TWI703318B - Dual drone air pollution tracking system - Google Patents

Dual drone air pollution tracking system Download PDF

Info

Publication number
TWI703318B
TWI703318B TW108126636A TW108126636A TWI703318B TW I703318 B TWI703318 B TW I703318B TW 108126636 A TW108126636 A TW 108126636A TW 108126636 A TW108126636 A TW 108126636A TW I703318 B TWI703318 B TW I703318B
Authority
TW
Taiwan
Prior art keywords
flight
air pollution
wireless communication
communication unit
pollution
Prior art date
Application number
TW108126636A
Other languages
Chinese (zh)
Other versions
TW202104868A (en
Inventor
李榮全
陳祐弘
林郁青
李仲杰
林琪恩
Original Assignee
國立虎尾科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立虎尾科技大學 filed Critical 國立虎尾科技大學
Priority to TW108126636A priority Critical patent/TWI703318B/en
Application granted granted Critical
Publication of TWI703318B publication Critical patent/TWI703318B/en
Publication of TW202104868A publication Critical patent/TW202104868A/en

Links

Images

Abstract

本發明係揭露一種雙無人機空污追蹤系統,其係於無人飛機設置包含飛航感測單元、空污感測器、機載電腦及第一無線通訊單元。並於地面監控單元設置包含第二無線通訊單元、飛行控制模組、圖形化儀表顯示模組。機載電腦依序將飛航感測訊號及空污感測訊號轉換處理為飛行狀態資訊及空污值,並透過第一無線通訊單元無線傳輸出去。飛行控制模組預設有污染源偵測飛行路徑,用以依序輸出飛行控制指令,透過第二無線通訊單元及第一無線通訊單元傳輸至機載電腦中進行解讀。飛行控制模組透過第二無線通訊單元接收飛行狀態資訊及空污值,再由圖形化儀表顯示模組顯示包含飛行狀態顯示界面及空污顯示界面,俾能利用無人機監控空污區域而具有快速回報與即時鎖定汙染源的特點,並可結合地面佈建之偵測點與空中機動偵測區域,進而大幅提升空污防治的效果。 The present invention discloses a dual drone air pollution tracking system, which is set in an unmanned aircraft and includes an airborne sensor unit, an air pollution sensor, an onboard computer and a first wireless communication unit. The ground monitoring unit is provided with a second wireless communication unit, a flight control module, and a graphical instrument display module. The onboard computer sequentially converts the flight sensing signal and the air pollution sensing signal into flight status information and air pollution value, and transmits them wirelessly through the first wireless communication unit. The flight control module is preset with a pollution source detection flight path for sequentially outputting flight control commands, which are transmitted to the onboard computer for interpretation through the second wireless communication unit and the first wireless communication unit. The flight control module receives the flight status information and the air pollution value through the second wireless communication unit, and then the graphical instrument display module displays the flight status display interface and the air pollution display interface, so that the drone can monitor the air pollution area. The characteristics of fast reporting and real-time location of pollution sources can be combined with ground-based detection points and aerial mobile detection areas to greatly improve the effectiveness of air pollution prevention.

Description

雙無人機空污追蹤系統 Dual drone air pollution tracking system

本發明係有關一種雙無人機空污追蹤系統,尤指一種可以利用無人機監控空污區域而具有快速回報與即時鎖定汙染源特點的無人機空污追蹤技術。 The present invention relates to a dual-UAV air pollution tracking system, in particular to a UAV air pollution tracking technology that can use the drone to monitor the air pollution area and has the characteristics of rapid return and real-time location of pollution sources.

近年來,一些相關的研究機構已將無人飛行載具(Unmanned Aerial Vehicle,UAV)用於收集攝影測量與遙感探測資料等用途。也因如此,以無人飛行載具來收集攝影測量與遙感探測已然廣泛受到各研究單位、企業界與相關政府部門的高度關注與重視。不僅如此,無人飛行載具無論在國內或國外已有許多研究性質的實驗案例,其中,在科學與民生用途等方面,無人飛行載具確實可以提供包括救難搜索、農藥噴灑、大氣資料蒐集以及定點拍攝等諸多的用途。 In recent years, some related research institutions have used unmanned aerial vehicles (UAV) for collecting photogrammetry and remote sensing data. Because of this, the use of unmanned aerial vehicles to collect photogrammetry and remote sensing detection has been widely concerned and valued by various research units, business circles and relevant government departments. Not only that, there have been many experimental cases of research nature for unmanned aerial vehicles both at home and abroad. Among them, unmanned aerial vehicles can indeed provide rescue searches, pesticide spraying, atmospheric data collection, and Fixed-point shooting and many other uses.

一般而言,PM2.5是指大氣中小於或等於2.5微米的顆粒物而言,PM2.5富含大量的有毒與有害物質,且在大氣中停留時間長傳輸距離遠,人體的鼻腔咽喉無法阻擋PM2.5進入氣管與支氣管,以致停留在肺部而引發肺部疾病,而且致病細菌病毒會搭載著PM2.5進入人體呼吸道深處,從而引起感染、誘發心血管…等疾病,因而對人體健康與大氣環境質量的影響非常鉅大。由於空氣污染來源複雜,所以使用不同檢測方法進行空汙濃度測定的結果,經常會出現系統性的差異誤差產生。 Generally speaking, PM2.5 refers to particulate matter less than or equal to 2.5 microns in the atmosphere. PM2.5 is rich in a large number of toxic and harmful substances, and stays in the atmosphere for a long time and has a long transmission distance. The human nasal cavity and throat cannot be blocked. PM2.5 enters the trachea and bronchi, so that it stays in the lungs and causes lung diseases. In addition, pathogenic bacteria and viruses will carry PM2.5 into the deep human respiratory tract, causing infections and inducing cardiovascular diseases, which are harmful to the human body. The impact of health and the quality of the atmosphere is huge. Due to the complexity of air pollution sources, the results of air pollution concentration measurement using different detection methods often result in systematic differences and errors.

依據所知,空氣品質監測站用來測定空污的儀器可以分為手動及自動二種監測方式。手動監測是由工作人員使用調理過的濾紙到測站進行24小時的採樣,再將濾紙送回實驗室,在控制的溫濕度條件下,進行秤重後計算濃度。這種方法的優點在於,可以減少環境中可能干擾測定的因素,例如相對溼度對測試值的影響,因此,在國際上一般皆會使用手動監測的結果來作為空氣品質是否符合標準的判定依據。至於我國空氣品質標準亦明訂採用手動監測結果判定空氣品質是否符合標準。然而,手動監測經過嚴謹的實驗室分析程序,需要2至3週的時間才能完成,在空氣品質出現變異時,確實是無法立即提供民眾預警。 According to what we know, the instruments used by air quality monitoring stations to determine air pollution can be divided into manual and automatic monitoring methods. Manual monitoring is performed by the staff using the conditioned filter paper to the measuring station for 24-hour sampling, and then sending the filter paper back to the laboratory to calculate the concentration after weighing under controlled temperature and humidity conditions. The advantage of this method is that it can reduce the factors that may interfere with the measurement in the environment, such as the influence of relative humidity on the test value. Therefore, the results of manual monitoring are generally used internationally as the basis for determining whether the air quality meets the standard. As for my country's air quality standards, manual monitoring results are also used to determine whether air quality meets the standards. However, manual monitoring has undergone rigorous laboratory analysis procedures, and it takes 2 to 3 weeks to complete. When air quality changes, it is indeed impossible to provide people with immediate warning.

