TWI701123B - Automated calibration system and method for workpiece coordinate frame of a robot - Google Patents

Automated calibration system and method for workpiece coordinate frame of a robot Download PDF

Info

Publication number
TWI701123B
TWI701123B TW108146321A TW108146321A TWI701123B TW I701123 B TWI701123 B TW I701123B TW 108146321 A TW108146321 A TW 108146321A TW 108146321 A TW108146321 A TW 108146321A TW I701123 B TWI701123 B TW I701123B
Authority
TW
Taiwan
Prior art keywords
robot
image sensor
point
coordinate system
workpiece
Prior art date
Application number
TW108146321A
Other languages
Chinese (zh)
Other versions
TW202124110A (en
Inventor
楊淳宜
黃成凱
陳俊皓
林依潁
許秉澄
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW108146321A priority Critical patent/TWI701123B/en
Application granted granted Critical
Publication of TWI701123B publication Critical patent/TWI701123B/en
Publication of TW202124110A publication Critical patent/TW202124110A/en

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

An automated calibration system for workpiece coordinate frame of a robot is disclosed. The system mainly includes a physical image sensor which has a first image central axis, and a controller. The controller controls the physical image sensor adapted on a robot to move together to set up a virtual image sensor which also has a second image central axis, and these two image central axes have an intersection point. The controller controls the robot to repeatedly move back and forth a characteristic point on the workpiece between these two image central axes until the characteristic point coincides the intersection point. The controller records a calibration point including the coordinates of the joints of the robot, then the controller moves another characteristic point and repeats the above steps to generate several other calibration points. According to the calibration points, the controller calculates the relative coordinates of a virtual tool center point and the workpiece to the robot.

Description

機器人工件座標系自動校正系統與方法Automatic correction system and method of robot workpiece coordinate system

本發明是有關於一種座標系自動校正系統,特別是一種自動化的機器人工件座標系之校正系統。本發明還涉及一在此機器人工件座標系自動校正系統上實施之機器人工件座標系自動校正方法。The invention relates to a coordinate system automatic correction system, in particular to an automatic robot workpiece coordinate system correction system. The invention also relates to a robot workpiece coordinate system automatic correction method implemented on the robot workpiece coordinate system automatic correction system.

隨著科技的進步,機器人在各個產業上的應用也愈來愈廣泛地;一般而言,機器人具有多個關節的關節型機械手臂,而其末端設置有一工具或刀具,如銲接工具或鑽孔刀具等,並透過人工教導的方式產生機器人動作以達成自動化作業應用。With the advancement of science and technology, the application of robots in various industries has become more and more extensive. Generally speaking, robots have joint-type mechanical arms with multiple joints, and a tool or cutter, such as a welding tool or a drill, is set at the end. Tools, etc., and generate robot actions through manual teaching to achieve automated operation applications.

而在機器人進行作業前,其工具之中心點(Tool Center Point,TCP)的位置需要事先進行精確的校正,如此機器人之控制器才可根據工具中心點使工具運行於正確的路徑上。Before the robot performs operations, the position of the Tool Center Point (TCP) needs to be accurately calibrated in advance, so that the controller of the robot can make the tool run on the correct path according to the tool center point.

但隨著機器人的工作路徑愈趨複雜,工作路徑的準確性受到機器人的精度影響,且工件座標系與機器人相對關係之準確度,直接影響機器人的動作精度,因此工件座標系之準確度成為機器人實現精確操作的重要指標。However, as the working path of the robot becomes more and more complex, the accuracy of the working path is affected by the accuracy of the robot, and the accuracy of the relative relationship between the workpiece coordinate system and the robot directly affects the accuracy of the robot's action, so the accuracy of the workpiece coordinate system becomes the robot An important indicator for precise operation.

目前在機器人執行自動化應用時,首先需要確認工件位置與機器人之相對位置關係,但由於定位裝置之精度,或工件製造公差等原因皆會使位置關係產生誤差,因此機器人執行動作前,需先經過工件位置之校正才可得到準確之座標值。At present, when the robot executes automation applications, it is first necessary to confirm the relative positional relationship between the position of the workpiece and the robot. However, due to the accuracy of the positioning device, or the manufacturing tolerance of the workpiece, the positional relationship will have errors. Therefore, the robot needs to go through Only by correcting the position of the workpiece can accurate coordinate values be obtained.

傳統的工件位置校正方法需透過人工教導之方式,移動工具中心使其與工件上數個指定點重合,並記錄座標以完成工件位置之校正。The traditional method of workpiece position correction requires manual teaching, moving the tool center to coincide with several designated points on the workpiece, and recording the coordinates to complete the correction of the workpiece position.

若以手動方式校正,則需教導機器人使工具中心點分別與工件座標系上多個指定點重合才能完成校正,但此方法除了受到操作者的經驗影響外,操作過程也容易因機器人絕對精度不佳或操作不慎,造成工具中心點與工件發生碰撞而損壞。If it is manually corrected, the robot needs to be taught to make the tool center point coincide with multiple specified points on the workpiece coordinate system to complete the correction. However, this method is not only affected by the operator’s experience, but the operation process is also prone to poor robot absolute accuracy. Good or careless operation, causing the center point of the tool to collide with the workpiece and damage.

若以自動方法進行校正,則現有方法具有以下缺點: (1)於機器人外部裝設影像感測器,透過與指定點重合或量測目標點實際距離後修正工件座標;此方法可能因工具不同,受機器人本體結構或物件遮蔽而無法取得指定點影像; (2)安裝影像感測器並先以量測設備確認影像感測器與機器人之相對位置,或控制工具中心去觸碰工件,但可能造成工件損傷且存在人員操作誤差; (3)使用CAD檔獲得機器人與校正儀器或工件之相對距離,但此方法操作過程耗時並且工件需有特徵點供實際量測方可降低誤差。 If the automatic method is used for calibration, the existing method has the following disadvantages: (1) Install an image sensor on the outside of the robot to correct the coordinates of the workpiece by coincident with the designated point or measure the actual distance of the target point; this method may not be able to obtain the designated point image due to different tools, hidden by the robot body structure or objects ; (2) Install the image sensor and first confirm the relative position of the image sensor and the robot with measuring equipment, or control the center of the tool to touch the workpiece, but the workpiece may be damaged and there may be operator errors; (3) Use the CAD file to obtain the relative distance between the robot and the calibration instrument or the workpiece, but the operation process of this method is time-consuming and the workpiece needs to have feature points for actual measurement to reduce the error.

申請人曾於中華民國106年09月29日提出中華民國發明專利申請,申請案號為106133775,發明名稱為「機器人工具中心點校正系統及其方法」,後於中華民國108年08月11日獲准公告,公告號碼為I668541,以下將前述該核准案稱為「前案」。The applicant filed a Republic of China invention patent application on September 29, 106 of the Republic of China, the application number is 106133775, and the title of the invention is "Robot Tool Center Point Calibration System and Method", and then on August 11, 108 of the Republic of China The announcement was approved, the announcement number is I668541, and the aforementioned approved case is referred to as the "previous case" below.

惟,申請人基於精益求精的研發精神,再從以下方向進行創新改善: (1)  避免影像感測器受機器人本體結構或工具遮蔽而無法取得指定點位的影像; (2)  降低系統架構之成本。 However, based on the R&D spirit of striving for excellence, the applicant will make innovations and improvements in the following directions: (1) Prevent the image sensor from being shielded by the robot body structure or tools and unable to obtain the image of the specified point; (2) Reduce the cost of system architecture.

因而顯然需要有一種校正過程中不需與工件實際接觸、無碰撞問題、不受本體結構或工具遮蔽、操作前不須校正影像感測器位置與機器人之關係,且不需於工件上安裝額外影像感測器,及可透過一次的校正流程而完成工件位置校正,能夠有效改善習知技藝的各種缺點之『機器人工件座標系自動校正系統與方法』。Therefore, there is obviously a need for a calibration process that does not require actual contact with the workpiece, has no collision problems, is not covered by the body structure or tools, does not need to calibrate the relationship between the image sensor position and the robot before operation, and does not require additional installation on the workpiece. The image sensor, and the workpiece position correction can be completed through a one-time calibration process, which can effectively improve the various shortcomings of the known art "Robot workpiece coordinate system and method for automatic correction".

於一實施例中,本發明提出一種機器人工件座標系自動校正系統,包含:實體影像感測器,具有第一影像中心軸,實體影像感測器設置於機器人法蘭面上;以及控制器,控制實體影像感測器與機器人旋轉以建構虛擬影像感測器,其具有第二影像中心軸,第二影像中心軸與第一影像中心軸具有一交點;其中,控制器控制機器人使其一工件特徵點在第一影像中心軸及第二影像中心軸之間重覆移動直到與交點重合,記錄含有機器人之複數個關節座標的一校正點,重覆上述步驟產生複數個校正點,根據該些校正點計算虛擬工具中心點座標以及工件之座標。In one embodiment, the present invention provides a robot workpiece coordinate system automatic calibration system, including: a physical image sensor having a first image center axis, the physical image sensor is arranged on the robot flange surface; and a controller, Control the rotation of the physical image sensor and the robot to construct a virtual image sensor, which has a second image central axis, and the second image central axis and the first image central axis have an intersection; wherein, the controller controls the robot to make a workpiece The feature point repeatedly moves between the central axis of the first image and the central axis of the second image until it coincides with the intersection point, records a calibration point containing a plurality of joint coordinates of the robot, repeats the above steps to generate a plurality of calibration points, according to these The calibration point calculates the coordinates of the center point of the virtual tool and the coordinates of the workpiece.

於另一實施例中,本發明提出一種機器人工件座標系之自動校正方法,包含:提供實體影像感測器,其具有第一影像中心軸,實體影像感測器設置於機器人之法蘭面上;提供控制器,控制實體影像感測器與機器人旋轉以建構虛擬影像感測器,其具有第二影像中心軸,第二影像中心軸與第一影像中心軸具有一交點;控制機器人使其工件特徵點在第一影像中心軸及第二影像中心軸之間重覆移動直到與交點重合,記錄含有機器人之複數個關節之座標之校正點;移動至下一工件特徵點,再重覆上述步驟以產生複數個校正點;根據該些校正點計算虛擬工具中心點之座標以及工件之相對座標。In another embodiment, the present invention provides an automatic calibration method for a robot workpiece coordinate system, including: providing a physical image sensor having a first image center axis, and the physical image sensor is arranged on the flange surface of the robot Provide a controller to control the rotation of the physical image sensor and the robot to construct a virtual image sensor, which has a second image central axis, and the second image central axis and the first image central axis have an intersection point; control the robot to make its workpiece The feature point repeatedly moves between the central axis of the first image and the central axis of the second image until it coincides with the intersection point. Record the correction point containing the coordinates of the multiple joints of the robot; move to the next feature point of the workpiece, and repeat the above steps A plurality of correction points are generated; the coordinates of the center point of the virtual tool and the relative coordinates of the workpiece are calculated according to the correction points.

