TWI699345B - Method of fabricating modified gyromagnetic embryo and material thereof - Google Patents

Method of fabricating modified gyromagnetic embryo and material thereof Download PDF

Info

Publication number
TWI699345B
TWI699345B TW108124732A TW108124732A TWI699345B TW I699345 B TWI699345 B TW I699345B TW 108124732 A TW108124732 A TW 108124732A TW 108124732 A TW108124732 A TW 108124732A TW I699345 B TWI699345 B TW I699345B
Authority
TW
Taiwan
Prior art keywords
gyromagnetic
gyromagnetic material
modified
blank
manufacturing
Prior art date
Application number
TW108124732A
Other languages
Chinese (zh)
Other versions
TW202102461A (en
Inventor
黃靖謙
左偉宗
莫智傑
Original Assignee
中國鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國鋼鐵股份有限公司 filed Critical 中國鋼鐵股份有限公司
Priority to TW108124732A priority Critical patent/TWI699345B/en
Application granted granted Critical
Publication of TWI699345B publication Critical patent/TWI699345B/en
Publication of TW202102461A publication Critical patent/TW202102461A/en

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

A method of fabricating a modified gyromagnetic embryo and material thereof is provided. The method of fabricating modified gyromagnetic embryo comprises steps of: providing a gyromagnetic material precursor; performing a calcination step of performing the diamagnetic material precursor at a temperature between 1200 and 1300 °C for 1 to 3 hours; adding alumina to the diamagnetic material precursor after the calcination step to form a mixture, wherein the alumina is between 0.1 and 0.3 parts by weight based on 100 parts by weight of a total weight of the gyromagnetic material precursor; performing a ball milling step on the mixture for 1.5 to 2.5 hours; and performing a molding step on the mixture after the ball milling step to form the gyromagnetic material embryo.

Description

改質旋磁胚件及其材料的製造方法Modified gyromagnetic blank and its material manufacturing method

本發明係關於一種涉及旋磁材料的製造方法,特別是關於一種改質旋磁胚件及其材料的製造方法。The invention relates to a manufacturing method involving a gyromagnetic material, in particular to a manufacturing method of a modified gyromagnetic blank and its material.

旋磁材料為相移器(Phase Shifter)、環行器(Circulator)以及隔離器(Isolator)等微波通訊元件的基礎材料。旋磁材料的磁力性質的好壞將直接影響到微波通訊元件的性能。Gyromagnetic materials are the basic materials for microwave communication components such as phase shifters, circulators, and isolators. The magnetic properties of gyromagnetic materials will directly affect the performance of microwave communication components.

根據現有的旋磁材料的製造方法,大致上如下:首先,根據旋磁材料的分子式進行材料配比,之後經過混合、鍛燒、球磨、成型、燒結步驟以形成具有旋磁特性的磁石。接著,根據相移器、環行器或隔離器所需的旋磁構件的形狀,將該磁石進行加工研磨成該旋磁構件。According to the existing manufacturing method of the gyromagnetic material, it is roughly as follows: first, the material is proportioned according to the molecular formula of the gyromagnetic material, and then through mixing, calcining, ball milling, molding, and sintering steps to form a magnet with gyromagnetic properties. Next, according to the shape of the gyromagnetic member required for the phase shifter, circulator, or isolator, the magnet is processed and ground into the gyromagnetic member.

然而,根據上述方式所製得的旋磁構件仍具有磁力性質上的極限。故,有必要提供一種改質旋磁材料的製造方法,以解決習用技術所存在的問題。However, the gyromagnetic member manufactured according to the above method still has the limit on the magnetic properties. Therefore, it is necessary to provide a manufacturing method of modified gyromagnetic materials to solve the problems existing in the conventional technology.

本發明之一目的在於提供一種改質旋磁胚件及其材料的製造方法,其係透過在煅燒步驟之後與球磨步驟之前額外添加氧化鋁,以提升磁力性質。One objective of the present invention is to provide a method for manufacturing modified gyromagnetic blanks and materials thereof, which improves the magnetic properties by adding alumina after the calcination step and before the ball milling step.

為達上述之目的,本發明提供一種改質旋磁胚件的製造方法,其包含步驟:提供一旋磁材料前驅物;進行一煅燒步驟,對該旋磁材料前驅物以介於1200至1300℃之間持溫達1至3小時;加入氧化鋁至經過該煅燒步驟後的該旋磁材料前驅物中以形成一混合物,其中以該旋磁材料前驅物的一總重為100重量份計,氧化鋁係介於0.1至0.3重量份之間;對該混合物進行一球磨步驟達1.5至2.5小時;以及對經過該球磨步驟後的該混合物進行一成型步驟,以形成一旋磁材料胚件。In order to achieve the above objective, the present invention provides a method for manufacturing a modified gyromagnetic blank, which includes the steps of: providing a gyromagnetic material precursor; and performing a calcination step, wherein the gyromagnetic material precursor is 1200 to 1300 Hold the temperature between ℃ for 1 to 3 hours; add alumina to the gyromagnetic material precursor after the calcination step to form a mixture, wherein a total weight of the gyromagnetic material precursor is 100 parts by weight The alumina is between 0.1 to 0.3 parts by weight; the mixture is subjected to a ball milling step for 1.5 to 2.5 hours; and the mixture after the ball milling step is subjected to a molding step to form a gyromagnetic material blank .

在本發明之一實施例中,該旋磁材料前驅物包含一石榴石系旋磁材料與一尖晶石系旋磁材料中的至少一種。In an embodiment of the present invention, the gyromagnetic material precursor includes at least one of a garnet-based gyromagnetic material and a spinel-based gyromagnetic material.

在本發明之一實施例中,該石榴石系旋磁材料包含氧化鐵及氧化釔。In an embodiment of the present invention, the garnet-based gyromagnetic material includes iron oxide and yttrium oxide.

在本發明之一實施例中,該石榴石系旋磁材料更包含氧化鋁及氧化錳,其中氧化鋁、氧化錳、氧化鐵與氧化釔的比例係根據該石榴石系旋磁材料的一分子式Y 3(Al xMn yFe (5-x-y))O 12進行分配,其中x大於0且小於等於1,y大於0且小於等於1。 In an embodiment of the present invention, the garnet-based gyromagnetic material further includes alumina and manganese oxide, wherein the ratio of alumina, manganese oxide, iron oxide and yttrium oxide is based on a molecular formula of the garnet-based gyromagnetic material Y 3 (Al x Mn y Fe (5-xy) )O 12 is allocated, where x is greater than 0 and less than or equal to 1, and y is greater than 0 and less than or equal to 1.

