TWI697136B - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
TWI697136B
TWI697136B TW107117295A TW107117295A TWI697136B TW I697136 B TWI697136 B TW I697136B TW 107117295 A TW107117295 A TW 107117295A TW 107117295 A TW107117295 A TW 107117295A TW I697136 B TWI697136 B TW I697136B
Authority
TW
Taiwan
Prior art keywords
light
emitting element
layer
conversion layer
substrate
Prior art date
Application number
TW107117295A
Other languages
Chinese (zh)
Other versions
TW201830732A (en
Inventor
洪政暐
張瑞夫
洪欽華
林育鋒
Original Assignee
新世紀光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新世紀光電股份有限公司 filed Critical 新世紀光電股份有限公司
Publication of TW201830732A publication Critical patent/TW201830732A/en
Application granted granted Critical
Publication of TWI697136B publication Critical patent/TWI697136B/en

Links

Images

Abstract

A light-emitting device is provided. The light-emitting device includes a substrate, a light-emitting component, a wave-length converting component, an adhesive and a reflective layer. The light-emitting component is disposed on the substrate. The wave-length converting component includes a high density converting layer and a lower density converting layer. The adhesive is formed between the light-emitting device and the high density converting layer. The reflective layer is formed above the substrate and covers a lateral surface of the light-emitting component, a lateral surface of the adhesive and a lateral surface of the wave-length converting component.

Description

發光裝置Light emitting device

本發明是有關於一種發光裝置及其製造方法,且特別是有關於一種具有反射層之發光裝置及其製造方法。The invention relates to a light-emitting device and a method for manufacturing the same, and in particular to a light-emitting device with a reflective layer and a method for manufacturing the same.

傳統的發光裝置包含螢光膠及發光元件,其中螢光膠包覆發光元件的上表面及側面。發光元件在發光時會產生高溫,此高溫會影響螢光膠,加速螢光膠老化,而改變發光裝置的出光光色。The conventional light-emitting device includes a fluorescent glue and a light-emitting element, wherein the fluorescent glue covers the upper surface and side surfaces of the light-emitting element. The light emitting element generates high temperature when it emits light. This high temperature will affect the fluorescent glue, accelerate the aging of the fluorescent glue, and change the light color of the light emitting device.

因此,亟需提出一種可減緩螢光膠老化的方案。Therefore, there is an urgent need to propose a solution that can slow down the aging of fluorescent glue.

因此,本發明提出一種發光裝置及其製造方法,可可減緩螢光膠老化的方案。Therefore, the present invention proposes a light-emitting device and a method for manufacturing the same, which can slow down the aging of the fluorescent glue.

根據本發明之一實施例,提出一種發光裝置。發光裝置包括一基板、一發光元件、一波長轉換層、一黏膠及一反射層。發光元件設於該基板上。波長轉換層包括一高密度轉換層及一低密度轉換層。黏膠形成於發光元件與高密度轉換層之間。反射層形成於基板上方且覆蓋發光元件的一側面、黏膠的一側面及波長轉換層的一側面。According to an embodiment of the present invention, a light emitting device is proposed. The light-emitting device includes a substrate, a light-emitting element, a wavelength conversion layer, an adhesive, and a reflective layer. The light emitting element is provided on the substrate. The wavelength conversion layer includes a high density conversion layer and a low density conversion layer. The adhesive is formed between the light-emitting element and the high-density conversion layer. The reflective layer is formed on the substrate and covers a side of the light-emitting element, a side of the adhesive, and a side of the wavelength conversion layer.

根據本發明之另一實施例,提出一種發光裝置的製造方法。製造方法包括以下步驟。提供一基板及一發光元件,發光元件設於基板上;提供一波長轉換層,其中波長轉換層包括一高密度轉換層及一低密度轉換層;以一黏膠,黏合高密度轉換層與發光元件;以及,形成一反射層於基板上方,其中反射層覆蓋發光元件的一側面、黏膠的一側面及波長轉換層的一側面。According to another embodiment of the present invention, a method for manufacturing a light-emitting device is provided. The manufacturing method includes the following steps. Provide a substrate and a light-emitting element, the light-emitting element is provided on the substrate; provide a wavelength conversion layer, wherein the wavelength conversion layer includes a high-density conversion layer and a low-density conversion layer; with a glue, the high-density conversion layer and the light-emitting Device; and, forming a reflective layer on the substrate, wherein the reflective layer covers a side of the light-emitting device, a side of the adhesive and a side of the wavelength conversion layer.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:In order to have a better understanding of the above and other aspects of the present invention, the following describes the preferred embodiments in conjunction with the attached drawings, which are described in detail as follows:

第1圖繪示依照本發明一實施例之發光裝置100的剖視圖。發光裝置100包括基板110、發光元件120、波長轉換層130、黏膠140及反射層150。FIG. 1 is a cross-sectional view of a light emitting device 100 according to an embodiment of the invention. The light emitting device 100 includes a substrate 110, a light emitting element 120, a wavelength conversion layer 130, an adhesive 140, and a reflective layer 150.

基板110例如是陶瓷基板。在本實施例中,基板110包括基材111、第三電極112、第四電極113、第一接墊114、第二接墊115、第一導電柱116及第二導電柱117。The substrate 110 is, for example, a ceramic substrate. In this embodiment, the substrate 110 includes a base material 111, a third electrode 112, a fourth electrode 113, a first pad 114, a second pad 115, a first conductive pillar 116, and a second conductive pillar 117.

基材111例如是矽基材料所形成。基材111具有相對之第一表面111u與第二表面111b。第三電極112及第四電極113形成於基材111的第一表面111u,而第一接墊114及第二接墊115形成於基材111的第二表面111b。第一導電柱116及第二導電柱117貫穿基材111,其中第一導電柱116連接第三電極112與第一接墊114,以電連接第三電極112與第一接墊114,而第二導電柱117連接第四電極113與第二接墊115,以電連接第四電極113與第二接墊115。The substrate 111 is formed of, for example, a silicon-based material. The substrate 111 has opposing first surface 111u and second surface 111b. The third electrode 112 and the fourth electrode 113 are formed on the first surface 111 u of the substrate 111, and the first pad 114 and the second pad 115 are formed on the second surface 111 b of the substrate 111. The first conductive pillar 116 and the second conductive pillar 117 penetrate the substrate 111, wherein the first conductive pillar 116 connects the third electrode 112 and the first pad 114 to electrically connect the third electrode 112 and the first pad 114, and the first The two conductive posts 117 connect the fourth electrode 113 and the second pad 115 to electrically connect the fourth electrode 113 and the second pad 115.

發光裝置100可設於一電路板(未繪示)上,其中基板110的第一接墊114及第二接墊115電性連接於電路板的二電極(未繪示),使發光元件120透過第一接墊114及第二接墊115電性連接於電路板。The light emitting device 100 can be disposed on a circuit board (not shown), wherein the first pad 114 and the second pad 115 of the substrate 110 are electrically connected to the two electrodes (not shown) of the circuit board, so that the light emitting element 120 The first pad 114 and the second pad 115 are electrically connected to the circuit board.

發光元件120設於基板110上。發光元件120包括第一電極121及第二電極122,其中第一電極121及第二電極122分別電性連接於第三電極112及第四電極113。The light emitting element 120 is provided on the substrate 110. The light emitting element 120 includes a first electrode 121 and a second electrode 122, wherein the first electrode 121 and the second electrode 122 are electrically connected to the third electrode 112 and the fourth electrode 113, respectively.

發光元件120例如是發光二極體。雖然圖未繪示,發光元件120可更包含第一型半導體層、第二型半導體層及發光層。發光層設於第一型半導體層與第二型半導體層之間。第一型半導體層例如是N型半導體層,而第二型半導體層則為P型半導體層;或是,第一型半導體層是P型半導體層,而第二型半導體層則為N型半導體層。以材料來說,P型半導體層例如是摻雜鈹(Be)、鋅(Zn)、錳(Mn)、鉻(Cr)、鎂(Mg)、鈣(Ca)等之氮化鎵基半導體層,而N型半導體層例如是摻雜矽(Si)、鍺(Ge)、錫(Sn)、硫(S)、氧(O)、鈦(Ti)及或鋯(Zr)等之氮化鎵基半導體層。發光層122可以是Inx Aly Ga1-x-y N (0≦x、0≦y、x+y≦1)結構,亦可混雜硼(B)或磷(P)或砷(As),可為單一層或多層構造。The light emitting element 120 is, for example, a light emitting diode. Although not shown in the figure, the light emitting element 120 may further include a first type semiconductor layer, a second type semiconductor layer, and a light emitting layer. The light emitting layer is provided between the first type semiconductor layer and the second type semiconductor layer. The first type semiconductor layer is, for example, an N type semiconductor layer, and the second type semiconductor layer is a P type semiconductor layer; or, the first type semiconductor layer is a P type semiconductor layer, and the second type semiconductor layer is an N type semiconductor layer Floor. In terms of materials, the P-type semiconductor layer is, for example, a gallium nitride-based semiconductor layer doped with beryllium (Be), zinc (Zn), manganese (Mn), chromium (Cr), magnesium (Mg), calcium (Ca), etc. And the N-type semiconductor layer is doped with gallium nitride such as silicon (Si), germanium (Ge), tin (Sn), sulfur (S), oxygen (O), titanium (Ti), or zirconium (Zr), for example Base semiconductor layer. The light emitting layer 122 may be In x Al y Ga 1-xy N (0 ≦ x, 0 ≦ y, x + y ≦ 1) structure, also mixed boron (B) or phosphorus (P) or arsenic (As), can be Single or multi-layer structure.