至於自動空氣品質監測則是需要使用自動連續監測,一般為採集樣本1小時後量測1小時濃度,可以立即提供預警或預報之需。常見的空氣品質監測站的PM2.5自動監測儀器原理,包括貝他射線衰減法、錐形元件震盪天平法及光散射法等。為了降低可能的干擾問題,各種自動監測儀器均具備去除干擾的設計,例如粒徑篩分器(去除粒徑大於2.5微米的粒子)、流量控制器(控制精準的流量)、氣溫、大氣壓力測定以及採樣氣流加溫(避免水分凝結)等。此外,台灣空污監測大多是採用地面觀測站的定點偵測方式,此方式確實較容易受到地形的影響,因而連帶影響到監測的靈活性,致使人員無法即時了解汙染源頭位於何處?因而造成空污監測上的困擾與不便的情事產生。 As for automatic air quality monitoring, automatic continuous monitoring is required. Generally, the concentration is measured one hour after the sample is collected, which can provide immediate warning or forecast needs. The principles of PM2.5 automatic monitoring instruments in common air quality monitoring stations include beta-ray attenuation method, conical element oscillatory balance method and light scattering method. In order to reduce possible interference problems, various automatic monitoring instruments are designed to remove interference, such as particle size sieving (removing particles larger than 2.5 microns in size), flow controller (controlling precise flow), temperature, atmospheric pressure measurement And heating the sampling airflow (to avoid moisture condensation) and so on. In addition, Taiwan’s air pollution monitoring mostly uses the fixed-point detection method of ground observatories. This method is indeed more susceptible to the influence of the terrain, which in turn affects the flexibility of monitoring, making it impossible for personnel to know where the source of the pollution is. As a result, problems and inconveniences in air pollution monitoring have occurred.

為改善上述缺失,相關技術領域學者謝孟穎已然發表一種『PM2.5空污偵測無人飛行器之開發與驗證』所示的論文。此外,另有一種如新型公告第M546948號『無人機環境污染自動化監控系統』所示的專利,該論文與該專利皆揭露使用無人機進入崎嶇的地形而進行空氣汙染偵測, 雖然可以減少許多資源上的消耗而提升空污防治之效果;惟,該論文與該專利係以單機去做空氣汙染偵測的設計,將污染源感測器加裝在無人機上,透過行動網路來傳輸控制訊號,並以GPS模組進行位置定位,由於空中需要偵測的區域極為廣泛的緣故,所以必須以數量龐大的機群分布方式進行空氣汙染的偵測,再由搜索到的資料去做分析,此種以機群分布的方式進行空氣汙染偵測的確實成本較高,以致連帶使得所花費資源也相對較多,因而造成無法普及推廣的重要因素之一。 In order to improve the above deficiencies, Xie Mengying, a scholar in related technical fields, has published a paper shown in "Development and Verification of PM2.5 Air Pollution Detection Unmanned Aerial Vehicles". In addition, there is another patent as shown in the New Announcement No. M546948 "UAV Environmental Pollution Monitoring System". Both the paper and the patent disclose the use of UAVs to enter rugged terrain for air pollution detection. Although it can reduce the consumption of many resources and improve the effect of air pollution control; however, the paper and the patent are designed to detect air pollution with a single machine, and the pollution source sensor is installed on the drone, through the mobile network Lulai transmits control signals and uses GPS modules for location positioning. Because the area that needs to be detected in the air is extremely wide, it is necessary to conduct air pollution detection with a large number of aircraft clusters, and then search for data For analysis, the cost of air pollution detection by means of cluster distribution is indeed high, so that it also costs relatively more resources, which makes it one of the important factors that cannot be popularized.

有鑑於此,上述習知技術、論文與專利所揭露之實施技術確實皆未臻完善,仍有再改善的必要性,而且基於相關產業的迫切需求之下,本發明人等乃經不斷的努力研發之下,終於研發出一套有別於上述習知技術與前揭專利的本發明。 In view of this, the implementation technologies disclosed in the above-mentioned conventional technologies, papers, and patents are indeed not perfect, and there is still a need for improvement. Moreover, based on the urgent needs of related industries, the inventors have made continuous efforts Under the research and development, finally developed a set of the present invention which is different from the above-mentioned conventional technology and the previously disclosed patent.

本發明第一目的,在於提供一種雙無人機空污追蹤系統,主要是利用無人機監控空污區域具有快速回報與即時鎖定汙染源的特點,並結合地面佈建之偵測點與空中機動偵測區域,進而大幅提升空污防治的效果。達成前述第一目的之技術手段,係於無人飛機設置包含飛航感測單元、空污感測器、機載電腦及第一無線通訊單元。並於地面監控單元設置包含第二無線通訊單元、飛行控制模組、圖形化儀表顯示模組。機載電腦依序將飛航感測訊號及空污感測訊號轉換處理為飛行狀態資訊及空污值,並透過第一無線通訊單元無線傳輸出去。飛行控制模組預設有污染源偵測飛行路徑,用以依序輸出飛行控制指令,透過第二無線通訊單元及第一無線通訊單元傳輸至機載電腦中進行解讀。飛行控制模組透過第二無線通訊單元接收飛行狀態資訊及空污值,再由圖形化儀表顯示模組顯示包含 飛行狀態顯示界面及空污顯示界面。 The first objective of the present invention is to provide a dual drone air pollution tracking system, which mainly uses drones to monitor air pollution areas with the characteristics of fast reporting and real-time location of pollution sources, combined with ground-based detection points and air mobile detection Area, and greatly improve the effectiveness of air pollution prevention. The technical means to achieve the aforementioned first objective is to set up an unmanned aircraft including a flight sensing unit, an air pollution sensor, an onboard computer and a first wireless communication unit. The ground monitoring unit is provided with a second wireless communication unit, a flight control module, and a graphical instrument display module. The onboard computer sequentially converts the flight sensing signal and the air pollution sensing signal into flight status information and air pollution value, and transmits them wirelessly through the first wireless communication unit. The flight control module is preset with a pollution source detection flight path for sequentially outputting flight control commands, which are transmitted to the onboard computer for interpretation through the second wireless communication unit and the first wireless communication unit. The flight control module receives flight status information and air pollution value through the second wireless communication unit, and then displays the information by the graphical instrument display module. Flight status display interface and air pollution display interface.

