TWI702395B - 磁性生物感測裝置以及生物感測方法 - Google Patents

磁性生物感測裝置以及生物感測方法 Download PDF

Info

Publication number
TWI702395B
TWI702395B TW107146495A TW107146495A TWI702395B TW I702395 B TWI702395 B TW I702395B TW 107146495 A TW107146495 A TW 107146495A TW 107146495 A TW107146495 A TW 107146495A TW I702395 B TWI702395 B TW I702395B
Authority
TW
Taiwan
Prior art keywords
magnetic
magnetic sensor
sensing units
units
sensor
Prior art date
Application number
TW107146495A
Other languages
English (en)
Other versions
TW202024630A (zh
Inventor
郭宜靜
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW107146495A priority Critical patent/TWI702395B/zh
Publication of TW202024630A publication Critical patent/TW202024630A/zh
Application granted granted Critical
Publication of TWI702395B publication Critical patent/TWI702395B/zh

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一種磁性生物感測裝置,包含流道、磁性感測器以及聲波發射器。磁性感測器對應流道設置。聲波發射器包含二聲波產生單元,且流道設置於二聲波產生單元之間。

Description

磁性生物感測裝置以及生物感測方法
本發明係關於一種生物感測裝置,特別是一種以磁珠等磁性元件檢測生物分子的生物感測裝置。
生物感測裝置是利用生物要素與物理化學檢測要素組合在一起以對被分析物進行檢測的裝置。現今,磁性生物感測方式大部分是將待測生物分子非選擇性的散佈在感測器上,接著將磁珠和生物分子進行專一性鍵結後,以利用磁感測器來感應磁珠來實現生物分子的偵測。
近年來,微量生物分子檢測已經成為生醫領域的研發目標之一。磁性生物感測技術由於具備消耗功率極低、體積小、重量輕、成本低等優點,因此逐漸有應用於微量生物分子檢測的相關研究。
然而,由於磁珠和生物分子以非選擇性方式散落在感測器上,磁珠落點位置可能對於感測器生成不同方向的感應雜散場。例如,當一顆磁珠散落在感測器上方,而另一個磁珠落在感測器周圍,感應到的磁珠雜散場會因為落點不同的磁珠而方向相反,產生互相抵消的效果,進而降低總感應雜散場。如此一來,磁珠對於感測器產生的阻值變化下降,導致生物感測裝置取得的感應訊號非常微弱,而不利於應用於檢測微量的生物分子。
鑒於以上的問題,本發明揭露一種磁性生物感測裝置以及生物感測方法,有助於解決磁感測器會因為不同方向的磁珠雜散場互相抵銷而有感應訊號過於微弱的問題。
本發明所揭露的磁性生物感測裝置包含一流道、一磁性感測器以及一聲波發射器。磁性感測器對應流道設置。聲波發射器包含二聲波產生單元,且流道設置於二聲波產生單元之間。
本發明另揭露的磁性生物感測裝置包含一磁性感測器以及一聲波發射器。聲波發射器用以產生一超聲駐波,且磁性感測器對應於超聲駐波的一節點位置。
本發明所揭露的生物感測方法包含:於一流道中提供多個生物分子;產生一超聲駐波,使生物分子移動至超聲駐波的一節點位置,且超聲駐波的節點位置對應於一磁性感測器;於流道中提供多個磁性元件,使磁性元件連接於生物分子;以及以磁性感測器感測磁性元件,以獲得一磁感應訊號。
根據本發明所揭露的磁性生物感測裝置以及生物感測方法,聲波發射器的二聲波產生單元分別設置在流道的兩側,並且聲波發射器可產生超聲駐波以將生物分子聚集在磁性感測器上方或是磁性感測器周圍,因此在後續磁性元件與生物分子連接時,磁性元件也能集中在磁性感測器上方或是周圍。由於磁性元件集中在恰當的預定位置,當磁性元件產生雜散場時,雜散場的強度不會互相抵消,因此只要有少量的生物分子與磁性元件就能讓磁性感測器感應到雜散場而獲得足夠強度的磁感應訊號,進而有助於磁性生物感測裝置於微量生物分子檢測方面的應用。