在本發明之一實施例中,該尖晶石系旋磁材料包含氧化鐵與碳酸鎂。In an embodiment of the present invention, the spinel-based gyromagnetic material includes iron oxide and magnesium carbonate.

在本發明之一實施例中,在該尖晶石系旋磁材料中,氧化鐵與碳酸鎂的比例係根據該尖晶石系旋磁材料的一分子式MgFe 2O 4進行分配。 In an embodiment of the present invention, in the spinel-based gyromagnetic material, the ratio of iron oxide to magnesium carbonate is distributed according to a molecular formula of the spinel-based gyromagnetic material, MgFe 2 O 4 .

在本發明之一實施例中,該尖晶石系旋磁材料更包含氧化鋁及氧化錳,其中氧化鋁、氧化錳、氧化鐵與碳酸鎂的比例係根據該石榴石系旋磁材料的一分子式Mg(Al xMn yFe (2-x-y))O 4進行分配,其中x大於0且小於等於0.5,y大於0且小於等於0.5。 In an embodiment of the present invention, the spinel-based gyromagnetic material further includes alumina and manganese oxide, wherein the ratio of alumina, manganese oxide, iron oxide and magnesium carbonate is based on a ratio of the garnet-based gyromagnetic material The molecular formula Mg(Al x Mn y Fe (2-xy) )O 4 is assigned, wherein x is greater than 0 and less than or equal to 0.5, and y is greater than 0 and less than or equal to 0.5.

在本發明之一實施例中,該成型步驟係通過一冷均壓成型法進行。In an embodiment of the present invention, the forming step is performed by a cold equalizing forming method.

為達上述之目的,本發明提供一種改質旋磁材料的製造方法,其包含步驟:提供一旋磁材料胚件,其中該旋磁材料胚件係通過如上任一實施例所述之旋磁材料胚件的製造方法所製成;進行一燒結步驟,對該旋磁材料胚件以1350至1450℃的一燒結溫度持溫達5至7小時之間,以形成一旋磁材料燒結件;以及對該旋磁材料燒結件進行一研磨步驟,以使該旋磁材料燒結件形成一改質旋磁材料。In order to achieve the above objective, the present invention provides a method for manufacturing a modified gyromagnetic material, which includes the steps of: providing a gyromagnetic material blank, wherein the gyromagnetic material blank is passed through the gyromagnetic material as described in any of the above embodiments. A material blank is manufactured by a manufacturing method; a sintering step is performed to hold the gyromagnetic material blank at a sintering temperature of 1350 to 1450°C for 5 to 7 hours to form a gyromagnetic material sintered part; And performing a grinding step on the gyromagnetic material sintered part, so that the gyromagnetic material sintered part forms a modified gyromagnetic material.

為了讓本發明之上述及其他目的、特徵、優點能更明顯易懂,下文將特舉本發明較佳實施例,並配合所附圖式,作詳細說明如下。再者,本發明所提到的方向用語,例如上、下、頂、底、前、後、左、右、內、外、側面、周圍、中央、水平、橫向、垂直、縱向、軸向、徑向、最上層或最下層等,僅是參考附加圖式的方向。因此,使用的方向用語是用以說明及理解本發明,而非用以限制本發明。In order to make the above and other objectives, features, and advantages of the present invention more obvious and understandable, the following will specifically cite the preferred embodiments of the present invention, together with the accompanying drawings, and describe in detail as follows. Furthermore, the directional terms mentioned in the present invention, such as up, down, top, bottom, front, back, left, right, inside, outside, side, surrounding, center, horizontal, horizontal, vertical, vertical, axial, The radial direction, the uppermost layer or the lowermost layer, etc., are only the direction of reference to the attached drawings. Therefore, the directional terms used are used to describe and understand the present invention, rather than to limit the present invention.

請參照第1圖所示,本發明一實施例之改質旋磁胚件的製造方法10主要包含下列步驟11至14:提供一旋磁材料前驅物(步驟11);進行一煅燒步驟,對該旋磁材料前驅物以介於1200至1300℃之間持溫達1至3小時(步驟12);加入氧化鋁至經過該煅燒步驟後的該旋磁材料前驅物中以形成一混合物,其中以該旋磁材料前驅物的一總重為100重量份計,氧化鋁係介於0.1至0.3重量份之間(步驟13);對該混合物進行一球磨步驟達1.5至2.5小時(步驟14);以及對經過該球磨步驟後的該混合物進行一成型步驟,以形成一旋磁材料胚件(步驟15)。本發明將於下文逐一詳細說明一實施例之上述各步驟的實施細節及其原理。Referring to Figure 1, the manufacturing method 10 of the modified gyromagnetic blank of an embodiment of the present invention mainly includes the following steps 11 to 14: providing a gyromagnetic material precursor (step 11); performing a calcination step, The gyromagnetic material precursor is maintained at a temperature between 1200 and 1300°C for 1 to 3 hours (step 12); alumina is added to the gyromagnetic material precursor after the calcination step to form a mixture, wherein Based on the total weight of the precursor of the gyromagnetic material being 100 parts by weight, the alumina is between 0.1 to 0.3 parts by weight (step 13); the mixture is subjected to a ball milling step for 1.5 to 2.5 hours (step 14) And performing a molding step on the mixture after the ball milling step to form a gyromagnetic material blank (step 15). The present invention will describe the implementation details and principles of the above steps of an embodiment in detail below one by one.