本發明第二目的,在於提供一種具備雙機同心圓方式搜索汙染源功能的雙無人機空污追蹤系統,主要是以兩架無人飛機以同心圓方式搜索汙染源,所收到的資料進行AI演算,自動修正飛行的路徑,將空氣汙染發生之位置即時傳送至監控端,以便監控人員可隨時瞭解可能發生之位置,因而具有所需資源較少以及可降低成本等特點。達成前述第二目的之技術手段,係於無人飛機設置包含飛航感測單元、空污感測器、機載電腦及第一無線通訊單元。並於地面監控單元設置包含第二無線通訊單元、飛行控制模組、圖形化儀表顯示模組。機載電腦依序將飛航感測訊號及空污感測訊號轉換處理為飛行狀態資訊及空污值,並透過第一無線通訊單元無線傳輸出去。飛行控制模組預設有污染源偵測飛行路徑,用以依序輸出飛行控制指令,透過第二無線通訊單元及第一無線通訊單元傳輸至機載電腦中進行解讀。飛行控制模組透過第二無線通訊單元接收飛行狀態資訊及空污值,再由圖形化儀表顯示模組顯示包含飛行狀態顯示界面及空污顯示界面。其中,該無人飛機的數量為二,該飛行控制模組內建有一自動導航模組,該自動導航模組可供設定有一使該二無人飛機依據該污染源偵測飛行路徑飛行的污染源追蹤模式,執行該污染源搜索模式時,係控制該二無人飛機以同心圓方式由外圈逐漸往內圈環繞飛行地進行搜索,並以該二無人飛機所偵測到的該空污值高低進行演算,以判斷出污染源所處方位及位置,並依據該污染源所在方位及位置而修正該污染源偵測飛行路徑。 The second objective of the present invention is to provide a dual drone air pollution tracking system with the function of searching for pollution sources in a two-machine concentric circle method, which mainly uses two unmanned aircraft to search for pollution sources in a concentric circle method, and the received data is subjected to AI calculation. Automatically correct the flight path and transmit the location where air pollution occurs to the monitoring terminal in real time, so that the monitoring personnel can know the location that may occur at any time, so it has the characteristics of less resources and reduced costs. The technical means to achieve the aforementioned second objective is to set up an unmanned aircraft including a flight sensor unit, an air pollution sensor, an onboard computer and a first wireless communication unit. The ground monitoring unit is provided with a second wireless communication unit, a flight control module, and a graphical instrument display module. The onboard computer sequentially converts the flight sensing signal and the air pollution sensing signal into flight status information and air pollution value, and transmits them wirelessly through the first wireless communication unit. The flight control module is preset with a pollution source detection flight path for sequentially outputting flight control commands, which are transmitted to the onboard computer for interpretation through the second wireless communication unit and the first wireless communication unit. The flight control module receives the flight status information and the air pollution value through the second wireless communication unit, and the graphical instrument display module displays the flight status display interface and the air pollution display interface. Wherein, the number of the unmanned aircraft is two, and the flight control module has a built-in auto-navigation module, and the auto-navigation module can be configured to have a pollution source tracking mode that enables the two unmanned aircraft to fly according to the pollution source detection flight path. When the pollution source search mode is executed, the two drones are controlled to search from the outer circle to the inner circle in a concentric manner, and the air pollution value detected by the two drones is calculated to Determine the location and location of the pollution source, and modify the pollution source detection flight path based on the location and location of the pollution source.

本發明第三目的,在於提供一種具備空拍影像回傳以實現空污目視監控功能的雙無人機空污追蹤系統。達成前述第三目的之技術手段,係於無人飛機設置包含飛航感測單元、空污感測器、機載電腦及 第一無線通訊單元。並於地面監控單元設置包含第二無線通訊單元、飛行控制模組、圖形化儀表顯示模組。機載電腦依序將飛航感測訊號及空污感測訊號轉換處理為飛行狀態資訊及空污值,並透過第一無線通訊單元無線傳輸出去。飛行控制模組預設有污染源偵測飛行路徑,用以依序輸出飛行控制指令,透過第二無線通訊單元及第一無線通訊單元傳輸至機載電腦中進行解讀。飛行控制模組透過第二無線通訊單元接收飛行狀態資訊及空污值,再由圖形化儀表顯示模組顯示包含飛行狀態顯示界面及空污顯示界面。其中,該無人飛機設置一用以擷取飛行時俯視地面之空拍影像的影像擷取模組,該飛行控制模組透過該第二無線通訊單元及該第一無線通訊單元接收該空拍影像,再由該圖形化儀表顯示模組顯示出一顯示有該空拍影像的空拍顯示界面,該空拍顯示界面包含一切換介面,該切換介面可供切換而將該空拍顯示界面顯示為空拍影像顯示模式;或是包含有空污即時位置標記的電子地圖顯示模式。 The third objective of the present invention is to provide an air pollution tracking system for dual drones with aerial image return to realize the air pollution visual monitoring function. The technical means to achieve the aforementioned third objective is to set up an unmanned aircraft including flight sensing unit, air pollution sensor, onboard computer and The first wireless communication unit. The ground monitoring unit is provided with a second wireless communication unit, a flight control module, and a graphical instrument display module. The onboard computer sequentially converts the flight sensing signal and the air pollution sensing signal into flight status information and air pollution value, and transmits them wirelessly through the first wireless communication unit. The flight control module is preset with a pollution source detection flight path for sequentially outputting flight control commands, which are transmitted to the onboard computer for interpretation through the second wireless communication unit and the first wireless communication unit. The flight control module receives the flight status information and the air pollution value through the second wireless communication unit, and the graphical instrument display module displays the flight status display interface and the air pollution display interface. Wherein, the unmanned aircraft is provided with an image capturing module for capturing aerial images overlooking the ground during flight, and the flight control module receives the aerial images through the second wireless communication unit and the first wireless communication unit , And then the graphical instrument display module displays an aerial photography display interface displaying the aerial photography image, the aerial photography display interface includes a switching interface, the switching interface can be switched and the aerial photography display interface is displayed as Aerial image display mode; or an electronic map display mode that includes real-time location marks of air pollution.

10‧‧‧無人飛機 10‧‧‧Unmanned Aircraft

11‧‧‧飛行控制機構 11‧‧‧Flight control mechanism

20‧‧‧地面監控單元 20‧‧‧Ground Monitoring Unit

21‧‧‧第二無線通訊單元 21‧‧‧Second wireless communication unit

22‧‧‧飛行控制模組 22‧‧‧Flight Control Module

22a,23a,50a‧‧‧微控制器 22a,23a,50a‧‧‧Microcontroller

23‧‧‧圖形化儀表顯示模組 23‧‧‧Graphical instrument display module

230‧‧‧飛行狀態顯示界面 230‧‧‧Flight status display interface

231‧‧‧空污顯示界面 231‧‧‧Air pollution display interface

232‧‧‧空拍顯示界面 232‧‧‧ Aerial display interface

30‧‧‧飛航感測單元 30‧‧‧Flying sensing unit

31‧‧‧溫度感測器 31‧‧‧Temperature sensor

32‧‧‧加速度計 32‧‧‧Accelerometer

33‧‧‧電子羅盤 33‧‧‧Electronic compass

34‧‧‧GPS定位模組 34‧‧‧GPS positioning module

35‧‧‧氣壓高度計 35‧‧‧Barometric Altimeter

36‧‧‧記憶模組 36‧‧‧Memory Module

40‧‧‧空污感測器 40‧‧‧Air Pollution Sensor

50‧‧‧機載電腦 50‧‧‧Onboard computer

50a‧‧‧微控制器 50a‧‧‧Microcontroller

60‧‧‧第一無線通訊單元 60‧‧‧First wireless communication unit

70‧‧‧影像擷取模組 70‧‧‧Image capture module

80‧‧‧R/C遙控器 80‧‧‧R/C remote control

圖1係本發明無人飛機的操作實施示意圖。 Figure 1 is a schematic diagram of the operation and implementation of the unmanned aircraft of the present invention.

圖2係本發明基本架構的功能方塊示意圖。 Figure 2 is a functional block diagram of the basic architecture of the present invention.

圖3係本發明具體架構的功能方塊示意圖。 Figure 3 is a functional block diagram of the specific architecture of the present invention.

圖4係本發明另一種具體架構的功能方塊示意圖。 Figure 4 is a functional block diagram of another specific architecture of the present invention.

圖5係本發明以雙機追蹤定位汙染源的實施示意圖。 Fig. 5 is a schematic diagram of the implementation of the present invention for tracking and locating pollution sources with dual machines.

圖6係本發明搜索汙染源飛行路線的實施示意圖。 Figure 6 is a schematic diagram of the implementation of the present invention to search for the flight route of the pollution source.

圖7係本發明圖形化儀表顯示模組的畫面顯示實施示意圖。 FIG. 7 is a schematic diagram of the screen display implementation of the graphical instrument display module of the present invention.