以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。
以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者瞭解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。
根據本發明的一實施例,磁性生物感測裝置包含流道、磁性感測器以及聲波發射器;其中,磁性感測器對應流道設置,且流道設置於聲波發射器的二聲波產生單元之間。請同時參照圖1至圖3。圖1為根據本發明第一實施例之磁性生物感測裝置的立體示意圖。圖2為圖1之磁性生物感測裝置的上視示意圖。圖3為圖2之磁性生物感測裝置沿剖切線3-3的剖切示意圖。在本實施例中,磁性生物感測裝置1包含一流道10、一磁性感測器20以及一聲波發射器30。流道10例如但不限於是具有微型溝槽的玻璃基板。磁性感測器20設置於流道10中,其具有包含覆蓋層(Capping layer)、自由層(Free layer)、阻障層(Barrier layer)、固定磁矩層(Pinned layer)、種子層(Seed layer)以及介電材料層的多層結構。介電材料層用以作為承載化學生物分子的基底。聲波發射器30例如但不限於是超聲波駐波產生器,其包含二聲波產生單元310,並且流道10設置於二聲波產生單元310之間。二聲波產生單元310可以產生行進方向相反的超聲波,而形成通過流道10的超聲駐波。
根據本發明的一實施例,聲波發射器的二聲波產生單元為二個聲波發射單元之組合或是一個聲波發射單元與一個聲波反射單元之組合。參照圖2,二聲波產生單元310分別為聲波發射單元,皆可以產生超聲波而形成駐波。在其他實施例中,二聲波產生單元的其中一個為聲波發射單元,而另一個聲波產生單元為聲波反射單元。聲波反射單元例如為鏡面反射器,其能夠反射聲波發射單元產生之超聲波而形成駐波。
根據本發明的一實施例,磁性感測器包含多個磁性感測單元以及多個電性連接單元;其中,磁性感測單元並行排列,且電性連接單元用以連接這些磁性感測單元。參照圖2,磁性感測器20包含多個磁性感測單元210以及多個電性連接單元220。磁性感測單元210例如但不限於是磁阻感應元件(Magnetoresistive sensor)。這些磁性感測單元210並行排列於流道10下方。各個電性連接單元220分別連接相鄰的其中二個磁性感測單元210,而使這些磁性感測單元210串聯。可施加直流電壓於磁性感測單元210,以觀察磁性感測器20在外部磁場掃動下的磁阻值變化。
在圖2中,磁性感測單元210位於流道10的外壁面,但本發明並不以此為限。在其他實施例中,磁性感測單元210可設置於流道10的內壁面,或是埋設於流道10內部。
根據本發明的一實施例,任二相鄰之磁性感測單元的間隔距離相同。參照圖2,相鄰的其中二個磁性感測單元210之間的間隔距離D,是指其中一個磁性感測單元210的中心線A至另一個磁性感測單元210的中心線A之距離。
根據本發明的一實施例,這些磁性感測單元分別對應於超聲駐波的相異的節點位置。參照圖4,為圖2之磁性生物感測裝置產生超聲駐波的上視示意圖。通過流道10的超聲駐波具有多個節點位置S。各個磁性感測單元210的中心線A分別對應於超聲駐波的這些節點位置S。也就是說,磁性感測單元210的中心線A恰好位於節點位置S的下方。
根據本發明的一實施例,這些磁性感測單元其中的相鄰二者之間的間隔距離等於超聲駐波的波長之一半。參照圖4,聲波發射器30產生的超聲駐波具有波長λ,並且相鄰的其中二個磁性感測單元210的間隔距離D等於波長λ之一半,以使磁性感測單元210的中心線A對應於超聲駐波的節點位置S。也就是說,磁性感測單元210的配置滿足以下條件:D=λ/2。
以下說明本發明一實施例的生物感測方法。圖5至圖8為使用圖1之磁性生物感測裝置感測生物分子的示意圖。
首先,於磁性生物感測裝置1的流道10中提供多個生物分子40。生物分子40例如但不限於是禽流感生物標誌分子IL-6、心血管疾病生物標誌分子S100、C反應性蛋白(CRP)、肺結核標誌分子IIFNγ等,其與流體(例如生物緩衝液)混合後從流道10的注入口進入流道10內。