第一電極121可由金、鋁、銀、銅、銠(Rh)、釕(Ru)、鈀(Pd)、銥(Ir)、鉑(Pt)、鉻、錫、鎳、鈦、鎢(W)、鉻合金、鈦鎢合金、鎳合金、銅矽合金、鋁銅矽合金、鋁矽合金、金錫合金及其組合之至少一者所構成的單層或多層結構,但不以此為限。第二電極122的材料可類似第一電極121,容此不再贅述。The first electrode 121 may be made of gold, aluminum, silver, copper, rhodium (Rh), ruthenium (Ru), palladium (Pd), iridium (Ir), platinum (Pt), chromium, tin, nickel, titanium, tungsten (W) , Chromium alloy, titanium-tungsten alloy, nickel alloy, copper-silicon alloy, aluminum-copper-silicon alloy, aluminum-silicon alloy, gold-tin alloy and combinations of at least one layer, but not limited to this. The material of the second electrode 122 may be similar to that of the first electrode 121, and it will not be repeated here.

波長轉換層130包括高密度轉換層131及低密度轉換層132。波長轉換層130內包含數個螢光粒子,其中螢光粒子密度較高的區域界定為高密度轉換層131,而螢光粒子密度較低的區域界定為低密度轉換層132。在一實施例中,高密度轉換層131的螢光粒子密度與低密度轉換層132的螢光粒子密度的比值可介於1與1015 之間,其中的數值可包含或不包含1及1015The wavelength conversion layer 130 includes a high-density conversion layer 131 and a low-density conversion layer 132. The wavelength conversion layer 130 includes several fluorescent particles, wherein a region with a higher density of fluorescent particles is defined as a high-density conversion layer 131, and a region with a lower density of fluorescent particles is defined as a low-density conversion layer 132. In one embodiment, the ratio of the density of the fluorescent particles in the high-density conversion layer 131 to the density of the fluorescent particles in the low-density conversion layer 132 may be between 1 and 10 15 , and the values may or may not include 1 and 10. 15 .

在本實施例中,高密度轉換層131位於發光元件120與低密度轉換層132之間。也就是說,發光元件120的光線L1會先經過高密度轉換層131,再透過低密度轉換層132出光。由於高密度轉換層131的設計,可讓數個發光裝置100的出光光色於色度座標上集中地分布,如此可增加此些發光裝置100的產品良率。低密度轉換層132可增加自發光元件120的光線L1的混光機率。詳細來說,對於在高密度轉換層131內未接觸到螢光粒子的光線L1來說,低密度轉換層132增加其接觸螢光粒子的機會。在本實施例中,低密度轉換層132的厚度T2大於高密度轉換層131的厚度T1,因此更可增加發光元件120的光線L1的混光機率。在一實施例中,厚度T2與厚度T1的比值可介於1至100之間,其中的數值可包含或不包含1及100。In this embodiment, the high-density conversion layer 131 is located between the light-emitting element 120 and the low-density conversion layer 132. In other words, the light L1 of the light emitting element 120 will first pass through the high-density conversion layer 131 and then pass through the low-density conversion layer 132 to emit light. Due to the design of the high-density conversion layer 131, the light colors of several light-emitting devices 100 can be concentratedly distributed on the chromaticity coordinates, so that the product yield of these light-emitting devices 100 can be increased. The low-density conversion layer 132 can increase the light mixing probability of the light L1 from the light-emitting element 120. In detail, for the light L1 that is not in contact with the fluorescent particles in the high-density conversion layer 131, the low-density conversion layer 132 increases its chance of contacting the fluorescent particles. In this embodiment, the thickness T2 of the low-density conversion layer 132 is greater than the thickness T1 of the high-density conversion layer 131, so the light mixing probability of the light L1 of the light-emitting element 120 can be further increased. In an embodiment, the ratio of the thickness T2 to the thickness T1 may be between 1 and 100, and the values therein may or may not include 1 and 100.

波長轉換層130覆蓋整個發光元件120的上表面120u,亦即,在本實施例中,波長轉換層130的俯視面積大於發光元件120的俯視面積。在一實施例中,波長轉換層130的俯視面積與發光元件120的俯視面積的比值可介於1與1.35之間,然亦可小於1或大於1.35。The wavelength conversion layer 130 covers the entire upper surface 120u of the light emitting element 120, that is, in this embodiment, the top view area of the wavelength conversion layer 130 is larger than the top view area of the light emitting element 120. In one embodiment, the ratio of the top view area of the wavelength conversion layer 130 to the top view area of the light emitting element 120 may be between 1 and 1.35, but may also be less than 1 or greater than 1.35.

在一實施例中,波長轉換層130例如是由硫化物(Sulfide)、釔鋁石榴石(YAG)、LuAG、 矽酸鹽(Silicate)、氮化物(Nitride)、氮氧化物(Oxynitride)、氟化物(Fluoride)、TAG、 KSF、KTF等材料製成。In one embodiment, the wavelength conversion layer 130 is made of sulfide (Sulfide), yttrium aluminum garnet (YAG), LuAG, silicate (Silicate), nitride (Nitride), oxynitride (Oxynitride), fluorine Made of Fluoride, TAG, KSF, KTF and other materials.

黏膠140例如是透光膠。黏膠140包括第一側部141及熱阻層142。第一側部141覆蓋發光元件120的側面120s的一部分,而側面120s的另一部分或其餘部分則受到反射層150覆蓋。從第1圖的俯視方向看去,第一側部141呈封閉環狀,其環繞發光元件120的整個側面120s。在另一實施例中,第一側部141可呈開放環狀。The adhesive 140 is, for example, a light-transmitting adhesive. The adhesive 140 includes a first side portion 141 and a thermal resistance layer 142. The first side portion 141 covers a part of the side 120s of the light emitting element 120, and the other part or the remaining part of the side 120s is covered by the reflective layer 150. As seen from the top view of FIG. 1, the first side portion 141 has a closed ring shape, which surrounds the entire side surface 120 s of the light emitting element 120. In another embodiment, the first side portion 141 may have an open ring shape.

如第1圖的放大圖所示,黏膠140的熱阻層142形成於高密度轉換層131與發光元件120之間,可提高發光元件120與波長轉換層130之間的熱阻,以減緩波長轉換層130的老化速率。進一步來說,發光元件120在運作時會發出熱量,若此熱量輕易傳遞至波長轉換層130,容易導致其內的螢光粒子老化。反觀本發明實施例,由於熱阻層142的形成,可減少傳遞至波長轉換層130的熱量,減緩波長轉換層130的老化速率。在一實施例中,熱阻層142的厚度可介於1與1000之間,其中的數值可包含或不包含1及1000。As shown in the enlarged view of FIG. 1, the thermal resistance layer 142 of the adhesive 140 is formed between the high-density conversion layer 131 and the light-emitting element 120, which can increase the thermal resistance between the light-emitting element 120 and the wavelength conversion layer 130 to slow down The aging rate of the wavelength conversion layer 130. Further, the light-emitting element 120 emits heat during operation. If the heat is easily transferred to the wavelength conversion layer 130, the fluorescent particles in the light-emitting element 120 may easily deteriorate. In contrast, in the embodiment of the present invention, due to the formation of the thermal resistance layer 142, the heat transferred to the wavelength conversion layer 130 can be reduced, and the aging rate of the wavelength conversion layer 130 can be slowed down. In an embodiment, the thickness of the thermal resistance layer 142 may be between 1 and 1000, and the values therein may or may not include 1 and 1000.

反射層150形成於基板110上方且覆蓋發光元件120的側面120s、黏膠140的第一側部141的側面141s及波長轉換層130的側面130s,可有效保護發光元件120及波長轉換層130,避免其外露而容易毀損。反射層150可將自發光元件120的側面120s發出的光線L1反射至波長轉換層130,以增加發光裝置100的出光效率。The reflective layer 150 is formed on the substrate 110 and covers the side 120s of the light emitting element 120, the side 141s of the first side 141 of the adhesive 140, and the side 130s of the wavelength conversion layer 130, which can effectively protect the light emitting element 120 and the wavelength conversion layer 130. Avoid being exposed and easily damaged. The reflective layer 150 can reflect the light L1 emitted from the side 120 s of the light emitting element 120 to the wavelength conversion layer 130 to increase the light extraction efficiency of the light emitting device 100.

如第1圖所示,反射層150更覆蓋第一電極121的側面、第二電極122的側面、第三電極112的側面及第四電極113的側面,可更完整地保護第一電極121、第二電極122、第三電極112及第四電極113,避免其受到環境的侵害,如氧化、潮化等。As shown in FIG. 1, the reflective layer 150 further covers the side of the first electrode 121, the side of the second electrode 122, the side of the third electrode 112, and the side of the fourth electrode 113, which can protect the first electrode 121 more completely. The second electrode 122, the third electrode 112, and the fourth electrode 113 are protected from environmental damage, such as oxidation and moisture.

