TWI704704B - Magnetoresistive random access memory array and methods for forming the same - Google Patents
Magnetoresistive random access memory array and methods for forming the same Download PDFInfo
- Publication number
- TWI704704B TWI704704B TW108104463A TW108104463A TWI704704B TW I704704 B TWI704704 B TW I704704B TW 108104463 A TW108104463 A TW 108104463A TW 108104463 A TW108104463 A TW 108104463A TW I704704 B TWI704704 B TW I704704B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- chemical mechanical
- mechanical polishing
- random access
- access memory
- Prior art date
Links
Images
Landscapes
- Mram Or Spin Memory Techniques (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
本發明係有關於一種磁阻式隨機存取記憶體(Magnetoresistive Random Access Memory,MRAM)元件的製造,特別是有關於用以沉積與圖案化多層磁性穿隧接面單元的方法。The present invention relates to the manufacture of a magnetoresistive random access memory (Magnetoresistive Random Access Memory, MRAM) device, in particular to a method for depositing and patterning a multilayer magnetic tunnel junction unit.
磁阻式隨機存取記憶體(MRAM)元件的製造通常與一連串的製程步驟相關,在這些步驟中包括沉積許多金屬與介電層以形成堆疊物,然後再對堆疊物進行圖案化,以形成包含多個分離磁阻元件的陣列,例如磁性穿隧接面(magnetic tunneling junction,MTJ)及其上、下電極,用於與元件進行電性連接。為了在每個磁阻式隨機存取記憶體元件中定義出那些磁性穿隧接面單元並使它們彼此間不產生相互作用(直到需要其相互作用),通常會運用精密的圖案化步驟:包括光微影(photolithography)與電漿蝕刻(plasma etch),譬如反應性離子蝕刻(reactive ion etching,RIE),離子束蝕刻(ion beam etching,IBE)或前述之組合。在光微影製程中,圖案先由光罩移轉到光敏光阻層(light-sensitive photoresist)上,然後透過電漿蝕刻來定義磁性穿隧接面元件陣列,以形成各自獨立與非相互作用的磁性穿隧接面元件。在電漿蝕刻之後,圖案化陣列中的較小尺寸的元件通常會留下較少的上電極,這是因為在蝕刻製程期間,會以較快地速率消耗覆蓋元件的光阻層。由於電極厚度的差異會造成頂表面的非共平面(non-planar top surface),對於最終設置連接電極的頂部金屬接點來說實為一大挑戰,將可能導致元件的開路(也就是接觸不良的元件)。本領域人員若想要在小尺寸(例如,小於60奈米(sub 60nm))的磁性穿隧接面元件上達到高產率,明顯需要發展出新的方法。因此,值得注意的是,現有技術專利遂揭露了可解決以上提到困難點的一些方法。舉例來說,美國專利U.S. 9,070,869(Jung et al)教示了多種層結構,美國專利U.S.8,975,088(Satoh et al)教示了幾種不同的遮罩層。 然而,這些現有技術都沒有揭示出本發明所公開的方法,也並未展現出通過應用這些方法所能實現的結果。The manufacture of magnetoresistive random access memory (MRAM) devices is usually associated with a series of process steps. These steps include depositing many metal and dielectric layers to form a stack, and then patterning the stack to form An array containing a plurality of separated magnetoresistive elements, such as a magnetic tunneling junction (MTJ) and its upper and lower electrodes, are used for electrical connection with the elements. In order to define those magnetic tunneling interface units in each magnetoresistive random access memory device and prevent them from interacting with each other (until they need to interact), a sophisticated patterning step is usually used: including Photolithography and plasma etch, such as reactive ion etching (RIE), ion beam etching (IBE) or a combination of the foregoing. In the photolithography process, the pattern is first transferred from the mask to the light-sensitive photoresist layer, and then plasma etching is used to define the array of magnetic tunnel junction elements to form independent and non-interactive elements. The magnetic tunnel junction element. After plasma etching, the smaller-sized elements in the patterned array usually leave fewer upper electrodes, because during the etching process, the photoresist layer covering the elements is consumed at a faster rate. Since the difference in electrode thickness will cause non-planar top surface, it is a big challenge for the final setting of the top metal contacts to connect the electrodes, which may cause open circuits (that is, poor contacts). Components). If those skilled in the art want to achieve high yields on magnetic tunnel junction devices of small size (for example, less than 60 nanometers (sub 60nm)), it is obvious that new methods need to be developed. Therefore, it is worth noting that the prior art patents have disclosed some methods that can solve the above-mentioned difficulties. For example, US patent U.S. 9,070,869 (Jung et al) teaches various layer structures, and US patent U.S. 8,975,088 (Satoh et al) teaches several different mask layers. However, none of these prior arts disclose the methods disclosed in the present invention, nor do they show the results that can be achieved by applying these methods.
