TWI776694B - Automatic robot arm system and method of coordinating robot arm and computer vision thereof - Google Patents
Automatic robot arm system and method of coordinating robot arm and computer vision thereof Download PDFInfo
- Publication number
- TWI776694B TWI776694B TW110136446A TW110136446A TWI776694B TW I776694 B TWI776694 B TW I776694B TW 110136446 A TW110136446 A TW 110136446A TW 110136446 A TW110136446 A TW 110136446A TW I776694 B TWI776694 B TW I776694B
- Authority
- TW
- Taiwan
- Prior art keywords
- robotic arm
- calibration
- image
- target
- control
- Prior art date
Links
Images
Landscapes
- Numerical Control (AREA)
- Manipulator (AREA)
Abstract
Description
本發明係與機械手臂有關,特別是有關於自動化機械手臂系統與其機械手臂與電腦視覺之間的協調方法。 The present invention is related to a robotic arm, in particular to a method for coordinating between an automated robotic arm system and its robotic arm and computer vision.
現有的機械手臂系統中,是使用相機來拍攝工作對象的影像,透過影像分析來決定工作對象的位置,並控制機械手臂移動至所決定的位置來對工作對象進行動作。 In the existing robotic arm system, a camera is used to capture an image of the working object, the position of the working object is determined through image analysis, and the robotic arm is controlled to move to the determined position to act on the working object.
然而,現有的機械手臂系統缺點在於,若將機械手臂與相機採一上一下的同軸配置,則會嚴重縮減機械手臂的可加工範圍,並嚴重限制相機的體積上限。 However, the disadvantage of the existing robotic arm system is that if the robotic arm and the camera are coaxially configured one above the other, the processing range of the robotic arm will be severely reduced, and the upper limit of the camera volume will be severely limited.
若將機械手臂與相機採非同軸設置,則機械手臂的法蘭軸與相機的拍攝光軸之間存在偏置量。前述偏置量會導致以拍攝影像為基準的視覺空間與機械手臂的機械空間之間存在隨機誤差,而使得電腦視覺無法精準地控制機械手臂。 If the manipulator and the camera are set non-coaxially, there will be an offset between the flange axis of the manipulator and the shooting optical axis of the camera. The aforementioned offset will cause random errors between the visual space based on the captured image and the mechanical space of the robotic arm, making it impossible for computer vision to accurately control the robotic arm.
是以,現有機械手臂系統存在上述問題,而亟待更有效的方案被提出。 Therefore, the existing robotic arm systems have the above problems, and more effective solutions are urgently needed.
本發明之主要目的,係在於提供一種自動化機械手臂系統與其機械手臂與電腦視覺之間的協調方法,可使拍攝光軸與法蘭軸疊合,量測目標距離,並協調機械手臂與電腦視覺。 The main purpose of the present invention is to provide an automatic robotic arm system and a method for coordinating between its robotic arm and computer vision, so that the shooting optical axis and the flange axis can be superimposed, the target distance can be measured, and the robotic arm and computer vision can be coordinated. .
於一實施例中,一種機械手臂與電腦視覺之間的協調方法,包含:於一校正模式下,基於一光學測距裝置所量測的一目標距離控制一機械手臂於一影像擷取裝置的一有效拍攝範圍內移動為多個校正姿態,並透過該影像擷取裝置於該多個校正姿態分別拍攝多個校正影像,其中一分光鏡將可見光導引至設置於該機械手臂的一法蘭軸外的該影像擷取裝置,並將測距光導引至該光學測距裝置,該該光學測距裝置的測距軸平行或重疊該法蘭軸;基於該多個校正姿態與該多個校正影像計算該影像擷取裝置的視覺空間與該機械手臂的機械空間之間的一轉換關係;於一工作模式下,透過該影像擷取裝置拍攝一工作影像,並基於該工作影像及該轉換關係決定執行工作的一機械空間座標;及,控制該機械手臂移動至該機械空間座標。 In one embodiment, a method for coordinating between a robotic arm and computer vision includes: in a calibration mode, controlling a robotic arm on an image capturing device based on a target distance measured by an optical ranging device. Move into a plurality of calibration postures within an effective shooting range, and capture a plurality of calibration images in the calibration postures through the image capture device, wherein a beam splitter guides visible light to a flange disposed on the robotic arm The image capture device is off-axis, and the ranging light is guided to the optical ranging device, the ranging axis of the optical ranging device is parallel to or overlapping the flange axis; based on the plurality of corrected attitudes and the plurality of A calibration image is used to calculate a conversion relationship between the visual space of the image capture device and the mechanical space of the robotic arm; in a working mode, a working image is captured by the image capture device, and based on the working image and the The conversion relationship determines a mechanical space coordinate for performing work; and, controls the robotic arm to move to the mechanical space coordinate.
