TWI704704B - Magnetoresistive random access memory array and methods for forming the same - Google Patents

Magnetoresistive random access memory array and methods for forming the same Download PDF

Info

Publication number
TWI704704B
TWI704704B TW108104463A TW108104463A TWI704704B TW I704704 B TWI704704 B TW I704704B TW 108104463 A TW108104463 A TW 108104463A TW 108104463 A TW108104463 A TW 108104463A TW I704704 B TWI704704 B TW I704704B
Authority
TW
Taiwan
Prior art keywords
layer
chemical mechanical
mechanical polishing
random access
access memory
Prior art date
Application number
TW108104463A
Other languages
Chinese (zh)
Other versions
TW202030896A (en
Inventor
楊毅
鄧忠建
王郁仁
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Priority to TW108104463A priority Critical patent/TWI704704B/en
Publication of TW202030896A publication Critical patent/TW202030896A/en
Application granted granted Critical
Publication of TWI704704B publication Critical patent/TWI704704B/en

Links

Images

Abstract

An array, such as an MRAM (Magnetic Random Access Memory) array formed of a multiplicity of layered thin film devices, such as MTJ (Magnetic Tunnel Junction) devices, can be simultaneously formed in a multiplicity of horizontal widths in the 60nm range while all having top electrodes with substantially equal thicknesses and coplanar upper surfaces. This allows such a multiplicity of devices to be electrically connected by a common conductor without the possibility of electrical opens and with a resulting high yield.

Description

磁阻式隨機存取記憶體陣列及其形成方法Magnetoresistive random access memory array and its forming method

本發明係有關於一種磁阻式隨機存取記憶體(Magnetoresistive Random Access Memory,MRAM)元件的製造,特別是有關於用以沉積與圖案化多層磁性穿隧接面單元的方法。The present invention relates to the manufacture of a magnetoresistive random access memory (Magnetoresistive Random Access Memory, MRAM) device, in particular to a method for depositing and patterning a multilayer magnetic tunnel junction unit.

磁阻式隨機存取記憶體(MRAM)元件的製造通常與一連串的製程步驟相關,在這些步驟中包括沉積許多金屬與介電層以形成堆疊物,然後再對堆疊物進行圖案化,以形成包含多個分離磁阻元件的陣列,例如磁性穿隧接面(magnetic tunneling junction,MTJ)及其上、下電極,用於與元件進行電性連接。為了在每個磁阻式隨機存取記憶體元件中定義出那些磁性穿隧接面單元並使它們彼此間不產生相互作用(直到需要其相互作用),通常會運用精密的圖案化步驟:包括光微影(photolithography)與電漿蝕刻(plasma etch),譬如反應性離子蝕刻(reactive ion etching,RIE),離子束蝕刻(ion beam etching,IBE)或前述之組合。在光微影製程中,圖案先由光罩移轉到光敏光阻層(light-sensitive photoresist)上,然後透過電漿蝕刻來定義磁性穿隧接面元件陣列,以形成各自獨立與非相互作用的磁性穿隧接面元件。在電漿蝕刻之後,圖案化陣列中的較小尺寸的元件通常會留下較少的上電極,這是因為在蝕刻製程期間,會以較快地速率消耗覆蓋元件的光阻層。由於電極厚度的差異會造成頂表面的非共平面(non-planar top surface),對於最終設置連接電極的頂部金屬接點來說實為一大挑戰,將可能導致元件的開路(也就是接觸不良的元件)。本領域人員若想要在小尺寸(例如,小於60奈米(sub 60nm))的磁性穿隧接面元件上達到高產率,明顯需要發展出新的方法。因此,值得注意的是,現有技術專利遂揭露了可解決以上提到困難點的一些方法。舉例來說,美國專利U.S. 9,070,869(Jung et al)教示了多種層結構,美國專利U.S.8,975,088(Satoh et al)教示了幾種不同的遮罩層。 然而,這些現有技術都沒有揭示出本發明所公開的方法,也並未展現出通過應用這些方法所能實現的結果。The manufacture of magnetoresistive random access memory (MRAM) devices is usually associated with a series of process steps. These steps include depositing many metal and dielectric layers to form a stack, and then patterning the stack to form An array containing a plurality of separated magnetoresistive elements, such as a magnetic tunneling junction (MTJ) and its upper and lower electrodes, are used for electrical connection with the elements. In order to define those magnetic tunneling interface units in each magnetoresistive random access memory device and prevent them from interacting with each other (until they need to interact), a sophisticated patterning step is usually used: including Photolithography and plasma etch, such as reactive ion etching (RIE), ion beam etching (IBE) or a combination of the foregoing. In the photolithography process, the pattern is first transferred from the mask to the light-sensitive photoresist layer, and then plasma etching is used to define the array of magnetic tunnel junction elements to form independent and non-interactive elements. The magnetic tunnel junction element. After plasma etching, the smaller-sized elements in the patterned array usually leave fewer upper electrodes, because during the etching process, the photoresist layer covering the elements is consumed at a faster rate. Since the difference in electrode thickness will cause non-planar top surface, it is a big challenge for the final setting of the top metal contacts to connect the electrodes, which may cause open circuits (that is, poor contacts). Components). If those skilled in the art want to achieve high yields on magnetic tunnel junction devices of small size (for example, less than 60 nanometers (sub 60nm)), it is obvious that new methods need to be developed. Therefore, it is worth noting that the prior art patents have disclosed some methods that can solve the above-mentioned difficulties. For example, US patent U.S. 9,070,869 (Jung et al) teaches various layer structures, and US patent U.S. 8,975,088 (Satoh et al) teaches several different mask layers. However, none of these prior arts disclose the methods disclosed in the present invention, nor do they show the results that can be achieved by applying these methods.

本發明實施例之一目的在於提供一種適於小尺寸層級磁性穿隧接面元件陣列與複數個包含此種不同尺寸元件之良率的增益方法,其藉由在圖案化此種磁性穿隧接面元件的硬遮罩(hard mask)與電極之間額外增設附加層,且電極為欲被圖案化的磁性穿隧接面堆疊物之頂層。One of the objectives of the embodiments of the present invention is to provide a method suitable for a small-scale magnetic tunnel junction element array and a plurality of yield gain methods including such elements of different sizes by patterning the magnetic tunnel junction An additional layer is added between the hard mask of the surface element and the electrode, and the electrode is the top layer of the magnetic tunnel junction surface stack to be patterned.

