TWI699923B - Method for forming light-emitting diode structure - Google Patents

Method for forming light-emitting diode structure Download PDF

Info

Publication number
TWI699923B
TWI699923B TW108119789A TW108119789A TWI699923B TW I699923 B TWI699923 B TW I699923B TW 108119789 A TW108119789 A TW 108119789A TW 108119789 A TW108119789 A TW 108119789A TW I699923 B TWI699923 B TW I699923B
Authority
TW
Taiwan
Prior art keywords
light
organic material
material film
layer
functional group
Prior art date
Application number
TW108119789A
Other languages
Chinese (zh)
Other versions
TW202017227A (en
Inventor
劉振宇
魏麗真
林熙乾
Original Assignee
宸鴻光電科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宸鴻光電科技股份有限公司 filed Critical 宸鴻光電科技股份有限公司
Publication of TW202017227A publication Critical patent/TW202017227A/en
Application granted granted Critical
Publication of TWI699923B publication Critical patent/TWI699923B/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A method for forming a light-emitting diode structure is disclosed herein. The method includes forming a patterned reflection layer over a donor substrate. A near-infrared absorbing functional group modified organic thin film is formed over the patterned reflection layer. The near-infrared absorbing functional group modified organic thin film is exposed to light to transfer a portion of the near-infrared absorbing functional group modified organic thin film to a semiconductor substrate. Thus, a patterned organic thin film is formed under the semiconductor substrate. The near-infrared absorbing functional group modified organic thin film has an absorption intensity larger than 100.2 to light having a wavelength larger than 600nm.

Description

有機發光二極體結構的形成方法 Method for forming organic light emitting diode structure

本發明係有關一種形成有機發光二極體結構的方法,特別是有關一種形成含有經近紅外光吸收官能基修飾之有機材料薄膜之有機發光二極體結構的方法。 The present invention relates to a method for forming an organic light-emitting diode structure, in particular to a method for forming an organic light-emitting diode structure containing a thin film of organic material modified by near-infrared light-absorbing functional groups.

有機發光二極體(Organic Light-Emitting Diode,OLED)具有廣視角、高對比、低耗電、應答速度快、低操作電壓、製程簡單及具有自發光性而不需背光模組等優點,因此能夠大幅降低製作成本,被認為是深具競爭力的顯示技術。 Organic Light-Emitting Diode (OLED) has the advantages of wide viewing angle, high contrast, low power consumption, fast response speed, low operating voltage, simple manufacturing process and self-luminous without backlight module. Therefore, It can greatly reduce production costs and is considered a highly competitive display technology.

有機發光二極體基本上係多層薄膜結構,包含陽極、陰極及位於陽極和陰極之間的有機材料薄膜。一種傳統形成有機發光二極體結構之方法,其係利用熱蒸鍍將有機發光二極體中之各層有機材料薄膜製作於基板之上,再進行貼合封裝以完成有機發光二極體元件。另一種傳統形成有機發光二極體結構之方法,其係遮罩轉印微影技術(Flash mask transfer lithography),首先,將一具有吸熱能力之吸收層形成於一含有圖案化反射層之予體基板上,再將單層 有機材料薄膜形成於吸收層上,接著,從予體基板之下方提供光照,部分光照被反射層阻擋而無法被吸收層吸收,而未被反射層阻擋之光照則能夠加熱吸收層,被加熱後之吸收層能夠加熱其上方之有機材料薄膜而揮發轉印至另一基板上,而在另一基板上形成圖案化之有機發光二極體結構。 The organic light-emitting diode is basically a multilayer film structure, including an anode, a cathode, and an organic material film between the anode and the cathode. A traditional method for forming an organic light-emitting diode structure is to use thermal vapor deposition to fabricate each layer of organic material film in the organic light-emitting diode on a substrate, and then perform bonding and packaging to complete the organic light-emitting diode device. Another traditional method for forming an organic light-emitting diode structure is Flash mask transfer lithography. First, an absorbing layer with heat absorption capability is formed on a prebody containing a patterned reflective layer On the substrate, then the single layer A thin film of organic material is formed on the absorbing layer. Then, light is provided from below the prebody substrate. Part of the light is blocked by the reflective layer and cannot be absorbed by the absorbing layer. The light not blocked by the reflective layer can heat the absorbing layer. The absorption layer can heat the organic material thin film above it to volatilize and transfer to another substrate, and form a patterned organic light-emitting diode structure on the other substrate.

然而,由於有機材料薄膜的吸熱性不佳,一般均會影響轉印的效果,例如,轉印後之有機材料薄膜會產生缺角或邊緣不清楚。此外,有機材料薄膜與吸收層之熱傳導不完全則會導致轉印後膜厚不均。上述問題會導致最後所形成的有機發光二極體結構良率不佳。有鑒於此,需要提供一種新的形成有機發光二極體結構的方法。 However, due to the poor heat absorption of the organic material film, it generally affects the transfer effect. For example, the organic material film after the transfer may have chipped corners or unclear edges. In addition, incomplete heat conduction between the organic material film and the absorption layer will result in uneven film thickness after transfer. The above-mentioned problems will lead to poor yield of the resulting organic light-emitting diode structure. In view of this, it is necessary to provide a new method of forming an organic light emitting diode structure.

為了解決上述先前技術的缺點,本發明提供一種形成含有經近紅外光吸收官能基修飾之有機材料薄膜之有機發光二極體結構的方法。為了增加有機材料薄膜的吸熱特性,將近紅外光吸收官能基(Near-Infrared absorbing functional group)引入至有機材料薄膜之材料的分子結構上,使得由經修飾後之材料所形成之有機材料薄膜能夠直接將光能轉變成熱能,而順利揮發形成圖案化有機發光二極體結構。 In order to solve the above-mentioned shortcomings of the prior art, the present invention provides a method of forming an organic light-emitting diode structure containing a thin film of organic material modified with near-infrared light-absorbing functional groups. In order to increase the heat absorption characteristics of the organic material film, the Near-Infrared absorbing functional group is introduced into the molecular structure of the organic material film, so that the organic material film formed by the modified material can be directly The light energy is converted into heat energy, and smoothly volatilized to form a patterned organic light-emitting diode structure.

本發明之一態樣為一種有機發光二極體結構的形成方法,包含形成一圖案化反射層於一予體基板上;形成一經近紅外光吸收官能基修飾之有機材料薄膜於圖案化反 射層上;以及以一光從予體基板形成有圖案化反射層之側的相對一側照射經近紅外光吸收官能基修飾之有機材料薄膜,以將未被圖案化反射層掩蓋之區域的經近紅外光吸收官能基修飾之有機材料薄膜轉移至一半導體基板的表面,形成一圖案化有機材料薄膜,其中經近紅外光吸收官能基修飾之有機材料薄膜對於波長大於600nm之光其吸收強度大於100.2One aspect of the present invention is a method for forming an organic light-emitting diode structure, including forming a patterned reflective layer on a pre-body substrate; forming a near-infrared light-absorbing functional group-modified organic material film on the patterned reflective layer And irradiate the organic material film modified by the near-infrared light-absorbing functional group with a light from the side opposite to the side where the patterned reflective layer is formed on the prebody substrate, so as to close the area not covered by the patterned reflective layer The organic material film modified by infrared light absorbing functional group is transferred to the surface of a semiconductor substrate to form a patterned organic material film. The organic material film modified by the near-infrared light absorbing functional group has an absorption intensity greater than 10 for light with a wavelength greater than 600 nm. 0.2 .

根據本發明一或多個實施方式,有機材料薄膜係一電洞注入層、一電洞傳遞層、一發光層或一電子傳遞層。 According to one or more embodiments of the present invention, the organic material thin film is a hole injection layer, a hole transport layer, a light emitting layer, or an electron transport layer.

根據本發明一或多個實施方式,近紅外光吸收官能基包含硝基(-NO2)、羥基(-OH)、醛基(-CHO)、羰基(C=O)、羧基(-COOH)、氯基(-Cl)、溴基(-Br)或含有上述官能基之基團。 According to one or more embodiments of the present invention, the near-infrared light-absorbing functional group includes a nitro group (-NO 2 ), a hydroxyl group (-OH), an aldehyde group (-CHO), a carbonyl group (C=O), a carboxyl group (-COOH) , Chloro (-Cl), bromo (-Br) or groups containing the above functional groups.