於一實施例中,一種自動化機械手臂系統,包含一機械手臂、一影像擷取裝置、一光學測距裝置、一光路結構及控制裝置。該機械手臂用以於一立體空間中移動。該影像擷取裝置設置於該機械手臂的法蘭軸外,並用以拍攝影像。該光學測距裝置,設置於該機械手臂上,用以量測一目標距離,該光學測距裝置的測距軸平行或重疊該法蘭軸。該光路結構包含一分光鏡,該分光鏡用以將可見光導引至該影像擷取裝置並將測距光導引至該光學測距裝置。該 控制裝置連接該機械手臂、該影像擷取裝置及該光學測距裝置,該控制裝置被設定為於一校正模式下,基於該目標距離控制該機械手臂於該影像擷取裝置的一有效拍攝距離內移動為多個校正姿態,並控制該影像擷取裝置於該多個校正姿態分別拍攝多個校正影像,基於該多個校正姿態與該多個校正影像計算該影像擷取裝置的視覺空間與該機械手臂的機械空間之間的一轉換關係。該控制裝置被設定為於一工作模式下,控制該影像擷取裝置拍攝一工作影像,基於該工作影像及該轉換關係決定執行工作的一機械空間座標,並控制該機械手臂移動至該機械空間座標。 In one embodiment, an automated robotic arm system includes a robotic arm, an image capturing device, an optical ranging device, an optical path structure and a control device. The mechanical arm is used to move in a three-dimensional space. The image capturing device is arranged outside the flange shaft of the robotic arm and is used for capturing images. The optical distance measuring device is arranged on the mechanical arm for measuring the distance of a target, and the distance measuring axis of the optical distance measuring device is parallel to or overlapping the flange axis. The optical path structure includes a beam splitter for guiding visible light to the image capturing device and guiding the ranging light to the optical ranging device. Should The control device is connected to the robot arm, the image capture device and the optical distance measuring device, and the control device is set to control an effective shooting distance of the robot arm to the image capture device based on the target distance in a calibration mode The internal movement is a plurality of calibration postures, and the image capture device is controlled to capture a plurality of calibration images respectively in the plurality of calibration postures, and the visual space and the visual space of the image capture device are calculated based on the plurality of calibration postures and the plurality of calibration images. A transformation relationship between the mechanical spaces of the robotic arm. The control device is set to control the image capture device to capture a working image in a working mode, determine a mechanical space coordinate for executing work based on the working image and the conversion relationship, and control the robotic arm to move to the mechanical space coordinate.
本發明可疊合拍攝光軸與機械手臂的法蘭軸,並提升機械手臂與電腦視覺之間的協調性。 The invention can superimpose the shooting optical axis and the flange axis of the mechanical arm, and improve the coordination between the mechanical arm and computer vision.
1:機械手臂系統 1: Robotic arm system
10:機械手臂 10: Robotic arm
11:端效器 11: End effector
12:相機 12: Camera
13:目標 13: Goals
140:法蘭軸 140: Flange shaft
141:拍攝光軸 141: Shooting Optical Axis
15:目標影像 15: Target image
16:範圍 16: Range
17:轉動後的範圍 17: Range after rotation
18:軸心 18: Axis
2:自動化機械手臂系統 2: Automated robotic arm system
20:控制裝置 20: Control device
21:影像擷取裝置 21: Image capture device
210:感光元件 210: Photosensitive element
211:鏡頭 211: Lens
22:光學測距裝置 22: Optical ranging device
220:光發射器 220: Light Emitter
221:光接收器 221: Optical Receiver
23:機械手臂 23: Robotic Arm
230-233:關節 230-233: Joints
24:光路結構 24: Optical path structure
240:分光鏡 240: Beamsplitter
241:反射鏡 241: Reflector
25:儲存裝置 25: Storage device
250:電腦程式 250: Computer programming
251:有效拍攝距離 251: Effective shooting distance
252:轉換關係 252: Conversion relationship
26:目標 26: Goals
30:控制電腦 30: Control the computer
31:機械手臂控制器 31: Robotic arm controller
32:周邊裝置 32: Peripherals
40:拍攝控制模組 40: Shooting control module
41:測距控制模組 41: Ranging control module
42:手臂控制模組 42: Arm control module
43:校正控制模組 43: Calibration control module
44:工作控制模組 44: Work Control Module
45:轉換處理模組 45: Conversion processing module
46:影像分析模組 46: Image Analysis Module
50:光源 50: light source
51:目標 51: Goals
52:治具 52: Jig
53:法蘭軸 53: Flange shaft
54:工作裝置 54: Working device
55:安裝基座 55: Install the base
60:影像 60: Video
600-601:位置 600-601: Location
α 1:轉動角度 α 1: Rotation angle
d1:偏置量 d1: offset
h1:目標距離 h1: target distance
P1、P2:姿態 P1, P2: Attitude
V1:變化量 V1: Variation
S10-S16:協調步驟 S10-S16: Coordination steps
S20-S25:校正步驟 S20-S25: Calibration steps
S30-S33:工作步驟 S30-S33: Working steps
圖1為本發明一實施例之自動化機械手臂系統的架構圖。 FIG. 1 is a structural diagram of an automated robotic arm system according to an embodiment of the present invention.
圖2為本發明一實施例之自動化機械手臂系統的部分架構圖。 FIG. 2 is a partial structural diagram of an automated robotic arm system according to an embodiment of the present invention.
圖3為本發明一實施例之控制裝置的架構圖。 FIG. 3 is a structural diagram of a control device according to an embodiment of the present invention.
圖4為本發明一實施例之協調方法的流程圖。 FIG. 4 is a flowchart of a coordination method according to an embodiment of the present invention.
圖5為本發明一實施例之協調方法的部分流程圖。 FIG. 5 is a partial flowchart of a coordination method according to an embodiment of the present invention.
圖6為本發明一實施例之協調方法的部分流程圖。 FIG. 6 is a partial flowchart of a coordination method according to an embodiment of the present invention.
圖7為本發明一實施例的自動化機械手臂系統的設置示意圖。 FIG. 7 is a schematic diagram of the arrangement of an automated robotic arm system according to an embodiment of the present invention.
圖8為本發明一實施例的校正模式的第一示意圖。 FIG. 8 is a first schematic diagram of a calibration mode according to an embodiment of the present invention.
圖9為本發明一實施例的校正模式的第二示意圖。 FIG. 9 is a second schematic diagram of a calibration mode according to an embodiment of the present invention.
圖10為圖8所拍攝的第一校正影像的示意圖。 FIG. 10 is a schematic diagram of the first corrected image captured in FIG. 8 .