本發明係針對空汙防治目的所進行的無人旋翼機設計,並設計出一套可同時提供傳統固定式與可攜式之空汙偵測資料,結合無人飛機10及地面監控單元20製作出一套空氣汙染源追蹤系統。本發明也提供定位及辨識之功能,空氣汙染發生之位置將會即時傳送至地面監控單元20並給予識別號碼,以方便監控人員可隨時瞭解污染可能發生之位置。另外,本發明無人飛機10係採用旋翼機之設計,配合雙機搜索為主,以4G無線通訊模組傳送飛行狀態資訊和空氣汙染偵測如PM1.0、PM2.5、PM10等空污值,結合無人飛機10及地面監控單元20,使用GPS定位及辨識之功能,並且以兩架無人飛機10以同心圓方式進行搜索,所收到的資料進行AI演算,自動修正飛行的路徑,將空氣汙染發生之位置即時傳送至地面監控單元20,以便監控人員可隨時瞭解可能發生之位置。由於本發明只需兩架無人飛機10即可達到空中污染偵測的功效,故而所需資源較少,並可降低成本。 The present invention is an unmanned rotorcraft designed for the purpose of air pollution prevention, and a set of air pollution detection data can be provided at the same time for traditional fixed and portable air pollution, combined with the unmanned aircraft 10 and the ground monitoring unit 20 to make a A tracking system for air pollution sources. The present invention also provides positioning and identification functions. The location where air pollution occurs will be instantly transmitted to the ground monitoring unit 20 and given an identification number, so that the monitoring personnel can always know where the pollution may occur. In addition, the unmanned aircraft 10 of the present invention adopts the design of a rotary wing aircraft, and is mainly used for dual-aircraft search. It uses 4G wireless communication modules to transmit flight status information and air pollution detection such as PM1.0, PM2.5, PM10 and other air pollution values. , Combined with the unmanned aircraft 10 and the ground monitoring unit 20, use GPS positioning and identification functions, and use two unmanned aircraft 10 to search in a concentric circle, the received data is processed by AI calculation, the flight path is automatically corrected, and the air The location where the pollution occurs is instantly transmitted to the ground monitoring unit 20 so that the monitoring personnel can know the location where it may occur at any time. Since the present invention only needs two unmanned aircraft 10 to achieve the effect of air pollution detection, it requires less resources and can reduce costs.

為讓 貴審查委員能進一步瞭解本發明整體的技術特徵與達成本發明目的之技術手段,玆以具體實施例並配合圖式加以詳細說明:請配合參看圖1~3所示,為達成本發明第一目之第一具體實施例,係包括至少一無人飛機10及一地面監控單元20。於無人飛機10上設置包含有至少一用以感測飛行狀態而產生飛航感測訊號的飛航感測單元30、一用以感測大氣空污狀態而產生空污感測訊號的空污感測器40(如PM1.0、PM2.5、PM10偵測之粉塵感測器)、一機載電腦50及一第一無線通訊單元60(如4G無線通訊模組;但不以此為限)。機載電腦50依序將飛航感測訊號及空污感測訊號轉換處理為相應的飛行狀態資訊以及空污值,並透過第一無線通訊單元60將飛行狀態資訊及空污值無線傳輸出去。再於地面監控單元20設置包含有一第二無線通訊單元21(如4G無線通訊模組;但不以此為限)、一飛行 控制模組22、一圖形化儀表顯示模組23。飛行控制模組22預設有至少一污染源偵測飛行路徑,用以依序輸出與污染源偵測飛行路徑相應的飛行控制指令,飛行控制指令係透過第二無線通訊單元21及第一無線通訊單元60而傳輸至機載電腦50中進行解讀,以控制無人飛機10依據污染源偵測飛行路徑來飛行。飛行控制模組22係透過第二無線通訊單元21接收飛行狀態資訊及空污值,再由圖形化儀表顯示模組23分別顯示包含一可顯示飛行狀態資訊的飛行狀態顯示界面230及一可顯示空污值的空污顯示界面231。 In order for your reviewer to further understand the overall technical features of the present invention and the technical means to achieve the purpose of the invention, specific examples and diagrams are used to illustrate in detail: please refer to Figures 1 to 3 for the purpose of achieving the invention. The first specific embodiment of the first item includes at least one unmanned aircraft 10 and a ground monitoring unit 20. The unmanned aircraft 10 is provided with at least one flight sensing unit 30 for sensing the flight state and generating a flight sensing signal, and an air pollution sensing unit 30 for sensing the air pollution state of the atmosphere to generate the air pollution sensing signal Sensor 40 (such as PM1.0, PM2.5, PM10 detection of dust sensors), an on-board computer 50 and a first wireless communication unit 60 (such as 4G wireless communication module; but not as limit). The onboard computer 50 sequentially converts the flight sensing signal and the air pollution sensing signal into corresponding flight status information and air pollution value, and wirelessly transmits the flight status information and air pollution value through the first wireless communication unit 60 . The ground monitoring unit 20 is further provided with a second wireless communication unit 21 (such as a 4G wireless communication module; but not limited to this), a flight Control module 22, a graphical instrument display module 23. The flight control module 22 is preset with at least one pollution source detection flight path for sequentially outputting flight control commands corresponding to the pollution source detection flight path. The flight control commands are transmitted through the second wireless communication unit 21 and the first wireless communication unit 60 and transmitted to the onboard computer 50 for interpretation, so as to control the unmanned aircraft 10 to fly according to the pollution source detection flight path. The flight control module 22 receives the flight status information and the air pollution value through the second wireless communication unit 21, and then the graphical instrument display module 23 displays the flight status display interface 230 and a display interface 230 that can display flight status information. The empty pollution display interface 231 of the empty pollution value.

於一種具體的運作實施例中,上述飛航感測單元30、空污感測器40、影像擷取模組70及第一無線通訊單元60係整合設置於模組化的電路板上,電路板可以設置於無人飛機10上。 In a specific operation embodiment, the above-mentioned flight sensor unit 30, air pollution sensor 40, image capture module 70 and first wireless communication unit 60 are integratedly arranged on a modular circuit board. The board may be installed on the drone 10.

請配合參看圖4所示,具體的,上述飛航感測單元30係包含一用以感測無人飛機10即時溫度狀態而產生溫度訊號的溫度感測器31、一用以感測無人飛機10三軸加速度狀態而產生加速度訊號的加速度計32、一用以感測無人飛機10即時方向而產生方向訊號的電子羅盤33、一用以感測無人飛機10即時位置狀態而產生位置定位訊號的GPS定位模組34及一用以感測無人飛機10即時高度狀態而產生高度訊號的氣壓高度計35。機載電腦50內建的微控制器50a依序將溫度訊號、加速度訊號、高度訊號、方向訊號及位置定位訊號轉換處理為相應的溫度、加速度(如無人飛機姿勢)、高度、方向及位置定位等飛行狀態資訊。 Please refer to FIG. 4. Specifically, the flight sensing unit 30 includes a temperature sensor 31 for sensing the real-time temperature state of the drone 10 to generate a temperature signal, and a temperature sensor 31 for sensing the drone 10 An accelerometer 32 for generating acceleration signals from the three-axis acceleration state, an electronic compass 33 for sensing the real-time direction of the drone 10 to generate a direction signal, and a GPS for sensing the real-time position status of the drone 10 to generate a position positioning signal The positioning module 34 and a barometric altimeter 35 are used to sense the real-time altitude state of the unmanned aircraft 10 and generate an altitude signal. The built-in microcontroller 50a of the onboard computer 50 sequentially converts temperature signals, acceleration signals, altitude signals, direction signals, and position positioning signals into corresponding temperature, acceleration (such as drone posture), altitude, direction, and position positioning. Wait for flight status information.