本發明實施例之又一目的在於提供這樣的良率改善,此良率改善的方法主要歸因於與可成功地消弭極微小的上電極損壞相關的電性開路有關。Another objective of the embodiments of the present invention is to provide such a yield improvement. The method of yield improvement is mainly due to the successful elimination of the electrical open circuit related to the extremely small upper electrode damage.

本發明實施例之再一目的在於可將上述所言的優勢提供予各種不同尺寸且彼此相鄰設置的磁性穿隧接面元件上,並同時可在共同的基底上同時進行。Another objective of the embodiments of the present invention is to provide the above-mentioned advantages to the magnetic tunnel junction elements of various sizes and arranged adjacent to each other, and at the same time, they can be simultaneously performed on a common substrate.

在傳統的現有技術製程中,圖案先從光阻層轉移到介電硬遮罩,然後轉移到上電極,接著到上電極底下的磁性穿隧接面堆疊。在完成圖案轉移的蝕刻製程之後,可以發現具有較小部分圖案的上電極,其經蝕刻後所剩餘部分的尺寸會較為減少,當圖案特徵尺寸縮減到60奈米及以下時,將會造成電性開路(導電率的失效)以及極大的良率損失。In the traditional prior art manufacturing process, the pattern is first transferred from the photoresist layer to the dielectric hard mask, then transferred to the upper electrode, and then to the magnetic tunnel junction stack under the upper electrode. After the etching process of pattern transfer is completed, it can be found that the size of the upper electrode with a smaller part of the pattern will be reduced after etching. When the feature size of the pattern is reduced to 60 nanometers and below, it will cause electricity Open circuit (failure of conductivity) and great yield loss.

為了解決這些缺失,本發明所揭露之方法係在光阻硬遮罩圖案和電極之間插入化學機械研磨(chemical mechanical polishing,CMP)停止層和犧牲層。在電漿蝕刻之後,任何光阻消耗上的差異將僅導致化學機械研磨犧牲層圖案的不同厚度(高度)。基於有化學機械研磨停止層作為保護,所有尺寸的元件之上電極厚度皆可維持一致並相等。藉由在之後的化學機械研磨製程中選擇適當的研磨漿,可完全移除任何殘餘的犧牲層圖案,並終止在化學機械研磨停止層上。之後,再通過電漿蝕刻移除化學機械研磨停止層,以暴露出底下的上電極。使用這種方法,不同尺寸的磁性穿隧接面單元仍可保持其上電極具有相同的高度,並使得後續連接的頂部金屬接點之沉積較為容易。可有效地避免且消弭基於電性開路所引起的任何良率損耗。本發明所揭露之方法對於未來小於60奈米磁阻式隨機存取記憶體產品以及其他小尺寸元件的製造為相當有幫助的。In order to solve these deficiencies, the method disclosed in the present invention is to insert a chemical mechanical polishing (CMP) stop layer and a sacrificial layer between the photoresist hard mask pattern and the electrode. After plasma etching, any difference in photoresist consumption will only result in different thickness (height) of the sacrificial layer pattern by chemical mechanical polishing. Based on the chemical mechanical polishing stop layer as a protection, the thickness of the electrodes on the components of all sizes can be kept consistent and equal. By selecting an appropriate slurry in the subsequent chemical mechanical polishing process, any remaining sacrificial layer patterns can be completely removed and terminated on the chemical mechanical polishing stop layer. Afterwards, the chemical mechanical polishing stop layer is removed by plasma etching to expose the upper electrode underneath. Using this method, magnetic tunnel junction units of different sizes can still maintain their upper electrodes at the same height, and make it easier to deposit the top metal contacts for subsequent connections. It can effectively avoid and eliminate any yield loss caused by electrical open circuit. The method disclosed in the present invention is very helpful for the manufacturing of magnetoresistive random access memory products smaller than 60nm and other small-sized components in the future.

一序列的製程流程示意圖如第1A圖至第1F圖所示,其揭露本步驟流程之方法的應用,旨在同時創建兩個相鄰且不同尺寸的例示性磁性穿隧接面元件,但二元件卻仍具有大致相同高度且頂表面共平面的上電極。因此,可在不額外形成電性開路(開路)的情況下,通過使用共同的金屬接點較佳地連接元件。A sequence of schematic diagrams of the process flow are shown in Figures 1A to 1F, which reveal the application of the method of this step flow, which aims to create two adjacent and different-sized exemplary magnetic tunnel junction elements at the same time, but two The device still has an upper electrode with approximately the same height and a coplanar top surface. Therefore, it is possible to better connect the components by using common metal contacts without additionally forming an electrical open circuit (open circuit).

首先,請先參閱第1A圖,其揭露本發明單個堆疊結構利用第一電漿蝕刻110對欲圖案化成兩個相鄰但分離的磁性穿隧接面元件之示意圖。 應當理解的是,為了簡化描述本發明實施例之技術思想,該兩個元件僅為例示性的,因此可以預期本發明實施例所揭露之技術,其可應用於包括複數個分離元件的陣列。在此,我們注意到磁性穿隧接面元件為可使用以下方法製作的其中一種主動元件,唯任何類型的主動多層元件皆可以形成為一種包括各種不同寬度元件的陣列,並且可在其上電極形成頂面共平面的頂部電極。在無須於陣列元件間形成開路的情況下,便可在其上有利地形成單一的電性連接層。First, please refer to FIG. 1A, which discloses a schematic diagram of a single stacked structure of the present invention using a first plasma etching 110 to pattern two adjacent but separated magnetic tunnel junction devices. It should be understood that, in order to simplify the description of the technical idea of the embodiment of the present invention, the two elements are only exemplary. Therefore, it is expected that the technology disclosed in the embodiment of the present invention can be applied to an array including a plurality of discrete elements. Here, we note that the magnetic tunnel junction device is one of the active devices that can be fabricated using the following methods. Only any type of active multi-layer device can be formed as an array including various width devices, and electrodes can be placed on it. A top electrode with a coplanar top surface is formed. Without forming an open circuit between the array elements, a single electrical connection layer can be advantageously formed thereon.