圖11為圖9所拍攝的第二校正影像的示意圖。 FIG. 11 is a schematic diagram of the second corrected image captured in FIG. 9 .
圖12為現有的機械手臂系統的設置示意圖。 FIG. 12 is a schematic diagram of the arrangement of a conventional robotic arm system.
圖13為現有的機械手臂系統的視野範圍的示意圖。 FIG. 13 is a schematic diagram of the field of view of a conventional robotic arm system.
茲就本發明之一較佳實施例,配合圖式,詳細說明如後。 Hereinafter, a preferred embodiment of the present invention will be described in detail in conjunction with the drawings.
請參閱圖12與圖13,圖12為現有的機械手臂系統的設置示意圖,圖13為現有的機械手臂系統的視野範圍的示意圖。 Please refer to FIG. 12 and FIG. 13 , FIG. 12 is a schematic diagram of the arrangement of a conventional robotic arm system, and FIG. 13 is a schematic diagram of a visual field of the conventional robotic arm system.
如圖12所示,機械手臂系統1的相機12與機械手臂10是採用不同軸配置。由於不同軸配置,相機12的拍攝光軸141與機械手臂10的法蘭軸140之間存在偏置量d1,上述偏置量d1會造成視覺空間與機械空間定位上的隨機誤差。
As shown in FIG. 12 , the
端效器11是直接設置於機械手臂10的末端。當機械手臂10移動端效器11(即改變姿態)時,掛載在機械手臂上的相機12的視野範圍也會隨之變動,而可以不同角度拍攝目標13。
The
如圖13所示,當機械手臂10以法蘭軸140作為軸心18進行角度α 1的旋轉運動時,由於端效器11並沒有水平方向的移動,實際上仍可以對目標13進行加工。
As shown in FIG. 13 , when the
然而,轉動後的相機12的視野範圍會從範圍16變為轉動後的範圍17,而使得目標13的目標影像15脫離相機12的視野範圍,這會造成機械手臂系統1無法對目標13進行視覺空間定位。
However, the field of view of the rotated
為解決上述不同軸配置所造成的問題,本發明提出一種自動化機械手臂系統與其機械手臂與電腦視覺之間的協調方法,可透過新穎的光路結構 (特別是分光鏡)來讓拍攝光軸的入射端貼合至與法蘭軸藉以達成手眼同軸的效果。 In order to solve the problems caused by the above-mentioned different axis configurations, the present invention proposes a coordination method between an automated robotic arm system and its robotic arm and computer vision, which can pass through a novel optical path structure. (especially the beam splitter) to make the incident end of the shooting optical axis fit to the flange axis to achieve the effect of hand-eye coaxial.
並且,本發明由於可以實現手眼同軸,可以消除不同軸配置所產生的偏置量問題,而可避免目標物超出視野範圍。 Moreover, since the present invention can realize the coaxiality of the hand and the eye, the offset problem caused by different axis configurations can be eliminated, and the target object can be prevented from exceeding the field of view.
並且,本發明由於採用不同軸配置,可大幅提升機械手臂的可加工範圍,並大幅提升相機的體積上限。 In addition, because the present invention adopts different axis configuration, the processing range of the robot arm can be greatly increased, and the upper limit of the camera volume can be greatly increased.
並且,本發明還可透過光學測距輔助視覺空間與機械間的定位校正,來提升機械手臂與電腦視覺的協調。 In addition, the present invention can also improve the coordination between the mechanical arm and the computer vision by assisting the positioning correction between the visual space and the machine through optical ranging.
請參閱圖1,為本發明一實施例之自動化機械手臂系統的架構圖。本發明的自動化機械手臂系統2主要包含影像擷取裝置21、光學測距裝置22、機械手臂23、儲存裝置25及連接上述裝置的控制裝置20。
Please refer to FIG. 1 , which is a structural diagram of an automated robotic arm system according to an embodiment of the present invention. The automated
影像擷取裝置21,例如是RGB攝影機等彩色攝影機,用來對工作區域的目標進行拍攝,來獲得包含目標的彩色影像(如後述之校正影像與工作影像)。前述彩色影像主要是用來執行電腦視覺分析,並提供運算結果來作為機械手臂23的運動參考。
The
機械手臂23,用以於立體空間中移動所掛載裝置,來實現對不同位置執行量測(掛載光學測距裝置22)、拍攝(掛載影像擷取裝置21)、加工(掛載工作裝置54)等工作。
The
機械手臂23的末端設定有虛擬的法蘭軸(例如是機械手臂23的移動基準點),其末端的空間位置可基於法蘭軸來計算確定。前述法蘭軸的計算為機械手臂23控制領域的現有技術,於此不再贅述。
The end of the
於本發明中,影像擷取裝置21是設置於機械手臂23的法蘭軸外,藉以增加機械手臂23的可加工範圍(由法蘭軸的可移動範圍決定),並提升影像
擷取裝置21的可允許體積上限,即可以採用體積較大效能較強的攝影機,且配線限制較為寬鬆。
In the present invention, the
於一實施例中,當機械手臂23的末端掛載工作裝置54(如圖8與圖9所示)時,透過機械手臂23的運動,工作裝置54可對不同位置執行加工。透過搭載不同的工作裝置54,本發明可實現不同應用。
In one embodiment, when the end of the
於一實施例中,工作裝置54可連接控制裝置20並受其控制來執行自動化動作。
In one embodiment, the working
舉例來說,當工作裝置54為夾取端效器、焊接加熱器、標記工具、研磨工具、組裝端效器、塗膠工具及/或鎖固工具時,前述自動化動作可為對應的夾取動作(例如是夾取或吸取電子元件)、焊接動作(例如是控制雷射焊頭加熱)、標記動作(例如是以烙印、噴塗等方式進行標記)、研磨動作(例如是執行切削、研磨等)、組裝動作(例如是依指定組裝方式將多個目標執行拼接、疊合等)、塗膠動作(例如是塗膠、點膠等)及/或鎖固動作(例如是鎖螺絲、螺母)。
For example, when the working
光學測距裝置22,例如是紅外線測距儀,用以透過光學手段量測光學測距裝置22與目標之間的目標距離。
The optical ranging
於一實施例中,前述量測是使目標位於虛擬的測距軸上,並透過三角定位法來獲得朝測距軸的平行方向進行量測。 In one embodiment, the aforementioned measurement is performed by placing the target on a virtual distance measuring axis, and obtaining the measurement in a direction parallel to the distance measuring axis through a triangulation method.
