生偽色或波紋,同時可以提高有效解析度和彩色還原性。但是紅外攝像頭,為了不受到環境光線的干擾,需要使用窄帶濾波器(即紅外帶通濾波器),只允許特定波段的近紅外光通過。 Generally, filters can be divided into band-pass filters, short-wave cut-off filters, and long-wave cut-off filters according to their spectral characteristics. Band-pass filter refers to the passage of light in a specific wavelength band, and the light outside the passband is cut off. According to the bandwidth, it is divided into narrowband and broadband. It is usually distinguished by the value of the bandwidth than the central wavelength. Less than 5% is narrowband, and greater than 5 % Is broadband. In order to reduce the interference of ambient visible light, narrow-band interference filters are commonly used. The traditional RGB visible light camera needs to use an infrared cut filter to filter out unnecessary low-frequency near-infrared light, so as to prevent infrared light from affecting the visible light part, producing false colors or ripples, and improving effective resolution and color reproduction. However, the infrared camera needs to use a narrow-band filter (ie, infrared band-pass filter) in order not to be interfered by ambient light, and only allow near-infrared light of a specific band to pass.
一種習知的紅外帶通濾波器,如台灣公告第I576617號、第I648561號「光學濾波器及感測系統」專利所示,其主要 係由複數氫化矽層及複數較低折射率層交互堆疊形成,該紅外帶通濾波結構具有800nm至1600nm之波長範圍內至少部分重疊之一通帶(passband),該通帶具有一中心波長,且該中心波長在入射角自0°改變至30°時,在量值(magnitude)上偏移(shifts)幅度約12.2~20nm。其中,複數氫化矽層各自具有在800nm至1100nm之該波長範圍內大於(接近)3.5之一折射率,該複數較低折射率層係一氧化物,在800nm至1100nm的波長範圍內的折射率小於2,其可包括二氧化矽(SiO2)、氧化鋁(Al2O3)、二氧化鈦(TiO2)、五氧化二鈮(Nb2O5)、五氧化二鉭(Ta2O5)及其混合物中之至少一者。 A conventional infrared bandpass filter, as shown in the Taiwan Announcement No. I576617 and No. I648561 "Optical Filter and Sensing System" patents, it is mainly composed of a plurality of hydrogenated silicon layers and a plurality of lower refractive index layers alternately stacked Formed, the infrared band-pass filter structure has a passband at least partially overlapping in the wavelength range of 800nm to 1600nm, the passband has a central wavelength, and the central wavelength changes from 0° to 30° when the incident angle is changed, The magnitude of shifts (shifts) is about 12.2-20nm. Wherein, the plurality of hydrogenated silicon layers each have a refractive index greater than (close to) 3.5 in the wavelength range of 800nm to 1100nm, and the plurality of lower refractive index layers are oxides with a refractive index in the wavelength range of 800nm to 1100nm Less than 2, which may include silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), titanium dioxide (TiO 2 ), niobium pentoxide (Nb 2 O 5 ), tantalum pentoxide (Ta 2 O 5 ) At least one of its mixtures.
然而,習知紅外帶通濾波器在實際實施時係具有以下缺點: However, the conventional infrared bandpass filter has the following shortcomings in actual implementation:
1、該習知由該複數氫化矽層及該複數較低折射率層交互堆疊形成之紅外帶濾波器之通帶的中心波長在入射角自0°改變至30°時會有較大的偏移量(約12.2~20nm),因此易導致其應用於三維成像系統,於大角度收光時發生無法識別或識別失敗的問題。 1. In the prior art, the central wavelength of the passband of the infrared band filter formed by alternately stacking the plural hydrogenated silicon layers and the plural lower refractive index layers will have a larger deviation when the incident angle is changed from 0° to 30° The displacement (approximately 12.2~20nm), so it is easy to cause the problem of unrecognition or recognition failure when it is applied to a three-dimensional imaging system when receiving light at a large angle.