更具體的,上述飛行狀態顯示界面230係為一種飛行姿態圖形化介面,如圖7所示。空污顯示界面231係包含一即時空污值顯示介面、一污染源位置標示介面以及已巡航區域之空污值顯示介面。至於飛行姿態圖形化介面可供顯示飛行姿態(由加速度計32量測)、機頭方向(由電子羅盤33量測)、海拔高度(由氣壓高度計量測)、空速(由空速計量測)、時間日期(由 RTC時間模組計算得到)、溫度(由溫度感測器31量測)以及位置定位(由GPS定位模組34得到)等飛行狀態資訊。 More specifically, the aforementioned flight status display interface 230 is a graphical interface for flight attitude, as shown in FIG. 7. The air pollution display interface 231 includes a real-time air pollution value display interface, a pollution source location indicator interface, and an air pollution value display interface of the cruised area. As for the flight attitude graphical interface, it can display flight attitude (measured by accelerometer 32), nose direction (measured by electronic compass 33), altitude (measured by air pressure), and airspeed (measured by airspeed) Test), time and date (by Flight status information such as calculated by the RTC time module), temperature (measured by the temperature sensor 31), and position location (obtained by the GPS positioning module 34).

請配合參看圖1~6所示,為達成本發明第二目之第二具體實施例,本實施例除了包括上述第一具體實施例的整體技術特徵之外,上述無人飛機10的數量為二,並於飛行控制模組22內建有一自動導航模組(可以是一種軟體來實現),自動導航模組可供設定有一使二無人飛機10依據污染源偵測飛行路徑飛行的污染源追蹤模式。執行污染源搜索模式時,係控制二無人飛機10以同心圓方式由外圈逐漸往內圈環繞飛行地進行搜索,並以二無人飛機10所偵測到的空污值高低進行演算,以判斷出污染源所處方位及位置,並依據污染源所在方位及位置而修正污染源偵測飛行路徑。 Please refer to Figures 1 to 6, in order to achieve the second specific embodiment of the second object of the invention, this embodiment includes the overall technical features of the above-mentioned first specific embodiment, and the number of the above-mentioned unmanned aircraft 10 is two. , And an automatic navigation module (which can be realized by a software) is built in the flight control module 22, and the automatic navigation module can be set to a pollution source tracking mode that enables the two drones 10 to detect the flight path according to the pollution source. When the pollution source search mode is executed, the second drone 10 is controlled to search from the outer circle to the inner circle in a concentric manner, and the air pollution value detected by the second drone 10 is calculated to determine Prescribe the location and location of the pollution source, and modify the pollution source detection flight path according to the location and location of the pollution source.

具體的,當內圈無人飛機10之空污值高於外圈無人飛機10的空污值時,則繼續控制二無人飛機10以同心圓方式由外圈逐漸往內圈環繞飛行地進行搜索,當內圈無人飛機10所偵測之空污值為最大值時,則判定內圈無人飛機10所處位置為污染源所在位置。當內圈無人飛機10之空污值低於外圈無人飛機10的空污值時,導航程式則執行另一污染源偵測飛行路徑,另一污染源偵測飛行路徑與原本規劃之污染源偵測飛行路徑的外緣為相切。 Specifically, when the air pollution value of the inner UAV 10 is higher than the air pollution value of the outer UAV 10, continue to control the second UAV 10 in a concentric manner from the outer ring to the inner ring to fly around and search. When the air pollution value detected by the inner drone 10 is the maximum, it is determined that the location of the inner drone 10 is the location of the pollution source. When the air pollution value of the inner drone 10 is lower than the air pollution value of the outer drone 10, the navigation program executes another pollution source to detect the flight path, and the other pollution source to detect the flight path and the originally planned pollution source to detect the flight The outer edge of the path is tangent.

承上所述,上述自動導航模組啟動時,則依序執行下列飛行模式: As mentioned above, when the above-mentioned automatic navigation module is activated, the following flight modes are executed in sequence:

(a)航向維持控制模式,係依據飛行控制指令之軌跡角命令與即時位置定位訊號所得軌跡角之差,經運算後決定無人飛機10的滾轉角度大小。 (a) The heading maintenance control mode is based on the difference between the trajectory angle command of the flight control command and the trajectory angle obtained by the real-time position positioning signal, and the roll angle of the UAV 10 is determined after calculation.

(b)航線維持控制模式,係依據飛行控制指令以及位置定位訊號而計算當前位置與飛行控制指令位置的誤差距離,以決定無人飛機10之方向舵面量的大小。 (b) The route maintenance control mode is to calculate the error distance between the current position and the flight control command position based on the flight control command and the position positioning signal to determine the magnitude of the rudder surface of the UAV 10.

(c)自動導航模式,係依據GPS定位模組34提供之位置定位訊號以導引無人飛機10航向指定之污染源偵測飛行路徑的各航路點或各航線位置,並判定是否達到預設之航路點或航線位置。 (c) The automatic navigation mode is based on the position positioning signal provided by the GPS positioning module 34 to guide the unmanned aircraft 10 heading to the designated pollution source to detect each waypoint or each route position of the flight path, and determine whether it has reached the preset route Point or route position.

請配合參看圖1~4所示,為達成本發明第三目之第三具體實施例,本實施例除了包括上述第一具體實施例的整體技術特徵之外,上述無人飛機10設置一用以擷取飛行時俯視地面之空拍影像的影像擷取模組70,飛行控制模組22透過第二無線通訊單元21及第一無線通訊單元60接收空拍影像,再由圖形化儀表顯示模組23顯示出一顯示有空拍影像的空拍顯示界面232,空拍顯示界面232包含一切換介面,切換介面可供切換而將空拍顯示界面232顯示為空拍影像顯示模式;或是包含有空污即時位置標記的電子地圖顯示模式。 Please refer to Figures 1 to 4, in order to achieve the third specific embodiment of the third item of the invention, this embodiment includes the overall technical features of the first specific embodiment described above, the above-mentioned unmanned aircraft 10 is provided with a An image capture module 70 that captures aerial images overlooking the ground during flight. The flight control module 22 receives the aerial images through the second wireless communication unit 21 and the first wireless communication unit 60, and then displays the aerial image by a graphical instrument display module. 23 shows an aerial photography display interface 232 displaying aerial photography images. The aerial photography display interface 232 includes a switching interface. The switching interface can be switched and the aerial photography display interface 232 is displayed in the aerial image display mode; or An electronic map display mode for instant location marking of air pollution.

本發明提出一個使用多頻段遙控旋翼機進行監控空污的任務。遠端遙控無人飛機10的系統架構圖如圖1、2所示。此系統可分為四大部份:(1)無人飛機10本體與機載電腦50。(2)飛行控制模組22。(3)圖形化儀表顯示模組23。(4)R/C遙控器80(Radio Control;無線電控制)。 The present invention proposes a task of monitoring air pollution by using a multi-band remote control rotorcraft. The system architecture diagram of the remote control unmanned aircraft 10 is shown in FIGS. 1 and 2. This system can be divided into four parts: (1) The main body of the drone 10 and the onboard computer 50. (2) Flight control module 22. (3) Graphical instrument display module 23. (4) R/C remote control 80 (Radio Control; radio control).