根據本發明一或多個實施方式,經近紅外光吸收官能基修飾之有機材料薄膜具有一分子能階,分子能階之最高佔有軌道小於或等於-4.5eV、分子能階之最低未佔有軌道小於或等於-1.8eV或分子能階之最高佔有軌道與分子能階之最低未佔有軌道之能階差介於2~4.5eV。 According to one or more embodiments of the present invention, the organic material film modified with near-infrared light-absorbing functional groups has a molecular energy level, the highest occupied orbital of the molecular energy level is less than or equal to -4.5 eV, and the lowest unoccupied orbital of the molecular energy level Less than or equal to -1.8eV or the energy level difference between the highest occupied orbital of the molecular energy level and the lowest unoccupied orbital of the molecular energy level is between 2~4.5eV.

根據本發明一或多個實施方式,經近紅外光吸收官能基修飾之有機材料薄膜具有一熱導率大於0.1W/mK。 According to one or more embodiments of the present invention, the organic material film modified with near-infrared light-absorbing functional groups has a thermal conductivity greater than 0.1 W/mK.

根據本發明一或多個實施方式,經近紅外光吸收官能基修飾之有機材料薄膜具有一熱容量大於0.8cal/g℃。 According to one or more embodiments of the present invention, the organic material film modified with near-infrared light-absorbing functional groups has a heat capacity greater than 0.8 cal/g°C.

根據本發明一或多個實施方式,光係由一光源發出,光源係選自由閃光燈、雷射燈、發光二極體、鹵素燈、冷陰極射線管燈、日光燈、白熾燈及其組合所組成之群組。 According to one or more embodiments of the present invention, the light system is emitted by a light source, and the light source is selected from the group consisting of flash lamps, laser lamps, light-emitting diodes, halogen lamps, cold cathode ray tube lamps, fluorescent lamps, incandescent lamps and combinations thereof The group.

本發明之另一態樣為一種有機發光二極體結構的形成方法,包含形成一第一圖案化反射層於一第一予體基板上;形成一經近紅外光吸收官能基修飾之第一有機材料薄膜於第一圖案化反射層上;以一光從第一予體基板形成有第一圖案化反射層之側的相對一側照射經近紅外光吸收官能基修飾之第一有機材料薄膜,以將未被第一圖案化反射層掩蓋之區域的經近紅外光吸收官能基修飾之第一有機材料薄膜轉移至一半導體基板的表面,形成一第一圖案化有機材料薄膜;形成一第二圖案化反射層於一第二予體基板上;形成一經近紅外光吸收官能基修飾之第二有機材料薄膜於第二圖案化反射層上;以光從第二予體基板形成有第二圖案化反射層之側的相對一側照射經近紅外光吸收官能基修飾之第二有機材料薄膜,以將未被第二圖案化反射層掩蓋之區域的經近紅外光吸收官能基修飾之第二有機材料薄膜轉移至半導體基板的表面,形成一第二圖案化有機材料薄膜,其中經近紅外光吸收官能基修飾之第一有機材料薄膜以及經近紅外光吸收官能基修飾之第二有機材料薄膜對於波長大於600nm之光其吸收強度大於100.2Another aspect of the present invention is a method for forming an organic light-emitting diode structure, including forming a first patterned reflective layer on a first pre-body substrate; forming a first organic light-absorbing functional group modified with near-infrared light The material film is on the first patterned reflective layer; the first organic material film modified by the near-infrared light-absorbing functional group is irradiated with a light from the side opposite to the side on which the first patterned reflective layer is formed on the first substrate substrate, The first organic material film modified by the near-infrared light-absorbing functional group in the area not covered by the first patterned reflective layer is transferred to the surface of a semiconductor substrate to form a first patterned organic material film; to form a second A patterned reflective layer is formed on a second pre-body substrate; a second organic material film modified by a near-infrared light-absorbing functional group is formed on the second patterned reflective layer; a second pattern is formed from the second pre-body substrate with light The opposite side of the reflective layer is irradiated with the second organic material film modified by the near-infrared light-absorbing functional group to remove the second organic material film modified by the near-infrared light-absorbing functional group in the area not covered by the second patterned reflective layer The organic material film is transferred to the surface of the semiconductor substrate to form a second patterned organic material film, wherein the first organic material film is modified with near-infrared light-absorbing functional groups and the second organic material film is modified with near-infrared light-absorbing functional groups For light with a wavelength greater than 600nm, the absorption intensity is greater than 10 0.2 .

根據本發明一或多個實施方式,第一有機材料薄膜以及第二有機材料薄膜係獨立為一紅色發光層、一綠色發光層或一藍色發光層。 According to one or more embodiments of the present invention, the first organic material film and the second organic material film are independently a red light-emitting layer, a green light-emitting layer or a blue light-emitting layer.

根據本發明一或多個實施方式,第一有機材料薄膜以及第二有機材料薄膜係獨立為一電洞注入層、一電洞傳遞層、一發光層或一電子傳遞層。 According to one or more embodiments of the present invention, the first organic material film and the second organic material film are independently a hole injection layer, a hole transport layer, a light emitting layer, or an electron transport layer.

綜上所述,本發明透過將近紅外光吸收官能基引入至有機材料薄膜之材料的分子結構上,使得經修飾後之材料能夠直接將光能轉變成熱能,而使得經近紅外光吸收官能基修飾之有機材料薄膜順利揮發,提升了轉印的解析度和所形成之有機發光二極體結構的良率,此外,由於不需製作吸收層,亦能夠降低製作成本。 In summary, the present invention introduces the near-infrared light-absorbing functional group into the molecular structure of the material of the organic material film, so that the modified material can directly convert light energy into heat energy, so that the near-infrared light-absorbing functional group The modified organic material film evaporates smoothly, which improves the resolution of the transfer and the yield of the formed organic light-emitting diode structure. In addition, since there is no need to make an absorption layer, the production cost can also be reduced.

以下將以實施方式對上述之說明作詳細的描述,並對本發明內容之技術方案提供更進一步的解釋。 Hereinafter, the above description will be described in detail by way of implementation, and a further explanation will be provided for the technical solution of the content of the present invention.

110:半導體基板 110: Semiconductor substrate

111:第一予體基板 111: The first prebody substrate

112:第一圖案化反射層 112: first patterned reflective layer

113:第二予體基板 113: second prebody substrate

114:第二圖案化反射層 114: second patterned reflective layer

115:予體基板 115: Prebody substrate

116:圖案化反射層 116: patterned reflective layer

120:經近紅外光吸收官能基修飾之第一載子注入層 120: The first carrier injection layer modified by near-infrared light-absorbing functional groups

122:圖案化第一載子注入層 122: Patterned first carrier injection layer

130:經近紅外光吸收官能基修飾之第一載子傳遞層 130: The first carrier transfer layer modified by near-infrared light-absorbing functional groups

132:圖案化第一載子傳遞層 132: Patterned first carrier transfer layer

142:圖案化發光層 142: patterned light-emitting layer

152:圖案化第二載子傳遞層 152: Patterned second carrier transfer layer

154:發光堆疊結構 154: Light-emitting stack structure

160:光 160: light

211:第一予體基板 211: The first prebody substrate

212:第一圖案化反射層 212: first patterned reflective layer

213:第二予體基板 213: The second prebody substrate

214:第二圖案化反射層 214: second patterned reflective layer

215:第三予體基板 215: The third prebody substrate

216:第三圖案化反射層 216: third patterned reflective layer

217:予體基板 217: Prebody substrate

218:圖案化反射層 218: Patterned reflective layer

222:圖案化第一載子注入層 222: Patterned first carrier injection layer

232:圖案化第一載子傳遞層 232: Patterned first carrier transfer layer

242:經近紅外光吸收官能基修飾之第一發光層 242: The first light-emitting layer modified with near-infrared light-absorbing functional groups

243:圖案化第一發光層 243: Patterned first light-emitting layer

244:經近紅外光吸收官能基修飾之第二發光層 244: The second light-emitting layer modified by near-infrared light-absorbing functional groups

245:圖案化第二發光層 245: Patterned second light-emitting layer

246:經近紅外光吸收官能基修飾之第三發光層 246: The third light-emitting layer modified by near-infrared light-absorbing functional groups

