TWI703543B - Gate driving device - Google Patents

Gate driving device Download PDF

Info

Publication number
TWI703543B
TWI703543B TW108121901A TW108121901A TWI703543B TW I703543 B TWI703543 B TW I703543B TW 108121901 A TW108121901 A TW 108121901A TW 108121901 A TW108121901 A TW 108121901A TW I703543 B TWI703543 B TW I703543B
Authority
TW
Taiwan
Prior art keywords
signal
transistor
gate
receive
external clock
Prior art date
Application number
TW108121901A
Other languages
Chinese (zh)
Other versions
TW202101410A (en
Inventor
劉柏村
鄭光廷
林怡晨
周凱茹
陳辰恩
鍾佩芳
陳致豪
呂宣毅
Original Assignee
凌巨科技股份有限公司
國立交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凌巨科技股份有限公司, 國立交通大學 filed Critical 凌巨科技股份有限公司
Priority to TW108121901A priority Critical patent/TWI703543B/en
Application granted granted Critical
Publication of TWI703543B publication Critical patent/TWI703543B/en
Publication of TW202101410A publication Critical patent/TW202101410A/en

Links

Images

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Logic Circuits (AREA)

Abstract

A gate driving device is provided. The gate driving device includes a plurality stages of gate driving circuits. The Mth gate driving circuit includes a shift register and a plurality of gate drive signal generating circuits. The shift register is configured to generate the Mth common gate signal in a first time interval, and rapidly raise a voltage level of an anti-noise enable signal in the second time interval to perform an anti-noise operation. The gate drive signal generating circuits are configured to receive the Mth common gate signal in the first time interval, and float with the shift register according to a high voltage level of the Mth common gate signal, so as to generate a plurality of gate driving signals corresponding to the internal clock signals.

Description

閘極驅動裝置Gate drive device

本發明是有關於一種閘極驅動裝置,且特別是有關於一種具有較小的佈局面積以及對極端溫度具有高信賴性的閘極驅動裝置。The present invention relates to a gate driving device, and particularly to a gate driving device with a smaller layout area and high reliability to extreme temperatures.

薄膜電晶體液晶顯示器(Thin Film Transistor Liquid Crystal Displays,TFT-LCDs)已成為現代顯示科技產品的主流。相對於多晶矽薄膜電晶體(Poly-Si TFT),使用非晶矽薄膜電晶體(a-Si TFT)所製作的顯示器能夠降低生產成本,且能夠在低溫下製作在大面積的玻璃基板上,均勻性好且能提高生產速率。Thin Film Transistor Liquid Crystal Displays (TFT-LCDs) have become the mainstream of modern display technology products. Compared with Poly-Si TFT, the display made of amorphous silicon thin film transistor (a-Si TFT) can reduce production cost, and can be fabricated on a large area glass substrate at low temperature. Good performance and can increase the production rate.

隨著系統整合式玻璃面板(System-on-Glass,SOG)的概念被陸續提出,近來許多產品將顯示器驅動電路中的閘極驅動裝置整合在玻璃基板上,即為GOA(Gate Driver on Array)電路。GOA具有諸多優勢,除了可以減少顯示器邊框的面積以達成窄邊框之外,更能夠減少閘極掃描驅動IC的使用,降低購買IC成本及避免玻璃與IC貼合時斷線問題,用以提升產品良率。With the concept of System-on-Glass (SOG) being put forward one after another, recently many products integrate the gate driving device in the display driving circuit on the glass substrate, which is called GOA (Gate Driver on Array) Circuit. GOA has many advantages. In addition to reducing the area of the display frame to achieve a narrow frame, it can also reduce the use of gate scan driver ICs, reduce the cost of purchasing ICs, and avoid disconnection problems during glass and IC bonding, so as to improve products Yield rate.

目前電子產品的面板設計逐漸走向窄邊框化,並且顯示區域則往大尺寸發展的趨勢,為此常減少閘極驅動裝置的電晶體數量以節省不必要的佈局面積。除此之外,為達到良好的畫面品質,螢幕解析度必須提升。在此情況下每條掃描線開啟的時間縮短。因此,對在極端溫度時,如在低溫(例如是攝氏-40度)與高溫(例如是攝氏90度)時之信賴性減損。由此可知,如何設計出具有較小的佈局面積以及對極端溫度具有高信賴性的閘極驅動裝置,是目前閘極驅動裝置的開發重點之一。At present, the panel design of electronic products is gradually becoming narrower, and the display area is becoming larger. For this reason, the number of transistors in the gate driving device is often reduced to save unnecessary layout area. In addition, in order to achieve good picture quality, the screen resolution must be increased. In this case, the turn-on time of each scan line is shortened. Therefore, the reliability is reduced at extreme temperatures, such as low temperature (for example, -40 degrees Celsius) and high temperature (for example, 90 degrees Celsius). It can be seen from this that how to design a gate drive device with a smaller layout area and high reliability to extreme temperatures is one of the current development focuses of the gate drive device.

本發明提供一種具有較小的佈局面積以及對極端溫度具有高信賴性的閘極驅動裝置。The present invention provides a gate driving device with a small layout area and high reliability to extreme temperatures.

本發明的閘極驅動裝置包括多級閘極驅動電路。上述的多級閘極驅動電路分別用以產生多個閘極驅動信號。上述的多級閘極驅動電路中,第M級閘極驅動電路包括移位暫存器以及多個閘極驅動信號產生電路。移位暫存器經配置以在第一時間區間依據第一外部時脈信號以及第(M-2)級共用閘極信號產生第M級共用閘極信號,在第二時間區間依據第(M+2)級共用閘極信號以及第二外部時脈信號停止產生第M級共用閘極信號,並在第二時間區間依據第三外部時脈信號以及第一外部時脈信號對抗雜訊致能信號的電壓準位進行第一階段抬升操作以及第二階段抬升操作。移位暫存器藉由抗雜訊致能信號執行抗雜訊操作。上述多個閘極驅動信號產生電路分別耦接於移位暫存器。上述多個閘極驅動信號產生電路經配置以在第一時間區間接收第M級共用閘極信號,並依據第M級共用閘極信號的高電壓準位與移位暫存器浮接,藉以利用內部時脈信號對應產生上述多個閘極驅動信號中的其中之一。其中,M為大於2的正整數。The gate drive device of the present invention includes a multi-stage gate drive circuit. The above-mentioned multi-level gate drive circuits are respectively used to generate multiple gate drive signals. In the above-mentioned multi-level gate driving circuit, the M-th gate driving circuit includes a shift register and a plurality of gate driving signal generating circuits. The shift register is configured to generate the M-th stage common gate signal in the first time interval according to the first external clock signal and the (M-2)-th stage shared gate signal, and in the second time interval according to the (M-th) stage common gate signal +2) The level shared gate signal and the second external clock signal stop generating the M-th level shared gate signal, and in the second time interval, the third external clock signal and the first external clock signal are used to prevent noise The voltage level of the signal performs the first stage raising operation and the second stage raising operation. The shift register performs an anti-noise operation by the anti-noise enable signal. The multiple gate drive signal generating circuits are respectively coupled to the shift register. The above-mentioned multiple gate drive signal generating circuits are configured to receive the M-th stage shared gate signal in the first time interval, and float with the shift register according to the high voltage level of the M-th stage shared gate signal, thereby The internal clock signal is used to correspondingly generate one of the above-mentioned gate drive signals. Among them, M is a positive integer greater than 2.

基於上述,在閘極驅動裝置中,第M級閘極驅動電路包括移位暫存器以及多個閘極驅動信號產生電路。在第一時間區間,移位暫存器產生第M級共用閘極信號。上述多個閘極驅動信號產生電路接收第M級共用閘極信號,並依據第M級共用閘極信號的高電壓準位與移位暫存器浮接以產生多個閘極驅動信號。除此之外,在第二時間區間,移位暫存器對抗雜訊致能信號的電壓準位進行兩階段抬升的操作,藉以執行抗雜訊操作。如此一來,本發明的閘極驅動裝置具有較小的佈局面積以及對極端溫度的較高信賴性。Based on the above, in the gate driving device, the M-th gate driving circuit includes a shift register and a plurality of gate driving signal generating circuits. In the first time interval, the shift register generates the M-th stage shared gate signal. The multiple gate drive signal generating circuits receive the M-th stage shared gate signal, and generate multiple gate drive signals according to the high voltage level of the M-th stage shared gate signal and the shift register floating. In addition, in the second time interval, the shift register performs a two-stage raising operation on the voltage level of the anti-noise enabling signal, so as to perform the anti-noise operation. As a result, the gate driving device of the present invention has a smaller layout area and higher reliability against extreme temperatures.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

請參考圖1以及圖4,圖1是依據本發明第一實施例所繪示的第M級閘極驅動電路的電路示意圖。圖4是依據本發明一實施例所繪示的時序圖。在本實施例中,閘極驅動裝置包括多級閘極驅動電路。上述的多級閘極驅動電路分別用以產生多個閘極驅動信號。上述的多級閘極驅動電路中,第M級閘極驅動電路100包括移位暫存器110以及閘極驅動信號產生電路120_1~120_8。M為大於2的正整數。本發明的閘極驅動信號產生電路的數量可以是多個,並不以本實施例為限。Please refer to FIG. 1 and FIG. 4. FIG. 1 is a circuit diagram of the M-th gate driving circuit according to the first embodiment of the present invention. FIG. 4 is a timing diagram drawn according to an embodiment of the invention. In this embodiment, the gate driving device includes a multi-stage gate driving circuit. The above-mentioned multi-level gate drive circuits are respectively used to generate multiple gate drive signals. In the above-mentioned multi-stage gate drive circuit, the M-th stage gate drive circuit 100 includes a shift register 110 and gate drive signal generating circuits 120_1 to 120_8. M is a positive integer greater than 2. The number of gate drive signal generating circuits of the present invention can be multiple, and is not limited to this embodiment.