本發明實施例之一目的在於提供一種適於小尺寸層級磁性穿隧接面元件陣列與複數個包含此種不同尺寸元件之良率的增益方法,其藉由在圖案化此種磁性穿隧接面元件的硬遮罩(hard mask)與電極之間額外增設附加層,且電極為欲被圖案化的磁性穿隧接面堆疊物之頂層。One of the objectives of the embodiments of the present invention is to provide a method suitable for a small-scale magnetic tunnel junction element array and a plurality of yield gain methods including such elements of different sizes by patterning the magnetic tunnel junction An additional layer is added between the hard mask of the surface element and the electrode, and the electrode is the top layer of the magnetic tunnel junction surface stack to be patterned.
本發明實施例之又一目的在於提供這樣的良率改善,此良率改善的方法主要歸因於與可成功地消弭極微小的上電極損壞相關的電性開路有關。Another objective of the embodiments of the present invention is to provide such a yield improvement. The method of yield improvement is mainly due to the successful elimination of the electrical open circuit related to the extremely small upper electrode damage.
本發明實施例之再一目的在於可將上述所言的優勢提供予各種不同尺寸且彼此相鄰設置的磁性穿隧接面元件上,並同時可在共同的基底上同時進行。Another objective of the embodiments of the present invention is to provide the above-mentioned advantages to the magnetic tunnel junction elements of various sizes and arranged adjacent to each other, and at the same time, they can be simultaneously performed on a common substrate.
在傳統的現有技術製程中,圖案先從光阻層轉移到介電硬遮罩,然後轉移到上電極,接著到上電極底下的磁性穿隧接面堆疊。在完成圖案轉移的蝕刻製程之後,可以發現具有較小部分圖案的上電極,其經蝕刻後所剩餘部分的尺寸會較為減少,當圖案特徵尺寸縮減到60奈米及以下時,將會造成電性開路(導電率的失效)以及極大的良率損失。In the traditional prior art manufacturing process, the pattern is first transferred from the photoresist layer to the dielectric hard mask, then transferred to the upper electrode, and then to the magnetic tunnel junction stack under the upper electrode. After the etching process of pattern transfer is completed, it can be found that the size of the upper electrode with a smaller part of the pattern will be reduced after etching. When the feature size of the pattern is reduced to 60 nanometers and below, it will cause electricity Open circuit (failure of conductivity) and great yield loss.