本發明一實施例之改質旋磁胚件的製造方法10首先係步驟11:提供一旋磁材料前驅物。在一實施例中,該旋磁材料前驅物例如可包含一石榴石系旋磁材料與一尖晶石系旋磁材料中的至少一種。在一實施例中,該石榴石系旋磁材料包含氧化鐵(Fe 2O 3)與氧化釔(Y 2O 3)。例如,該氧化鐵與該氧化釔的比例可根據該石榴石系旋磁材料的一分子式Y 3Fe 5O 12進行分配。換言之,根據該分子式Y 3Fe 5O 12進行分配時,該氧化鐵與該氧化釔的莫耳比例例如可以是在5:3(即該氧化鐵與該氧化釔的莫耳比值為5/3)左右,以避免使用多餘的該氧化鐵與該氧化釔。在一實施例中,由於在製造過程中可能產生不可避免的誤差、損失或是其他因素,該氧化鐵與該氧化釔的莫耳比值可具有範圍值,例如是介於1.5至1.8之間,例如是1.55、1.6、1.65、1.7或1.8。 The manufacturing method 10 of a modified gyromagnetic blank according to an embodiment of the present invention first includes step 11: providing a gyromagnetic material precursor. In one embodiment, the gyromagnetic material precursor may include at least one of a garnet-based gyromagnetic material and a spinel-based gyromagnetic material. In one embodiment, the garnet-based gyromagnetic material includes iron oxide (Fe 2 O 3 ) and yttrium oxide (Y 2 O 3 ). For example, the ratio of the iron oxide to the yttrium oxide can be distributed according to a molecular formula Y 3 Fe 5 O 12 of the garnet-based gyromagnetic material. In other words, when distributing according to the molecular formula Y 3 Fe 5 O 12 , the molar ratio of the iron oxide to the yttrium oxide can be, for example, 5:3 (that is, the molar ratio of the iron oxide to the yttrium oxide is 5/3 ) To avoid using excess iron oxide and yttrium oxide. In one embodiment, due to inevitable errors, losses or other factors that may occur during the manufacturing process, the molar ratio of the iron oxide to the yttrium oxide may have a range value, for example, between 1.5 and 1.8. For example, it is 1.55, 1.6, 1.65, 1.7 or 1.8.

另一方面,該石榴石系旋磁材料除了包含氧化鐵及氧化釔之外還包含氧化鋁及氧化錳,其中氧化鋁、氧化錳、氧化鐵與氧化釔的比例係根據該石榴石系旋磁材料的一分子式Y 3(Al xMn yFe (5-x-y))O 12進行分配,其中x大於0且小於等於1,y大於0且小於等於1。 On the other hand, the garnet-based gyromagnetic material contains aluminum oxide and manganese oxide in addition to iron oxide and yttrium oxide. The ratio of aluminum oxide, manganese oxide, iron oxide and yttrium oxide is based on the garnet-based gyromagnetic material. The material has a molecular formula Y 3 (Al x Mn y Fe (5-xy) )O 12 for distribution, where x is greater than 0 and less than or equal to 1, and y is greater than 0 and less than or equal to 1.

在一實施例中,該尖晶石系旋磁材料包含氧化鐵與碳酸鎂。例如,該氧化鐵與該碳酸鎂(MgCO 3)的比例可根據該尖晶石系旋磁材料的一分子式MgFe 2O 4進行分配。換言之,根據該分子式MgFe 2O 4進行分配時,該氧化鐵與該碳酸鎂的莫耳比例例如可以是在1:1(即該氧化鐵與該碳酸鎂的莫耳比值為1)左右,以避免使用多餘的該氧化鐵與該碳酸鎂。在一實施例中,由於在製造過程中可能產生不可避免的誤差、損失或是其他因素,該氧化鐵與該碳酸鎂的莫耳比值例如是介於0.8至1.2之間,例如是0.85、0.9、0.95、1.05、1.1或1.15。 In one embodiment, the spinel-based gyromagnetic material includes iron oxide and magnesium carbonate. For example, the ratio of the iron oxide to the magnesium carbonate (MgCO 3 ) can be distributed according to a molecular formula of the spinel-based gyromagnetic material MgFe 2 O 4 . In other words, when the distribution is performed according to the molecular formula MgFe 2 O 4 , the molar ratio of the iron oxide to the magnesium carbonate may be, for example, about 1:1 (that is, the molar ratio of the iron oxide to the magnesium carbonate is 1). Avoid using excess iron oxide and magnesium carbonate. In one embodiment, due to inevitable errors, losses or other factors that may occur during the manufacturing process, the molar ratio of the iron oxide to the magnesium carbonate is, for example, between 0.8 and 1.2, such as 0.85, 0.9 , 0.95, 1.05, 1.1, or 1.15.

另一方面,該尖晶石系旋磁材料除了包含氧化鐵與碳酸鎂之外還包含氧化鋁及氧化錳,其中氧化鋁、氧化錳、氧化鐵與氧化釔的比例係根據該石榴石系旋磁材料的一分子式Mg(Al xMn yFe (2-x-y))O 4進行分配,其中x大於0且小於等於0.5,y大於0且小於等於0.5。 On the other hand, the spinel-based gyromagnetic material contains aluminum oxide and manganese oxide in addition to iron oxide and magnesium carbonate, and the ratio of aluminum oxide, manganese oxide, iron oxide and yttrium oxide is based on the garnet-based spinel The magnetic material has a molecular formula Mg(Al x Mn y Fe (2-xy) )O 4 for distribution, where x is greater than 0 and less than or equal to 0.5, and y is greater than 0 and less than or equal to 0.5.

本發明一實施例之改質旋磁胚件的製造方法10接著係步驟12:進行一煅燒步驟,對該旋磁材料前驅物以介於1200至1300℃之間持溫達1至3小時。在本步驟12中,該煅燒步驟例如是以每分鐘4至6℃的升溫速率以使該旋磁材料前驅物以介於1200至1300℃之間持溫達1至3小時。The manufacturing method 10 of the modified gyromagnetic blank according to an embodiment of the present invention is followed by step 12: a calcination step is performed, and the temperature of the gyromagnetic material precursor is held between 1200 and 1300° C. for 1 to 3 hours. In this step 12, the calcination step is, for example, a heating rate of 4 to 6° C. per minute so that the gyromagnetic material precursor is maintained at a temperature between 1200 and 1300° C. for 1 to 3 hours.

本發明一實施例之改質旋磁胚件的製造方法10接著係步驟13:加入氧化鋁至經過該煅燒步驟後的該旋磁材料前驅物中以形成一混合物,其中以該旋磁材料前驅物的一總重為100重量份計,氧化鋁係介於0.1至0.3重量份之間。在本步驟13中,主要是通過加入氧化鋁以補償或改質最後所形成的改質旋磁胚件的磁氣性質與微波性能。詳細的分析數據將在後面段落描述。The manufacturing method 10 of the modified gyromagnetic blank according to an embodiment of the present invention is followed by step 13: adding alumina to the gyromagnetic material precursor after the calcination step to form a mixture, wherein the gyromagnetic material precursor A total weight of the substance is 100 parts by weight, and the alumina is between 0.1 and 0.3 parts by weight. In this step 13, alumina is mainly added to compensate or modify the magnetic properties and microwave properties of the modified gyromagnetic blank that is finally formed. The detailed analysis data will be described in the following paragraphs.