在本實施例中,移位暫存器110接收第一外部時脈信號CK1、第二外部時脈信號CK3、第三外部時脈信號CK4、第(M-2)級共用閘極信號G(M-2)以及第(M+2)級共用閘極信號G(M+2)。移位暫存器110在第一時間區間T1會依據第一外部時脈信號CK1以及第(M-2)級共用閘極信號G(M-2)產生第M級共用閘極信號G(M)。移位暫存器110在第二時間區間T2會依據第(M+2)級共用閘極信號G(M+2)以及第二外部時脈信號CK3停止產生第M級共用閘極信號G(M)。除此之外,在第二時間區間T2,移位暫存器110還依據第三外部時脈信號CK4以及第一外部時脈信號CK1對抗雜訊致能信號的電壓準位進行兩階段的抬升。也就是移位暫存器110在第二時間區間T2會對抗雜訊致能信號的電壓準位進行第一階段抬升操作以及第二階段抬升操作。移位暫存器110藉由抗雜訊致能信號執行抗雜訊操作。抗雜訊致能信號的電壓準位進行第一階段抬升操作以及第二階段抬升操作可使抗雜訊致能信號在低溫環境下能夠快速地被抬升到指定的高電壓準位。因此,移位暫存器110在低溫環境下可藉由具有的足夠高的電壓準位的抗雜訊致能信號執行抗雜訊操作。在本實施例中,第二時間區間T2接續於在第一時間區間T1之後。第三外部時脈信號CK4處於高電壓準位的時間區間與第一外部時脈信號CK1處於高電壓準位的時間區間部分重疊。第一外部時脈信號CK1反相於第二外部時脈信號CK3。In this embodiment, the shift register 110 receives the first external clock signal CK1, the second external clock signal CK3, the third external clock signal CK4, and the (M-2)th stage common gate signal G( M-2) and the (M+2) level share the gate signal G(M+2). The shift register 110 generates the M-th stage shared gate signal G(M-2) according to the first external clock signal CK1 and the (M-2)th stage shared gate signal G(M-2) in the first time interval T1 ). The shift register 110 will stop generating the M-th stage shared gate signal G(M+2) and the second external clock signal CK3 during the second time interval T2. M). In addition, in the second time interval T2, the shift register 110 also performs a two-stage raising of the voltage level of the anti-noise enable signal according to the third external clock signal CK4 and the first external clock signal CK1 . That is, the shift register 110 performs the first-stage raising operation and the second-stage raising operation on the voltage level of the anti-noise enable signal during the second time interval T2. The shift register 110 performs an anti-noise operation by the anti-noise enable signal. Performing the first-stage raising operation and the second-stage raising operation on the voltage level of the anti-noise enabling signal enables the anti-noise enabling signal to be quickly raised to the specified high voltage level in a low temperature environment. Therefore, the shift register 110 can perform an anti-noise operation by using an anti-noise enable signal with a sufficiently high voltage level in a low temperature environment. In this embodiment, the second time interval T2 continues after the first time interval T1. The time interval during which the third external clock signal CK4 is at the high voltage level partially overlaps the time interval during which the first external clock signal CK1 is at the high voltage level. The first external clock signal CK1 is inverted from the second external clock signal CK3.

在本實施例中,閘極驅動信號產生電路120_1~120_8分別耦接於移位暫存器110。閘極驅動信號產生電路120_1~120_8用以在第一時間區間T1接收移位暫存器110所提供的第M級共用閘極信號G(M)。閘極驅動信號產生電路120_1~120_8會依據第M級共用閘極信號G(M)的高電壓準位與移位暫存器110浮接,藉以利用內部時脈信號clk1~clk8對應產生閘極驅動信號GS(1)~GS(8)。外部時脈信號CK1~CK4的工作週期大於內部時脈信號clk1~clk8的工作週期。也就是第一外部時脈信號CK1、第二外部時脈信號CK3以及第三外部時脈信號CK4的工作週期大於內部時脈信號clk1~clk8的工作週期。在本實施例中,移位暫存器110浮接後,閘極驅動信號產生電路120_1~120_8用以接收第M級共用閘極信號G(M)的接收端會是浮動的。因此,閘極驅動信號產生電路120_1~120_8可依據內部時脈信號clk1~clk8經由閘極驅動信號產生電路120_1~120_8的內部電容(如,寄生電容)對上述的接收端進行耦合而抬升接收端處的電壓值(即,第M級共用閘極信號G(M)的電壓準位)。因此,上述的機制能夠補償閘極驅動信號產生電路120_1~120_8因高溫所造成的電性衰退。藉以利用內部時脈信號clk1~clk8完全地輸出閘極驅動信號GS(1)~GS(8)。在本實施例中,閘極驅動信號產生電路120_1~120_8與移位暫存器110浮接後,閘極驅動信號產生電路120_1會利用內部時脈信號clk1產生閘極驅動信號GS(1)。閘極驅動信號產生電路120_2會利用內部時脈信號clk2產生閘極驅動信號GS(2),依此類推。In this embodiment, the gate drive signal generating circuits 120_1 to 120_8 are respectively coupled to the shift register 110. The gate drive signal generating circuits 120_1 to 120_8 are used for receiving the M-th common gate signal G(M) provided by the shift register 110 in the first time interval T1. The gate drive signal generating circuits 120_1~120_8 will float to the shift register 110 according to the high voltage level of the M-th shared gate signal G(M), thereby using the internal clock signals clk1~clk8 to generate gates correspondingly Drive signals GS(1)~GS(8). The duty cycle of the external clock signals CK1~CK4 is greater than the duty cycle of the internal clock signals clk1~clk8. That is, the duty cycles of the first external clock signal CK1, the second external clock signal CK3, and the third external clock signal CK4 are greater than the duty cycles of the internal clock signals clk1~clk8. In this embodiment, after the shift register 110 is floating, the gate drive signal generating circuits 120_1~120_8 receive the M-th stage common gate signal G(M) at the receiving end that is floating. Therefore, the gate drive signal generating circuits 120_1~120_8 can couple the above-mentioned receiving end through the internal capacitors (eg, parasitic capacitance) of the gate drive signal generating circuits 120_1~120_8 according to the internal clock signals clk1~clk8 to raise the receiving end. (Ie, the voltage level of the M-th shared gate signal G(M)). Therefore, the above-mentioned mechanism can compensate the electrical degradation of the gate drive signal generating circuits 120_1 to 120_8 due to high temperature. Thus, the internal clock signals clk1~clk8 are used to completely output the gate drive signals GS(1)~GS(8). In this embodiment, after the gate drive signal generating circuits 120_1 to 120_8 and the shift register 110 are floating, the gate drive signal generating circuit 120_1 uses the internal clock signal clk1 to generate the gate drive signal GS(1). The gate drive signal generating circuit 120_2 uses the internal clock signal clk2 to generate the gate drive signal GS(2), and so on.

在此值得一提的是,在閘極驅動裝置中,第M級閘極驅動電路100包括單一個移位暫存器110以及8個閘極驅動信號產生電路120_1~120_8。在第一時間區間T1,移位暫存器110產生第M級共用閘極信號G(M)。閘極驅動信號產生電路120_1~120_8依據第M級共用閘極信號G(M)的高電壓準位與移位暫存器110浮接以產生8個閘極驅動信號GS(1)~GS(8)。如此一來,本實施例能提供具有較小的佈局面積的閘極驅動裝置。除此之外,在第一時間區間T1,閘極驅動信號產生電路120_1~120_8利用上述的浮接機制來抬升第M級共用閘極信號G(M)的電壓準位,藉以補償閘極驅動信號產生電路120_1~120_8因高溫所造成的電性衰退。在第二時間區間T2,移位暫存器110對抗雜訊致能信號的電壓準位進行兩階段的抬升操作,藉以快速地抬升抗雜訊致能信號的電壓準位。如此一來,本實施例的閘極驅動裝置更能在極端溫度的環境中具有高信賴性。It is worth mentioning here that, in the gate driving device, the M-th gate driving circuit 100 includes a single shift register 110 and 8 gate driving signal generating circuits 120_1 to 120_8. In the first time interval T1, the shift register 110 generates the M-th stage common gate signal G(M). The gate drive signal generating circuits 120_1~120_8 are connected to the shift register 110 according to the high voltage level of the M-th shared gate signal G(M) to generate 8 gate drive signals GS(1)~GS( 8). In this way, this embodiment can provide a gate driving device with a smaller layout area. In addition, in the first time interval T1, the gate drive signal generating circuits 120_1~120_8 use the above floating mechanism to raise the voltage level of the M-th shared gate signal G(M) to compensate for the gate drive The signal generating circuits 120_1~120_8 are electrically degraded due to high temperature. In the second time interval T2, the shift register 110 performs a two-stage raising operation on the voltage level of the anti-noise enabling signal, so as to quickly raise the voltage level of the anti-noise enabling signal. In this way, the gate driving device of this embodiment can be more reliable in extreme temperature environments.

進一步來說明移位暫存器的實施細節。請參考圖2以及圖4,圖2是依據本發明第一實施例所繪示的移位暫存器的電路示意圖。在本實施例中,移位暫存器110包括充電放電電路112、輸出級電路114以及抗雜訊電路116。Further explain the implementation details of the shift register. Please refer to FIG. 2 and FIG. 4. FIG. 2 is a circuit diagram of the shift register according to the first embodiment of the present invention. In this embodiment, the shift register 110 includes a charging and discharging circuit 112, an output stage circuit 114, and an anti-noise circuit 116.

在本實施例中,充電放電電路112提供控制信號CS。充電放電電路112在第一時間區間T1的第一子時間區間T11依據第(M-2)級共用閘極信號G(M-2)抬升控制信號CS的電壓準位,藉以將控制信號CS的電壓準位抬升到高電壓準位。輸出級電路114耦接於充電放電電路112以接收控制信號CS。輸出級電路114在第一時間區間T1的第二子時間區間T12依據控制信號CS以及第一外部時脈信號CK1產生第M級共用閘極信號G(M)。此外,充電放電電路112還在第二時間區間T2依據第(M+2)級共用閘極信號G(M+2)下拉控制信號CS的電壓準位,藉以將控制信號CS的電壓準位下拉到低電壓準位。輸出級電路114也會在第二時間區間T2依據第二外部時脈信號CK3下拉第M級共用閘極信號G(M)的電壓準位。In this embodiment, the charging and discharging circuit 112 provides a control signal CS. During the first sub-time interval T11 of the first time interval T1, the charging and discharging circuit 112 raises the voltage level of the control signal CS according to the (M-2)th stage shared gate signal G(M-2), thereby reducing the control signal CS The voltage level rises to the high voltage level. The output stage circuit 114 is coupled to the charge and discharge circuit 112 to receive the control signal CS. The output stage circuit 114 generates the M-th stage common gate signal G(M) according to the control signal CS and the first external clock signal CK1 in the second sub-time interval T12 of the first time interval T1. In addition, the charging and discharging circuit 112 also pulls down the voltage level of the control signal CS in the second time interval T2 according to the (M+2)th stage shared gate signal G(M+2), thereby pulling down the voltage level of the control signal CS To the low voltage level. The output stage circuit 114 also pulls down the voltage level of the M-th common gate signal G(M) in the second time interval T2 according to the second external clock signal CK3.