由下而上地,基底10可以是常見的電性接點,例如:材質為Ta、TaN、Ti或TiN的材料層,或額外的集成電子結構的頂部。接著往上依序為下電極20、多層性的磁性穿隧接面堆疊物30、厚度約為200-1000A之間的上電極40、厚度約為20-300A之間的化學機械研磨停止層50、厚度約為200-1000A之間的化學機械研磨犧牲層60(有時也簡稱為犧牲層)。其中,化學機械研磨犧牲層60可單獨設置或與硬遮罩(Hard Mask,HM)層(未單獨示出)組合形成,並組成具有約200-2000A的厚度。在化學機械研磨犧牲層60上額外設置的硬遮罩(HM)層(圖中未單獨示出)可用以改善隨後的電漿蝕刻選擇性。值得注意的是,在蝕刻化學機械研磨犧牲層的同時增設介電硬遮罩(HM)層以提高蝕刻選擇性的做法,可以想作是產生“厚硬遮罩”,此組合共同提高整體的選擇性。舉例來說,可以使用例如CHF 3,CH 2F 2或C 4F 8的電漿氣體物質,其可容易地在硬遮罩上進行蝕刻,但卻在光阻材料上僅有相當低的蝕刻速率。最後,在硬遮罩(如果存在)或化學機械研磨犧牲層60上形成厚度約1000-3000A之間的光阻層(Photoresist layer,PR)。本發明所示的光阻層為已經由黃光微影成包含分別為寬度d1和d2的兩個光阻圖案701和702,而這最終亦將形成這些尺寸的兩個磁性穿隧接面元件。自由沉積於磁性穿隧接面堆疊物30之上的上電極40為例如包含Ta、Ti、TaN或TiN等導電材料之導電層。化學機械研磨停止層50為SiO 2或SiON層,並沉積於上電極40之上。化學機械研磨犧牲層60為Ta、Ti、TaN和TiN層,並沉積於該化學機械研磨停止層50之上。為了改善隨後的電漿蝕刻選擇性和圖案完整性,介電硬遮罩層,例如SiN、SiO 2或SiON層,可選擇性地設置於化學機械研磨犧牲層60之上(圖中未具體示出)。光阻圖案701和702可經由本領域所公知的光微影製程所形成。如第1A圖所示,為了更佳理解本發明實施例所揭露方法之技術特徵,其以第1A圖所揭露之光阻圖案寬度d1和d2,其中寬度d1> 寬度d2,作為本發明兩個示例性的說明。在此實施例中,寬度d1約為60-100nm,寬度d2約為10-60nm。 From bottom to top, the substrate 10 may be a common electrical contact, such as a material layer made of Ta, TaN, Ti or TiN, or the top of an additional integrated electronic structure. Then, in order from above, there are the lower electrode 20, the multilayer magnetic tunnel junction stack 30, the upper electrode 40 with a thickness of about 200-1000A, and the chemical mechanical polishing stop layer 50 with a thickness of about 20-300A. , A chemical mechanical polishing sacrificial layer 60 (sometimes also referred to as sacrificial layer) with a thickness of about 200-1000A Wherein, the chemical mechanical polishing sacrificial layer 60 can be separately provided or formed in combination with a hard mask (HM) layer (not separately shown), and the composition has a thickness of about 200-2000A. An additional hard mask (HM) layer (not separately shown in the figure) provided on the chemical mechanical polishing sacrificial layer 60 can be used to improve the subsequent plasma etching selectivity. It is worth noting that the method of adding a dielectric hard mask (HM) layer to improve the etching selectivity while etching the chemical mechanical polishing of the sacrificial layer can be thought of as a "thick hard mask". This combination improves the overall Selective. For example, plasma gas materials such as CHF 3 , CH 2 F 2 or C 4 F 8 can be used, which can be easily etched on hard masks, but have relatively low etching on photoresist materials rate. Finally, a photoresist layer (PR) with a thickness of about 1000-3000A is formed on the hard mask (if present) or the chemical mechanical polishing sacrificial layer 60. The photoresist layer shown in the present invention has been lithographically formed to include two photoresist patterns 701 and 702 with widths d1 and d2, which will eventually form two magnetic tunnel junction elements of these sizes. The upper electrode 40 freely deposited on the magnetic tunnel junction stack 30 is, for example, a conductive layer containing a conductive material such as Ta, Ti, TaN, or TiN. The chemical mechanical polishing stop layer 50 is a SiO 2 or SiON layer and is deposited on the upper electrode 40. The chemical mechanical polishing sacrificial layer 60 is a layer of Ta, Ti, TaN and TiN, and is deposited on the chemical mechanical polishing stop layer 50. In order to improve the subsequent plasma etching selectivity and pattern integrity, a dielectric hard mask layer, such as a SiN, SiO 2 or SiON layer, can be selectively disposed on the chemical mechanical polishing sacrificial layer 60 (not specifically shown in the figure). Out). The photoresist patterns 701 and 702 can be formed by a photolithography process known in the art. As shown in Figure 1A, in order to better understand the technical features of the method disclosed in the embodiment of the present invention, the photoresist pattern widths d1 and d2 disclosed in Figure 1A are used, where the width d1>the width d2, as two Exemplary description. In this embodiment, the width d1 is about 60-100 nm, and the width d2 is about 10-60 nm.

在此實施例中一個重要的關鍵在於,在磁性穿隧接面元件中的其中一個在尺寸上會比另一個更大(於水平方向上),以致使蝕刻製程最終將留下不同的厚度(垂直方向),這可能會對製程良率產生不良的影響。將第一電漿蝕刻110施加於光阻圖案701和702之間的開口,以分離堆疊物。An important key point in this embodiment is that one of the magnetic tunnel junction elements is larger in size (in the horizontal direction) than the other, so that the etching process will eventually leave a different thickness ( Vertical direction), which may have an adverse effect on the process yield. The first plasma etching 110 is applied to the opening between the photoresist patterns 701 and 702 to separate the stack.