2、該習知紅外帶通濾波器之膜層係利用純矽靶進行濺鍍形成,而純矽靶只能使用5-6KW功率進行濺度製程,過大的功率將使純矽靶材造成靶裂現象而無法使用,因此其在濺鍍膜層時需花費較多時間,而使濺鍍效率非常差,進而增加製作之成本(如電費、工時…等)。 2. The film of the conventional infrared bandpass filter is formed by sputtering with a pure silicon target, while the pure silicon target can only be sputtered with a power of 5-6KW. Excessive power will cause the pure silicon target to become a target It cannot be used due to the phenomenon of cracking, so it takes a lot of time to sputter the film layer, which makes the sputtering efficiency very poor and increases the production cost (such as electricity costs, man-hours, etc.).
3、該習知紅外帶通濾波器之膜層具有較厚之厚 度,所以其鍍設於玻璃基板上時會產生較大的翹曲量,導致在後續之切割製程時易產生嚴重崩角之問題。 3. The film layer of the conventional infrared bandpass filter is thicker Therefore, when it is plated on the glass substrate, it will produce a larger amount of warpage, which may cause serious corner chipping during the subsequent cutting process.
有鑒於此,本發明人乃係針對上述之問題,而深入構思,且積極研究改良試做而開發設計出本發明。 In view of this, the inventor of the present invention developed and designed the present invention in order to solve the above-mentioned problems, and intensively conceived, and actively researched and improved trials.
本發明之主要目的係在於解決習知紅外帶通濾波器所存在之濺效率低導致製作成本高,以及膜層的翹曲量導致後製切割時易產生崩角等諸多問題。 The main purpose of the present invention is to solve many problems such as low spattering efficiency of conventional infrared band-pass filters leading to high manufacturing costs, and the amount of warpage of the film leading to easy corner chipping during post-cutting.
本發明所述之紅外帶通濾波結構,係由複數氫化矽鋁層及複數較低折射率層交互堆疊形成,該複數較低折射率層係一氧化物,該紅外帶通濾波結構具有800nm至1600nm之波長範圍內至少部分重疊之一通帶,該通帶具有一中心波長,且該中心波長在入射角自0°改變至30°時,在量值上偏移幅度小於11nm。 The infrared band-pass filter structure of the present invention is formed by alternately stacking a plurality of silicon aluminum hydride layers and a plurality of lower refractive index layers, the plurality of lower refractive index layers are oxides, and the infrared band-pass filter structure has a range of 800 nm to The 1600nm wavelength range at least partially overlaps a passband, the passband has a central wavelength, and when the incident angle changes from 0° to 30°, the magnitude deviation is less than 11nm.
本發明所述之紅外帶通濾波器,主要係於一基板的第一側面形成上述之紅外帶通濾波結構,於該基板之相反該第一側面的一第二側面上形成有一抗反射層。 The infrared band-pass filter of the present invention mainly forms the above-mentioned infrared band-pass filter structure on a first side surface of a substrate, and an anti-reflection layer is formed on a second side surface opposite to the first side surface of the substrate.