在本實施例中,抗雜訊電路116耦接於充電放電電路112以及輸出級電路114。抗雜訊電路116在第一時間區間T1下拉抗雜訊致能信號的電壓準位。抗雜訊電路116在第二時間區間T2對抗雜訊致能信號的電壓準位進行兩階段的抬升。在第二時間區間T2,抗雜訊電路116依據第三外部時脈信號CK4對抗雜訊致能信號的電壓準位進行第一階段抬升操作,並且隨後依據第三外部時脈信號CK4以及第一外部時脈信號CK1對抗雜訊致能信號的電壓準位進行第二階段抬升操作。In this embodiment, the anti-noise circuit 116 is coupled to the charging and discharging circuit 112 and the output stage circuit 114. The anti-noise circuit 116 pulls down the voltage level of the anti-noise enable signal during the first time interval T1. The anti-noise circuit 116 raises the voltage level of the anti-noise enabling signal in two stages during the second time interval T2. In the second time interval T2, the anti-noise circuit 116 performs the first-stage raising operation according to the voltage level of the third external clock signal CK4 against the noise enable signal, and then according to the third external clock signal CK4 and the first The voltage level of the external clock signal CK1 against the noise enabling signal performs the second stage of raising operation.

詳細來說明,充電放電電路112包括預充電電晶體M1以及放電電晶體M2。預充電電晶體M1的第一端經配置以接收系統高電壓VDD。預充電電晶體M1的第二端耦接於輸出級電路114以及抗雜訊電路116。預充電電晶體M1的控制端經配置以接收第(M-2)級共用閘極信號G(M-2)。放電電晶體M2的第一端耦接於預充電電晶體M1的第二端。放電電晶體M2的第二端經配置以接收系統低電壓VSS。放電電晶體M2的控制端經配置以接收第(M+2)級共用閘極信號G(M+2)。充電放電電路112經由預充電電晶體M1的第二端提供控制信號CS。In detail, the charging and discharging circuit 112 includes a pre-charging transistor M1 and a discharging transistor M2. The first terminal of the pre-charge transistor M1 is configured to receive the system high voltage VDD. The second end of the precharge transistor M1 is coupled to the output stage circuit 114 and the anti-noise circuit 116. The control terminal of the pre-charge transistor M1 is configured to receive the (M-2)th stage common gate signal G(M-2). The first terminal of the discharge transistor M2 is coupled to the second terminal of the precharge transistor M1. The second terminal of the discharge transistor M2 is configured to receive the system low voltage VSS. The control terminal of the discharge transistor M2 is configured to receive the (M+2)th stage common gate signal G(M+2). The charge and discharge circuit 112 provides a control signal CS via the second terminal of the pre-charge transistor M1.

輸出級電路114包括輸出電晶體M3、M4以及輸出級電容C1。輸出電晶體M3的第一端經配置以接收第一外部時脈信號CK1。輸出電晶體M3的第二端經配置以作為移位暫存器110的輸出端。輸出電晶體M3的控制端耦接於充電放電電路112以接收控制信號CS。輸出電晶體M4的第一端耦接於輸出電晶體M3的第二端。輸出電晶體M4的第二端經配置以接收系統低電壓VSS。輸出電晶體M4的控制端經配置以接收第二外部時脈信號CK3。輸出級電容C1耦接於電晶體M1的第二端與電晶體M1的控制端之間。The output stage circuit 114 includes output transistors M3 and M4 and an output stage capacitor C1. The first terminal of the output transistor M3 is configured to receive the first external clock signal CK1. The second terminal of the output transistor M3 is configured as the output terminal of the shift register 110. The control terminal of the output transistor M3 is coupled to the charging and discharging circuit 112 to receive the control signal CS. The first end of the output transistor M4 is coupled to the second end of the output transistor M3. The second terminal of the output transistor M4 is configured to receive the system low voltage VSS. The control terminal of the output transistor M4 is configured to receive the second external clock signal CK3. The output stage capacitor C1 is coupled between the second terminal of the transistor M1 and the control terminal of the transistor M1.

抗雜訊電路116包括第一抗雜訊致能信號產生器1162、第二抗雜訊致能信號產生器1164以及下拉電路1166。第一抗雜訊致能信號產生器1162包括電容C2。電容C2的第一端經配置以接收第三外部時脈信號CK4。電容C2的第二端經配置以產生抗雜訊致能信號AS。電容C2依據第三外部時脈信號CK4對抗雜訊致能信號AS的電壓準位進行第一階段抬升操作。第二抗雜訊致能信號產生器1164耦接於電容C2的第二端。第二抗雜訊致能信號產生器1164接收第一外部時脈信號CK1以及第M級共用閘極信號G(M)。第二抗雜訊致能信號產生器1164在第一時間區間T1依據第M級共用閘極信號G(M)下拉抗雜訊致能信號AS的電壓準位,並在第二時間區間T2依據第一外部時脈信號CK1對抗雜訊致能信號AS的電壓準位進行第二階段抬升操作。下拉電路1166耦接於電容C2的第二端、充電放電電路112以及輸出級電路114。下拉電路1166接收抗雜訊致能信號AS,並在第二時間區間T2依據抗雜訊致能信號AS下拉控制信號CS的電壓準位以及第M級共用閘極信號G(M)的電壓準位。The anti-noise circuit 116 includes a first anti-noise enabling signal generator 1162, a second anti-noise enabling signal generator 1164, and a pull-down circuit 1166. The first anti-noise enabling signal generator 1162 includes a capacitor C2. The first terminal of the capacitor C2 is configured to receive the third external clock signal CK4. The second end of the capacitor C2 is configured to generate the anti-noise enabling signal AS. The capacitor C2 performs the first-stage raising operation according to the voltage level of the third external clock signal CK4 against the noise enable signal AS. The second anti-noise enabling signal generator 1164 is coupled to the second end of the capacitor C2. The second anti-noise enabling signal generator 1164 receives the first external clock signal CK1 and the M-th level common gate signal G(M). The second anti-noise enabling signal generator 1164 pulls down the voltage level of the anti-noise enabling signal AS according to the M-th shared gate signal G(M) in the first time interval T1, and according to the second time interval T2 The voltage level of the first external clock signal CK1 against the noise enable signal AS performs a second stage of raising operation. The pull-down circuit 1166 is coupled to the second end of the capacitor C2, the charging and discharging circuit 112, and the output stage circuit 114. The pull-down circuit 1166 receives the anti-noise enabling signal AS, and pulls down the voltage level of the control signal CS and the voltage level of the M-th common gate signal G(M) in the second time interval T2 according to the anti-noise enabling signal AS Bit.

進一步地,在本實施例中,第二抗雜訊致能信號產生器1164包括第一電晶體M7、第二電晶體M8、第三電晶體M9以及第四電晶體M10。第一電晶體M7的第一端以及第一電晶體M7的控制端經配置以接收第一外部時脈信號CK1。第二電晶體M8的第一端經配置以接收第一外部時脈信號CK1。第二電晶體M8的第二端耦接於電容C2的第二端。第二電晶體M8的控制端耦接於第一電晶體M7的第二端。第三電晶體M9的第一端耦接於第一電晶體M7的第二端。第三電晶體M9的第二端經配置以接收系統低電壓VSS。第三電晶體M9的控制端經配置以接收第M級共用閘極信號G(M)。第四電晶體M10的第一端耦接於第二電晶體M8的第二端。第四電晶體M10的第二端經配置以接收系統低電壓VSS。第四電晶體M10的控制端經配置以接收第M級共用閘極信號G(M)。下拉電路1166包括下拉電晶體M5以及下拉電晶體M6。下拉電晶體M5的第一端經配置以接收控制信號CS。下拉電晶體M5的第二端經配置以接收系統低電壓VSS。下拉電晶體M5的控制端經配置以接收抗雜訊致能信號AS。下拉電晶體M6的第一端經配置以接收第M級共用閘極信號G(M)。下拉電晶體M6的第二端經配置以接收系統低電壓VSS。下拉電晶體M6的控制端經配置以接收抗雜訊致能信號AS。Further, in this embodiment, the second anti-noise enabling signal generator 1164 includes a first transistor M7, a second transistor M8, a third transistor M9, and a fourth transistor M10. The first terminal of the first transistor M7 and the control terminal of the first transistor M7 are configured to receive the first external clock signal CK1. The first terminal of the second transistor M8 is configured to receive the first external clock signal CK1. The second terminal of the second transistor M8 is coupled to the second terminal of the capacitor C2. The control terminal of the second transistor M8 is coupled to the second terminal of the first transistor M7. The first end of the third transistor M9 is coupled to the second end of the first transistor M7. The second terminal of the third transistor M9 is configured to receive the system low voltage VSS. The control terminal of the third transistor M9 is configured to receive the M-th level common gate signal G(M). The first end of the fourth transistor M10 is coupled to the second end of the second transistor M8. The second terminal of the fourth transistor M10 is configured to receive the system low voltage VSS. The control terminal of the fourth transistor M10 is configured to receive the M-th level common gate signal G(M). The pull-down circuit 1166 includes a pull-down transistor M5 and a pull-down transistor M6. The first end of the pull-down transistor M5 is configured to receive the control signal CS. The second terminal of the pull-down transistor M5 is configured to receive the system low voltage VSS. The control terminal of the pull-down transistor M5 is configured to receive the anti-noise enabling signal AS. The first end of the pull-down transistor M6 is configured to receive the M-th level common gate signal G(M). The second terminal of the pull-down transistor M6 is configured to receive the system low voltage VSS. The control terminal of the pull-down transistor M6 is configured to receive the anti-noise enable signal AS.