247:圖案化第三發光層 247: Patterned third light-emitting layer

250:經近紅外光吸收官能基修飾之第二載子傳遞層 250: The second carrier transfer layer modified with near-infrared light-absorbing functional groups

252:圖案化第二載子傳遞層 252: Patterned second carrier transfer layer

254:第一發光堆疊結構 254: The first light-emitting stack structure

256:第二發光堆疊結構 256: second light emitting stack structure

258:第三發光堆疊結構 258: The third light-emitting stack structure

為讓本發明之上述和其他目的、特徵、優點與實施方式能更明顯易懂,所附圖式之詳細說明如下:第1A~1E圖係根據本發明之一實施方式所繪示的一種形成有機發光二極體結構之方法的各階段剖面示意圖;第2圖係根據本發明之一實施方式所繪示的一種形成有機發光二極體結構之方法的一階段剖面示意圖;以及第3A~3H圖係根據本發明之一實施方式所繪示的一種形成有機發光二極體結構之方法的各階段剖面示意圖。 In order to make the above and other objectives, features, advantages and implementations of the present invention more obvious and understandable, the detailed description of the accompanying drawings is as follows: Figures 1A~1E are based on an embodiment of the present invention. A schematic cross-sectional view of each stage of the method of an organic light-emitting diode structure; Fig. 2 is a schematic cross-sectional view of a stage of a method of forming an organic light-emitting diode structure according to an embodiment of the present invention; and 3A~3H The drawings are schematic cross-sectional diagrams of various stages of a method for forming an organic light-emitting diode structure according to an embodiment of the present invention.

以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明各種實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。 Hereinafter, a plurality of embodiments of the present invention will be disclosed in drawings. For clear description, many practical details will be described in the following description. However, it should be understood that these practical details should not be used to limit the present invention. That is, in various embodiments of the present invention, these practical details are unnecessary. In addition, in order to simplify the drawings, some conventionally used structures and elements are shown in the drawings in a simple and schematic manner.

本文所使用的有關「包括」、「包含」、「具有」、「含有」、「涉及」及其他相似涵意的詞彙皆為開放式,舉例來說,意指包括但不限於此。 The terms "include", "include", "have", "include", "involved" and other similar meanings used in this article are all open-ended. For example, it means including but not limited to this.

除非內容中有其他清楚的指稱,本文所使用的單數詞包括複數的指稱對象,因此舉例來說,除非內容中有其他清楚的指稱,否則一層便包括一些具有兩個或更多個層的實施方式,透過參考「一實施方式」這樣特定的指稱,在至少其中之一的本發明的實施方式中,表示一種特定的特徵、結構或特色,因此在各處的「在一實施方式」,這樣的片語透過特別的指稱出現時,並不需要參考相同的實施方式,更進一步,在一或多實施方式中,這些特別的特徵、結構、或特色可以依合適的情況相互組合。 Unless there are other clear references in the content, the singular words used in this article include plural referents, so for example, unless there are other clear references in the content, one layer includes some implementations with two or more layers. Mode, by referring to the specific designation of "one embodiment", in at least one of the embodiments of the present invention, a specific feature, structure, or characteristic is expressed, so "one embodiment" is used everywhere. When the phrase appears through a special reference, it does not need to refer to the same embodiment. Furthermore, in one or more embodiments, these special features, structures, or characteristics can be combined with each other as appropriate.

此外,相對詞彙,如「下」或「底部」與「上」或「頂部」,用來描述文中在附圖中所示的一元件與另一元件之關係。相對詞彙是用來描述裝置在附圖中所描述之外的不同方位是可以被理解的。例如,如果一附圖中的裝置被翻轉,元件將會被描述原為位於其它元件之「下」側將被定向為位於其他元件之「上」側。例示性的詞彙「下」,根據附 圖的特定方位可以包含「下」和「上」兩種方位。 In addition, relative terms, such as "below" or "bottom" and "top" or "top", are used to describe the relationship between one element and another element shown in the drawings. It is understandable that the relative vocabulary is used to describe different orientations of the device other than those described in the drawings. For example, if the device in one figure is turned over, the components will be described as being on the "lower" side of other components and will be oriented on the "upper" side of the other components. The illustrative vocabulary "下", according to the attached The specific orientation of the map can include two orientations, "down" and "up".

本發明提供一種含有經近紅外光吸收官能基修飾之有機材料薄膜之有機發光二極體結構的形成方法。為了增加有機材料薄膜的吸熱特性,將近紅外光吸收官能基引入至有機材料薄膜之材料的分子結構上,使得經近紅外光吸收官能基修飾之有機材料薄膜能夠直接將光能轉變成熱能,具備良好的吸熱能力。 The invention provides a method for forming an organic light-emitting diode structure containing a thin film of organic material modified by near-infrared light-absorbing functional groups. In order to increase the heat absorption properties of the organic material film, the near-infrared light-absorbing functional group is introduced into the molecular structure of the material of the organic material film, so that the organic material film modified by the near-infrared light-absorbing functional group can directly convert light energy into heat energy. Good heat absorption capacity.

在一實施方式中,近紅外光吸收官能基包含硝基(-NO2)、羥基(-OH)、醛基(-CHO)、羰基(C=O)、羧基(-COOH)、氯基(-Cl)、溴基(-Br)或含有上述官能基之基團。 In one embodiment, the near-infrared light-absorbing functional group includes a nitro group (-NO 2 ), a hydroxyl group (-OH), an aldehyde group (-CHO), a carbonyl group (C=O), a carboxyl group (-COOH), a chlorine group ( -Cl), bromo (-Br) or a group containing the above functional groups.

具體而言,有機材料薄膜係電洞注入層、電洞傳遞層、發光層或電子傳遞層。電洞注入層、電洞傳遞層、發光層以及電子傳遞層之材料的分子結構內皆含有高度π共軛系統(conjugated system),例如:多芳香環,因此可以利用一般修飾芳香環之合成方法將上述之近紅外光吸收官能基修飾至電洞注入層、電洞傳遞層、發光層以及電子傳遞層之材料的分子結構上,而形成經近紅外光吸收官能基修飾之電洞注入層、經近紅外光吸收官能基修飾之電洞傳遞層、經近紅外光吸收官能基修飾之發光層以及經近紅外光吸收官能基修飾之電子傳遞層。 Specifically, the organic material thin film is a hole injection layer, a hole transport layer, a light emitting layer, or an electron transport layer. The hole injection layer, hole transport layer, light-emitting layer and electron transport layer all contain highly π-conjugated systems in their molecular structures, such as polyaromatic rings, so general synthetic methods for modifying aromatic rings can be used The above-mentioned near-infrared light-absorbing functional group is modified to the molecular structure of the material of the hole injection layer, hole transport layer, light-emitting layer and electron transport layer to form a hole injection layer modified by the near-infrared light-absorbing functional group, A hole transport layer modified with near-infrared light-absorbing functional groups, a light-emitting layer modified with near-infrared light-absorbing functional groups, and an electron transport layer modified with near-infrared light-absorbing functional groups.