本發明所提供之紅外帶通濾波結構及應用該結構之紅外帶通濾波器,其利用該複數氫化矽鋁層及該複數較低折射率層交互堆疊形成之紅外帶濾波結構之通帶的中心波長在入射角自0°改變至30°時會有小於11nm的較小偏移量,因此應用於三維成像系統時不易發生無法識別或識別失敗的問題。尤其是,利用摻雜鋁成分之矽鋁靶製成該氫化矽鋁時係可以比習知利純矽靶 製成氫化矽能多承受2倍以上功率輸出(約10-20KW),因此可使鍍膜時間至少縮短一半,相對的同時間產量便可以多一倍以上,致使包括整廠生產時間、人力、電力等資源成本也會降低一半,大大提高競爭優勢。而且,該紅外帶通濾波結構的膜層係可藉由鋁成分延展性佳之特性而能製成較小之厚度,所以鍍設於玻璃基板上時較少的膜厚則內應力相對較小,內應力小可以使後續之切割製程減少崩角的情況發生,以提高切割製成之良率,相對的進一步達到降低成本之目的。 The infrared bandpass filter structure provided by the present invention and the infrared bandpass filter using the structure use the center of the passband of the infrared band filter structure formed by alternately stacking the complex silicon aluminum hydride layer and the plurality of lower refractive index layers When the incident angle is changed from 0° to 30°, the wavelength will have a small offset of less than 11nm. Therefore, when it is applied to a three-dimensional imaging system, the problem of unrecognition or recognition failure is unlikely to occur. In particular, the use of aluminum-doped silicon-aluminum targets to make the silicon-aluminum hydride can be compared to conventional pure silicon targets. The hydrogenated silicon can withstand more than twice the power output (about 10-20KW), so the coating time can be reduced by at least half, and the relative output at the same time can be more than doubled, resulting in the production time of the whole plant, manpower, and electricity The cost of other resources will also be reduced by half, greatly improving the competitive advantage. Moreover, the film of the infrared band-pass filter structure can be made into a smaller thickness due to the good ductility of the aluminum component. Therefore, when the film is plated on a glass substrate, the smaller the film thickness, the lower the internal stress. The small internal stress can reduce the occurrence of chipping in the subsequent cutting process, so as to increase the yield of the cutting process, and relatively further achieve the purpose of reducing costs.
10:基板 10: substrate
20:紅外帶通濾波結構 20: Infrared bandpass filter structure
21:氧化矽鋁層 21: Silicon aluminum oxide layer
22:較低折射率層 22: Lower refractive index layer
30:抗反射層 30: Anti-reflective layer
40:真空濺射反應鍍膜系統 40: Vacuum sputtering reactive coating system
41:滾筒 41: roller
42:鍍膜腔室 42: Coating chamber
43:濺射源 43: Sputtering source
44:反應源區域 44: Reaction source area
45:靶材 45: target
第1圖係本發明之紅外帶通濾波器之剖面示意圖。 Figure 1 is a schematic cross-sectional view of the infrared bandpass filter of the present invention.
第2圖係本發明進行鍍膜製程之真空濺射反應鍍膜系統的結構示意圖。 Figure 2 is a schematic structural diagram of the vacuum sputtering reactive coating system for coating process of the present invention.
第3圖係本發明之紅外帶通濾波結構之第一實施例的膜層結構示意圖。 Figure 3 is a schematic diagram of the film structure of the first embodiment of the infrared bandpass filter structure of the present invention.
第4圖係本發明之紅外帶通濾波結構之第一實施例的光譜圖。 Figure 4 is a spectrum diagram of the first embodiment of the infrared bandpass filter structure of the present invention.
第5圖係本發明之紅外帶通濾波結構之第二實施例之實驗一的膜層結構示意圖。
Figure 5 is a schematic diagram of the film structure of
第6圖係本發明之紅外帶通濾波結構之第二實施例之實驗一的光譜圖。
Figure 6 is a spectrum diagram of
第7圖係本發明之紅外帶通濾波結構之第二實施例之實驗二的膜層結構示意圖。
FIG. 7 is a schematic diagram of the film structure of
第8圖係本發明之紅外帶通濾波結構之第二實施例之實驗二的光譜圖。
Figure 8 is a spectrum diagram of
第9圖係本發明之紅外帶通濾波結構之第三實施例的膜層結構示意圖。 Figure 9 is a schematic diagram of the film structure of the third embodiment of the infrared bandpass filter structure of the present invention.
第10圖係本發明之紅外帶通濾波結構之第三實施例的光譜圖。 Figure 10 is a spectrum diagram of the third embodiment of the infrared bandpass filter structure of the present invention.
第11圖係本發明之紅外帶通濾波結構之可見光反射率實驗的膜層結構圖。 Figure 11 is a film structure diagram of the visible light reflectance experiment of the infrared bandpass filter structure of the present invention.
第12圖係本發明之紅外帶通濾波結構之可見光反射率實驗的光譜圖。 Figure 12 is a spectrum chart of the visible light reflectance experiment of the infrared bandpass filter structure of the present invention.