接著,請參閱第1B圖,其為第1A圖之結構在經由電漿蝕刻(反應性離子蝕刻、離子束蝕刻或前述之組合)後之示意圖,其於兩個大致均勻的寬度分別為d1和d2的剩餘部分之間形成間隔80。具有較大寬度d1的堆疊部分包含剩餘的化學機械研磨犧牲層601具有最終厚度h1,而具有較小尺寸圖案的化學機械研磨犧牲層602的最終厚度為h2,其中厚度h1大於厚度h2。其中,造成此最終厚度差異的原因是由於,在較小尺寸化學機械研磨犧牲層602上的較小尺寸的光阻層(第1A圖中的光阻圖案702)在電漿蝕刻過程中會較快地消耗,導致部分化學機械研磨犧牲層602也會被蝕刻掉。可以想像的是,如果上電極(第1A圖中的上電極40)直接設置於光阻層及/或未示出的介電硬遮罩層底下,那麼,上電極401和402將取代化學機械研磨犧牲層601和602而殘留下不同的厚度。Next, please refer to Figure 1B, which is a schematic diagram of the structure of Figure 1A after plasma etching (reactive ion etching, ion beam etching, or a combination of the foregoing), which has two substantially uniform widths d1 and A gap 80 is formed between the remaining parts of d2. The stack portion with the larger width d1 includes the remaining CMP sacrificial layer 601 to have a final thickness h1, and the CMP sacrificial layer 602 with a smaller size pattern has a final thickness h2, where the thickness h1 is greater than the thickness h2. The reason for the difference in the final thickness is that the smaller size photoresist layer (the photoresist pattern 702 in Figure 1A) on the smaller size chemical mechanical polishing sacrificial layer 602 will be larger during the plasma etching process. It consumes quickly, causing part of the chemical mechanical polishing sacrificial layer 602 to be etched away. It is conceivable that if the upper electrode (the upper electrode 40 in Figure 1A) is directly arranged under the photoresist layer and/or the dielectric hard mask layer not shown, then the upper electrodes 401 and 402 will replace the chemical mechanical The sacrificial layers 601 and 602 are polished to leave different thicknesses.

如第1C圖所示,在電漿蝕刻之後,封裝層90沉積於圖案化的磁性穿隧接面堆疊物中,以填充之間的間隔80(第1B圖)。封裝層90例如可以是SiN、SC或SiCN,並通過化學氣相沉積(chemical vapor deposition,CVD)形成。接著,同樣如第1C圖所示,利用第2圖中所列出的研磨漿1進行第一化學機械研磨120,其可對封裝層90的材料以及選擇性附加的介電硬遮罩(若有使用的話)執行高研磨速率。利用第一化學機械研磨製程120可完全移除封裝層90的上部以及附加的硬遮罩部分(若有使用的話),並且停止在剩餘的化學機械研磨犧牲層601和602處。As shown in FIG. 1C, after plasma etching, an encapsulation layer 90 is deposited in the patterned magnetic tunnel junction stack to fill the gap 80 between them (FIG. 1B). The encapsulation layer 90 may be SiN, SC or SiCN, for example, and is formed by chemical vapor deposition (CVD). Then, as shown in Figure 1C, the first chemical mechanical polishing 120 is performed using the polishing slurry 1 listed in Figure 2, which can apply the material of the encapsulation layer 90 and the optional additional dielectric hard mask (if If used, perform high grinding rate. The first chemical mechanical polishing process 120 can completely remove the upper part of the encapsulation layer 90 and the additional hard mask part (if used), and stop at the remaining chemical mechanical polishing sacrificial layers 601 and 602.

再如第1C圖所示,之後再使用如第2圖中所列的研磨漿2進行第二化學機械研磨製程130,以將剩餘的化學機械研磨犧牲層601和602完全研磨掉。基於研磨漿2對於化學機械研磨停止層的材料具有極低的研磨速率,故此研磨製程停止於化學機械研磨停止層501和502上。As shown in FIG. 1C, the second chemical mechanical polishing process 130 is then performed using the polishing slurry 2 listed in FIG. 2 to completely polish the remaining chemical mechanical polishing sacrificial layers 601 and 602. Since the polishing slurry 2 has an extremely low polishing rate for the material of the chemical mechanical polishing stop layer, the polishing process stops on the chemical mechanical polishing stop layer 501 and 502.

接下來,請參閱第1D圖所示,本發明再次施加第二電漿蝕刻140以對化學機械研磨停止層501和502進行回蝕刻,並從而暴露位於其下之上電極401和402的上表面。如第1E圖所示,此時,所得到上電極401和402所暴露的上表面現在是共平面的,並且兩個磁性穿隧接面元件301和302現在是電性分離的,並可完全由上電極401、402與下電極201、202所個別定義出來。在此情況下,兩個元件處於相同的高度,並且自第1B圖中所示的第一蝕刻製程而產生的任何高度差在此時亦已經全然消弭了。Next, referring to Figure 1D, the present invention applies a second plasma etching 140 again to etch back the chemical mechanical polishing stop layers 501 and 502, thereby exposing the upper surfaces of the electrodes 401 and 402 located below and above. . As shown in Figure 1E, at this time, the upper surfaces exposed by the resulting upper electrodes 401 and 402 are now coplanar, and the two magnetic tunnel junction elements 301 and 302 are now electrically separated and can be completely separated. The upper electrodes 401, 402 and the lower electrodes 201, 202 are individually defined. In this case, the two components are at the same height, and any height difference caused by the first etching process shown in Figure 1B has been completely eliminated at this time.