根據以下實施方式修飾有機材料薄膜之材料中之芳香環結構,以將近紅外光吸收官能基引入有機材料薄膜之材料的分子結構中。在一實施方式中,將有機材料薄膜之 材料與硝酸混合,再以濃硫酸作為催化劑進行硝化反應,將硝基修飾至芳香環上。在一實施方式中,將有機材料薄膜之材料與一碘甲烷反應,再以氯化鋁作為催化劑,將甲基修飾到芳香環上,進一步將甲基氧化為醛基,則得到經醛基修飾之芳香環。在一實施方式中,進一步將經醛基修飾之芳香環的醛基氧化為羧基,則得到經羧基修飾之芳香環。在一實施方式中,對經醛基修飾之芳香環進行氫化,則得到經羥基修飾之芳香環。在一實施方式中,將有機材料薄膜之材料與鹵素分子進行鹵化反應,並加入催化劑,例如:氯化鐵或溴化鐵,則得到經氯基或溴基修飾之芳香環。因此,含有芳香環結構之電洞注入層、電洞傳遞層、發光層和電子傳遞層皆可利用上述合成方法進行修飾,經近紅外光吸收官能基修飾後之各層皆具有高吸收係數以及良好的熱穩定性,且對於波長大於600nm之光其吸收強度大於100.2。特別注意的是,經近紅外光吸收官能基修飾之有機材料薄膜依然能保有原本之特性,例如:電洞注入能力、電洞傳遞能力、發光特性和電子傳遞能力。 According to the following embodiments, the aromatic ring structure in the material of the organic material film is modified to introduce near-infrared light absorbing functional groups into the molecular structure of the material of the organic material film. In one embodiment, the material of the organic material film is mixed with nitric acid, and then concentrated sulfuric acid is used as a catalyst to perform a nitration reaction to modify the nitro group to the aromatic ring. In one embodiment, the material of the organic material film is reacted with methyl iodide, and then aluminum chloride is used as a catalyst to modify the methyl group to the aromatic ring, and the methyl group is further oxidized to an aldehyde group. The aromatic ring. In one embodiment, the aldehyde group of the aromatic ring modified with the aldehyde group is further oxidized to a carboxyl group to obtain the aromatic ring modified with the carboxyl group. In one embodiment, hydrogenation of an aromatic ring modified with an aldehyde group produces an aromatic ring modified with a hydroxyl group. In one embodiment, the material of the organic material film and the halogen molecule undergo a halogenation reaction, and a catalyst, such as iron chloride or iron bromide, is added to obtain an aromatic ring modified with a chlorine group or a bromine group. Therefore, the hole injection layer, hole transport layer, light-emitting layer and electron transport layer containing aromatic ring structure can all be modified by the above-mentioned synthesis method. Each layer modified by the near-infrared light-absorbing functional group has high absorption coefficient and good Thermal stability, and the absorption intensity of light with a wavelength greater than 600nm is greater than 10 0.2 . Special attention is paid to the fact that the organic material film modified with near-infrared light-absorbing functional groups can still retain its original characteristics, such as hole injection ability, hole transfer ability, luminescence characteristics and electron transfer ability.

舉例來說,電洞注入層之材料包含聚(3,4-並乙二氧基噻吩)-聚(苯乙烯磺酸)(poly(3,4-ethylenedioxythiophene)polystyrene sulfonate,PEDOT:PSS)。 For example, the material of the hole injection layer includes poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS).

舉例來說,電洞傳遞層之材料包含N,N'-双(萘-1-基)-N,N'-双(苯基)-聯苯胺(N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzid ine,NPB)、2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮雜苯並菲(2,3,6,7,10,11-Hexacyano-1,4,5,8,9,12-hexaazatriph enylene,HAT-CN)、4,4',4"-三(咔唑-9-基)三苯胺(4,4',4"-Tris(carbazol-9-yl)triphenylamine,TCTA)、酞菁銅(Copper(II)phthalocyanine,CuPC)。 For example, the material of the hole transport layer includes N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (N,N'-Bis(naphthalen-1- yl)-N,N'-bis(phenyl)-benzid ine, NPB), 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (2,3,6,7,10, 11-Hexacyano-1,4,5,8,9,12-hexaazatriph enylene, HAT-CN), 4,4',4"-tris(carbazol-9-yl) triphenylamine (4,4',4 "-Tris (carbazol-9-yl) triphenylamine, TCTA), copper phthalocyanine (Copper (II) phthalocyanine, CuPC).

舉例來說,發光層之材料包含螢光材料、磷光材料或其組合,每個螢光材料以及磷光材料能發出紅光(例如:620~660nm)、綠光(例如:520~560nm)、藍光(例如:430~480nm)或該等色光之混合。具體來說,發光層之材料包含聚芴(polyfluorene,PF)、三(8-羥基喹啉)化鋁(Tris(8-hydroxy quinoline)aluminum(Ⅲ),Alq3)或八乙基卟吩鉑(platinum-octaethyl-porphyrin,PtOEP)。 For example, the material of the light-emitting layer includes fluorescent materials, phosphorescent materials, or combinations thereof. Each fluorescent material and phosphorescent material can emit red light (for example: 620~660nm), green light (for example: 520~560nm), and blue light. (For example: 430~480nm) or a mixture of these shades. Specifically, the material of the light-emitting layer includes polyfluorene (PF), tris(8-hydroxy quinoline) aluminum (Ⅲ), Alq 3 ), or octaethylporphine platinum (platinum-octaethyl-porphyrin, PtOEP).

舉例來說,電子傳遞層之材料包含三(8-羥基喹啉)化鋁、2,9-二甲基-4,7-聯苯-1,10-鄰二氮雜菲(bathocuproine,BCP)、4,7-二苯基-1,10-鄰二氮雜菲(4,7-diphenyl-1,10-phenanthroline,BPhen)、2-甲基-9,10-二(2-萘)蒽(2-methyl-9,10-di[2-naphthyl]anthracene,MADN)、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)(1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene,TPBI)、1,3,5-三[(3-吡啶基)-3-苯基]苯(1,3,5-Tri(m-pyridin-3-ylphenyl)benzene,TmPyPhB)。 For example, the material of the electron transport layer includes tris(8-quinolinolato) aluminum, 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline (bathocuproine, BCP) , 4,7-diphenyl-1,10-phenanthroline (4,7-diphenyl-1,10-phenanthroline, BPhen), 2-methyl-9,10-bis(2-naphthalene)anthracene (2-methyl-9,10-di[2-naphthyl]anthracene, MADN), 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)(1,3,5- Tris(1-phenyl-1H-benzimidazol-2-yl)benzene, TPBI), 1,3,5-tris[(3-pyridyl)-3-phenyl]benzene (1,3,5-Tri(m -pyridin-3-ylphenyl)benzene, TmPyPhB).

在一實施方式中,經近紅外光吸收官能基修飾之電洞注入層、電洞傳遞層、發光層和電子傳遞層之材料各具有一分子能階,分子能階之最高佔有軌道小於或等於-4.5eV、分子能階之最低未佔有軌道小於或等於-1.8eV或分子能階之最高佔有軌道與分子能階之最低未佔有軌道之能階差介於2~4.5eV。 In one embodiment, the material of the hole injection layer, the hole transport layer, the light emitting layer and the electron transport layer modified by the near-infrared light-absorbing functional group each has a molecular energy level, and the highest occupied orbital of the molecular energy level is less than or equal to -4.5eV, the lowest unoccupied orbital of molecular energy level is less than or equal to -1.8eV or the energy level difference between the highest occupied orbital of molecular energy level and the lowest unoccupied orbital of molecular energy level is between 2~4.5eV.

在一實施方式中,經近紅外光吸收官能基修飾之電洞注入層、電洞傳遞層、發光層和電子傳遞層之材料各具有一熱導率大於0.1W/mK。在一實施方式中,經近紅外光吸收官能基修飾之電洞注入層、電洞傳遞層、發光層和電子傳遞層之材料各具有一熱容量大於0.8cal/g℃。 In one embodiment, the material of the hole injection layer, the hole transport layer, the light emitting layer and the electron transport layer modified by the near-infrared light absorbing functional group each has a thermal conductivity greater than 0.1 W/mK. In one embodiment, the material of the hole injection layer, the hole transport layer, the light emitting layer and the electron transport layer modified by the near-infrared light absorbing functional group each has a heat capacity greater than 0.8 cal/g°C.