本發明一實施例之改質旋磁胚件的製造方法10接著係步驟14:對該混合物進行一球磨步驟達1.5至2.5小時。在本步驟中14,該球磨步驟例如係在市售的一振動研磨機中進行球磨2小時,並使用氧化鋯柱進行球磨,使經煅燒步驟後之旋磁材料前驅物能被研磨至所需粒徑範圍(例如D 50約為2至3微米)。 The manufacturing method 10 of the modified gyromagnetic blank according to an embodiment of the present invention is followed by step 14: performing a ball milling step on the mixture for 1.5 to 2.5 hours. In this step 14, the ball milling step is, for example, ball milling in a commercially available vibration mill for 2 hours, and ball milling using a zirconia column, so that the gyromagnetic material precursor after the calcination step can be ground to the desired level particle size range (e.g., D 50 is about 2 to 3 microns).

本發明一實施例之改質旋磁胚件的製造方法10最後係步驟15:對經過該球磨步驟後的該混合物進行一成型步驟,以形成一旋磁材料胚件。在本步驟15中,該成型步驟例如是在不添加任何有機黏合劑之情況下以“冷均壓成型法(cold isostatic pressing;CIP)”將經球磨步驟的旋磁材料混合物壓製成該旋磁材料胚件。The manufacturing method 10 of the modified gyromagnetic blank according to an embodiment of the present invention finally includes step 15: performing a forming step on the mixture after the ball milling step to form a gyromagnetic material blank. In this step 15, the forming step is, for example, using the "cold isostatic pressing (CIP)" method to press the gyromagnetic material mixture after the ball milling step into the gyromagnetic material without adding any organic binder. Material embryo.

本發明另一實施例提出一種改質旋磁材料的製造方法20,其包含步驟21至23:提供一旋磁材料胚件,其中該旋磁材料胚件係通過如上任一實施例所述之旋磁材料胚件的製造方法所製成(步驟21);進行一燒結步驟,對該旋磁材料胚件以1350至1450℃的一燒結溫度持溫達5至7小時之間,以形成一旋磁材料燒結件(步驟22);以及對該旋磁材料燒結件進行一研磨步驟,以使該旋磁材料燒結件形成一改質旋磁材料(步驟23)。本發明將於下文逐一詳細說明一實施例之上述各步驟的實施細節及其原理。Another embodiment of the present invention provides a manufacturing method 20 of a modified gyromagnetic material, which includes steps 21 to 23: providing a gyromagnetic material blank, wherein the gyromagnetic material blank is passed through any one of the above embodiments. The gyromagnetic material blank is manufactured by the manufacturing method (step 21); a sintering step is performed, and the gyromagnetic material blank is held at a sintering temperature of 1350 to 1450°C for 5 to 7 hours to form a A sintered gyromagnetic material (step 22); and a grinding step is performed on the sintered gyromagnetic material to make the sintered gyromagnetic material form a modified gyromagnetic material (step 23). The present invention will describe the implementation details and principles of the above steps of an embodiment in detail below one by one.

本發明一實施例之改質旋磁材料的製造方法20首先係步驟21:提供一旋磁材料胚件,其中該旋磁材料胚件係通過如上任一實施例所述之旋磁材料胚件的製造方法所製成。在本步驟21中,主要是提供通過外加氧化鋁的方式所製得的旋磁材料胚件。The manufacturing method 20 of a modified gyromagnetic material according to an embodiment of the present invention first includes step 21: providing a gyromagnetic material blank, wherein the gyromagnetic material blank is passed through the gyromagnetic material blank as described in any of the above embodiments Made by the manufacturing method. In this step 21, it is mainly to provide the gyromagnetic material blank made by adding alumina.

本發明一實施例之改質旋磁材料的製造方法20接著係步驟22:進行一燒結步驟,對該旋磁材料胚件以1350至1450℃的一燒結溫度持溫達5至7小時之間,以形成一旋磁材料燒結件。在本步驟12中,例如是透過市售的一氣氛燒結爐內,使該旋磁材料胚件在全部或幾乎全部為氧氣的一氣氛中,以1350℃至1450℃之間的溫度下緻密燒結5至7小時,其中升溫速率例如為每分鐘3至5℃(例如4℃)。待該燒結步驟後,將該旋磁材料燒結件緩慢降溫至室溫(例如降溫速率為每分鐘2至4℃)。The manufacturing method 20 of the modified gyromagnetic material according to an embodiment of the present invention is followed by step 22: performing a sintering step, holding the gyromagnetic material blank at a sintering temperature of 1350 to 1450°C for 5 to 7 hours , To form a sintered piece of gyromagnetic material. In this step 12, for example, through a commercially available atmosphere sintering furnace, the gyromagnetic material blank is densely sintered at a temperature between 1350°C and 1450°C in an atmosphere where all or almost all of oxygen is used. 5 to 7 hours, where the rate of temperature increase is, for example, 3 to 5°C (for example, 4°C) per minute. After the sintering step, the gyromagnetic material sintered part is slowly cooled to room temperature (for example, the cooling rate is 2 to 4° C. per minute).

本發明一實施例之改質旋磁材料的製造方法20最後係步驟23:對該旋磁材料燒結件進行一研磨步驟,以使該旋磁材料燒結件形成一改質旋磁材料。在本步驟13中,該改質旋磁材料可具有一預定形狀,例如包含一球型、一棒型、一圓片型、一方型、一板型或一圓柱型。在一實施例中,該預定形狀的選擇可根據最終產品中所需的旋磁構件進行選擇。例如,當該最終產品係相移器時,該預定形狀例如係方型或板型;或者該最終產品係環行器時,該預定形狀例如係圓片型或圓柱狀。在另一實施例中,該預定形狀的選擇可根據磁性測試樣品所需的形狀進行選擇。例如,在測量介電常數( )時,該預定形狀例如係圓柱狀,其直徑可介於1.2至1.3毫米且長度約為10毫米;在測量鐵磁共振線寬(∆H)時,該預定形狀例如係球型。 The final step 23 of the manufacturing method 20 of the modified gyromagnetic material according to an embodiment of the present invention is to perform a grinding step on the sintered gyromagnetic material to make the sintered gyromagnetic material form a modified gyromagnetic material. In this step 13, the modified gyromagnetic material may have a predetermined shape, for example, including a spherical shape, a rod shape, a wafer shape, a square shape, a plate shape or a cylindrical shape. In an embodiment, the selection of the predetermined shape can be selected according to the gyromagnetic member required in the final product. For example, when the final product is a phase shifter, the predetermined shape is, for example, a square shape or a plate shape; or when the final product is a circulator, the predetermined shape is, for example, a wafer shape or a cylindrical shape. In another embodiment, the selection of the predetermined shape can be selected according to the desired shape of the magnetic test sample. For example, when measuring the dielectric constant ( ), the predetermined shape is, for example, cylindrical, with a diameter ranging from 1.2 to 1.3 mm and a length of about 10 mm; when measuring the ferromagnetic resonance linewidth (∆H), the The predetermined shape is, for example, a ball type.