以下將詳述本發明內容的各實施例,並配合圖式作為例示。除了這些詳細描述之外,本發明還可以廣泛地施行在其他的實施例中,任何所述實施例的輕易替代、修改、等效變化都包含在本發明的範圍內,並以之後的專利範圍為準。在說明書的描述中,為了使讀者對本發明有較完整的瞭解,提供了許多特定細節;然而,本發明可能在省略部分或全部這些特定細節的前提下,仍可實施。此外,眾所周知的步驟或元件並未描述於細節中,以避免造成本發明不必要之限制。圖式中相同或類似之元件將以相同或類似符號來表示。特別注意的是,圖式僅為示意之用,並非代表元件實際的尺寸或數量,除非有特別說明。Hereinafter, each embodiment of the content of the present invention will be described in detail, and the drawings will be used as examples. In addition to these detailed descriptions, the present invention can also be widely implemented in other embodiments, and easy substitutions, modifications, and equivalent changes of any of the embodiments are included in the scope of the present invention and will be covered by the following patents. Prevail. In the description of the specification, in order to enable the reader to have a more complete understanding of the present invention, many specific details are provided; however, the present invention may still be implemented under the premise that some or all of these specific details are omitted. In addition, well-known steps or elements are not described in details to avoid unnecessary limitation of the present invention. The same or similar elements in the drawings will be represented by the same or similar symbols. It should be noted that the drawings are for illustrative purposes only, and do not represent the actual size or quantity of the components unless otherwise specified.

如圖1之系統架構所示,機器人工件座標系自動校正系統1連接機器人R實施,校正系統1可包含實體影像感測器11、虛擬影像感測器12及控制器13,控制器13可以是機器人R的控制器或另外一獨立的電腦裝置,本發明不予限制,實體影像感測器11可為一實質存在的攝影機或其它類似的影像擷取裝置。機器人R又稱為機器手臂,包含本體M,本體M包含複數個關節J1~J6;虛擬影像感測器12則是由實體影像感測器11所模擬而成,實體上是不存在的;機器人工件座標系自動校正系統1舉例可用於計算一虛擬工具中心點TCP之座標以及工件W之座標,而此虛擬工具中心點則是稍後在裝設實體工具在機器人末端上時之參考用。As shown in the system architecture of Figure 1, the robot workpiece coordinate system 1 is connected to the robot R for implementation. The calibration system 1 may include a physical image sensor 11, a virtual image sensor 12, and a controller 13. The controller 13 may be The controller of the robot R or another independent computer device is not limited by the present invention. The physical image sensor 11 may be a substantial camera or other similar image capturing device. The robot R is also called a robotic arm, which includes a body M, which includes a plurality of joints J1~J6; the virtual image sensor 12 is simulated by the physical image sensor 11 and does not exist physically; the robot For example, the workpiece coordinate system automatic correction system 1 can be used to calculate the coordinates of a virtual tool center point TCP and the coordinates of a workpiece W, and this virtual tool center point is later used for reference when installing a physical tool on the end of the robot.

必須強調說明的是,本發明所提供的系統與方法,於校正過程中不需要裝設實體工具,而是利用工件W上的若干特徵點或指定點以進行校正,工件W上可選定許多工件特徵點WPi,其位置不限,例如圓心或線面的交點等,凡位於實體影像感測器11與虛擬影像感測器12的視野交集範圍內即可,例如圖1所示之工件特徵點WPi是位於三個表面之交點上,當然也可為其他位置之點。It must be emphasized that the system and method provided by the present invention do not need to install physical tools during the calibration process, but use several characteristic points or designated points on the workpiece W for calibration. Many workpieces can be selected on the workpiece W. The position of the feature point WPi is not limited, such as the center of a circle or the intersection of a line and a plane, etc., as long as it is located within the intersection range of the visual field of the physical image sensor 11 and the virtual image sensor 12, such as the workpiece feature point shown in FIG. 1 WPi is located at the intersection of the three surfaces, of course it can also be a point at other locations.

實體影像感測器11具有一第一影像中心軸A,實體影像感測器11設置於機器人R末端之法蘭面F上,法蘭面F具有座標系(x f-y f-z f),實體影像感測器11之視野範圍涵蓋法蘭面F之中心之Z軸zf,且Z軸zf垂直於由X軸xf及Y軸yf所構成之水平面。 The physical image sensor 11 has a first image center axis A. The physical image sensor 11 is disposed on the flange surface F at the end of the robot R. The flange surface F has a coordinate system (x f -y f -z f ) , The field of view of the physical image sensor 11 covers the Z axis zf at the center of the flange surface F, and the Z axis zf is perpendicular to the horizontal plane formed by the X axis xf and the Y axis yf.

圖2A表示實體影像感測器11所擷取之向量方位,圖2B表示該方位與實體影像感測器11之座標系(x 1C-y 1C-z 1C)之關係;如圖2A及圖2B所示,在進行工件座標校正之前,需先計算機器人R之座標系(x R-y R-z R)與實體影像感測器11之座標系(x 1C-y 1C-z 1C)之轉換關係。 2A shows the vector orientation captured by the physical image sensor 11, and FIG. 2B shows the relationship between the orientation and the coordinate system (x 1C -y 1C- z 1C ) of the physical image sensor 11; FIGS. 2A and 2B As shown, before performing workpiece coordinate correction, it is necessary to calculate the conversion between the coordinate system of the robot R (x R -y R -z R ) and the coordinate system of the physical image sensor 11 (x 1C -y 1C -z 1C ) relationship.

首先,移動機器人R使工件W上任一指定點進入到實體影像感測器11視野範圍內之任意位置後,將此指定點作為一影像座標系的原點O(未圖示),此影像座標系即是指由實體影像感測器11擷取的影像所形成之座標系(x 1C-y 1C-z 1C)。 First, after the mobile robot R makes any designated point on the workpiece W enter any position within the field of view of the physical image sensor 11, the designated point is taken as the origin O (not shown) of an image coordinate system. This image coordinate The system refers to the coordinate system (x 1C -y 1C -z 1C ) formed by the image captured by the physical image sensor 11.

將原點O再與另一指定點重合後,移動機器人R沿著機器人R之座標系

Figure 02_image002
方向任意長度得到實體影像感測器11的投影座標點
Figure 02_image004
,並假設該點空間向量為
Figure 02_image006
。 After the origin O coincides with another designated point, the mobile robot R follows the coordinate system of the robot R
Figure 02_image002
Obtain the projection coordinate point of the physical image sensor 11 at any length in the direction
Figure 02_image004
, And assume that the point space vector is
Figure 02_image006
.

同理,在原點O與該指定點重合後,沿著機器人R之座標系

Figure 02_image008
方向移動任意長度得到實體影像感測器11的投影座標點
Figure 02_image010
,並假設該點空間向量為
Figure 02_image012
。 Similarly, after the origin O coincides with the designated point, follow the coordinate system of the robot R
Figure 02_image008
Move any length in the direction to obtain the projection coordinate point of the physical image sensor 11
Figure 02_image010
, And assume that the point space vector is
Figure 02_image012
.

同理,在原點O與該指定點重合後,沿著機器人R之座標系

Figure 02_image014
方向移動任意長度得到實體影像感測器11的投影座標點
Figure 02_image016
,並假設該點空間向量為
Figure 02_image018
。 Similarly, after the origin O coincides with the designated point, follow the coordinate system of the robot R
Figure 02_image014
Move any length in the direction to obtain the projection coordinate point of the physical image sensor 11
Figure 02_image016
, And assume that the point space vector is
Figure 02_image018
.

利用座標系垂直特性得到以下聯立方程式:

Figure 02_image020
Figure 02_image022
=0………………………………………………………… (1)
Figure 02_image022
Figure 02_image024
=0………………………………………………………… (2)
Figure 02_image020
Figure 02_image024
=0………………………………………………………… (3) 並求解得到常數向量
Figure 02_image026
。 Using the vertical characteristics of the coordinate system, the following simultaneous equations are obtained:
Figure 02_image020
Figure 02_image022
=0…………………………………………………… (1)
Figure 02_image022
Figure 02_image024
=0…………………………………………………… (2)
Figure 02_image020
Figure 02_image024
=0………………………………………………………… (3) and solve the constant vector
Figure 02_image026
.

此方程式共可得兩組解,其中第一組解

Figure 02_image028
與第二組解
Figure 02_image030
相差一負號,
Figure 02_image032
,因此可利用影像中工件上任意二指定點的距離長短變化,判別沿著機器人R之座標系(x R-y R-z R)移動時,此指定點為朝向或遠離實體影像感測器11之方向移動,進而判別正確的分支解(Branch Solution)。 There are two sets of solutions for this equation, the first set of solutions
Figure 02_image028
Solution with the second set
Figure 02_image030
A minus sign,
Figure 02_image032
, So the distance between any two designated points on the workpiece in the image can be used to determine when moving along the coordinate system of the robot R (x R -y R -z R ), this designated point is toward or away from the physical image sensor Move in the direction of 11 to determine the correct branch solution (Branch Solution).

因此,實體影像感測器11相對於法蘭面F座標系之座標:

Figure 02_image034
……………… (4) 其中,
Figure 02_image036
為實體影像感測器11相對於法蘭面F座標系之座標,
Figure 02_image038
為法蘭面F相對於機器人R的基座座標系(xb-yb-zb)之座標。 Therefore, the coordinates of the physical image sensor 11 relative to the F coordinate system of the flange surface:
Figure 02_image034
……………… (4) Among them,
Figure 02_image036
Is the coordinate of the physical image sensor 11 relative to the F coordinate system of the flange surface,
Figure 02_image038
It is the coordinate of the flange surface F relative to the base coordinate system of the robot R (xb-yb-zb).