第一電極121與第二電極122之間具有第一間隔G1,而第三電極112與第四電極113之間具有第二間隔G2。反射層150包括一填充部152,其填滿第一間隔G1及/或第二間隔G2。There is a first gap G1 between the first electrode 121 and the second electrode 122, and a second gap G2 between the third electrode 112 and the fourth electrode 113. The reflective layer 150 includes a filling portion 152 that fills the first interval G1 and/or the second interval G2.

反射層150包括第一反射部151,其環繞發光元件120的側面120s。第一反射部151具有第一反射面151s,其朝向發光元件120之側面120s及/或波長轉換層130,以將自發光元件120的側面120s發出的光線L1反射至波長轉換層130。在本實施例中,第一反射面151s係朝向發光元件120之側面120s及/或波長轉換層130的凸面,然亦可為凹面。The reflective layer 150 includes a first reflective portion 151 that surrounds the side 120 s of the light emitting element 120. The first reflecting portion 151 has a first reflecting surface 151 s, which faces the side surface 120 s of the light emitting element 120 and/or the wavelength conversion layer 130 to reflect the light L1 emitted from the side surface 120 s of the light emitting element 120 to the wavelength conversion layer 130. In this embodiment, the first reflective surface 151s is a convex surface facing the side surface 120s of the light emitting element 120 and/or the wavelength conversion layer 130, but it may also be a concave surface.

如第1圖所示,凸出的第一反射面151s連接波長轉換層130的下表面130b與發光元件120之側面120s。如此,可增加發光元件120的光線L1與凸出面的接觸機率,使自發光元件120的側面120s的光線L1幾乎或全部被反射層150反射至波長轉換層130而出光,以增加發光裝置100的出光效率。As shown in FIG. 1, the convex first reflective surface 151 s connects the lower surface 130 b of the wavelength conversion layer 130 and the side surface 120 s of the light emitting element 120. In this way, the contact probability of the light L1 of the light emitting element 120 and the convex surface can be increased, so that the light L1 from the side 120s of the light emitting element 120 is almost or completely reflected by the reflective layer 150 to the wavelength conversion layer 130 to emit light, so as to increase the light emitting device 100 Light efficiency.

在一實施例中,反射層150的反射率可大於90%。反射層150之材料可由聚鄰苯二甲醯胺(PPA)、聚醯胺(PA)、聚對苯二甲酸丙二酯(PTT)、聚對苯二甲酸乙二酯(PET)、聚對苯二甲酸1,4-環己烷二甲醇酯(PCT)、環氧膠化合物(EMC)、矽膠化合物(SMC)或其它高反射率樹脂/陶瓷材料所組成。另外,反射層150可以是白膠。In an embodiment, the reflectivity of the reflective layer 150 may be greater than 90%. The material of the reflective layer 150 can be made of polyphthalamide (PPA), polyamide (PA), polytrimethylene terephthalate (PTT), polyethylene terephthalate (PET), polypara It is composed of 1,4-cyclohexane dimethanol phthalate (PCT), epoxy glue compound (EMC), silicone compound (SMC) or other high reflectivity resin/ceramic materials. In addition, the reflective layer 150 may be white glue.

綜上所述,相較於傳統發光裝置,由於本發明實施例之發光裝置100的設計,其發光面積可增加約40 %,亮度可提升約15 %。In summary, compared to the conventional light-emitting device, due to the design of the light-emitting device 100 of the embodiment of the present invention, the light-emitting area can be increased by about 40%, and the brightness can be increased by about 15%.

第2圖繪示依照本發明另一實施例之發光裝置200的剖視圖。發光裝置200包括基板110、發光元件120、波長轉換層130、黏膠140及反射層150。FIG. 2 is a cross-sectional view of a light emitting device 200 according to another embodiment of the invention. The light emitting device 200 includes a substrate 110, a light emitting element 120, a wavelength conversion layer 130, an adhesive 140, and a reflective layer 150.

與上述發光裝置100不同的是,本實施例之發光裝置200的波長轉換層130的俯視面積大致上等於發光元件120的俯視面積,即,波長轉換層130的俯視面積與發光元件120的俯視面積的比值約為1。此外,由於黏膠140的第一側部141被移除,因此發光元件120的整個側面120s及黏膠140的熱阻層142的整個側面142s係露出,使反射層150可覆蓋發光元件120的整個側面120s及熱阻層142的整個側面142s。再者,由於發光元件120的側面120s、波長轉換層130的側面130s及黏膠140的熱阻層142的側面142s可於同一切割製程中形成,因此側面120s、側面130s與側面142s大致上對齊或齊平。Unlike the above-mentioned light-emitting device 100, the top view area of the wavelength conversion layer 130 of the light-emitting device 200 of this embodiment is substantially equal to the top view area of the light-emitting element 120, that is, the top view area of the wavelength conversion layer 130 and the top view area of the light-emitting element 120 The ratio is about 1. In addition, since the first side portion 141 of the adhesive 140 is removed, the entire side 120s of the light emitting element 120 and the entire side 142s of the thermal resistance layer 142 of the adhesive 140 are exposed, so that the reflective layer 150 can cover the light emitting element 120 The entire side 120s and the entire side 142s of the thermal resistance layer 142. Furthermore, since the side 120s of the light emitting element 120, the side 130s of the wavelength conversion layer 130, and the side 142s of the thermal resistance layer 142 of the adhesive 140 can be formed in the same cutting process, the side 120s, the side 130s, and the side 142s are substantially aligned Or flush.

第3圖繪示依照本發明另一實施例之發光裝置300的剖視圖。發光裝置300包括基板110、發光元件120、波長轉換層130、黏膠140及反射層150。FIG. 3 is a cross-sectional view of a light emitting device 300 according to another embodiment of the invention. The light emitting device 300 includes a substrate 110, a light emitting element 120, a wavelength conversion layer 130, an adhesive 140, and a reflective layer 150.

與上述發光裝置100不同的是,本實施例之發光裝置300的反射層150更覆蓋基板110的側面110s,如此可避免或減少外界環境因子(如空氣、水氣等)透過側面110s對基板110的侵害。進一步來說,由於反射層150覆蓋基板110的側面110s,因此可增加外界環境與發光元件120的電極(如第一電極121及/或第二電極122)的路徑P1的長度(相較於第1圖的路徑P1,本實施例之路徑P1的長度較長),進而降低環境因子侵害發光元件120的電極的機率,以提升發光裝置300的可靠度及壽命。Different from the above-mentioned light-emitting device 100, the reflective layer 150 of the light-emitting device 300 of this embodiment further covers the side 110s of the substrate 110, so as to avoid or reduce external environmental factors (such as air, moisture, etc.) through the side 110s to the substrate 110 Of violations. Further, since the reflective layer 150 covers the side 110s of the substrate 110, the length of the path P1 of the external environment and the electrodes of the light emitting element 120 (such as the first electrode 121 and/or the second electrode 122) can be increased (compared to the first The path P1 in FIG. 1, the path P1 in this embodiment has a longer length), thereby reducing the probability of environmental factors infringing the electrodes of the light emitting element 120, so as to improve the reliability and lifespan of the light emitting device 300.

在另一實施例中,發光裝置300的波長轉換層130的俯視面積可可大致上等於發光元件120的俯視面積,此類似上述發光裝置200的結構,於此不再贅述。In another embodiment, the top view area of the wavelength conversion layer 130 of the light emitting device 300 may be substantially equal to the top view area of the light emitting element 120, which is similar to the structure of the above light emitting device 200, and will not be repeated here.

第4圖繪示依照本發明另一實施例之發光裝置400的剖視圖。發光裝置400包括基板110、數個發光元件120、波長轉換層130、黏膠140及反射層150。此些發光元件120設於基板110上。黏膠140覆蓋各發光元件120的側面120s的至少一部份。FIG. 4 shows a cross-sectional view of a light emitting device 400 according to another embodiment of the invention. The light emitting device 400 includes a substrate 110, a plurality of light emitting elements 120, a wavelength conversion layer 130, an adhesive 140, and a reflective layer 150. These light emitting elements 120 are disposed on the substrate 110. The adhesive 140 covers at least a part of the side 120s of each light emitting element 120.

與前述實施例之發光裝置不同的是,本實施例之發光裝置400的部份黏膠140形成於相鄰二發光元件120之間。例如,黏膠140更包括第二側部143,其位於相鄰二發光元件120之間,且第二側部143具有下表面143s,其中下表面143s係凸面,然亦可為凹面。反射層150形成於相鄰二發光元件120之間。例如,反射層150更包括第二反射部153,其中第二反射面153s位於相鄰二發光元件120之間。第二反射部153具有一順應下表面143s的第二反射面153s,因此第二反射面153s為凹面。在另一實施例中,下表面143s可以是凹面,而第二反射面153s為凸面。第二反射面153s可將發光元件120的光線L2反射至波長轉換層130,以增加發光裝置400的出光效率。Unlike the light-emitting device of the previous embodiment, part of the adhesive 140 of the light-emitting device 400 of this embodiment is formed between two adjacent light-emitting elements 120. For example, the adhesive 140 further includes a second side portion 143, which is located between two adjacent light emitting elements 120, and the second side portion 143 has a lower surface 143s, wherein the lower surface 143s is a convex surface, but may also be a concave surface. The reflective layer 150 is formed between two adjacent light emitting elements 120. For example, the reflective layer 150 further includes a second reflective portion 153, wherein the second reflective surface 153s is located between two adjacent light emitting elements 120. The second reflecting portion 153 has a second reflecting surface 153s conforming to the lower surface 143s, so the second reflecting surface 153s is concave. In another embodiment, the lower surface 143s may be a concave surface, and the second reflective surface 153s is a convex surface. The second reflective surface 153s can reflect the light L2 of the light emitting element 120 to the wavelength conversion layer 130 to increase the light extraction efficiency of the light emitting device 400.