這邊要提到的是,本發明實施例之改質旋磁材料的製造方法20主要是利用外加氧化鋁的旋磁材料胚件作為初始材料,並經過特定參數與特定步驟製成改質旋磁材料,以使改質旋磁材料在作為各種微波相關零件時具備優良的磁氣特性與微波性質。詳細的分析比對將在後面詳細描述。What I want to mention here is that the manufacturing method 20 of the modified gyromagnetic material in the embodiment of the present invention mainly uses the gyromagnetic material blank with alumina as the initial material, and the modified gyromagnetic material is made through specific parameters and specific steps. Magnetic materials, so that the modified gyromagnetic material has excellent magnetic properties and microwave properties when used as various microwave-related parts. The detailed analysis and comparison will be described in detail later.

以下將舉出數個實施例與比較例,以證明本發明一實施例之改質旋磁材料的製造方法20所製得的改質旋磁材料具有優良的磁力性質,並且使用該改質旋磁材料的微波通訊元件也具有較佳的性能。Several examples and comparative examples will be cited below to prove that the modified gyromagnetic material produced by the method 20 of the modified gyromagnetic material according to an embodiment of the present invention has excellent magnetic properties and uses the modified gyromagnetic material. Microwave communication components made of magnetic materials also have better performance.

實施例1Example 1

首先,以分子式Y 3Fe 5O 12進行氧化鐵與氧化釔的比例分配,其中該氧化鐵與該氧化釔的莫耳比大致是5:3將配比完成的氧化鐵與氧化釔進行混合(可視情況加入添加劑),並以氧化鋯珠進行研磨以獲得一旋磁材料前驅物。之後,對該旋磁材料前驅物進行煅燒步驟,以介於1200至1300℃之間持溫達1至3小時,升溫速率為每分鐘5℃。然後,以該旋磁材料前驅物的一總重為100重量份計,加入0.1重量份的氧化鋁至該旋磁材料前驅物中以形成一混合物。將該混合物在一振動研磨機中以氧化鋯柱進行球磨2小時,並以冷均壓成型法將其壓製為一旋磁材料胚件。 First, the ratio of iron oxide and yttrium oxide is distributed according to the molecular formula Y 3 Fe 5 O 12 , where the molar ratio of the iron oxide to the yttrium oxide is approximately 5:3, and the finished iron oxide and yttrium oxide are mixed ( Adding additives as appropriate), and grinding with zirconia beads to obtain a gyromagnetic material precursor. Afterwards, the gyromagnetic material precursor is subjected to a calcination step, and the temperature is maintained between 1200 and 1300° C. for 1 to 3 hours, and the heating rate is 5° C. per minute. Then, based on a total weight of 100 parts by weight of the gyromagnetic material precursor, 0.1 parts by weight of alumina was added to the gyromagnetic material precursor to form a mixture. The mixture was ball milled with a zirconia column in a vibrating mill for 2 hours, and pressed into a gyromagnetic material blank by a cold equalizing molding method.

接著,對該旋磁材料胚件進行一燒結步驟,主要是透過市售的一氣氛燒結爐內,使該旋磁材料胚件在全部或幾乎全部為氧氣的一氣氛中,以1350℃至1450℃之間的溫度下緻密燒結5至7小時,以形成一旋磁材料燒結件。之後,對該旋磁材料燒結件進行一研磨步驟,以使該旋磁材料燒結件形成一改質旋磁材料。在本實施例中,基於測試磁性性質及/或基於符合最終產品的旋磁構件的目的,可製作多個具有不同預定形狀的樣品。Then, the gyromagnetic material blank is subjected to a sintering step, mainly through a commercially available atmosphere sintering furnace, so that the gyromagnetic material blank is exposed to an atmosphere of all or almost all oxygen at a temperature of 1350°C to 1450°C. Dense sintering at a temperature between ℃ for 5 to 7 hours to form a sintered gyromagnetic material. Afterwards, a grinding step is performed on the gyromagnetic material sintered part to make the gyromagnetic material sintered part form a modified gyromagnetic material. In this embodiment, based on the purpose of testing the magnetic properties and/or based on the gyromagnetic member conforming to the final product, multiple samples with different predetermined shapes can be produced.

實施例2至4與比較例1至4Examples 2 to 4 and Comparative Examples 1 to 4

實施例2至4與比較例1至4大致上的製作方式與實施例1相似。惟其不同之處大致包含:旋磁材料前驅物的分子式不同(即旋磁材料前驅物的材質不同,其中實施例3與比較例3的x與y皆約為1;實施例4與比較例4的x與y皆約為0.5),以及是否進行外加氧化鋁添加量的步驟。詳細的參數區別請參照下表一。The manufacturing methods of Examples 2 to 4 and Comparative Examples 1 to 4 are substantially similar to those of Example 1. However, the differences generally include: the molecular formula of the gyromagnetic material precursor is different (that is, the material of the gyromagnetic material precursor is different, in which x and y of Example 3 and Comparative Example 3 are both about 1; Example 4 and Comparative Example 4 X and y are both about 0.5), and whether to perform the step of adding alumina addition amount. For detailed parameter differences, please refer to Table 1 below.

表一   分子式 氧化鋁添加量(重量份) M s(G) B r(G) H c(O e) (∆ H) (O e) SQR 實施例1 Y 3Fe 5O 12 0.1 576 500 0.90 33 0.87 比較例1 Y 3Fe 5O 12 未添加 587 503 0.88 38 0.85 實施例2 MgFe 2O 4 0.3 1138 1002 1.32 180 0.88 比較例2 MgFe 2O 4 未添加 1162 980 1.27 186 0.84 實施例3 Y 3(Al xMn yFe (5-x-y))O 12 0.25 700 608 0.87 25 0.87 比較例3 Y 3(Al xMn yFe (5-x-y))O 12 未添加 720 610 0.85 29 0.84 實施例4 Mg(Al xMn yFe (2-x-y))O 4 0.15 1280 1137 1.02 92 0.89 比較例4 Mg(Al xMn yFe (2-x-y))O 4 未添加 1350 1148 1.15 106 0.85 Table I Molecular formula Alumina addition (parts by weight) M s (G) B r (G) H c (O e ) (∆ H ) (O e ) SQR Example 1 Y 3 Fe 5 O 12 0.1 576 500 0.90 33 0.87 Comparative example 1 Y 3 Fe 5 O 12 Not added 587 503 0.88 38 0.85 Example 2 MgFe 2 O 4 0.3 1138 1002 1.32 180 0.88 Comparative example 2 MgFe 2 O 4 Not added 1162 980 1.27 186 0.84 Example 3 Y 3 (Al x Mn y Fe (5-xy) )O 12 0.25 700 608 0.87 25 0.87 Comparative example 3 Y 3 (Al x Mn y Fe (5-xy) )O 12 Not added 720 610 0.85 29 0.84 Example 4 Mg(Al x Mn y Fe (2-xy) )O 4 0.15 1280 1137 1.02 92 0.89 Comparative example 4 Mg(Al x Mn y Fe (2-xy) )O 4 Not added 1350 1148 1.15 106 0.85