接下來說明閘極驅動信號產生電路的實施細節。請參考圖3,圖3是依據本發明第一實施例所繪示的閘極驅動信號產生電路的電路示意圖。在本實施例中,閘極驅動信號產生電路120可用以實現圖1所示的閘極驅動信號產生電路120_1~120_8的其中之一。在本實施例中,閘極驅動信號產生電路120包括橋接電晶體MB1以及傳輸電晶體MD1。橋接電晶體MB1的第一端以及控制端共同耦接於移位暫存器(如圖1或圖2所示的移位暫存器110)以接收第M級共用閘極信號G(M)。橋接電晶體MB1的第二端經配置以提供開關信號gu1。也就是說,橋接電晶體MB1會依據第M級共用閘極信號G(M)提供開關信號gu1。傳輸電晶體MD1的第一端經配置以接收內部時脈信號clk1。傳輸電晶體MD1的控制端耦接於橋接電晶體MB1以接收開關信號gu1。傳輸電晶體MD1在第一時間區間T1將內部時脈信號clk1作為閘極驅動信號GS(1)並依據開關信號gu1經由傳輸電晶體MD1的第二端輸出閘極驅動信號GS(1)。在本實施例中,橋接電晶體MB1的第一端以及控制端共同接收到高電壓準位的第M級共用閘極信號G(M)後,流經橋接電晶體MB1的第一端與第二端之間的導通電流等於0。在導通電流等於0的情況下,閘極驅動信號產生電路120會是浮接的狀態。也就是說,當開關信號gu1的電壓值等於第M級共用閘極信號G(M)的電壓值與橋接電晶體MB1的閥值電壓值的差時,橋接電晶體MB1與移位暫存器110浮接。這意謂著傳輸電晶體MD1的控制端所接收到的開關信號gu1的電壓準位是高電壓準位並且是浮動的。因此,當傳輸電晶體MD1接收到高電壓準位的內部時脈信號clk1時,開關信號gu1會藉由內部時脈信號clk1的高電壓準位以及傳輸電晶體MD1的寄生電容被耦合抬升到更高的電壓準位。如此一來,傳輸電晶體MD1能夠被完全地導通以傳輸內部時脈信號clk1,並將內部時脈信號clk1作為閘極驅動信號GS(1)。Next, the implementation details of the gate drive signal generating circuit will be described. Please refer to FIG. 3, which is a schematic circuit diagram of the gate drive signal generating circuit according to the first embodiment of the present invention. In this embodiment, the gate drive signal generating circuit 120 can be used to implement one of the gate drive signal generating circuits 120_1 to 120_8 shown in FIG. 1. In this embodiment, the gate drive signal generating circuit 120 includes a bridge transistor MB1 and a transmission transistor MD1. The first terminal and the control terminal of the bridge transistor MB1 are jointly coupled to the shift register (the shift register 110 shown in FIG. 1 or FIG. 2) to receive the M-th stage common gate signal G(M) . The second end of the bridge transistor MB1 is configured to provide a switching signal gu1. In other words, the bridge transistor MB1 will provide the switching signal gu1 according to the M-th level common gate signal G(M). The first end of the transmission transistor MD1 is configured to receive the internal clock signal clk1. The control terminal of the transmission transistor MD1 is coupled to the bridge transistor MB1 to receive the switching signal gu1. The transmission transistor MD1 uses the internal clock signal clk1 as the gate drive signal GS(1) in the first time interval T1 and outputs the gate drive signal GS(1) via the second terminal of the transmission transistor MD1 according to the switching signal gu1. In this embodiment, the first end of the bridge transistor MB1 and the control end jointly receive the M-th level common gate signal G(M) at a high voltage level, and then flow through the first end and the first end of the bridge transistor MB1. The conduction current between the two terminals is equal to zero. When the conduction current is equal to 0, the gate drive signal generating circuit 120 will be in a floating state. That is, when the voltage value of the switching signal gu1 is equal to the difference between the voltage value of the M-th common gate signal G(M) and the threshold voltage value of the bridge transistor MB1, the bridge transistor MB1 and the shift register 110 floating. This means that the voltage level of the switching signal gu1 received by the control terminal of the transmission transistor MD1 is a high voltage level and floating. Therefore, when the transmission transistor MD1 receives the internal clock signal clk1 at the high voltage level, the switching signal gu1 will be coupled to the higher voltage level of the internal clock signal clk1 and the parasitic capacitance of the transmission transistor MD1. High voltage level. In this way, the transmission transistor MD1 can be completely turned on to transmit the internal clock signal clk1, and use the internal clock signal clk1 as the gate drive signal GS(1).

請同時參考圖2、圖3以及圖4,圖4是依據本發明一實施例所繪示的時序圖。在本實施例中,在第一時間區T1間的第一子時間區間T11,第(M-2)級共用閘極信號G(M-2)的電壓準位以及第二外部時脈信號CK3的電壓準位為高電壓準位。第一外部時脈信號CK1的電壓準位以及第(M+2)級共用閘極信號G(M+2)的電壓準位為低電壓準位。充電放電電路112會藉由預充電電晶體M1依據第(M-2)級共用閘極信號G(M-2)抬升控制信號CS的電壓準位,藉以將控制信號CS的電壓準位抬升到高電壓準位。輸出級電路114會藉由輸出電晶體M4依據第二外部時脈信號CK3下拉第M級共用閘極信號G(M)的電壓準位。因此,第M級共用閘極信號G(M)在第一子時間區間T11的電壓準位為低電壓準位。此外,抗雜訊電路116的第二抗雜訊致能信號產生器1164會依據第一外部時脈信號CK1提供低電壓準位的抗雜訊致能信號AS。Please refer to FIG. 2, FIG. 3 and FIG. 4 at the same time. FIG. 4 is a timing diagram according to an embodiment of the present invention. In this embodiment, in the first sub-time interval T11 between the first time zone T1, the voltage level of the (M-2)th stage shared gate signal G(M-2) and the second external clock signal CK3 The voltage level of is the high voltage level. The voltage level of the first external clock signal CK1 and the voltage level of the (M+2)th stage shared gate signal G(M+2) are low voltage levels. The charging and discharging circuit 112 raises the voltage level of the control signal CS according to the (M-2)-level shared gate signal G(M-2) through the pre-charge transistor M1, thereby raising the voltage level of the control signal CS to High voltage level. The output stage circuit 114 pulls down the voltage level of the M-th shared gate signal G(M) through the output transistor M4 according to the second external clock signal CK3. Therefore, the voltage level of the M-th shared gate signal G(M) in the first sub-time interval T11 is a low voltage level. In addition, the second anti-noise enabling signal generator 1164 of the anti-noise circuit 116 provides the anti-noise enabling signal AS at a low voltage level according to the first external clock signal CK1.

在第一時間區T1間的第二子時間區間T12,第(M-2)級共用閘極信號G(M-2)的電壓準位、第(M+2)級共用閘極信號G(M+2)的電壓準位以及第二外部時脈信號CK3的電壓準位為低電壓準位。第一外部時脈信號CK1的電壓準位為高電壓準位。因此,處於高電壓準位的第一外部時脈信號CK1會被傳輸到輸出電晶體M3的第二端,並作為第M級共用閘極信號G(M)。此時,控制信號CS的電壓準位會藉由第M級共用閘極信號G(M)的高電壓準位以及輸出級電容C1被耦合抬升到更高的電壓準位,藉以確保輸出電晶體M3能夠被完全地導通。In the second sub-time interval T12 between the first time zone T1, the voltage level of the (M-2)th stage shared gate signal G(M-2), and the (M+2)th stage shared gate signal G( The voltage level of M+2) and the voltage level of the second external clock signal CK3 are low voltage levels. The voltage level of the first external clock signal CK1 is a high voltage level. Therefore, the first external clock signal CK1 at the high voltage level will be transmitted to the second end of the output transistor M3 and used as the M-th common gate signal G(M). At this time, the voltage level of the control signal CS will be raised to a higher voltage level by the coupling of the high voltage level of the M-th shared gate signal G(M) and the output stage capacitor C1 to ensure the output transistor M3 can be completely turned on.

在第二子時間區間T12,橋接電晶體MB1的第一端以及控制端共同接收到高電壓準位的第M級共用閘極信號G(M),閘極驅動信號產生電路120會是浮接的狀態。因此,開關信號gu1的電壓準位是高電壓準位並且是浮動的。一旦傳輸電晶體MD1接收到高電壓準位的內部時脈信號clk1時,開關信號gu1會被耦合抬升到更高的電壓準位。傳輸電晶體MD1能夠被完全地導通以傳輸內部時脈信號clk1,並將內部時脈信號clk1作為閘極驅動信號GS(1)。In the second sub-time interval T12, the first terminal of the bridge transistor MB1 and the control terminal jointly receive the M-th common gate signal G(M) at the high voltage level, and the gate drive signal generating circuit 120 will be floating status. Therefore, the voltage level of the switching signal gu1 is a high voltage level and is floating. Once the transmission transistor MD1 receives the internal clock signal clk1 at the high voltage level, the switching signal gu1 will be coupled and raised to a higher voltage level. The transmission transistor MD1 can be completely turned on to transmit the internal clock signal clk1, and use the internal clock signal clk1 as the gate drive signal GS(1).

同理,第M級閘極驅動電路(如圖1所示的第M級閘極驅動電路100)的其他閘極驅動信號產生電路也會接收高電壓準位的第M級共用閘極信號G(M)後呈現浮接的狀態。當其他閘極驅動信號產生電路依序接收到高電壓準位的內部時脈信號時,對應的傳輸電晶體能夠被完全地導通,藉以輸出閘極驅動信號(如,閘極驅動信號GS(2)~GS(8))。In the same way, other gate drive signal generating circuits of the M-th gate drive circuit (the M-th gate drive circuit 100 as shown in FIG. 1) will also receive the M-th shared gate signal G at a high voltage level. (M) After that, it is in a floating state. When other gate drive signal generating circuits sequentially receive high-voltage internal clock signals, the corresponding transmission transistors can be completely turned on to output gate drive signals (eg, gate drive signal GS(2 )~GS(8)).

此外,抗雜訊電路116的第二抗雜訊致能信號產生器1164會依據第M級共用閘極信號G(M)提供低電壓準位的抗雜訊致能信號AS。In addition, the second anti-noise enabling signal generator 1164 of the anti-noise circuit 116 provides a low-voltage level anti-noise enabling signal AS based on the M-th common gate signal G(M).

在第二時間區T2間的第一子時間區間T21,第(M-2)級共用閘極信號G(M-2)的電壓準位以及第一外部時脈信號CK1的電壓準位為低電壓準位。第(M+2)級共用閘極信號G(M+2)的電壓準位以及第二外部時脈信號CK3的電壓準位為高電壓準位。因此,充電放電電路112會藉由放電電晶體M2依據第(M+2)級共用閘極信號G(M+2)下拉控制信號CS的電壓準位。此外,輸出級電路114會藉由輸出電晶體M4依據第二外部時脈信號CK3下拉第M級共用閘極信號G(M)的電壓準位。第M級共用閘極信號G(M)在第一子時間區間T21的電壓準位為低電壓準位。因此在第二時間區T2間的第一子時間區間T21開始後,高電壓準位的閘極驅動信號GS(1)~GS(8)不會被提供。In the first sub-time interval T21 between the second time zone T2, the voltage level of the (M-2)th stage shared gate signal G(M-2) and the voltage level of the first external clock signal CK1 are low Voltage level. The voltage level of the (M+2) level common gate signal G(M+2) and the voltage level of the second external clock signal CK3 are high voltage levels. Therefore, the charging and discharging circuit 112 pulls down the voltage level of the control signal CS according to the (M+2)th stage common gate signal G(M+2) through the discharge transistor M2. In addition, the output stage circuit 114 pulls down the voltage level of the M-th common gate signal G(M) through the output transistor M4 according to the second external clock signal CK3. The voltage level of the M-th shared gate signal G(M) in the first sub-time interval T21 is a low voltage level. Therefore, after the first sub-time interval T21 between the second time zone T2 starts, the gate drive signals GS(1)-GS(8) at the high voltage level will not be provided.