在另一實施例中,發光裝置400的反射層150更可覆蓋基板110的側面110s,此類似上述發光裝置300的結構,於此不再贅述。In another embodiment, the reflective layer 150 of the light-emitting device 400 can further cover the side 110s of the substrate 110, which is similar to the structure of the light-emitting device 300 described above and will not be repeated here.

在另一實施例中,發光裝置400的波長轉換層130的俯視面積可大致上等於發光元件120的俯視面積,此類似上述發光裝置200的結構,容此不再贅述。In another embodiment, the top view area of the wavelength conversion layer 130 of the light emitting device 400 may be substantially equal to the top view area of the light emitting element 120, which is similar to the structure of the above light emitting device 200, and will not be repeated here.

第5A至5H圖繪示第1圖之發光裝置100的製造過程圖。5A to 5H are diagrams illustrating the manufacturing process of the light emitting device 100 of FIG. 1.

如第5A圖所示,可採用例如是點膠技術,形成波長轉換層材料130’於一載體10上。波長轉換層材料130’包含數個螢光粒子133。載體10的極性與波長轉換層材料130’的極性相異,因此在後續製程中波長轉換層材料130’與載體10可輕易分離。此外,雖然圖未繪示,然載體10可包括雙面膠及載板,其中雙面膠設於載板上,以承接波長轉換層材料130’。As shown in FIG. 5A, a wavelength conversion layer material 130' may be formed on a carrier 10 using, for example, dispensing technology. The wavelength conversion layer material 130' includes a plurality of fluorescent particles 133. The polarity of the carrier 10 is different from that of the wavelength conversion layer material 130', so the wavelength conversion layer material 130' and the carrier 10 can be easily separated in the subsequent manufacturing process. In addition, although not shown in the drawings, the carrier 10 may include double-sided tape and a carrier board, wherein the double-sided tape is provided on the carrier board to receive the wavelength conversion layer material 130'.

如第5B圖所示,在靜置波長轉換層材料130’一段時間,如24小時後,一些或大部分螢光粒子133沉澱於波長轉換層材料130’的底部,而形成一高密度轉換層131,其餘的螢光粒子133散佈於波長轉換層材料130’的其餘部分,而形成一低密度轉換層132。至此,形成包含高密度轉換層131及低密度轉換層132的波長轉換層130。As shown in FIG. 5B, after leaving the wavelength conversion layer material 130' for a period of time, such as 24 hours, some or most of the fluorescent particles 133 are deposited on the bottom of the wavelength conversion layer material 130' to form a high-density conversion layer 131, the remaining fluorescent particles 133 are dispersed on the remaining part of the wavelength conversion layer material 130' to form a low-density conversion layer 132. So far, the wavelength conversion layer 130 including the high-density conversion layer 131 and the low-density conversion layer 132 is formed.

然後,可加熱波長轉換層130,以固化波長轉換層130,進而固定螢光粒子133的位置,避免螢光粒子133於波長轉換層130內的密度分布隨意改變。Then, the wavelength conversion layer 130 may be heated to cure the wavelength conversion layer 130, thereby fixing the positions of the fluorescent particles 133, and preventing the density distribution of the fluorescent particles 133 in the wavelength conversion layer 130 from being randomly changed.

然後,可分離載體10與波長轉換層130,以露出波長轉換層130的高密度轉換層131。Then, the carrier 10 and the wavelength conversion layer 130 can be separated to expose the high density conversion layer 131 of the wavelength conversion layer 130.

如第5C圖所示,提供基板110及至少一發光元件120,其中發光元件120設於基板110上。此外,基板110可設於另一載體10’上,其中載體10’的結構類似上述載體10,於此不再贅述。As shown in FIG. 5C, a substrate 110 and at least one light emitting element 120 are provided, wherein the light emitting element 120 is disposed on the substrate 110. In addition, the substrate 110 may be disposed on another carrier 10', wherein the structure of the carrier 10' is similar to that of the carrier 10 described above, and will not be repeated here.

接著,以黏膠140黏合波長轉換層130的高密度轉換層131與發光元件120。以下以圖式進一步舉例說明。Next, the high-density conversion layer 131 of the wavelength conversion layer 130 and the light-emitting element 120 are bonded with adhesive 140. The following is further illustrated with a diagram.

如第5D圖所示,可採用例如是塗佈或點膠技術,形成黏膠140於發光元件120的上表面120u上。As shown in FIG. 5D, for example, coating or dispensing technology may be used to form the adhesive 140 on the upper surface 120u of the light emitting element 120.

如第5E圖所示,設置波長轉換層130於黏膠140上,使黏膠140黏合發光元件120與波長轉換層130的高密度轉換層131。由於波長轉換層130擠壓黏膠140,使黏膠140往發光元件120二側流動,而形成第一側部141。由於表面張力因素,第一側部141的側面141s形成一凹面,然視黏膠140的膠量及/或膠特性而定,側面141s亦可為凸面。此外,視黏膠140的膠量及/或膠特性而定,第一側部141可覆蓋發光元件120的側面120s的至少一部分。As shown in FIG. 5E, the wavelength conversion layer 130 is provided on the adhesive 140 so that the adhesive 140 bonds the light emitting element 120 and the high-density conversion layer 131 of the wavelength conversion layer 130. Since the wavelength conversion layer 130 presses the adhesive 140, the adhesive 140 flows toward the two sides of the light emitting element 120, and the first side portion 141 is formed. Due to the surface tension factor, the side surface 141s of the first side portion 141 forms a concave surface. However, depending on the amount of glue and/or the characteristics of the adhesive 140, the side surface 141s may also be convex. In addition, depending on the amount and/or characteristics of the adhesive 140, the first side portion 141 may cover at least a portion of the side 120s of the light emitting element 120.

如第5E圖的放大圖所示,保留於波長轉換層130與發光元件120之間的黏膠140形成熱阻層142。熱阻層142可減少發光元件120傳遞到波長轉換層130的熱量,進而減緩波長轉換層130的老化速率。As shown in the enlarged view of FIG. 5E, the adhesive 140 remaining between the wavelength conversion layer 130 and the light emitting element 120 forms a thermal resistance layer 142. The thermal resistance layer 142 can reduce the amount of heat transferred from the light emitting element 120 to the wavelength conversion layer 130, thereby slowing down the aging rate of the wavelength conversion layer 130.

如第5F圖所示,可採用例如是刀具切割技術,形成至少一第一切割道W1經過波長轉換層130,以切斷波長轉換層130。本實施例中,第一切割道W1未經過黏膠140的第一側部141,然亦可經過部分第一側部141。第一切割道W1於波長轉換層130形成側面130s,其可為平面或曲面。As shown in FIG. 5F, for example, a knife cutting technique may be used to form at least one first cutting lane W1 passing through the wavelength conversion layer 130 to cut off the wavelength conversion layer 130. In this embodiment, the first cutting path W1 does not pass through the first side portion 141 of the adhesive 140, but may also pass through part of the first side portion 141. The first scribe line W1 forms a side surface 130s on the wavelength conversion layer 130, which may be flat or curved.

形成第一切割道W1所使用的刀具寬度可大致等於第一切割道W1的寬度。或者,在形成第一切割道W1後,可適當拉伸載體10’的雙面膠(未繪示),以拉開相鄰二發光元件120的間距;在此設計下,可採用薄刀具形成第一切割道W1。The width of the cutter used to form the first cutting lane W1 may be substantially equal to the width of the first cutting lane W1. Alternatively, after the first cutting lane W1 is formed, the double-sided tape (not shown) of the carrier 10' can be appropriately stretched to open the distance between the adjacent two light-emitting elements 120; under this design, a thin cutter can be used to form The first cutting lane W1.

如第5G圖所示,可採用例如是模壓技術,形成呈流動態的反射層150於基板110上方,其中反射層150經由第一切割道W1(繪示於第5F圖))覆蓋發光元件120的部分側面120s、波長轉換層130的側面130s及黏膠140的第一側部141的側面141s、基板110的第三電極112的側面及第四電極113的側面以及發光元件120的第一電極121的側面及第二電極122的側面。As shown in FIG. 5G, for example, a molding technique may be used to form a fluid reflective layer 150 above the substrate 110, wherein the reflective layer 150 covers the light emitting element 120 through the first scribe line W1 (shown in FIG. 5F) Part of the side 120s, the side 130s of the wavelength conversion layer 130 and the side 141s of the first side 141 of the adhesive 140, the side of the third electrode 112 and the side of the fourth electrode 113 of the substrate 110 and the first electrode of the light emitting element 120 The side surface of 121 and the side surface of the second electrode 122.