第13圖係本發明之紅外帶通濾波結構之可見光反射率實驗的色座標範圍圖。 Figure 13 is the color coordinate range diagram of the visible light reflectance experiment of the infrared bandpass filter structure of the present invention.
請參閱第1圖所示,係顯示本發明所述之紅外帶通濾波器包括一基板10、一紅外帶通濾波結構20及一抗反射(AR)層30,其中:該基板10,係為玻璃,且同時具有一第一側面及位於該第一側面相反側之一第二側面。
Please refer to Figure 1, which shows that the infrared band-pass filter of the present invention includes a
該紅外帶通濾波結構20,係形成於該基板10的第一側面,由複數氫化矽鋁(SiAl:H)層21及複數較低折射率層22交互堆疊形成,使該紅外帶通濾波結構20具有800nm至1600nm之波長範圍內至少部分重疊之一通帶(passband),該通帶具有一中心波長,且該中心波長在入射角自0°改變至30°時,在量值(magnitude)
上偏移(shifts)幅度小於11nm(約10.3~10.5nm)。而且,該紅外帶通濾波結構20的厚度為3000~5500nm,在350nm~1600nm之波長範圍內具有高OD值,在800nm至1600nm之波長範圍內具有高穿透率,在可見光範圍時色座標位在Rx Coordinate 0.2~0.5、Ry Coordinate 0.2~0.5處,反射率低於20%。其中該複數氫化矽鋁層21在800nm至1600nm波長範圍內的折射率為3.1~3.6,消光係數為1.E-4~1.E-6,在350nm至700nm波長範圍內的消光係數大於0.005。其中該較低折射率層22係為一氧化物,其包括二氧化矽鋁(SiAl:O2)、氮化矽鋁(SiAl:N)、氮化矽(SiN)、二氧化矽(SiO2)、氧化鋁(Al2O3)、二氧化鈦(TiO2)、五氧化二鈮(Nb2O5)、五氧化二鉭(Ta2O5)及其混合物中之至少一者。而且,該複數較低折射率層22在800nm至1600nm的波長範圍內的折射率小於1.8,消光係數小於0.0005,在350nm至700nm波長範圍內的消光係數大於0.005。
The infrared band-
該抗反射層30,係形成於該基板10的第二側面,其係由複數個高折射率材料氫化矽鋁(SiAl:H)與複數個低折射率材料堆疊而成,該低折射率材料包含二氧化矽鋁(SiAl:O2)、氮化矽鋁(SiAl:N)、氮化矽(SiN)、二氧化矽(SiO2)、氧化鋁(Al2O3)、二氧化鈦(TiO2)、五氧化二鈮(Nb2O5)、五氧化二鉭(Ta2O5)及其混合物中之至少一者,而且厚度為3000nm~6000nm。
The
請參閱第2圖所示,係指出本發明之氫化矽鋁膜層21的濺鍍製程係在一真空濺射反應鍍膜系統40中進行,其主要係以利用摻雜鋁成分200ppm~1500ppm之多晶噴塗矽圓柱靶或單晶
矽圓柱靶作為濺鍍的靶材45,製作過程為(A)將乾淨的基板10放在滾筒41上,使鍍膜面朝外;(B)使滾筒41在鍍膜腔室42內勻速旋轉;(C)當真空度在10-3至10-4Pa時,開啟濺射源43並通氬氣,氬氣被電離形成等離子體,在電、磁場的作用下轟擊矽鋁靶材45,矽鋁材料被濺射到該基板10上形成矽鋁薄膜;(D)隨著滾筒200的轉動,基板10被帶往反應源(RF/ICP)區域44;(E)反應源區域44通入氫氣、氧氣和氬氣,形成等離子體,在電場的作用下向該基片10高速運動,最終與該基板10上的矽鋁薄膜發生反應,化合成含氫的氫化矽鋁膜層21。其中,在製備高折射率的薄膜時,反應源區域44充入的混合氣體中,通過調節氫氣的比例(流量),可以製備800nm至1600nm的最高折射率從3.1至4逐漸變化、消光係數可小於0.0005的薄膜。當反應源區域44充入的氣體是氧氣和氬的混合氣體,可製備350nm至1600nm的折射率從1.46至1.7逐漸變化、消光係數可小於0.0005的薄膜。
Please refer to Figure 2 which indicates that the sputtering process of the aluminum hydride silicon
請參閱第3、4圖所示,係為本發明所述紅外帶通濾波結構之第一實施例(850 bandpass filter),其係由氫化矽鋁層及二氧化矽鋁層相互推疊共27層而成,相互堆疊厚度約3500nm。其中,該氫化矽鋁層在800nm至1600nm波長範圍內的折射率大於3且接近3.6,消光係數小於0.0005,在350nm至700nm波長範圍內的消光係數大於0.005。該二氧化矽鋁層在800nm至1600nm的波長範圍內的折射率小於1.8,消光係數小於0.0005。堆疊形成之該紅外帶通濾波結構具有800nm至1600nm之波長範圍內至少部分重疊之一 通帶,該通帶之中心波長在入射角自0°改變至30°時偏移幅度小於11nm。其應用於三維成像系統時可提升三維影像解析能力。 Please refer to Figures 3 and 4, which is the first embodiment of the infrared bandpass filter structure of the present invention (850 bandpass filter), which is composed of a silicon aluminum hydride layer and a silicon aluminum dioxide layer stacked on each other for a total of 27 Layers are stacked, each with a thickness of about 3500nm. Wherein, the refractive index of the aluminum silicon hydride layer in the wavelength range of 800 nm to 1600 nm is greater than 3 and close to 3.6, the extinction coefficient is less than 0.0005, and the extinction coefficient in the wavelength range of 350 nm to 700 nm is greater than 0.005. The refractive index of the aluminum silica layer in the wavelength range of 800 nm to 1600 nm is less than 1.8, and the extinction coefficient is less than 0.0005. The infrared band-pass filter structure formed by stacking has one of at least partially overlapping in the wavelength range of 800nm to 1600nm Pass band, the center wavelength of the pass band shifts less than 11 nm when the incident angle changes from 0° to 30°. When applied to a 3D imaging system, it can improve 3D image analysis capabilities.
請參閱第5、6圖所示,係為本發明所述紅外帶通濾波結構之第二實施例之實驗一(940 bandpass filter),其係由氫化矽鋁層及二氧化矽鋁層相互推疊共31層而成,相互堆疊厚度約4000nm。其中,該氫化矽鋁層在800nm至1600nm波長範圍內的折射率大於3且接近3.6,消光係數小於0.0005,在350nm至700nm波長範圍內的消光係數大於0.005。該二氧化矽鋁層在800nm至1600nm的波長範圍內的折射率小於1.8,消光係數小於0.0005。堆疊形成之該紅外帶通濾波結構具有800nm至1600nm之波長範圍內至少部分重疊之一通帶,該通帶之中心波長在入射角自0°改變至30°時偏移幅度小於11nm。其應用於三維成像系統時可提升三維影像解析能力。 Please refer to Figures 5 and 6, which is the first experiment (940 bandpass filter) of the second embodiment of the infrared bandpass filter structure of the present invention, which is derived from the silicon aluminum hydride layer and the silicon aluminum dioxide layer. A total of 31 layers are stacked, each with a thickness of about 4000nm. Wherein, the refractive index of the aluminum silicon hydride layer in the wavelength range of 800 nm to 1600 nm is greater than 3 and close to 3.6, the extinction coefficient is less than 0.0005, and the extinction coefficient in the wavelength range of 350 nm to 700 nm is greater than 0.005. The refractive index of the aluminum silica layer in the wavelength range of 800 nm to 1600 nm is less than 1.8, and the extinction coefficient is less than 0.0005. The stacked infrared bandpass filter structure has a passband at least partially overlapping in the wavelength range of 800nm to 1600nm, and the center wavelength of the passband has an offset of less than 11nm when the incident angle changes from 0° to 30°. When applied to a 3D imaging system, it can improve 3D image analysis capabilities.
請參閱第7、8圖所示,係為本發明所述紅外帶通濾波結構之第二實施例之實驗二(940 bandpass lilter),其係由氫化矽鋁層及二氧化矽鋁層相互推疊共35層而成,相互堆疊厚度約4000~550nm。其中,該氫化矽鋁層在800nm至1600nm波長範圍內的折射率大於3且接近3.6,消光係數小於0.0005,在350nm至700nm波長範圍內的消光係數大於0.005。該二氧化矽鋁層在800nm至1600nm的波長範圍內的折射率小於1.8,消光係數小於0.0005。堆疊形成之該紅外帶通濾波結構具有800nm至1600nm之波長範圍內至少部分重疊之一通帶,該通帶之中心波長在入射角自0°改變 至30°時偏移幅度小於11nm,其T90~T10%斜率會優於實例一(實驗一slope小於8實驗二slope小於7),相同位置OD值也會優於實例一。 Please refer to Figures 7 and 8, which is the second experiment (940 bandpass lilter) of the second embodiment of the infrared bandpass filter structure of the present invention, which is mutually pushed by the silicon aluminum hydride layer and the silicon aluminum oxide layer. A total of 35 layers are stacked, and the thickness is about 4000~550nm. Wherein, the refractive index of the aluminum silicon hydride layer in the wavelength range of 800 nm to 1600 nm is greater than 3 and close to 3.6, the extinction coefficient is less than 0.0005, and the extinction coefficient in the wavelength range of 350 nm to 700 nm is greater than 0.005. The refractive index of the aluminum silica layer in the wavelength range of 800 nm to 1600 nm is less than 1.8, and the extinction coefficient is less than 0.0005. The infrared bandpass filter structure formed by stacking has a passband at least partially overlapping in the wavelength range of 800nm to 1600nm, and the center wavelength of the passband changes from 0° at the incident angle When the offset amplitude is less than 11nm at 30°, the slope of T90~T10% will be better than that of example one (the slope of experiment one is less than 8 and the slope of experiment two is less than 7), and the OD value of the same position will be better than that of example one.
請參閱第9、10圖所示,係為本發明所述紅外帶通濾波結構之第三實施例(1064 bandpass filter),其係由氫化矽鋁層及二氧化矽鋁層相互推疊共33層而成,相互堆疊厚度在5000nm以下。其中,該氫化矽鋁層在800nm至1600nm波長範圍內的折射率大於3且接近3.6,消光係數小於0.0005,在350nm至700nm波長範圍內的消光係數大於0.005。該二氧化矽鋁層在800nm至1600nm的波長範圍內的折射率小於1.8,消光係數小於0.0005。堆疊形成之該紅外帶通濾波結構具有800nm至1600nm之波長範圍內至少部分重疊之一通帶,該通帶之中心波長在入射角自0°改變至7°時偏移幅度小於2nm,在400至1000nm及1120~1600的波長範圍內的通帶入射角從0°改變至7°時,OD>3。 Please refer to Figures 9 and 10, which are the third embodiment of the infrared bandpass filter structure of the present invention (1064 bandpass filter), which is composed of a silicon aluminum hydride layer and a silicon aluminum dioxide layer stacked on each other for a total of 33 The thickness of each layer is below 5000nm. Wherein, the refractive index of the aluminum silicon hydride layer in the wavelength range of 800 nm to 1600 nm is greater than 3 and close to 3.6, the extinction coefficient is less than 0.0005, and the extinction coefficient in the wavelength range of 350 nm to 700 nm is greater than 0.005. The refractive index of the aluminum silica layer in the wavelength range of 800 nm to 1600 nm is less than 1.8, and the extinction coefficient is less than 0.0005. The infrared band-pass filter structure formed by stacking has a passband at least partially overlapping in the wavelength range of 800nm to 1600nm. The center wavelength of the passband has an offset of less than 2nm when the incident angle changes from 0° to 7°. When the incident angle of the passband in the wavelength range of 1000nm and 1120~1600 changes from 0° to 7°, OD>3.