第1A~1E圖係根據本發明之一實施方式所繪示的一種形成有機發光二極體結構之方法的各階段剖面示意圖。如第1A圖所示,第1A圖繪示一半導體基板110、一第一予體基板111、一第一圖案化反射層112以及一經近紅外光吸收官能基修飾之第一載子注入層120。形成方法包含以下步驟,形成第一圖案化反射層112於第一予體基板111上,形成經近紅外光吸收官能基修飾之第一載子注入層120於第一圖案化反射層112及第一予體基板111上,再以一光160從第一予體基板111形成有第一圖案化反射層112之側的相對一側照射經近紅外光吸收官能基修飾之第一載子注入層120,以將未被第一圖案化反射層112掩蓋之區域的經近紅外光吸收官能基修飾之第一載子注入層120轉移至半導體基板110的表面上,形成如第1B圖所示之圖案化第一載 子注入層122。由於經過近紅外光吸收官能基的修飾,因此經近紅外光吸收官能基修飾之第一載子注入層120能夠直接將光能轉變成熱能而使未被第一圖案化反射層112掩蓋之區域揮發(sublimation)而能夠轉印到半導體基板110的表面上,達到在半導體基板110上形成圖案化第一載子注入層122的目的。 FIGS. 1A to 1E are schematic cross-sectional diagrams of various stages of a method for forming an organic light emitting diode structure according to an embodiment of the present invention. As shown in Figure 1A, Figure 1A illustrates a semiconductor substrate 110, a first pre-substrate 111, a first patterned reflective layer 112, and a first carrier injection layer 120 modified with a near-infrared light-absorbing functional group . The forming method includes the following steps: forming a first patterned reflective layer 112 on the first pre-substrate 111, forming a first carrier injection layer 120 modified by a near-infrared light absorbing functional group on the first patterned reflective layer 112 and the second On a pre-substrate 111, a light 160 is used to irradiate the first carrier injection layer modified by the near-infrared light-absorbing functional group from the side opposite to the side where the first patterned reflective layer 112 is formed on the first pre-substrate 111 120, to transfer the first carrier injection layer 120 modified by the near-infrared light absorbing functional group in the area not covered by the first patterned reflective layer 112 to the surface of the semiconductor substrate 110 to form the one shown in FIG. 1B Patterned first Sub-injection layer 122. Due to the modification of the near-infrared light-absorbing functional group, the first carrier injection layer 120 modified by the near-infrared light-absorbing functional group can directly convert light energy into heat energy so that the area not covered by the first patterned reflective layer 112 The sublimation can be transferred to the surface of the semiconductor substrate 110 to achieve the purpose of forming the patterned first carrier injection layer 122 on the semiconductor substrate 110.

在一實施方式中,半導體基板110包含至少一薄膜電晶體(thin-film transistor,TFT)(未繪示)以提供驅動電流至有機發光二極體結構,例如:非晶矽(α-Si)薄膜電晶體、低溫多晶矽(low temperature ploysilicon,LTPS)薄膜電晶體或金屬氧化物薄膜電晶體。舉例來說,先在一玻璃基板上製作薄膜電晶體,再覆蓋一保護層於薄膜電晶體上形成半導體基板。在一實施方式中,形成保護層之方法包含化學氣相沈積法(chemical vapor deposition)、物理氣相沈積法(physical vapor deposition)、旋轉塗佈(spin coating)或印刷式塗佈(inkject printing)。在一實施方式中,第一予體基板111包含一玻璃基板或其他具有透光性質之基板。在一實施方式中,第一圖案化反射層112包含遮罩或光罩。 In one embodiment, the semiconductor substrate 110 includes at least one thin-film transistor (TFT) (not shown) to provide a driving current to the organic light emitting diode structure, such as amorphous silicon (α-Si) Thin film transistors, low temperature polysilicon (LTPS) thin film transistors or metal oxide thin film transistors. For example, a thin film transistor is first fabricated on a glass substrate, and then a protective layer is covered on the thin film transistor to form a semiconductor substrate. In one embodiment, the method of forming the protective layer includes chemical vapor deposition, physical vapor deposition, spin coating, or inkject printing . In one embodiment, the first pre-body substrate 111 includes a glass substrate or other substrates with light-transmitting properties. In one embodiment, the first patterned reflective layer 112 includes a mask or a photomask.

在一實施方式中,形成經近紅外光吸收官能基修飾之第一載子注入層120於第一圖案化反射層112及予體基板111上之方法係真空鍍膜(vacuum deposition)、真空熱蒸鍍(vacuum thermal evaporation)、旋轉塗佈、噴灑塗佈(spray coating)、印刷式塗佈、拓印或濺鍍 (sputtering deposition)。 In one embodiment, the method of forming the first carrier injection layer 120 modified by the near-infrared light-absorbing functional group on the first patterned reflective layer 112 and the pre-body substrate 111 is vacuum deposition, vacuum thermal evaporation Plating (vacuum thermal evaporation), spin coating, spray coating (spray coating), printing coating, rubbing or sputtering (sputtering deposition).

在一實施方式中,光160係由一光源發出,光源係選自由閃光燈(Flash lamp)、雷射燈、發光二極體、鹵素燈、冷陰極射線管燈、日光燈、白熾燈及其組合所組成之群組。 In one embodiment, the light 160 is emitted by a light source, and the light source is selected from a flash lamp, a laser lamp, a light emitting diode, a halogen lamp, a cold cathode ray tube lamp, a fluorescent lamp, an incandescent lamp, and combinations thereof. Formed group.

如第1C圖所示,第1C圖繪示半導體基板110、一第二予體基板113、一第二圖案化反射層114、圖案化第一載子注入層122以及一經近紅外光吸收官能基修飾之第一載子傳遞層130。請參閱第1A圖所述之實施方式,形成經近紅外光吸收官能基修飾之第一載子傳遞層130於第二予體基板113以及第二圖案化反射層114上,以光160從第二予體基板113形成有第二圖案化反射層114之側的相對一側照射經近紅外光吸收官能基修飾之第一載子傳遞層130,以將未被第二圖案化反射層114掩蓋之區域的經近紅外光吸收官能基修飾之第一載子傳遞層130轉移至半導體基板110的表面上,形成如第1D圖所示之圖案化第一載子傳遞層132。由於經過近紅外光吸收官能基的修飾,因此經近紅外光吸收官能基修飾之第一載子傳遞層130能夠直接將光能轉變成熱能而使未被第二圖案化反射層114掩蓋之區域揮發而能夠轉印到半導體基板110的表面上。值得注意的是,第一圖案化反射層112之圖案與第二圖案化反射層114相同,因此在轉印之後,圖案化第一載子傳遞層132會對齊地堆疊在圖案化第一載子注入層122的表面。 As shown in Figure 1C, Figure 1C illustrates the semiconductor substrate 110, a second pre-substrate 113, a second patterned reflective layer 114, a patterned first carrier injection layer 122, and a near-infrared light-absorbing functional group Modified first carrier transfer layer 130. Please refer to the embodiment described in FIG. 1A, a first carrier transfer layer 130 modified with a near-infrared light-absorbing functional group is formed on the second pre-substrate 113 and the second patterned reflective layer 114, and light 160 passes from the The opposite side of the second substrate 113 on which the second patterned reflective layer 114 is formed is irradiated with the first carrier transfer layer 130 modified by the near-infrared light-absorbing functional group so as not to be covered by the second patterned reflective layer 114 The first carrier transfer layer 130 modified by the near-infrared light-absorbing functional group is transferred to the surface of the semiconductor substrate 110 to form the patterned first carrier transfer layer 132 as shown in FIG. 1D. Due to the modification of the near-infrared light-absorbing functional group, the first carrier transfer layer 130 modified with the near-infrared light-absorbing functional group can directly convert light energy into heat energy so that the area not covered by the second patterned reflective layer 114 It volatilizes and can be transferred to the surface of the semiconductor substrate 110. It is worth noting that the pattern of the first patterned reflective layer 112 is the same as that of the second patterned reflective layer 114, so after the transfer, the patterned first carrier transfer layer 132 will be aligned and stacked on the patterned first carrier The surface of the injection layer 122.

如第1E圖所示,半導體基板110之下有一發光 堆疊結構154,發光堆疊結構154包含圖案化第一載子注入層122、圖案化第一載子傳遞層132、一圖案化發光層142以及一圖案化第二載子傳遞層152。其中,圖案化發光層142以及圖案化第二載子傳遞層152分別係由經近紅外光吸收官能基修飾之發光層和經近紅外光吸收官能基修飾之第二載子傳遞層揮發轉印所形成,因此,形成圖案化發光層142以及圖案化第二載子傳遞層152之方法請參照第lA~1D圖所示之實施方式。 As shown in Fig. 1E, there is a light emitting under the semiconductor substrate 110 Stack structure 154. The light emitting stack structure 154 includes a patterned first carrier injection layer 122, a patterned first carrier transfer layer 132, a patterned light-emitting layer 142, and a patterned second carrier transfer layer 152. Among them, the patterned light-emitting layer 142 and the patterned second carrier transfer layer 152 are respectively volatilized and transferred from the light-emitting layer modified with near-infrared light-absorbing functional groups and the second carrier transfer layer modified with near-infrared light-absorbing functional groups. Therefore, for the method of forming the patterned light-emitting layer 142 and the patterned second carrier transfer layer 152, please refer to the embodiment shown in FIGS. 1A to 1D.