最後,如第1F圖所示,一共同的頂部金屬接點100(例如Ta、TaN、Ti、Al或Cu層)沉積於上電極401和402的共面表面上,以形成與兩個實施例中的磁性穿隧接面元件301和302(並以其他方式絕緣)的電性連接。大尺寸圖案最終寬度d3和小尺寸圖案最終寬度d4各自具有其單獨的上電極401、402,並具有共平面的頂表面與相同的上電極厚度h3,藉此避免習知因需在頂部金屬接點100中形成電性開口而引發的良率損耗等問題。Finally, as shown in Figure 1F, a common top metal contact 100 (such as a Ta, TaN, Ti, Al, or Cu layer) is deposited on the coplanar surfaces of the upper electrodes 401 and 402 to form the same as the two embodiments The magnetic tunnel junction elements 301 and 302 (and otherwise insulated) are electrically connected. The final width d3 of the large-size pattern and the final width d4 of the small-size pattern each have their own upper electrodes 401, 402, and have a coplanar top surface and the same upper electrode thickness h3, thereby avoiding the need for conventional metal connections on the top. Problems such as yield loss caused by the formation of electrical openings in the dot 100.

如本領域具通常知識者可以理解的,本發明實施例上述之描述係在於給出對本發明技術思想的公開說明,而並非對本發明實施例的限制。任何對於形成或提供複數個小尺寸(在大約60奈米的水平尺寸範圍內)的磁性穿隧接面元件,使其具有均勻厚度(在垂直方向)的上電極之形成方法、材料、結構、或尺寸,旨在改善其良率的修改或調整,依據本發明實施例所附權利要求所限定本發明實施例的精神和範圍,而仍然應隸屬於本發明實施例之發明範疇。As those with ordinary knowledge in the art can understand, the above description of the embodiments of the present invention is intended to provide a public description of the technical ideas of the present invention, and is not a limitation to the embodiments of the present invention. Any method, material, structure, method for forming or providing a plurality of magnetic tunnel junction elements of small size (within the horizontal size range of about 60 nanometers) to have uniform thickness (in the vertical direction) of the upper electrode Or size is modified or adjusted to improve its yield. The spirit and scope of the embodiments of the present invention are defined by the appended claims according to the embodiments of the present invention, and should still belong to the scope of the invention of the embodiments of the present invention.

依據一實施例,磁阻式隨機存取記憶體陣列包含共同基底;N個在空間上各自獨立之多層元件,形成於共同基底上,其中每個多層元件具有寬度d n,其中n=1…N,且各寬度彼此不同;每個多層元件具有相同高度,且用於填充間隔的封裝層形成於相鄰的多層元件之間,封裝層具有可變寬度s jk,其中j=1…N,且k=j+1;其中每個該多層元件更包含下電極,具有大致相同厚度;主動裝置元件,形成於下電極上;上電極,形成於主動裝置元件上,其中上電極具有大致相同厚度,且所有上電極的頂表面為共平面;以及單一頂部金屬接點,形成於上電極上,以與每個上電極形成無開路的電性連接。 According to an embodiment, a magnetoresistive random access memory array includes a common substrate; N spatially independent multilayer elements are formed on the common substrate, wherein each multilayer element has a width d n , where n=1... N, and the widths are different from each other; each multilayer component has the same height, and the packaging layer for filling the gap is formed between adjacent multilayer components. The packaging layer has a variable width s jk , where j=1...N, And k=j+1; wherein each of the multilayer components further includes a bottom electrode having substantially the same thickness; an active device component is formed on the bottom electrode; an upper electrode is formed on the active device component, wherein the upper electrode has substantially the same thickness , And the top surfaces of all the upper electrodes are coplanar; and a single top metal contact is formed on the upper electrodes to form an electrical connection with each upper electrode without an open circuit.

在其他實施例中,其中上電極和下電極由Ta、Ti、TaN或TiN形成,並具有約200-1000A的厚度。In other embodiments, the upper electrode and the lower electrode are formed of Ta, Ti, TaN or TiN, and have a thickness of about 200-1000 Å.

在其他實施例中,其中每個主動裝置元件為磁性穿隧接面元件。In other embodiments, each active device element is a magnetic tunnel junction element.

在其他實施例中,其中每個多層元件的例示性寬度為約60奈米或60奈米以下。In other embodiments, the exemplary width of each multilayer element is about 60 nanometers or less.

在其他實施例中,其中該封裝層為SiN、SC或SiCN層。In other embodiments, the encapsulation layer is a SiN, SC or SiCN layer.

依據一實施例,磁阻式隨機存取記憶體陣列的形成方法,包含提供基底;在基底上依序相鄰地形成多層堆疊物,包含下電極,接觸基底;多層堆疊物,包含複數個功能性元件層;上電極,覆蓋多層堆疊物,並具有高度;化學機械研磨停止層,覆蓋上電極;化學機械研磨犧牲層,或可選擇性地與硬遮罩層組合,覆蓋化學機械研磨停止層;圖案化光阻層,用以定義出陣列間的寬度與間隔距離;使用圖案化光阻層對多層堆疊物進行圖案化製程。According to one embodiment, a method for forming a magnetoresistive random access memory array includes providing a substrate; forming a multilayer stack on the substrate adjacent to each other, including a bottom electrode, contacting the substrate; and the multilayer stack including a plurality of functions Sexual element layer; upper electrode, covering the multilayer stack and having a height; chemical mechanical polishing stop layer, covering the upper electrode; chemical mechanical polishing sacrificial layer, or optionally combined with a hard mask layer, covering the chemical mechanical polishing stop layer ; The patterned photoresist layer is used to define the width and spacing between the arrays; the patterned photoresist layer is used to pattern the multilayer stack.