於一實施例中,光學測距裝置22是設置於機械手臂23的末端(或接近末端),而可以量測末端與目標之間的距離。
In one embodiment, the optical
於一實施例中,光學測距裝置22的測距軸可平行或重疊機械手臂23的法蘭軸,藉以使所量測的目標距離是對應法蘭軸中機械手臂23末端與正下方的目標之間的深度值。
In one embodiment, the distance measuring axis of the optical
光路結構24,設置於機械手臂23的末端(或接近末端)來接收入射光(從目標發出或反射的光),將入射光分為可見光與測距光,並分別導引至影像擷取裝置21與光學測距裝置22。
The
具體而言,光路結構24包含分光鏡240(如圖7-9,例如是光學稜鏡),分光鏡240可將入射光分離為不同波長的光線(原理為不同波長的光線具有不同折射率),例如是將入射光分為可見光與紅外線(測距光)。於分離後,前述可見光可透過可見光路導引(可設置反射鏡或透鏡或直接射入)至影像擷取裝置21的鏡頭211與感光元件210(如圖7),前述測距光可透過測距光路導引(可設置反射鏡或透鏡或直接射入)至光學測距裝置22的光接收器221。藉此,光路結構24可以在入射端實現的法蘭軸、測距軸、拍攝光軸(例如是拍攝視野的中心點或其他基準點)的同軸配置,並允許影像擷取裝置21設置於法蘭軸(與測距光軸)外。
Specifically, the
儲存裝置25,如磁碟硬碟、固態硬碟、ROM、RAM、EEPROM、快閃記憶體或多種儲存媒體的任意組合,用來儲存資料,例如儲存有效拍攝距離251與轉換關係252。
The
控制裝置20,用來控制自動化機械手臂系統2,例如控制校正模式與工作模式。
The
請參閱圖2,為本發明一實施例之自動化機械手臂系統的部分架構圖。於本實施例中,控制裝置20可包含控制電腦30與機械手臂控制器。
Please refer to FIG. 2 , which is a partial structural diagram of an automated robotic arm system according to an embodiment of the present invention. In this embodiment, the
機械手臂控制器31,連接機械手臂23,用來基於所收到的手臂控制命令來控制機械手臂移動。
The
於一實施例中,機械手臂23包含用來提供多個自由度的多個關節230-233(如圖8至圖9),各關節230-233由伺服馬達來控制旋轉角度,藉此,機械手臂23可於多個自由度中進行運動。
In one embodiment, the
手臂控制命令可指示機械手臂23移動的目的地(機械空間座標),機械手臂控制器31可將手臂控制命令轉換為對應的姿態座標(如各關節230-233的旋轉角度),並控制各關節230-233轉動來擺出手臂控制命令所對應的姿態。
The arm control command can indicate the moving destination (mechanical space coordinate) of the
控制電腦30,例如為工業電腦或個人電腦,連接(例如是透過工業網路或其他區域網路)機械手臂控制器31、影像擷取裝置21、光學測距裝置22及儲存裝置25,並對這些裝置進行控制。舉例來說,控制電腦30可透過發出前述手臂控制命令至機械手臂控制器31來控制機械手臂23。
The
於一實施例中,控制電腦30還連接周邊裝置32,如通訊介面(用來連接網路)、人機介面(用來與用戶互動)、電源設備(用來提供電力)等。
In one embodiment, the
請參閱圖7,為本發明一實施例的自動化機械手臂系統的設置示意圖。 Please refer to FIG. 7 , which is a schematic diagram of the arrangement of an automated robotic arm system according to an embodiment of the present invention.
如圖7所示,自動化機械手臂系統2包含安裝基座55。安裝基座55連接機械手臂23的末端,而可於一立體空間中被機械手臂23移動。
As shown in FIG. 7 , the automated
並且,影像擷取裝置21、光學測距裝置22及光路結構24都設置在安裝基座55。
In addition, the
於一實施例中,安裝基座55可設置有一或多個光源50(如環形光源),光源50用來對工作區域(尤其是目標51及治具52)進行照明,使得影像擷取裝置21可以獲得亮度較佳的目標影像,而大幅降低環境亮度變化影響。
In one embodiment, the mounting
於一實施例中,光路結構24可包含分光鏡240與反射鏡241。反射鏡241用來反射分光鏡240所分離出的可見光至影像擷取裝置21的鏡頭211與感光元件210。透過分光鏡240與反射鏡241,影像擷取裝置21的拍攝光軸可貼合機械手臂23的法蘭軸53。並且,光學測距裝置22的測距光軸可平行或貼合法蘭軸53。
In one embodiment, the
於一實施例中,分光鏡240可為長通分色鏡(longpass dichroic mirror),並具有80%以上(例如97%)的可見光反射率與75%以上(例如92%)的紅外線穿透率,例如是允許波長在730nm以上(例如750nm)的光線穿透,並反射波長為300nm-730nm((例如450nm-490nm)的光線。
In one embodiment, the
於一實施例中,光學測距裝置22包含光發射器220、光接收器221與連接上述裝置的測距控制器(圖未標示)。光發射器220與光接收器221的中點的垂直線即為測距光軸(圖7中,測距光軸與法蘭軸53貼合)。
In one embodiment, the optical ranging
光發射器220用以朝目標51發射測距光(測距紅外線),測距光打在目標51後會反射至分光鏡240,並於穿透分光鏡240後到達光接收器221。測距控制器(如微控制器或SoC)被設定來基於測距光的發射-接收時間差、光傳播速度及光發射器220與光接收器221之間的距離執行三角定位來計算目標距離(即目標51的深度值)。
The
請參閱圖3,為本發明一實施例之控制裝置的架構圖。控制裝置20可包含模組40-46。模組40-46分別被設定來產生執行本發明之不同功能。
Please refer to FIG. 3 , which is a structural diagram of a control device according to an embodiment of the present invention.