在第二時間區T2間的第二子時間區間T22,第一外部時脈信號CK1的電壓準位為低電壓準位。第(M+2)級共用閘極信號G(M+2)的電壓準位以及第三外部時脈信號CK4的電壓準位以及第二外部時脈信號CK3為高電壓準位。相較於第一子時間區間T21,電容C2的第一端接收高電壓準位的第三外部時脈信號CK4,也就是對抗雜訊致能信號AS進行第一階段抬升操作。In the second sub-time interval T22 between the second time zone T2, the voltage level of the first external clock signal CK1 is a low voltage level. The voltage level of the (M+2) level common gate signal G(M+2), the voltage level of the third external clock signal CK4 and the second external clock signal CK3 are high voltage levels. Compared to the first sub-time interval T21, the first end of the capacitor C2 receives the third external clock signal CK4 at a high voltage level, that is, the anti-noise enable signal AS performs the first stage of raising operation.

在第二時間區T2間的第三子時間區間T23,第二外部時脈信號CK3的電壓準位為低電壓準位。第一外部時脈信號CK1的電壓準位以及第三外部時脈信號CK4的電壓準位為高電壓準位。第一外部時脈信號CK1的電壓準位以及第三外部時脈信號CK4的電壓準位都為高電壓準位的情況下,電容C2的第二端的電壓準位將會快速地被抬升,也就是對抗雜訊致能信號AS進行第二階段抬升操作。在第三子時間區間T23,下拉電路1166會依據抗雜訊致能信號AS下拉控制信號CS的電壓準位以及第M級共用閘極信號G(M)的電壓準位,藉以消除位於預充電電晶體M1的第二端的雜訊以及輸出級電路114的輸出端的雜訊。In the third sub-time interval T23 between the second time zone T2, the voltage level of the second external clock signal CK3 is a low voltage level. The voltage level of the first external clock signal CK1 and the voltage level of the third external clock signal CK4 are high voltage levels. When the voltage level of the first external clock signal CK1 and the voltage level of the third external clock signal CK4 are both high voltage levels, the voltage level of the second terminal of the capacitor C2 will be raised quickly, and It is the second stage of lifting operation against the noise enabling signal AS. In the third sub-time interval T23, the pull-down circuit 1166 pulls down the voltage level of the control signal CS and the voltage level of the M-th common gate signal G(M) according to the anti-noise enable signal AS to eliminate the pre-charge The noise at the second end of the transistor M1 and the noise at the output end of the output stage circuit 114.

在第二時間區T2間的第四子時間區間T24,第三外部時脈信號CK4的電壓準位下降到低電壓準位,然而第一外部時脈信號CK1的電壓準位還為持於高電壓準位。因此,抗雜訊致能信號AS的電壓準位也是被維持在高電壓準位。在第四子時間區間T24結束時,第一外部時脈信號CK1的電壓準位為低電壓準位。則抗雜訊致能信號AS的電壓準位則為低電壓準位。In the fourth sub-time interval T24 between the second time zone T2, the voltage level of the third external clock signal CK4 drops to a low voltage level, but the voltage level of the first external clock signal CK1 remains high Voltage level. Therefore, the voltage level of the anti-noise enabling signal AS is also maintained at a high voltage level. At the end of the fourth sub-time interval T24, the voltage level of the first external clock signal CK1 is a low voltage level. Then the voltage level of the anti-noise enable signal AS is the low voltage level.

請參考圖5,圖5是依據本發明第二實施例所繪示的第M級閘極驅動電路的電路示意圖。相較於第一實施例,本實施例的第M級閘極驅動電路200的閘極驅動信號產生電路還分別包括第一下拉電晶體對PTD1_1~PTD1_8以及第二下拉電晶體對PTD2_1~PTD2_8。Please refer to FIG. 5, which is a schematic circuit diagram of an M-th gate drive circuit according to a second embodiment of the present invention. Compared with the first embodiment, the gate drive signal generating circuit of the M-th gate drive circuit 200 of this embodiment further includes a first pull-down transistor pair PTD1_1~PTD1_8 and a second pull-down transistor pair PTD2_1~PTD2_8 .

在本實施例中,第一下拉電晶體對PTD1_1耦接於橋接電晶體MB1的第二端以及傳輸電晶體MD1的控制端。第一下拉電晶體對PTD1_2耦接於橋接電晶體MB2的第二端以及傳輸電晶體MD2的控制端,依此類推。詳細來說,第一下拉電晶體對PTD1_1包括下拉電晶體MP1以及下拉電晶體MQ1。下拉電晶體MP1的第一端以及下拉電晶體MQ1的第一端共同耦接於橋接電晶體MB1的第二端以及傳輸電晶體MD1的控制端。下拉電晶體MP1的第二端以及下拉電晶體MQ1的第二端共同接收系統低電壓VSS。下拉電晶體MP1的控制端經配置以接收抗雜訊致能信號AS。下拉電晶體MQ1的控制端經配置以接收第二外部時脈信號CK3。第一下拉電晶體對PTD1_2包括下拉電晶體MP2以及下拉電晶體MQ2。下拉電晶體MP2的第一端以及下拉電晶體MQ2的第一端共同耦接於橋接電晶體MB2的第二端以及傳輸電晶體MD2的控制端。下拉電晶體MP2的第二端以及下拉電晶體MQ2的第二端共同接收系統低電壓VSS。下拉電晶體MP2的控制端經配置以接收抗雜訊致能信號AS。下拉電晶體MQ2的控制端經配置以接收第二外部時脈信號CK3,依此類推。In this embodiment, the first pull-down transistor pair PTD1_1 is coupled to the second end of the bridge transistor MB1 and the control end of the transmission transistor MD1. The first pull-down transistor pair PTD1_2 is coupled to the second end of the bridge transistor MB2 and the control end of the transmission transistor MD2, and so on. In detail, the first pull-down transistor pair PTD1_1 includes pull-down transistor MP1 and pull-down transistor MQ1. The first end of the pull-down transistor MP1 and the first end of the pull-down transistor MQ1 are commonly coupled to the second end of the bridge transistor MB1 and the control end of the transmission transistor MD1. The second end of the pull-down transistor MP1 and the second end of the pull-down transistor MQ1 jointly receive the system low voltage VSS. The control terminal of the pull-down transistor MP1 is configured to receive the anti-noise enable signal AS. The control terminal of the pull-down transistor MQ1 is configured to receive the second external clock signal CK3. The first pull-down transistor pair PTD1_2 includes pull-down transistor MP2 and pull-down transistor MQ2. The first end of the pull-down transistor MP2 and the first end of the pull-down transistor MQ2 are commonly coupled to the second end of the bridge transistor MB2 and the control end of the transmission transistor MD2. The second end of the pull-down transistor MP2 and the second end of the pull-down transistor MQ2 jointly receive the system low voltage VSS. The control terminal of the pull-down transistor MP2 is configured to receive the anti-noise enable signal AS. The control terminal of the pull-down transistor MQ2 is configured to receive the second external clock signal CK3, and so on.

在本實施例中,第一下拉電晶體對PTD1_1~PTD1_8經配置以在第二時間區間T2依據抗雜訊致能信號AS以及第二外部時脈信號CK3下拉開關信號gu1~gu8的電壓準位,藉以位於消除橋接電晶體MB1~MB8的第二端以及傳輸電晶體MD1~MD8的控制端的雜訊。In this embodiment, the first pull-down transistor pair PTD1_1~PTD1_8 are configured to pull down the switching signals gu1~gu8 according to the anti-noise enable signal AS and the second external clock signal CK3 during the second time interval T2. Bits are used to eliminate noise on the second end of the bridge transistors MB1~MB8 and the control end of the transmission transistors MD1~MD8.

在本實施例中,第二下拉電晶體對PTD2_1耦接於傳輸電晶體MD2的第二端。第二下拉電晶體對PTD2_2耦接於傳輸電晶體MD2的第二端,依此類推。詳細來說,第二下拉電晶體對PTD2_1包括下拉電晶體MR1以及下拉電晶體MS1。下拉電晶體MR1的第一端以及下拉電晶體MS1的第一端共同耦接於傳輸電晶體MD2的第二端。下拉電晶體MR1的第二端以及下拉電晶體MS1的第二端共同接收系統低電壓VSS。下拉電晶體MR1的控制端經配置以接收抗雜訊致能信號AS。下拉電晶體MS1的控制端經配置以接收第二外部時脈信號CK3。第二下拉電晶體對PTD2_2包括下拉電晶體MR2以及下拉電晶體MS2。下拉電晶體MR2的第一端以及下拉電晶體MS2的第一端共同耦接於傳輸電晶體MD2的第二端。下拉電晶體MR2的第二端以及下拉電晶體MS2的第二端共同接收系統低電壓VSS。下拉電晶體MR2的控制端經配置以接收抗雜訊致能信號AS。下拉電晶體MS2的控制端經配置以接收第二外部時脈信號CK3,依此類推。In this embodiment, the second pull-down transistor pair PTD2_1 is coupled to the second end of the transmission transistor MD2. The second pull-down transistor pair PTD2_2 is coupled to the second end of the transmission transistor MD2, and so on. In detail, the second pull-down transistor pair PTD2_1 includes pull-down transistor MR1 and pull-down transistor MS1. The first end of the pull-down transistor MR1 and the first end of the pull-down transistor MS1 are commonly coupled to the second end of the transmission transistor MD2. The second end of the pull-down transistor MR1 and the second end of the pull-down transistor MS1 jointly receive the system low voltage VSS. The control terminal of the pull-down transistor MR1 is configured to receive the anti-noise enabling signal AS. The control terminal of the pull-down transistor MS1 is configured to receive the second external clock signal CK3. The second pull-down transistor pair PTD2_2 includes pull-down transistor MR2 and pull-down transistor MS2. The first end of the pull-down transistor MR2 and the first end of the pull-down transistor MS2 are commonly coupled to the second end of the transmission transistor MD2. The second end of the pull-down transistor MR2 and the second end of the pull-down transistor MS2 jointly receive the system low voltage VSS. The control terminal of the pull-down transistor MR2 is configured to receive the anti-noise enable signal AS. The control terminal of the pull-down transistor MS2 is configured to receive the second external clock signal CK3, and so on.