本發明系統利用飛行控制模組22經過第一無線通訊單元60及第二無線通訊單元21(即4G無線通訊模組)傳輸飛行控制指令及酬載命令,也可用一種R/C遙控器80來實現手動飛行控制,如圖2所示,使用者可依據一般遙控飛機的控制方法來操控無人飛機10,用於旋翼式無人飛機10的起降,R/C遙控器80具有一個控制器轉換手動/自動飛行。當機載電腦50接收到飛行控制指令後會將數位資料傳送至無人飛機10的伺服馬達與電子變速器來控制無人飛機10的飛行姿態。至於酬載命令可以是空拍影像傳輸。而圖形化儀表顯示模組23係為一種圖形化介面,用以顯示無人飛機10的飛行姿態、高度、航向等飛行相關參數與偵測到的粉塵濃度值,利用4G無線 通訊模組之無線網路技術接收機載電腦50的空拍影像酬載資料,以達到即時影像監控的功能,並利用電子地圖顯示目前無人飛機10與污染源所處的相對位置,具體實施如圖7所示。 The system of the present invention uses the flight control module 22 to transmit flight control instructions and payload commands via the first wireless communication unit 60 and the second wireless communication unit 21 (ie, 4G wireless communication module). An R/C remote control 80 can also be used to To achieve manual flight control, as shown in Figure 2, the user can control the unmanned aircraft 10 according to the general remote control aircraft control method for the take-off and landing of the rotary-wing unmanned aircraft 10. The R/C remote control 80 has a controller to switch manual /Automatic flight. When the onboard computer 50 receives the flight control command, it transmits the digital data to the servo motor and electronic transmission of the drone 10 to control the flight attitude of the drone 10. The payload command can be aerial image transmission. The graphical instrument display module 23 is a graphical interface for displaying flight-related parameters such as flight attitude, altitude, and heading of the unmanned aircraft 10 and the detected dust concentration value, using 4G wireless The wireless network technology of the communication module receives the aerial image payload data of the computer 50 to achieve the function of real-time image monitoring, and uses an electronic map to display the current relative position of the unmanned aircraft 10 and the pollution source. The specific implementation is shown in the figure 7 shown.

本發明無人飛機10與機載電腦50整合之系統架構如圖3所示,機載電腦50可以是一種系統整合暨運算單元(如電腦或微控制器50a),並於無人飛機10設置飛航感測單元30、影像擷取模組70(如酬載單元)、GPS定位模組34及第一無線通訊單元60等組件,並可將上述各個組件整合於一個PCB電路板上,並裝置於無人飛機10本體與其腳架之間,於此得以完成本發明的基本硬體設計。 The system architecture of the unmanned aircraft 10 and the onboard computer 50 of the present invention is shown in FIG. 3. The onboard computer 50 may be a system integration and computing unit (such as a computer or a microcontroller 50a), and the unmanned aircraft 10 is set to fly The sensing unit 30, the image capturing module 70 (such as the payload unit), the GPS positioning module 34 and the first wireless communication unit 60 and other components, which can be integrated on a PCB circuit board and installed on Between the main body of the drone 10 and its tripod, the basic hardware design of the present invention can be completed here.

為圖形化儀表顯示模組23可依需求切換成電子地圖或空拍影像,儀表與顯示系統分別為:(1)無人機姿態圖形化介面。(2)影像與電子地圖顯示介面。(3)粉塵濃度值顯示介面。(4)顯示污染源的所在位置等。 The graphical instrument display module 23 can be switched to an electronic map or aerial image according to requirements. The instrument and the display system are respectively: (1) Graphical interface of drone attitude. (2) Image and electronic map display interface. (3) Dust concentration value display interface. (4) Show the location of the pollution source, etc.

上述圖形化介面係使用C#撰寫而成,使用4G無線通訊模組作為傳輸媒介,將無人飛機本體與機載電腦50之資料轉換為圖形介面來顯示,並利用此軟體將飛行控制參數上傳至機載電腦50。操控者只需從前方的數位顯示器即可觀看無人機的飛行姿態、機頭方向、海拔高度、空速、時間、日期、溫度和定位資訊等飛行狀態資訊。 The above graphical interface is written in C#, using 4G wireless communication module as the transmission medium to convert the data between the drone body and the onboard computer 50 into a graphical interface for display, and use this software to upload flight control parameters to the aircraft Load computer 50. The operator only needs to view the drone's flight attitude, head direction, altitude, airspeed, time, date, temperature and positioning information from the front digital display.

上述飛行控制模組22的系統架構如圖3所示,飛行控制模組22可以是一種掌上型電腦控制器、電腦;或是微控制器22a。於掌上型電腦控制器的實施例中,如圖1所示,主要是利用加速度計32作為速度判別,將手動控制轉換為無人飛機10的姿態命令,在掌上型控制器中還有其他功能,例如利用按鈕切換控制模式,在控制模式中,亦有其他按鈕可以作為高度、航向之切換;在載具控制的部份,可以控制影像傳輸與傳輸飛行資料至顯示單元至地面監控單元20,以達到遠端監控的功能。 The system architecture of the aforementioned flight control module 22 is shown in FIG. 3. The flight control module 22 can be a palmtop computer controller, a computer, or a microcontroller 22a. In the embodiment of the palmtop computer controller, as shown in FIG. 1, the accelerometer 32 is mainly used for speed discrimination, and the manual control is converted into the attitude command of the UAV 10. There are other functions in the palmtop controller. For example, use buttons to switch the control mode. In the control mode, there are other buttons that can be used to switch the altitude and heading; in the vehicle control part, it can control the image transmission and the transmission of flight data to the display unit to the ground monitoring unit 20. To achieve the function of remote monitoring.

此外,多種飛航感測訊號與無線通訊技術是本發明整個系統主要的資料取得來源,主要是使用SoC(System on Chip)技術,飛航感測訊號與無線通訊技術架構如圖4所示,裝設多種飛行感測元件與模組,將撰寫好的韌體程式裝置於機載電腦50的微控制器50a(Microprocessor Control Unit,MCU)裡,藉此連結各個周邊I/O、傳輸協定與感測元件裝置加以驅動後,進行資料的接收、擷取、演算、整合及編碼,將處理後的資料經由無線通訊技術傳送出去,同時將重要飛行數據儲存至SD固態的記憶模組36內。飛航感測訊號與無線通訊將裝置於無人飛機10中,經由4G無線通訊模組長距離無線通訊系統作為傳輸的媒介,即可將飛航感測訊號傳至圖形化儀表顯示模組23與固態記憶模組36中,以作資訊的顯示與記錄。 In addition, a variety of flight sensing signals and wireless communication technologies are the main sources of data for the entire system of the present invention, mainly using SoC (System on Chip) technology. The flight sensing signals and wireless communication technology architecture are shown in Figure 4. A variety of flight sensing components and modules are installed, and the written firmware program is installed in the microcontroller 50a (Microprocessor Control Unit, MCU) of the onboard computer 50 to connect various peripheral I/Os, transmission protocols, and After the sensing element device is driven, data is received, captured, calculated, integrated, and encoded, and the processed data is transmitted through wireless communication technology, and important flight data is stored in the SD solid-state memory module 36. The flight sensing signal and wireless communication will be installed in the unmanned aircraft 10, and the flight sensing signal can be transmitted to the graphical instrument display module 23 and the graphical instrument display module through the 4G wireless communication module long-distance wireless communication system as the transmission medium. The solid-state memory module 36 is used for information display and recording.

如圖5~6所示之汙染源追蹤系統概念,係以無線網路為架構設計中央監控與顯示系統之空污定位功能,在汙染源搜索模式時,透過兩架掛載汙染源追蹤系統之無人飛機10進行區域式的搜索偵測,以兩架無人飛機10所得到粉塵濃度的高低進行AI演算,以判斷出空汙源所在的方位,並依據判斷的方位修正追蹤的路線,如圖5所示,其搜索路線是以同心圓方式由大到小進行搜索,如圖6所示。 The pollution source tracking system concept shown in Figures 5~6 is based on the wireless network architecture to design the air pollution location function of the central monitoring and display system. In the pollution source search mode, through two unmanned aircrafts with pollution source tracking systems 10 Perform regional search and detection, and perform AI calculation based on the level of dust concentration obtained by two unmanned aircraft 10 to determine the location of the air pollution source, and correct the tracked route according to the determined location, as shown in Figure 5. The search route is to search from large to small in concentric circles, as shown in Figure 6.