拍攝控制模組40,用來控制影像擷取裝置21,如控制拍攝動作、控制對焦動作、取得影像資料、執行所設定之影像處理等。
The
測距控制模組41,用來控制光學測距裝置22,如控制執行量測、取得量測資料(目標距離)、執行量測校正等。
The ranging
手臂控制模組42,用以透過發出手臂控制命令至機械手臂控制器31來控制機械手臂23的姿態,並可取得機械手臂23的目前位置。
The
校正控制模組43,用以執行校正模式。
The
工作控制模組44,用以執行工作模式。
The
轉換處理模組45,用以計算視覺空間至機械空間的座標轉換與機械空間至視覺空間的座標轉換。
The
影像分析模組46,用以對目標影像執行影像分析與處理。
The
前述模組40-46是相互連接(可為電性連接與資訊連接),並可為硬體模組(例如是電子電路模組、積體電路模組、SoC等等)、軟體模組(例如是韌體、作業系統或應用程式)或軟硬體模組混搭,不加以限定。 The aforementioned modules 40-46 are connected to each other (which may be electrical connection and information connection), and may be hardware modules (such as electronic circuit modules, integrated circuit modules, SoCs, etc.), software modules ( For example, firmware, operating system or application) or a mix of software and hardware modules, which is not limited.
再者,當前述模組40-46為軟體模組(例如是韌體、作業系統或應用程式)時,儲存裝置25可包含非暫態電腦可讀取記錄媒體(圖未標示),前述非暫態電腦可讀取記錄媒體儲存有電腦程式250,電腦程式250記錄有電腦可執行之程式碼,當控制裝置20執行前述程式碼後,可實做對應模組40-46之功能。
Furthermore, when the aforementioned modules 40-46 are software modules (such as firmware, operating systems or applications), the
於一實施例中,前述模組40-46可設置在控制電腦30。舉例來說,儲存裝置25可包含控制電腦30的儲存器,前述儲存器儲存有電腦程式250,控制電腦30的處理器可以執行電腦程式250來實做對應模組40-46之功能。
In one embodiment, the aforementioned modules 40 - 46 may be disposed in the
請參閱圖4,為本發明一實施例之協調方法的流程圖。本實施例的機械手臂與電腦視覺之間的協調方法包含校正步驟S10-S12與工作模式S13-S16。 Please refer to FIG. 4 , which is a flowchart of a coordination method according to an embodiment of the present invention. The method for coordinating between the robotic arm and computer vision in this embodiment includes calibration steps S10-S12 and working modes S13-S16.
步驟S10:控制電腦30透過校正控制模組43進入校正模式以執行機械空間與視覺空間之間的協調與校正。
Step S10: The
舉例來說,控制電腦30可於接受用戶的開始校正操作或收到校正命令時進入校正模式。
For example, the
步驟S11:控制電腦30控制機械手臂23移動,並取得當前的目標距離,依據當前的目標距離判斷機械手臂23(的末端)是否進入影像擷取裝置21的有效拍攝範圍。
Step S11 : the
若進入有效拍攝範圍,則控制機械手臂23於有效拍攝範圍中依序擺出多個校正姿態,並於擺出各校正姿態時拍攝至少一校正影像,藉以獲得分別對應多個校正姿態的多個校正影像。
If it enters the effective shooting range, the
步驟S12:控制電腦30透過轉換處理模組45基於多個校正姿態與多個校正影像計算影像擷取裝置21的視覺空間與機械手臂23的機械空間之間的轉換關係。
Step S12 : The
於一實施例中,控制電腦30可於各校正影像中識別校正目標的視覺空間座標,計算校正目標於多個校正影像的多個視覺空間座標的變化,計算多個校正姿態所對應的多個機械空間座標的變化,並基於上述機械空間座標的變化及視覺空間座標的變化來計算視覺空間與機械空間之間的轉換關係。
In one embodiment, the
於一實施例中,視覺空間、機械空間與轉換關係之間的數學關係為:
於一實施例中,轉換關係可透過以下方式計算獲得。 In one embodiment, the conversion relationship It can be calculated in the following way.
影像擷取裝置21多次拍攝校正目標的特徵f(例如是棋盤格),來獲得多個不同校正姿態下影像擷取裝置21與特徵的關係式:,同時獲得多個當下的校正姿態的表示式(W為機械空間座標,如世界座標),由於特徵物在機械空間座標下固定為,彼此的關係式可以表示為,i=1~N。
The
由於,i=1~N皆為已知,可透過取得多筆資料來最佳化方程式,以得到誤差項最小之最佳解,即校正資料越多,轉換關係越精準。 because , i = 1~ N are all known, and the equation can be optimized by obtaining multiple pieces of data to obtain the best solution with the smallest error term , that is, the more correction data, the conversion relationship more precise.