接著,首先對實施例1至4及比較例1至4進行磁性性質的分析。磁性性質包含:飽和磁化強度(4π M s)、殘餘磁化量(B r)、矯頑磁力(H c)、鐵磁共振線寬(∆ H)、與角形比(Squareness ratio;SQR),其中飽和磁化強度、殘餘磁化量、矯頑磁力與角形比可藉由市售的磁力性質分析儀(日本;Yokogawa公司;型號為SK-130 B-H tracer analyzer)測得。鐵磁共振線寬則是根據國際電工委員會制定的「IEC60556」量測方法測得。 Next, first, the magnetic properties of Examples 1 to 4 and Comparative Examples 1 to 4 were analyzed. Magnetic properties include: saturation magnetization (4π M s ), residual magnetization (B r ), coercive force (H c ), ferromagnetic resonance linewidth (∆ H ), and squareness ratio (SQR), where Saturation magnetization, residual magnetization, coercivity and angular ratio can be measured by a commercially available magnetic property analyzer (Japan; Yokogawa company; model SK-130 BH tracer analyzer). The ferromagnetic resonance line width is measured according to the "IEC60556" measurement method developed by the International Electrotechnical Commission.

對於旋磁材料而言,一般是希望其具有低矯頑磁力、低鐵磁共振線寬以及高角形比。從上述的測量結果可知,實施例1至4相對於比較例1至4皆具有低鐵磁共振線寬以及高角形比。而至於矯頑磁力而言,實施例1至3雖然略大於比較例1至3,但其仍為商用可接受範圍,實施例4則明顯小於比較例4。總結而言,實施例1至4主要是通過加入特定比例的氧化鋁,以使其具有較優良的磁氣性質。For gyromagnetic materials, it is generally desirable to have low coercivity, low ferromagnetic resonance linewidth and high angle ratio. It can be seen from the above measurement results that, compared with Comparative Examples 1 to 4, Examples 1 to 4 all have a low ferromagnetic resonance line width and a high angle ratio. As for the coercivity, although Examples 1 to 3 are slightly larger than Comparative Examples 1 to 3, they are still within the commercially acceptable range, and Example 4 is significantly smaller than Comparative Example 4. In summary, Examples 1 to 4 mainly add specific proportions of alumina to make them have better magnetic properties.

另外要提到的是,本發明實施例中在煅燒步驟後所添加的氧化鋁與在提供旋磁材料前驅物時所使用的氧化鋁具有不同的機理。具體而言,在提供旋磁材料前驅物時所使用的氧化鋁(例如實施例3與4及比較例3與4)會通過煅燒步驟而形成晶相結構。而在煅燒步驟後所添加的氧化鋁則是作為另外的添加劑,並且提供額外的效果(例如增加磁氣性質,或者改善後續分析的微波性質。因此,兩者的作用機理不同。In addition, it should be mentioned that the alumina added after the calcination step in the embodiment of the present invention has a different mechanism from the alumina used when providing the gyromagnetic material precursor. Specifically, the alumina used in providing the gyromagnetic material precursor (for example, Examples 3 and 4 and Comparative Examples 3 and 4) will form a crystal phase structure through a calcination step. The alumina added after the calcination step is used as an additional additive and provides additional effects (such as increasing the magnetic properties or improving the microwave properties of the subsequent analysis. Therefore, the two mechanisms of action are different.

另一方面,將實施例1至4的改質旋磁材料以及比較例1至4的旋磁材料作為相移器與環行器中的旋磁構件,並以市售的網路分析儀測量微波性質,詳細的分析結果請參照下表二。On the other hand, the modified gyromagnetic materials of Examples 1 to 4 and the gyromagnetic materials of Comparative Examples 1 to 4 were used as gyromagnetic members in phase shifters and circulators, and measured with a commercially available network analyzer Microwave properties, detailed analysis results, please refer to Table 2 below.

表二   通訊元件 S 11(dB) S 21(dB) S 12(dB) S 22(dB) 實施例1 相移器 -20.8 0.92 -19.9 -20.3 環行器 -21.3 0.93 -19.8 -20.1 比較例1 相移器 -16.8 1.05 -17.3 -17.2 環行器 -18.5 1.07 -19.1 -19.3 實施例2 相移器 -18.1 0.96 -18.5 -19.0 環行器 -19.5 0.94 -19.4 -20.2 比較例2 相移器 -15.3 1.15 -15.8 -16.1 環行器 -16.0 1.13 -16.3 -17.1 實施例3 相移器 -22.6 0.88 -20.5 -21.8 環行器 -23.0 0.90 -20.3 -21.7 比較例3 相移器 -17.7 0.99 -18.0 -18.3 環行器 -19.1 1.02 -19.3 -19.8 實施例4 相移器 -18.9 0.93 -19.4 -19.7 環行器 -20.4 0.91 -20.2 -21.1 比較例4 相移器 -16.4 1.02 -17.1 -18.0 環行器 -17.2 0.98 -17.8 -18.9 Table II Communication components S 11 (dB) S 21 (dB) S 12 (dB) S 22 (dB) Example 1 Phase shifter -20.8 0.92 -19.9 -20.3 Circulator -21.3 0.93 -19.8 -20.1 Comparative example 1 Phase shifter -16.8 1.05 -17.3 -17.2 Circulator -18.5 1.07 -19.1 -19.3 Example 2 Phase shifter -18.1 0.96 -18.5 -19.0 Circulator -19.5 0.94 -19.4 -20.2 Comparative example 2 Phase shifter -15.3 1.15 -15.8 -16.1 Circulator -16.0 1.13 -16.3 -17.1 Example 3 Phase shifter -22.6 0.88 -20.5 -21.8 Circulator -23.0 0.90 -20.3 -21.7 Comparative example 3 Phase shifter -17.7 0.99 -18.0 -18.3 Circulator -19.1 1.02 -19.3 -19.8 Example 4 Phase shifter -18.9 0.93 -19.4 -19.7 Circulator -20.4 0.91 -20.2 -21.1 Comparative example 4 Phase shifter -16.4 1.02 -17.1 -18.0 Circulator -17.2 0.98 -17.8 -18.9