在本實施例中,第二下拉電晶體對PTD2_1~PTD2_8經配置以在第二時間區間T2依據抗雜訊致能信號AS以及第二外部時脈信號CK3下拉閘極驅動信號GS(1)~GS(2)的電壓準位,藉以位於消除傳輸電晶體MD1~MD8的第二端的雜訊。In this embodiment, the second pull-down transistor pair PTD2_1~PTD2_8 are configured to pull down the gate drive signal GS(1)~ in the second time interval T2 according to the anti-noise enable signal AS and the second external clock signal CK3. The voltage level of GS(2) is located to eliminate the noise at the second end of the transmission transistors MD1~MD8.

在一些實施例中,閘極驅動信號產生電路可以只包括第一下拉電晶體對PTD1_1~PTD1_8。在一些實施例中,閘極驅動信號產生電路可以只包括第二下拉電晶體對PTD2_1~PTD2_8。In some embodiments, the gate drive signal generating circuit may only include the first pull-down transistor pair PTD1_1~PTD1_8. In some embodiments, the gate drive signal generating circuit may only include the second pull-down transistor pair PTD2_1~PTD2_8.

請參考圖6,圖6是依據本發明一實施例所繪示的閘極驅動裝置的電路示意圖。在本實施例中,閘極驅動裝置60包括多級閘極驅動電路。為了便於說明,本實施例僅示出多級閘極驅動電路中的第1級閘極驅動電路610、第2級閘極驅動電路620、第3級閘極驅動電路630以及第4級閘極驅動電路640。在本實施例中,第1級閘極驅動電路610接收外部時脈信號CK1、CK3、CK4、內部時脈信號clk1~clk8、起始信號Vst1、系統高電壓VDD、系統低電壓VSS、第3級共用閘極信號G(3),並且提供第1級共用閘極信號G(1)以及閘極驅動信號O(1)~O(8)。第2級閘極驅動電路620接收外部時脈信號CK1、CK2、CK4、內部時脈信號clk9~clk16、起始信號Vst2、系統高電壓VDD、系統低電壓VSS、第4級共用閘極信號G(4),並且提供第2級共用閘極信號G(2)以及閘極驅動信號O(9)~O(16)。第3級閘極驅動電路630接收外部時脈信號CK1~CK3、內部時脈信號clk1~clk8、系統高電壓VDD、系統低電壓VSS、第1級共用閘極信號G(1)、第5級共用閘極信號G(5),並且提供第3級共用閘極信號G(3)以及閘極驅動信號O(17)~O(24)。第4級閘極驅動電路640接收外部時脈信號CK2~CK4、內部時脈信號clk9~clk16、系統高電壓VDD、系統低電壓VSS、第2級共用閘極信號G(2)以及第6級共用閘極信號G(6),並且提供第4級共用閘極信號G(4)以及閘極驅動信號O(25)~O(32),依此類推。在本實施例中,第3級閘極驅動電路630及/或第4級閘極驅動電路640可以由第一實施例的第M級閘極驅動電路100或第二實施例的第M級閘極驅動電路200來實現。Please refer to FIG. 6, which is a schematic circuit diagram of a gate driving device according to an embodiment of the present invention. In this embodiment, the gate driving device 60 includes a multi-stage gate driving circuit. For ease of description, this embodiment only shows the first-stage gate drive circuit 610, the second-stage gate drive circuit 620, the third-stage gate drive circuit 630, and the fourth-stage gate in the multi-stage gate drive circuit. Drive circuit 640. In this embodiment, the first-stage gate drive circuit 610 receives external clock signals CK1, CK3, CK4, internal clock signals clk1~clk8, start signal Vst1, system high voltage VDD, system low voltage VSS, and third The stage shares the gate signal G(3), and provides the first stage shared gate signal G(1) and gate drive signals O(1)~O(8). The second-level gate drive circuit 620 receives external clock signals CK1, CK2, CK4, internal clock signals clk9~clk16, start signal Vst2, system high voltage VDD, system low voltage VSS, and fourth-level common gate signal G (4), and provide the second level common gate signal G(2) and gate drive signals O(9)~O(16). The third-level gate drive circuit 630 receives external clock signals CK1~CK3, internal clock signals clk1~clk8, system high voltage VDD, system low voltage VSS, first-level common gate signal G(1), fifth-level The gate signal G(5) is shared, and the third-level shared gate signal G(3) and gate drive signals O(17)~O(24) are provided. The fourth-level gate driving circuit 640 receives external clock signals CK2~CK4, internal clock signals clk9~clk16, system high voltage VDD, system low voltage VSS, second-level shared gate signal G(2), and sixth-level The gate signal G(6) is shared, and the fourth level shared gate signal G(4) and gate drive signals O(25)~O(32) are provided, and so on. In this embodiment, the third-stage gate driving circuit 630 and/or the fourth-stage gate driving circuit 640 can be implemented by the M-th gate driving circuit 100 of the first embodiment or the M-th gate driving circuit of the second embodiment. The pole drive circuit 200 is implemented.

綜上所述,本發明的閘極驅動裝置中,第M級閘極驅動電路包括移位暫存器以及多個閘極驅動信號產生電路。在第一時間區間,移位暫存器產生第M級共用閘極信號。上述多個閘極驅動信號產生電路接收第M級共用閘極信號,並依據第M級共用閘極信號的高電壓準位與移位暫存器浮接以產生多個閘極驅動信號。除此之外,在第二時間區間,移位暫存器對抗雜訊致能信號的電壓準位進行兩階段抬升的操作,藉以執行抗雜訊操作。如此一來,本發明的閘極驅動裝置具有較小的佈局面積以及對極端溫度的較高信賴性。In summary, in the gate driving device of the present invention, the M-th gate driving circuit includes a shift register and a plurality of gate driving signal generating circuits. In the first time interval, the shift register generates the M-th stage shared gate signal. The multiple gate drive signal generating circuits receive the M-th stage shared gate signal, and generate multiple gate drive signals according to the high voltage level of the M-th stage shared gate signal and the shift register floating. In addition, in the second time interval, the shift register performs a two-stage raising operation on the voltage level of the anti-noise enabling signal, so as to perform the anti-noise operation. As a result, the gate driving device of the present invention has a smaller layout area and higher reliability against extreme temperatures.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make slight changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

100、200:第M級閘極驅動電路 110:移位暫存器 120_1~120_8:閘極驅動信號產生電路 CK1:第一外部時脈信號 CK2:外部時脈信號 CK3:第二外部時脈信號 CK4:第三外部時脈信號 G(1):第1級共用閘極信號 G(2):第2級共用閘極信號 G(3):第3級共用閘極信號 G(4):第4級共用閘極信號 G(5):第5級共用閘極信號 G(6):第6級共用閘極信號 G(M-2):第(M-2)級共用閘極信號 G(M+2):第(M+2)級共用閘極信號 G(M):第M級共用閘極信號 clk1~clk16:內部時脈信號 GS(1)~GS(8)、O(1)~O(32):閘極驅動信號 112:充電放電電路 114:輸出級電路 116:抗雜訊電路 CS:控制信號 M1:預充電電晶體 M2:放電電晶體 M3、M4:輸出電晶體 M5、M6、MP1~MP8、MQ1~MQ8、MR1~MR8、MS1~MS8:下拉電晶體 M7:第一電晶體 M8:第二電晶體 M9:第三電晶體 M10:第四電晶體 VDD:系統高電壓 VSS:系統低電壓 1162:第一抗雜訊致能信號產生器 1164:第二抗雜訊致能信號產生器 1166:下拉電路 C1:輸出級電容 C2:電容 AS:抗雜訊致能信號 gu1~gu8:開關信號 MB1~MB8:橋接電晶體 MD1~MD8:傳輸電晶體 PTD1_1~PTD1_8:第一下拉電晶體對 PTD2_1~PTD2_8:第二下拉電晶體對 60:閘極驅動裝置 610:第1級閘極驅動電路 620:第2級閘極驅動電路 630:第3級閘極驅動電路 640:第4級閘極驅動電路 T1:第一時間區間 T2:第二時間區間 T11:第一時間區間的第一子時間區間 T12:第一時間區間的第二子時間區間 T21:第二時間區間的第一子時間區間 T22:第二時間區間的第二子時間區間 T23:第二時間區間的第三子時間區間 T24:第二時間區間的第四子時間區間 Vst1、Vst2:起始信號 100, 200: M-level gate drive circuit 110: shift register 120_1~120_8: Gate drive signal generating circuit CK1: the first external clock signal CK2: External clock signal CK3: The second external clock signal CK4: Third external clock signal G(1): The first level shared gate signal G(2): The second level shared gate signal G(3): The third level shared gate signal G(4): 4th level shared gate signal G(5): 5th level shared gate signal G(6): 6th level shared gate signal G(M-2): (M-2) level shared gate signal G(M+2): (M+2) level shared gate signal G(M): M-level shared gate signal clk1~clk16: internal clock signal GS(1)~GS(8), O(1)~O(32): gate drive signal 112: charge and discharge circuit 114: output stage circuit 116: Anti-noise circuit CS: Control signal M1: pre-charged transistor M2: Discharge transistor M3, M4: output transistor M5, M6, MP1~MP8, MQ1~MQ8, MR1~MR8, MS1~MS8: pull-down transistor M7: The first transistor M8: second transistor M9: third transistor M10: The fourth transistor VDD: system high voltage VSS: system low voltage 1162: The first anti-noise enabling signal generator 1164: The second anti-noise enabling signal generator 1166: pull-down circuit C1: output stage capacitor C2: Capacitance AS: Anti-noise enabling signal gu1~gu8: switch signal MB1~MB8: bridge transistor MD1~MD8: transmission transistor PTD1_1~PTD1_8: the first pull-down transistor pair PTD2_1~PTD2_8: The second pull-down transistor pair 60: Gate drive device 610: The first stage gate drive circuit 620: 2nd stage gate drive circuit 630: 3rd stage gate drive circuit 640: 4th stage gate drive circuit T1: the first time interval T2: second time interval T11: The first sub-time interval of the first time interval T12: The second sub-time interval of the first time interval T21: The first sub-time interval of the second time interval T22: The second sub-time interval of the second time interval T23: The third sub-time interval of the second time interval T24: The fourth sub-time interval of the second time interval Vst1, Vst2: start signal

圖1是依據本發明第一實施例所繪示的第M級閘極驅動電路的電路示意圖。 圖2是依據本發明第一實施例所繪示的移位暫存器的電路示意圖。 圖3是依據本發明第一實施例所繪示的閘極驅動信號產生電路的電路示意圖。 圖4是依據本發明一實施例所繪示的時序圖。 圖5是依據本發明第二實施例所繪示的第M級閘極驅動電路的電路示意圖。 圖6是依據本發明一實施例所繪示的閘極驅動裝置的電路示意圖。 FIG. 1 is a schematic circuit diagram of the M-th gate driving circuit according to the first embodiment of the present invention. FIG. 2 is a schematic circuit diagram of the shift register according to the first embodiment of the present invention. 3 is a schematic circuit diagram of the gate drive signal generating circuit according to the first embodiment of the present invention. FIG. 4 is a timing diagram drawn according to an embodiment of the invention. FIG. 5 is a schematic circuit diagram of the M-th gate driving circuit according to the second embodiment of the present invention. FIG. 6 is a schematic circuit diagram of a gate driving device according to an embodiment of the invention.