此外,有機發光二極體結構還包含一第一電極(未示出)和一第二電極(未示出)分別與一外部電場電性連接,第一電極位於圖案化第一載子注入層122之上,且第一電極可被設置於半導體基板110之中或半導體基板110之下,並與薄膜電晶體之源極或汲極直接電性連接。第二電極位於圖案化第二載子傳遞層152之下,具體來說,在形成發光堆疊結構154之後,再形成第二電極於發光堆疊結構154之下,形成有機發光二極體結構。 In addition, the organic light emitting diode structure further includes a first electrode (not shown) and a second electrode (not shown) respectively electrically connected to an external electric field, and the first electrode is located in the patterned first carrier injection layer. Above 122, and the first electrode can be disposed in the semiconductor substrate 110 or under the semiconductor substrate 110, and is directly electrically connected to the source or drain of the thin film transistor. The second electrode is located under the patterned second carrier transfer layer 152. Specifically, after the light emitting stack structure 154 is formed, a second electrode is formed under the light emitting stack structure 154 to form an organic light emitting diode structure.

在一實施方式中,第一電極為陽極,第一載子注入層為電洞注入層(hole injection layer),第一載子傳遞層為電洞傳遞層(hole transport layer),第二載子傳遞層為電子傳遞層(electron transport layer),第二電極為陰極,且陽極直接連接於薄膜電晶體的源極,此有機發光二極體結構為向前堆疊式(forward-stacked)。在另一實施方式中,有機發光二極體結構可省略第一載子注入層。在另一實施方式中,第一電極為陰極,第一載子傳遞層為電子傳遞 層,第二載子傳遞層為電洞傳遞層,第二電極為陽極,且陰極直接連接於薄膜電晶體的汲極,此有機發光二極體結構為倒置型。特別注意的是,可根據材料特性的不同,調整有機發光二極體結構中所含之有機材料薄膜數量。 In one embodiment, the first electrode is an anode, the first carrier injection layer is a hole injection layer, the first carrier transport layer is a hole transport layer, and the second carrier The transport layer is an electron transport layer, the second electrode is a cathode, and the anode is directly connected to the source of the thin film transistor. The organic light emitting diode structure is forward-stacked. In another embodiment, the organic light emitting diode structure can omit the first carrier injection layer. In another embodiment, the first electrode is a cathode, and the first carrier transport layer is electron transport The second carrier transport layer is a hole transport layer, the second electrode is an anode, and the cathode is directly connected to the drain of the thin film transistor. The organic light-emitting diode structure is inverted. It is particularly important to note that the number of organic material films contained in the organic light-emitting diode structure can be adjusted according to different material characteristics.

在一實施方式中,陰極之材料包含鎂銀(Mg:Ag)、鋁、銀、金、鈣、鎳、鉑、鋰、氧化鋅(Zinc Oxide)、氧化鋁鋅(Aluminum-doped Zinc Oxide,AZO(Al:ZnO))以及其組合。在一實施方式中,陽極之材料包含銦鋅氧化物(Indium Zinc Oxide,IZO)。 In one embodiment, the material of the cathode includes magnesium silver (Mg: Ag), aluminum, silver, gold, calcium, nickel, platinum, lithium, zinc oxide (Zinc Oxide), aluminum-doped Zinc Oxide (AZO) (Al: ZnO)) and combinations thereof. In one embodiment, the material of the anode includes Indium Zinc Oxide (IZO).

第2圖係根據本發明之一實施方式所繪示的一種形成有機發光二極體結構之方法的一階段剖面示意圖。第2圖中所包含之元件與第1A圖相似,不同的是,在第2圖中,經近紅外光吸收官能基修飾之第一載子注入層120位於一予體基板115以及一圖案化反射層116之間,當光160照射經近紅外光吸收官能基修飾之第一載子注入層120時,未被圖案化反射層116掩蓋之區域能揮發而轉印到半導體基板110之下,而被圖案化反射層116掩蓋之區域則被圖案化反射層116阻擋而無法轉印到半導體基板110之下。第2圖所示之配置亦可用於本發明之所有實施方式中。 FIG. 2 is a schematic cross-sectional view of a stage of a method for forming an organic light-emitting diode structure according to an embodiment of the present invention. The components included in Figure 2 are similar to those in Figure 1A. The difference is that in Figure 2, the first carrier injection layer 120 modified with near-infrared light-absorbing functional groups is located on a preform substrate 115 and a patterned substrate. Between the reflective layers 116, when the light 160 irradiates the first carrier injection layer 120 modified by the near-infrared light-absorbing functional group, the area not covered by the patterned reflective layer 116 can volatilize and be transferred under the semiconductor substrate 110. The area covered by the patterned reflective layer 116 is blocked by the patterned reflective layer 116 and cannot be transferred under the semiconductor substrate 110. The configuration shown in Figure 2 can also be used in all embodiments of the present invention.

第3A~3H圖係根據本發明之一實施方式所繪示的一種形成有機發光二極體結構之方法的各階段剖面示意圖。請參閱第1A~1E圖以及第2圖所示之實施方式,於第3A圖中之半導體基板110下形成一圖案化第一載子注入層222以及一圖案化第一載子傳遞層232之堆疊,此外,形 成一第一圖案化反射層212於一第一予體基板211上,再形成一經近紅外光吸收官能基修飾之第一發光層242於第一圖案化反射層212及第一予體基板211上之後,以光160從第一予體基板211形成有第一圖案化反射層212之側的相對一側照射經近紅外光吸收官能基修飾之第一發光層242,以將未被第一圖案化反射層112掩蓋之區域的經近紅外光吸收官能基修飾之第一發光層242轉移至部份的圖案化第一載子傳遞層232的表面且整齊堆疊,形成如第3B圖所示之圖案化第一發光層243。 3A to 3H are schematic cross-sectional diagrams at various stages of a method for forming an organic light-emitting diode structure according to an embodiment of the present invention. Referring to the embodiment shown in FIGS. 1A to 1E and FIG. 2, a patterned first carrier injection layer 222 and a patterned first carrier transfer layer 232 are formed under the semiconductor substrate 110 in FIG. 3A Stacked, in addition, shaped A first patterned reflective layer 212 is formed on a first pre-substrate 211, and a first light-emitting layer 242 modified with a near-infrared light-absorbing functional group is formed on the first patterned reflective layer 212 and the first pre-substrate 211 After that, light 160 is used to irradiate the first light-emitting layer 242 modified by the near-infrared light-absorbing functional group from the side opposite to the side on which the first patterned reflective layer 212 is formed on the first prebody substrate 211, so that the The first light-emitting layer 242 modified by the near-infrared light-absorbing functional group in the area covered by the reflective layer 112 is transferred to a part of the surface of the patterned first carrier transfer layer 232 and stacked neatly to form the one shown in FIG. 3B The first light emitting layer 243 is patterned.

請參閱第3A~3B圖所示之實施方式,利用第3C圖所示之一第二予體基板213、一第二圖案化反射層214以及一經近紅外光吸收官能基修飾之第二發光層244,形成如第3D圖所示之一圖案化第二發光層245於部份的圖案化第一載子傳遞層232的表面且整齊堆疊,在此不再贅述。 Please refer to the embodiment shown in FIGS. 3A to 3B, using a second preform substrate 213, a second patterned reflective layer 214, and a second light-emitting layer modified with a near-infrared light-absorbing functional group as shown in FIG. 3C 244. Form a patterned second light-emitting layer 245 on part of the surface of the patterned first carrier transfer layer 232 as shown in the 3D diagram and stack neatly, which will not be repeated here.

請參閱第3A~3B圖所示之實施方式,利用第3E圖所示之一第三予體基板215、一第三圖案化反射層216以及一經近紅外光吸收官能基修飾之第三發光層246,形成如第3F圖所示之一圖案化第三發光層247於部份的圖案化第一載子傳遞層232的表面且整齊堆疊,在此不再贅述。 Please refer to the embodiment shown in Figures 3A to 3B, using a third preform substrate 215 shown in Figure 3E, a third patterned reflective layer 216, and a third light-emitting layer modified with a near-infrared light-absorbing functional group 246. A patterned third light-emitting layer 247 is formed on a part of the surface of the patterned first carrier transfer layer 232 as shown in FIG. 3F and stacked neatly, which will not be repeated here.