此外,反射層150包括第一反射部151,其圍繞發光元件120的整個側面120s。第一反射部151具有第一反射面151s。由於黏膠140的側面141s係凹面,使覆蓋側面141s的第一反射面151s形成朝向波長轉換層130及發光元件120的凸面。凸出的第一反射面151s可將自側面120s發出的光線反射至波長轉換層130,以增加發光裝置100的出光效率。In addition, the reflective layer 150 includes a first reflective portion 151 that surrounds the entire side 120 s of the light emitting element 120. The first reflecting portion 151 has a first reflecting surface 151s. Since the side surface 141s of the adhesive 140 is a concave surface, the first reflective surface 151s covering the side surface 141s forms a convex surface toward the wavelength conversion layer 130 and the light emitting element 120. The protruding first reflective surface 151s can reflect the light emitted from the side surface 120s to the wavelength conversion layer 130 to increase the light extraction efficiency of the light emitting device 100.

由於第5F圖之步驟中第一切割道W1未經過黏膠140的第一側部141,使反射層150的第一反射面151s可接觸到波長轉換層130的下表面130b。如此一來,凸出的第一反射面151s連接高密度轉換層131的下表面130b與發光元件120的側面120s的,進而增加自發光元件120發出的光線L1與凸面(第一反射面151s)的接觸面積。Since the first scribe line W1 does not pass the first side portion 141 of the adhesive 140 in the step of FIG. 5F, the first reflective surface 151s of the reflective layer 150 can contact the lower surface 130b of the wavelength conversion layer 130. In this way, the convex first reflective surface 151s connects the lower surface 130b of the high-density conversion layer 131 and the side surface 120s of the light emitting element 120, thereby increasing the light L1 emitted from the light emitting element 120 and the convex surface (first reflective surface 151s) Contact area.

然後,可採用加熱方式,固化反射層150。Then, the reflective layer 150 can be cured by heating.

如第5H圖所示,可採用例如是刀具切割技術,形成至少一第二切割道W2經過反射層150及基板110。第二切割道W2於反射層150及基板110分別形成側面150s及側面110s,其中側面150s與側面110s大致上對齊或齊平。至此,形成如第1圖所示之發光裝置100。As shown in FIG. 5H, for example, a cutter cutting technique may be used to form at least one second cutting lane W2 passing through the reflective layer 150 and the substrate 110. The second scribe line W2 forms a side surface 150s and a side surface 110s on the reflective layer 150 and the substrate 110, wherein the side surface 150s and the side surface 110s are substantially aligned or flush. So far, the light emitting device 100 shown in FIG. 1 is formed.

在另一實施例中,第二切割道W2可經過波長轉換層130、反射層150及基板110,使波長轉換層130、反射層150及基板110分別形成側面130s、側面150s及側面110s,其中側面130s、側面150s與側面110s大致上對齊或齊平。In another embodiment, the second scribe line W2 may pass through the wavelength conversion layer 130, the reflective layer 150, and the substrate 110, so that the wavelength conversion layer 130, the reflective layer 150, and the substrate 110 respectively form a side 130s, a side 150s, and a side 110s, wherein The side 130s, the side 150s, and the side 110s are substantially aligned or flush.

此外,形成第二切割道W2所使用的刀具寬度可以大致等於第二切割道W2的寬度。或者,在形成第二切割道W2後,可適當拉伸載體10’的雙面膠(未繪示),以拉開相鄰二發光元件120的間距;在此設計下,可採用薄刀具形成第二切割道W2。In addition, the width of the cutter used to form the second cutting lane W2 may be substantially equal to the width of the second cutting lane W2. Alternatively, after the second cutting lane W2 is formed, the double-sided tape (not shown) of the carrier 10' can be appropriately stretched to open the distance between the adjacent two light-emitting elements 120; under this design, a thin cutter can be used to form Second cutting lane W2.

第6A至6C圖繪示第1圖之發光裝置100的另一種製造過程圖。6A to 6C illustrate another manufacturing process diagram of the light emitting device 100 of FIG. 1.

如第6A圖所示,可採用例如是塗佈或點膠技術,形成黏膠140於波長轉換層130之高密度轉換層131上。As shown in FIG. 6A, for example, coating or dispensing technology may be used to form the adhesive 140 on the high-density conversion layer 131 of the wavelength conversion layer 130.

如第6B圖所示,設置如第5C圖所示的基板110及發光元件120於黏膠140上,其中發光元件120接觸黏膠140,以使黏膠140黏合發光元件120與波長轉換層130之高密度轉換層131。As shown in FIG. 6B, the substrate 110 and the light emitting element 120 shown in FIG. 5C are disposed on the adhesive 140, wherein the light emitting element 120 contacts the adhesive 140, so that the adhesive 140 bonds the light emitting element 120 and the wavelength conversion layer 130之High density conversion layer 131.

由於發光元件120擠壓黏膠140,使黏膠140往各發光元件120二側流動,而形成第一側部141。由於表面張力因素,第一側部141的側面141s形成一凹面。視黏膠140的膠量及/或特性而定,第一側部141可覆蓋發光元件120的側面120s的至少一部分。此外,如第6B圖的放大圖所示,保留於波長轉換層130與發光元件120之間的黏膠140形成熱阻層142。熱阻層142可減少發光元件120傳遞到波長轉換層130的熱量,進而減緩波長轉換層130的老化速率。Since the light-emitting element 120 presses the adhesive 140, the adhesive 140 flows toward the two sides of each light-emitting element 120 to form the first side portion 141. Due to the surface tension factor, the side surface 141s of the first side portion 141 forms a concave surface. Depending on the amount and/or characteristics of the adhesive 140, the first side portion 141 may cover at least a part of the side 120s of the light emitting element 120. In addition, as shown in the enlarged view of FIG. 6B, the adhesive 140 remaining between the wavelength conversion layer 130 and the light emitting element 120 forms a thermal resistance layer 142. The thermal resistance layer 142 can reduce the amount of heat transferred from the light emitting element 120 to the wavelength conversion layer 130, thereby slowing down the aging rate of the wavelength conversion layer 130.

如第6C圖所示,倒置發光元件120、波長轉換層130與基板110,使波長轉換層130朝上。As shown in FIG. 6C, the light emitting element 120, the wavelength conversion layer 130, and the substrate 110 are inverted so that the wavelength conversion layer 130 faces upward.

接下來的步驟類似第5A至5H圖之發光裝置100的製造過程的對應步驟,於此不再贅述。The following steps are similar to the corresponding steps in the manufacturing process of the light-emitting device 100 shown in FIGS. 5A to 5H, and will not be repeated here.

第7A至7C圖繪示第2圖之發光裝置200的製造過程圖。7A to 7C illustrate the manufacturing process diagram of the light emitting device 200 of FIG. 2.

首先,可採用類似上述第5A至5E圖的步驟先形成第5E圖的結構,或採用上述第6A至6C圖的步驟先形成第6C圖的結構。First of all, the structure of FIG. 5E may be formed first using steps similar to the above FIGS. 5A to 5E, or the structure of FIG. 6C may be formed first using the steps of FIGS. 6A to 6C.

然後,如第7A圖所示,可採用例如是刀具切割技術,形成至少一第一切割道W1經過波長轉換層130及覆蓋發光元件120的側面120s的第一側部141,以切斷波長轉換層130且切除第一側部141。由於第一切割道W1切除第一側部141,使發光元件120的整個側面120s及黏膠140的熱阻層142的整個側面142s係露出。Then, as shown in FIG. 7A, for example, a cutter cutting technique may be used to form at least one first scribe line W1 through the wavelength conversion layer 130 and the first side portion 141 covering the side surface 120s of the light emitting element 120 to cut off the wavelength conversion Layer 130 and cut off the first side 141. Since the first scribe line W1 cuts off the first side portion 141, the entire side surface 120s of the light emitting element 120 and the entire side surface 142s of the thermal resistance layer 142 of the adhesive 140 are exposed.

如第7B圖所示,可採用例如是模壓技術,形成呈流動態的反射層150於基板110上方,其中反射層150經由第一切割道W1(繪示於第7A圖)覆蓋發光元件120的整個側面120s、熱阻層142的整個側面142s、波長轉換層130的整個側面130s、基板110的第三電極112的側面及第四電極113的側面以及發光元件120的第一電極121的側面及第二電極122的側面。As shown in FIG. 7B, a molding technique may be used, for example, to form a fluid reflective layer 150 above the substrate 110, wherein the reflective layer 150 covers the light emitting element 120 via the first scribe line W1 (shown in FIG. 7A) The entire side 120s, the entire side 142s of the thermal resistance layer 142, the entire side 130s of the wavelength conversion layer 130, the side of the third electrode 112 and the side of the fourth electrode 113 of the substrate 110, and the side of the first electrode 121 of the light emitting element 120 and The side of the second electrode 122.

然後,可採用加熱方式,固化反射層150。Then, the reflective layer 150 can be cured by heating.

如第7C圖所示,可採用例如是刀具切割技術,形成至少一第二切割道W2經過反射層150及基板110。第二切割道W2於反射層150及基板110分別形成側面150s及側面110s,其中側面150s與側面110s大致上對齊或齊平。至此,形成如第2圖所示之發光裝置200。As shown in FIG. 7C, for example, a cutter cutting technique may be used to form at least one second cutting lane W2 passing through the reflective layer 150 and the substrate 110. The second scribe line W2 forms a side surface 150s and a side surface 110s on the reflective layer 150 and the substrate 110, wherein the side surface 150s and the side surface 110s are substantially aligned or flush. So far, the light emitting device 200 shown in FIG. 2 is formed.

