TWI697771B - Data correcting system and method and data correcting device thereof - Google Patents

Data correcting system and method and data correcting device thereof Download PDF

Info

Publication number
TWI697771B
TWI697771B TW107121363A TW107121363A TWI697771B TW I697771 B TWI697771 B TW I697771B TW 107121363 A TW107121363 A TW 107121363A TW 107121363 A TW107121363 A TW 107121363A TW I697771 B TWI697771 B TW I697771B
Authority
TW
Taiwan
Prior art keywords
data
cyclic redundancy
solar
redundancy check
repair
Prior art date
Application number
TW107121363A
Other languages
Chinese (zh)
Other versions
TW202001557A (en
Inventor
沈建輝
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW107121363A priority Critical patent/TWI697771B/en
Priority to CN201811034538.9A priority patent/CN109150404B/en
Publication of TW202001557A publication Critical patent/TW202001557A/en
Application granted granted Critical
Publication of TWI697771B publication Critical patent/TWI697771B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Abstract

A data correcting system is disclosed. The data correcting system includes a solar energy module array, a data correcting device, and a solar energy data collector. The solar energy module array transmits a solar energy data. The data correcting device receives the solar energy data and determines whether the solar energy data passes a noise filtering algorithm. If yes, a filtered data is generated. The data correcting device determines whether the filtered data pass a cyclic redundancy check (CRC) examination. If not, the filtered data is corrected according to a data correcting algorithm to generate a corrected data. The data correcting device performs the CRC examination for the corrected data. If the corrected data passes the CRC examination, it is regarded that the data correcting is complete. The solar energy data collector receives the corrected data.

Description

資料修補系統、方法及其資料修補裝置 Data repair system, method and data repair device

本發明是有關於一種資料修補系統、方法及其資料修補裝置,且特別是有關於一種使用於太陽能模組陣列之資料修補系統、方法及其資料修補裝置。 The present invention relates to a data repair system, method and data repair device, and more particularly to a data repair system, method and data repair device used in a solar module array.

自動控制系統常常需要透過通訊方式,來取得設備的資料或進行監控設備的動作。最常使用於自動控制系統之通訊協定係為Modbus通訊協定。然而,於監控系統中,通訊品質的好壞往往決定了整體監控系統的穩定程度。降低通訊異常將有助於降低設備的響應時間及增加系統資料的即時性。太陽能案場因為通訊距離較長,故使用RS485線材及Modbus通訊協定作資料查詢及狀態監控。太陽能案場常因佈線規劃不佳,使得設備本身或環境因素產生線路干擾,而在資料通訊過程中產生雜訊而通訊失敗,導致資料蒐集不齊全,無法獲得即時與正確的資料。因此,如何有效地將受雜訊干擾的資料修補復原,並通知使用者太陽能案場的佈線可能有問題,實乃目前業界所致力的方向之一。 Automatic control systems often need to obtain equipment data or monitor equipment actions through communication. The communication protocol most commonly used in automatic control systems is the Modbus communication protocol. However, in the monitoring system, the quality of communication often determines the stability of the overall monitoring system. Reducing communication abnormalities will help reduce device response time and increase the real-timeness of system data. Because of the long communication distance, the solar field uses RS485 wire and Modbus communication protocol for data query and status monitoring. Due to poor wiring planning in solar power plants, the equipment itself or environmental factors produce line interference, and noise is generated during data communication and communication fails, resulting in incomplete data collection and inability to obtain real-time and correct data. Therefore, how to effectively repair and recover data disturbed by noise and inform users that there may be problems with the wiring of the solar field is actually one of the current directions of the industry.

本發明係有關於一種資料修補系統、方法及其資料修補裝置。藉由資料修補裝置執行過濾雜訊演算法,可以讓來自太陽能模組陣列之太陽能資料的雜訊被過濾。而藉由資料修補裝置執行資料修補演算法,使得太陽能資料因線路或環境干擾所導致的資料錯誤可以得到修復。如此,可以提升通訊品質,改善系統的穩定程度。並且可以獲得即時與正確的資料,以增加系統之資料的即時性。 The invention relates to a data repair system, method and data repair device. The noise filtering algorithm executed by the data repair device can filter the noise of the solar data from the solar module array. The data repairing algorithm is executed by the data repairing device, so that the data error of the solar data caused by the line or environmental interference can be repaired. In this way, the communication quality can be improved and the stability of the system can be improved. And get real-time and correct data to increase the real-timeness of the system data.

根據本發明之第一方面,提出一種資料修補系統,包括一太陽能模組陣列、一資料修補裝置、以及一太陽能資料收集器。太陽能模組陣列用以傳送一太陽能資料。資料修補裝置用以接收太陽能資料,並判斷太陽能資料是否通過一過濾雜訊演算法。若此資料修補裝置判斷此太陽能資料通過此過濾雜訊演算法,則產生一過濾資料。資料修補裝置判斷此過濾資料是否通過一循環冗餘校驗(cyclic redundancy check,CRC)檢查。若資料修補裝置判斷過濾資料不通過循環冗餘校驗檢查,則以一資料修補演算法修補此過濾資料,以產生一修補資料。資料修補裝置將修補資料進行循環冗餘校驗檢查。若修補資料通過此循環冗餘校驗檢查,則視為完成資料修補。而太陽能資料收集器則是用以接收此修補資料。 According to the first aspect of the present invention, a data repair system is provided, which includes a solar module array, a data repair device, and a solar data collector. The solar module array is used to transmit a solar data. The data repairing device is used to receive solar data and determine whether the solar data passes a noise filtering algorithm. If the data repairing device determines that the solar data passes the noise filtering algorithm, it generates a filtered data. The data repair device determines whether the filtered data passes a cyclic redundancy check (CRC) check. If the data repairing device determines that the filtered data does not pass the cyclic redundancy check check, a data repair algorithm is used to repair the filtered data to generate a repaired data. The data repair device performs cyclic redundancy check on the repaired data. If the repaired data passes this cyclic redundancy check, it is deemed to be completed. The solar data collector is used to receive the repair data.

根據本發明之第二方面,提出一種資料修補方法,包括以下步驟。接收一太陽能資料,並判斷太陽能資料是否通過一過濾雜訊演算法。若判斷太陽能資料通過過濾雜訊演算法,則產生一過濾資料,並判斷過濾資料是否通過一循環冗餘校驗檢查。若判斷過濾資料不通過循環冗餘校驗檢查,則以一資料修補演算法修補過濾資料,以 產生一修補資料。將修補資料進行循環冗餘校驗檢查。若修補資料通過循環冗餘校驗檢查,則視為完成資料修補。傳送修補資料至一太陽能資料收集器。 According to the second aspect of the present invention, a data repair method is provided, which includes the following steps. Receive a solar energy data, and judge whether the solar energy data passes a filtering noise algorithm. If it is judged that the solar data passes the filtering noise algorithm, a filtering data is generated, and it is judged whether the filtering data passes a cyclic redundancy check. If it is judged that the filtered data does not pass the cyclic redundancy check check, a data repair algorithm is used to repair the filtered data to Generate a patch data. Perform cyclic redundancy check on the patched materials. If the repaired data passes the cyclic redundancy check check, it is deemed to be completed. Send repair data to a solar data collector.

根據本發明之第三方面,提出一種資料修補裝置,包括一收發單元及一處理單元。收發單元用以接收一太陽能模組陣列傳送之一太陽能資料。處理單元則是用以判斷太陽能資料是否通過一過濾雜訊演算法,若處理單元判斷太陽能資料通過過濾雜訊演算法,則產生一過濾資料。處理單元更判斷過濾資料是否通過一循環冗餘校驗檢查。若處理單元判斷過濾資料不通過循環冗餘校驗檢查,則以一資料修補演算法修補過濾資料,以產生一修補資料。處理單元將修補資料進行循環冗餘校驗檢查。若修補資料通過循環冗餘校驗檢查,則視為完成資料修補。 According to a third aspect of the present invention, a data repair device is provided, which includes a transceiver unit and a processing unit. The transceiver unit is used for receiving a solar data transmitted by a solar module array. The processing unit is used to determine whether the solar data passes a noise filtering algorithm, and if the processing unit determines that the solar data passes the noise filtering algorithm, a filtering data is generated. The processing unit further determines whether the filtered data passes a cyclic redundancy check. If the processing unit determines that the filtered data does not pass the cyclic redundancy check, it uses a data repair algorithm to repair the filtered data to generate a repaired data. The processing unit performs a cyclic redundancy check on the repaired data. If the repaired data passes the cyclic redundancy check check, it is deemed to be completed.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to have a better understanding of the above-mentioned and other aspects of the present invention, the following specific examples are given in conjunction with the accompanying drawings to describe in detail as follows:

100:資料修補系統 100: Data Repair System

102:太陽能模組陣列 102: Solar module array

104:資料修補裝置 104: Data Repair Device

106:太陽能資料收集器 106: Solar Data Collector

108:雲端伺服器 108: Cloud Server

110:太陽能監控系統 110: Solar Monitoring System

202:收發單元 202: transceiver unit

204:處理單元 204: Processing Unit

206:警示裝置 206: Warning Device

302~332:流程步驟 302~332: Process steps

第1圖繪示依照本發明一較佳實施例之一種資料修補系統的方塊圖。 FIG. 1 is a block diagram of a data repair system according to a preferred embodiment of the present invention.