為了解決這些缺失,本發明所揭露之方法係在光阻硬遮罩圖案和電極之間插入化學機械研磨(chemical mechanical polishing,CMP)停止層和犧牲層。在電漿蝕刻之後,任何光阻消耗上的差異將僅導致化學機械研磨犧牲層圖案的不同厚度(高度)。基於有化學機械研磨停止層作為保護,所有尺寸的元件之上電極厚度皆可維持一致並相等。藉由在之後的化學機械研磨製程中選擇適當的研磨漿,可完全移除任何殘餘的犧牲層圖案,並終止在化學機械研磨停止層上。之後,再通過電漿蝕刻移除化學機械研磨停止層,以暴露出底下的上電極。使用這種方法,不同尺寸的磁性穿隧接面單元仍可保持其上電極具有相同的高度,並使得後續連接的頂部金屬接點之沉積較為容易。可有效地避免且消弭基於電性開路所引起的任何良率損耗。本發明所揭露之方法對於未來小於60奈米磁阻式隨機存取記憶體產品以及其他小尺寸元件的製造為相當有幫助的。In order to solve these deficiencies, the method disclosed in the present invention is to insert a chemical mechanical polishing (CMP) stop layer and a sacrificial layer between the photoresist hard mask pattern and the electrode. After plasma etching, any difference in photoresist consumption will only result in different thickness (height) of the sacrificial layer pattern by chemical mechanical polishing. Based on the chemical mechanical polishing stop layer as a protection, the thickness of the electrodes on the components of all sizes can be kept consistent and equal. By selecting an appropriate slurry in the subsequent chemical mechanical polishing process, any remaining sacrificial layer patterns can be completely removed and terminated on the chemical mechanical polishing stop layer. Afterwards, the chemical mechanical polishing stop layer is removed by plasma etching to expose the upper electrode underneath. Using this method, magnetic tunnel junction units of different sizes can still maintain their upper electrodes at the same height, and make it easier to deposit the top metal contacts for subsequent connections. It can effectively avoid and eliminate any yield loss caused by electrical open circuit. The method disclosed in the present invention is very helpful for the manufacturing of magnetoresistive random access memory products smaller than 60nm and other small-sized components in the future.
一序列的製程流程示意圖如第1A圖至第1F圖所示,其揭露本步驟流程之方法的應用,旨在同時創建兩個相鄰且不同尺寸的例示性磁性穿隧接面元件,但二元件卻仍具有大致相同高度且頂表面共平面的上電極。因此,可在不額外形成電性開路(開路)的情況下,通過使用共同的金屬接點較佳地連接元件。A sequence of schematic diagrams of the process flow are shown in Figures 1A to 1F, which reveal the application of the method of this step flow, which aims to create two adjacent and different-sized exemplary magnetic tunnel junction elements at the same time, but two The device still has an upper electrode with approximately the same height and a coplanar top surface. Therefore, it is possible to better connect the components by using common metal contacts without additionally forming an electrical open circuit (open circuit).
首先,請先參閱第1A圖,其揭露本發明單個堆疊結構利用第一電漿蝕刻110對欲圖案化成兩個相鄰但分離的磁性穿隧接面元件之示意圖。 應當理解的是,為了簡化描述本發明實施例之技術思想,該兩個元件僅為例示性的,因此可以預期本發明實施例所揭露之技術,其可應用於包括複數個分離元件的陣列。在此,我們注意到磁性穿隧接面元件為可使用以下方法製作的其中一種主動元件,唯任何類型的主動多層元件皆可以形成為一種包括各種不同寬度元件的陣列,並且可在其上電極形成頂面共平面的頂部電極。在無須於陣列元件間形成開路的情況下,便可在其上有利地形成單一的電性連接層。First, please refer to FIG. 1A, which discloses a schematic diagram of a single stacked structure of the present invention using a