一般而言,在評比微波元件的優劣程度時,是透過S參數來進行評比,包含有S 11、S 21、S 12與S 22的參數。對於S 11、S 12與S 22的參數,數值越低表示微波元件的表現越好;而對於S 21的參數,數值越接近0則表示微波元件的表現越好。由上表二可知,以相同的旋磁材料分子式以及相同的微波元件為比較基准,實施例1至4相對於比較例1至4皆具有較佳的微波元件的表現。 Generally speaking, when evaluating the pros and cons of microwave components, the evaluation is conducted through S parameters, which include S 11 , S 21 , S 12 and S 22 parameters. For the parameters of S 11 , S 12 and S 22 , the lower the value, the better the performance of the microwave component; for the parameter of S 21 , the closer the value is to 0, the better the performance of the microwave component. It can be seen from Table 2 above that, based on the same molecular formula of the gyromagnetic material and the same microwave element as a comparison standard, Examples 1 to 4 have better microwave element performance than Comparative Examples 1 to 4.

根據上述的各實施例與各比較例可知,透過本發明實施例之改質旋磁材料的製造方法所製得的改質旋磁材料確實具有較佳的磁力性質,並且使用該改質旋磁材料的微波元件可具有較佳的微波性質。According to the above-mentioned embodiments and comparative examples, it can be seen that the modified gyromagnetic material produced by the method of manufacturing the modified gyromagnetic material of the embodiment of the present invention does have better magnetic properties, and the modified gyromagnetic material is used Microwave components made of materials can have better microwave properties.

雖然本發明已以較佳實施例揭露,然其並非用以限制本發明,任何熟習此項技藝之人士,在不脫離本發明之精神和範圍內,當可作各種更動與修飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the preferred embodiments, it is not intended to limit the present invention. Anyone familiar with the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be subject to the scope of the attached patent application.

10:方法 11~15:步驟 20:方法 21~23:步驟10: method 11~15: steps 20: Method 21~23: Steps

第1圖是本發明一實施例之改質旋磁胚件的製造方法之流程示意圖。 第2圖是本發明一實施例之改質旋磁材料的製造方法之流程示意圖。 Figure 1 is a schematic flow diagram of a manufacturing method of a modified gyromagnetic blank according to an embodiment of the present invention. Figure 2 is a schematic flow diagram of a manufacturing method of a modified gyromagnetic material according to an embodiment of the present invention.

10:方法 10: method

11~15:步驟 11~15: steps

Claims (10)

一種改質旋磁胚件的製造方法,其包含步驟: 提供一旋磁材料前驅物; 進行一煅燒步驟,對該旋磁材料前驅物以介於1200至1300℃之間持溫達1至3小時; 加入氧化鋁至經過該煅燒步驟後的該旋磁材料前驅物中以形成一混合物,其中以該旋磁材料前驅物的一總重為100重量份計,氧化鋁係介於0.1至0.3重量份之間; 對該混合物進行一球磨步驟達1.5至2.5小時;以及 對經過該球磨步驟後的該混合物進行一成型步驟,以形成一旋磁材料胚件。 A method for manufacturing modified gyromagnetic blanks, which comprises the steps: Provide a gyromagnetic material precursor; Performing a calcination step, holding the gyromagnetic material precursor at a temperature between 1200 and 1300°C for 1 to 3 hours; Alumina is added to the gyromagnetic material precursor after the calcination step to form a mixture, wherein based on a total weight of the gyromagnetic material precursor being 100 parts by weight, the alumina is between 0.1 to 0.3 parts by weight between; Perform a ball milling step on the mixture for 1.5 to 2.5 hours; and A forming step is performed on the mixture after the ball milling step to form a gyromagnetic material blank. 如申請專利範圍第1項所述之改質旋磁胚件的製造方法,其中該旋磁材料前驅物包含一石榴石系旋磁材料與一尖晶石系旋磁材料中的至少一種。According to the manufacturing method of the modified gyromagnetic blank according to the first item of the scope of patent application, the gyromagnetic material precursor includes at least one of a garnet-based gyromagnetic material and a spinel-based gyromagnetic material. 如申請專利範圍第2項所述之改質旋磁胚件的製造方法,其中該石榴石系旋磁材料包含氧化鐵及氧化釔。The manufacturing method of the modified gyromagnetic blank as described in item 2 of the scope of patent application, wherein the garnet-based gyromagnetic material includes iron oxide and yttrium oxide. 如申請專利範圍第3項所述之改質旋磁胚件的製造方法,其中在該石榴石系旋磁材料中,氧化鐵與氧化釔的比例係根據該石榴石系旋磁材料的一分子式Y 3Fe 5O 12進行分配。 The manufacturing method of the modified gyromagnetic blank as described in item 3 of the scope of patent application, wherein in the garnet-based gyromagnetic material, the ratio of iron oxide to yttrium oxide is based on a molecular formula of the garnet-based gyromagnetic material Y 3 Fe 5 O 12 is allocated. 如申請專利範圍第3項所述之改質旋磁胚件的製造方法,其中該石榴石系旋磁材料更包含氧化鋁及氧化錳,其中氧化鋁、氧化錳、氧化鐵與氧化釔的比例係根據該石榴石系旋磁材料的一分子式Y 3(Al xMn yFe (5-x-y))O 12進行分配,其中x大於0且小於等於1,y大於0且小於等於1。 As described in item 3 of the scope of patent application, the manufacturing method of the modified gyromagnetic blank, wherein the garnet-based gyromagnetic material further comprises alumina and manganese oxide, wherein the ratio of alumina, manganese oxide, iron oxide and yttrium oxide It is distributed according to a molecular formula Y 3 (Al x Mn y Fe (5-xy) )O 12 of the garnet-based gyromagnetic material, where x is greater than 0 and less than or equal to 1, and y is greater than 0 and less than or equal to 1. 如申請專利範圍第2項所述之改質旋磁胚件的製造方法,其中該尖晶石系旋磁材料包含氧化鐵與碳酸鎂。The manufacturing method of the modified gyromagnetic blank according to the second item of the scope of patent application, wherein the spinel-based gyromagnetic material includes iron oxide and magnesium carbonate. 如申請專利範圍第6項所述之改質旋磁胚件的製造方法,其中在該尖晶石系旋磁材料中,氧化鐵與碳酸鎂的比例係根據該尖晶石系旋磁材料的一分子式MgFe 2O 4進行分配。 The manufacturing method of the modified gyromagnetic blank as described in item 6 of the scope of patent application, wherein in the spinel-based gyromagnetic material, the ratio of iron oxide to magnesium carbonate is based on the spinel-based gyromagnetic material One molecular formula MgFe 2 O 4 is distributed. 如申請專利範圍第6項所述之改質旋磁胚件的製造方法,其中該尖晶石系旋磁材料更包含氧化鋁及氧化錳,其中氧化鋁、氧化錳、氧化鐵與碳酸鎂的比例係根據該石榴石系旋磁材料的一分子式Mg(Al xMn yFe (2-x-y))O 4進行分配,其中x大於0且小於等於0.5,y大於0且小於等於0.5。 The manufacturing method of the modified gyromagnetic blank as described in item 6 of the scope of patent application, wherein the spinel-based gyromagnetic material further comprises aluminum oxide and manganese oxide, wherein aluminum oxide, manganese oxide, iron oxide and magnesium carbonate The proportion is distributed according to a molecular formula Mg(Al x Mn y Fe (2-xy) )O 4 of the garnet-based gyromagnetic material, where x is greater than 0 and less than or equal to 0.5, and y is greater than 0 and less than or equal to 0.5. 如申請專利範圍第1項所述之改質旋磁胚件的製造方法,其中該成型步驟係通過一冷均壓成型法進行。According to the manufacturing method of the modified gyromagnetic blank as described in item 1 of the scope of patent application, the forming step is carried out by a cold equalizing forming method. 一種改質旋磁材料的製造方法,其包含步驟: 提供一旋磁材料胚件,其中該旋磁材料胚件係通過如申請專利範圍第1至9項任一項所述之旋磁材料胚件的製造方法所製成; 進行一燒結步驟,對該旋磁材料胚件以1350至1450℃的一燒結溫度持溫達5至7小時之間,以形成一旋磁材料燒結件;以及 對該旋磁材料燒結件進行一研磨步驟,以使該旋磁材料燒結件形成一改質旋磁材料。 A manufacturing method of modified gyromagnetic material, which comprises the steps: A gyromagnetic material blank is provided, wherein the gyromagnetic material blank is made by the manufacturing method of the gyromagnetic material blank as described in any one of items 1 to 9 in the scope of patent application; Performing a sintering step, holding the gyromagnetic material blank at a sintering temperature of 1350 to 1450°C for 5 to 7 hours to form a gyromagnetic material sintered part; and A grinding step is performed on the gyromagnetic material sintered piece to make the gyromagnetic material sintered piece form a modified gyromagnetic material.
TW108124732A 2019-07-12 2019-07-12 Method of fabricating modified gyromagnetic embryo and material thereof TWI699345B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108124732A TWI699345B (en) 2019-07-12 2019-07-12 Method of fabricating modified gyromagnetic embryo and material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108124732A TWI699345B (en) 2019-07-12 2019-07-12 Method of fabricating modified gyromagnetic embryo and material thereof