第8A至8C圖繪示第3圖之發光裝置300的製造過程圖。8A to 8C illustrate the manufacturing process diagram of the light emitting device 300 of FIG. 3.

首先,可採用類似上述第5A至5E圖的步驟先形成第5E圖的結構,或採用上述第6A至6C圖的步驟先形成第6C圖的結構。First of all, the structure of FIG. 5E may be formed first using steps similar to the above FIGS. 5A to 5E, or the structure of FIG. 6C may be formed first using the steps of FIGS. 6A to 6C.

然後,如第8A圖所示,可採用例如是刀具切割技術,形成至少一第一切割道W1經過波長轉換層130及基板110,以切斷波長轉換層130及基板110。第一切割道W1於波長轉換層130及基板110分別形成側面130s及側面110s,其中側面130s及側面110s大致上對齊或齊平。Then, as shown in FIG. 8A, for example, a cutter cutting technique may be used to form at least one first scribe line W1 passing through the wavelength conversion layer 130 and the substrate 110 to cut off the wavelength conversion layer 130 and the substrate 110. The first scribe line W1 forms a side 130s and a side 110s on the wavelength conversion layer 130 and the substrate 110, respectively, wherein the side 130s and the side 110s are substantially aligned or flush.

如第8B圖所示,可採用例如是點膠技術,形成呈流動態的反射層150於基板110上方,其中反射層150經由第一切割道W1(繪示於第8A圖)覆蓋發光元件120的部分側面120s、波長轉換層130的側面130s、黏膠140的第一側部141的側面141s、基板110的側面110s、基板110的第三電極112的側面及第四電極113的側面以及發光元件120的第一電極121的側面及第二電極122的側面。As shown in FIG. 8B, for example, a dispensing technique may be used to form a fluid reflective layer 150 above the substrate 110, wherein the reflective layer 150 covers the light emitting element 120 through the first scribe line W1 (shown in FIG. 8A) Partial side 120s, side 130s of the wavelength conversion layer 130, side 141s of the first side 141 of the adhesive 140, side 110s of the substrate 110, side of the third electrode 112 and side of the fourth electrode 113 of the substrate 110, and light emission The side surface of the first electrode 121 and the side surface of the second electrode 122 of the element 120.

然後,可採用加熱方式,固化反射層150。Then, the reflective layer 150 can be cured by heating.

如第8C圖所示,可採用例如是刀具切割技術,形成至少一第二切割道W2經過反射層150,其中第二切割道W2於反射層150形成側面150s。至此,形成如第3圖所示之發光裝置300。As shown in FIG. 8C, for example, a cutter cutting technique may be used to form at least one second cutting lane W2 passing through the reflective layer 150, wherein the second cutting lane W2 forms a side surface 150s on the reflective layer 150. So far, the light emitting device 300 shown in FIG. 3 is formed.

在另一實施例中,第二切割道W2可經過波長轉換層130、反射層150及基板110,使波長轉換層130、反射層150及基板110分別形成側面130s、側面150s及側面110s,其中側面130s、側面150s與側面110s大致上對齊或齊平。In another embodiment, the second scribe line W2 may pass through the wavelength conversion layer 130, the reflective layer 150, and the substrate 110, so that the wavelength conversion layer 130, the reflective layer 150, and the substrate 110 respectively form a side 130s, a side 150s, and a side 110s, wherein The side 130s, the side 150s, and the side 110s are substantially aligned or flush.

第9A至9F圖繪示第4圖之發光裝置400的製造過程圖。9A to 9F show the manufacturing process diagram of the light emitting device 400 of FIG. 4.

如第9A圖所示,提供基板110及數個發光元件120,其中此些發光元件120設於基板110上。As shown in FIG. 9A, a substrate 110 and a plurality of light-emitting elements 120 are provided, wherein the light-emitting elements 120 are disposed on the substrate 110.

如第9A圖所示,設置基板110及此些發光元件120於載板10’上。As shown in FIG. 9A, the substrate 110 and the light emitting elements 120 are provided on the carrier board 10'.

如第9B圖所示,可採用例如是塗佈或點膠技術,形成黏膠140於發光元件120的上表面120u上。As shown in FIG. 9B, for example, coating or dispensing technology may be used to form the adhesive 140 on the upper surface 120u of the light emitting element 120.

如第9C圖所示,設置波長轉換層130於黏膠140上,使黏膠140黏合發光元件120與波長轉換層130的高密度轉換層131。由於波長轉換層130擠壓黏膠140,使黏膠140往發光元件120二側流動,而形成第一側部141。第一側部141具有側面141s。由於表面張力的因素,側面141s係凹面。然,視黏膠140的膠量及/特性而定,側面141s亦可為朝向基板110的凸面。此外,視黏膠140的膠量而定,第一側部141可覆蓋發光元件120的側面120s的至少一部分。As shown in FIG. 9C, the wavelength conversion layer 130 is provided on the adhesive 140 so that the adhesive 140 bonds the light emitting element 120 and the high-density conversion layer 131 of the wavelength conversion layer 130. Since the wavelength conversion layer 130 presses the adhesive 140, the adhesive 140 flows toward the two sides of the light emitting element 120, and the first side portion 141 is formed. The first side portion 141 has a side surface 141s. Due to surface tension, the side surface 141s is concave. However, depending on the amount and/or characteristics of the adhesive 140, the side surface 141s may also be a convex surface facing the substrate 110. In addition, depending on the amount of glue 140, the first side portion 141 may cover at least a part of the side 120s of the light emitting element 120.

如第9C圖的放大圖所示,保留於波長轉換層130與發光元件120之間的黏膠140形成熱阻層142。熱阻層142可減少發光元件120傳遞到波長轉換層130的熱量,進而減緩波長轉換層130的老化速率。As shown in the enlarged view of FIG. 9C, the adhesive 140 remaining between the wavelength conversion layer 130 and the light-emitting element 120 forms a thermal resistance layer 142. The thermal resistance layer 142 can reduce the amount of heat transferred from the light emitting element 120 to the wavelength conversion layer 130, thereby slowing down the aging rate of the wavelength conversion layer 130.

此外,黏膠140更包括第二側部143,其形成於相鄰二發光元件120之間。第二側部143具有下表面143s。由於表面張力的因素,下表面143s係朝向基板110的凸面。然,視黏膠140的膠量及/特性而定,下表面143s亦可為朝向基板110的凹面。In addition, the adhesive 140 further includes a second side portion 143 formed between the two adjacent light-emitting elements 120. The second side portion 143 has a lower surface 143s. Due to the surface tension, the lower surface 143s faces the convex surface of the substrate 110. However, depending on the amount and/or characteristics of the adhesive 140, the lower surface 143s may also be a concave surface facing the substrate 110.

如第9D圖所示,可採用例如是刀具切割技術,形成至少一第一切割道W1經過波長轉換層130,以切斷波長轉換層130。本實施例中,第一切割道W1未經過黏膠140的第一側部141,然亦可經過部分第一側部141或整個第一側部141。As shown in FIG. 9D, for example, a cutter cutting technique may be used to form at least one first cutting lane W1 passing through the wavelength conversion layer 130 to cut off the wavelength conversion layer 130. In this embodiment, the first cutting path W1 does not pass through the first side portion 141 of the adhesive 140, but may also pass through a part of the first side portion 141 or the entire first side portion 141.

如第9E圖所示,可採用例如是點膠技術,形成呈流動態的反射層150於基板110上方,其中反射層150經由第一切割道W1(繪示於第9D圖)覆蓋發光元件120的部分側面120s、波長轉換層130的側面130s、黏膠140的第一側部141的側面141s、第二側部143的下表面143s、波長轉換層130的側面130s、基板110的第三電極112的側面及第四電極113的側面以及各發光元件120的第一電極121的側面及第二電極122的側面。As shown in FIG. 9E, a dispensing technique may be used, for example, to form a fluid reflective layer 150 above the substrate 110, wherein the reflective layer 150 covers the light emitting element 120 through the first scribe line W1 (shown in FIG. 9D) Partial side 120s, side 130s of the wavelength conversion layer 130, side 141s of the first side 141 of the adhesive 140, lower surface 143s of the second side 143, side 130s of the wavelength conversion layer 130, third electrode of the substrate 110 The side surface of 112 and the side surface of the fourth electrode 113 and the side surface of the first electrode 121 and the side surface of the second electrode 122 of each light emitting element 120.

此外,反射層150包括第一反射部151及第二反射部153,其中第一反射部151覆蓋第一側部141,而第二反射部153覆蓋第二側部143。第一反射部151具有一順應側面141s的第一反射面151s,由於側面141s係凹面,因此第一反射面151s係一凸面。第二反射部153具有一順應下表面143s的第二反射面153s,由於下表面143s係凸面,因此第二反射面153s係一凹面。In addition, the reflective layer 150 includes a first reflective portion 151 and a second reflective portion 153, wherein the first reflective portion 151 covers the first side portion 141, and the second reflective portion 153 covers the second side portion 143. The first reflecting portion 151 has a first reflecting surface 151s conforming to the side surface 141s. Since the side surface 141s is a concave surface, the first reflecting surface 151s is a convex surface. The second reflecting portion 153 has a second reflecting surface 153s conforming to the lower surface 143s. Since the lower surface 143s is a convex surface, the second reflecting surface 153s is a concave surface.