請參閱第11~13圖所示,係為本發明所述紅外帶通濾波結構之可見光反射率實驗,其係由氫化矽鋁層及二氧化矽鋁層相互推疊共37層而成,其在可見光範圍時色座標位在Rx Coordinate 0.2~0.5、Ry Coordinate 0.2~0.5處,反射率低於20%。 Please refer to Figures 11 to 13, which is a visible light reflectance experiment of the infrared band-pass filter structure of the present invention. It is made up of 37 layers of aluminum silicon hydride and aluminum silicon dioxide. In the visible light range, the color coordinates are at Rx Coordinate 0.2~0.5 and Ry Coordinate 0.2~0.5, and the reflectivity is less than 20%.
本發明所提供之紅外帶通濾波結構及應用該結構之紅外帶通濾波器,係具有以下優點: The infrared bandpass filter structure provided by the present invention and the infrared bandpass filter using the structure have the following advantages:
1、本發明由該複數氫化矽鋁層21及該複數較低折射率層22交互堆疊形成之紅外帶濾波結構20之通帶的中心波長
在入射角自0°改變至30°時會有小於11nm的較小偏移量(約10.3~10.5nm),因此應用於三維成像系統時不易發生無法識別或識別失敗的問題。
1. The central wavelength of the passband of the infrared
2、本發明之摻雜鋁成分之矽鋁靶可以比習知純矽靶多承受2倍以上功率輸出(約10-20KW),因此可使鍍膜時間至少縮短一半,相對的同時間產量便可以多一倍以上,致使包括整廠生產時間、人力、電力等資源成本也會降低一半,大大提高競爭優勢。 2. The aluminum-doped silicon aluminum target of the present invention can withstand more than twice the power output (about 10-20KW) than the conventional pure silicon target, so the coating time can be reduced by at least half, and the relative output at the same time can be increased by one The cost of resources including the production time of the whole plant, manpower, and electricity will also be reduced by half, greatly improving the competitive advantage.
3、本發明之膜層可藉由鋁成分延展性佳之特性而能製成較小之厚度,所以鍍設於玻璃基板上時較少的膜厚則內應力相對較小,內應力小可以使後續之切割製程減少崩角的情況發生,以提高切割製成之良率,相對的進一步達到降低成本之目的。 3. The film layer of the present invention can be made into a smaller thickness due to the good ductility of the aluminum component. Therefore, when the film thickness is less when plating on a glass substrate, the internal stress is relatively small. The small internal stress can make The subsequent cutting process reduces the occurrence of corner chipping, so as to increase the yield of the cutting process, and relatively further achieve the purpose of reducing costs.
綜上所述,由於本發明具有上述優點及實用價值,而且在同類產品中均未見有類似之產品發表,故已符合發明專利之申請要件,乃爰依法提出申請。 To sum up, because the present invention has the above advantages and practical value, and no similar products have been published in similar products, it has met the requirements of an invention patent application and it is a lawful application.