接著,以聲波發射器30產生超聲駐波,以使生物分子40移動至超聲駐波的節點位置S。如圖6所示,利用超聲駐波的聲輻射力(Acoustic radiation force)及聲流(Acoustic streaming)驅動生物分子40往節點位置S移動,而使生物分子40聚集在節點位置S對應到的磁性感測器20之磁性感測單元210上方。生物分子40沉降至流道10底部,而與形成在磁性感測單元210上的生物探針(例如為DNA探針,未繪示)反應產生鍵結,進而讓生物分子40穩固地位於磁性感測單元210上方,並且大部分的生物分子40都聚集在磁性感測單元210的中心線A。
接著,於流道10中提供多個磁性元件50,並使至少部分磁性元件50專一性連接於生物分子40。如圖7所示,磁性元件50例如但不限於是微米級或奈米級尺寸的磁珠。磁性元件50從流道10的注入口進入流道10中,並且磁性元件50沉降至磁性感測單元210的表面,以與生物分子40鍵結。
根據本發明的一實施例,未與生物分子連接的磁性元件會被移除。如圖7所示,部分磁性元件50的下方沒有聚集任何生物分子40,因此這些磁性元件50不會被固定在磁性感測單元210上,即這些磁性元件50無法作為判斷生物分子40數量多寡的依據,因此需要移除沒有與生物分子40鍵結的這些磁性元件50。可以注入緩衝溶液(例如磷酸鹽緩衝生理鹽水,PBS)於流道10中,藉此將多餘的磁性元件50帶走。
接著,以磁性感測單元感測磁性元件50,以獲得一磁感應訊號。如圖8所示,以外部電源(未繪示)施加電壓於磁性感測單元210,同時使用一磁場產生器60施加外部磁場,以磁化磁性元件50來進行檢測。磁性元件50會受外部磁場影響而產生與外部磁場方向B相反之雜散場於磁性感測單元210內部。雜散場會讓磁性感測器20的磁阻值有所變化,因此能根據磁阻值的變化獲得與生物分子40有關的磁感應訊號。磁感應訊號可以與生物分子40的種類或是濃度有關。圖8繪示的磁場產生器60所產生的磁場方向B平行於超聲駐波的波傳遞方向,意即磁場產生器60提供水平的磁場方向B,但本發明並不以此為限。在其他實施例中,磁場產生器產生的磁場方向可以平行於磁性感測器的法線方向,意即垂直穿透磁性感測器的磁場方向。
根據本發明的一實施例,磁性感測器對應於超聲駐波的節點位置。請參照圖9,為根據本發明第二實施例之磁性生物感測裝置的上視示意圖。由於本實施例和第一實施例相似,故以下就相異處進行說明。在本實施例中,磁性生物感測裝置1a的磁性感測器20a為單一磁阻感應元件,並且磁性感測器20a的中心對應於聲波發射器30產生之超聲駐波的節點位置S,也就是說節點位置S位於磁性感測器20a上方。
根據本發明的一實施例,這些磁性感測單元其中的相鄰二者之間的間隔距離等於超聲駐波的波長之一半的整數倍。請參照圖10,為根據本發明第三實施例之磁性生物感測裝置的上視示意圖。由於本實施例和第一實施例相似,故以下就相異處進行說明。在本實施例中,磁性生物感測裝置1b的磁性感測器20b包含二個磁性感測單元210b。這二個磁性感測單元210b的間隔距離D等於聲波發射器30產生之超聲駐波的波長λ之一半的2倍,意即間隔距離D等於超聲駐波的波長λ。在其他實施例中,二個磁性感測單元210b的間隔距離D等於超聲駐波的波長之一半的3倍以上。也就是說,磁性感測單元210b的配置可滿足以下條件:D=nλ/2,其中n為正整數。
圖11為根據本發明第四實施例之磁性生物感測裝置的上視示意圖。由於本實施例和第一實施例相似,故以下就相異處進行說明。在本實施例中,磁性生物感測裝置1c的磁性感測器20c包含一第一磁性感測單元210c以及一第二磁性感測單元220c,並且第一磁性感測單元210c與第二磁性感測單元220c具有不同的寬度。圖11繪示了第一磁性感測單元210c的寬度大於第二磁性感測單元220c的寬度。第一磁性感測單元210c對應於聲波發射器30產生之超聲駐波的二個節點位置S。藉此,可以在第一磁性感測單元210c上提供兩個生物分子的群落,以實現更多樣化的檢測應用。
圖12為根據本發明第五實施例之磁性生物感測裝置的上視示意圖。由於本實施例和第一實施例相似,故以下就相異處進行說明。在本實施例中,磁性生物感測裝置1d包含一磁性感測器20d以及一聲波發射器30d,並且聲波發射器30d包含多個聲波產生單元310。磁性感測器20d為曲折延伸的一磁性感測單元。聲波發射器30d的任兩個聲波產生單元310作為一組分別設置於磁性感測器20d的相對兩側,並且這些聲波產生單元310沿著磁性感測器20d的延伸方向設置。聲波產生單元310配合磁性感測器20d的曲折而有非直線的排列方式,以使超聲駐波的波傳遞方向正交於磁性感測器20d的延伸方向。
圖4以及圖9繪示超聲駐波的節點位置位於磁性感測器的磁性感測單元上方的實施態樣,而使生物分子會聚集到磁性感測單元上方,但本發明並不以此為限。請併參照圖13和圖14,其中圖13為根據本發明第六實施例之磁性生物感測裝置的上視示意圖,圖14為圖13之磁性生物感測裝置的局部放大示意圖。由於本實施例和第一實施例相似,故以下就相異處進行說明。