第2圖繪示依照本發明較佳實施例之資料修補系統的詳細結構之一例的方塊圖。 FIG. 2 is a block diagram showing an example of the detailed structure of the data repair system according to the preferred embodiment of the present invention.

第3A圖繪示乃依照本發明一較佳實施例之一種資料修補方法的流程圖。 FIG. 3A shows a flowchart of a data repair method according to a preferred embodiment of the present invention.

第3B圖繪示乃第3A圖中步驟310的詳細流程圖。 Figure 3B shows a detailed flowchart of step 310 in Figure 3A.

第4圖繪示依照本發明較佳實施例之資料修補裝置所執行之過濾雜訊演算法之一例的示意圖。 FIG. 4 is a schematic diagram of an example of a noise filtering algorithm executed by the data repair device according to the preferred embodiment of the present invention.

第5圖繪示依照本發明較佳實施例之資料修補裝置所執行之資料修補演算法之標頭比對法之一例的示意圖。 FIG. 5 is a schematic diagram of an example of a header comparison method of the data repair algorithm executed by the data repair device according to the preferred embodiment of the present invention.

第6圖繪示依照本發明較佳實施例之資料修補裝置所執行之資料修補演算法之資料比對法之一例的示意圖。 FIG. 6 is a schematic diagram of an example of a data comparison method of the data repair algorithm executed by the data repair device according to the preferred embodiment of the present invention.

第7圖繪示依照本發明較佳實施例之資料修補裝置所執行之資料修補演算法之循環冗餘校驗比對法之一例的示意圖。 FIG. 7 is a schematic diagram of an example of the cyclic redundancy check comparison method of the data repair algorithm executed by the data repair device according to the preferred embodiment of the present invention.

請參照第1圖,其繪示乃依照本發明一較佳實施例之一種資料修補系統的方塊圖。資料修補系統100包括一太陽能模組陣列102、一資料修補裝置104、及一太陽能資料收集器106。太陽能模組陣列102係用以傳送一太陽能資料SD。資料修補裝置104係用以接收太陽能資料SD,並判斷太陽能資料SD是否通過一過濾雜訊演算法。若資料修補裝置104判斷太陽能資料SD通過過濾雜訊演算法,則產生一過濾資料FD。資料修補裝置104並判斷過濾資料FD是否通過一循環冗餘校驗(cyclic redundancy check,CRC)檢查。若資料修補裝置104判斷過濾資料FD不通過此循環冗餘校驗檢查,則以一資料修補演算法修補過濾資料FD,以產生一修補資料MD。資料修補裝置104將修補資料MD進行循環冗餘校驗檢查。若修補資料MD通過循環冗餘校驗檢 查,則視為完成資料修補。太陽能資料收集器106則是用以接收此修補資料MD。 Please refer to FIG. 1, which shows a block diagram of a data repair system according to a preferred embodiment of the present invention. The data repair system 100 includes a solar module array 102, a data repair device 104, and a solar data collector 106. The solar module array 102 is used to transmit a solar data SD. The data repairing device 104 is used to receive the solar data SD and determine whether the solar data SD passes a noise filtering algorithm. If the data repairing device 104 determines that the solar data SD passes the filtering noise algorithm, a filtering data FD is generated. The data repair device 104 also determines whether the filtered data FD passes a cyclic redundancy check (CRC) check. If the data repairing device 104 determines that the filter data FD does not pass the cyclic redundancy check, a data repair algorithm is used to repair the filter data FD to generate a repair data MD. The data repairing device 104 performs a cyclic redundancy check on the repaired data MD. If the repair data MD passes the cyclic redundancy check Check, it is deemed to have completed the data repair. The solar data collector 106 is used to receive the repair data MD.

藉由資料修補裝置104執行過濾雜訊演算法,可以讓來自太陽能模組陣列102之太陽能資料SD的雜訊被過濾。而藉由資料修補裝置104執行資料修補演算法,使得太陽能資料SD因線路或環境干擾所導致的資料錯誤可以得到修復。如此,可以提升通訊品質,改善系統的穩定程度。並且可以獲得即時與正確的資料,以增加系統之資料的即時性。 The noise filtering algorithm executed by the data repairing device 104 can filter the noise of the solar data SD from the solar module array 102. The data repairing device 104 executes the data repairing algorithm, so that the data error of the solar data SD caused by the line or environmental interference can be repaired. In this way, the communication quality can be improved and the stability of the system can be improved. And get real-time and correct data to increase the real-timeness of the system data.

其中,當資料修補裝置104判斷太陽能資料SD無法通過上述之過濾雜訊演算法,則發出一無法過濾警示訊息Alrt1至一雲端伺服器108。雲端伺服器108再將此無法過濾警示訊息Alrt1傳送至一太陽能監控系統110。太陽能監控系統110例如可藉由一顯示器或一行動裝置來顯示對應至無法過濾警示訊息Alrt1的信號,例如是提醒訊息(例如是一個警示訊息)、提醒聲響、或提醒用光訊號,以讓使用者得知太陽能資料SD因為雜訊過多無法濾除,故無法通過上述之過濾雜訊演算法。藉由此無法過濾警示訊息Alrt1,使用者將可得知太陽能模組陣列102可能有佈線規劃不佳,或太陽能模組本身有問題,或是因為環境因素而產生線路干擾,而在資料傳送過程中產生雜訊而通訊失敗。因此,此無法過濾警示訊息Alrt1將可提醒使用者太陽能模組陣列102的佈線或設備可能有問題,而需進行檢查。 Wherein, when the data repair device 104 determines that the solar data SD cannot pass the aforementioned noise filtering algorithm, it sends an unfiltered warning message Alrt1 to a cloud server 108. The cloud server 108 then sends the unfiltered warning message Alrt1 to a solar monitoring system 110. The solar energy monitoring system 110 can, for example, use a display or a mobile device to display the signal corresponding to the unfiltered warning message Alrt1, such as a reminder message (for example, a warning message), a warning sound, or a warning light signal for use It is learned that the solar data SD cannot be filtered out because of too much noise, so it cannot pass the above-mentioned noise filtering algorithm. With this inability to filter the warning message Alrt1, the user will know that the solar module array 102 may have poor wiring planning, or the solar module itself may have problems, or wiring interference due to environmental factors, and during the data transmission process Noisy is generated during the communication and communication fails. Therefore, the inability to filter warning message Alrt1 will remind the user that there may be a problem with the wiring or equipment of the solar module array 102 and need to be checked.

若修補資料MD無法通過循環冗餘校驗檢查,則資料修補裝置104發出無法修補警示訊息Alrt2至雲端伺服器108。雲端伺服 器108再將此無法修補警示訊息Alrt2傳送至太陽能監控系統110,以讓使用者得知太陽能資料SD資料有誤且無法修補。藉由此無法修補警示訊息Alrt2,使用者將可得知太陽能模組陣列102本身或是傳送資料之線路可能有問題,而在資料傳送過程中產生資料錯誤。因此,此無法修補警示訊息Alrt2將可提醒使用者太陽能模組陣列102的佈線或設備可能有問題,而需進行檢查。 If the repaired data MD fails to pass the cyclic redundancy check, the data repairing device 104 sends a repair failure warning message Alrt2 to the cloud server 108. Cloud server The device 108 then sends the unrepairable warning message Alrt2 to the solar monitoring system 110 to let the user know that the solar data SD data is incorrect and cannot be repaired. With the inability to repair the warning message Alrt2, the user will know that the solar module array 102 itself or the data transmission line may have a problem, and a data error occurs during the data transmission process. Therefore, this unrepairable warning message Alrt2 will remind the user that there may be a problem with the wiring or equipment of the solar module array 102, which needs to be checked.

太陽能資料收集器106更用以發出一資料取得命令Rqst,使資料修補裝置104通知太陽能模組陣列102回傳對應此資料取得命令Rqst的太陽能資料SD。太陽能資料收集器106例如可以在太陽能監控系統110的控制之下,於使用者希望瞭解太陽能模組陣列102的狀態時,發出此資料取得命令Rqst,以要求太陽能模組陣列102回傳對應此資料取得命令Rqst的太陽能資料SD。 The solar data collector 106 is further used to issue a data acquisition command Rqst, so that the data repair device 104 notifies the solar module array 102 to return the solar data SD corresponding to the data acquisition command Rqst. The solar data collector 106 can, for example, be under the control of the solar monitoring system 110. When the user wants to know the status of the solar module array 102, the data acquisition command Rqst is issued to request the solar module array 102 to return the corresponding data Obtain the solar data SD of the command Rqst.

茲將上述之資料修補系統100進一步說明如下。請參照第2圖,其繪示乃依照本發明較佳實施例之資料修補系統100的詳細結構之一例的方塊圖。資料修補裝置104例如包括一收發單元202及一處理單元204。收發單元202用以接收太陽能模組陣列102傳送之太陽能資料SD。處理單元204則是用以判斷太陽能資料SD是否通過過濾雜訊演算法。若處理單元204判斷太陽能資料SD通過過濾雜訊演算法,則處理單元204產生過濾資料FD。處理單元204並判斷過濾資料FD是否通過循環冗餘校驗檢查。若處理單元204判斷過濾資料FD不通過循環冗餘校驗檢查,則以資料修補演算法修補過濾資料FD,以產生修補資 料MD。處理單元204將修補資料MD進行循環冗餘校驗檢查。若修補資料MD通過循環冗餘校驗檢查,則視為完成資料修補。 The above-mentioned data repair system 100 is further explained as follows. Please refer to FIG. 2, which shows a block diagram of an example of the detailed structure of the data repair system 100 according to the preferred embodiment of the present invention. The data repair device 104 includes, for example, a transceiver unit 202 and a processing unit 204. The transceiver unit 202 is used for receiving the solar data SD transmitted by the solar module array 102. The processing unit 204 is used to determine whether the solar data SD passes the noise filtering algorithm. If the processing unit 204 determines that the solar data SD passes the noise filtering algorithm, the processing unit 204 generates the filtering data FD. The processing unit 204 also determines whether the filtered data FD passes the cyclic redundancy check. If the processing unit 204 determines that the filtered data FD does not pass the cyclic redundancy check, it uses a data repair algorithm to repair the filtered data FD to generate repair data 料MD. The processing unit 204 performs a cyclic redundancy check on the repaired data MD. If the repaired data MD passes the cyclic redundancy check check, it is deemed to be completed.

當處理單元204判斷太陽能資料SD無法通過過濾雜訊演算法,則處理單元204發出無法過濾警示訊息Alrt1至雲端伺服器108。若處理單元204判斷修補資料MD無法通過循環冗餘校驗檢查,則處理單元204發出無法修補警示訊息Alrt2至雲端伺服器108。 When the processing unit 204 determines that the solar energy data SD cannot pass the noise filtering algorithm, the processing unit 204 sends an unfiltered warning message Alrt1 to the cloud server 108. If the processing unit 204 determines that the repaired data MD cannot pass the cyclic redundancy check, the processing unit 204 sends a repair failure warning message Alrt2 to the cloud server 108.

上述之處理單元例如是可以執行程式碼的處理器或中央處理器(CPU),或其他具有控制、處理、運算功能的硬體或韌體。而收發單元則例如為可以接受或發送訊號的硬體或電路。 The aforementioned processing unit is, for example, a processor or a central processing unit (CPU) that can execute program codes, or other hardware or firmware with control, processing, and arithmetic functions. The transceiver unit is, for example, a hardware or circuit that can receive or send signals.

資料修補裝置104更包括一警示裝置206,用以於處理單元204發出無法過濾警示訊息Alrt1或無法修補警示訊息Alrt2時,發出一警示提醒信號。此警示提醒信號可為一光信號及一聲音信號二者至少其中之一。例如,警示裝置206可以是一發光二極體(Light Emitting Diode,LED)燈,上述之光信號例如為某種顏色之LED燈點亮時所發出的光線,以提醒使用者注意。此光信號也可以是某種頻率的閃光信號。警示裝置206例如也可以是一警鈴,而上述之聲音信號則可以例如是警鈴聲,以提醒使用者注意。 The data repairing device 104 further includes a warning device 206 for sending a warning signal when the processing unit 204 sends out a warning message Alrt1 that cannot be filtered or a warning message Alrt2 that cannot be repaired. The warning signal can be at least one of a light signal and a sound signal. For example, the warning device 206 may be a Light Emitting Diode (LED) light, and the above-mentioned light signal is, for example, the light emitted by a certain color of LED light when it is lit to remind the user to pay attention. This light signal can also be a flash signal of a certain frequency. The warning device 206 may also be, for example, an alarm bell, and the above-mentioned sound signal may be, for example, an alarm bell to remind the user to pay attention.

太陽能模組陣列102、資料修補裝置104、及太陽能資料收集器106例如是透過RS485串口(serial port)來彼此通信。於太陽能模組陣列102中,每個太陽能模組亦可各自包含一個逆變器(Inverter)或者分別與一個逆變器電性連接,以將太陽能模組所產生的直流(DC)訊號轉為交流(AC)訊號。資料修補裝置104及太陽能資料收集器106例如是透過網路路由器(未繪示)來將資料傳送至雲端伺服器108。 The solar module array 102, the data repair device 104, and the solar data collector 106 communicate with each other through a RS485 serial port, for example. In the solar module array 102, each solar module may also include an inverter (Inverter) or be electrically connected to an inverter, so as to convert the direct current (DC) signal generated by the solar module into Alternating current (AC) signal. The data repairing device 104 and the solar data collector 106 transmit data to the cloud server 108 via a network router (not shown), for example.

茲將資料修補系統100所使用之資料修補方法進一步說明如下。請參照第3A圖,其繪示乃依照本發明一較佳實施例之一種資料修補方法的流程圖。本實施例之資料修補方法包括以下步驟。首先,於步驟302,接收太陽能資料SD。接著,進入步驟304,判斷此太陽能資料SD是否通過過濾雜訊演算法。於步驟304中,若判斷太陽能資料SD通過過濾雜訊演算法,則進入步驟306,產生過濾資料FD。而當判斷太陽能資料SD無法通過此過濾雜訊演算法時,則進入步驟316,發出無法過濾警示訊息Alrt1至雲端伺服器108。 The data repair method used by the data repair system 100 is further explained as follows. Please refer to FIG. 3A, which shows a flowchart of a data repair method according to a preferred embodiment of the present invention. The data repair method of this embodiment includes the following steps. First, in step 302, the solar data SD is received. Then, proceed to step 304 to determine whether the solar data SD passes the noise filtering algorithm. In step 304, if it is determined that the solar energy data SD passes the noise filtering algorithm, then step 306 is entered to generate the filtering data FD. When it is determined that the solar energy data SD cannot pass the noise filtering algorithm, step 316 is entered, and an unfiltered warning message Alrt1 is sent to the cloud server 108.

於步驟306之後,接著執行步驟308,判斷過濾資料FD是否通過循環冗餘校驗檢查。於步驟308中,若判斷過濾資料FD不通過循環冗餘校驗檢查,則進入步驟310,以資料修補演算法修補過濾資料FD,以產生修補資料MD。然後,執行步驟312,將此修補資料MD進行循環冗餘校驗檢查。 After step 306, step 308 is then executed to determine whether the filtered data FD passes the cyclic redundancy check check. In step 308, if it is determined that the filter data FD does not pass the cyclic redundancy check check, step 310 is entered to repair the filter data FD with the data repair algorithm to generate the repair data MD. Then, step 312 is executed to perform a cyclic redundancy check check on the repair material MD.

於步驟312中,若修補資料MD通過循環冗餘校驗檢查,則進入步驟314,視為完成資料修補,並傳送此修補資料MD至太陽能資料收集器106。於步驟312中,若修補資料MD無法通過此循環冗餘校驗檢查,則進入步驟318,發出無法修補警示訊息Alrt2至雲端伺服器108。 In step 312, if the repaired data MD passes the cyclic redundancy check check, step 314 is entered, the data repairing is deemed to be completed, and the repaired data MD is sent to the solar data collector 106. In step 312, if the repair data MD fails to pass the cyclic redundancy check, step 318 is entered, and a repair failure warning message Alrt2 is sent to the cloud server 108.

茲將上述之過濾雜訊演算法進一步說明如下。請參照第4圖,其繪示乃依照本發明較佳實施例之資料修補裝置104所執行之過濾雜訊演算法之一例的示意圖。資料修補裝置104於接收太陽能資料SD後,藉由過濾雜訊演算法以找出太陽能資料SD的一標頭部分402, 並根據標頭部分402擷取太陽能資料SD的一資料部分404及一循環冗餘校驗碼部分406,藉此過濾雜訊。 The above-mentioned noise filtering algorithm is further explained as follows. Please refer to FIG. 4, which shows a schematic diagram of an example of a noise filtering algorithm executed by the data repair device 104 according to a preferred embodiment of the present invention. After receiving the solar data SD, the data repairing device 104 finds a header part 402 of the solar data SD by filtering the noise algorithm. A data part 404 and a cyclic redundancy check code part 406 of the solar data SD are retrieved according to the header part 402 to filter noise.

更進一步來說,過濾雜訊演算法例如是依照太陽能資料收集器106所發出之資料取得命令Rqst的內容值,來找出太陽能資料SD的標頭部分402。以Modbus通訊協定為例,如第4圖所示,資料取得命令Rqst的第[0]個位元組定義了從屬裝置之位址(Slave address),假設其十六進位之內容值例如為01,代表此資料取得命令Rqst係為對應至太陽能模組陣列102中,位址為01之太陽能模組或太陽能模組的逆變器。資料取得命令Rqst的第[1]個位元組定義了此資料取得命令Rqst所對應的功能(Function),假設其十六進位之內容值例如為03,代表此資料取得命令Rqst係為針對內容值03所對應的功能。 Furthermore, the noise filtering algorithm is, for example, to obtain the content value of the command Rqst according to the data sent by the solar data collector 106 to find the header portion 402 of the solar data SD. Take the Modbus communication protocol as an example. As shown in Figure 4, the [0] byte of the data acquisition command Rqst defines the slave address (Slave address), assuming that its hexadecimal content value is, for example, 01 , Means that the data acquisition command Rqst is corresponding to the solar module or the inverter of the solar module whose address is 01 in the solar module array 102. The [1] byte of the data acquisition command Rqst defines the function corresponding to the data acquisition command Rqst. Assuming that its hexadecimal content value is, for example, 03, it means that the data acquisition command Rqst is content-specific The function corresponding to the value 03.

於太陽能資料收集器106發出資料取得命令Rqst之後,資料修補裝置104係通知太陽能模組陣列102回傳對應此資料取得命令Rqst的太陽能資料SD,如第4圖所示。太陽能資料SD的第[0]個位元組定義了從屬裝置之位址,假設其十六進位之內容值例如為01,代表此太陽能資料SD係為對應至太陽能模組陣列102中,位址為01之太陽能模組或太陽能模組的逆變器。太陽能資料SD的第[1]個位元組定義了此太陽能資料SD所對應的功能,假設其十六進位之內容值例如為03,代表此太陽能資料SD係為針對內容值03所對應的功能。 After the solar data collector 106 issues the data acquisition command Rqst, the data repair device 104 informs the solar module array 102 to return the solar data SD corresponding to the data acquisition command Rqst, as shown in FIG. 4. The [0] byte of the solar data SD defines the address of the slave device. Assuming that its hexadecimal content value is for example 01, it means that the solar data SD corresponds to the solar module array 102. The address It is 01 solar module or inverter of solar module. The [1] byte of the solar data SD defines the function corresponding to the solar data SD. Assuming that its hexadecimal content value is for example 03, it means that the solar data SD is the function corresponding to the content value 03 .

於本實施例之過濾雜訊演算法中,例如是依照太陽能資料收集器106所發出之資料取得命令Rqst的第[0]個位元組之內容值01與第[1]個位元組內容值03,來找出太陽能資料SD的標頭部分402, 亦即是太陽能資料SD的第[0]個位元組與第[1]個位元組。也就是,本實施例之過濾雜訊演算法係從包含有太陽能資料SD的一串資料中,找到內容值為01與03的部分,來找出太陽能資料SD的標頭部分402。接著,從內容值為01與03的位元組之後的下一個位元組(亦即是太陽能資料SD的第[2]個位元組)可以得知,資料部分的位元組個數為04,意指接下來的四個位元組皆為資料位元組,而得到資料部分404。而資料部分404接下來的兩個位元組則為循環冗餘校驗碼,而可得到循環冗餘校驗碼部分406。如此,即可得到太陽能資料SD的完整資料。這樣一來,即可得知包含有太陽能資料SD的一串資料中,於標頭部分402前面的部分係為雜訊,且於循環冗餘校驗碼部分406之後的部分亦為雜訊,過濾雜訊演算法可將這些雜訊濾除,而得到太陽能資料SD。 In the noise filtering algorithm of this embodiment, for example, the content value 01 of the [0] byte and the content of the [1] byte of the command Rqst issued by the solar data collector 106 are obtained. Value 03 to find the header part 402 of the solar data SD, That is, the [0]th byte and the [1]th byte of the solar data SD. That is, the noise filtering algorithm of this embodiment finds the parts with content values of 01 and 03 from a string of data containing the solar data SD to find the header part 402 of the solar data SD. Then, from the next byte after the byte with the content value of 01 and 03 (that is, the [2] byte of the solar data SD), it can be known that the number of bytes in the data part is 04 means that the next four bytes are data bytes, and the data part 404 is obtained. The next two bytes of the data part 404 are cyclic redundancy check codes, and the cyclic redundancy check code part 406 can be obtained. In this way, the complete data of the solar data SD can be obtained. In this way, it can be known that in a string of data containing solar data SD, the part before the header part 402 is noise, and the part after the cyclic redundancy check code part 406 is also noise. The noise filtering algorithm can filter these noises to obtain the solar energy data SD.

若資料修補裝置104無法依照上述方法,根據資料取得命令Rqst的第[0]個位元組之內容值01與第[1]個位元組內容值03,來找出太陽能資料SD的標頭部分402的話,則則資料修補裝置104亦無法根據標頭部分402擷取太陽能資料SD的資料部分404及循環冗餘校驗碼部分406,而無法過濾雜訊。此時,資料修補裝置104判斷太陽能資料SD無法通過上述之過濾雜訊演算法,而將會發出無法過濾警示訊息Alrt1至雲端伺服器108。 If the data repair device 104 cannot follow the above method, find the header of the solar data SD according to the content value 01 of the [0]th byte and the content value 03 of the [1]th byte of the data acquisition command Rqst In the case of part 402, the data repair device 104 cannot retrieve the data part 404 and the cyclic redundancy check code part 406 of the solar data SD according to the header part 402, and cannot filter the noise. At this time, the data repairing device 104 determines that the solar data SD cannot pass the above-mentioned noise filtering algorithm, and will issue an unfiltered warning message Alrt1 to the cloud server 108.

茲將上述之資料修補演算法進一步說明如下。請同時參考第3B圖,其繪示乃第3A圖中步驟310的詳細流程圖。如第3B圖之流程圖所示,資料修補演算法包含一標頭比對法320、一資料比對法322及一循環冗餘校驗比對法324。請參照第5至7圖,其中第5 圖繪示依照本發明較佳實施例之資料修補裝置所執行之資料修補演算法之標頭比對法之一例的示意圖;第6圖繪示依照本發明較佳實施例之資料修補裝置所執行之資料修補演算法之資料比對法之一例的示意圖;第7圖繪示依照本發明較佳實施例之資料修補裝置所執行之資料修補演算法之循環冗餘校驗比對法之一例的示意圖。 The above-mentioned data repair algorithm is further explained as follows. Please also refer to FIG. 3B, which shows a detailed flowchart of step 310 in FIG. 3A. As shown in the flowchart of FIG. 3B, the data repair algorithm includes a header comparison method 320, a data comparison method 322, and a cyclic redundancy check comparison method 324. Please refer to Figures 5 to 7, where the 5th The figure shows a schematic diagram of an example of the header matching method of the data repair algorithm executed by the data repair device according to the preferred embodiment of the present invention; Figure 6 shows the data repair device executed according to the preferred embodiment of the present invention A schematic diagram of an example of the data comparison method of the data repair algorithm; Figure 7 shows an example of the cyclic redundancy check comparison method of the data repair algorithm executed by the data repair device of the preferred embodiment of the present invention Schematic.

如第3B圖之步驟320所示,標頭比對法將此太陽能資料SD(亦即是將太陽能資料SD藉由過濾雜訊演算法過濾雜訊號所得到的過濾資料FD)的一標頭部分與多個已知標頭進行比對,並標示出此些已知標頭中的至少一正確標頭,此至少一正確標頭對應到至少一第一已知資料,如第3B圖之步驟326所示。以第5圖所示之資料DX為例,標頭比對法係將資料DX的標頭部分(位元組索引值為[0]至[2]的內容值01、03及14)分別與一正確資料表之的資料D1至資料D10的多個已知標頭進行比對(位元組索引值為[0]至[2]的內容值),並找出與DX的標頭部分中的至少一個位元組之內容值相同的至少一正確標頭。於第5圖的例子中,資料D1至資料D10的標頭的位元組索引值為[0]與[1]的內容值為01與03(如粗線框線所框示),其係與資料DX的標頭部分的位元組索引值為[0]與[1]的內容值01與03相同。資料D1至資料D10的標頭的位元組索引值為[0]至[2]內容值的三個位元組中,只要有一個位元組的內容值與資料DX之對應的標頭部分的位元組之內容值相同,即可被選為正確標頭。於本例中,所得到之至少一正確標頭例如是資料D1至資料D10的標頭。這些標頭係對應到多個第一已知資料,亦即是資料D1至資料D10。其中,上述之正確資料表例如是記錄了最近10筆成功傳輸的正確資料D1至D10。 As shown in step 320 of Fig. 3B, the header comparison method is a header part of the solar data SD (that is, the filtered data FD obtained by filtering the solar data SD through the noise filtering algorithm) Compare with multiple known headers, and mark at least one correct header among the known headers, and the at least one correct header corresponds to at least one first known data, as shown in the step of Figure 3B 326 shown. Taking the data DX shown in Figure 5 as an example, the header comparison method will compare the header part of the data DX (the content values 01, 03, and 14 with byte index values from [0] to [2]) respectively Compare multiple known headers of data D1 to data D10 in a correct data table (byte index value is [0] to [2] content value), and find out the header part of DX At least one correct header with the same content value of at least one byte of. In the example shown in Figure 5, the byte index values of the headers of data D1 to data D10 are [0] and [1], and the content values are 01 and 03 (as indicated by the bold frame). The byte index values of the header part of the data DX are the same as the content values 01 and 03 of [0] and [1]. The byte index value of the header of the data D1 to the data D10 is [0] to [2] among the three bytes of the content value, as long as there is one byte whose content value corresponds to the header part of the data DX The contents of the bytes of the same value can be selected as the correct header. In this example, the obtained at least one correct header is, for example, headers of data D1 to data D10. These headers correspond to a plurality of first known data, that is, data D1 to data D10. The above-mentioned correct data table records, for example, the last 10 successfully transmitted correct data D1 to D10.

如第3B圖之步驟322所示,資料比對法將太陽能資料SD(或過濾資料FD)的一資料部分與多個已知資料組進行比對,並標示出此些已知資料組中的至少一正確資料組,此至少一正確資料組對應到至少一第二已知資料,如第3B圖之步驟328所示。以第6圖所示之資料DX為例,資料比對法係將資料DX的資料部分(位元組索引值為[3]至[6]的內容值FF、FF、FA、0A)分別與正確資料表之資料D1至資料D10的多個已知資料組進行比對(位元組索引值為[3]至[6]的內容值),並找出與DX的資料部分中的至少一個位元組之內容值相同的至少一正確資料組。於第6圖的例子中,資料D2之位元組索引值為[6]的內容值0A與資料DX的資料部分的位元組索引值為[6]的內容值0A相同,而資料D5之位元組索引值為[4]的內容值FF與資料DX的資料部分的位元組索引值為[4]的內容值FF相同,如粗線框線所框示。故資料D2之資料組與資料D5之資料組被選為正確資料組。於本例中,所得到之至少一正確資料組例如是資料D2與資料D5的資料組。這些資料組係對應到多個第二已知資料,亦即是資料D2與資料D5。 As shown in step 322 in Figure 3B, the data comparison method compares a data part of the solar data SD (or filtered data FD) with multiple known data sets, and marks the data in these known data sets At least one correct data group, and the at least one correct data group corresponds to at least one second known data, as shown in step 328 in FIG. 3B. Taking the data DX shown in Figure 6 as an example, the data comparison method compares the data part of the data DX (the content values FF, FF, FA, 0A with byte index values [3] to [6]) respectively Compare multiple known data groups of data D1 to data D10 in the correct data table (byte index value is [3] to [6] content value), and find at least one of the data parts with DX At least one correct data group with the same content value of the byte. In the example in Figure 6, the byte index value of the data D2 is the content value 0A of [6] and the byte index value of the data part of the data DX is the same as the content value 0A of [6], and the data D5 is The content value FF with a byte index value of [4] is the same as the content value FF with a byte index value of [4] in the data part of the data DX, as indicated by a thick frame. Therefore, the data group of data D2 and the data group of data D5 are selected as the correct data group. In this example, the obtained at least one correct data group is, for example, a data group of data D2 and data D5. These data sets correspond to a plurality of second known data, namely data D2 and data D5.

如第3B圖之步驟324所示,循環冗餘校驗比對法將太陽能資料SD(或過濾資料FD)的一循環冗餘校驗碼部分與多個已知循環冗餘校驗碼進行比對,並標示出此些已知循環冗餘校驗碼中的至少一正確循環冗餘校驗碼,此至少一正確循環冗餘校驗碼對應到至少一第三已知資料,如第3B圖之步驟330所示。以第7圖所示之資料DX為例,循環冗餘校驗比對法係將資料DX的循環冗餘校驗碼部分(位元組索引值為[7]至[8]的內容值CB與FF)分別與正確資料表之資料D1至資料D10的多個已知循環冗餘校驗碼進行比對(位元組索引值為[7]至[8]的內容值),並找出與DX的循環冗餘校驗碼部分中的至少一個 位元組之內容值相同的至少一正確循環冗餘校驗碼。於第7圖的例子中,資料D5之位元組索引值為[7]的內容值CB與資料DX的循環冗餘校驗碼部分的位元組索引值為[7]的內容值CB相同,如粗線框線所框示,故資料D5之循環冗餘校驗碼被選為正確循環冗餘校驗碼。於本例中,所得到之至少一正確循環冗餘校驗碼例如是資料D5的循環冗餘校驗碼。此至少一正確循環冗餘校驗碼係對應到至少一個第三已知資料,亦即是資料D5。 As shown in step 324 of Figure 3B, the cyclic redundancy check comparison method compares a cyclic redundancy check code part of the solar data SD (or filtered data FD) with multiple known cyclic redundancy check codes. Yes, and mark at least one correct cyclic redundancy check code among the known cyclic redundancy check codes, and this at least one correct cyclic redundancy check code corresponds to at least one third known data, such as 3B This is shown in step 330 of the figure. Taking the data DX shown in Figure 7 as an example, the cyclic redundancy check comparison method will compare the cyclic redundancy check code part of the data DX (byte index value [7] to [8] content value CB Compare with FF) and multiple known cyclic redundancy check codes of data D1 to data D10 in the correct data table (byte index value is [7] to [8] content value), and find At least one of the cyclic redundancy check code part of DX At least one correct cyclic redundancy check code with the same content value of the byte. In the example in Figure 7, the content value CB with the byte index value [7] of the data D5 is the same as the content value CB with the byte index value [7] of the cyclic redundancy check code part of the data DX , As indicated by the thick frame, so the cyclic redundancy check code of data D5 is selected as the correct cyclic redundancy check code. In this example, the obtained at least one correct cyclic redundancy check code is, for example, the cyclic redundancy check code of data D5. The at least one correct cyclic redundancy check code corresponds to at least one third known data, that is, data D5.

資料修補裝置104或資料修補裝置104的處理單元204依據此至少一第一已知資料、此至少一第二已知資料及此至少一第三已知資料以比對出重複次數最高者作為此修補資料MD,並且判斷是否可以得到此修補資料MD,如第3B圖之步驟332所示。由第5圖至第7圖的例子可知,至少一第一已知資料包括資料D1至D10,至少一第二已知資料包括資料D2與D5,而至少一第三已知資料則包括資料D5。其中,重複次數最高者係為資料D5,因此資料D5係作為上述之修補資料MD,如於第3B圖之步驟332所示。 The data repair device 104 or the processing unit 204 of the data repair device 104 compares the one with the highest number of repetitions based on the at least one first known data, the at least one second known data, and the at least one third known data. Repair the data MD, and determine whether the repair data MD can be obtained, as shown in step 332 in FIG. 3B. As can be seen from the examples in Figures 5 to 7, at least one first known data includes data D1 to D10, at least one second known data includes data D2 and D5, and at least one third known data includes data D5 . Among them, the one with the highest number of repetitions is data D5, so data D5 is used as the aforementioned repair data MD, as shown in step 332 in FIG. 3B.

於第3B圖之步驟332之產生修補資料MD並判斷修補資料MD是否產生的步驟中,若已得到此修補資料MD,例如是上例中的資料D5,則進入步驟312,將此修補資料MD(亦即是資料D5)進行循環冗餘校驗檢查。例如是將資料D5的標頭(位元組索引值為[0]至[2]的內容值)與資料組(位元組索引值為[3]至[6]的內容值)進行循環冗餘校驗之一特定運算,以得到二個位元組的循環冗餘校驗碼,再與資料 D5的循環冗餘校驗碼的二個位元組相較。若相同,則代表此修補資料MD(亦即是資料D5)通過循環冗餘校驗檢查。 In the step of generating the repair data MD in step 332 of Figure 3B and determining whether the repair data MD is generated, if the repair data MD has been obtained, for example, the data D5 in the above example, then go to step 312, the repair data MD (That is, data D5) Perform a cyclic redundancy check. For example, the header of the data D5 (the content value of the byte index value is [0] to [2]) and the data group (the content value of the byte index value [3] to [6]) are cyclically redundant. A specific operation of co-check to obtain a two-byte cyclic redundancy check code, and then compare it with the data Compare the two bytes of the cyclic redundancy check code of D5. If they are the same, it means that the repaired data MD (that is, data D5) has passed the cyclic redundancy check.

於第3B圖之步驟332之產生修補資料MD並判斷修補資料MD是否產生的步驟中,若無法得到此修補資料MD,則進入步驟318,由資料修補裝置104或資料修補裝置104之處理單元204發出無法修補警示訊息Alrt2至雲端伺服器108。 In the step of generating the repair data MD in step 332 of FIG. 3B and determining whether the repair data MD is generated, if the repair data MD cannot be obtained, go to step 318, and the data repair device 104 or the processing unit 204 of the data repair device 104 A warning message that cannot be repaired Alrt2 is sent to the cloud server 108.

於另一實施例中,亦可以於得到至少一第一已知資料、至少一第二已知資料、及至少一第三已知資料時,就先進行循環冗餘校驗檢查。再將通過循環冗餘校驗檢查的至少一第一已知資料、至少一第二已知資料、及至少一第三已知資料中找出相同者以作為修補完成的正確資料。 In another embodiment, when at least one first known data, at least one second known data, and at least one third known data are obtained, a cyclic redundancy check check may be performed first. Then, the at least one first known data, at least one second known data, and at least one third known data that have passed the cyclic redundancy check check are found to be the same as the correct data to be repaired.

於更另一實施中,資料修補裝置104可以更具有一錯誤計數器。於比對上述之至少一第一已知資料、至少一第二已知資料、及至少一第三已知資料,並判斷是否有相同的資料之後,同時將此錯誤計數器的計數值加1。當錯誤計數器的計數值大於一臨界值時,則資料修補裝置104發送一錯誤過多警示訊息至雲端伺服器108以傳送至太陽能監控系統110來提醒使用者。 In another implementation, the data repair device 104 may have an error counter. After comparing the aforementioned at least one first known data, at least one second known data, and at least one third known data, and judging whether there are the same data, the count value of the error counter is increased by one at the same time. When the count value of the error counter is greater than a threshold value, the data repair device 104 sends an excessive error warning message to the cloud server 108 to send to the solar monitoring system 110 to remind the user.

本發明實施例藉由資料修補裝置執行過濾雜訊演算法,可以讓來自太陽能模組陣列之太陽能資料的雜訊被過濾。而藉由資料修補裝置執行資料修補演算法,使得太陽能資料因線路或環境干擾所導致的資料錯誤可以得到修復。如此,可以提升通訊品質,改善 系統的穩定程度。並且可以獲得即時與正確的資料,以增加系統之資料的即時性。 In the embodiment of the present invention, the noise filtering algorithm is executed by the data repairing device, so that the noise of the solar data from the solar module array can be filtered. The data repairing algorithm is executed by the data repairing device, so that the data error of the solar data caused by the line or environmental interference can be repaired. In this way, the communication quality can be improved and the The stability of the system. And get real-time and correct data to increase the real-timeness of the system data.

而且,當資料修補裝置判斷太陽能資料無法通過上述之過濾雜訊演算法,則發出一無法過濾警示訊息至雲端伺服器,並傳送至太陽能監控系統以提醒使用者。若修補資料無法通過循環冗餘校驗檢查,則資料修補裝置發出無法修補警示訊息至雲端伺服器,並傳送至太陽能監控系統,以讓使用者得知太陽能資料有誤且無法修補。當使用者收到警示訊息之後,使用者將可得知太陽能模組陣列本身或是傳送資料之線路可能有問題,而儘早掌握時效進行檢查。 Moreover, when the data repairing device determines that the solar data cannot pass the aforementioned noise filtering algorithm, it sends an unfiltered warning message to the cloud server and sends it to the solar monitoring system to remind the user. If the repaired data fails to pass the cyclic redundancy check, the data repairing device sends out a repair failure warning message to the cloud server and sends it to the solar monitoring system to let the user know that the solar data is incorrect and cannot be repaired. After the user receives the warning message, the user will be able to know that the solar module array itself or the data transmission line may be faulty, and check the timeliness as soon as possible.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In summary, although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be subject to those defined by the attached patent scope.

302~332:流程步驟 302~332: Process steps

Claims (20)

一種資料修補系統,包括:一太陽能模組陣列,用以傳送一太陽能資料;一資料修補裝置,用以接收該太陽能資料,並判斷該太陽能資料是否通過一過濾雜訊演算法,若該資料修補裝置判斷該太陽能資料通過該過濾雜訊演算法,則產生一過濾資料,該資料修補裝置判斷該過濾資料是否通過一循環冗餘校驗(cyclic redundancy check,CRC)檢查,若該資料修補裝置判斷該過濾資料不通過該循環冗餘校驗檢查,則以一資料修補演算法修補該過濾資料,以產生一修補資料,該資料修補裝置將該修補資料進行該循環冗餘校驗檢查,若該修補資料通過該循環冗餘校驗檢查,則視為完成資料修補;以及一太陽能資料收集器,用以接收該修補資料。 A data repair system includes: a solar module array for transmitting a solar energy data; a data repairing device for receiving the solar energy data and determining whether the solar energy data passes a noise filtering algorithm, if the data is repaired The device determines that the solar data passes the filtering noise algorithm, and then generates a filtered data. The data repair device determines whether the filtered data passes a cyclic redundancy check (CRC) check. If the data repair device determines If the filtered data does not pass the cyclic redundancy check, a data repair algorithm is used to repair the filtered data to generate a repaired data. The data repairing device performs the cyclic redundancy check check on the repaired data. If the If the repaired data passes the cyclic redundancy check, it is deemed that the repaired data has been completed; and a solar data collector is used to receive the repaired data. 如申請專利範圍第1項所述之資料修補系統,其中當該資料修補裝置判斷該太陽能資料無法通過該過濾雜訊演算法,則發出一無法過濾警示訊息至一雲端伺服器。 For example, in the data repair system described in item 1 of the scope of patent application, when the data repair device determines that the solar data cannot pass the noise filtering algorithm, it sends an unfiltered warning message to a cloud server. 如申請專利範圍第1項所述資料修補系統,其中若該修補資料無法通過該循環冗餘校驗檢查,則該資料修補裝置發出一無法修補警示訊息至一雲端伺服器。 For example, the data repair system described in item 1 of the scope of patent application, wherein if the repair data fails the cyclic redundancy check check, the data repair device sends a repair failure warning message to a cloud server. 如申請專利範圍第1項所述之資料修補系統,其中該太陽能資料收集器更用以發出一資料取得命令,使該資料修補裝置通知該太陽能模組陣列回傳對應該資料取得命令的該太陽能資料;其中,該資料修補裝置接收該太陽能資料後,藉由該過濾雜訊演算法以找出該太陽能資料的一標頭部分,並根據該標頭部分擷取該太陽能資料的一資料部分及一循環冗餘校驗碼部分,藉此過濾雜訊。 For example, the data repair system described in item 1 of the scope of patent application, wherein the solar data collector is further used to issue a data acquisition command to make the data repair device notify the solar module array to return the solar energy corresponding to the data acquisition command Data; wherein, after the data repairing device receives the solar data, it uses the filtering noise algorithm to find a header part of the solar data, and extracts a data part and the solar data according to the header part A cyclic redundancy check code part, thereby filtering noise. 如申請專利範圍第1項所述之資料修補系統,其中該資料修補演算法包含一標頭比對法、一資料比對法及一循環冗餘校驗比對法。 For example, in the data repair system described in item 1 of the scope of patent application, the data repair algorithm includes a header comparison method, a data comparison method and a cyclic redundancy check comparison method. 如申請專利範圍第5項所述之資料修補系統,其中該標頭比對法將該太陽能資料的一標頭部分與複數個已知標頭進行比對,並標示出該些已知標頭中的至少一正確標頭,該至少一正確標頭對應到至少一第一已知資料;其中該資料比對法將該太陽能資料的一資料部分與複數個已知資料組進行比對,並標示出該些已知資料組中的至少一正確資料組,該至少一正確資料組對應到至少一第二已知資料;其中該循環冗餘校驗比對法將該太陽能資料的一循環冗餘校驗碼部分與複數個已知循環冗餘校驗碼進行比對,並標示出該些已知循環冗餘校驗碼中的至少一正確循環冗餘校驗碼,該至少一正確循環冗餘校驗碼對應到至少一第三已知資料。 The data repair system described in item 5 of the scope of patent application, wherein the header comparison method compares a header part of the solar data with a plurality of known headers, and indicates the known headers At least one correct header in the at least one correct header corresponds to at least one first known data; wherein the data comparison method compares a data part of the solar data with a plurality of known data sets, and Mark at least one correct data group among the known data groups, and the at least one correct data group corresponds to at least one second known data; wherein the cyclic redundancy check comparison method is a cyclic redundancy of the solar data The residual check code part is compared with a plurality of known cyclic redundancy check codes, and at least one correct cyclic redundancy check code among the known cyclic redundancy check codes is marked, and the at least one correct cyclic redundancy check code is The redundancy check code corresponds to at least one third known data. 如申請專利範圍第6項所述之資料修補系統,其中該資料修補裝置依據該至少一第一已知資料、該至少一第二已知資料及該至少一第三已知資料以比對出重複次數最高者作為該修補資料。 For example, the data repair system described in item 6 of the scope of patent application, wherein the data repair device compares the at least one first known data, the at least one second known data, and the at least one third known data The one with the highest number of repetitions is regarded as the patch data. 一種資料修補方法,包括:接收一太陽能資料,並判斷該太陽能資料是否通過一過濾雜訊演算法;若判斷該太陽能資料通過該過濾雜訊演算法,則產生一過濾資料,並判斷該過濾資料是否通過一循環冗餘校驗檢查;若判斷該過濾資料不通過該循環冗餘校驗檢查,則以一資料修補演算法修補該過濾資料,以產生一修補資料,將該修補資料進行該循環冗餘校驗檢查;若該修補資料通過該循環冗餘校驗檢查,則視為完成資料修補;以及傳送該修補資料至一太陽能資料收集器。 A data repair method includes: receiving a solar energy data and determining whether the solar energy data passes a noise filtering algorithm; if it is determined that the solar energy data passes the noise filtering algorithm, generating a filtering data and determining the filtering data Whether to pass a cyclic redundancy check check; if it is determined that the filtered data does not pass the cyclic redundancy check check, a data patching algorithm is used to patch the filtered data to generate a patched data, and the patched data is looped Redundancy check; if the repaired data passes the cyclic redundancy check, it is deemed to be completed; and the repaired data is sent to a solar data collector. 如申請專利範圍第8項所述之資料修補方法,更包括:當判斷該太陽能資料無法通過該過濾雜訊演算法時,發出一無法過濾警示訊息至一雲端伺服器。 For example, the data repair method described in item 8 of the scope of patent application further includes: when it is determined that the solar data cannot pass the noise filtering algorithm, sending an unfiltered warning message to a cloud server. 如申請專利範圍第8項所述資料修補方法,更包括:若該修補資料無法通過該循環冗餘校驗檢查,則發出一無法修補警示訊息至一雲端伺服器。 For example, the data repair method described in item 8 of the scope of the patent application further includes: if the repaired data fails the cyclic redundancy check check, sending a repair failure warning message to a cloud server. 如申請專利範圍第8項所述之資料修補方法,更包括:藉由該太陽能資料收集器發出一資料取得命令,使一資料修補裝置通知一太陽能模組陣列回傳對應該資料取得命令的該太陽能資料;其中,該資料修補裝置接收該太陽能資料後,藉由該過濾雜訊演算法以找出該太陽能資料的一標頭部分,並根據該標頭部分擷取該太陽能資料的一資料部分及一循環冗餘校驗碼部分,藉此過濾雜訊。 For example, the data repair method described in item 8 of the scope of patent application further includes: sending a data acquisition command by the solar data collector to make a data repair device notify a solar module array to return the corresponding data acquisition command Solar energy data; wherein, after the data repair device receives the solar energy data, it uses the filtering noise algorithm to find a header part of the solar energy data, and extracts a data part of the solar energy data according to the header part And a cyclic redundancy check code part to filter noise. 如申請專利範圍第8項所述之資料修補方法,其中該資料修補演算法包含一標頭比對法、一資料比對法及一循環冗餘校驗比對法。 For the data repair method described in item 8 of the scope of patent application, the data repair algorithm includes a header comparison method, a data comparison method and a cyclic redundancy check comparison method. 如申請專利範圍第12項所述之資料修補方法,其中該標頭比對法將該太陽能資料的一標頭部分與複數個已知標頭進行比對,並標示出該些已知標頭中的至少一正確標頭,該至少一正確標頭對應到至少一第一已知資料; 其中該資料比對法將該太陽能資料的一資料部分與複數個已知資料組進行比對,並標示出該些已知資料組中的至少一正確資料組,該至少一正確資料組對應到至少一第二已知資料;其中該循環冗餘校驗比對法將該太陽能資料的一循環冗餘校驗碼部分與複數個已知循環冗餘校驗碼進行比對,並標示出該些已知循環冗餘校驗碼中的至少一正確循環冗餘校驗碼,該至少一正確循環冗餘校驗碼對應到至少一第三已知資料。 The data repair method described in item 12 of the scope of patent application, wherein the header comparison method compares a header part of the solar data with a plurality of known headers, and indicates the known headers At least one correct header in, the at least one correct header corresponds to at least one first known data; The data comparison method compares a data part of the solar data with a plurality of known data sets, and marks at least one correct data set among the known data sets, and the at least one correct data set corresponds to At least one second known data; wherein the cyclic redundancy check comparison method compares a cyclic redundancy check code part of the solar data with a plurality of known cyclic redundancy check codes, and marks the At least one correct cyclic redundancy check code among the known cyclic redundancy check codes, and the at least one correct cyclic redundancy check code corresponds to at least one third known data. 如申請專利範圍第13項所述之資料修補系統,其中該資料修補裝置依據該至少一第一已知資料、該至少一第二已知資料及該至少一第三已知資料以比對出重複次數最高者作為該修補資料。 Such as the data repair system described in item 13 of the scope of patent application, wherein the data repair device compares and compares the at least one first known data, the at least one second known data and the at least one third known data The one with the highest number of repetitions is regarded as the patch data. 一種資料修補裝置,包括:一收發單元,用以接收一太陽能模組陣列傳送之一太陽能資料;以及一處理單元,用以判斷該太陽能資料是否通過一過濾雜訊演算法,若該處理單元判斷該太陽能資料通過該過濾雜訊演算法,則產生一過濾資料,該處理單元判斷該過濾資料是否通過一循環冗餘校驗檢查,若該處理單元判斷該過濾資料不通過該循環冗餘校驗檢查,則以一資料修補演算法修補該過濾資料,以產生一修補資料,該處理單元將該修補資料進行該循環冗餘校驗檢查,若該修補資料通過該循環冗餘校驗檢查,則視為完成資料修補。 A data repair device includes: a transceiver unit for receiving a solar energy data transmitted by a solar module array; and a processing unit for determining whether the solar energy data passes a noise filtering algorithm, if the processing unit determines The solar data passes the filtering noise algorithm to generate a filtered data. The processing unit determines whether the filtered data passes a cyclic redundancy check. If the processing unit determines that the filtered data does not pass the cyclic redundancy check Check, the filtered data is patched with a data patching algorithm to generate patched data, the processing unit performs the cyclic redundancy check on the patched data, and if the patched data passes the cyclic redundancy check, then It is deemed to have completed the data repair. 如申請專利範圍第15項所述之資料修補裝置,其中當該處理單元判斷該太陽能資料無法通過該過濾雜訊演算法,則該處理單元發出一無法過濾警示訊息至一雲端伺服器;其中,若該處理單元判斷該修補資料無法通過該循環冗餘校驗檢查,則該處理單元發出一無法修補警示訊息至該雲端伺服器。 For example, in the data repair device described in item 15 of the scope of patent application, when the processing unit determines that the solar data cannot pass the noise filtering algorithm, the processing unit sends an unfiltered warning message to a cloud server; wherein, If the processing unit determines that the repair data cannot pass the cyclic redundancy check, the processing unit sends a repair failure warning message to the cloud server. 如申請專利範圍第16項所述資料修補裝置,更包括一警示裝置,用以於該處理單元發出該無法過濾警示訊息或該無法修補警示訊息時,發出一警示提醒信號,該警示提醒信號為一光信號及一聲音信號二者至少其中之一。 For example, the data repair device described in item 16 of the scope of patent application further includes a warning device for sending a warning signal when the processing unit sends out the warning message that cannot be filtered or the warning message that cannot be repaired. The warning signal is At least one of a light signal and a sound signal. 如申請專利範圍第15項所述之資料修補裝置,其中,該處理單元接收該太陽能資料後,藉由該過濾雜訊演算法以找出該太陽能資料的一標頭部分,並根據該標頭部分擷取該太陽能資料的一資料部分及一循環冗餘校驗碼部分,藉此過濾雜訊。 For example, the data repair device described in item 15 of the scope of patent application, wherein after the processing unit receives the solar energy data, it uses the filtering noise algorithm to find a header part of the solar energy data, and according to the header Partially extract a data part and a cyclic redundancy check code part of the solar data, thereby filtering noise. 如申請專利範圍第15項所述之資料修補裝置,其中該資料修補演算法包含一標頭比對法、一資料比對法及一循環冗餘校驗比對法。 For example, the data repairing device described in item 15 of the scope of patent application, wherein the data repairing algorithm includes a header comparison method, a data comparison method and a cyclic redundancy check comparison method. 如申請專利範圍第19項所述之資料修補裝置,其中該標頭比對法將該太陽能資料的一標頭部分與複數個已知標 頭進行比對,並標示出該些已知標頭中的至少一正確標頭,該至少一正確標頭對應到至少一第一已知資料;其中該資料比對法將該太陽能資料的一資料部分與複數個已知資料組進行比對,並標示出該些已知資料組中的至少一正確資料組,該至少一正確資料組對應到至少一第二已知資料;其中該循環冗餘校驗比對法將該太陽能資料的一循環冗餘校驗碼部分與複數個已知循環冗餘校驗碼進行比對,並標示出該些已知循環冗餘校驗碼中的至少一正確循環冗餘校驗碼,該至少一正確循環冗餘校驗碼對應到至少一第三已知資料;其中該處理單元依據該至少一第一已知資料、該至少一第二已知資料及該至少一第三已知資料以比對出重複次數最高者作為該修補資料。 Such as the data repair device described in item 19 of the scope of patent application, wherein the header comparison method is to compare a header part of the solar data with a plurality of known symbols Headers are compared, and at least one correct header among the known headers is marked, and the at least one correct header corresponds to at least one first known data; wherein the data comparison method is one of the solar data The data part is compared with a plurality of known data groups, and at least one correct data group among the known data groups is marked, and the at least one correct data group corresponds to at least one second known data; wherein the cyclic redundancy The co-check comparison method compares a cyclic redundancy check code part of the solar data with a plurality of known cyclic redundancy check codes, and marks at least one of the known cyclic redundancy check codes A correct cyclic redundancy check code, the at least one correct cyclic redundancy check code corresponds to at least one third known data; wherein the processing unit is based on the at least one first known data and the at least one second known data The data and the at least one third known data are compared with the highest number of repetitions as the repair data.
TW107121363A 2018-06-21 2018-06-21 Data correcting system and method and data correcting device thereof TWI697771B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107121363A TWI697771B (en) 2018-06-21 2018-06-21 Data correcting system and method and data correcting device thereof
CN201811034538.9A CN109150404B (en) 2018-06-21 2018-09-05 Data patching system, method and data patching device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107121363A TWI697771B (en) 2018-06-21 2018-06-21 Data correcting system and method and data correcting device thereof

Publications (2)

Publication Number Publication Date
TW202001557A TW202001557A (en) 2020-01-01
TWI697771B true TWI697771B (en) 2020-07-01

Family

ID=64827269

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107121363A TWI697771B (en) 2018-06-21 2018-06-21 Data correcting system and method and data correcting device thereof

Country Status (2)

Country Link
CN (1) CN109150404B (en)
TW (1) TWI697771B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200524331A (en) * 2003-11-12 2005-07-16 Koninkl Philips Electronics Nv Communication method, system and device
TWI337026B (en) * 2005-11-09 2011-02-01 Sony Corp Packet transmission apparatus, communication system and program
US20110125338A1 (en) * 2009-11-26 2011-05-26 Mauro Perot Control apparatus for photovoltaic modules
US20120263252A1 (en) * 2011-04-12 2012-10-18 Texas Instruments Incorporated Systems and Methods of Power Line Transmission of Solar Panel Data
TWI400889B (en) * 2004-11-24 2013-07-01 Qualcomm Inc Systems and methods for implementing cyclic redundancy checks
US20160036493A1 (en) * 2013-03-15 2016-02-04 Mersen France Sb Sas System and method for low data-rate communication over a carrier current
TW201631902A (en) * 2014-12-31 2016-09-01 高通公司 Systems and methods for information recovery from redundancy version packets

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101602370A (en) * 2009-04-27 2009-12-16 上海大陆信息服务有限公司 Failure data acquisition and automatic error correction method for fast railway train
CN102104463B (en) * 2009-12-22 2013-08-07 中兴通讯股份有限公司 Data message request retransmission method and device
CN103763067B (en) * 2014-01-28 2017-11-10 天地融科技股份有限公司 A kind of communication data packet error checking and correction method and apparatus
CN106126367B (en) * 2016-06-28 2019-09-20 湖北锐世数字医学影像科技有限公司 A kind of self checking method and system of file

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200524331A (en) * 2003-11-12 2005-07-16 Koninkl Philips Electronics Nv Communication method, system and device
TWI400889B (en) * 2004-11-24 2013-07-01 Qualcomm Inc Systems and methods for implementing cyclic redundancy checks
TWI337026B (en) * 2005-11-09 2011-02-01 Sony Corp Packet transmission apparatus, communication system and program
US20110125338A1 (en) * 2009-11-26 2011-05-26 Mauro Perot Control apparatus for photovoltaic modules
US20120263252A1 (en) * 2011-04-12 2012-10-18 Texas Instruments Incorporated Systems and Methods of Power Line Transmission of Solar Panel Data
US20160036493A1 (en) * 2013-03-15 2016-02-04 Mersen France Sb Sas System and method for low data-rate communication over a carrier current
TW201631902A (en) * 2014-12-31 2016-09-01 高通公司 Systems and methods for information recovery from redundancy version packets

Also Published As

Publication number Publication date
CN109150404B (en) 2021-11-16
CN109150404A (en) 2019-01-04
TW202001557A (en) 2020-01-01

Similar Documents

Publication Publication Date Title
CN110493042B (en) Fault diagnosis method and device and server
US9635741B2 (en) Requesting information from lighting devices
CN104021054A (en) Server fault visual detecting and processing method and system and programmable chip
CN112512028B (en) Intelligent product replacement system and method based on Bluetooth Mesh network
CN110445683B (en) Server, equipment, method and system for monitoring survival state of server
JP2015526956A (en) Pan-tilt-zoom device identification method, pan-tilt-zoom device, camera, and pan-tilt-zoom device control system
WO2014059843A1 (en) Method and system for removing fault of internet of things gateway
US20090003226A1 (en) Network intermediary device with connection test packets
CN113191635A (en) Intelligent management system for electric energy of construction engineering site
TWI697771B (en) Data correcting system and method and data correcting device thereof
CN114630201B (en) Operation and maintenance control system and method for data machine room
CN113821242B (en) Intelligent firmware matching method and system
CN106936510B (en) Method for adjusting optical power, network equipment and network management equipment
CN108449426B (en) Method and system for communication between Internet of things controller and data center
CN107765117B (en) A kind of test device and method of optical module self-healing
CN110635954A (en) Method and system for processing network fault of data center
US10606691B2 (en) Method for recognizing the communication protocol of data packets travelling over a communication bus
CN110601914B (en) Method and system for monitoring survival state of server
CN116299129A (en) All-fiber current transformer state detection and analysis method, device and medium
CN109803301B (en) Offline identification management system for wireless network
CN111901952B (en) Combination lamps and lanterns based on DMX agreement
WO2013000236A1 (en) Method and device for message adaptation
JPH06324719A (en) Programmable controller
TWI395161B (en) Communication method of an alarm system
CN111931012A (en) Data model self-adaption method and device based on fault management subsystem