由下而上地,基底10可以是常見的電性接點,例如:材質為Ta、TaN、Ti或TiN的材料層,或額外的集成電子結構的頂部。接著往上依序為下電極20、多層性的磁性穿隧接面堆疊物30、厚度約為200-1000A之間的上電極40、厚度約為20-300A之間的化學機械研磨停止層50、厚度約為200-1000A之間的化學機械研磨犧牲層60(有時也簡稱為犧牲層)。其中,化學機械研磨犧牲層60可單獨設置或與硬遮罩(Hard Mask,HM)層(未單獨示出)組合形成,並組成具有約200-2000A的厚度。在化學機械研磨犧牲層60上額外設置的硬遮罩(HM)層(圖中未單獨示出)可用以改善隨後的電漿蝕刻選擇性。值得注意的是,在蝕刻化學機械研磨犧牲層的同時增設介電硬遮罩(HM)層以提高蝕刻選擇性的做法,可以想作是產生“厚硬遮罩”,此組合共同提高整體的選擇性。舉例來說,可以使用例如CHF
3,CH
2F
2或C
4F
8的電漿氣體物質,其可容易地在硬遮罩上進行蝕刻,但卻在光阻材料上僅有相當低的蝕刻速率。最後,在硬遮罩(如果存在)或化學機械研磨犧牲層60上形成厚度約1000-3000A之間的光阻層(Photoresist layer,PR)。本發明所示的光阻層為已經由黃光微影成包含分別為寬度d1和d2的兩個光阻圖案701和702,而這最終亦將形成這些尺寸的兩個磁性穿隧接面元件。自由沉積於磁性穿隧接面堆疊物30之上的上電極40為例如包含Ta、Ti、TaN或TiN等導電材料之導電層。化學機械研磨停止層50為SiO
2或SiON層,並沉積於上電極40之上。化學機械研磨犧牲層60為Ta、Ti、TaN和TiN層,並沉積於該化學機械研磨停止層50之上。為了改善隨後的電漿蝕刻選擇性和圖案完整性,介電硬遮罩層,例如SiN、SiO
2或SiON層,可選擇性地設置於化學機械研磨犧牲層60之上(圖中未具體示出)。光阻圖案701和702可經由本領域所公知的光微影製程所形成。如第1A圖所示,為了更佳理解本發明實施例所揭露方法之技術特徵,其以第1A圖所揭露之光阻圖案寬度d1和d2,其中寬度d1> 寬度d2,作為本發明兩個示例性的說明。在此實施例中,寬度d1約為60-100nm,寬度d2約為10-60nm。
From bottom to top, the
在此實施例中一個重要的關鍵在於,在磁性穿隧接面元件中的其中一個在尺寸上會比另一個更大(於水平方向上),以致使蝕刻製程最終將留下不同的厚度(垂直方向),這可能會對製程良率產生不良的影響。將第一電漿蝕刻110施加於光阻圖案701和702之間的開口,以分離堆疊物。An important key point in this embodiment is that one of the magnetic tunnel junction elements is larger in size (in the horizontal direction) than the other, so that the etching process will eventually leave a different thickness ( Vertical direction), which may have an adverse effect on the process yield. The
接著,請參閱第1B圖,其為第1A圖之結構在經由電漿蝕刻(反應性離子蝕刻、離子束蝕刻或前述之組合)後之示意圖,其於兩個大致均勻的寬度分別為d1和d2的剩餘部分之間形成間隔80。具有較大寬度d1的堆疊部分包含剩餘的化學機械研磨犧牲層601具有最終厚度h1,而具有較小尺寸圖案的化學機械研磨犧牲層602的最終厚度為h2,其中厚度h1大於厚度h2。其中,造成此最終厚度差異的原因是由於,在較小尺寸化學機械研磨犧牲層602上的較小尺寸的光阻層(第1A圖中的光阻圖案702)在電漿蝕刻過程中會較快地消耗,導致部分化學機械研磨犧牲層602也會被蝕刻掉。可以想像的是,如果上電極(第1A圖中的上電極40)直接設置於光阻層及/或未示出的介電硬遮罩層底下,那麼,上電極401和402將取代化學機械研磨犧牲層601和602而殘留下不同的厚度。Next, please refer to Figure 1B, which is a schematic diagram of the structure of Figure 1A after plasma etching (reactive ion etching, ion beam etching, or a combination of the foregoing), which has two substantially uniform widths d1 and
如第1C圖所示,在電漿蝕刻之後,封裝層90沉積於圖案化的磁性穿隧接面堆疊物中,以填充之間的間隔80(第1B圖)。封裝層90例如可以是SiN、SC或SiCN,並通過化學氣相沉積(chemical vapor deposition,CVD)形成。接著,同樣如第1C圖所示,利用第2圖中所列出的研磨漿1進行第一化學機械研磨120,其可對封裝層90的材料以及選擇性附加的介電硬遮罩(若有使用的話)執行高研磨速率。利用第一化學機械研磨製程120可完全移除封裝層90的上部以及附加的硬遮罩部分(若有使用的話),並且停止在剩餘的化學機械研磨犧牲層601和602處。As shown in FIG. 1C, after plasma etching, an
再如第1C圖所示,之後再使用如第2圖中所列的研磨漿2進行第二化學機械研磨製程130,以將剩餘的化學機械研磨犧牲層601和602完全研磨掉。基於研磨漿2對於化學機械研磨停止層的材料具有極低的研磨速率,故此研磨製程停止於化學機械研磨停止層501和502上。As shown in FIG. 1C, the second chemical
接下來,請參閱第1D圖所示,本發明再次施加第二電漿蝕刻140以對化學機械研磨停止層501和502進行回蝕刻,並從而暴露位於其下之上電極401和402的上表面。如第1E圖所示,此時,所得到上電極401和402所暴露的上表面現在是共平面的,並且兩個磁性穿隧接面元件301和302現在是電性分離的,並可完全由上電極401、402與下電極201、202所個別定義出來。在此情況下,兩個元件處於相同的高度,並且自第1B圖中所示的第一蝕刻製程而產生的任何高度差在此時亦已經全然消弭了。Next, referring to Figure 1D, the present invention applies a