請參閱第3A~3B圖所示之實施方式,利用第3G圖所示之一予體基板217、一圖案化反射層218以及一經近紅外光吸收官能基修飾之第二載子傳遞層250,形成如第3H圖所示之一圖案化第二載子傳遞層252於圖案化第一發光層243、圖案化第二發光層245以及圖案化第三發光層247 的表面且整齊堆疊,因此於半導體基板110下形成第一發光堆疊結構254、第二發光堆疊結構256以及第三發光堆疊結構258。此外,再形成第二電極(未示出)於第一發光堆疊結構254、第二發光堆疊結構256以及第三發光堆疊結構258之下,形成多個有機發光二極體結構。 Please refer to the embodiment shown in FIGS. 3A to 3B, using a prebody substrate 217, a patterned reflective layer 218, and a second carrier transfer layer 250 modified with a near-infrared light-absorbing functional group as shown in FIG. 3G. A patterned second carrier transfer layer 252 is formed on the patterned first light-emitting layer 243, the patterned second light-emitting layer 245, and the patterned third light-emitting layer 247 as shown in FIG. 3H The surface of the semiconductor substrate 110 is neatly stacked, so the first light emitting stack structure 254, the second light emitting stack structure 256, and the third light emitting stack structure 258 are formed under the semiconductor substrate 110. In addition, a second electrode (not shown) is further formed under the first light emitting stack structure 254, the second light emitting stack structure 256, and the third light emitting stack structure 258 to form a plurality of organic light emitting diode structures.

在一實施方式中,第一發光層、第二發光層以及第三發光層係獨立為紅色發光層、綠色發光層或藍色發光層。在一實施方式中,第一發光層為紅色發光層、第二發光層為綠色發光層以及第三發光層為藍色發光層,由此可知,透過第3A~3H圖的形成步驟,可以直接形成三種具有不同放光顏色的有機發光二極體結構,而能夠直接作為多彩或全彩顯示器之畫素,不需如液晶顯示器需額外加入彩色濾光片,而達到簡化製程和使得顯示器更為輕薄化的好處,此外,亦不需在面板後加上背光源,而大幅降低耗電量及成本,深具商業潛力。 In one embodiment, the first light-emitting layer, the second light-emitting layer, and the third light-emitting layer are independently a red light-emitting layer, a green light-emitting layer, or a blue light-emitting layer. In one embodiment, the first light-emitting layer is a red light-emitting layer, the second light-emitting layer is a green light-emitting layer, and the third light-emitting layer is a blue light-emitting layer. It can be seen that through the formation steps of 3A~3H, you can directly Three organic light-emitting diode structures with different light emission colors are formed, which can be directly used as pixels for colorful or full-color displays. There is no need to add additional color filters like liquid crystal displays, which can simplify the manufacturing process and make the display more The benefits of being thin and light, in addition, there is no need to add a backlight behind the panel, which greatly reduces power consumption and cost, and has great commercial potential.

雖然本發明內容已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明內容之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視申請專利範圍所界定者為準。 Although the content of the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone familiar with the art can make various changes and modifications without departing from the spirit and scope of the content of the present invention. Therefore, the present invention The scope of protection shall be determined by the scope of the patent application.

110:半導體基板 110: Semiconductor substrate

217:予體基板 217: Prebody substrate

218:圖案化反射層 218: Patterned reflective layer

222:圖案化第一載子注入層 222: Patterned first carrier injection layer

232:圖案化第一載子傳遞層 232: Patterned first carrier transfer layer

243:圖案化第一發光層 243: Patterned first light-emitting layer

245:圖案化第二發光層 245: Patterned second light-emitting layer

247:圖案化第三發光層 247: Patterned third light-emitting layer

250:經近紅外光吸收官能基修飾之第二載子傳遞層 250: The second carrier transfer layer modified with near-infrared light-absorbing functional groups

252:圖案化第二載子傳遞層 252: Patterned second carrier transfer layer

254:第一發光堆疊結構 254: The first light-emitting stack structure

256:第二發光堆疊結構 256: second light emitting stack structure

258:第三發光堆疊結構 258: The third light-emitting stack structure

Claims (10)