然後,可採用加熱方式,固化反射層150。Then, the reflective layer 150 can be cured by heating.

如第9F圖所示,可採用例如是刀具切割技術,形成至少一第二切割道W2經過反射層150及基板110。第二切割道W2於反射層150及基板110分別形成側面150s及側面110s,其中側面150s與側面110s大致上對齊或齊平。至此,形成如第4圖所示之發光裝置400。As shown in FIG. 9F, for example, a cutter cutting technique may be used to form at least one second cutting lane W2 passing through the reflective layer 150 and the substrate 110. The second scribe line W2 forms a side surface 150s and a side surface 110s on the reflective layer 150 and the substrate 110, wherein the side surface 150s and the side surface 110s are substantially aligned or flush. So far, the light-emitting device 400 shown in FIG. 4 is formed.

在另一實施例中,第二切割道W2可經過波長轉換層130、反射層150及基板110,使波長轉換層130、反射層150及基板110分別形成側面130s、側面150s及側面110s,其中側面130s、側面150s與側面110s大致上對齊或齊平。In another embodiment, the second scribe line W2 may pass through the wavelength conversion layer 130, the reflective layer 150, and the substrate 110, so that the wavelength conversion layer 130, the reflective layer 150, and the substrate 110 respectively form a side 130s, a side 150s, and a side 110s, wherein The side 130s, the side 150s, and the side 110s are substantially aligned or flush.

在又一實施例中,發光裝置400可採用類似第7A至7B圖的製造過程,使反射層150覆蓋至少一發光元件120的側面120s、熱阻層142的側面142s及波長轉換層130的側面130s。In yet another embodiment, the light-emitting device 400 may adopt a manufacturing process similar to FIGS. 7A to 7B, so that the reflective layer 150 covers the side 120s of the at least one light-emitting element 120, the side 142s of the thermal resistance layer 142, and the side of the wavelength conversion layer 130 130s.

在其它實施例中,發光裝置400可採用類似第8A至8B圖的製造過程,使反射層150覆蓋基板110的側面110s。In other embodiments, the light-emitting device 400 may adopt a manufacturing process similar to FIGS. 8A to 8B, so that the reflective layer 150 covers the side 110s of the substrate 110.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In summary, although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs can make various modifications and retouching without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be subject to the scope defined in the appended patent application.

10、10’‧‧‧載體100、200、300、400‧‧‧發光裝置110‧‧‧基板111‧‧‧基材111u‧‧‧第一表面111b‧‧‧第二表面112‧‧‧第三電極113‧‧‧第四電極114‧‧‧第一接墊115‧‧‧第二接墊116‧‧‧第一導電柱117‧‧‧第二導電柱120‧‧‧發光元件120u‧‧‧上表面121‧‧‧第一電極122‧‧‧第二電極110s、120s、130s、141s、142s、150s‧‧‧側面130‧‧‧波長轉換層130’‧‧‧波長轉換層材料130b、143s‧‧‧下表面131‧‧‧高密度轉換層132‧‧‧低密度轉換層133‧‧‧螢光粒子140‧‧‧黏膠141‧‧‧第一側部142‧‧‧熱阻層143‧‧‧第二側部150‧‧‧反射層151‧‧‧第一反射部151s‧‧‧第一反射面152‧‧‧填充部153‧‧‧第二反射部153s‧‧‧第二反射面G1‧‧‧第一間隔G2‧‧‧第二間隔L1‧‧‧光線P1‧‧‧路徑T1、T2‧‧‧厚度W1‧‧‧第一切割道W2‧‧‧第二切割道10, 10'‧‧‧ carrier 100, 200, 300, 400 ‧‧‧ light emitting device 110‧‧‧ substrate 111‧‧‧ base material 111u‧‧‧ first surface 111b‧‧‧ second surface 112‧‧‧ Three-electrode 113‧‧‧ Fourth electrode 114‧‧‧First pad 115‧‧‧Second pad 116‧‧‧‧ First conductive column 117‧‧‧ Second conductive column 120‧‧‧‧Light-emitting element 120u‧‧ ‧Top surface 121‧‧‧First electrode 122‧‧‧Second electrode 110s, 120s, 130s, 141s, 142s, 150s‧Side side 130‧‧‧ Wavelength conversion layer 130′‧‧‧wavelength conversion layer material 130b, 143s‧‧‧Lower surface 131‧‧‧High-density conversion layer 132‧‧‧Low-density conversion layer 133‧‧‧ Fluorescent particles 140‧‧‧Viscose 141‧‧‧First side 142‧‧‧Thermal resistance layer 143‧‧‧Second side part 150‧‧‧Reflective layer 151‧‧‧First reflection part 151s‧‧‧First reflection surface 152‧‧‧Fill part 153‧‧‧Second reflection part 153s‧‧‧Second Reflecting surface G1‧‧‧ First interval G2‧‧‧ Second interval L1‧‧‧ Light P1‧‧‧ Path T1, T2‧‧‧ Thickness W1‧‧‧ First cutting path W2‧‧‧ Second cutting path

第1圖繪示依照本發明一實施例之發光裝置的剖視圖。 第2圖繪示依照本發明另一實施例之發光裝置的剖視圖。 第3圖繪示依照本發明另一實施例之發光裝置的剖視圖。 第4圖繪示依照本發明另一實施例之發光裝置的剖視圖。 第5A至5H圖繪示第1圖之發光裝置的製造過程圖。 第6A至6C圖繪示第1圖之發光裝置的另一種製造過程圖。 第7A至7C圖繪示第2圖之發光裝置的製造過程圖。 第8A至8C圖繪示第3圖之發光裝置的製造過程圖。 第9A至9F圖繪示第4圖之發光裝置的製造過程圖。FIG. 1 is a cross-sectional view of a light-emitting device according to an embodiment of the invention. FIG. 2 is a cross-sectional view of a light emitting device according to another embodiment of the invention. FIG. 3 is a cross-sectional view of a light emitting device according to another embodiment of the invention. FIG. 4 is a cross-sectional view of a light emitting device according to another embodiment of the invention. 5A to 5H show the manufacturing process diagram of the light-emitting device of FIG. 1. 6A to 6C show another manufacturing process diagram of the light emitting device of FIG. 1. 7A to 7C illustrate the manufacturing process diagram of the light emitting device of FIG. 2. 8A to 8C illustrate the manufacturing process diagram of the light emitting device of FIG. 3. 9A to 9F are drawings showing the manufacturing process of the light-emitting device of FIG. 4.

100‧‧‧發光裝置 100‧‧‧Lighting device

110‧‧‧基板 110‧‧‧ substrate

111‧‧‧基材 111‧‧‧ Base material

111u‧‧‧第一表面 111u‧‧‧First surface

111b‧‧‧第二表面 111b‧‧‧Second surface

112‧‧‧第三電極 112‧‧‧third electrode

113‧‧‧第四電極 113‧‧‧ Fourth electrode

114‧‧‧第一接墊 114‧‧‧ First pad

115‧‧‧第二接墊 115‧‧‧ Second pad

116‧‧‧第一導電柱 116‧‧‧The first conductive column

117‧‧‧第二導電柱 117‧‧‧Second conductive column

120‧‧‧發光元件 120‧‧‧Lighting element

120s、130s、141s‧‧‧側面 120s, 130s, 141s

120u‧‧‧上表面 120u‧‧‧upper surface

121‧‧‧第一電極 121‧‧‧First electrode

122‧‧‧第二電極 122‧‧‧Second electrode

130‧‧‧波長轉換層 130‧‧‧wavelength conversion layer

130b‧‧‧下表面 130b‧‧‧Lower surface

131‧‧‧高密度轉換層 131‧‧‧High density conversion layer

132‧‧‧低密度轉換層 132‧‧‧Low density conversion layer

140‧‧‧黏膠 140‧‧‧Viscose

141‧‧‧第一側部 141‧‧‧The first side

142‧‧‧熱阻層 142‧‧‧Thermal resistance layer

150‧‧‧反射層 150‧‧‧Reflective layer

151‧‧‧第一反射部 151‧‧‧First Reflection Department

152‧‧‧填充部 152‧‧‧Filling Department

151s‧‧‧第一反射面 151s‧‧‧First reflection surface

G1‧‧‧第一間隔 G1‧‧‧ First interval

G2‧‧‧第二間隔 G2‧‧‧Second interval

L1‧‧‧光線 L1‧‧‧Light

P1‧‧‧路徑 P1‧‧‧path

T1、T2‧‧‧厚度 T1, T2‧‧‧thickness

Claims (9)