最後,如第1F圖所示,一共同的頂部金屬接點100(例如Ta、TaN、Ti、Al或Cu層)沉積於上電極401和402的共面表面上,以形成與兩個實施例中的磁性穿隧接面元件301和302(並以其他方式絕緣)的電性連接。大尺寸圖案最終寬度d3和小尺寸圖案最終寬度d4各自具有其單獨的上電極401、402,並具有共平面的頂表面與相同的上電極厚度h3,藉此避免習知因需在頂部金屬接點100中形成電性開口而引發的良率損耗等問題。Finally, as shown in Figure 1F, a common top metal contact 100 (such as a Ta, TaN, Ti, Al, or Cu layer) is deposited on the coplanar surfaces of the
如本領域具通常知識者可以理解的,本發明實施例上述之描述係在於給出對本發明技術思想的公開說明,而並非對本發明實施例的限制。任何對於形成或提供複數個小尺寸(在大約60奈米的水平尺寸範圍內)的磁性穿隧接面元件,使其具有均勻厚度(在垂直方向)的上電極之形成方法、材料、結構、或尺寸,旨在改善其良率的修改或調整,依據本發明實施例所附權利要求所限定本發明實施例的精神和範圍,而仍然應隸屬於本發明實施例之發明範疇。As those with ordinary knowledge in the art can understand, the above description of the embodiments of the present invention is intended to provide a public description of the technical ideas of the present invention, and is not a limitation to the embodiments of the present invention. Any method, material, structure, method for forming or providing a plurality of magnetic tunnel junction elements of small size (within the horizontal size range of about 60 nanometers) to have uniform thickness (in the vertical direction) of the upper electrode Or size is modified or adjusted to improve its yield. The spirit and scope of the embodiments of the present invention are defined by the appended claims according to the embodiments of the present invention, and should still belong to the scope of the invention of the embodiments of the present invention.
依據一實施例,磁阻式隨機存取記憶體陣列包含共同基底;N個在空間上各自獨立之多層元件,形成於共同基底上,其中每個多層元件具有寬度d n,其中n=1…N,且各寬度彼此不同;每個多層元件具有相同高度,且用於填充間隔的封裝層形成於相鄰的多層元件之間,封裝層具有可變寬度s jk,其中j=1…N,且k=j+1;其中每個該多層元件更包含下電極,具有大致相同厚度;主動裝置元件,形成於下電極上;上電極,形成於主動裝置元件上,其中上電極具有大致相同厚度,且所有上電極的頂表面為共平面;以及單一頂部金屬接點,形成於上電極上,以與每個上電極形成無開路的電性連接。 According to an embodiment, a magnetoresistive random access memory array includes a common substrate; N spatially independent multilayer elements are formed on the common substrate, wherein each multilayer element has a width d n , where n=1... N, and the widths are different from each other; each multilayer component has the same height, and the packaging layer for filling the gap is formed between adjacent multilayer components. The packaging layer has a variable width s jk , where j=1...N, And k=j+1; wherein each of the multilayer components further includes a bottom electrode having substantially the same thickness; an active device component is formed on the bottom electrode; an upper electrode is formed on the active device component, wherein the upper electrode has substantially the same thickness , And the top surfaces of all the upper electrodes are coplanar; and a single top metal contact is formed on the upper electrodes to form an electrical connection with each upper electrode without an open circuit.