在本實施例中,磁性生物感測裝置1e包含磁性感測器20e以及一聲波發射器30。磁性感測器20e包含多個磁性感測單元210e。通過流道10的超聲駐波具有多個節點位置S,並且這些節點位置S分別鄰近磁性感測器20e的各個磁性感測單元210e,而對應到磁性感測單元210e的周圍。更進一步來說,對於相鄰的一組節點位置S與磁性感測單元210e而言,此節點位置S與磁性感測單元210e之間的較佳間隔距離D1為0至相鄰兩磁性感測單元間距的一半。本實施例以多個節點位置S分別鄰近多個磁性感測單元210e為例說明,但磁性感測單元210e的數量並非用以限制本發明。
根據本發明的一實施例,任二相鄰之磁性感測單元之間具有至少一個節點位置。此外,介於相鄰的二磁性感測單元之間的節點位置與二磁性感測單元的間隔距離不相同。如圖14所示,對於相鄰的一組磁性感測單元210e而言,二磁性感測單元210e之間具有一個節點位置S。節點位置S與其中一個磁性感測單元210e之間具有間隔距離D1,同一個節點位置S與另一個磁性感測單元210e之間具有間隔距離D2,並且間隔距離D1與間隔距離D2不相同。藉此,當施加垂直穿透方向或水平方向的外部磁場時,能防止因為磁性元件太過靠近而有雜散場互相抵消的問題。
圖13繪示相鄰的二磁性感測單元210e之間具有單一節點位置S,但相鄰二磁性感測單元210e之間的節點位置S之數量並非用以限制本發明。此外,圖14繪示節點位置S與二磁性感測單元210e之間的間隔距離D1、D2不相同,但本發明並不以此為限。在其他實施例中,間隔距離D1、D2可以具有相同大小。
綜上所述,本發明所揭露的磁性生物感測裝置以及生物感測方法中,聲波發射器的二聲波產生單元分別設置在流道的兩側,並且聲波發射器可產生超聲駐波以將生物分子聚集在磁性感測器上方或是磁性感測器周圍,因此在後續磁性元件與生物分子連接時,磁性元件也能集中在磁性感測器上方或是周圍。由於磁性元件集中在恰當的預定位置,當磁性元件產生雜散場時,雜散場的強度不會互相抵消,因此只要有少量的生物分子與磁性元件就能讓磁性感測器感應到雜散場而獲得足夠強度的磁感應訊號,進而有助於磁性生物感測裝置於微量生物分子檢測方面的應用。
雖然本發明以前述之實施例揭露如上,然而這些實施例並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。
1、1a、1b、1c、1d、1e      磁性生物感測裝置 10            流道 20、20a、20b、20c、20d、20e        磁性感測器 210、210b、210e      磁性感測單元 210c         第一磁性感測單元 220c         第二磁性感測單元 220           電性連接單元 30、30d       聲波發射器 310           聲波產生單元 40          生物分子 50          磁性元件 60            磁場產生器 A              中心線 B              磁場方向 D、D1、D2         間隔距離 S              節點位置 λ              波長
圖1為根據本發明第一實施例之磁性生物感測裝置的立體示意圖。 圖2為圖1之磁性生物感測裝置的上視示意圖。 圖3為圖2之磁性生物感測裝置沿剖切線3-3的剖切示意圖。 圖4為圖2之磁性生物感測裝置產生超聲駐波的上視示意圖。 圖5至圖8為使用圖1之磁性生物感測裝置感測生物分子的示意圖。 圖9為根據本發明第二實施例之磁性生物感測裝置的上視示意圖。 圖10為根據本發明第三實施例之磁性生物感測裝置的上視示意圖。 圖11為根據本發明第四實施例之磁性生物感測裝置的上視示意圖。 圖12為根據本發明第五實施例之磁性生物感測裝置的上視示意圖。 圖13為根據本發明第六實施例之磁性生物感測裝置的上視示意圖。 圖14為圖13之磁性生物感測裝置的局部放大示意圖。
1              磁性生物感測裝置 10            流道 20          磁性感測器 210           磁性感測單元 220           電性連接單元 30          聲波發射器 310           聲波產生單元 A              中心線 D              間隔距離

Claims (17)

  1. 一種磁性生物感測裝置,包含:一流道;一磁性感測器,對應該流道設置;一聲波發射器,包含二聲波產生單元,且該流道設置於該二聲波產生單元之間,該聲波發射器用以在該流道中產生一超聲駐波;以及一磁場產生器,配置以施加一外部磁場,且該外部磁場使得與該外部磁場方向相反的一雜散場通過該磁性感測器內部;其中,該磁性感測器包含多個磁性感測單元,且該些磁性感測單元分別對應於該超聲駐波的相異的多個節點位置,該些磁性感測單元其中的相鄰二者之間的間隔距離等於該超聲駐波的波長之一半的整數倍。
  2. 如申請專利範圍第1項所述之磁性生物感測裝置,其中該磁性感測器設置於該流道中。
  3. 如申請專利範圍第1項所述之磁性生物感測裝置,其中該磁性感測器包含多個磁性感測單元以及多個電性連接單元,該些磁性感測單元並行排列,且該些電性連接單元用以連接該些磁性感測單元。
  4. 如申請專利範圍第1項所述之磁性生物感測裝置,其中該磁性感測器包含並行排列的多個磁性感測單元,且任二相鄰之該些磁性感測單元的間隔距離相同。
  5. 如申請專利範圍第1項所述之磁性生物感測裝置,其中該節點位置位於該磁性感測器上方。
  6. 如申請專利範圍第1項所述之磁性生物感測裝置,其中該節點位置鄰近該磁性感測器。
  7. 如申請專利範圍第1項所述之磁性生物感測裝置,其中介於相鄰的其中二該些磁性感測單元之間的該節點位置與該二磁性感測單元的間隔距離不相同。
  8. 如申請專利範圍第1項所述之磁性生物感測裝置,其中該聲波發射器的該二聲波產生單元為二個聲波發射單元之組合或是一個聲波發射單元與一個聲波反射單元之組合。
  9. 一種磁性生物感測裝置,包含:一磁性感測器;一聲波發射器,用以產生一超聲駐波,且該磁性感測器對應於該超聲駐波的一節點位置;以及一磁場產生器,配置以施加一外部磁場,且該外部磁場使得與該外部磁場方向相反的一雜散場通過該磁性感測器內部;其中,該磁性感測器包含多個磁性感測單元,且該些磁性感測單元分別對應於該超聲駐波的相異的多個節點位置,該些磁性感測單元其中的相鄰二者之間的間隔距離等於該超聲駐波的波長之一半的整數倍。
  10. 如申請專利範圍第9項所述之磁性生物感測裝置,其中該節點位置位於該磁性感測器上方。
  11. 如申請專利範圍第9項所述之磁性生物感測裝置,其中該節點位置鄰近該磁性感測器。
  12. 如申請專利範圍第9項所述之磁性生物感測裝置,其中介於相鄰的其中二該些磁性感測單元之間的該節點位置與該二磁性感測單元的間隔距離不相同。
  13. 一種生物感測方法,包含:於一流道中提供多個生物分子;產生一超聲駐波,使該些生物分子移動至該超聲駐波的一節點位置,且該超聲駐波的該節點位置對應於一磁性感測器,該磁性感測器包含多個磁性感測單元,且該些磁性感測單元其中的相鄰二者之間的間隔距離等於該超聲駐波的波長之一半的整數倍;於該流道中提供多個磁性元件,使該些生物分子連接於部分該些磁性元件;移除未與該些生物分子連接的該些磁性元件;以及以該磁性感測器感測該些磁性元件,以獲得一磁感應訊號。
  14. 如申請專利範圍第13項所述之生物感測方法,更包含:用一磁場產生器施加一外部磁場以磁化該些磁性元件,被磁化的該些磁性元件產生與該外部磁場方向相反之一雜散場於該磁性感測器內部。
  15. 如申請專利範圍第13項所述之生物感測方法,其中該節點位置位於該磁性感測器上方。
  16. 如申請專利範圍第13項所述之生物感測方法,其中該節點位置鄰近該磁性感測器。
  17. 如申請專利範圍第13項所述之生物感測方法,其中施加一外部磁場磁化該些磁性元件,並且以該磁性感測器感測被磁化的該些磁性元件。
TW107146495A 2018-12-21 2018-12-21 磁性生物感測裝置以及生物感測方法 TWI702395B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107146495A TWI702395B (zh) 2018-12-21 2018-12-21 磁性生物感測裝置以及生物感測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107146495A TWI702395B (zh) 2018-12-21 2018-12-21 磁性生物感測裝置以及生物感測方法

Publications (2)

Publication Number Publication Date
TW202024630A TW202024630A (zh) 2020-07-01
TWI702395B true TWI702395B (zh) 2020-08-21

Family

ID=73003290

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107146495A TWI702395B (zh) 2018-12-21 2018-12-21 磁性生物感測裝置以及生物感測方法

Country Status (1)

Country Link
TW (1) TWI702395B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928596A (zh) * 2012-10-18 2013-02-13 上海交通大学 血清肿瘤标志物检测的巨磁阻抗效应生物传感器
US20160193613A1 (en) * 2013-08-14 2016-07-07 University Of Leeds Method and apparatus for manipulating particles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928596A (zh) * 2012-10-18 2013-02-13 上海交通大学 血清肿瘤标志物检测的巨磁阻抗效应生物传感器
US20160193613A1 (en) * 2013-08-14 2016-07-07 University Of Leeds Method and apparatus for manipulating particles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Siddique, A.H., Cho, S.H., Ahn, B. et al., "Ultrasonic Manipulation of Magnetic Particles in a Microfluidic Channel", International Journal of Precision Engineering and Manufacturing. 15. 1411-1416(2014) *

Also Published As

Publication number Publication date
TW202024630A (zh) 2020-07-01

Similar Documents

Publication Publication Date Title
US11156542B2 (en) Surface acoustic wave biosensor employing an analog front end and DNA encoded libraries to improved limit of detection (LOD) with exemplary apparatus of the same
US10060880B2 (en) Magnetoresistive (MR) sensors employing dual MR devices for differential MR sensing
US10534047B2 (en) Tunnel magneto-resistive (TMR) sensors employing TMR devices with different magnetic field sensitivities for increased detection sensitivity
CN102375026B (zh) 2d涡流线圈及其制造方法和涡流检验方法
US20150044778A1 (en) External field -free magnetic biosensor
US20130181726A1 (en) Touch surface and method of manufacturing same
JP5871245B2 (ja) 膜に結合した磁性ナノ粒子を検出する方法
CN1605031A (zh) 确定流体中的磁性颗粒密度的磁阻传感器、系统和方法
JP2008546995A (ja) 統合到達時間測定を用いた迅速磁気バイオセンサ
US9316575B2 (en) Magnetic flow cytometry for individual cell detection
EA201101697A1 (ru) Способ и устройство для измерения скорости звука с высоким разрешением
RU2015149258A (ru) Устройство и способ для обнаружения и анализа отложений
ITTO20080314A1 (it) Biosensori spintronici con area attiva localizzata su una parete di dominio magnetico.
CN108287178A (zh) 一种肿瘤标志物分子检测方法
US9091688B2 (en) Method and apparatus for the detection of magnetizable particles
WO2009027896A1 (en) Microelectronic sensor device with wetting detection
CN102841054B (zh) 一种耦合微腔光子分子的生物化学传感器
Yu et al. Smart sensing using electromagnetic waves for inspection of defects in rock bolts
TWI702395B (zh) 磁性生物感測裝置以及生物感測方法
JP2010513861A (ja) 湿潤高感度表面のマイクロエレクロトニック・デバイス
CN104588136B (zh) 具有高频振动处理的微流器件
ATE546527T1 (de) Verfahren zum nachweis von leberkrebs, diagnose auf leberkrebs und heilmittel gegen krebs
KR101646182B1 (ko) 바이오 센서
US20200246793A1 (en) Nanowire fet biomolecule sensors with integrated electroosmotic flow
TWI499778B (zh) 微流體裝置