一種有機發光二極體結構的形成方法,包含:形成一圖案化反射層於一予體基板上;形成一經近紅外光吸收官能基修飾之有機材料薄膜於該圖案化反射層上;以及以一光從該予體基板形成有該圖案化反射層之側的相對一側照射該經近紅外光吸收官能基修飾之有機材料薄膜,以將未被該圖案化反射層掩蓋之區域的該經近紅外光吸收官能基修飾之有機材料薄膜轉移至一半導體基板的表面,形成一圖案化有機材料薄膜,其中該經近紅外光吸收官能基修飾之有機材料薄膜對於波長大於600nm之該光其吸收強度大於100.2A method for forming an organic light-emitting diode structure includes: forming a patterned reflective layer on a pre-body substrate; forming a near-infrared light-absorbing functional group-modified organic material film on the patterned reflective layer; and Light irradiates the organic material film modified by the near-infrared light-absorbing functional group from the side opposite to the side on which the patterned reflective layer of the prebody substrate is formed, so that the near-infrared light-absorbing functional group is not covered by the patterned reflective layer. The infrared light-absorbing functional group modified organic material film is transferred to the surface of a semiconductor substrate to form a patterned organic material film, wherein the near-infrared light-absorbing functional group modified organic material film has an absorption intensity of light with a wavelength greater than 600nm Greater than 10 0.2 . 如請求項1所述之有機發光二極體結構的形成方法,其中該有機材料薄膜係一電洞注入層、一電洞傳遞層、一發光層或一電子傳遞層。 The method for forming an organic light emitting diode structure according to claim 1, wherein the organic material thin film is a hole injection layer, a hole transport layer, a light emitting layer or an electron transport layer. 如請求項1所述之有機發光二極體結構的形成方法,其中該近紅外光吸收官能基包含硝基(-NO2)、羥基(-OH)、醛基(-CHO)、羰基(C=O)、羧基(-COOH)、氯基(-Cl)、溴基(-Br)或含有上述官能基之基團。 The method for forming an organic light-emitting diode structure according to claim 1, wherein the near-infrared light-absorbing functional group includes a nitro group (-NO 2 ), a hydroxyl group (-OH), an aldehyde group (-CHO), a carbonyl group (C =O), carboxyl (-COOH), chloro (-Cl), bromo (-Br) or groups containing the above functional groups. 如請求項1所述之有機發光二極體結構的形成方法,其中該經近紅外光吸收官能基修飾之有機材料 薄膜具有一分子能階,該分子能階之最高佔有軌道小於或等於-4.5eV、該分子能階之最低未佔有軌道小於或等於-1.8eV或該分子能階之最高佔有軌道與該分子能階之最低未佔有軌道之能階差介於2~4.5eV。 The method for forming an organic light-emitting diode structure according to claim 1, wherein the organic material modified with a near-infrared light-absorbing functional group The film has a molecular energy level, the highest occupied orbital of the molecular energy level is less than or equal to -4.5eV, the lowest unoccupied orbital of the molecular energy level is less than or equal to -1.8eV or the highest occupied orbital of the molecular energy level and the molecular energy The energy level difference of the lowest unoccupied orbit is between 2~4.5eV. 如請求項1所述之有機發光二極體結構的形成方法,其中該經近紅外光吸收官能基修飾之有機材料薄膜具有一熱導率大於0.1W/mK。 The method for forming an organic light-emitting diode structure according to claim 1, wherein the organic material film modified with a near-infrared light-absorbing functional group has a thermal conductivity greater than 0.1 W/mK. 如請求項1所述之有機發光二極體結構的形成方法,其中該經近紅外光吸收官能基修飾之有機材料薄膜具有一熱容量大於0.8cal/g℃。 The method for forming an organic light-emitting diode structure according to claim 1, wherein the organic material film modified with a near-infrared light-absorbing functional group has a heat capacity greater than 0.8 cal/g°C. 如請求項1所述之有機發光二極體結構的形成方法,其中該光係由一光源發出,該光源係選自由閃光燈、雷射燈、發光二極體、鹵素燈、冷陰極射線管燈、日光燈、白熾燈及其組合所組成之群組。 The method for forming an organic light-emitting diode structure according to claim 1, wherein the light is emitted by a light source, and the light source is selected from a flash lamp, a laser lamp, a light-emitting diode, a halogen lamp, and a cold cathode ray tube lamp , Fluorescent lamps, incandescent lamps and their combinations. 一種有機發光二極體結構的形成方法,包含:形成一第一圖案化反射層於一第一予體基板上;形成一經近紅外光吸收官能基修飾之第一有機材料薄膜於該第一圖案化反射層上;以一光從該第一予體基板形成有該第一圖案化反射層之側的相對一側照射該經近紅外光吸收官能基修飾之第一 有機材料薄膜,以將未被該第一圖案化反射層掩蓋之區域的該經近紅外光吸收官能基修飾之第一有機材料薄膜轉移至一半導體基板的表面,形成一第一圖案化有機材料薄膜;形成一第二圖案化反射層於一第二予體基板上;形成一經近紅外光吸收官能基修飾之第二有機材料薄膜於該第二圖案化反射層上;以該光從該第二予體基板形成有該第二圖案化反射層之側的相對一側照射該經近紅外光吸收官能基修飾之第二有機材料薄膜,以將未被該第二圖案化反射層掩蓋之區域的該經近紅外光吸收官能基修飾之第二有機材料薄膜轉移至該半導體基板的表面,形成一第二圖案化有機材料薄膜,其中該經近紅外光吸收官能基修飾之第一有機材料薄膜以及該經近紅外光吸收官能基修飾之第二有機材料薄膜對於波長大於600nm之該光其吸收強度大於100.2A method for forming an organic light-emitting diode structure includes: forming a first patterned reflective layer on a first pre-body substrate; forming a first organic material film modified by a near-infrared light-absorbing functional group on the first pattern On the reflective layer; irradiate the first organic material film modified by the near-infrared light-absorbing functional group with a light from the side opposite to the side on which the first patterned reflective layer is formed on the first substrate substrate to remove The first organic material film modified by the near-infrared light-absorbing functional group in the area covered by the first patterned reflective layer is transferred to the surface of a semiconductor substrate to form a first patterned organic material film; and a second pattern is formed Forming a reflective layer on a second pre-body substrate; forming a second organic material film modified by a near-infrared light-absorbing functional group on the second patterned reflective layer; forming the light from the second pre-body substrate The side opposite to the side of the second patterned reflective layer irradiates the second organic material film modified by the near-infrared light-absorbing functional group to absorb the near-infrared light in the area not covered by the second patterned reflective layer The functional group-modified second organic material film is transferred to the surface of the semiconductor substrate to form a second patterned organic material film, wherein the first organic material film modified by the near-infrared light absorption functional group and the near-infrared light absorption The second organic material film modified with functional groups has an absorption intensity greater than 10 0.2 for the light with a wavelength greater than 600 nm. 如請求項8所述之有機發光二極體結構的形成方法,其中該第一有機材料薄膜以及該第二有機材料薄膜係獨立為一紅色發光層、一綠色發光層或一藍色發光層。 The method for forming an organic light-emitting diode structure according to claim 8, wherein the first organic material film and the second organic material film are independently a red light-emitting layer, a green light-emitting layer or a blue light-emitting layer. 如請求項8所述之有機發光二極體結構的形成方法,其中該第一有機材料薄膜以及該第二有機材料薄膜係獨立為一電洞注入層、一電洞傳遞層、一發光層或一電子傳遞層。 The method for forming an organic light emitting diode structure according to claim 8, wherein the first organic material film and the second organic material film are independently a hole injection layer, a hole transport layer, a light emitting layer or An electron transport layer.
TW108119789A 2018-10-23 2019-06-06 Method for forming light-emitting diode structure TWI699923B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811234229.6A CN111092171B (en) 2018-10-23 2018-10-23 Method for forming organic light-emitting diode structure
CN201811234229.6 2018-10-23

Publications (2)

Publication Number Publication Date
TW202017227A TW202017227A (en) 2020-05-01
TWI699923B true TWI699923B (en) 2020-07-21

Family

ID=70391328

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108119789A TWI699923B (en) 2018-10-23 2019-06-06 Method for forming light-emitting diode structure

Country Status (2)

Country Link
CN (1) CN111092171B (en)
TW (1) TWI699923B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200808840A (en) * 2006-04-20 2008-02-16 Du Pont Donor element with maleic anhydride based polymers for thermal transfer
TW200906643A (en) * 2007-06-28 2009-02-16 Cabot Corp Light to heat conversion layer incorporating modified pigment
TW201134661A (en) * 2009-12-23 2011-10-16 Du Pont Polymeric conductive donor
CN104659286A (en) * 2015-02-06 2015-05-27 中国科学院长春应用化学研究所 Preparation method for patterned organic thin film
US20160079537A1 (en) * 2014-09-15 2016-03-17 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0423796B1 (en) * 1989-10-18 1996-05-29 Fuji Photo Film Co., Ltd. Thermal transfer dye donating materials
US6242152B1 (en) * 2000-05-03 2001-06-05 3M Innovative Properties Thermal transfer of crosslinked materials from a donor to a receptor
JP2005085799A (en) * 2003-09-04 2005-03-31 Seiko Epson Corp Film depositing method, method of forming circuit pattern, method of manufacturing semiconductor device, electrooptical device, and electronic apparatus
KR20090041316A (en) * 2007-10-23 2009-04-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Deposition method and method for manufacturing light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200808840A (en) * 2006-04-20 2008-02-16 Du Pont Donor element with maleic anhydride based polymers for thermal transfer
TW200906643A (en) * 2007-06-28 2009-02-16 Cabot Corp Light to heat conversion layer incorporating modified pigment
TW201134661A (en) * 2009-12-23 2011-10-16 Du Pont Polymeric conductive donor
US20160079537A1 (en) * 2014-09-15 2016-03-17 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus
CN104659286A (en) * 2015-02-06 2015-05-27 中国科学院长春应用化学研究所 Preparation method for patterned organic thin film

Also Published As

Publication number Publication date
TW202017227A (en) 2020-05-01
CN111092171B (en) 2022-08-16
CN111092171A (en) 2020-05-01

Similar Documents

Publication Publication Date Title
Swayamprabha et al. Hole-transporting materials for organic light-emitting diodes: an overview
TWI673894B (en) Organic electroluminescent device
CN106467483B (en) Five-membered ring substituted compound with xanthone as core and application thereof
WO2018001000A1 (en) Quantum dot electroluminescent component, manufacturing method therefor, and display component
JP5706829B2 (en) Heterocyclic compounds and their use in electronic and optoelectronic devices
JP5231188B2 (en) Organic electroluminescence device
TWI654168B (en) Organic electroluminescent element
JP4723555B2 (en) Electronic device manufacturing method and coating solution suitable for the manufacturing method
US8044577B2 (en) Full-color electroluminescent display device with multiple emission layers and method of fabricating the same
JP2002100478A (en) Organic electroluminescence element and its method of manufacture
TW200533230A (en) White color organic electroluminescence device
JP2002100482A (en) Organic electroluminescence element
JP6060361B2 (en) Organic light emitting device
JP2002056985A (en) Organic electroluminescent element and manufacturing method of the same
JP2002203685A (en) Hole transporting compound and organic thin film light- emitting element
JP2002322173A (en) Organic compound, semiconductor device, organic el element and display device
TWI618273B (en) Organic light emitting device
Taguchi et al. Photo-patternable electroluminescence based on one-way photoisomerization reaction of tetraoxidized triangle terarylenes
TWI699923B (en) Method for forming light-emitting diode structure
CN112510164A (en) Blue light OLED based on solvent vapor phase processing hole injection layer and preparation method thereof
TWI701858B (en) Method for forming light-emitting diode structure
CN102113148A (en) Organic electroluminescent devices and process for production of same
JP3982164B2 (en) Organic electroluminescent device and manufacturing method thereof
JP2004327166A (en) Organic el device and its manufacturing method
KR100594775B1 (en) White organic light emitting device