在其他實施例中,其中上電極和下電極由Ta、Ti、TaN或TiN形成,並具有約200-1000A的厚度。In other embodiments, the upper electrode and the lower electrode are formed of Ta, Ti, TaN or TiN, and have a thickness of about 200-1000 Å.
在其他實施例中,其中每個主動裝置元件為磁性穿隧接面元件。In other embodiments, each active device element is a magnetic tunnel junction element.
在其他實施例中,其中每個多層元件的例示性寬度為約60奈米或60奈米以下。In other embodiments, the exemplary width of each multilayer element is about 60 nanometers or less.
在其他實施例中,其中該封裝層為SiN、SC或SiCN層。In other embodiments, the encapsulation layer is a SiN, SC or SiCN layer.
依據一實施例,磁阻式隨機存取記憶體陣列的形成方法,包含提供基底;在基底上依序相鄰地形成多層堆疊物,包含下電極,接觸基底;多層堆疊物,包含複數個功能性元件層;上電極,覆蓋多層堆疊物,並具有高度;化學機械研磨停止層,覆蓋上電極;化學機械研磨犧牲層,或可選擇性地與硬遮罩層組合,覆蓋化學機械研磨停止層;圖案化光阻層,用以定義出陣列間的寬度與間隔距離;使用圖案化光阻層對多層堆疊物進行圖案化製程。According to one embodiment, a method for forming a magnetoresistive random access memory array includes providing a substrate; forming a multilayer stack on the substrate adjacent to each other, including a bottom electrode, contacting the substrate; and the multilayer stack including a plurality of functions Sexual element layer; upper electrode, covering the multilayer stack and having a height; chemical mechanical polishing stop layer, covering the upper electrode; chemical mechanical polishing sacrificial layer, or optionally combined with a hard mask layer, covering the chemical mechanical polishing stop layer ; The patterned photoresist layer is used to define the width and spacing between the arrays; the patterned photoresist layer is used to pattern the multilayer stack.
在其他實施例中,其中圖案化製程包含施加第一電漿蝕刻通過圖案化光阻層,以將多層堆疊物分離成具有彼此相鄰但各自獨立部分的陣列,其中每個部分具有寬度,且每個部分與由圖案化光阻層所預先定義的相鄰部分之間形成間隔,經由第一電漿蝕刻後,在化學機械研磨犧牲層,或選擇性地與硬遮罩層之組合上會形成有最終未確定高度,其中每個部分具有未確定的獨特高度導致最終未確定高度;透過沉積封裝層填充多層堆疊物中因第一電漿蝕刻所移除的部分;使用第一研磨漿與第一化學機械研磨製程,在使用有化學機械研磨層與硬遮罩層之組合的情況下,移除封裝層的上部與硬遮罩層,並且停止於化學機械研磨犧牲層,若不使用硬遮罩層,則移除封裝層的上部並且停止於化學機械研磨犧牲層;使用第二研磨漿與第二化學機械研磨製程,移除化學機械研磨犧牲層並且停止於化學機械研磨停止層;使用第二電漿蝕刻製程,移除經由第二化學機械研磨製程所暴露出的化學機械研磨停止層,從而在圖案化的多層堆疊物的每個部分上暴露出上電極,其中每個上電極與相鄰部分之間的封裝層的頂表面為共平面,並且每個上電極具有相同的高度;形成頂部金屬接點以覆蓋共平面的頂表面,使得頂部金屬接點與每個上電極形成電性連接,且電性連接與電路開路無關。In other embodiments, the patterning process includes applying a first plasma etching through the patterned photoresist layer to separate the multilayer stack into an array having adjacent but independent portions, wherein each portion has a width, and Each part forms a gap with the adjacent part pre-defined by the patterned photoresist layer. After the first plasma etching, the sacrificial layer is chemically mechanically polished or selectively combined with the hard mask layer. A final undetermined height is formed, where each part has an undetermined unique height resulting in the final undetermined height; the part removed by the first plasma etching in the multilayer stack is filled by depositing an encapsulation layer; the first polishing slurry is used with In the first chemical mechanical polishing process, in the case of using a combination of a chemical mechanical polishing layer and a