在其他實施例中,其中圖案化製程包含施加第一電漿蝕刻通過圖案化光阻層,以將多層堆疊物分離成具有彼此相鄰但各自獨立部分的陣列,其中每個部分具有寬度,且每個部分與由圖案化光阻層所預先定義的相鄰部分之間形成間隔,經由第一電漿蝕刻後,在化學機械研磨犧牲層,或選擇性地與硬遮罩層之組合上會形成有最終未確定高度,其中每個部分具有未確定的獨特高度導致最終未確定高度;透過沉積封裝層填充多層堆疊物中因第一電漿蝕刻所移除的部分;使用第一研磨漿與第一化學機械研磨製程,在使用有化學機械研磨層與硬遮罩層之組合的情況下,移除封裝層的上部與硬遮罩層,並且停止於化學機械研磨犧牲層,若不使用硬遮罩層,則移除封裝層的上部並且停止於化學機械研磨犧牲層;使用第二研磨漿與第二化學機械研磨製程,移除化學機械研磨犧牲層並且停止於化學機械研磨停止層;使用第二電漿蝕刻製程,移除經由第二化學機械研磨製程所暴露出的化學機械研磨停止層,從而在圖案化的多層堆疊物的每個部分上暴露出上電極,其中每個上電極與相鄰部分之間的封裝層的頂表面為共平面,並且每個上電極具有相同的高度;形成頂部金屬接點以覆蓋共平面的頂表面,使得頂部金屬接點與每個上電極形成電性連接,且電性連接與電路開路無關。In other embodiments, the patterning process includes applying a first plasma etching through the patterned photoresist layer to separate the multilayer stack into an array having adjacent but independent portions, wherein each portion has a width, and Each part forms a gap with the adjacent part pre-defined by the patterned photoresist layer. After the first plasma etching, the sacrificial layer is chemically mechanically polished or selectively combined with the hard mask layer. A final undetermined height is formed, where each part has an undetermined unique height resulting in the final undetermined height; the part removed by the first plasma etching in the multilayer stack is filled by depositing an encapsulation layer; the first polishing slurry is used with In the first chemical mechanical polishing process, in the case of using a combination of a chemical mechanical polishing layer and a hard mask layer, remove the upper part of the encapsulation layer and the hard mask layer, and stop at the chemical mechanical polishing sacrificial layer, if the hard mask layer is not used For the mask layer, remove the upper part of the encapsulation layer and stop at the chemical mechanical polishing sacrificial layer; use the second slurry and the second chemical mechanical polishing process to remove the chemical mechanical polishing sacrificial layer and stop at the chemical mechanical polishing stop layer; use The second plasma etching process removes the chemical mechanical polishing stop layer exposed by the second chemical mechanical polishing process, thereby exposing upper electrodes on each part of the patterned multilayer stack, wherein each upper electrode is The top surface of the encapsulation layer between adjacent parts is coplanar, and each upper electrode has the same height; the top metal contact is formed to cover the coplanar top surface, so that the top metal contact forms an electrical connection with each upper electrode. The electrical connection has nothing to do with the open circuit.

在其他實施例中,其中上電極的該高度在約200-1000A之間。In other embodiments, the height of the upper electrode is between about 200-1000A.

在其他實施例中,其中在使用化學機械研磨犧牲層與硬遮罩層組合使得包含CHF 3、CH 2F 2或C 4F 8的電漿蝕刻可用以蝕刻介電硬遮罩,且在光阻層上具有相當低的蝕刻速率。 In other embodiments, the combination of the sacrificial layer and the hard mask layer using chemical mechanical polishing makes the plasma etching containing CHF 3 , CH 2 F 2 or C 4 F 8 used to etch the dielectric hard mask, and the light The resist layer has a relatively low etching rate.

在其他實施例中,其中硬遮罩層為SiN、SiO 2或SiON層。 In other embodiments, the hard mask layer is a SiN, SiO 2 or SiON layer.

在其他實施例中,其中化學機械研磨犧牲層為Ta、Ti、TaN或TiN層。In other embodiments, the chemical mechanical polishing sacrificial layer is a Ta, Ti, TaN or TiN layer.

在其他實施例中,其中化學機械研磨停止層為SiO 2或SiON層。 In other embodiments, the chemical mechanical polishing stop layer is an SiO 2 or SiON layer.

在其他實施例中,其中第一研磨漿為氧化鋯顆粒的研磨漿。In other embodiments, the first slurry is a slurry of zirconia particles.

在其他實施例中,其中第二研磨漿為氧化鋁顆粒的研磨漿。In other embodiments, the second slurry is a slurry of alumina particles.

10 基底 20、201、202   下電極 30 磁性穿隧接面堆疊物 40、401、402   上電極 50、501、502   化學機械研磨停止層 60、601、602 化學機械研磨犧牲層 80 間隔 90 封裝層 100 頂部金屬接點 110 第一電漿蝕刻 120 第一化學機械研磨 130 第二化學機械研磨 140 第二電漿蝕刻 301 、302 磁性穿隧接面元件 701 、702 光阻圖案 d1、d2、d3、d4 寬度 h1、h2、h3 厚度 10  base 20, 201, 202 Lower electrode 30 Magnetic tunnel junction stack 40, 401, 402 upper electrode 50, 501, 502 Chemical mechanical polishing stop layer 60, 601, 602  chemical mechanical polishing sacrificial layer 80  interval 90 Package layer 100  top metal contact 110  first plasma etching 120 First Chemical Mechanical Polishing 130 Second chemical mechanical polishing 140  second plasma etching 301, 302  magnetic tunnel junction element 701, 702  photoresist pattern d1, d2, d3, d4   width h1, h2, h3   thickness

第1A圖、第1B圖、第1C圖、第1D圖、第1E圖、第1F圖為一序列用以製造出高良率各種尺寸磁阻式隨機存取記憶體元件的製程示意圖。 第2圖揭露兩種可產生不同研磨速率之化學機械研磨的研磨漿列表,其可用於磁阻式隨機存取記憶體元件層中的不同元件。 Figure 1A, Figure 1B, Figure 1C, Figure 1D, Figure 1E, Figure 1F are a sequence of schematic diagrams of manufacturing high-yield magnetoresistive random access memory devices of various sizes. FIG. 2 discloses a list of two kinds of chemical mechanical polishing slurry that can produce different polishing rates, which can be used for different devices in the magnetoresistive random access memory device layer.