Publications (2)

Publication Number Publication Date
TWI699345B true TWI699345B (en) 2020-07-21
TW202102461A TW202102461A (en) 2021-01-16

Family

ID=72602134

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108124732A TWI699345B (en) 2019-07-12 2019-07-12 Method of fabricating modified gyromagnetic embryo and material thereof

Country Status (1)

Country Link
TW (1) TWI699345B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201914981A (en) * 2017-10-02 2019-04-16 中國鋼鐵股份有限公司 Method of fabricating modified gyromagnetic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201914981A (en) * 2017-10-02 2019-04-16 中國鋼鐵股份有限公司 Method of fabricating modified gyromagnetic material

Also Published As

Publication number Publication date
TW202102461A (en) 2021-01-16

Similar Documents

Publication Publication Date Title
Su et al. High-permeability and high-Curie temperature NiCuZn ferrite
CN109867518B (en) Garnet ferrite with high temperature stability and preparation method thereof
CN106518038B (en) Multi-element doping YIG material and preparation method thereof
TWI641577B (en) Method of fabricating modified gyromagnetic material
Guo et al. Effects of In3+-substitution on the structure and magnetic properties of multi-doped YIG ferrites with low saturation magnetizations
US8986568B2 (en) Sintered magnet and method for producing the sintered magnet
CN111925201B (en) Sc doped hexagonal Zn2W ferrite material and preparation method thereof
CN111499369A (en) High-power rotation moment ferrite material for Ku waveband and preparation method thereof
CN112898008A (en) Low-loss YIG ferrite and preparation method thereof
CN113035556A (en) Preparation method of R-T-B magnet with gradient distribution of magnet performance
TWI699345B (en) Method of fabricating modified gyromagnetic embryo and material thereof
Kumar et al. Engineering High Permeability: M n–Z n and N i–Z n Ferrites
CN109678483A (en) The preparation method of wide temperature low-temperature coefficient low-consumption Mn-Zn ferrite material
Wu et al. Microstructure and gyromagnet properties of In-substituted YIG ferrite prepared by sol–gel method
CN116396068B (en) K-Ka band self-bias circulator ferrite substrate material and preparation method thereof
Ching‐Chien et al. Effect of particle size of as‐milled powders on microstructural and magnetic properties of Y3MnxAl0. 8‐xF e4. 2O12 ferrites
Liu et al. Coercivity enhancement of sputtered (La, Nd, Dy)-Fe–Co–B multilayers by inserting Ta space layers
Huang et al. Effect of specific surface area of raw material Fe2O3 on magnetic properties of YIG
Jia et al. Iron‐depleted Bi‐YIG having enhanced gyromagnetic properties suitable for LTCC processing
Malyshev et al. Chemical homogeneity, microstructure and magnetic properties of LiTiZn ferrite ceramics doped with Al2O3 or ZrO2
CN114409392B (en) High-remanence-ratio low-loss composite hexagonal ferrite material and preparation method thereof
TWI636032B (en) Method for manufacturing gyromagnetic element
CN112939590B (en) Hexahexaferrite material for X-band quasi-planar device and preparation method thereof
CN115215643A (en) Nd-Co Co-substituted M-type strontium ferrite and preparation method thereof
CN114380589B (en) Preparation method of high-performance permanent magnetic ferrite

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees