TWI636032B - Method for manufacturing gyromagnetic element - Google Patents

Method for manufacturing gyromagnetic element Download PDF

Info

Publication number
TWI636032B
TWI636032B TW105138140A TW105138140A TWI636032B TW I636032 B TWI636032 B TW I636032B TW 105138140 A TW105138140 A TW 105138140A TW 105138140 A TW105138140 A TW 105138140A TW I636032 B TWI636032 B TW I636032B
Authority
TW
Taiwan
Prior art keywords
ball milling
gyromagnetic
powder
rotating magnet
milling step
Prior art date
Application number
TW105138140A
Other languages
Chinese (zh)
Other versions
TW201819339A (en
Inventor
黃靖謙
洪永熊
黃菁儀
郭明峯
Original Assignee
中國鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國鋼鐵股份有限公司 filed Critical 中國鋼鐵股份有限公司
Priority to TW105138140A priority Critical patent/TWI636032B/en
Publication of TW201819339A publication Critical patent/TW201819339A/en
Application granted granted Critical
Publication of TWI636032B publication Critical patent/TWI636032B/en

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本發明提供一種旋磁體的製造方法,其包含步驟:提供一旋磁材料;對該旋磁材料進行一第一球磨步驟,獲得一旋磁粉末;在該第一球磨步驟之後,對該旋磁粉末進行一煆燒步驟;在該煆燒步驟之後,對該旋磁粉末進行一第二球磨步驟;在該第二球磨步驟之後,對該旋磁粉末進行一退火步驟;在該退火步驟之後,對該旋磁粉末進行一第三球磨步驟;在該第三球磨步驟之後,對該旋磁粉末進行一冷間均壓成型步驟,以壓製該旋磁粉末為一胚件;以及在1350至1450℃的溫度及氧氣中使該胚件進行一燒結步驟,以形成一旋磁體。 The invention provides a method for manufacturing a rotating magnet, comprising the steps of: providing a gyromagnetic material; performing a first ball milling step on the gyromagnetic material to obtain a gyromagnetic powder; after the first ball milling step, the gyromagnetic material The powder is subjected to a calcining step; after the calcining step, a second ball milling step is performed on the gyromagnetic powder; after the second ball milling step, the diamagnetic powder is subjected to an annealing step; after the annealing step, Performing a third ball milling step on the gyromagnetic powder; after the third ball milling step, performing a cold press forming step on the gyromagnetic powder to press the gyromagnetic powder into a blank; and at 1350 to 1450 The blank is subjected to a sintering step at a temperature of ° C and oxygen to form a rotating magnet.

Description

旋磁體的製造方法  Spinning magnet manufacturing method  

本發明係關於一種旋磁體的製造方法,特別是關於一種適用於2~4GHz頻段的釔鐵石榴石(YIG)系旋磁體的製造方法。 The present invention relates to a method for manufacturing a rotating magnet, and more particularly to a method for manufacturing a yttrium iron garnet (YIG)-based rotating magnet suitable for the 2 to 4 GHz frequency band.

近年來雷達、衛星等技術需求使得微波領域的旋磁材料與元件開發越來越受到重視。釔鐵石榴石(YIG)旋磁材料因具備室溫下飽和磁化強度可調變區間較寬、角形比高、矯頑磁力低、居里溫度高、溫度穩定性好等優點而被廣泛運用於閉鎖式相移器(latching phase shifter)及環行器等微波元件中。這些石榴石類(Garnet)的微波元件主要應用在民生手機基地台及軍用雷達等無線通訊領域中。 In recent years, the demand for radar, satellite and other technologies has made the development of gyromagnetic materials and components in the microwave field more and more important. Yttrium garnet (YIG) gyromagnetic material is widely used because of its wide variation range of saturation magnetization at room temperature, high angular ratio, low coercive force, high Curie temperature and good temperature stability. In the microwave components such as the latching phase shifter and the circulator. These garnet-based (Garnet) microwave components are mainly used in wireless communication fields such as Minsheng mobile phone base stations and military radars.

目前應用於2~4GHz頻段的微波元件所使用的旋磁材料一般存在下列問題:(1)飽和磁化強度(4πM s)不易精確調控至相移器所適合的數值;(2)不易同時達到相移器所需要的飽和磁化強度、角形比及矯頑磁力,往往會顧此失彼。已有一些研究,如美國專利公告號第3132105及5055214號,提出可在Garnet旋磁材料中摻雜釓(Gd)來同時達到所需磁特性,然而釓元素將使得相移器的整體製作成本大幅增加。 The gyromagnetic materials currently used in microwave components used in the 2~4GHz frequency band generally have the following problems: (1) the saturation magnetization (4π M s ) is not easily adjusted to the appropriate value of the phase shifter; (2) it is not easy to achieve at the same time. The saturation magnetization, the angular ratio, and the coercive force required by the phase shifter tend to be lost. There have been some studies, such as U.S. Patent Nos. 3,132,105 and 5,055,214, which suggest that ruthenium (Gd) can be doped in Garnet's gyromagnetic material to achieve the desired magnetic properties simultaneously, but the ruthenium element will make the overall cost of the phase shifter A substantial increase.

故,有必要提供一種旋磁體的製造方法,以解決習用技術 所存在的問題。 Therefore, it is necessary to provide a method of manufacturing a rotating magnet to solve the problems of the conventional technology.

本發明之主要目的在於提供一種旋磁體的製造方法,含特定比例錳鋁的釔鐵石榴石先利用煆燒後的球磨步驟,可將材料粉體均勻化,然後再進行退火步驟,使材料粉體中較小的晶粒可成長為較大尺寸,接著再次進行球磨步驟,使退火後成長的晶粒細緻化。釔鐵石榴石系的旋磁材料經過上述處理後,可利用低成本及簡單的步驟獲得適合用於2~4GHz頻段的微波元件所需的磁特性。 The main object of the present invention is to provide a method for manufacturing a rotating magnet. The yttrium iron garnet containing a specific proportion of manganese aluminum is firstly homogenized by a ball milling step after simmering, and then an annealing step is performed to make the material powder. The smaller grains in the body can be grown to a larger size, and then the ball milling step is performed again to refine the grains grown after annealing. After the above treatment, the yttrium iron garnet-based gyromagnetic material can obtain the magnetic characteristics required for the microwave component suitable for the 2 to 4 GHz frequency band with low cost and simple steps.

為達上述之目的,本發明的一實施例提供一種旋磁體的製造方法,其包含步驟:提供一旋磁材料;對該旋磁材料進行一第一球磨步驟,獲得一旋磁粉末;在該第一球磨步驟之後,對該旋磁粉末進行一煆燒步驟;在該煆燒步驟之後,對該旋磁粉末進行一第二球磨步驟;在該第二球磨步驟之後,對該旋磁粉末進行一退火步驟;在該退火步驟之後,對該旋磁粉末進行一第三球磨步驟;在該第三球磨步驟之後,對該旋磁粉末進行一冷間均壓成型步驟,以壓製該旋磁粉末為一胚件;以及在1350至1450℃的溫度及氧氣中使該胚件進行一燒結步驟,以形成一旋磁體。 In order to achieve the above object, an embodiment of the present invention provides a method for manufacturing a rotating magnet, comprising the steps of: providing a gyromagnetic material; performing a first ball milling step on the gyromagnetic material to obtain a gyromagnetic powder; After the first ball milling step, the skeletal magnetic powder is subjected to a calcining step; after the sintering step, the spheroidal magnetic powder is subjected to a second ball milling step; after the second ball milling step, the gyromagnetic powder is subjected to An annealing step; after the annealing step, performing a third ball milling step on the gyromagnetic powder; after the third ball milling step, performing a cold press forming step on the gyromagnetic powder to press the spheroidal powder a blank member; and subjecting the blank to a sintering step at a temperature of 1350 to 1450 ° C and oxygen to form a rotating magnet.

在本發明之一實施例中,該旋磁材料以莫耳數計包含Y3+z(MnxAly-xFe1-y)5-zO12,其中x=0.018~0.046,y=0.1~0.2,z=-0.04~0.04。 In an embodiment of the invention, the gyromagnetic material comprises Y 3+z (Mn x Al yx Fe 1-y ) 5-z O 12 in a molar number, wherein x=0.018~0.046, y=0.1~ 0.2, z = -0.04 to 0.04.

在本發明之一實施例中,該第一球磨步驟是使用氧化鋯珠進行球磨1~3小時。 In one embodiment of the invention, the first ball milling step is ball milling using zirconia beads for 1-3 hours.

在本發明之一實施例中,該煆燒步驟的溫度為1150~1250℃,進行1~3小時。 In one embodiment of the invention, the temperature of the calcining step is from 1150 to 1250 ° C for 1 to 3 hours.

在本發明之一實施例中,該第二球磨步驟是使用氧化鋯珠進行球磨1~3小時。 In one embodiment of the invention, the second ball milling step is ball milling using zirconia beads for 1-3 hours.

在本發明之一實施例中,該退火步驟是在800~900℃下,於空氣中進行0.5~1小時。 In an embodiment of the invention, the annealing step is performed in the air at 800 to 900 ° C for 0.5 to 1 hour.

在本發明之一實施例中,該第三球磨步驟是使用氧化鋯珠進行球磨0.5~1小時。 In one embodiment of the invention, the third ball milling step is ball milling using zirconia beads for 0.5 to 1 hour.

在本發明之一實施例中,該冷間均壓成型步驟不使用有機黏合劑。 In one embodiment of the invention, the cold press forming step does not use an organic binder.

在本發明之一實施例中,該燒結步驟進行時間為5~7小時。 In an embodiment of the invention, the sintering step is carried out for a period of 5 to 7 hours.

在本發明之一實施例中,該旋磁體具有飽和磁化強度為700±5%高斯(Gauss)、矯頑磁力小於0.4奧(Oe),以及角形比大於0.85。 In one embodiment of the invention, the rotating magnet has a saturation magnetization of 700 ± 5% Gauss, a coercive force of less than 0.4 Oe, and an angular ratio of greater than 0.85.

第1A至1D圖:本發明一實施例之實驗組6、7、10及12以金相顯微鏡所觀察的晶粒變化趨勢。 1A to 1D are graphs showing the tendency of crystal grains observed by the metallographic microscope of the experimental groups 6, 7, 10 and 12 according to an embodiment of the present invention.

為了讓本發明之上述及其他目的、特徵、優點能更明顯易懂,下文將特舉本發明較佳實施例,作詳細說明如下。再者,本發明所提到的單數形式“一”、“一個”和“所述”包括複數引用,除非上下文另有明確規定。例如,術語“一化合物”或“至少一種化合物”可以包括多個化合物,包括其混合物;本發明文中提及的「%」若無特定說明皆指「重量百分比(wt%)」;數值範圍(如10%至11%的A)若無特定說明皆包含 上、下限值(即10%≦A≦11%);數值範圍若未界定下限值(如低於0.2%的B,或0.2%以下的B),則皆指其下限值可能為0(即0%≦B≦0.2%);各成份的「重量百分比」之比例關係亦可置換為「重量份」的比例關係。上述用語是用以說明及理解本發明,而非用以限制本發明。 The above and other objects, features, and advantages of the present invention will become more apparent from In addition, the singular forms "a," "," For example, the term "a compound" or "at least one compound" may include a plurality of compounds, including mixtures thereof; "%" as referred to in the present specification means "percent by weight (wt%)" unless otherwise specified; For example, 10% to 11% of A) include upper and lower limits (ie, 10% ≦A ≦ 11%) unless otherwise specified; if the value range does not define a lower limit (such as less than 0.2% of B, or 0.2) B) below B) means that the lower limit may be 0 (ie 0% ≦ B ≦ 0.2%); the proportional relationship of the "weight percentage" of each component may also be replaced by the proportional relationship of "parts by weight". The above terms are used to illustrate and understand the present invention and are not intended to limit the invention.

本發明的一實施例提供一種旋磁體的製造方法,其包含步驟:(S1)提供一旋磁材料;(S2)對該旋磁材料進行一第一球磨步驟,獲得一旋磁粉末;(S3)對該旋磁粉末進行一煆燒步驟;(S4)對該旋磁粉末進行一第二球磨步驟;(S5)對該旋磁粉末進行一退火步驟;(S6)對該旋磁粉末進行一第三球磨步驟;(S7)在該第三球磨步驟之後,對該旋磁粉末進行一冷間均壓成型步驟,以壓製該旋磁粉末為一胚件;以及(S8)在1350至1450℃的溫度及氧氣中使該胚件進行一燒結步驟,以形成一旋磁體。 An embodiment of the invention provides a method for manufacturing a rotating magnet, comprising the steps of: (S1) providing a gyromagnetic material; (S2) performing a first ball milling step on the diamagnetic material to obtain a gyromagnetic powder; (S3) a sintering step of the gyromagnetic powder; (S4) performing a second ball milling step on the gyromagnetic powder; (S5) performing an annealing step on the diamagnetic powder; (S6) performing a annealing step on the diamagnetic powder a third ball milling step; (S7) after the third ball milling step, performing a cold press forming step on the gyromagnetic powder to press the gyromagnetic powder into a blank; and (S8) at 1350 to 1450 ° C The preform is subjected to a sintering step in a temperature and oxygen to form a rotating magnet.

較佳的,在該步驟(S1)中,該旋磁材料以莫耳數計包含Y3+z(MnxAly-xFe1-y)5-zO12,其中x=0.018~0.046,y=0.1~0.2,z=-0.04~0.04。此外,該旋磁材料屬於釔鐵石榴石類,以鋁(Al)及錳(Mn)取代部分鐵元素所形成。 Preferably, in the step (S1), the gyromagnetic material comprises Y 3+z (Mn x Al yx Fe 1-y ) 5-z O 12 in a molar number, wherein x=0.018~0.046, y =0.1~0.2, z=-0.04~0.04. Further, the gyromagnetic material belongs to the yttrium iron garnet, and is formed by substituting a part of iron element with aluminum (Al) and manganese (Mn).

在該步驟(S2)中,該第一球磨步驟是使用氧化鋯珠進行球磨1~3小時,可例如是1、1.5、2、2.5或3小時,然不限於此。 In this step (S2), the first ball milling step is ball milling using zirconia beads for 1 to 3 hours, which may be, for example, 1, 1.5, 2, 2.5 or 3 hours, but is not limited thereto.

在該步驟(S3)中,該煆燒(calcination)步驟的溫度為1150~1250℃,可例如是1150、1200或1250℃,然不限於此。該煆燒步驟需進行1~3小時,可例如是1、1.5、2、2.5或3小時。 In this step (S3), the temperature of the calcination step is 1150 to 1250 ° C, which may be, for example, 1150, 1200 or 1250 ° C, but is not limited thereto. The calcination step is carried out for 1 to 3 hours, and may be, for example, 1, 1.5, 2, 2.5 or 3 hours.

在該步驟(S4)中,該第二球磨步驟是使用氧化鋯珠進行球磨1~3小時,可例如是1、1.5、2、2.5或3小時,然不限於此。 In this step (S4), the second ball milling step is ball milling using zirconia beads for 1 to 3 hours, which may be, for example, 1, 1.5, 2, 2.5 or 3 hours, but is not limited thereto.

在該步驟(S5)中,該退火步驟是在800~900℃下,於空氣中進行0.5~1小時。 In this step (S5), the annealing step is carried out in the air at 800 to 900 ° C for 0.5 to 1 hour.

在該步驟(S6)中,該第三球磨步驟是使用氧化鋯珠進行球磨0.5~1小時。 In this step (S6), the third ball milling step is ball milling using zirconia beads for 0.5 to 1 hour.

在該步驟(S7)中,該冷間均壓成型步驟並不另外使用有機黏合劑(亦即,排除使用任何有機黏合劑的任何情況),及/或也不使用其餘添加劑。 In this step (S7), the cold press forming step does not additionally use an organic binder (i.e., excludes any use of any organic binder), and/or does not use the remaining additives.

在該步驟(S8)中,該燒結步驟進行時間為5~7小時,可例如是5、5.5、6、6.5或7小時,然不限於此。較佳的,該旋磁體具有飽和磁化強度為700±5%高斯(Gauss)、矯頑磁力小於0.4奧(Oe),以及角形比大於0.85。 In this step (S8), the sintering step is carried out for 5 to 7 hours, and may be, for example, 5, 5.5, 6, 6.5 or 7 hours, but is not limited thereto. Preferably, the rotating magnet has a saturation magnetization of 700 ± 5% Gauss, a coercive force of less than 0.4 Oe, and an angular ratio of more than 0.85.

為驗證本發明的旋磁體的製造方法能有效提高旋磁體的磁特性,進行了各種不同條件的測試,實驗組的材料成分及實驗條件如下表1所示。 In order to verify that the method for manufacturing a rotating magnet of the present invention can effectively improve the magnetic properties of the rotating magnet, various conditions are tested. The material composition and experimental conditions of the experimental group are shown in Table 1 below.

表1中各組旋磁體的製造流程如下: The manufacturing process of each group of rotating magnets in Table 1 is as follows:

(1)旋磁材料: (1) Spinning material:

分子式為Y3+z(MnxAly-xFe1-y)5-zO12,其中z為材料之貧鐵(降低鐵元素)的調整項,z越高鐵元素越少;x、y、z分別為上表1所示各組數值;陰離子電荷數(由O提供)為-24,以及陽離子電荷數(由Y、Mn、Al、Fe提供)為+24。 The molecular formula is Y 3+z (Mn x Al yx Fe 1-y ) 5-z O 12 , where z is the adjustment term of the iron-depleted (lower iron element) of the material, and the higher the z, the less the iron element; x, y, z The values are the values for each group shown in Table 1 above; the number of anionic charges (provided by O) is -24, and the number of cationic charges (provided by Y, Mn, Al, Fe) is +24.

(2)第一球磨步驟: (2) First ball milling step:

將(1)中的材料於球磨機中,使用氧化鋯珠進行球磨1~3小時。本步驟是為了使各種材料能充分均勻分散。 The material in (1) was ball milled in a ball mill for 1 to 3 hours using zirconia beads. This step is to allow the various materials to be sufficiently uniformly dispersed.

(3)煆燒: (3) Simmering:

將(2)所得之粉末在空氣中,以1200℃煆燒1~3小時,其升溫速率為每分鐘5℃。 The powder obtained in (2) was calcined in air at 1200 ° C for 1 to 3 hours at a rate of 5 ° C per minute.

(4)第二球磨步驟: (4) Second ball milling step:

將(3)所得之煆燒後材料於振動研磨機中使用氧化鋯珠進行球磨1~3小時,使煆燒後的粉末具有所需粒徑範圍,可例如是1微米至1.5微米。 The calcined material obtained in (3) is ball-milled in a vibrating mill using zirconia beads for 1 to 3 hours, so that the calcined powder has a desired particle size range, and may be, for example, 1 μm to 1.5 μm.

(5)退火: (5) Annealing:

將(4)所得的粉末以800~900℃於空氣中退火0.5~1小時,使過細的粉末能再度成長,避免後續燒結過程中產生巨晶。 The powder obtained in (4) is annealed in air at 800 to 900 ° C for 0.5 to 1 hour, so that the fine powder can be grown again to avoid generation of giant crystals in the subsequent sintering process.

(6)第三球磨步驟: (6) Third ball grinding step:

將(5)所得之退火後材料於振動研磨機中使用氧化鋯珠進行 球磨0.5~1小時,使(5)退火過程中過度生長的較大晶粒之粒徑減小,讓整體粉末粒徑的分布區間形成較窄範圍,提高燒結過程中晶粒成長為理想尺寸的機率,進而使材料組織形成極細晶粒的顯微組織,可降低旋磁材料的鐵磁共振線寬(△H)及介電損耗(tanδ e)。 The annealed material obtained in (5) is ball-milled in a vibrating mill using zirconia beads for 0.5 to 1 hour, so that the particle size of the larger crystal grains excessively grown during the annealing process is reduced, so that the overall powder particle size is reduced. narrow range distribution segment is formed, the grain growth during the sintering process to improve the chance of desired dimensions, thereby enabling tissue formation material microstructure fine grains can be reduced ferromagnetic resonance linewidth gyromagnetic material (△ H) and Dielectric loss (tan δ e ).

(7)成型: (7) Forming:

將(6)所得的粉末在不添加任何有機黏合劑的情況下,以「冷間均壓成形法(CIP,cold isostatic pressing)」,將該粉末壓製成胚件。 The powder obtained in (6) was pressed into a blank by a "cold isostatic pressing" (CIP) without adding any organic binder.

(8)燒結步驟: (8) Sintering step:

將(7)所得的胚件置於燒結爐,在氧氣氣氛中以T℃進行緻密燒結5~7小時,升溫速度為每分鐘4℃;降溫階段由最高溫降至1250℃,降溫速度為每分鐘3℃;由1250℃降至200℃之降溫速率為每分鐘5℃,至200℃以下則自然冷卻。 The blank obtained in (7) is placed in a sintering furnace and densely sintered at T ° C for 5-7 hours in an oxygen atmosphere at a temperature rising rate of 4 ° C per minute; the cooling temperature is lowered from the highest temperature to 1250 ° C, and the cooling rate is per Minute 3 ° C; from 1250 ° C to 200 ° C, the cooling rate is 5 ° C per minute, to 200 ° C below the natural cooling.

(9)磁特性量測: (9) Magnetic property measurement:

使用無心磨床將(6)所得之磁棒磨至所需的直徑,以利後續加工成各種磁材樣品,可供量測飽和磁化強度(4πM s)、殘留磁化量(B r)、矯頑磁力(H c)、角形比(Squareness ratio,B r/4πM s)、鐵磁共振線寬(△H)、介電常數(ε)、介電損耗(tanδ e)、燒結密度(d)及居里溫度(T c)。上述飽和磁化強度(4πM s)、殘留磁化量(B r)、矯頑磁力(H c)、角形比(Squareness ratio,B r/4πM s)是以日本Yokogawa SK-130B-H tracer analyzer測得;居里溫度(T c)是利用TH2828及馬弗爐測得;鐵磁共振線寬(△H)、介電常數(□)、介電損耗(tanδ e)是根據「IEC60556」量測方法測得;燒結密度則利用排水法測得。 The magnetic rod obtained in (6) is ground to a desired diameter by a centerless grinding machine to facilitate subsequent processing into various magnetic material samples for measuring saturation magnetization (4π M s ), residual magnetization ( B r ), and correction. Coercivity ( H c ), squareness ratio ( B r /4π M s ), ferromagnetic resonance linewidth (Δ H ), dielectric constant (ε), dielectric loss (tan δ e ), sintered density ( d ) and Curie temperature ( T c ). The above saturation magnetization (4π M s ), residual magnetization ( B r ), coercive force ( H c ), and angular ratio ( B r /4π M s ) are Japanese Yokogawa SK-130B-H tracer analyzer It is measured; the Curie temperature ( T c ) is measured by TH2828 and muffle furnace; the ferromagnetic resonance line width (Δ H ), dielectric constant (□), and dielectric loss (tan δ e ) are based on “IEC60556”. The measurement method was measured; the sintered density was measured by the drainage method.

從表2可知,藉由調整旋磁材料中的Mn、Al、Fe元素比例(實驗組1~5),可以影響旋磁材料的磁特性,以實驗組2所得到的各項磁特性最接近2~4GHz頻段微波元件的需求;藉由不同燒結溫度(實驗組6~7)可發現,在1450℃可以獲得較貼近2~4GHz頻段微波元件所需的磁特性;藉由調整Y及Fe的含量比例(實驗組8~11,改變z的數值),可發現z為0.02時(實驗組10)具有接近2~4GHz頻段微波元件所需求的磁特性;而在實驗組12中,則驗證了採取第三球磨步驟及退火,可獲得最高角形比 (約0.90)、最低矯頑磁力(0.32Oe)、最低介電損耗(11.6×10-5)、最低鐵磁共振線寬(31Oe)且飽和磁化強度約702Oe。 It can be seen from Table 2 that by adjusting the ratio of Mn, Al, and Fe elements in the gyromagnetic material (experimental groups 1 to 5), the magnetic properties of the gyromagnetic material can be affected, and the magnetic properties obtained by the experimental group 2 are the closest. Requirements for microwave components in the 2~4GHz band; by different sintering temperatures (experimental groups 6~7), it is found that the magnetic properties required for microwave components in the near 2~4GHz band can be obtained at 1450 °C; by adjusting Y and Fe The content ratio (experimental group 8~11, changing the value of z), can be found that when z is 0.02 (experimental group 10) has the magnetic characteristics required by the microwave components in the frequency band of 2~4 GHz; in the experimental group 12, it is verified. Taking the third ball milling step and annealing, the highest angular ratio (about 0.90), the lowest coercive force (0.32Oe), the lowest dielectric loss (11.6×10 -5 ), the lowest ferromagnetic resonance line width (31Oe) and saturation can be obtained. The magnetization is about 702 Oe.

接著請參考第1A至1D圖,其分別顯示了實驗組6、7、10及12以金相顯微鏡所觀察的晶粒變化趨勢。從第1A及1B圖的比較可以發現,實驗組6及7因為不同燒結溫度導致晶粒大小不同,當燒結溫度從1350℃提高到1450℃,晶粒有明顯的長大趨勢。從第1B及1C圖的比較也可以發現,實驗組10的貧鐵配方並未對晶粒大小有明顯影響。再者,從第1D圖可發現,實驗組12經過退火及第三次球磨步驟之後,除了可在燒結後將晶粒分布均勻化,且能進一步優化旋磁體的磁特性至符合2~4GHz頻率範圍的微波元件所需。 Next, please refer to Figures 1A to 1D, which show the trends of grain changes observed by metallographic microscopes in experimental groups 6, 7, 10, and 12, respectively. From the comparison of the 1A and 1B graphs, it can be found that the experimental groups 6 and 7 have different grain sizes due to different sintering temperatures. When the sintering temperature is increased from 1350 °C to 1450 °C, the grains have a significant growth tendency. It can also be seen from the comparison of Figures 1B and 1C that the iron-deficient formula of the experimental group 10 did not have a significant effect on the grain size. Furthermore, it can be seen from the 1DD that after the annealing and the third ball milling step of the experimental group 12, the grain distribution can be uniformized after sintering, and the magnetic properties of the rotating magnet can be further optimized to meet the frequency of 2 to 4 GHz. The range of microwave components required.

雖然本發明已以較佳實施例揭露,然其並非用以限制本發明,任何熟習此項技藝之人士,在不脫離本發明之精神和範圍內,當可作各種更動與修飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The present invention has been disclosed in its preferred embodiments, and is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

Claims (9)

一種旋磁體的製造方法,其包含下列步驟:提供一旋磁材料,其中該旋磁材料以莫耳數比包含Y3+z(MnxAly-xFe1-y)5-zO12,其中x=0.018~0.046,y=0.1~0.2,z=-0.04~0.04;對該旋磁材料進行一第一球磨步驟,獲得一旋磁粉末;在該第一球磨步驟之後,對該旋磁粉末進行一煆燒步驟;在該煆燒步驟之後,對該旋磁粉末進行一第二球磨步驟;在該第二球磨步驟之後,對該旋磁粉末進行一退火步驟;以及在該退火步驟之後,對該旋磁粉末進行一第三球磨步驟;在該第三球磨步驟之後,對該旋磁粉末進行一冷間均壓成型步驟,以壓製該旋磁粉末為一胚件;以及在1350至1450℃的溫度及氧氣中使該胚件進行一燒結步驟,以形成一旋磁體。 A method for manufacturing a rotating magnet, comprising the steps of: providing a gyromagnetic material, wherein the gyromagnetic material comprises Y 3+z (Mn x Al yx Fe 1-y ) 5-z O 12 in a molar ratio, wherein x=0.018~0.046, y=0.1~0.2, z=-0.04~0.04; performing a first ball milling step on the gyromagnetic material to obtain a gyromagnetic powder; after the first ball milling step, the gyromagnetic powder Performing a calcining step; after the calcining step, performing a second ball milling step on the gyromagnetic powder; after the second ball milling step, performing an annealing step on the gyromagnetic powder; and after the annealing step, Performing a third ball milling step on the gyromagnetic powder; after the third ball milling step, performing a cold press forming step on the gyromagnetic powder to press the gyromagnetic powder into a blank; and at 1350 to 1450 The blank is subjected to a sintering step at a temperature of ° C and oxygen to form a rotating magnet. 如申請專利範圍第1項所述之旋磁體的製造方法,其中該第一球磨步驟是使用氧化鋯珠進行球磨1~3小時。 The method for producing a rotating magnet according to claim 1, wherein the first ball milling step is ball milling using zirconia beads for 1 to 3 hours. 如申請專利範圍第1項所述之旋磁體的製造方法,其中該煆燒步驟的溫度為1150~1250℃,進行1~3小時。 The method for producing a rotating magnet according to claim 1, wherein the temperature of the calcining step is 1150 to 1250 ° C for 1 to 3 hours. 如申請專利範圍第1項所述之旋磁體的製造方法,其中該第二球磨步驟是使用氧化鋯珠進行球磨1~3小時。 The method for producing a rotating magnet according to claim 1, wherein the second ball milling step is ball milling using zirconia beads for 1 to 3 hours. 如申請專利範圍第1項所述之旋磁體的製造方法,其中該退火步驟是在800~900℃下,於空氣中進行0.5~1小時。 The method for producing a rotating magnet according to claim 1, wherein the annealing step is performed in the air at 800 to 900 ° C for 0.5 to 1 hour. 如申請專利範圍第1項所述之旋磁體的製造方法,其中該 第三球磨步驟是使用氧化鋯珠進行球磨0.5~1小時。 The method for manufacturing a rotating magnet according to claim 1, wherein the method The third ball milling step is ball milling using zirconia beads for 0.5 to 1 hour. 如申請專利範圍第1項所述之旋磁體的製造方法,其中該冷間均壓成型步驟不使用有機黏合劑。 The method for producing a rotating magnet according to claim 1, wherein the cold press forming step does not use an organic binder. 如申請專利範圍第1項所述之旋磁體的製造方法,其中該燒結步驟進行時間為5~7小時。 The method for producing a rotating magnet according to claim 1, wherein the sintering step is performed for 5 to 7 hours. 如申請專利範圍第1項所述之旋磁體的製造方法,其中該旋磁體具有飽和磁化強度為700±5%高斯(Gauss)、矯頑磁力小於0.4奧(Oe),以及角形比大於0.85。 The method of manufacturing a rotating magnet according to claim 1, wherein the rotating magnet has a saturation magnetization of 700 ± 5% Gauss, a coercive force of less than 0.4 Oe, and an angular ratio of more than 0.85.
TW105138140A 2016-11-21 2016-11-21 Method for manufacturing gyromagnetic element TWI636032B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105138140A TWI636032B (en) 2016-11-21 2016-11-21 Method for manufacturing gyromagnetic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105138140A TWI636032B (en) 2016-11-21 2016-11-21 Method for manufacturing gyromagnetic element

Publications (2)

Publication Number Publication Date
TW201819339A TW201819339A (en) 2018-06-01
TWI636032B true TWI636032B (en) 2018-09-21

Family

ID=63258298

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105138140A TWI636032B (en) 2016-11-21 2016-11-21 Method for manufacturing gyromagnetic element

Country Status (1)

Country Link
TW (1) TWI636032B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112745122B (en) * 2020-11-12 2022-11-04 绵阳市维奇电子技术有限公司 Preparation method of high-power high-dielectric-constant garnet and garnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414576A (en) * 2001-10-24 2003-04-30 阿尔卑斯电气株式会社 Garnet ferrite and manufacture method and garnet ferrite irreversible element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414576A (en) * 2001-10-24 2003-04-30 阿尔卑斯电气株式会社 Garnet ferrite and manufacture method and garnet ferrite irreversible element

Also Published As

Publication number Publication date
TW201819339A (en) 2018-06-01

Similar Documents

Publication Publication Date Title
Roy et al. Study on electro-magnetic properties of La substituted Ni–Cu–Zn ferrite synthesized by auto-combustion method
Yang et al. The magnetic and dielectric properties of microwave sintered yttrium iron garnet (YIG)
EP3364426B1 (en) Ferrite magnetic material and ferrite sintered magnet
Jia et al. Polycrystalline Bi substituted YIG ferrite processed via low temperature sintering
Guo et al. Effects of In3+-substitution on the structure and magnetic properties of multi-doped YIG ferrites with low saturation magnetizations
Xie et al. Improved sintering characteristics and gyromagnetic properties of low-temperature sintered Li. 42Zn. 27Ti. 11Mn. 1Fe2. 1O4 ferrite ceramics modified with Bi2O3-ZnO-B2O3 glass additive
Li et al. Permeability spectra of planar M‐type barium hexaferrites with high Snoek’s product by two‐step sintering
Liao et al. Microstructure and enhanced magnetic properties of low-temperature sintered LiZnTiMn ferrite ceramics with Bi2O3-Al2O3 additive
Yang et al. Synthesis of nickel zinc ferrite ceramics on enhancing gyromagnetic properties by a novel low-temperature sintering approach for LTCC applications
Wu et al. Barium hexaferrites with narrow ferrimagnetic resonance linewidth tailored by site‐controlled Cu doping
CN104496457A (en) Rare earth-containing permanent magnetic ferrite and manufacturing method thereof
CN111925201B (en) Sc doped hexagonal Zn2W ferrite material and preparation method thereof
CN108191423B (en) Garnet ferrite material applied to ultrahigh-power locking-type phase shifter
Liu et al. Textured M-type barium hexaferrite Ba (ZnSn) xFe12− 2xO19 with c-axis anisotropy and high squareness ratio
Tang et al. Microstructure and characterization of W-type hexaferrite Ba1− xLaxFe22+ Fe163+ O27 prepared by solid state method
Du et al. Two-step sintering of M-type strontium ferrite with high coercivity
Yang et al. Magnetic and structural properties of Sr0. 75La0. 25FexCu0. 20O19 (10.40≤ x≤ 11.80) hexagonal ferrites prepared by the solid-state reaction
Cao et al. Structural, morphological, dielectric and magnetic properties of Zn‐Zr co‐doping yttrium iron garnet
Kong et al. Development of magneto-dielectric materials based on Li-ferrite ceramics: III. Complex relative permeability and magneto-dielectric properties
Zhong et al. Synergetic effect of site-controlled two-step Ca doping on magnetic and electrical properties of M-type strontium hexaferrites
Xu et al. Effects of In-substitution on the microstructure and magnetic properties of Bi-CVG ferrite with low temperature sintering
TWI641577B (en) Method of fabricating modified gyromagnetic material
Huang et al. Effects of Zr-substitution on microstructure and properties of YCaVIG ferrites
Peng et al. Preparation and magnetic properties of SrFe12O19 ferrites suitable for use in self-biased LTCC circulators
TWI636032B (en) Method for manufacturing gyromagnetic element