100:第M級閘極驅動電路 100: M-level gate drive circuit

110:移位暫存器 110: shift register

120_1~120_8:閘極驅動信號產生電路 120_1~120_8: Gate drive signal generating circuit

CK1:第一外部時脈信號 CK1: the first external clock signal

CK3:第二外部時脈信號 CK3: The second external clock signal

CK4:第三外部時脈信號 CK4: Third external clock signal

clk1~clk8:內部時脈信號 clk1~clk8: internal clock signal

G(M-2):第(M-2)級共用閘極信號 G(M-2): (M-2) level shared gate signal

G(M):第M級共用閘極信號 G(M): M-level shared gate signal

G(M+2):第(M+2)級共用閘極信號 G(M+2): (M+2) level shared gate signal

GS(1)~GS(8):閘極驅動信號 GS(1)~GS(8): Gate drive signal

Claims (14)

一種閘極驅動裝置,包括:多級閘極驅動電路,分別用以產生多個閘極驅動信號,其中第M級閘極驅動電路包括:一移位暫存器,經配置以在一第一時間區間依據一第一外部時脈信號以及一第(M-2)級共用閘極信號產生一第M級共用閘極信號,在一第二時間區間依據一第(M+2)級共用閘極信號以及一第二外部時脈信號停止產生該第M級共用閘極信號,並在一第二時間區間依據一第三外部時脈信號以及該第一外部時脈信號對一抗雜訊致能信號的電壓準位進行一第一階段抬升操作以及一第二階段抬升操作,其中該移位暫存器藉由該抗雜訊致能信號執行抗雜訊操作;以及多個閘極驅動信號產生電路,分別耦接於該移位暫存器,經配置以在該第一時間區間接收該第M級共用閘極信號,並依據該第M級共用閘極信號的高電壓準位與該移位暫存器浮接,藉以利用一內部時脈信號對應產生該些閘極驅動信號中的其中之一,其中M為大於2的正整數。 A gate driving device includes: a multi-level gate driving circuit for generating a plurality of gate driving signals, wherein the M-th gate driving circuit includes: a shift register configured to a first The time interval generates an M-th level shared gate signal according to a first external clock signal and a (M-2)-th level shared gate signal, and a second time interval according to a (M+2)-th level shared gate signal Signal and a second external clock signal stop generating the M-th shared gate signal, and a second time interval is based on a third external clock signal and the first external clock signal to an anti-noise The voltage level of the energy signal performs a first-stage raising operation and a second-stage raising operation, wherein the shift register performs an anti-noise operation by the anti-noise enable signal; and a plurality of gate drive signals A generating circuit, respectively coupled to the shift register, is configured to receive the M-th stage shared gate signal in the first time interval, and according to the high voltage level of the M-th stage shared gate signal and the The shift register is floating so as to use an internal clock signal to generate one of the gate drive signals, where M is a positive integer greater than 2. 如申請專利範圍第1項所述的閘極驅動裝置,其中該第三外部時脈信號處於高電壓準位的時間區間與該第一外部時脈信號處於高電壓準位的時間區間部分重疊。 According to the gate driving device described in item 1 of the scope of patent application, the time interval during which the third external clock signal is at a high voltage level partially overlaps the time interval during which the first external clock signal is at a high voltage level. 如申請專利範圍第1項所述的閘極驅動裝置,其中該移位暫存器包括:一充電放電電路,經配置以提供一控制信號,在該第一時間區間的一第一子時間區間依據該第(M-2)級共用閘極信號抬升該控制信號的電壓準位,並在該第二時間區間依據該第(M+2)級共用閘極信號下拉該控制信號的電壓準位;一輸出級電路,耦接於該充電放電電路,經配置以接收該控制信號,在該第一時間區間的一第二子時間區間依據該控制信號以及該第一外部時脈信號產生該第M級共用閘極信號,並在該第二時間區間依據該第二外部時脈信號下拉該第M級共用閘極信號的電壓準位;以及一抗雜訊電路,耦接於該充電放電電路以及該輸出級電路,經配置以在該第一時間區間下拉該抗雜訊致能信號的電壓準位,在該第二時間區間依據該第三外部時脈信號對該抗雜訊致能信號的電壓準位進行該第一階段抬升操作,並且隨後依據該第三外部時脈信號以及該第一外部時脈信號對該抗雜訊致能信號的電壓準位進行該第二階段抬升操作,其中,該充電放電電路、該輸出級電路以及該抗雜訊電路還耦接一系統低電壓。 The gate driving device according to claim 1, wherein the shift register includes: a charging and discharging circuit configured to provide a control signal in a first sub-time interval of the first time interval Raise the voltage level of the control signal according to the (M-2)th level shared gate signal, and pull down the voltage level of the control signal according to the (M+2)th level shared gate signal in the second time interval ; An output stage circuit, coupled to the charging and discharging circuit, configured to receive the control signal, in a second sub-time interval of the first time interval according to the control signal and the first external clock signal to generate the first M-level common gate signal, and pull down the voltage level of the M-th common gate signal according to the second external clock signal in the second time interval; and an anti-noise circuit coupled to the charging and discharging circuit And the output stage circuit is configured to pull down the voltage level of the anti-noise enable signal during the first time interval, and the anti-noise enable signal according to the third external clock signal during the second time interval Performing the first stage raising operation on the voltage level of, and then performing the second stage raising operation on the voltage level of the anti-noise enabling signal according to the third external clock signal and the first external clock signal, Wherein, the charging and discharging circuit, the output stage circuit and the anti-noise circuit are also coupled to a system low voltage. 如申請專利範圍第3項所述的閘極驅動裝置,其中該充電放電電路包括: 一預充電電晶體,該預充電電晶體的第一端經配置以接收一系統高電壓,該預充電電晶體的第二端耦接於該輸出級電路以及該抗雜訊電路,該預充電電晶體的控制端經配置以接收該第(M-2)級共用閘極信號;以及一放電電晶體,該放電電晶體的第一端耦接於該預充電電晶體的第二端,該放電電晶體的第二端經配置以接收該系統低電壓,該放電電晶體的控制端經配置以接收該第(M+2)級共用閘極信號,其中該充電放電電路經由該預充電電晶體的第二端提供該控制信號。 The gate drive device described in item 3 of the scope of patent application, wherein the charging and discharging circuit includes: A pre-charge transistor, the first terminal of the pre-charge transistor is configured to receive a system high voltage, the second terminal of the pre-charge transistor is coupled to the output stage circuit and the anti-noise circuit, the pre-charge The control terminal of the transistor is configured to receive the (M-2)th level common gate signal; and a discharge transistor, the first terminal of which is coupled to the second terminal of the precharge transistor, the The second terminal of the discharge transistor is configured to receive the system low voltage, and the control terminal of the discharge transistor is configured to receive the (M+2)th stage common gate signal, wherein the charge and discharge circuit is configured to receive the pre-charge circuit The second end of the crystal provides the control signal. 如申請專利範圍第3項所述的閘極驅動裝置,其中該輸出級電路包括:一第一輸出電晶體,該第一輸出電晶體的第一端經配置以接收該第一外部時脈信號,該第一輸出電晶體的第二端經配置以作為該移位暫存器的輸出端,該第一輸出電晶體的控制端耦接於該充電放電電路以接收該控制信號;一第二輸出電晶體,該第二輸出電晶體的第一端耦接於該第一輸出電晶體的第二端,該第二輸出電晶體的第二端經配置以接收該系統低電壓,該第二輸出電晶體的控制端經配置以接收該第二外部時脈信號;以及一輸出級電容,耦接於該第一輸出電晶體的第二端與該第一 輸出電晶體的控制端之間。 The gate drive device according to claim 3, wherein the output stage circuit includes: a first output transistor, the first end of the first output transistor is configured to receive the first external clock signal , The second terminal of the first output transistor is configured as the output terminal of the shift register, and the control terminal of the first output transistor is coupled to the charging and discharging circuit to receive the control signal; a second Output transistor, the first end of the second output transistor is coupled to the second end of the first output transistor, the second end of the second output transistor is configured to receive the system low voltage, the second The control terminal of the output transistor is configured to receive the second external clock signal; and an output stage capacitor is coupled to the second terminal of the first output transistor and the first Between the control terminals of the output transistor. 如申請專利範圍第3項所述的閘極驅動裝置,其中該抗雜訊電路包括:一第一抗雜訊致能信號產生器,包括:一電容,該電容的第一端經配置以接收該第三外部時脈信號,該電容的第二端經配置以產生該抗雜訊致能信號,該電容依據該第三外部時脈信號對該抗雜訊致能信號的電壓準位進行該第一階段抬升操作;一第二抗雜訊致能信號產生器,耦接於該電容的第二端,經配置以接收該第一外部時脈信號以及該第M級共用閘極信號,在該第一時間區間依據該第M級共用閘極信號下拉該抗雜訊致能信號的電壓準位,並在該第二時間區間依據該第一外部時脈信號對該抗雜訊致能信號的電壓準位進行該第二階段抬升操作;以及一下拉電路,耦接於該電容的第二端、充電放電電路以及輸出級電路,經配置以接收該抗雜訊致能信號,並在該第二時間區間依據該抗雜訊致能信號下拉該控制信號的電壓準位以及該第M級共用閘極信號的電壓準位。 The gate drive device according to item 3 of the patent application, wherein the anti-noise circuit includes: a first anti-noise enabling signal generator, including: a capacitor, the first end of the capacitor is configured to receive The third external clock signal, the second end of the capacitor is configured to generate the anti-noise enabling signal, and the capacitor performs the anti-noise enabling signal according to the voltage level of the third external clock signal The first stage of lifting operation; a second anti-noise enabling signal generator, coupled to the second end of the capacitor, configured to receive the first external clock signal and the M-th stage shared gate signal, The first time interval pulls down the voltage level of the anti-noise enable signal according to the M-th common gate signal, and the anti-noise enable signal according to the first external clock signal in the second time interval Perform the second-stage raising operation at the voltage level of, and a pull-down circuit, coupled to the second end of the capacitor, the charging and discharging circuit, and the output stage circuit, configured to receive the anti-noise enable signal, and in the The second time interval is based on the voltage level of the control signal being pulled down by the anti-noise enabling signal and the voltage level of the M-th level common gate signal. 如申請專利範圍第6項所述的閘極驅動裝置,其中該第二抗雜訊致能信號產生器包括:一第一電晶體,該第一電晶體的第一端以及該第一電晶體的控制端經配置以接收該第一外部時脈信號; 一第二電晶體,該第二電晶體的第一端經配置以接收該第一外部時脈信號,該第二電晶體的第二端耦接於該電容的第二端,該第二電晶體的控制端耦接於該第一電晶體的第二端;一第三電晶體,該第三電晶體的第一端耦接於該第一電晶體的第二端,該第三電晶體的第二端經配置以接收該系統低電壓,該第三電晶體的控制端經配置以接收該第M級共用閘極信號;以及一第四電晶體,該第四電晶體的第一端耦接於該第二電晶體的第二端,該第四電晶體的第二端經配置以接收該系統低電壓,該第四電晶體的控制端經配置以接收該第M級共用閘極信號。 The gate drive device according to the sixth item of the scope of patent application, wherein the second anti-noise enabling signal generator includes: a first transistor, a first end of the first transistor, and the first transistor The control terminal of is configured to receive the first external clock signal; A second transistor, the first terminal of the second transistor is configured to receive the first external clock signal, the second terminal of the second transistor is coupled to the second terminal of the capacitor, the second transistor The control end of the crystal is coupled to the second end of the first transistor; a third transistor, the first end of the third transistor is coupled to the second end of the first transistor, the third transistor The second end of the third transistor is configured to receive the system low voltage, the control end of the third transistor is configured to receive the M-th level common gate signal; and a fourth transistor, the first end of the fourth transistor Coupled to the second terminal of the second transistor, the second terminal of the fourth transistor is configured to receive the system low voltage, and the control terminal of the fourth transistor is configured to receive the M-th stage common gate signal. 如申請專利範圍第6項所述的閘極驅動裝置,其中該下拉電路包括:一第一下拉電晶體,該第一下拉電晶體的第一端經配置以接收該控制信號,該第一下拉電晶體的第二端經配置以接收該系統低電壓,該第一下拉電晶體的控制端經配置以接收該抗雜訊致能信號;以及一第二下拉電晶體,該第二下拉電晶體的第一端經配置以接收該第M級共用閘極信號,該第二下拉電晶體的第二端經配置以接收該系統低電壓,該第二下拉電晶體的控制端經配置以接收該抗雜訊致能信號。 The gate driving device according to claim 6, wherein the pull-down circuit includes: a first pull-down transistor, the first end of the first pull-down transistor is configured to receive the control signal, and the first pull-down transistor The second terminal of a pull-down transistor is configured to receive the system low voltage, the control terminal of the first pull-down transistor is configured to receive the anti-noise enable signal; and a second pull-down transistor, the first The first end of the two pull-down transistors is configured to receive the M-th common gate signal, the second end of the second pull-down transistor is configured to receive the system low voltage, and the control end of the second pull-down transistor is Configure to receive the anti-noise enable signal. 如申請專利範圍第1項所述的閘極驅動裝置,其中該些閘極驅動信號產生電路的各一包括:一橋接電晶體,該橋接電晶體的第一端以及控制端共同耦接於該移位暫存器以接收該第M級共用閘極信號,該橋接電晶體的第二端經配置以提供一開關信號;以及一傳輸電晶體,該傳輸電晶體的第一端經配置以接收該內部時脈信號,該傳輸電晶體的控制端耦接於該橋接電晶體以接收該開關信號,其中該傳輸電晶體在該第一時間區間將該內部時脈信號作為一閘極驅動信號並依據該開關信號經由該傳輸電晶體的第二端輸出該閘極驅動信號。 As for the gate drive device described in claim 1, wherein each of the gate drive signal generating circuits includes: a bridge transistor, the first end and the control end of the bridge transistor are commonly coupled to the Shift register to receive the M-th stage common gate signal, the second end of the bridge transistor is configured to provide a switching signal; and a transmission transistor, the first end of the transmission transistor is configured to receive For the internal clock signal, the control terminal of the transmission transistor is coupled to the bridge transistor to receive the switching signal, wherein the transmission transistor uses the internal clock signal as a gate drive signal during the first time interval and The gate drive signal is output through the second terminal of the transmission transistor according to the switch signal. 如申請專利範圍第9項所述的閘極驅動裝置,其中當該開關信號的電壓值等於該第M級共用閘極信號的電壓值與該橋接電晶體的閥值電壓值的差時,該橋接電晶體與該移位暫存器浮接。 For the gate driving device described in item 9 of the scope of patent application, when the voltage value of the switching signal is equal to the difference between the voltage value of the M-th common gate signal and the threshold voltage value of the bridge transistor, the The bridge transistor is floating with the shift register. 如申請專利範圍第9項所述的閘極驅動裝置,其中該些閘極驅動信號產生電路的各一還包括:一第一下拉電晶體對,耦接於該橋接電晶體的第二端以及該傳輸電晶體的控制端,經配置以在該第二時間區間依據該抗雜訊致能信號以及該第二外部時脈信號下拉該開關信號的電壓準位。 As described in claim 9 of the scope of patent application, each of the gate drive signal generating circuits further includes: a first pull-down transistor pair coupled to the second end of the bridge transistor And the control terminal of the transmission transistor is configured to pull down the voltage level of the switching signal according to the anti-noise enabling signal and the second external clock signal during the second time interval. 如申請專利範圍第11項所述的閘極驅動裝置,其中該些閘極驅動信號產生電路的各一還包括: 一第二下拉電晶體對,耦接於該傳輸電晶體的第二端,經配置以在該第二時間區間依據該抗雜訊致能信號以及該第二外部時脈信號下拉該閘極驅動信號的電壓準位。 For the gate driving device described in item 11 of the scope of patent application, each of the gate driving signal generating circuits further includes: A second pull-down transistor pair, coupled to the second end of the transmission transistor, configured to pull down the gate driver according to the anti-noise enable signal and the second external clock signal during the second time interval The voltage level of the signal. 如申請專利範圍第1項所述的閘極驅動裝置,其中該第一外部時脈信號、該第二外部時脈信號以及該第三外部時脈信號的工作週期大於該內部時脈信號的工作週期。 The gate drive device according to the first item of the scope of patent application, wherein the duty cycles of the first external clock signal, the second external clock signal, and the third external clock signal are greater than those of the internal clock signal cycle. 如申請專利範圍第1項所述的閘極驅動裝置,其中該第一外部時脈信號反相於該第二外部時脈信號。 The gate driving device described in claim 1, wherein the first external clock signal is inverted to the second external clock signal.
TW108121901A 2019-06-24 2019-06-24 Gate driving device TWI703543B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108121901A TWI703543B (en) 2019-06-24 2019-06-24 Gate driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108121901A TWI703543B (en) 2019-06-24 2019-06-24 Gate driving device