一種發光裝置,包括:一基板;一發光元件,包括一半導體結構及二電極,該發光元件透過該些電極安裝在該基板上並與該基板電性連接,該些電極位於該半導體結構與該基板之間,且該半導體結構包括一第一半導體層、一第二半導體層及一位於該第一半導體層及該第二半導體層之間的發光層;一波長轉換層,具有一均勻的厚度,且至少覆蓋該發光元件的一上表面;一黏膠層,設置在該波長轉換層與該發光單元之間;一反射層,設置於該基板上並具有一反射面,該反射面環繞地接觸該發光元件的一側表面及該黏膠層的一側表面,其中該反射層填入該發光元件與該基板之間的間隙,其中該發光裝置包括一平的側表面,該平的側表面包括該反射層及該基板。 A light-emitting device includes: a substrate; a light-emitting element, including a semiconductor structure and two electrodes, the light-emitting element is mounted on the substrate through the electrodes and is electrically connected to the substrate, the electrodes are located on the semiconductor structure and the Between substrates, and the semiconductor structure includes a first semiconductor layer, a second semiconductor layer, and a light-emitting layer between the first semiconductor layer and the second semiconductor layer; a wavelength conversion layer with a uniform thickness And at least covers an upper surface of the light-emitting element; an adhesive layer is provided between the wavelength conversion layer and the light-emitting unit; a reflective layer is provided on the substrate and has a reflective surface, the reflective surface surrounds A side surface contacting the light emitting element and a side surface of the adhesive layer, wherein the reflective layer fills the gap between the light emitting element and the substrate, wherein the light emitting device includes a flat side surface, and the flat side surface The reflective layer and the substrate are included. 一種發光裝置,包括:一基板;一發光元件,包括一發光元件本體及二電極,該發光元件本體透過該些電極安裝在該基板上並與該基板電性連接;一反射層,設置於該基板上並環繞該發光元件,其中該反射 層填入該發光元件與該基板之間的間隙;一波長轉換層,具有一均勻的厚度,且至少覆蓋該發光元件的一上表面及至少部分該反射層;以及一黏膠層,設置在該波長轉換層與該發光單元之間,其中該反射層具有一反射面,該反射面接觸該發光元件的一側表面及該黏膠層的一側表面,其中該發光裝置包括一平的側表面,該平的側表面包括該反射層。 A light-emitting device includes: a substrate; a light-emitting element, including a light-emitting element body and two electrodes, the light-emitting element body is mounted on the substrate through the electrodes and is electrically connected to the substrate; a reflective layer is provided on the On the substrate and surrounding the light emitting element, wherein the reflection The layer fills in the gap between the light-emitting element and the substrate; a wavelength conversion layer having a uniform thickness, and covering at least an upper surface of the light-emitting element and at least a portion of the reflective layer; and an adhesive layer provided on Between the wavelength conversion layer and the light emitting unit, wherein the reflective layer has a reflective surface, the reflective surface contacts a side surface of the light emitting element and a side surface of the adhesive layer, wherein the light emitting device includes a flat side surface , The flat side surface includes the reflective layer. 一種發光裝置,包括:一基板;一發光元件,包括一發光元件本體及二電極,該發光元件本體透過該些電極安裝在該基板上並與該基板電性連接;一波長轉換層,具有一均勻的厚度,且至少覆蓋該發光元件的一上表面;一黏膠層,設置在該波長轉換層與該發光單元之間;以及一反射層,設置於該基板上並具有一反射面,該反射面環繞地接觸該發光元件的一側表面、該黏膠層的一側表面及該波長轉換層的一側表面,其中該反射層填入該發光元件與該基板之間的間隙;其中該發光裝置包括一平的側表面,該平的側表面包括該反射層。 A light-emitting device includes: a substrate; a light-emitting element, including a light-emitting element body and two electrodes, the light-emitting element body is mounted on the substrate through the electrodes and is electrically connected to the substrate; a wavelength conversion layer has a Uniform thickness and covering at least an upper surface of the light-emitting element; an adhesive layer disposed between the wavelength conversion layer and the light-emitting unit; and a reflective layer disposed on the substrate and having a reflective surface, the The reflective surface circumferentially contacts one side surface of the light emitting element, one side surface of the adhesive layer and one side surface of the wavelength conversion layer, wherein the reflective layer fills the gap between the light emitting element and the substrate; wherein the The light emitting device includes a flat side surface, and the flat side surface includes the reflective layer. 如申請專利範圍第1或2或3項所述之發光裝置,其中該波長轉換層包括一高密度轉換層及一低密度轉換層。 The light-emitting device as described in item 1 or 2 or 3 of the patent application, wherein the wavelength conversion layer includes a high-density conversion layer and a low-density conversion layer. 如申請專利範圍第4項所述之發光裝置,其中該高密度轉換層位於該低密度轉換層與該發光元件之間。 The light-emitting device as described in item 4 of the patent application range, wherein the high-density conversion layer is located between the low-density conversion layer and the light-emitting element. 如申請專利範圍第1或2或3項所述之發光裝置,其中該黏膠層更延伸至該發光單元的部分該側表面。 The light-emitting device as described in item 1 or 2 or 3 of the patent application, wherein the adhesive layer further extends to a part of the side surface of the light-emitting unit. 如申請專利範圍第1或2項所述之發光裝置,其中該平的側表面更包括該基板。 The light-emitting device as described in item 1 or 2 of the patent application, wherein the flat side surface further includes the substrate. 如申請專利範圍第6項所述之發光裝置,其中該反射面傾斜於該發光元件的該側表面。 The light-emitting device as described in item 6 of the patent application range, wherein the reflective surface is inclined to the side surface of the light-emitting element. 如申請專利範圍第8項所述之發光裝置,其中該反射面包括一凸面,該凸面朝向該發光元件的該側表面及/或該波長轉換層。 The light-emitting device as recited in item 8 of the patent application range, wherein the reflective surface includes a convex surface that faces the side surface of the light-emitting element and/or the wavelength conversion layer.
TW107117295A 2015-09-18 2015-12-31 Light-emitting device TWI697136B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562220249P 2015-09-18 2015-09-18
US62/220,249 2015-09-18
US201562241729P 2015-10-14 2015-10-14
US62/241,729 2015-10-14

Publications (2)

Publication Number Publication Date
TW201830732A TW201830732A (en) 2018-08-16
TWI697136B true TWI697136B (en) 2020-06-21

Family

ID=59256896

Family Applications (3)

Application Number Title Priority Date Filing Date
TW104144809A TWI583027B (en) 2015-09-18 2015-12-31 Light-emitting device and manufacturing method thereof
TW106108220A TWI632702B (en) 2015-09-18 2015-12-31 Light-emitting device
TW107117295A TWI697136B (en) 2015-09-18 2015-12-31 Light-emitting device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW104144809A TWI583027B (en) 2015-09-18 2015-12-31 Light-emitting device and manufacturing method thereof
TW106108220A TWI632702B (en) 2015-09-18 2015-12-31 Light-emitting device

Country Status (1)

Country Link
TW (3) TWI583027B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582441B (en) * 2019-09-30 2023-04-07 成都辰显光电有限公司 Display panel, display device and preparation method of display panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201114072A (en) * 2009-05-22 2011-04-16 Panasonic Corp Semiconductor light-emitting device and light source device using the same
US20120236582A1 (en) * 2011-01-24 2012-09-20 Waragaya Takeshi Semiconductor light emitting device and manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7810956B2 (en) * 2007-08-23 2010-10-12 Koninklijke Philips Electronics N.V. Light source including reflective wavelength-converting layer
DE102011050450A1 (en) * 2011-05-18 2012-11-22 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip, optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component
US20130094177A1 (en) * 2011-10-13 2013-04-18 Intematix Corporation Wavelength conversion component with improved thermal conductive characteristics for remote wavelength conversion
CN103855142B (en) * 2012-12-04 2017-12-29 东芝照明技术株式会社 Light-emitting device and lighting device
TW201507209A (en) * 2013-08-01 2015-02-16 Genesis Photonics Inc Light emitting diode package structure and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201114072A (en) * 2009-05-22 2011-04-16 Panasonic Corp Semiconductor light-emitting device and light source device using the same
US20120236582A1 (en) * 2011-01-24 2012-09-20 Waragaya Takeshi Semiconductor light emitting device and manufacturing method

Also Published As

Publication number Publication date
TW201724570A (en) 2017-07-01
TW201830732A (en) 2018-08-16
TW201712899A (en) 2017-04-01
TWI583027B (en) 2017-05-11
TWI632702B (en) 2018-08-11

Similar Documents

Publication Publication Date Title
TWI651870B (en) Light emitting device and method of manufacturing same
US10957674B2 (en) Manufacturing method
JP7315665B2 (en) light emitting diode package
JP5458044B2 (en) Light emitting device and method for manufacturing light emitting device
KR102237155B1 (en) Light emitting device and light unit having thereof
US20230261157A1 (en) Contact structures of led chips for current injection
TW200931684A (en) Light-emitting element and light-emitting device using the same
JP5598323B2 (en) Light emitting device and method for manufacturing light emitting device
JP6095479B2 (en) LED module
JP2012124429A (en) Light-emitting element, light-emitting element unit, light-emitting element package and method of manufacturing light-emitting element
TWI697136B (en) Light-emitting device
EP2930749B1 (en) Light-emitting device and method of producing the same
KR102261956B1 (en) Light emitting module and light unit havig thereof
KR20140004351A (en) Light emitting diode package
KR102397909B1 (en) Board and light source module having the same
JP2017017162A (en) Light-emitting device
KR20150018481A (en) Semiconductor light emitting device and manufacturing method of the same
KR102251225B1 (en) Light source module
KR102019498B1 (en) Light emitting device and lighting system
US20220209088A1 (en) Light emitting device package
JP2024033968A (en) Method for manufacturing a light-emitting device, method for manufacturing a light-emitting module, and light-emitting device and light-emitting module
KR20110129594A (en) Light emitting element package
JP2024018492A (en) Manufacturing method of light emitting device, light emitting device and light emitting module