同時,可得到機器人R座標系與實體影像感測器11座標系之轉換關係:

Figure 02_image040
……………………………………(5) 其中,
Figure 02_image042
為沿著實體影像感測器11之座標系(x 1C-y 1C-z 1C)之移動量,
Figure 02_image044
為沿著機器人R之座標系(x R-y R-z R)之移動量。 At the same time, the conversion relationship between the robot R coordinate system and the physical image sensor 11 coordinate system can be obtained:
Figure 02_image040
……………………………………(5) Among them,
Figure 02_image042
Is the amount of movement along the coordinate system (x 1C -y 1C -z 1C ) of the physical image sensor 11,
Figure 02_image044
Is the amount of movement along the coordinate system of the robot R (x R -y R -z R ).

當上述實體影像感測器11與機器人R座標系之轉換關係完成建立後,即可將實體影像感測器11依視野範圍內任一點相對於法蘭面F任一座標軸,旋轉一角度

Figure 02_image046
產生第二視角,以作為虛擬影像感測器12,如圖1所示,而虛擬影像感測器12實質上是由實體影像感測器11所模擬而成的。 When the conversion relationship between the physical image sensor 11 and the robot R coordinate system is established, the physical image sensor 11 can be rotated by an angle relative to any axis of the flange surface F according to any point in the field of view
Figure 02_image046
The second viewing angle is generated to serve as the virtual image sensor 12, as shown in FIG. 1, and the virtual image sensor 12 is essentially simulated by the physical image sensor 11.

請參閱圖3A及圖3B所示,求得虛擬工具中心點TCP之座標與建構虛擬影像感測器12之方法說明如下:Please refer to FIGS. 3A and 3B. The method for obtaining the coordinates of the center point TCP of the virtual tool and constructing the virtual image sensor 12 is described as follows:

步驟(a):將機器人R移至實體影像感測器11之視野範圍內具有任一特徵點WPi之位置,並假設視野範圍內其它任一點D相對於法蘭面F之座標為D=[0, 0, D Z],如圖3A所示; Step (a): Move the robot R to a position with any feature point WPi in the field of view of the physical image sensor 11, and assume that the coordinate of any other point D in the field of view relative to the flange surface F is D=[ 0, 0, D Z ], as shown in Figure 3A;

步驟(b):以實體影像感測器11取得特徵點WPi相對於影像座標系之座標為C 1,而後實體影像感測器11再以其Z軸(

Figure 02_image048
軸)為軸心分別旋轉兩個角度以產生兩點座標C 2, C 3,並以C 1、C 2、C 3三點座標所產生之圓弧計算出一圓心位置D 1,如圖3B所示; Step (b): Use the physical image sensor 11 to obtain the coordinate of the feature point WPi relative to the image coordinate system as C 1 , and then the physical image sensor 11 uses its Z axis (
Figure 02_image048
Axis) is the axis center by rotating two angles to generate two-point coordinates C 2 , C 3 , and calculate a circle center position D 1 with the arc generated by the three-point coordinates C 1 , C 2 , C 3 , as shown in Figure 3B Shown

步驟(c):計算圓心位置

Figure 02_image050
至一工具影像中心點I 1向量
Figure 02_image052
,並將相對於該向量
Figure 02_image052
轉換為相對於法蘭面F之向量
Figure 02_image054
;此工具影像中心點I 1即是工具之座標軸Z軸z tool與第一影像中心軸A之交點。 Step (c): Calculate the center position
Figure 02_image050
To a tool image center point I 1 vector
Figure 02_image052
And will be relative to this vector
Figure 02_image052
Converted to a vector relative to the flange face F
Figure 02_image054
; The center point I 1 of the tool image is the intersection point between the coordinate axis Z of the tool and the center axis A of the first image.

步驟(d):修正點D座標為

Figure 02_image056
,其中L()為距離函數,並回到步驟(a)。直到圓心位置D 1與該影像中心點I 1之座標重合後,即可取得虛擬工具中心點座標I。可根據每次向量
Figure 02_image052
的變化,調整函數L()之常數;以及 Step (d): Correct the coordinate of point D to
Figure 02_image056
, Where L() is the distance function, and return to step (a). Until the coordinates of the circle center position D 1 and the image center point I 1 coincide, the virtual tool center point coordinates I can be obtained. According to each vector
Figure 02_image052
The change of, adjust the constant of the function L(); and

步驟(e):將實體影像感測器11依法蘭面F任一座標軸旋轉一角度

Figure 02_image046
產生第二視角,以作為虛擬影像感測器12。 Step (e): Rotate the physical image sensor 11 by an angle on any axis of the flange F
Figure 02_image046
The second angle of view is generated to serve as the virtual image sensor 12.

請參閱圖4所示,以視覺伺服的方式,移動實體影像感測器11使工件上一指定點或特徵點落到視角軸線上,從所截取的影像資訊中,可得到該指定點相對於影像感應器座標系之座標,再據以計算伺服運動方向以完成機器人移動控制,其步驟如下:Please refer to Figure 4, in a visual servoing manner, move the physical image sensor 11 to make a specified point or feature point on the workpiece fall on the axis of view. From the captured image information, it can be obtained that the specified point is relative to The coordinates of the image sensor coordinate system are used to calculate the servo movement direction to complete the robot movement control. The steps are as follows:

步驟(a1):透過實體影像感測器11截取到的影像資訊中,得到指定點相對於實體影像感測器11之座標(x_c1,y_c1 );Step (a1): Obtain the coordinates (x_c1, y_c1) of the specified point relative to the physical image sensor 11 from the image information captured by the physical image sensor 11;

步驟(b1):將運動方向

Figure 02_image058
轉換為機械人R座標系之方向
Figure 02_image060
,如圖4所示; Step (b1): Change the direction of movement
Figure 02_image058
Converted to the direction of the robot R coordinate system
Figure 02_image060
,As shown in Figure 4;

步驟(c1):使機器人R沿著上述方向運動直到指定點到達實體影像感測器11之座標軸後停止;Step (c1): Make the robot R move in the above direction until the designated point reaches the coordinate axis of the physical image sensor 11 and stops;

步驟(d1):若指定點不位於實體影像感測器11中心點I 1時,則回到步驟(a1),若指定點位於軸線交點則完成視覺伺服控制程序。 Step (d1): If the designated point is not located at the center point I 1 of the physical image sensor 11, go back to step (a1), and if the designated point is located at the axis intersection point, the visual servoing control procedure is completed.

請參閱圖5所示,實體影像感測器11具有第一影像中心軸A;虛擬影像感測器12具有第二影像中心軸B,第一影像中心軸A與第二影像中心軸B不相互平行故具有交點I,且實體影像感測器11與虛擬影像感測器12具有影像交疊區域IA,使實體影像感測器11及虛擬影像感測器12可形成2.5D的機器視覺;其中虛擬影像感測器12為一實質不存在的攝影機或其它類似的裝置,而是由實體影像感測器11模擬而成。Please refer to FIG. 5, the physical image sensor 11 has a first image central axis A; the virtual image sensor 12 has a second image central axis B, the first image central axis A and the second image central axis B are not mutually exclusive Parallel has an intersection I, and the physical image sensor 11 and the virtual image sensor 12 have an image overlap area IA, so that the physical image sensor 11 and the virtual image sensor 12 can form a 2.5D machine vision; The virtual image sensor 12 is an essentially non-existent camera or other similar device, but is simulated by the physical image sensor 11.

控制器13控制機器人R連同實體影像感測器11或虛擬影像感測器12一同轉動,使工件W上的任一特徵點WPi在第一影像中心軸A及第二影像中心軸B之間重覆移動,如圖1所示;在較佳實施例中,控制器13可為各種的電腦裝置。控制器13在工件特徵點WPi與第一影像中心軸A及第二影像中心軸B之交點I重合時記錄當時的一校正點,再據以改變機器人R之姿態以再記錄下一個校正點,藉此記錄機器人R在不同姿態下的複數個校正點;最後,控制器13則根據該些校正點分別計算虛擬工具中心點TCP及工件W相對於機器人R之座標;其中,各個校正點可包含所有關節J1~J6的座標,而各個關節之座標可為各個關節相對於其一預設起始點的轉動角度,即一個校正點可代表一組關節值;例如:若關節角度θ(Joint angle)表示關節的座標,故多數關節J1~J6的座標可表示為θ 、θ 2、θ 3、θ 4、 θ 5及θ 6;故一個校正點可表示為(θ , θ 2, θ 3, θ 4, θ 5, θ 6)。 The controller 13 controls the robot R to rotate together with the physical image sensor 11 or the virtual image sensor 12 so that any feature point WPi on the workpiece W is repositioned between the first image central axis A and the second image central axis B The cover movement is shown in Fig. 1; in a preferred embodiment, the controller 13 can be various computer devices. The controller 13 records a correction point at that time when the feature point WPi of the workpiece coincides with the intersection point I of the first image central axis A and the second image central axis B, and then changes the posture of the robot R to record the next correction point. In this way, a plurality of correction points of the robot R under different postures are recorded; finally, the controller 13 respectively calculates the coordinates of the virtual tool center point TCP and the workpiece W relative to the robot R according to the correction points; wherein, each correction point may include The coordinates of all joints J1~J6, and the coordinates of each joint can be the rotation angle of each joint relative to a preset starting point, that is, a correction point can represent a set of joint values; for example, if the joint angle θ (Joint angle ) Represents the coordinates of the joints, so the coordinates of most joints J1~J6 can be expressed as θ J 1 , θ J 2 , θ J 3 , θ J 4 , θ J 5 and θ J 6 ; so a correction point can be expressed as (θ J 1 , θ J 2 , θ J 3 , θ J 4 , θ J 5 , θ J 6 ).