Publications (2)

Publication Number Publication Date
TWI703543B true TWI703543B (en) 2020-09-01
TW202101410A TW202101410A (en) 2021-01-01

Family

ID=73644218

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108121901A TWI703543B (en) 2019-06-24 2019-06-24 Gate driving device

Country Status (1)

Country Link
TW (1) TWI703543B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201035980A (en) * 2009-03-24 2010-10-01 Au Optronics Corp Shift register capable of reducing coupling effect
TW201727609A (en) * 2006-09-29 2017-08-01 半導體能源研究所股份有限公司 Semiconductor device
US20180040273A1 (en) * 2016-08-03 2018-02-08 Boe Technology Group Co., Ltd. Shift register unit, driving method, gate driving circuit and display apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201727609A (en) * 2006-09-29 2017-08-01 半導體能源研究所股份有限公司 Semiconductor device
TW201035980A (en) * 2009-03-24 2010-10-01 Au Optronics Corp Shift register capable of reducing coupling effect
US20180040273A1 (en) * 2016-08-03 2018-02-08 Boe Technology Group Co., Ltd. Shift register unit, driving method, gate driving circuit and display apparatus

Also Published As

Publication number Publication date
TW202101410A (en) 2021-01-01

Similar Documents

Publication Publication Date Title
US10685616B2 (en) Shift register circuit, method for driving the same, gate drive circuit, and display panel
WO2018171133A1 (en) Shift register unit, gate driving circuit, and driving method
WO2020019381A1 (en) Goa circuit, display panel and display device
US9830876B2 (en) CMOS GOA circuit
WO2020010852A1 (en) Shift register unit, driving method, gate driving circuit, and display device
WO2018040321A1 (en) Goa drive unit and drive circuit
WO2017107285A1 (en) Goa circuit for narrow-bezel liquid crystal display panel
US10204585B2 (en) Shift register unit, gate driving device, display device and driving method
WO2021174607A1 (en) Goa driving circuit, display panel, and display apparatus
US7760846B2 (en) Shift register and liquid crystal display (LCD)
WO2016065817A1 (en) Shift register unit circuit, shift register, driving method and display device
WO2017107294A1 (en) Goa circuit and liquid crystal display device
KR20190035855A (en) GOA circuit
TW201301765A (en) A shift register
WO2015051643A1 (en) Level conversion module, array substrate and display device
US10170067B2 (en) GOA electric circuit based on LTPS semiconductor thin-film transistors
WO2022007147A1 (en) Goa circuit and display panel
WO2014172980A1 (en) Shift register unit and display device
US20190244578A1 (en) Display device
WO2021203485A1 (en) Goa circuit and display panel
WO2020015206A1 (en) Gate driving circuit structure, display panel, and driving method for gate driving circuit structure
WO2018176577A1 (en) Goa drive circuit
WO2018228042A1 (en) Shift register unit, driving method, gate driving circuit and display device
TWI718867B (en) Gate driving circuit
WO2022095261A1 (en) Goa circuit and display panel