10 基底 100 頂部金屬接點 201、202 下電極 301 、302    磁性穿隧接面元件 401 、402    上電極 d3、d4 寬度 h3   厚度 10  base 100  top metal contact 201, 202  lower electrode 301, 302 Magnetic tunnel junction element 401, 402 Upper electrode d3, d4   width h3 Thickness

Claims (10)

一種磁阻式隨機存取記憶體陣列,包括:一共同基底;N個在空間上各自獨立之多層元件,形成於該共同基底上,其中每個該多層元件具有一寬度dn,其中n=1...N,且各該寬度彼此不同;每個該多層元件具有一相同高度,且用於填充間隔的一封裝層形成於相鄰的該些多層元件之間,該封裝層具有一可變寬度sjk,其中j=1...N,且k=j+1;其中每個該多層元件更包括:一下電極,具有大致相同厚度;一主動裝置元件,形成於該下電極上;一上電極,形成於該主動裝置元件上,其中該上電極具有大致相同厚度,且所有該些上電極的頂表面為共平面;以及一單一頂部金屬接點,形成於該些上電極上,並物理接觸每個該上電極以形成無開路的電性連接,該單一頂部金屬接點為每個該多層元件的共用接點。 A magnetoresistive random access memory array, comprising: a common substrate; N multi-layer elements that are independent in space are formed on the common substrate, wherein each of the multi-layer elements has a width d n , where n= 1...N, and the widths are different from each other; each of the multilayer components has the same height, and an encapsulation layer for filling the gap is formed between the adjacent multilayer components, and the encapsulation layer has a Variable width s jk , where j=1...N, and k=j+1; wherein each of the multilayer components further includes: a lower electrode having approximately the same thickness; and an active device component formed on the lower electrode; An upper electrode formed on the active device device, wherein the upper electrode has approximately the same thickness, and the top surfaces of all the upper electrodes are coplanar; and a single top metal contact is formed on the upper electrodes, And physically contact each of the upper electrodes to form an electrical connection without an open circuit, and the single top metal contact is a common contact of each of the multilayer components. 如申請專利範圍第1項所述之磁阻式隨機存取記憶體陣列,其中該上電極和該下電極由Ta、Ti、TaN或TiN形成,並具有約200-1000A的厚度。 The magnetoresistive random access memory array described in the first item of the patent application, wherein the upper electrode and the lower electrode are formed of Ta, Ti, TaN or TiN and have a thickness of about 200-1000A. 如申請專利範圍第1或2項所述之磁阻式隨機存取記憶體陣列,其中每個該主動裝置元件為一磁性穿隧接面元件。 In the magnetoresistive random access memory array described in item 1 or 2 of the scope of patent application, each of the active device elements is a magnetic tunneling interface element. 一種磁阻式隨機存取記憶體陣列的形成方法,包括:提供一基底;在該基底上依序相鄰地形成多層堆疊物,包括:一下電極,接觸該基底;一主動裝置元件,包括複數個功能性元件層;一上電極,覆蓋該主動裝置元件,並具有一高度; 一化學機械研磨停止層,覆蓋該上電極;一化學機械研磨犧牲層,或可選擇性地與一硬遮罩層組合,覆蓋該化學機械研磨停止層;一圖案化光阻層,用以定義出該陣列間的寬度與間隔距離;使用該圖案化光阻層對該多層堆疊物進行一圖案化製程。 A method for forming a magnetoresistive random access memory array includes: providing a substrate; forming a multilayer stack on the substrate sequentially and adjacently, including: a lower electrode contacting the substrate; an active device element including a plurality of A functional element layer; an upper electrode covering the active device element and having a height; A chemical mechanical polishing stop layer covering the upper electrode; a chemical mechanical polishing sacrificial layer, or optionally combined with a hard mask layer, covering the chemical mechanical polishing stop layer; a patterned photoresist layer for defining The width and spacing distance between the arrays are calculated; the patterned photoresist layer is used to perform a patterning process on the multilayer stack. 如申請專利範圍第4項所述之磁阻式隨機存取記憶體陣列的形成方法,其中該圖案化製程包括:施加一第一電漿蝕刻通過該圖案化光阻層,以將該多層堆疊物分離成具有彼此相鄰但各自獨立部分的陣列,其中每個部分具有一寬度,且每個部分與由該圖案化光阻層所預先定義的相鄰部分之間形成一間隔,經由該第一電漿蝕刻後,在該化學機械研磨犧牲層,或選擇性地與該硬遮罩層之組合上會形成有一最終未確定高度,其中每個部分具有一未確定的獨特高度導致該最終未確定高度;透過沉積一封裝層填充該多層堆疊物中因該第一電漿蝕刻所移除的部分;使用一第一研磨漿與一第一化學機械研磨製程,在使用有化學機械研磨層與硬遮罩層之組合的情況下,移除該封裝層的上部與該硬遮罩層,並且停止於該化學機械研磨犧牲層,若不使用硬遮罩層,則移除該封裝層的上部並且停止於該化學機械研磨犧牲層;使用一第二研磨漿與一第二化學機械研磨製程,移除該化學機械研磨犧牲層並且停止於該化學機械研磨停止層;使用一第二電漿蝕刻製程,移除經由該第二化學機械研磨製程所暴露出的該化學機械研磨停止層,從而在圖案化的該多層堆疊物的每個部分上暴露出該上電極,其中每個該上電極與相鄰部分之間的該封裝層的頂表面為共平面,並且每個該上電極具有相同的該高度; 形成一頂部金屬接點以覆蓋共平面的頂表面,使得該頂部金屬接點與每個該上電極形成電性連接,且電性連接與電路開路無關。 The method for forming a magnetoresistive random access memory array as described in claim 4, wherein the patterning process includes: applying a first plasma etching through the patterned photoresist layer to stack the multilayer The objects are separated into arrays with adjacent but independent parts, wherein each part has a width, and each part forms an interval with the adjacent part predefined by the patterned photoresist layer, passing through the After a plasma etching, a final undetermined height is formed on the chemical mechanical polishing sacrificial layer, or optionally in combination with the hard mask layer, where each part has an undetermined unique height resulting in the final undetermined height. Determine the height; fill the part of the multilayer stack that is removed by the first plasma etching by depositing an encapsulation layer; use a first polishing slurry and a first chemical mechanical polishing process, and use a chemical mechanical polishing layer and In the case of a combination of hard mask layers, remove the upper part of the encapsulation layer and the hard mask layer, and stop at the chemical mechanical polishing sacrificial layer, if the hard mask layer is not used, remove the upper part of the encapsulation layer And stop at the chemical mechanical polishing sacrificial layer; use a second polishing slurry and a second chemical mechanical polishing process to remove the chemical mechanical polishing sacrificial layer and stop at the chemical mechanical polishing stop layer; use a second plasma to etch Process, removing the chemical mechanical polishing stop layer exposed through the second chemical mechanical polishing process, thereby exposing the upper electrode on each part of the patterned multilayer stack, wherein each of the upper electrodes is The top surface of the encapsulation layer between adjacent parts is coplanar, and each of the upper electrodes has the same height; A top metal contact is formed to cover the coplanar top surface, so that the top metal contact forms an electrical connection with each of the upper electrodes, and the electrical connection has nothing to do with the open circuit. 如申請專利範圍第4或5項所述之磁阻式隨機存取記憶體陣列的形成方法,其中在使用該化學機械研磨犧牲層與該硬遮罩層組合使得包括CHF3、CH2F2或C4F8的電漿蝕刻可用以蝕刻該介電硬遮罩,且在該光阻層上具有相當低的蝕刻速率。 The method for forming a magnetoresistive random access memory array as described in item 4 or 5 of the scope of patent application, wherein the chemical mechanical polishing sacrificial layer and the hard mask layer are combined to include CHF 3 , CH 2 F 2 Or C 4 F 8 plasma etching can be used to etch the dielectric hard mask, and has a relatively low etching rate on the photoresist layer. 如申請專利範圍第4或5項所述之磁阻式隨機存取記憶體陣列的形成方法,其中該化學機械研磨犧牲層為Ta、Ti、TaN或TiN層。 According to the method for forming a magnetoresistive random access memory array described in item 4 or 5 of the scope of patent application, the chemical mechanical polishing sacrificial layer is a Ta, Ti, TaN or TiN layer. 如申請專利範圍第4或5項所述之磁阻式隨機存取記憶體陣列的形成方法,其中該化學機械研磨停止層為SiO2或SiON層。 According to the method for forming a magnetoresistive random access memory array described in item 4 or 5 of the scope of patent application, the chemical mechanical polishing stop layer is an SiO 2 or SiON layer. 如申請專利範圍第4或5項所述之磁阻式隨機存取記憶體陣列的形成方法,其中該第一研磨漿為氧化鋯顆粒的研磨漿。 According to the method for forming a magnetoresistive random access memory array described in item 4 or 5 of the scope of patent application, the first polishing slurry is a slurry of zirconia particles. 如申請專利範圍第4或5項所述之磁阻式隨機存取記憶體陣列的形成方法,其中該第二研磨漿為氧化鋁顆粒的研磨漿。 According to the method for forming a magnetoresistive random access memory array described in item 4 or 5 of the scope of patent application, the second polishing slurry is a polishing slurry of alumina particles.
TW108104463A 2019-02-11 2019-02-11 Magnetoresistive random access memory array and methods for forming the same TWI704704B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108104463A TWI704704B (en) 2019-02-11 2019-02-11 Magnetoresistive random access memory array and methods for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108104463A TWI704704B (en) 2019-02-11 2019-02-11 Magnetoresistive random access memory array and methods for forming the same

Publications (2)

Publication Number Publication Date
TW202030896A TW202030896A (en) 2020-08-16
TWI704704B true TWI704704B (en) 2020-09-11

Family

ID=73002860

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108104463A TWI704704B (en) 2019-02-11 2019-02-11 Magnetoresistive random access memory array and methods for forming the same

Country Status (1)

Country Link
TW (1) TWI704704B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100193891A1 (en) * 2008-02-18 2010-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. In-Situ Formed Capping Layer in MTJ Devices
US9397139B1 (en) * 2015-09-23 2016-07-19 Globalfoundries Singapore Pte. Ltd. Integrated inductor and magnetic random access memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100193891A1 (en) * 2008-02-18 2010-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. In-Situ Formed Capping Layer in MTJ Devices
US9397139B1 (en) * 2015-09-23 2016-07-19 Globalfoundries Singapore Pte. Ltd. Integrated inductor and magnetic random access memory device

Also Published As

Publication number Publication date
TW202030896A (en) 2020-08-16

Similar Documents

Publication Publication Date Title
TW560037B (en) Self-aligned conductive line for cross-point magnetic memory integrated circuits
CN110915011B (en) Low etching rate self-aligned magnetic tunneling junction device structure
US8802451B2 (en) Method for manufacturing high density non-volatile magnetic memory
TWI391988B (en) Methods for device fabrication using pitch reduction and associated structures
US11088320B2 (en) Fabrication of large height top metal electrode for sub-60nm magnetoresistive random access memory (MRAM) devices
US11545622B2 (en) CMP stop layer and sacrifice layer for high yield small size MRAM devices
US9722174B1 (en) Low dielectric constant interlayer dielectrics in spin torque magnetoresistive devices
US9082695B2 (en) Vialess memory structure and method of manufacturing same
WO2015126829A1 (en) Method for patterning a substrate for planarization
WO2005096371A1 (en) Method of fabricating a mram device
KR100743651B1 (en) Method for forming contact of semiconductor device
TWI619281B (en) Method of making device
CN111261773A (en) Semiconductor memory element and manufacturing method thereof
JP2011238679A (en) Magnetic storage device manufacturing method and magnetic storage device
US7071009B2 (en) MRAM arrays with reduced bit line resistance and method to make the same
JP2008283168A (en) Method of forming minute pattern of semiconductor element
TWI704704B (en) Magnetoresistive random access memory array and methods for forming the same
US10868236B2 (en) Method for manufacturing reduced pitch magnetic random access memory pillar
CN109585645B (en) MTJ device, manufacturing method thereof and MRAM
EP3840034B1 (en) Method for producing nanoscaled electrically conductive lines for semiconductor devices
KR100871369B1 (en) Method for fabricating semiconductor device
US8329522B2 (en) Method for fabricating semiconductor device
TW202332000A (en) Method for forming semiconductor memory structure
KR101987248B1 (en) Method for manufacturing semiconductor devie
CN117476549A (en) Method for manufacturing semiconductor laminated structure and semiconductor structure