由圖5可知,控制器13首先控制機器人R將工件特徵點WPi移動至第一影像中心軸A及第二影像中心軸B之影像交疊區域IA中任一位置;接著依序地,控制器13控制機器人R使工件特徵點WPi開始向第一影像中心軸A移動至點T1,如路徑PH1所示;然後,控制器13控制機器人R使工件特徵點WPi由點T1開始向第二影像中心軸B移動至點T2,如路徑PH2所示;同樣的,控制器13控制機器人R使工件特徵點WPi由點T2開始向第一影像中心軸A移動至點T3,如路徑PH3所示,再控制機器人R使工件特徵點WPi由點T3開始向第二影像中心軸B移動至點T4,如路徑PH4所示;最後,控制器13控制機器人R使工件特徵點WPi由點T4開始向第一影像中心軸A逐漸地移動至交點I,並在工件特徵點WPi與交點I重合時記錄第一校正點CP1;在本實施例中,工件特徵點WPi與第一影像中心軸A之距離,及工件特徵點WPi與第二影像中心軸B之距離,若分別小於一門檻值時即可視為工件特徵點WPi與交點I重合;一般而言,此門檻值可設定為工件特徵點WPi的像素之50%;即工件特徵點WPi在其像素之50%內與第一影像中心軸A與第二影像中心軸B重合時,即可視為工件特徵點WPi與交點I重合;由上述可知,控制器13控制機器人R使工件特徵點WPi在第一影像中心軸A及第二影像中心軸B之間重覆移動,以取得第一校正點CP1。It can be seen from FIG. 5 that the controller 13 first controls the robot R to move the workpiece feature point WPi to any position in the image overlapping area IA of the first image center axis A and the second image center axis B; then, the controller sequentially 13 Control the robot R to move the workpiece feature point WPi to the center axis A of the first image to point T1, as shown by the path PH1; then, the controller 13 controls the robot R to make the workpiece feature point WPi start from point T1 to the center of the second image Axis B moves to point T2, as shown by path PH2; similarly, the controller 13 controls the robot R to move the workpiece feature point WPi from point T2 to the central axis A of the first image to point T3, as shown by path PH3, and then Control the robot R to move the workpiece feature point WPi from point T3 to the second image center axis B to point T4, as shown by the path PH4; finally, the controller 13 controls the robot R to make the workpiece feature point WPi from point T4 to the first The image center axis A gradually moves to the intersection point I, and the first correction point CP1 is recorded when the workpiece feature point WPi coincides with the intersection point I; in this embodiment, the distance between the workpiece feature point WPi and the first image center axis A, and If the distance between the workpiece feature point WPi and the second image center axis B is less than a threshold value, it can be regarded as the workpiece feature point WPi coincides with the intersection point I; generally speaking, this threshold value can be set as the pixel of the workpiece feature point WPi 50%; that is, when the workpiece feature point WPi coincides with the first image central axis A and the second image central axis B within 50% of its pixels, it can be regarded as the workpiece feature point WPi coincides with the intersection point I; from the above, the controller 13 Control the robot R to repeatedly move the workpiece feature point WPi between the first image center axis A and the second image center axis B to obtain the first correction point CP1.

接著,控制器13判斷校正點的數量是否大於或等於一預設值;在本實施例中,校正點的數量需大於或等於3;若校正點的數量小於3,則控制器13可透過亂數產生器產生一方位角(Euler Angle)增量

Figure 02_image062
以修正機器人R的方位角,藉此改變機器人R的姿態;此時,機器人R之方位角可表示為
Figure 02_image064
),其中
Figure 02_image066
為機器人R原來的方位角;其中R x表示偏航角(Yaw angel);R y表示螺距角或俯仰角(Pitch angel);R z表示滾轉角(Roll angel)。若修正的方位角超過機器人R的運動範圍或超出交疊區域IA時,控制器13可透過亂數產生器重新再產生方位角增量。 Next, the controller 13 determines whether the number of correction points is greater than or equal to a preset value; in this embodiment, the number of correction points needs to be greater than or equal to 3; if the number of correction points is less than 3, the controller 13 can transmit the The number generator generates Euler Angle increments
Figure 02_image062
To correct the azimuth angle of the robot R, thereby changing the posture of the robot R; at this time, the azimuth angle of the robot R can be expressed as
Figure 02_image064
),among them
Figure 02_image066
Is the original azimuth angle of the robot R; where R x represents the yaw angle (Yaw angel); R y represents the pitch angle or pitch angle (Pitch angel); R z represents the roll angle (Roll angel). If the corrected azimuth angle exceeds the motion range of the robot R or exceeds the overlap area IA, the controller 13 can regenerate the azimuth angle increment through the random number generator.

然後,在取得新方位角及下一個特徵點WPi後,控制器13控制機器人R使虛擬工具中心點TCP在第一影像中心軸A及第二影像中心軸B之間重覆移動,且在虛擬工具中心點TCP與第二影像中心軸B重合時記錄第二校正點CP2。Then, after obtaining the new azimuth angle and the next feature point WPi, the controller 13 controls the robot R to make the virtual tool center point TCP repeatedly move between the first image center axis A and the second image center axis B, and in the virtual The second calibration point CP2 is recorded when the tool center point TCP coincides with the second image center axis B.

然後,控制器13判斷校正點的數量是否大於或等於3;若控制器13判斷校正點的數量小於3,控制器13重覆上述步驟以取得記錄第三校正點CP3,直到控制器13判斷校正點的數量大於或等於3。Then, the controller 13 determines whether the number of calibration points is greater than or equal to 3; if the controller 13 determines that the number of calibration points is less than 3, the controller 13 repeats the above steps to obtain and record the third calibration point CP3, until the controller 13 determines the calibration The number of points is greater than or equal to 3.

根據上述說明,本發明於進行校正過程中所採用的指定點或特徵點,可包含至少3個已知相對於工件座標系之指定點,例如,工件座標系原點、工件座標系X軸上任一點、工件座標系X-Y平面上任一點等。移動機械人R使工件座標系之第i個指定點(即工件W的第i個特徵點WPi)於實體影像感測器11與虛擬影像感測器12重疊視範圍之內,重複上述移動重合步驟,使i大於一預定數量,以完成指定點校正資訊蒐集流程,根據該些校正點計算虛擬工具中心之座標以及工件之座標。According to the above description, the designated points or feature points used in the calibration process of the present invention may include at least 3 designated points that are known to be relative to the workpiece coordinate system, for example, the origin of the workpiece coordinate system, or any point on the X axis of the workpiece coordinate system. One point, any point on the XY plane of the workpiece coordinate system, etc. Move the robot R so that the i-th designated point of the workpiece coordinate system (ie the i-th feature point WPi of the workpiece W) is within the overlapping visual range of the physical image sensor 11 and the virtual image sensor 12, and repeat the above movement to overlap Step: Make i greater than a predetermined number to complete the designated point calibration information collection process, and calculate the coordinates of the virtual tool center and the workpiece based on the calibration points.

如圖1所示,控制器13可根據該些校正點CP1~CP3計算虛擬工具中心點TCP之座標;其中各個校正點CP1~CP3的座標可透過機器人R之連桿參數(Denavit-Hartenberg Parameters)、關節J1~J6之座標及虛擬工具中心點TCP相對於法蘭面F之座標系(x f-y f-z f)之資訊獲得;其中,連桿參數可包含連桿偏移d(Link offset)、關節角度θ(Joint angle)、連桿長度a(Link length)及連桿扭轉α(Link twist)等。 As shown in Fig. 1, the controller 13 can calculate the coordinates of the center point TCP of the virtual tool according to the calibration points CP1~CP3; the coordinates of the calibration points CP1~CP3 can be determined by the connecting rod parameters of the robot R (Denavit-Hartenberg Parameters) , The coordinates of the joints J1~J6 and the information of the coordinate system (x f -y f -z f ) of the virtual tool center point TCP relative to the flange surface F are obtained; among them, the link parameters can include the link offset d(Link offset), joint angle θ (Joint angle), link length a (Link length), and link twist α (Link twist).

虛擬工具中心點TCP之座標可由下式(6)計算: T 1iT 2=P…………………………………………………………(6) The coordinates of the central point TCP of the virtual tool can be calculated by the following formula (6): T 1i T 2 =P………………………………………………(6)

其中,矩陣T 1i是將第i個校正點之座標,由基座之座標系(x b-y b-z b)轉換至法蘭面F之座標系(x f-y f-z f)的一4×4齊次轉換矩陣,矩陣T 2為虛擬工具中心點TCP相對於法蘭面F之座標系之座標,矩陣P為校正點在空間中相對於基座之座標系(x b-y b-z b)的座標;各個校正點可透過式(6)得到三條線性方程式,因此可利用n個校正點得到3n條方程式後以虛擬反矩陣(Pseudo-inverse matrix)求得虛擬工具中心點TCP之座標;由式(6)可推得式(7):

Figure 02_image068
……………….…………(7) Among them, the matrix T 1i is to convert the coordinates of the i-th calibration point from the coordinate system of the base (x b -y b -z b ) to the coordinate system of the flange surface F (x f -y f -z f ) Matrix T 2 is the coordinate system of the virtual tool center point TCP relative to the flange surface F, and matrix P is the coordinate system of the calibration point relative to the base in space (x b- y b -z b ); each correction point can be used to obtain three linear equations through equation (6), so 3n equations can be obtained using n correction points, and then the virtual tool center can be obtained by the pseudo-inverse matrix (Pseudo-inverse matrix) Point the coordinates of TCP; from equation (6), equation (7) can be derived:
Figure 02_image068
……………….…………(7)

其中,(e 11i, e 21i, e 31i)表示第i個校正點在x f軸的向量相對於基座之座標系(x b-y b-z b)的方向;(e 12i, e 22i, e 32i)表示第i個校正點在y f軸的向量相對於基座之座標系(x b-y b-z b)的方向;(e 13i, e 23i, e 33i)表示第i個校正點在z f軸的向量相對於基座之座標系(x b-y b-z b)的方向;由式(7)可推得式(8)及式(9):

Figure 02_image070
…………………….…..(8)
Figure 02_image072
………………..…………………………(9) Among them, (e 11i , e 21i , e 31i ) represents the direction of the vector of the i-th correction point on the x f axis relative to the coordinate system of the base (x b -y b -z b ); (e 12i , e 22i , e 32i ) represents the direction of the vector of the i-th correction point on the y f axis relative to the coordinate system of the base (x b -y b -z b ); (e 13i , e 23i , e 33i ) represents the i-th The direction of the vector of the correction point on the z f axis with respect to the coordinate system (x b -y b -z b ) of the base; from equation (7), equations (8) and (9) can be derived:
Figure 02_image070
…………………….…..(8)
Figure 02_image072
………………..…………………………(9)

其中,

Figure 02_image074
Figure 02_image076
Figure 02_image078
之轉置矩陣(Transpose matrix),
Figure 02_image080
Figure 02_image082
之反矩陣(Inverse matrix)。 among them,
Figure 02_image074
,
Figure 02_image076
for
Figure 02_image078
Transpose matrix (Transpose matrix),
Figure 02_image080
for
Figure 02_image082
The inverse matrix.

若校正點的數量足夠,以已知的第i個校正點所對應的矩陣T 1i,將矩陣內各元素代入式(8)並將矩陣

Figure 02_image078
移項後得出式(9),取得虛擬工具中心點TCP相對於法蘭面F之座標系之座標(T x, T y, T z)及虛擬工具中心點TCP相對於機器人R座標系(x R-y R-z R)之座標(P x, P y, P z),並完成虛擬工具中心點TCP之座標(T x, T y, T z)之校正以及計算出工件W之座標。 If the number of correction points is sufficient, use the known matrix T 1i corresponding to the i-th correction point to substitute each element in the matrix into equation (8) and the matrix
Figure 02_image078
After shifting the term, formula (9) is obtained, and the coordinates of the virtual tool center point TCP relative to the coordinate system of the flange surface F (T x , T y , T z ) and the virtual tool center point TCP relative to the robot R coordinate system (x R -y R -z R ) coordinates (P x , P y , P z ), and complete the correction of the coordinates (T x , T y , T z ) of the virtual tool center point TCP and calculate the coordinates of the workpiece W.

由上述可知,在本實施例中,機器人工件座標系自動校正系統1可透過視覺伺服的方式,自動校正機器人相對於加工工件之座標,且可達極高的校正精確度,因此可以有效地降低人力成本及時間成本;另外,機器人工件座標系自動校正系統1可透過一次校正程序即可精確地校正機器人相對於工件之座標。因此,機器人工件座標系自動校正系統1確實可有效地改善習知技藝之缺點。It can be seen from the above that in this embodiment, the robot workpiece coordinate system automatic correction system 1 can automatically correct the coordinates of the robot relative to the processed workpiece through visual servoing, and can achieve extremely high correction accuracy, so it can effectively reduce Labor cost and time cost; In addition, the robot workpiece coordinate system automatic correction system 1 can accurately correct the robot's coordinate relative to the workpiece through a calibration procedure. Therefore, the robot workpiece coordinate system automatic correction system 1 can indeed effectively improve the shortcomings of the prior art.

請參閱圖6所示,獲得機器人R之座標系(x R-y R-z R)與實體影像感測器11之座標系(x 1C-y 1C-z 1C)之轉換關係的方法可包含下列步驟: Please refer to FIG. 6, the method of obtaining the conversion relationship between the coordinate system (x R -y R -z R ) of the robot R and the coordinate system (x 1C -y 1C -z 1C ) of the physical image sensor 11 may include The following steps:

步驟S51:控制機器人R將實體影像感測器11視野範圍內之任一指定點,由影像交疊區域IA之任一位置沿著機器人R之座標系(x R-y R-z R)之橫軸x R移動一距離L R,並由實體影像感測器11獲得第一投影座標P’ x1Step S51: Control the robot R to move any designated point within the field of view of the physical image sensor 11 from any position in the image overlap area IA along the coordinate system (x R -y R -z R ) of the robot R The horizontal axis x R moves a distance L R , and the physical image sensor 11 obtains the first projection coordinate P′ x1 .

步驟S52:控制機器人R將上述指定點由影像交疊區域IA之上述該位置沿著機器人R之座標系(x R-y R-z R)之縱軸y R移動一距離L R,並由實體影像感測器11獲得第二投影座標P’ y1Step S52: Control the robot R to move the designated point from the position in the image overlap area IA along the longitudinal axis y R of the coordinate system (x R -y R -z R ) of the robot R by a distance L R , and The physical image sensor 11 obtains the second projection coordinate P′ y1 .

步驟S53:控制機器人R將上述指定點由影像交疊區域IA之上述該位置沿著機器人R之座標系(x R-y R-z R)之垂直軸z R移動一距離L R,並由實體影像感測器11獲得第三投影座標P’ z1Step S53: Control the robot R to move the designated point from the position in the image overlap area IA along the vertical axis z R of the coordinate system (x R -y R -z R ) of the robot R by a distance L R , and The physical image sensor 11 obtains the third projection coordinate P′ z1 .

步驟S54:提供對應於第一投影座標P’ x1、第二投影座標P’ y1及第三投影座標P’ z1的第一空間向量

Figure 02_image020
、第二空間向量
Figure 02_image022
及第三空間向量
Figure 02_image024
。 Step S54: providing a first projection corresponding to the coordinate P 'x1, a second projection coordinates P' Y1 and the third projection coordinates P 'of the first space vector z1
Figure 02_image020
, Second space vector
Figure 02_image022
And third space vector
Figure 02_image024
.

步驟S55:根據第一空間向量

Figure 02_image020
、第二空間向量
Figure 02_image022
及第三空間向量
Figure 02_image024
之間的垂直關係計算第一空間向量
Figure 02_image020
、第二空間向量
Figure 02_image022
及第三空間向量
Figure 02_image024
。 Step S55: According to the first space vector
Figure 02_image020
, Second space vector
Figure 02_image022
And third space vector
Figure 02_image024
The vertical relationship between the calculation of the first space vector
Figure 02_image020
, Second space vector
Figure 02_image022
And third space vector
Figure 02_image024
.

步驟S56:根據第一空間向量

Figure 02_image020
、第二空間向量
Figure 02_image022
及第三空間向量
Figure 02_image024
計算機器人R之座標系(x R-y R-z R)與實體影像感測器11之座標系(x 1C-y 1C-z 1C)之轉換關係,如上述式(4)。 Step S56: According to the first space vector
Figure 02_image020
, Second space vector
Figure 02_image022
And third space vector
Figure 02_image024
The conversion relationship between the coordinate system (x R -y R -z R ) of the robot R and the coordinate system (x 1C -y 1C -z 1C ) of the physical image sensor 11 is calculated, as shown in the above formula (4).

請參閱圖7所示,獲得機器人R之座標系(x R-y R-z R)與虛擬影像感測器12之座標系(x 2C-y 2C-z 2C)之轉換關係的方法可包含下列步驟: Please refer to FIG. 7, the method of obtaining the conversion relationship between the coordinate system (x R -y R -z R ) of the robot R and the coordinate system (x 2C -y 2C -z 2C ) of the virtual image sensor 12 may include The following steps:

步驟S61:控制機器人R將虛擬影像感測器12視野內之任一指定點由影像交疊區域IA之任一位置沿著機器人R之座標系(x R-y R-z R)之橫軸x R移動一距離L R,並由虛擬影像感測器12獲得第一投影座標P’ x2Step S61: Control the robot R to move any designated point in the field of view of the virtual image sensor 12 from any position in the image overlapping area IA along the horizontal axis of the coordinate system (x R -y R -z R ) of the robot R x R moves a distance L R , and the virtual image sensor 12 obtains the first projection coordinate P′ x2 .

步驟S62:控制機器人R將上述指定點由影像交疊區域IA之上述該位置沿著機器人R之座標系(x R-y R-z R)之縱軸y R移動一距離L R,並由虛擬影像感測器12獲得第二投影座標P’ y2Step S62: Control the robot R to move the designated point from the position in the image overlap area IA along the longitudinal axis y R of the coordinate system (x R -y R -z R ) of the robot R by a distance L R , and The virtual image sensor 12 obtains the second projection coordinate P′ y2 .

步驟S63:控制機器人R將上述指定點由影像交疊區域IA之上述該位置沿著機器人R之座標系(x R-y R-z R)之垂直軸z R移動一距離L R,並由虛擬影像感測器12獲得第三投影座標P’ z2Step S63: Control the robot R to move the designated point from the position in the image overlap area IA along the vertical axis z R of the coordinate system (x R -y R -z R ) of the robot R by a distance L R , and The virtual image sensor 12 obtains the third projection coordinate P′ z2 .

步驟S64:提供對應於第一投影座標P’ x2、第二投影座標P’ y2及第三投影座標P’ z2的第一空間向量

Figure 02_image084
、第二空間向量
Figure 02_image086
及第三空間向量
Figure 02_image088
。 Step S64: Provide a first space vector corresponding to the first projection coordinate P'x2 , the second projection coordinate P'y2 and the third projection coordinate P'z2
Figure 02_image084
, Second space vector
Figure 02_image086
And third space vector
Figure 02_image088
.

步驟S65:根據第一空間向量

Figure 02_image084
、第二空間向量
Figure 02_image086
及第三空間向量
Figure 02_image088
之間的垂直關係計算第一空間向量
Figure 02_image084
、第二空間向量
Figure 02_image086
及第三空間向量
Figure 02_image088
。 Step S65: According to the first space vector
Figure 02_image084
, Second space vector
Figure 02_image086
And third space vector
Figure 02_image088
The vertical relationship between the calculation of the first space vector
Figure 02_image084
, Second space vector
Figure 02_image086
And third space vector
Figure 02_image088
.

步驟S66:根據第一空間向量

Figure 02_image084
、第二空間向量
Figure 02_image086
及第三空間向量
Figure 02_image088
計算機器人R之座標系(x R-y R-z R)與虛擬影像感測器12之座標系(x 2C-y 2C-z 2C)之轉換關係,如上述式(8)。 Step S66: According to the first space vector
Figure 02_image084
, Second space vector
Figure 02_image086
And third space vector
Figure 02_image088
The conversion relationship between the coordinate system (x R -y R -z R ) of the robot R and the coordinate system (x 2C -y 2C -z 2C ) of the virtual image sensor 12 is calculated, as shown in the above formula (8).

請參閱圖8所示,機器人工件座標系自動校正系統1所採用的方法包含下列步驟:Please refer to Figure 8, the method adopted by the robot workpiece coordinate system automatic correction system 1 includes the following steps:

步驟S71:提供實體影像感測器11,其具有第一影像中心軸A。Step S71: Provide a physical image sensor 11, which has a first image center axis A.

步驟S72:提供虛擬影像感測器12,其具有第二影像中心軸B,第二影像中心軸B與第一影像中心軸A具有交點I。Step S72: Provide a virtual image sensor 12, which has a second image central axis B, and the second image central axis B and the first image central axis A have an intersection point I.

步驟S73:控制機器人R使其工件特徵點WPi重覆地在第一影像中心軸A及第二影像中心軸B之間移動。Step S73: Control the robot R to move the feature point WPi of the workpiece repeatedly between the central axis A of the first image and the central axis B of the second image.

步驟S74:當工件特徵點WPi與交點I重合時,記錄包含機器人R之複數個關節J1~J6之座標之校正點。Step S74: When the workpiece feature point WPi coincides with the intersection point I, record the correction point including the coordinates of the multiple joints J1~J6 of the robot R.

步驟S75:選擇下一工件特徵點WPi,重覆上述步驟以產生複數個校正點。Step S75: Select the next workpiece feature point WPi, and repeat the above steps to generate a plurality of correction points.

步驟S76:根據該些校正點計算虛擬工具中心點TCP之座標以及工件座標。Step S76: Calculate the coordinates of the center point TCP of the virtual tool and the workpiece coordinates according to the correction points.

請參閱圖9所示,圖9流程圖更詳細說明本發明之機器人工件座標系自動校正方法之流程圖:Please refer to FIG. 9 which illustrates the flow chart of the automatic calibration method of the robot workpiece coordinate system of the present invention in more detail:

步驟S81:假設i=1,設定工件W的第i個特徵點WPi。Step S81: assuming i=1, set the i-th feature point WPi of the workpiece W.

步驟S82:控制器13移動機器人R,使工件特徵點WPi位於實體影像感測器11及虛擬影像感測器12的共同視野範圍之中。Step S82: The controller 13 moves the robot R so that the feature point WPi of the workpiece is located in the common field of view of the physical image sensor 11 and the virtual image sensor 12.

步驟S83:控制器13先將工件特徵點WPi移動至第一影像中心軸A上,再移動至第二影像中心軸B上,反覆移動直到工件特徵點WPi分別與第一影像中心軸A及第二影像中心軸B重合,即與其交點I重合。Step S83: The controller 13 first moves the workpiece feature point WPi to the first image central axis A, and then to the second image central axis B, and moves repeatedly until the workpiece feature point WPi is respectively connected to the first image central axis A and the first image central axis A The central axis B of the two images coincides with the intersection point I.

步驟S84:控制器13判斷第一影像中心軸A及第二影像中心軸B之交點I與該工件特徵點WPi的距離誤差是否小於一門檻值;若是,則進行步驟S85;若否,則進行步驟S841。Step S84: The controller 13 determines whether the distance error between the intersection point I of the first image center axis A and the second image center axis B and the feature point WPi of the workpiece is less than a threshold; if yes, proceed to step S85; if not, proceed Step S841.

步驟S841:控制器13透過亂數產生器產生方位角增量(

Figure 02_image062
)以修正機器人R的方位角,並回到步驟S83。 Step S841: The controller 13 generates the azimuth angle increment through the random number generator (
Figure 02_image062
) To correct the azimuth angle of the robot R, and return to step S83.

步驟S85:控制器13記錄工件特徵點WPi之第一組關節值,即第一校正點。Step S85: The controller 13 records the first set of joint values of the workpiece feature point WPi, that is, the first correction point.

步驟S86:控制器13判斷第一組關節值的數量是否大於或等於4個。若是,則進行步驟S87;若否,則進行步驟S841;其中數量可為其它數目,本發明不予限制。Step S86: The controller 13 determines whether the number of joint values in the first group is greater than or equal to four. If yes, proceed to step S87; if not, proceed to step S841; the number can be other numbers, and the present invention is not limited.

步驟S87:控制器13判斷工件特徵點WPi的數量是否大於或等於指定的數量;若是,則進行步驟S88;若否,則進行步驟S871。Step S87: The controller 13 determines whether the number of workpiece feature points WPi is greater than or equal to the specified number; if yes, proceed to step S88; if not, proceed to step S871.

步驟S871:令i=i+1。Step S871: Let i=i+1.

步驟S88:以工具中心校正方式分別求得虛擬工具中心點TCP及工件W相對於機器人R的座標;其中工具中心校正方式已揭露於上述前案中,本發明不再敘述。Step S88: Obtain the coordinates of the virtual tool center point TCP and the workpiece W relative to the robot R in the tool center correction method; wherein the tool center correction method has been disclosed in the previous proposal, and the present invention will not be described again.

綜上所述,本發明所提供之機器人工件座標系自動校正系統與方法,校正流程主要可分為四個部分:(1)將一實體影像感測器安裝於機器人末端的法蘭面上;(2)建立機械人法蘭面座標系與實體影像感測器座標系之轉換關係,使影像得到之運動資訊轉換為機器人之運動資訊;(3)透過多視角方式建構虛擬影像感測器與虛擬工具中心點位置,產生2.5D機器視覺;(4)透過影像伺服方式,控制機器人使工件上指定點與二影像中心軸交點重合,可透過以下其中一方法完成:(41)控制機器人舉例以四個以上之不同姿態使虛擬工具中心點與工件座標原點重合,而後再以任意姿態使虛擬工具中心點與工件座標系X軸上任一點、X-Y平面上任一點分別重合,並記錄其座標,或(42)控制機器人舉例以四個以上之不同姿態,使虛擬工具中心點分別與工件上四個以上相對於工件座標系之已知座標點重合,並記錄其座標。In summary, in the system and method for automatic calibration of robot workpiece coordinates provided by the present invention, the calibration process can be divided into four parts: (1) Mounting a physical image sensor on the flange surface of the robot end; (2) Establish the conversion relationship between the robot flange surface coordinate system and the physical image sensor coordinate system, so that the motion information obtained by the image is converted into the motion information of the robot; (3) Construct the virtual image sensor and The position of the center point of the virtual tool generates 2.5D machine vision; (4) Through the image servo method, the robot is controlled to make the specified point on the workpiece coincide with the intersection of the two image central axes. This can be accomplished by one of the following methods: (41) Control the robot as an example More than four different postures make the center point of the virtual tool coincide with the origin of the workpiece coordinate, and then use any posture to make the center point of the virtual tool coincide with any point on the X axis of the workpiece coordinate system, any point on the XY plane, and record its coordinates, or (42) For example, the control robot uses more than four different postures to make the center point of the virtual tool coincide with more than four known coordinate points on the workpiece relative to the workpiece coordinate system, and record their coordinates.

本發明僅需要於機器人末端的法蘭面上設置一實體的影像感測器,透過工件特徵點進行校正,校正過程不需與工件實際接觸,無碰撞問題,透過一次的校正流程即可完成工件位置之校正,有效提升校正的精度。The present invention only needs to install a physical image sensor on the flange surface of the robot end, and perform calibration through the feature points of the workpiece. The calibration process does not need to actually contact the workpiece, and there is no collision problem. The workpiece can be completed through a single calibration process. The position correction effectively improves the accuracy of the correction.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

1:機器人工件座標系自動校正系統 11:實體影像感測器 12:虛擬影像感測器 13:控制器 A:第一影像中心軸 B:第二影像中心軸 CP1~CP3:校正點 R:機器人 F:法蘭面 I:交點 IA:交疊區域 J1~J6:關節 M:本體 P’x1、P’y1、P’z1、P’x2、P’y2、P’z2:投影座標 S51~S56、S61~S66、S71~S76、S81~S87:步驟流程 SC1、SC2、PH1~PH4:距離

Figure 02_image020
Figure 02_image022
Figure 02_image024
Figure 02_image084
Figure 02_image086
Figure 02_image088
:空間向量 T1~T4:移動點 TCP:虛擬工具中心點 W:工件 WPi:工件特徵點 x1~x3、y1~y3、z1~z3、xC1、yC1、xC2、yC2、C1、C2、C3:座標 xC、yC、zC、xR、yR、zR、xb、yb、zb、xf、yf、zf xtool、ztool:座標軸θv:角度1: Robot workpiece coordinate system automatic calibration system 11: Physical image sensor 12: Virtual image sensor 13: Controller A: The first image central axis B: The second image central axis CP1~CP3: Calibration point R: Robot F: Flange surface I: Intersection point IA: Overlapping area J1~J6: Joint M: Body P'x1 , P'y1 , P'z1 , P'x2 , P'y2 , P'z2 : Projection coordinates S51~S56 , S61~S66, S71~S76, S81~S87: step flow S C1 , S C2 , PH1~PH4: distance
Figure 02_image020
,
Figure 02_image022
,
Figure 02_image024
,
Figure 02_image084
,
Figure 02_image086
,
Figure 02_image088
: Space vector T1~T4: Moving point TCP: Virtual tool center point W: Workpiece WPi: Workpiece feature point x 1 ~ x 3 , y 1 ~ y 3 , z 1 ~ z 3 , x C1 , y C1 , x C2 , y C2 , C 1 , C 2 , C 3 : coordinates x C , y C , z C , x R , y R , z R , x b , y b , z b , x f , y f , z f , x tool , z tool : coordinate axis θv : angle

圖1為本發明之機器人工件座標系自動校正系統之第一實施例之系統架構示意圖。 圖2A~2B為本發明之機器人工件座標系自動校正系統之第一實施例之轉換關係示意圖。 圖3A~3B為本發明之機器人工件座標系自動校正系統之第一實施例之建構步驟示意圖。 圖4為本發明之機器人工件座標系自動校正系統之第一實施例之視覺伺服示意圖。 圖5為本發明之機器人工件座標系自動校正系統之第一實施例之移動重合步驟示意圖。 圖6為本發明之機器人工件座標系自動校正系統之第一實施例之第一流程圖。 圖7為本發明之機器人工件座標系自動校正系統之第一實施例之第二流程圖。 圖8為本發明之機器人工件座標系自動校正系統之第一實施例之第三流程圖。 圖9為本發明之機器人工件座標系自動校正系統之第一實施例之第四流程圖。 1 is a schematic diagram of the system architecture of the first embodiment of the robot workpiece coordinate system automatic correction system of the present invention. 2A~2B are schematic diagrams of the conversion relationship of the first embodiment of the robot workpiece coordinate system automatic correction system of the present invention. 3A to 3B are schematic diagrams of the construction steps of the first embodiment of the robot workpiece coordinate system automatic correction system of the present invention. 4 is a schematic diagram of the visual servoing of the first embodiment of the robot workpiece coordinate system automatic correction system of the present invention. Fig. 5 is a schematic diagram of the moving and overlapping steps of the first embodiment of the robot workpiece coordinate system automatic correction system of the present invention. Fig. 6 is the first flow chart of the first embodiment of the robot workpiece coordinate system automatic correction system of the present invention. Fig. 7 is a second flowchart of the first embodiment of the robot workpiece coordinate system automatic correction system of the present invention. Fig. 8 is a third flowchart of the first embodiment of the robot workpiece coordinate system automatic correction system of the present invention. Fig. 9 is a fourth flowchart of the first embodiment of the robot workpiece coordinate system automatic correction system of the present invention.

no

1:機器人工具中心點校正系統 1: Robot tool center point correction system

11:實體影像感測器 11: Physical image sensor

12:虛擬影像感測器 12: Virtual image sensor

13:控制器 13: Controller

F:法蘭面 F: Flange surface

J1~J6:關節 J1~J6: Joint

M:本體 M: body

R:機器人 R: Robot

TCP:虛擬工具中心點 TCP: Virtual Tool Central Point

W:工件 W: Workpiece

WPi:工件特徵點 WPi: Workpiece feature points

xb、yb、zb、xf、yf、zf、xtool、ztool:座標軸 x b , y b , z b , x f , y f , z f , x tool , z tool : coordinate axis

θv:角度 θv : angle

Claims (20)

一種機器人工件座標系自動校正系統,適用於連接一機器人,該系統包含: 一實體影像感測器,具有一第一影像中心軸,該實體影像感測器設置於該機器人末端之一法蘭面上;以及 一控制器,連接該機器人與該實體影像感測器,控制該實體影像感測器與該機器人旋轉以建構一虛擬影像感測器,該虛擬影像感測器具有一第二影像中心軸,該第二影像中心軸與該第一影像中心軸具有一交點; 其中,該控制器控制該機器人使一工件上的一特徵點在該第一影像中心軸及該第二影像中心軸之間重覆移動直到與該交點重合,記錄包含該機器人之複數個關節之座標之一校正點,再藉由移動至下一個特徵點,重覆上述移動重合該交點以產生複數個其它校正點,根據該些校正點分別計算一虛擬工具中心點以及該工件相對於該機器人之座標。 A robot workpiece coordinate system automatic correction system, suitable for connecting a robot, the system includes: A physical image sensor having a first image center axis, the physical image sensor being arranged on a flange surface of the end of the robot; and A controller is connected to the robot and the physical image sensor, and controls the rotation of the physical image sensor and the robot to construct a virtual image sensor. The virtual image sensor has a second image center axis. The central axis of the second image and the central axis of the first image have an intersection; Wherein, the controller controls the robot to make a feature point on a workpiece repeatedly move between the center axis of the first image and the center axis of the second image until it coincides with the intersection point, and records the number of joints including the robot One of the coordinate correction points, and then by moving to the next feature point, repeat the above movement to overlap the intersection point to generate a plurality of other correction points, according to the correction points to calculate a virtual tool center point and the workpiece relative to the robot The coordinates. 如申請專利範圍第1項所述之機器人工件座標系自動校正系統,其中該控制器是根據該機器人之座標系相對於該實體影像感測器及該虛擬影像感測器之座標系之一轉換關係,及該實體影像感測器及該虛擬影像感測器之複數個影像以控制該機器人移動。The robot workpiece coordinate system as described in the first item of the scope of patent application, wherein the controller converts the coordinate system of the robot to one of the coordinate system of the physical image sensor and the virtual image sensor Relationship, and a plurality of images of the physical image sensor and the virtual image sensor to control the movement of the robot. 如申請專利範圍第1項所述之機器人工件座標系自動校正系統,其中該些校正點各包含該些關節相對於一預設起始點的轉動角度。As described in the first item of the scope of patent application, the robot workpiece coordinate system is an automatic correction system, wherein each of the correction points includes the rotation angle of the joints relative to a preset starting point. 如申請專利範圍第3項所述之機器人工件座標系自動校正系統,其中該控制器根據該些校正點及該機器人之一連桿參數計算該虛擬工具中心點之座標。The robot workpiece coordinate system described in item 3 of the scope of patent application is an automatic calibration system, wherein the controller calculates the coordinates of the center point of the virtual tool according to the calibration points and a link parameter of the robot. 如申請專利範圍第1項所述之機器人工件座標系自動校正系統,其中該些校正點之數量大於或等於一預設值。For example, the robot workpiece coordinate system described in item 1 of the scope of patent application is an automatic correction system, wherein the number of the correction points is greater than or equal to a preset value. 如申請專利範圍第5項所述之機器人工件座標系自動校正系統,其中當該些校正點之數量小於該預設值時,該控制器透過一亂數產生器產生一方位角增量以修正該機器人之一方位角。For example, the robot workpiece coordinate system described in item 5 of the scope of patent application is an automatic correction system, wherein when the number of correction points is less than the preset value, the controller generates an azimuth angle increment through a random number generator to correct One of the azimuths of the robot. 如申請專利範圍第6項所述之機器人工件座標系自動校正系統,其中該控制器在修正該機器人之該方位角後,控制該機器人使另一特徵點在該第一影像中心軸及該第二影像中心軸之間重覆移動,藉以取得另一校正點,直到該校正點的數量大於或等於該預設值。For example, the robot workpiece coordinate system described in item 6 of the scope of patent application is an automatic correction system, wherein the controller, after correcting the azimuth angle of the robot, controls the robot so that another feature point is on the central axis of the first image and the first image The two image center axes are moved repeatedly to obtain another calibration point until the number of the calibration points is greater than or equal to the preset value. 如申請專利範圍第1項所述之機器人工件座標系自動校正系統,其中該特徵點與該第一影像中心軸及該第二影像中心軸之該交點重合時,該特徵點與該第一影像中心軸之距離及與該工件特徵點與該第二影像中心軸之距離分別小於一門檻值。For example, the robot workpiece coordinate system described in item 1 of the scope of patent application is an automatic correction system, wherein when the characteristic point coincides with the intersection of the central axis of the first image and the central axis of the second image, the characteristic point and the first image The distance between the central axis and the distance between the feature point of the workpiece and the central axis of the second image are respectively smaller than a threshold value. 如申請專利範圍第1項所述之機器人工件座標系自動校正系統,其中該虛擬工具中心點之座標是相對於該機器人之一基座之座標,或相對於該法蘭面之座標。The robot workpiece coordinate system described in item 1 of the scope of patent application is an automatic correction system, wherein the coordinate of the virtual tool center point is relative to the coordinate of a base of the robot, or relative to the flange surface. 一種機器人工件座標系之自動校正方法,適用於連接一控制器的一機器人,該方法包含以下步驟: (i)提供一實體影像感測器,形成一影像座標系且具有一第一影像中心軸,該實體影像感測器設置於該機器人末端之一法蘭面上; (ii)藉由該控制器控制該實體影像感測器與該機器人旋轉,以建構一虛擬影像感測器,該虛擬影像感測器具有一第二影像中心軸,該第二影像中心軸與該第一影像中心軸具有一交點; (iii)該控制器控制該機器人使一工件上的一特徵點在該第一影像中心軸及該第二影像中心軸之間重覆移動直到與該交點重合,並記錄包含該機器人之複數個關節之座標之一校正點; (iv)該控制器控制該機器人移動至下一個特徵點,重覆上述移動重合該交點以產生複數個其它校正點;以及 (v)根據該些校正點分別計算一虛擬工具中心點以及該工件相對於該機器人之座標。 A method for automatically correcting the coordinate system of a robot workpiece is suitable for a robot connected to a controller. The method includes the following steps: (i) Provide a physical image sensor forming an image coordinate system and having a first image center axis, and the physical image sensor is arranged on a flange surface of the end of the robot; (ii) The controller controls the rotation of the physical image sensor and the robot to construct a virtual image sensor, the virtual image sensor having a second image center axis, the second image center axis and the The central axis of the first image has an intersection; (iii) The controller controls the robot to make a feature point on a workpiece repeatedly move between the central axis of the first image and the central axis of the second image until it coincides with the intersection point, and records a plurality of points including the robot One of the calibration points of the joint coordinates; (iv) The controller controls the robot to move to the next feature point, repeating the above movement to coincide with the intersection point to generate a plurality of other correction points; and (v) Calculate the center point of a virtual tool and the coordinates of the workpiece relative to the robot according to the correction points. 如申請專利範圍第10項所述之機器人工件座標系之自動校正方法,更包括建構該虛擬影像感測器之方法,其步驟為: (a)移動該機器人使該特徵點落於該實體影像感測器之視野範圍內,並取得該視野範圍內一任意點相對於該法蘭面之座標; (b)取得該任意點相對於該實體影像感測器的座標系之一第一點,再以該第一影像中心軸為中心,分別旋轉兩個角度以產生第二點與第三點,並以該第一點、該第二點及該第三點計算出一圓心位置; (c)計算該圓心位置至一工具影像中心點之向量,並將相對於該影像座標系之向量,轉換為相對於該法蘭面之向量,該工具影像中心點為一工具之一座標軸與該第一影像中心軸之交點; (d)修正該任意點之座標,並回到步驟(a),直到該圓心位置與該工具影像中心點之座標重合後,取得一工具中心點座標;以及 (e)將該實體影像感測器依該法蘭面任一座標軸旋轉一角度,以作為該虛擬影像感測器。 For example, the automatic calibration method of the robot workpiece coordinate system described in item 10 of the scope of patent application further includes a method of constructing the virtual image sensor. The steps are: (a) Move the robot so that the characteristic point falls within the field of view of the physical image sensor, and obtain the coordinates of an arbitrary point in the field of view relative to the flange surface; (b) Obtain the first point of one of the coordinate systems of the arbitrary point relative to the physical image sensor, and then use the central axis of the first image as the center to rotate two angles to generate the second point and the third point, And calculate a center position with the first point, the second point, and the third point; (c) Calculate the vector from the center position of the circle to the center point of a tool image, and convert the vector relative to the image coordinate system into a vector relative to the flange surface. The center point of the tool image is a coordinate axis of a tool and The intersection of the central axis of the first image; (d) Correct the coordinates of the arbitrary point, and return to step (a) until the center position of the circle coincides with the coordinates of the center point of the tool image, then obtain a tool center point coordinate; and (e) Rotate the physical image sensor by an angle according to any axis of the flange surface to serve as the virtual image sensor. 如申請專利範圍第10項所述之機器人工件座標系之自動校正方法,其中該步驟(iii)更包含下列步驟: 提供該機器人之座標系相對於該實體影像感測器及該虛擬影像感測器之座標系之一轉換關係;以及 根據該轉換關係、該實體影像感測器及該虛擬影像感測器之複數個影像,以控制該機器人移動。 The automatic calibration method of the robot workpiece coordinate system as described in item 10 of the scope of patent application, wherein the step (iii) further includes the following steps: Provide a conversion relationship between the coordinate system of the robot and the coordinate system of the physical image sensor and the virtual image sensor; and According to the conversion relationship, the multiple images of the physical image sensor and the virtual image sensor, the robot is controlled to move. 如申請專利範圍第12項所述之機器人工件座標系之自動校正方法,其中提供該機器人之座標系相對於該實體影像感測器及該虛擬影像感測器之座標系之該轉換關係之步驟更包含: 控制該機器人將該特徵點由該實體影像感測器及該虛擬影像感測器之一影像交疊區域之任一位置,沿著該機器人之座標系之橫軸移動一距離,並由該實體影像感測器及該虛擬影像感測器獲得一第一投影座標; 控制該機器人將該特徵點由該影像交疊區域之該位置,沿著該機器人之座標系之縱軸移動該距離,並由該實體影像感測器及該虛擬影像感測器獲得一第二投影座標;以及 控制該機器人將該特徵點由該影像交疊區域之該位置,沿著該機器人之座標系之垂直軸移動該距離,並由該實體影像感測器及該虛擬影像感測器獲得一第三投影座標。 The method for automatically calibrating the coordinate system of a robot workpiece as described in item 12 of the scope of patent application, wherein the step of providing the conversion relationship between the coordinate system of the robot and the coordinate system of the physical image sensor and the virtual image sensor It also contains: Control the robot to move the feature point at any position in the overlapping area of an image of the physical image sensor and the virtual image sensor for a distance along the horizontal axis of the coordinate system of the robot, and the physical The image sensor and the virtual image sensor obtain a first projection coordinate; Control the robot to move the feature point from the position of the image overlapping area by the distance along the longitudinal axis of the robot's coordinate system, and obtain a second from the physical image sensor and the virtual image sensor Projection coordinates; and Control the robot to move the feature point from the position of the image overlapping area by the distance along the vertical axis of the robot's coordinate system, and obtain a third from the physical image sensor and the virtual image sensor Projection coordinates. 如申請專利範圍第13項所述之機器人工件座標系之自動校正方法,其中提供該機器人之座標系相對於該實體影像感測器及該虛擬影像感測器之座標系之該轉換關係之步驟更包含: 提供分別對應於該第一投影座標、該第二投影座標及該第三投影座標的一第一空間向量、一第二空間向量及一第三空間向量; 根據該第一空間向量、該第二空間向量及該第三空間向量之間的垂直關係,計算該第一空間向量、該第二空間向量及該第三空間向量;以及 根據該第一空間向量、該第二空間向量及該第三空間向量,計算該機器人之座標系相對於該實體影像感測器及該虛擬影像感測器之座標系之該轉換關係。 The method for automatically calibrating the coordinate system of a robot workpiece as described in item 13 of the scope of patent application, wherein the step of providing the conversion relationship between the coordinate system of the robot and the coordinate system of the physical image sensor and the virtual image sensor It also contains: Providing a first space vector, a second space vector, and a third space vector corresponding to the first projection coordinate, the second projection coordinate, and the third projection coordinate respectively; Calculating the first space vector, the second space vector, and the third space vector according to the vertical relationship between the first space vector, the second space vector, and the third space vector; and According to the first space vector, the second space vector, and the third space vector, the conversion relationship between the coordinate system of the robot and the coordinate system of the physical image sensor and the virtual image sensor is calculated. 如申請專利範圍第10項所述之機器人工件座標系之自動校正方法,其中各該些關節之座標為各該些關節相對於一預設起始點的轉動角度。As described in item 10 of the scope of patent application, the coordinates of each of the joints are the rotation angles of each of the joints relative to a predetermined starting point. 如申請專利範圍第10項所述之機器人工件座標系之自動校正方法,其中該步驟(v)更包含下列步驟: 根據該些校正點及該機器人之一連桿參數,計算該虛擬工具中心點之座標以及該工件之座標。 The automatic calibration method of the robot workpiece coordinate system described in item 10 of the scope of patent application, wherein the step (v) further includes the following steps: According to the calibration points and a link parameter of the robot, the coordinates of the center point of the virtual tool and the coordinates of the workpiece are calculated. 如申請專利範圍第10項所述之機器人工件座標系之自動校正方法,其中該些校正點之數量大於或等於一預設值。For example, in the automatic calibration method of the robot workpiece coordinate system described in item 10 of the scope of patent application, the number of the calibration points is greater than or equal to a preset value. 如申請專利範圍第10項所述之機器人工件座標系之自動校正方法,其中該步驟(iii)更包含下列步驟: 使該特徵點與該第一影像中心軸之距離及與該特徵點與該第二影像中心軸之距離分別小於一門檻值。 The automatic calibration method of the robot workpiece coordinate system as described in item 10 of the scope of patent application, wherein the step (iii) further includes the following steps: The distance between the characteristic point and the central axis of the first image and the distance between the characteristic point and the central axis of the second image are respectively smaller than a threshold value. 如申請專利範圍第10項所述之機器人工件座標系之自動校正方法,其中該步驟(iv)更包含下列步驟: 當該些校正點之數量小於一預設值時,透過亂數產生器產生一方位角增量以修正該機器人之一方位角。 The automatic calibration method of the robot workpiece coordinate system as described in item 10 of the scope of patent application, wherein the step (iv) further includes the following steps: When the number of the correction points is less than a preset value, an azimuth angle increment is generated through the random number generator to correct an azimuth angle of the robot. 如申請專利範圍第19項所述之機器人工件座標系之自動校正方法,其中在修正該機器人之該方位角之後更包含下列步驟: 控制該機器人使另一特徵點在該第一影像中心軸及該第二影像中心軸之間重覆移動,藉以取得另一校正點,直到該校正點的數量大於或等於該預設值。 As described in item 19 of the scope of patent application, the automatic correction method of the robot workpiece coordinate system includes the following steps after correcting the azimuth angle of the robot: The robot is controlled to repeatedly move another characteristic point between the central axis of the first image and the central axis of the second image to obtain another correction point until the number of the correction points is greater than or equal to the preset value.
TW108146321A 2019-12-18 2019-12-18 Automated calibration system and method for workpiece coordinate frame of a robot TWI701123B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108146321A TWI701123B (en) 2019-12-18 2019-12-18 Automated calibration system and method for workpiece coordinate frame of a robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108146321A TWI701123B (en) 2019-12-18 2019-12-18 Automated calibration system and method for workpiece coordinate frame of a robot