步驟S13:控制電腦30透過工作控制模組44進入工作模式以執行工作。
Step S13 : the
舉例來說,控制電腦30可於接受用戶的開始工作操作或收到工作命令時進入工作模式。
For example, the
步驟S14:控制電腦30控制機械手臂23移動,並取得當前的目標距離,依據當前的目標距離判斷機械手臂23(的末端)是否進入影像擷取裝置21的有效拍攝範圍。
Step S14 : the
若進入有效拍攝範圍,則控制電腦30控制影像擷取裝置21拍攝工作目標來獲得工作影像,透過影像分析模組46來執行工作相關影像分析處理,並於工作影像中決定要進行加工的位置(視覺空間座標)。接著,控制電腦30透過轉換處理模組45使用轉換關係來將視覺空間座標轉換為機械空間座標。並且,控制電腦30控制機械手臂23移動至機械空間座標。
If it enters the effective shooting range, the
步驟S14:控制電腦30控制機械手臂23移動至機械空間座標。
Step S14 : the
於一實施例中,控制電腦30可進一步控制工作裝置54控制機械手臂於機械空間座標執行自動化動作,例如夾取動作、焊接動作、標記動作、研磨動作、組裝動作、塗膠動作及/或鎖固動作。
In one embodiment, the
本發明可對機械手臂與電腦視覺進行校正,而可以提升機器人的手眼協調。 The invention can correct the mechanical arm and computer vision, and can improve the hand-eye coordination of the robot.
請同時參閱圖4與圖5,圖5為本發明一實施例之協調方法的部分流程圖。相較於圖4的協調方法,本實施例的協調方法的步驟S11更包含步驟S20-S24。 Please refer to FIG. 4 and FIG. 5 at the same time. FIG. 5 is a partial flowchart of a coordination method according to an embodiment of the present invention. Compared with the coordination method of FIG. 4 , step S11 of the coordination method of this embodiment further includes steps S20 - S24 .
步驟S20:控制電腦30取得影像擷取裝置21的有效拍攝距離(如圖1所示的有效拍攝距離251),並基於有效拍攝距離設定有效拍攝範圍。
Step S20 : the
前述有效拍攝距離可例如為取得影像擷取裝置21的最大或最小對焦距離,並且有效拍攝範圍可例如為影像擷取裝置21的對焦範圍。
The aforementioned effective shooting distance may be, for example, the maximum or minimum focusing distance of the
於一實施例中,若有效拍攝距離為50公分,則控制電腦30可將0-50公分設定為有效拍攝範圍,或將25-50公分設定為有效拍攝範圍,或將25-75公分設定為有效拍攝範圍,不加以限定。
In one embodiment, if the effective shooting distance is 50 cm, the
再者,當影像擷取裝置21與拍攝目標是落入前述有效拍攝距離或有效拍攝範圍時,影像擷取裝置21可以正確地對拍攝目標進行聚焦,而可以拍攝到清晰的目標影像;當影像擷取裝置21與拍攝目標是不在有效拍攝範圍內時,影像擷取裝置21無法正確地聚焦,而會產生模糊的目標影像。
Furthermore, when the
步驟S21:控制電腦30控制機械手臂23移動,持續量測目標距離,直到基於目標距離判斷進入有效拍攝範圍內。
Step S21 : the
步驟S22:控制電腦30持續量測當前的目標距離,並控制機械手臂23於有效拍攝範圍內移動並擺出不同的測焦姿態,並拍攝各測焦姿態的測焦影像。
Step S22 : Controlling the
於一實施例中,前述多個測焦姿態是於不同的目標距離所擺出,即控制電腦30是於有效拍攝範圍內不斷變換機械手臂23的高度(如從遠離目標到接近目標),來獲得不同高度的測焦影像。
In an embodiment, the aforementioned plurality of focus measurement postures are posed at different target distances, that is, the
步驟S23:控制電腦30透過影像分析模組46對多個測焦影像與對應的多個目標距離執行對焦分析來決定基準姿態及基準距離。
Step S23 : The
於一實施例中,前述對焦分析包含於多個測焦影像中選擇一或多個準焦的測焦影像(即清晰影像),並基於拍攝這些測焦影像的測焦姿態來決定基準姿態(如這些測焦姿態的中心或重心),並基於拍攝這些測焦影像的目標距離來決定基準距離(如平均值)。 In one embodiment, the aforementioned focus analysis includes selecting one or more focus-focused images (ie, clear images) from a plurality of focus-measurement images, and determining a reference pose ( Such as the center or center of gravity of these focus measurement poses), and the reference distance (eg, average value) is determined based on the target distance for capturing these focus measurement images.
於一實施例中,前述對焦分析可藉由分析多個影像的邊緣特徵、梯度大小等,來決定最清晰的測焦影像,取得能取得最清晰的測焦影像的測焦姿態與目標距離,並作為基準姿態及基準距離。 In one embodiment, the aforementioned focus analysis can determine the clearest focus measurement image by analyzing edge features, gradient magnitudes, etc. of multiple images, and obtain the focus measurement posture and target distance that can obtain the clearest focus measurement image, And as the reference attitude and reference distance.
步驟S24:控制電腦30基於基準姿態及基準距離控制機械手臂23移動為校正姿態,並於此校正姿態下拍攝對應的校正影像。
Step S24 : The
於一實施例中,各校正姿態的目標距離是等於或接近基準距離,並是基於基準姿態進行變化,例如在相同高度平面上旋轉或位移機械手臂23的末端。
In one embodiment, the target distance of each calibration posture is equal to or close to the reference distance, and is changed based on the reference posture, such as rotating or displacing the end of the
步驟S25:控制電腦30透過校正控制模組43判斷是否預設的停止收集條件滿足,以判斷是否所收集的校正資料已足夠,例如滿足預設的筆數,如10筆、50筆或100筆等,不加以限定。
Step S25: The
若停止收集條件滿足,則結束收集校正資料;否則,在次執行步驟S24,以獲得不同校正姿態下拍攝的校正影像。 If the stop collection condition is satisfied, the collection of calibration data is ended; otherwise, step S24 is performed next to obtain calibration images captured under different calibration postures.