hard mask layer, remove the upper part of the encapsulation layer and the hard mask layer, and stop at the chemical mechanical polishing sacrificial layer, if the hard mask layer is not used For the mask layer, remove the upper part of the encapsulation layer and stop at the chemical mechanical polishing sacrificial layer; use the second slurry and the second chemical mechanical polishing process to remove the chemical mechanical polishing sacrificial layer and stop at the chemical mechanical polishing stop layer; use The second plasma etching process removes the chemical mechanical polishing stop layer exposed by the second chemical mechanical polishing process, thereby exposing upper electrodes on each part of the patterned multilayer stack, wherein each upper electrode is The top surface of the encapsulation layer between adjacent parts is coplanar, and each upper electrode has the same height; the top metal contact is formed to cover the coplanar top surface, so that the top metal contact forms an electrical connection with each upper electrode. The electrical connection has nothing to do with the open circuit.
在其他實施例中,其中上電極的該高度在約200-1000A之間。In other embodiments, the height of the upper electrode is between about 200-1000A.
在其他實施例中,其中在使用化學機械研磨犧牲層與硬遮罩層組合使得包含CHF 3、CH 2F 2或C 4F 8的電漿蝕刻可用以蝕刻介電硬遮罩,且在光阻層上具有相當低的蝕刻速率。 In other embodiments, the combination of the sacrificial layer and the hard mask layer using chemical mechanical polishing makes the plasma etching containing CHF 3 , CH 2 F 2 or C 4 F 8 used to etch the dielectric hard mask, and the light The resist layer has a relatively low etching rate.
在其他實施例中,其中硬遮罩層為SiN、SiO 2或SiON層。 In other embodiments, the hard mask layer is a SiN, SiO 2 or SiON layer.
在其他實施例中,其中化學機械研磨犧牲層為Ta、Ti、TaN或TiN層。In other embodiments, the chemical mechanical polishing sacrificial layer is a Ta, Ti, TaN or TiN layer.
在其他實施例中,其中化學機械研磨停止層為SiO 2或SiON層。 In other embodiments, the chemical mechanical polishing stop layer is an SiO 2 or SiON layer.
在其他實施例中,其中第一研磨漿為氧化鋯顆粒的研磨漿。In other embodiments, the first slurry is a slurry of zirconia particles.
在其他實施例中,其中第二研磨漿為氧化鋁顆粒的研磨漿。In other embodiments, the second slurry is a slurry of alumina particles.
10 基底
20、201、202 下電極
30 磁性穿隧接面堆疊物
40、401、402 上電極
50、501、502 化學機械研磨停止層
60、601、602 化學機械研磨犧牲層
80 間隔
90 封裝層
100 頂部金屬接點
110 第一電漿蝕刻
120 第一化學機械研磨
130 第二化學機械研磨
140 第二電漿蝕刻
301 、302 磁性穿隧接面元件
701 、702 光阻圖案
d1、d2、d3、d4 寬度
h1、h2、h3 厚度
10
第1A圖、第1B圖、第1C圖、第1D圖、第1E圖、第1F圖為一序列用以製造出高良率各種尺寸磁阻式隨機存取記憶體元件的製程示意圖。 第2圖揭露兩種可產生不同研磨速率之化學機械研磨的研磨漿列表,其可用於磁阻式隨機存取記憶體元件層中的不同元件。 Figure 1A, Figure 1B, Figure 1C, Figure 1D, Figure 1E, Figure 1F are a sequence of schematic diagrams of manufacturing high-yield magnetoresistive random access memory devices of various sizes. FIG. 2 discloses a list of two kinds of chemical mechanical polishing slurry that can produce different polishing rates, which can be used for different devices in the magnetoresistive random access memory device layer.