以上所述,僅為本發明一種較為可行的實施例,並非用以限定本發明之專利範圍,凡舉依據下列請求項所述之內容、特徵以及其精神而為之其他變化的等效實施,皆應包含於本發明之專利範圍內。本發明所具體界定於請求項之結構特徵,未見於同類物品,且具實用性與進步性,已符合發明專利要件,爰依法具文提出申請,謹請 鈞局依法核予專利,以維護本申請人合法之權益。 The above is only a more feasible embodiment of the present invention, and is not intended to limit the patent scope of the present invention. Any equivalent implementation of other changes based on the content, characteristics and spirit of the following claims is mentioned. All should be included in the patent scope of the present invention. The structural features of the present invention are specifically defined in the claim, which are not found in similar articles, and are practical and progressive. They have already met the requirements of a patent for invention. The application is filed in accordance with the law. The legitimate rights and interests of the applicant.

10‧‧‧無人飛機 10‧‧‧Unmanned Aircraft

11‧‧‧飛行控制機構 11‧‧‧Flight control mechanism

20‧‧‧地面監控單元 20‧‧‧Ground Monitoring Unit

21‧‧‧第二無線通訊單元 21‧‧‧Second wireless communication unit

22‧‧‧飛行控制模組 22‧‧‧Flight Control Module

23‧‧‧圖形化儀表顯示模組 23‧‧‧Graphical instrument display module

30‧‧‧飛航感測單元 30‧‧‧Flying sensing unit

40‧‧‧空污感測器 40‧‧‧Air Pollution Sensor

50‧‧‧機載電腦 50‧‧‧Onboard computer

60‧‧‧第一無線通訊單元 60‧‧‧First wireless communication unit

70‧‧‧影像擷取模組 70‧‧‧Image capture module

Claims (8)

一種雙無人機空污追蹤系統,其包括:至少一無人飛機,其設置包含有至少一用以感測飛行狀態而產生飛航感測訊號的飛航感測單元、一用以感測大氣空污狀態而產生空污感測訊號的空污感測器、一機載電腦及一第一無線通訊單元;該機載電腦依序將該飛航感測訊號及該空污感測訊號轉換處理為相應的飛行狀態資訊及空污值,並透過該第一無線通訊單元將該飛行狀態資訊及該空污值無線傳輸出去;及一地面監控單元,其包含有一第二無線通訊單元、一飛行控制模組及一圖形化儀表顯示模組;該飛行控制模組預設有至少一污染源偵測飛行路徑,用以依序輸出與該污染源偵測飛行路徑相應的飛行控制指令,該飛行控制指令係透過該第二無線通訊單元及該第一無線通訊單元而傳輸至該機載電腦中進行解讀,以控制該至少一無人飛機依據該污染源偵測飛行路徑來飛行;該飛行控制模組並透過該第二無線通訊單元接收該飛行狀態資訊及該空污值,再由該圖形化儀表顯示模組分別顯示包含一可顯示該飛行狀態資訊的飛行狀態顯示界面及一可顯示該空污值的空污顯示界面;其中,該無人飛機的數量為二,該飛行控制模組內建有一自動導航模組,該自動導航模組可供設定有一使該二無人飛機依據該污染源偵測飛行路徑飛行的污染源追蹤模式,執行該污染源搜索模式時,係控制該二無人飛機以同心圓方式由外圈逐漸往內圈環繞飛行地進行搜索,並以該二無人飛機所偵測到的該空污值高低進行演算,以判斷出污染源所處方位及位置,並依據該污染源所在方位及位置而修正該污染源偵測飛行路徑。 An air pollution tracking system for dual drones, comprising: at least one unmanned aircraft, which is configured to include at least one flight sensing unit for sensing flight status and generating flight sensing signals, and one for sensing atmospheric air An air pollution sensor that generates an air pollution sensing signal in a dirty state, an onboard computer, and a first wireless communication unit; the onboard computer sequentially converts the flight sensing signal and the air pollution sensing signal Is the corresponding flight status information and air pollution value, and wirelessly transmits the flight status information and the air pollution value through the first wireless communication unit; and a ground monitoring unit that includes a second wireless communication unit and a flight Control module and a graphical instrument display module; the flight control module is preset with at least one pollution source detection flight path for sequentially outputting flight control commands corresponding to the pollution source detection flight path, the flight control command The second wireless communication unit and the first wireless communication unit are transmitted to the onboard computer for interpretation, so as to control the at least one unmanned aircraft to fly according to the pollution source detection flight path; the flight control module transmits The second wireless communication unit receives the flight status information and the air pollution value, and the graphical instrument display module displays the flight status display interface that can display the flight status information and a flight status display interface that can display the air pollution value. Air pollution display interface; among them, the number of the unmanned aircraft is two, the flight control module is built with an automatic navigation module, and the automatic navigation module can be set to enable the two unmanned aircraft to detect the flight path according to the pollution source In the pollution source tracking mode, when the pollution source search mode is executed, the two drones are controlled to search from the outer circle to the inner circle in a concentric circle, and the air pollution value detected by the two drones High and low calculations are performed to determine the location and location of the pollution source, and the pollution source detection flight path is corrected according to the location and location of the pollution source. 如請求項1所述的雙無人機空污追蹤系統,其中,該飛航感測單元、 該空污感測器及該第一無線通訊單元係整合設置於模組化的一電路板上,該電路板設於該無人飛機上。 The dual drone air pollution tracking system according to claim 1, wherein the flight sensing unit, The air pollution sensor and the first wireless communication unit are integratedly arranged on a modularized circuit board, and the circuit board is arranged on the unmanned aircraft. 如請求項1所述的雙無人機空污追蹤系統,其中,該飛行狀態顯示界面係為飛行姿態圖形化介面;該空污顯示界面係包含一即時空污值顯示介面、一污染源位置標示介面以及已巡航區域之空污值顯示介面;該飛行姿態圖形化介面可供顯示飛行姿態、機頭方向、海拔高度、空速、時間、日期、溫度以及位置等該飛行狀態資訊。 The dual drone air pollution tracking system according to claim 1, wherein the flight status display interface is a graphical interface for flight attitude; the air pollution display interface includes a real-time air pollution value display interface and a pollution source location indicator interface And the air pollution value display interface of the cruised area; the flight attitude graphical interface can display the flight status information such as flight attitude, nose direction, altitude, air speed, time, date, temperature and location. 如請求項1所述的雙無人機空污追蹤系統,其中,當內圈該無人飛機之該空污值高於外圈該無人飛機的該空污值時,則繼續控制該二無人飛機以同心圓方式由外圈逐漸往內圈環繞飛行地進行搜索,當內圈該無人飛機所偵測之該空污值為最大值時,則以內圈該無人飛機所處位置為污染源所在位置。 The dual drone air pollution tracking system according to claim 1, wherein when the air pollution value of the unmanned aircraft in the inner circle is higher than the air pollution value of the unmanned aircraft in the outer circle, continue to control the two unmanned aircraft to The search is carried out in a concentric circle from the outer circle to the inner circle. When the air pollution value detected by the drone in the inner circle is the maximum, the location of the drone in the inner circle is the location of the pollution source. 如請求項4所述的雙無人機空污追蹤系統,其中,當內圈該無人飛機之該空污值低於外圈該無人飛機的該空污值時,該導航程式則執行另一污染源偵測飛行路徑,該另一污染源偵測飛行路徑與原本規劃之該污染源偵測飛行路徑的外緣為相切。 The dual drone air pollution tracking system of claim 4, wherein when the air pollution value of the drone in the inner circle is lower than the air pollution value of the drone in the outer circle, the navigation program executes another pollution source Detect the flight path, the other pollution source detection flight path is tangent to the originally planned outer edge of the pollution source detection flight path. 如請求項1所述的雙無人機空污追蹤系統,其中,該自動導航模組啟動時依序執行下列飛行模式;航向維持控制模式,係依據該飛行控制指令之軌跡角命令與即時位置定位訊號所得軌跡角之差,經運算後決定該無人飛機的滾轉角度大小;航線維持控制模式,係依據該飛行控制指令以及該位置定位訊號而計算當前位置與該飛行控制指令位置的誤差距離,以決定該無人飛機之方向舵面量的大小;及 一自動導航模式,係依據該位置定位訊號以導引該無人飛機航向指定之該污染源偵測飛行路徑的航路點或航線位置,並判定是否達到預設之該航路點或該航線位置。 The dual-UAV air pollution tracking system according to claim 1, wherein the automatic navigation module executes the following flight modes in sequence when starting; the heading maintenance control mode is based on the trajectory angle command and real-time position positioning of the flight control command The difference of the trajectory angle obtained by the signal is calculated to determine the roll angle of the UAV; the route maintenance control mode is based on the flight control command and the position positioning signal to calculate the error distance between the current position and the flight control command position. To determine the magnitude of the rudder surface of the unmanned aircraft; and An automatic navigation mode is based on the position positioning signal to guide the unmanned aircraft to detect the waypoint or the position of the flight path of the pollution source designated by the heading, and determine whether the waypoint or the route position is preset. 如請求項1所述的雙無人機空污追蹤系統,其中,該飛航感測單元包含一用以感測該無人飛機即時溫度狀態而產生溫度訊號的溫度感測器、一用以感測該無人飛機三軸加速度狀態而產生加速度訊號的加速度計、一用以感測該無人飛機即時高度狀態而產生高度訊號的氣壓高度計、一用以感測該無人飛機即時方向而產生方向訊號的電子羅盤、及用以感測該無人飛機即時位置狀態而產生位置定位訊號的GPS定位模組,該機載電腦依序將該溫度訊號、該加速度訊號、該高度訊號、該方向訊號及該位置定位訊號轉換處理為相應的溫度、加速度、高度、方向及位置等之飛行狀態資訊。 The dual drone air pollution tracking system according to claim 1, wherein the flight sensing unit includes a temperature sensor for sensing the real-time temperature state of the drone to generate a temperature signal, and a temperature sensor for sensing An accelerometer for generating acceleration signals from the three-axis acceleration state of the unmanned aircraft, a barometric altimeter for sensing the real-time altitude state of the unmanned aircraft and generating an altitude signal, and an electronic for sensing the real-time direction of the unmanned aircraft and generating a direction signal Compass, and GPS positioning module used to sense the real-time position status of the unmanned aircraft to generate a position positioning signal, the onboard computer sequentially the temperature signal, the acceleration signal, the altitude signal, the direction signal and the position positioning The signal is converted into corresponding flight status information such as temperature, acceleration, altitude, direction and position. 如請求項1所述的雙無人機空污追蹤系統,其中,該無人飛機設置一用以擷取飛行時俯視地面之空拍影像的影像擷取模組,該飛行控制模組透過該第二無線通訊單元及該第一無線通訊單元接收該空拍影像,再由該圖形化儀表顯示模組顯示出一顯示有該空拍影像的空拍顯示界面,該空拍顯示界面包含一切換介面,該切換介面可供切換而將該空拍顯示界面顯示為空拍影像顯示模式;或是包含有空污即時位置標記的電子地圖顯示模式。 The dual drone air pollution tracking system according to claim 1, wherein the unmanned aircraft is provided with an image capturing module for capturing aerial images of the ground overlooking the ground during flight, and the flight control module transmits through the second The wireless communication unit and the first wireless communication unit receive the aerial photography image, and the graphical instrument display module displays an aerial photography display interface displaying the aerial photography image, and the aerial photography display interface includes a switching interface, The switching interface can be switched to display the aerial image display interface as an aerial image display mode; or an electronic map display mode that includes real-time location markers of air pollution.
TW108126636A 2019-07-26 2019-07-26 Dual drone air pollution tracking system TWI703318B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108126636A TWI703318B (en) 2019-07-26 2019-07-26 Dual drone air pollution tracking system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108126636A TWI703318B (en) 2019-07-26 2019-07-26 Dual drone air pollution tracking system