藉此,本發明可連續地改變機械手臂的旋轉與位移來擺出不同的校正姿態,並拍攝各校正姿態的校正影像,直到收集到足夠的校正資料。 In this way, the present invention can continuously change the rotation and displacement of the robotic arm to assume different calibration postures, and shoot calibration images of each calibration posture until sufficient calibration data are collected.
於一實施例中,於所收集的多個校正姿態中,至少兩個校正姿態所在平面是跟治具52平行。
In one embodiment, among the collected calibration poses, at least two calibration poses are located on a plane parallel to the
於一實施例中,於所收集的多個校正姿態中,至少兩個校正姿態在不同的目標距離,即不同高度。 In one embodiment, among the collected calibration poses, at least two calibration poses are at different target distances, ie, different heights.
本發明由於拍攝光軸與法蘭軸貼合,所計算出來的轉換關係可以更為準確。 In the present invention, since the photographing optical axis and the flange axis are fitted, the calculated conversion relationship can be more accurate.
請同時參閱圖4與圖6,圖6為本發明一實施例之協調方法的部分流程圖。相較於圖4的協調方法,本實施例的協調方法的步驟S14更包含步驟S30-S33。 Please refer to FIG. 4 and FIG. 6 at the same time. FIG. 6 is a partial flowchart of a coordination method according to an embodiment of the present invention. Compared with the coordination method of FIG. 4 , step S14 of the coordination method of this embodiment further includes steps S30 - S33 .
步驟S30:控制電腦30控制機械手臂23移動(如持續朝工作目標接近),持續取得目標距離,並基於目標距離判斷機械手臂23是否進入有效拍攝範圍(如目標距離是否小於有效拍攝距離251)。
Step S30: The
步驟S31:控制電腦30於機械手臂23(包含影像擷取裝置21)進入有效拍攝範圍後,對工作目標進行拍攝來獲得工作影像。
Step S31 : After the robotic arm 23 (including the image capture device 21 ) enters the effective shooting range, the
步驟S32:控制電腦30透過影像分析模組46對工作影像中執行影像分析。
Step S32 : the
於一實施例中,前述影像分析可包含於工作影像中識別工作目標,並基於工作目標在視覺空間的位置執行工作分析來決定需要執行工作的視覺空間座標。 In one embodiment, the aforementioned image analysis may include identifying the work target in the work image, and performing the work analysis based on the position of the work target in the visual space to determine the coordinates of the visual space where the work needs to be performed.
於一實施例中,前述工作分析可以是瑕疵檢測處理(例如檢測元件瑕疵)、量測處理(例如量測元件面積或長度)、分類篩檢處理(例如對元件進行辨識與分類)與元件定位處理(例如決定元件的抓取點、組裝點、焊接點等)。 In one embodiment, the aforementioned work analysis may be defect detection processing (eg, detecting component defects), measurement processing (eg, measuring component area or length), sorting and screening processing (eg, identifying and classifying components), and component positioning. Processing (e.g. to determine component grab points, assembly points, solder points, etc.).
步驟S33:控制電腦30基於轉換關係252轉換執行工作的視覺空間座標為執行工作的機械空間座標。
Step S33 : The
於一實施例中,控制電腦30可進一步依據工作裝置54與法蘭軸的位置差,對機械空間座標進行補償,來獲得補償後的機械空間座標。並且,控制電腦30可基於補償後的機械空間座標產生手臂控制命令,並發送手臂控制命令至機械手臂控制器31來控制機械手臂將工作裝置54移動至執行工作的機械空間座標。
In one embodiment, the
藉此,本發明可透過電腦視覺來自動執行加工作業。 In this way, the present invention can automatically perform processing operations through computer vision.
請參閱圖8至圖11,圖8為本發明一實施例的校正模式的第一示意圖,圖9為本發明一實施例的校正模式的第二示意圖,圖10為圖8所拍攝的第一校正影像的示意圖,圖11為圖9所拍攝的第二校正影像的示意圖。 Please refer to FIG. 8 to FIG. 11 , FIG. 8 is a first schematic diagram of a calibration mode according to an embodiment of the present invention, FIG. 9 is a second schematic diagram of a calibration mode according to an embodiment of the present invention, and FIG. 10 is a first schematic diagram taken in FIG. 8 A schematic diagram of the corrected image, FIG. 11 is a schematic diagram of the second corrected image captured in FIG. 9 .