Publications (2)

Publication Number Publication Date
TWI701123B true TWI701123B (en) 2020-08-11
TW202124110A TW202124110A (en) 2021-07-01

Family

ID=73002978

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108146321A TWI701123B (en) 2019-12-18 2019-12-18 Automated calibration system and method for workpiece coordinate frame of a robot

Country Status (1)

Country Link
TW (1) TWI701123B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748626B (en) * 2020-08-31 2021-12-01 財團法人工業技術研究院 Calibration method of tool center point, teaching method for mechanical arm and robot arm system using the same
US11845193B2 (en) 2021-10-27 2023-12-19 Industrial Technology Research Institute Cross laser calibration device and calibration system using the same
TWI843048B (en) * 2022-01-22 2024-05-21 迅得機械股份有限公司 Visual alignment system and visual alignment method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115890638A (en) 2021-09-30 2023-04-04 台达电子工业股份有限公司 Automated robotic arm system
TWI776694B (en) * 2021-09-30 2022-09-01 台達電子工業股份有限公司 Automatic robot arm system and method of coordinating robot arm and computer vision thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101282823A (en) * 2005-10-06 2008-10-08 库卡罗伯特有限公司 Method for determining a virtual tool center point
US9002516B2 (en) * 2011-11-11 2015-04-07 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Calibration method for tool center point of a robot manipulator
TW201900358A (en) * 2017-05-22 2019-01-01 廣明光電股份有限公司 Method for calibrating coordinator of robot arm
TW201915625A (en) * 2017-09-29 2019-04-16 財團法人工業技術研究院 System and method for calibrating tool center point of robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101282823A (en) * 2005-10-06 2008-10-08 库卡罗伯特有限公司 Method for determining a virtual tool center point
US9002516B2 (en) * 2011-11-11 2015-04-07 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Calibration method for tool center point of a robot manipulator
TW201900358A (en) * 2017-05-22 2019-01-01 廣明光電股份有限公司 Method for calibrating coordinator of robot arm
TW201915625A (en) * 2017-09-29 2019-04-16 財團法人工業技術研究院 System and method for calibrating tool center point of robot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748626B (en) * 2020-08-31 2021-12-01 財團法人工業技術研究院 Calibration method of tool center point, teaching method for mechanical arm and robot arm system using the same
US11845193B2 (en) 2021-10-27 2023-12-19 Industrial Technology Research Institute Cross laser calibration device and calibration system using the same
TWI843048B (en) * 2022-01-22 2024-05-21 迅得機械股份有限公司 Visual alignment system and visual alignment method thereof

Also Published As

Publication number Publication date
TW202124110A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
CN113001535B (en) Automatic correction system and method for robot workpiece coordinate system
TWI701123B (en) Automated calibration system and method for workpiece coordinate frame of a robot
CN109571546B (en) Robot tool center point correction system and method thereof
CN109794938B (en) Robot hole-making error compensation device and method suitable for curved surface structure
US8457786B2 (en) Method and an apparatus for calibration of an industrial robot system
CN106426172B (en) A kind of scaling method and system of industrial robot tool coordinates system
JP6429473B2 (en) Robot system, robot system calibration method, program, and computer-readable recording medium
US20200298411A1 (en) Method for the orientation of an industrial robot, and industrial robot
CN111203861B (en) Calibration method and calibration system for robot tool coordinate system
CN105773609A (en) Robot kinematics calibration method based on vision measurement and distance error model
CN106338990A (en) Industrial robot DH parameter calibration and zero position calibration method based on laser tracker
CN105509671B (en) A kind of robot tooling center points scaling method using plane reference plate
JP2015042437A (en) Robot system and calibration method of robot system
TWI762371B (en) Automated calibration system and method for the relation between a profile scanner coordinate frame and a robot arm coordinate frame
US20220402131A1 (en) System and method for error correction and compensation for 3d eye-to-hand coordinaton
WO2021169855A1 (en) Robot correction method and apparatus, computer device, and storage medium
WO2018043524A1 (en) Robot system, robot system control device, and robot system control method
CN109176487A (en) A kind of cooperating joint section scaling method, system, equipment, storage medium
CN115446836B (en) Visual servo method based on mixing of various image characteristic information
CN115091456A (en) Robot hand-eye calibration method based on matrix solution
TWI708667B (en) Method and device and system for calibrating position and orientation of a motion manipulator
CN116394254A (en) Zero calibration method and device for robot and computer storage medium
TWI748626B (en) Calibration method of tool center point, teaching method for mechanical arm and robot arm system using the same
CN114102595B (en) Robot calibration method, calibration assembly and storage medium
WO2024128119A1 (en) Simulation system and simulation method