Publications (2)

Publication Number Publication Date
TWI703318B true TWI703318B (en) 2020-09-01
TW202104868A TW202104868A (en) 2021-02-01

Family

ID=73644026

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108126636A TWI703318B (en) 2019-07-26 2019-07-26 Dual drone air pollution tracking system

Country Status (1)

Country Link
TW (1) TWI703318B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2368110B1 (en) * 2008-12-19 2017-06-14 Duvas Technologies Limited Device and method for measurement and mapping of pollutants
CN108693309A (en) * 2018-04-12 2018-10-23 盐城工学院 A kind of pollutant monitoring system, method and storage medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2368110B1 (en) * 2008-12-19 2017-06-14 Duvas Technologies Limited Device and method for measurement and mapping of pollutants
CN108693309A (en) * 2018-04-12 2018-10-23 盐城工学院 A kind of pollutant monitoring system, method and storage medium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
賈澤民,"無人飛航載具監測環境污染之功能",航測及遙測學刊第二十一卷第3期第163-182頁," http://www.csprs.org.tw/Temp/3.105UAS05.pdf",105年11月 *
賈澤民,"無人飛航載具監測環境污染之功能",航測及遙測學刊第二十一卷第3期第163-182頁," http://www.csprs.org.tw/Temp/3.105UAS05.pdf",105年11月。

Also Published As

Publication number Publication date
TW202104868A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
CN201707324U (en) Poisonous and harmful gas emergency monitoring UAV (unmanned aerial vehicle) system
CN101201248B (en) Aviation close range photography displacement measurement system based on unmanned aerial vehicle as well as measurement method thereof
CN201429796Y (en) Unmanned helicopter automatic flight control system circuit
CN105807779A (en) Flight control system and method for unmanned aerial vehicle
CN108036816A (en) A kind of unfixed point environmental monitoring system based on unmanned air vehicle technique
CN106882397A (en) Aircraft rudder surface deflects test device and method
CN202853646U (en) Multi-type sensor testing device
WO2020133909A1 (en) Flight control and navigation integrated machine
CN211554748U (en) Mine patrol micro unmanned aerial vehicle system
CN206270763U (en) A kind of Environmental emergency monitoring unmanned plane
CN104816829A (en) Skyeye aircraft applicable to investigation
CN108253966A (en) Unmanned plane during flying three-dimensional simulation display methods
CN202771262U (en) Fixed-wing automatic navigation flight control system
CN110208155A (en) A kind of Atmospheric particulates unmanned plane monitoring system
CN201133815Y (en) Aviation close shot displacement measuring device based on unmanned plane
CN110316376A (en) It is a kind of for detecting the unmanned plane of mine fire
CN104539906B (en) Image/laser range finding/ADS B monitor integral system
US9784593B2 (en) Relative wind display and landing aid
CN109974713A (en) A kind of navigation methods and systems based on topographical features group
CN108803633A (en) A kind of unmanned plane low latitude monitoring system based on mobile communications network
CN107860869A (en) A kind of intelligent air monitoring system and monitoring method based on aircraft
CN111122784A (en) Intelligent air quality monitoring system and method based on unmanned aerial vehicle
CN108227749A (en) Unmanned plane and its tracing system
TWI703318B (en) Dual drone air pollution tracking system
CN207488262U (en) A kind of unmanned plane air quality detecting device