10 基底
100 頂部金屬接點
201、202 下電極
301 、302 磁性穿隧接面元件
401 、402 上電極
d3、d4 寬度
h3 厚度
10
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108104463A TWI704704B (en) | 2019-02-11 | 2019-02-11 | Magnetoresistive random access memory array and methods for forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108104463A TWI704704B (en) | 2019-02-11 | 2019-02-11 | Magnetoresistive random access memory array and methods for forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202030896A TW202030896A (en) | 2020-08-16 |
TWI704704B true TWI704704B (en) | 2020-09-11 |
Family
ID=73002860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108104463A TWI704704B (en) | 2019-02-11 | 2019-02-11 | Magnetoresistive random access memory array and methods for forming the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI704704B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100193891A1 (en) * | 2008-02-18 | 2010-08-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | In-Situ Formed Capping Layer in MTJ Devices |
US9397139B1 (en) * | 2015-09-23 | 2016-07-19 | Globalfoundries Singapore Pte. Ltd. | Integrated inductor and magnetic random access memory device |
-
2019
- 2019-02-11 TW TW108104463A patent/TWI704704B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100193891A1 (en) * | 2008-02-18 | 2010-08-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | In-Situ Formed Capping Layer in MTJ Devices |
US9397139B1 (en) * | 2015-09-23 | 2016-07-19 | Globalfoundries Singapore Pte. Ltd. | Integrated inductor and magnetic random access memory device |
Also Published As
Publication number | Publication date |
---|---|
TW202030896A (en) | 2020-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110915011B (en) | Low etching rate self-aligned magnetic tunneling junction device structure | |
TW560037B (en) | Self-aligned conductive line for cross-point magnetic memory integrated circuits | |
US8802451B2 (en) | Method for manufacturing high density non-volatile magnetic memory | |
TWI391988B (en) | Methods for device fabrication using pitch reduction and associated structures | |
US11088320B2 (en) | Fabrication of large height top metal electrode for sub-60nm magnetoresistive random access memory (MRAM) devices | |
US11545622B2 (en) | CMP stop layer and sacrifice layer for high yield small size MRAM devices | |
US9722174B1 (en) | Low dielectric constant interlayer dielectrics in spin torque magnetoresistive devices | |
WO2015126829A1 (en) | Method for patterning a substrate for planarization | |
US9082695B2 (en) | Vialess memory structure and method of manufacturing same | |
WO2005096371A1 (en) | Method of fabricating a mram device | |
KR100743651B1 (en) | Method for forming contact of semiconductor device | |
TWI619281B (en) | Method of making device | |
JP2011238679A (en) | Magnetic storage device manufacturing method and magnetic storage device | |
US7071009B2 (en) | MRAM arrays with reduced bit line resistance and method to make the same | |
TWI704704B (en) | Magnetoresistive random access memory array and methods for forming the same | |
US10868236B2 (en) | Method for manufacturing reduced pitch magnetic random access memory pillar | |
CN109585645B (en) | MTJ device, manufacturing method thereof and MRAM | |
EP3840034B1 (en) | Method for producing nanoscaled electrically conductive lines for semiconductor devices | |
CN117476549B (en) | Method for manufacturing semiconductor laminated structure and semiconductor structure | |
KR100871369B1 (en) | Method for fabricating semiconductor device | |
TWI847474B (en) | Method of manufacturing semiconductor structure using multi-layer hard mask | |
US8329522B2 (en) | Method for fabricating semiconductor device | |
JP2003060169A (en) | Method for manufacturing magnetic memory and magnetic head | |
TW202332000A (en) | Method for forming semiconductor memory structure | |
KR101987248B1 (en) | Method for manufacturing semiconductor devie |