10‧‧‧基板 10‧‧‧Substrate
20‧‧‧紅外帶通濾波結構 20‧‧‧Infrared bandpass filter structure
21‧‧‧氧化矽鋁層 21‧‧‧Silica and aluminum layer
22‧‧‧較低折射率層 22‧‧‧Lower refractive index layer
30‧‧‧抗反射層 30‧‧‧Anti-reflective layer
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108129146A TWI706169B (en) | 2019-08-15 | 2019-08-15 | Infrared band pass filter structure and infrared band pass filter using the structure |
FR2003395A FR3099956B1 (en) | 2019-08-15 | 2020-04-06 | STRUCTURE OF INFRARED BAND-PASS FILTER AND INFRARED BAND-PASS FILTER USING THE STRUCTURE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108129146A TWI706169B (en) | 2019-08-15 | 2019-08-15 | Infrared band pass filter structure and infrared band pass filter using the structure |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI706169B true TWI706169B (en) | 2020-10-01 |
TW202109092A TW202109092A (en) | 2021-03-01 |
Family
ID=71452443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108129146A TWI706169B (en) | 2019-08-15 | 2019-08-15 | Infrared band pass filter structure and infrared band pass filter using the structure |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3099956B1 (en) |
TW (1) | TWI706169B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11169309B2 (en) * | 2019-10-08 | 2021-11-09 | Kingray technology Co., Ltd. | Infrared bandpass filter having silicon aluminum hydride layers |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012096304A1 (en) * | 2011-01-13 | 2012-07-19 | 東レ株式会社 | Far infrared reflecting laminate |
TW201739804A (en) * | 2016-02-03 | 2017-11-16 | Fujifilm Corp | Film, method for manufacturing film, optical filter, layered body, solid-state imaging element, image display device, and infrared sensor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4411033B2 (en) * | 2003-08-11 | 2010-02-10 | キヤノン株式会社 | Structure and manufacturing method thereof |
TWI684031B (en) * | 2012-07-16 | 2020-02-01 | 美商唯亞威方案公司 | Optical filter and sensor system |
DE102017004828B4 (en) * | 2017-05-20 | 2019-03-14 | Optics Balzers Ag | Optical filter and method of making an optical filter |
US10782460B2 (en) * | 2017-05-22 | 2020-09-22 | Viavi Solutions Inc. | Multispectral filter |
-
2019
- 2019-08-15 TW TW108129146A patent/TWI706169B/en active
-
2020
- 2020-04-06 FR FR2003395A patent/FR3099956B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012096304A1 (en) * | 2011-01-13 | 2012-07-19 | 東レ株式会社 | Far infrared reflecting laminate |
TW201739804A (en) * | 2016-02-03 | 2017-11-16 | Fujifilm Corp | Film, method for manufacturing film, optical filter, layered body, solid-state imaging element, image display device, and infrared sensor |
Also Published As
Publication number | Publication date |
---|---|
TW202109092A (en) | 2021-03-01 |
FR3099956B1 (en) | 2021-10-01 |
FR3099956A1 (en) | 2021-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11131794B2 (en) | Optical filter and sensor system | |
TWI706168B (en) | Optical filters and methods for forming the same | |
WO2020015103A1 (en) | 3d identification filter | |
JP6847350B2 (en) | Low reflection coated glass | |
CN110133783B (en) | Manufacturing method of infrared narrow-band filter | |
TWM572460U (en) | Infrared bandpass filter | |
JP6944982B2 (en) | Infrared bandpass filter structure and infrared bandpass filter to which the structure is applied | |
TWI706169B (en) | Infrared band pass filter structure and infrared band pass filter using the structure | |
CN205501124U (en) | Subtract anti - membrane glass | |
US20240274728A1 (en) | Optical Filter Structure For Arbitrary Combination Of RGB And IR Wavelength Ranges And Its Manufacturing Method | |
JP3225571U (en) | Infrared bandpass filter structure and infrared bandpass filter applying the structure | |
KR102288217B1 (en) | IR Narrow Band Pass Filter | |
US11169309B2 (en) | Infrared bandpass filter having silicon aluminum hydride layers | |
GB2588135A (en) | Infrared bandpass filter structure and infrared bandpass filter using the structure | |
CN112462461A (en) | Infrared band-pass filtering structure and infrared band-pass filter using same | |
TWM587754U (en) | Infrared band-pass filter structure and infrared band-pass filter using the structure | |
CN211236324U (en) | Infrared band-pass filtering structure and infrared band-pass filter using same | |
CN113075758A (en) | Infrared band-pass filter and sensor system | |
CN116953837B (en) | Transmission type metal medium structural color film | |
CN111880255B (en) | Band-pass filter and preparation method thereof | |
JP7470746B2 (en) | Optical filter structure for any combination of UV, R, G, B, and IR and its manufacturing method | |
CN210015253U (en) | Optical filter and optical system | |
WO2022213503A1 (en) | Method for preparing hydrogenated compound film, and optical filter | |
TWM621538U (en) | Filter structure arbitrarily combining UV, R, G, B, IR | |
TWI855290B (en) | Optical filter and sensor system |