於本實施例中,光路結構僅包含分光鏡240,分光鏡240分離出的可見光是直接射入影像擷取裝置21,影像擷取裝置21的鏡頭朝向是與法蘭軸垂直。
In this embodiment, the optical path structure only includes the
此外,工作裝置54是設置於安裝基座55底部,且位於法蘭軸之外,藉以避免干擾入射光的射入。
In addition, the working
再者,上述設置方式中,工作裝置54與法蘭軸的距離是固定的,這使得控制裝置20可以由法蘭軸快速且準確地計算工作裝置54目前的空間位置。
Furthermore, in the above arrangement, the distance between the working
機械手臂23於末端移動至有效拍攝距離h1內後,可透過調整關節230-233來擺出如圖8所示的第一個校正姿態P1,並透過影像擷取裝置21來拍攝如圖10所示的第一張校正影像。
After the end of the
接著,機械手臂23可透過調整關節232、233來擺出如圖9所示的不同的第二個校正姿態P2,並透過影像擷取裝置21來拍攝如圖11所示的第二張校正影像。
Next, the
如圖10所示,第一校正姿態P1下,第一張校正影像的目標60的特徵(於此為中心點)是位於視覺空間的位置600。
As shown in FIG. 10 , in the first calibration posture P1 , the feature of the
如圖111所示,於變換至第二校正姿態P2後,第二張校正影像的目標60的特徵移動至視覺空間的位置601。
As shown in FIG. 111 , after the transformation to the second calibration pose P2 , the feature of the
接著,計算第一校正姿態P1與第二校正姿態P2之間的機械空間座標變化量,並計算位置600至位置601的視覺空間變化量V1,將兩組變化量進行關聯即可獲得視覺空間與機械空間之間的轉換關係,而完成校正。
Next, calculate the mechanical space coordinate change between the first corrected posture P1 and the second corrected posture P2, and calculate the visual space change V1 from
以上所述僅為本發明之較佳具體實例,非因此即侷限本發明之申請專利範圍,故舉凡運用本發明內容所為之等效變化,均同理皆包含於本發明之範圍內,合予陳明。 The above description is only a preferred specific example of the present invention, and therefore does not limit the scope of the present invention. Therefore, all equivalent changes made by using the content of the present invention are all included in the scope of the present invention. Chen Ming.
S10-S16:協調步驟 S10-S16: Coordination steps
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110136446A TWI776694B (en) | 2021-09-30 | 2021-09-30 | Automatic robot arm system and method of coordinating robot arm and computer vision thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110136446A TWI776694B (en) | 2021-09-30 | 2021-09-30 | Automatic robot arm system and method of coordinating robot arm and computer vision thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI776694B true TWI776694B (en) | 2022-09-01 |
TW202315721A TW202315721A (en) | 2023-04-16 |
Family
ID=84958061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110136446A TWI776694B (en) | 2021-09-30 | 2021-09-30 | Automatic robot arm system and method of coordinating robot arm and computer vision thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI776694B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011009814A1 (en) * | 2010-03-05 | 2011-09-08 | Fanuc Corporation | Robotic system with visual sensor |
TW202102347A (en) * | 2019-07-05 | 2021-01-16 | 上銀科技股份有限公司 | Calibration method of vision-guided robot arm only needing to specify a positioning mark in the calibration target to perform calibration |
TWI724977B (en) * | 2020-09-29 | 2021-04-11 | 台達電子工業股份有限公司 | Calibration apparatus and calibration method for coordinate system of robotic arm |
TW202124110A (en) * | 2019-12-18 | 2021-07-01 | 財團法人工業技術研究院 | Automated calibration system and method for workpiece coordinate frame of a robot |
-
2021
- 2021-09-30 TW TW110136446A patent/TWI776694B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011009814A1 (en) * | 2010-03-05 | 2011-09-08 | Fanuc Corporation | Robotic system with visual sensor |
TW202102347A (en) * | 2019-07-05 | 2021-01-16 | 上銀科技股份有限公司 | Calibration method of vision-guided robot arm only needing to specify a positioning mark in the calibration target to perform calibration |
TW202124110A (en) * | 2019-12-18 | 2021-07-01 | 財團法人工業技術研究院 | Automated calibration system and method for workpiece coordinate frame of a robot |
TWI724977B (en) * | 2020-09-29 | 2021-04-11 | 台達電子工業股份有限公司 | Calibration apparatus and calibration method for coordinate system of robotic arm |
Also Published As
Publication number | Publication date |
---|---|
TW202315721A (en) | 2023-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5290324B2 (en) | Method and system for accurately positioning at least one object in a final pose in space | |
US10805546B2 (en) | Image processing system, image processing device, and image processing program | |
US9604363B2 (en) | Object pickup device and method for picking up object | |
JP5911934B2 (en) | Contour measurement device and robot system | |
TWI670153B (en) | Robot and robot system | |
JP6855492B2 (en) | Robot system, robot system control device, and robot system control method | |
JP6429473B2 (en) | Robot system, robot system calibration method, program, and computer-readable recording medium | |
JP5377758B2 (en) | Method and system for accurately positioning at least one object in a final pose in space | |
JP6504274B2 (en) | Three-dimensional shape data and texture information generation system, imaging control program, three-dimensional shape data and texture information generation method, and information recording medium | |
JP2009269110A (en) | Assembly equipment | |
JP2002090113A (en) | Position and attiude recognizing device | |
WO2020252632A1 (en) | Coordinate system calibration method, device, and computer readable medium | |
JP6565175B2 (en) | Robot and robot system | |
CA2911841A1 (en) | Lasergrammetry system and methods | |
JP7191309B2 (en) | Automatic Guidance, Positioning and Real-time Correction Method for Laser Projection Marking Using Camera | |
JP2019089180A (en) | Robot and robot system | |
JP2018194542A (en) | Image processing system, image processing apparatus, and image processing program | |
JP7263501B2 (en) | Automated robotic arm system and method of cooperation between the robotic arm and computer vision | |
JP7071207B2 (en) | Position detectors, position detection methods, manufacturing systems, manufacturing methods, control programs, and recording media | |
TWI776694B (en) | Automatic robot arm system and method of coordinating robot arm and computer vision thereof | |
JPH0820207B2 (en) | Optical 3D position measurement method | |
JP2020517966A (en) | Inspection device for optically inspecting object, manufacturing system provided with inspection device, and method for optically inspecting object using inspection device | |
TW202222519A (en) | Robot system, robot arm, end effector, and adapter | |
JP2013007588A (en) | Defect detection device and its method | |
CN106153012B (en) | The spatial attitude parameter measurement method of specified target and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |