TWI696897B - Charged particle beam drawing device, charged particle beam drawing system, and drawing data generation method - Google Patents

Charged particle beam drawing device, charged particle beam drawing system, and drawing data generation method Download PDF

Info

Publication number
TWI696897B
TWI696897B TW106103504A TW106103504A TWI696897B TW I696897 B TWI696897 B TW I696897B TW 106103504 A TW106103504 A TW 106103504A TW 106103504 A TW106103504 A TW 106103504A TW I696897 B TWI696897 B TW I696897B
Authority
TW
Taiwan
Prior art keywords
drawing data
unit
data
projection system
line
Prior art date
Application number
TW106103504A
Other languages
Chinese (zh)
Other versions
TW201743140A (en
Inventor
下村剛哉
大川洋平
Original Assignee
日商大日本印刷股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商大日本印刷股份有限公司 filed Critical 日商大日本印刷股份有限公司
Publication of TW201743140A publication Critical patent/TW201743140A/en
Application granted granted Critical
Publication of TWI696897B publication Critical patent/TWI696897B/en

Links

Images

Abstract

使得管理修正處理後的描繪資料變得容易。 Makes it easy to manage the drawing data after correction processing.

帶電粒子束描繪裝置(1),具備:射束 生成部(7),生成帶電粒子束;及孔徑部(16),具有複數個開口部,使帶電粒子束通過該些開口部,以生成含有複數道微小射束之多射束;及投影系統(4),將多射束縮小投影至描繪對象物;及遮沒部(17),介於孔徑部與投影系統之間,控制複數道微小射束朝向投影系統,或朝向和投影系統相異之方向;及控制部(41),控制射束生成部、投影系統及遮沒部;及取得部(42),取得用來對描繪對象物描繪之向量形式的第1描繪資料;及第1圖像變換部(43),將第1描繪資料變換成逐線(raster)形式的第2描繪資料;及圖像修正部(44),以像素單位修正第2描繪資料,生成逐線形式的第3描繪資料;及第2圖像變換部(45),將第3描繪資料變換成向量形式的第4描繪資料;及第1記憶控制部(46),進行將第4描繪資料保存於第1描繪資料記憶部(47)之控制。 Charged particle beam drawing device (1), equipped with: beam The generating part (7) generates a charged particle beam; and the aperture part (16) has a plurality of openings through which the charged particle beam passes to generate a multi-beam containing a plurality of tiny beams; and a projection system (4), multi-beam reduced projection to the object to be drawn; and the occlusion part (17), between the aperture part and the projection system, to control a plurality of tiny beams toward the projection system, or the orientation is different from the projection system The direction; and the control section (41), which controls the beam generating section, the projection system, and the occlusion section; and the acquisition section (42), which obtains the first drawing data in the form of a vector for drawing the drawing object; and the first The image conversion unit (43) converts the first drawing data into the second drawing data in line-by-line (raster) form; and the image correction unit (44) corrects the second drawing data in pixel units to generate the line-by-line form The third drawing data; and the second image conversion unit (45), which converts the third drawing data into vector form of the fourth drawing data; and the first memory control unit (46), which stores the fourth drawing data in the 1 Describe the control of the data memory (47).

Description

帶電粒子束描繪裝置、帶電粒子束描繪系統及描繪資料生成方法 Charged particle beam drawing device, charged particle beam drawing system, and drawing data generation method

本揭示有關以多射束進行描繪之帶電粒子束描繪裝置、帶電粒子束描繪系統及描繪資料生成方法。 The present disclosure relates to a charged particle beam drawing device, a charged particle beam drawing system, and a drawing data generation method for drawing with multiple beams.

半導體裝置的製造程序中,當對光罩或晶圓描繪微細圖樣時,會使用帶電粒子束描繪裝置。最近,為了進行高速描繪,同時照射複數道電子束,描繪複數個微細圖樣之多射束方式的帶電粒子束描繪裝置係受到矚目。 In the manufacturing process of a semiconductor device, when a fine pattern is drawn on a photomask or a wafer, a charged particle beam drawing device is used. Recently, in order to perform high-speed drawing, a plurality of electron beams are simultaneously irradiated, and a multi-beam type charged particle beam drawing device for drawing a plurality of fine patterns has attracted attention.

帶電粒子束描繪裝置,是基於藉由布局設計工具等而生成的描繪資料(以下稱原描繪資料)來進行描繪。帶電粒子束描繪裝置,一般而言是將以GDS或OASIS等名稱為人所知之向量形式的原描繪資料,變換成逐線(raster)形式的描繪資料而暫且保存,然後基於保存好的逐線形式的描繪資料進行描繪(參照日本特表2012-527765號公報)。 The charged particle beam drawing device draws based on drawing data (hereinafter referred to as original drawing data) generated by a layout design tool or the like. The charged particle beam drawing device generally converts the original drawing data in the vector form known by the name of GDS or OASIS into a raster form of drawing data and temporarily saves it, and then based on the saved The drawing data in line format is drawn (refer to Japanese Patent Publication No. 2012-527765).

帶電粒子束描繪裝置,是基於逐線形式的描繪資料,以像素(pixel)單位切換電子線射束的照射/非照射來進行描繪,但原描繪資料中包含的微細圖樣的尺寸,未必和像素間隔一致,此外,電子線射束的射束徑亦和像素寬幅不一致,因此於描繪前必須修正逐線形式的描繪資料。 The charged particle beam drawing device is based on line-by-line drawing data, and the irradiation/non-irradiation of the electron beam is switched in pixel units to perform drawing. However, the size of the fine patterns included in the original drawing data may not be the same as the pixels. The interval is consistent. In addition, the beam diameter of the electron beam is also inconsistent with the width of the pixel. Therefore, the drawing data must be corrected line by line before drawing.

然而,逐線形式的描繪資料,其資料量龐大,將逐線形式的描繪資料以像素單位予以修正後,若欲保存而管理該描繪資料,必須有大容量的記錄裝置,保存亦會耗費莫大的時間。 However, the line-by-line form of drawing data has a huge amount of data. After the line-by-line form of drawing data is corrected in pixel units, if you want to save and manage the drawing data, you must have a large-capacity recording device, and it will be expensive to save. time.

為了驗證修正處理後的描繪資料中是否有問題,有時亦會進行將描繪資料傳送至設計中心等之處理,但因逐線形式的描繪資料之資料量龐大,傳送亦會花費莫大的時間,其結果,會有無法迅速地進行修正處理後的描繪資料之驗證這樣的問題。 In order to verify whether there is a problem with the drawing data after correction processing, sometimes processing is performed to transfer the drawing data to the design center, etc. However, due to the large amount of drawing data in the line-by-line format, the transmission will also take a lot of time. As a result, there is a problem that the verification of the drawing data after correction processing cannot be performed quickly.

本揭示係為了解決上述問題而研發,其目的在於提供一種使得管理修正處理後的描繪資料變得容易之帶電粒子束描繪裝置、帶電粒子束描繪系統及描繪資料生成方法。 The present disclosure was developed to solve the above-mentioned problems, and its object is to provide a charged particle beam drawing device, a charged particle beam drawing system, and a drawing data generation method that make it easier to manage the drawing data after correction processing.

為解決上述問題,本揭示之一態樣中,提供一種帶電粒子束描繪裝置,具備:射束生成部生成帶電粒子束;及孔徑部,具有複數個開口部,使前述帶電粒子束通過該些開口部,以生成含有複數道微小射束之多射束;及 投影系統,將前述多射束縮小投影至描繪對象物;及遮沒部,介於前述孔徑部與前述投影系統之間,控制前述複數道微小射束朝向前述投影系統,或朝向和前述投影系統相異之方向;及控制部,控制前述射束生成部、前述投影系統及前述遮沒部;及取得部,取得用來對前述描繪對象物描繪之向量形式的第1描繪資料;及第1圖像變換部,將前述第1描繪資料變換成逐線(raster)形式的第2描繪資料;及圖像修正部,以像素單位修正前述第2描繪資料,生成逐線形式的第3描繪資料;及第2圖像變換部,將前述第3描繪資料變換成向量形式的第4描繪資料;及第1記憶控制部,進行將前述第4描繪資料保存於第1描繪資料記憶部之控制;前述控制部,基於前述第3描繪資料,控制前述射束生成部、前述投影系統及前述遮沒部,對前述描繪對象物將描繪圖樣予以描繪。 In order to solve the above-mentioned problems, in one aspect of the present disclosure, a charged particle beam drawing device is provided, comprising: a beam generating section generating a charged particle beam; and an aperture section having a plurality of openings to pass the aforementioned charged particle beam through these Openings to generate multiple beams containing multiple tiny beams; and A projection system, which projects the multi-beam down to the object to be drawn; and an obscuration section, interposed between the aperture section and the projection system, and controls the plurality of tiny beams toward the projection system, or to the projection system Different directions; and a control unit, which controls the beam generating unit, the projection system, and the occlusion unit; and an acquisition unit, which obtains the first drawing data in the form of a vector for drawing the drawing object; and the first An image conversion unit that converts the first drawing data into a second drawing data in a line-by-line format; and an image correction unit that corrects the second drawing data in a pixel unit to generate a third drawing data in a line-by-line format ; And a second image conversion unit, which converts the third drawing data into a fourth drawing data in a vector format; and a first memory control unit, which performs control to save the fourth drawing data in the first drawing data storage unit; The control unit controls the beam generating unit, the projection system, and the masking unit based on the third drawing data, and draws a drawing pattern on the drawing object.

前述第2圖像變換部,亦可具有:二元化(binarization)部,生成將前述第3描繪資料予以二元化而成之二元資料;及輪廓抽出部,抽出前述二元資料的輪廓,生成前述第4描繪資料。 The second image conversion unit may further include: a binarization unit that generates binary data obtained by binarizing the third drawing data; and an outline extraction unit that extracts the outline of the binary data To generate the fourth drawing data.

亦可具備:檢查部,於對前述描繪對象物之描繪後,進行前述描繪對象物的描繪圖樣之外觀檢查,判斷是否有外觀上的問題;及第1記憶控制部,若藉由前述檢查部判斷出有問題,則將有問題之處周邊的前述第4描繪資料從前述第1描繪資料記憶部讀出;及比較手段,將藉由前述第1記憶控制部讀出的前述第4描繪資料和前述第1描繪資料比較;及修正問題判斷部,基於前述比較手段所做的比較結果,判斷前述第1圖像變換部將前述第1描繪資料變換成前述第2描繪資料之處理是否有問題。亦可以是,前述第3描繪資料,包含針對複數個像素各者之像素值,前述第2圖像變換部,具有:區域分割部,進行區域分割,該區域分割係將前述第3描繪資料內的具有同一像素值的鄰接之像素範圍統整成一個分割區域;及向量變換部,生成將前述區域分割而成的分割區域予以向量化而成之前述第4描繪資料。 It may be further provided with: an inspection section that performs an appearance inspection of the drawing pattern of the drawing object after drawing the drawing object to determine whether there is a problem with the appearance; and a first memory control section that uses the checking section If it is determined that there is a problem, the fourth drawing data around the problematic area is read from the first drawing data storage unit; and the comparison means is to read the fourth drawing data read by the first memory control unit Compared with the first drawing data; and the correction problem determination unit, based on the comparison result by the comparison means, determines whether the processing of the first image conversion unit converting the first drawing data into the second drawing data is problematic . Alternatively, the third drawing data may include pixel values for each of the plurality of pixels. The second image conversion unit may include an area division unit that performs area division. The area division includes the third drawing data. The adjacent pixel ranges having the same pixel value are integrated into one divided region; and the vector conversion unit generates the fourth drawing data obtained by vectorizing the divided regions obtained by dividing the aforementioned regions.

亦可以是,前述第3描繪資料,包含針對複數個像素各者之像素值,前述第2圖像變換部,具有:蓄積劑量分布取得部,基於前述第3描繪資料,進行將前述帶電粒子束的正向散射及背向散射納入考量之描繪 模擬,取得蓄積劑量分布;及蓄積劑量變換部,將前述蓄積劑量分布變換成向量資料;及頂點數刪減部,將藉由前述蓄積劑量變換部變換而成之向量資料的頂點數予以刪減,而生成前述第4描繪資料。 The third rendering data may include pixel values for each of the plurality of pixels, and the second image conversion unit may include an accumulated dose distribution obtaining unit that performs the charging of the charged particle beam based on the third rendering data. Of the forward scatter and backscatter taken into account Simulate to obtain the accumulated dose distribution; and the accumulated dose conversion section to convert the aforementioned accumulated dose distribution into vector data; and the vertex number reduction section to reduce the number of vertices of the vector data transformed by the aforementioned accumulated dose conversion section To generate the fourth drawing data.

亦可具備:檢查部,於對前述描繪對象物之描繪後,進行前述描繪對象物的描繪圖樣之外觀檢查,判斷是否有外觀上的問題;及第1記憶控制部,若藉由前述檢查部判斷出有問題,則將有問題之處周邊的前述第4描繪資料從前述第1描繪資料記憶部讀出;及比較手段,將藉由前述第1記憶控制部讀出的前述第4描繪資料和前述第1描繪資料比較;及修正問題判斷部,基於前述比較手段所做的比較結果,判斷修正前述第2描繪資料而生成前述第3描繪資料之前述圖像修正部所進行之處理是否有問題。 It may be further provided with: an inspection section that performs an appearance inspection of the drawing pattern of the drawing object after drawing the drawing object to determine whether there is a problem with the appearance; and a first memory control section that uses the checking section If it is determined that there is a problem, the fourth drawing data around the problematic area is read from the first drawing data storage unit; and the comparison means is to read the fourth drawing data read by the first memory control unit Compared with the first drawing data; and the correction problem determination unit, based on the comparison result by the comparison means, determines whether the processing performed by the image correction unit that generates the third drawing data by modifying the second drawing data is problem.

亦可具備:第3圖像變換部,將被保存於前述第1描繪資料記憶部之前述第4描繪資料變換成逐線形式的第5描繪資料,前述控制部,基於前述第5描繪資料,控制前述射束生成部、前述投影系統及前述遮沒部,對前述描繪對象物將描繪圖樣予以描繪。 It may further include: a third image conversion unit that converts the fourth drawing data stored in the first drawing data storage unit into fifth drawing data in a line-by-line format, and the control unit based on the fifth drawing data, The beam generating unit, the projection system, and the masking unit are controlled to draw a drawing pattern on the drawing object.

前述圖像修正部,亦可修正前述第2描繪資 料中包含之描繪圖樣的角部的像素的像素值而生成前述第3描繪資料。 The image correction unit can also correct the second drawing data The pixel values of the pixels in the corners of the drawing included in the material are used to generate the third drawing data.

亦可以是,重疊於前述描繪圖樣之像素,相較於未重疊於前述描繪圖樣之像素,像素值被設定得較大,前述圖像修正部,將前述第2描繪資料中包含之描繪圖樣的角部的像素的像素值修正成更大的值,而生成前述第3描繪資料。 It is also possible that the pixels superimposed on the drawing pattern have a larger pixel value than the pixels not superimposed on the drawing pattern, and the image correction unit changes the size of the drawing pattern included in the second drawing data. The pixel value of the pixel in the corner is corrected to a larger value to generate the third drawing data.

前述圖像修正部,亦可修正前述第2描繪資料中包含之描繪圖樣的交界線所位處的複數個像素的像素值而生成前述第3描繪資料。 The image correction unit may also correct the pixel values of a plurality of pixels at the boundary of the drawing pattern included in the second drawing data to generate the third drawing data.

亦可具備:第2記憶控制部,進行將前述第1描繪資料保存於第2描繪資料記憶部之控制。 A second memory control unit may be provided to perform control to store the first drawing data in the second drawing data storage unit.

本揭示之另一態樣中,提供一種帶電粒子束描繪系統,具備:射束生成部,生成帶電粒子束;及孔徑部,具有複數個開口部,使前述帶電粒子束通過該些開口部,以生成含有複數道微小射束之多射束;及投影系統,將前述多射束縮小投影至描繪對象物;及遮沒部,介於前述孔徑部與前述投影系統之間,控制前述複數道微小射束朝向前述投影系統,或朝向和前述投影系統相異之方向;及控制部,控制前述射束生成部、前述投影系統及前述遮沒部;及取得部,取得用來對前述描繪對象物描繪之向量形式 的第1描繪資料;及第1圖像變換部,將前述第1描繪資料變換成逐線(raster)形式的第2描繪資料;及圖像修正部,以像素單位修正前述第2描繪資料,生成逐線形式的第3描繪資料;及第2圖像變換部,將前述第3描繪資料變換成向量形式的第4描繪資料;及第1描繪資料記憶部,保存前述第4描繪資料;及檢查部,於對前述描繪對象物之描繪後,進行前述描繪對象物的描繪圖樣之外觀檢查,判斷是否有外觀上的問題;及修正問題判斷部,若藉由前述檢查部判斷出有問題,則判斷前述圖像修正部中的修正處理是否有問題。 In another aspect of the present disclosure, there is provided a charged particle beam drawing system, comprising: a beam generating portion that generates a charged particle beam; and an aperture portion having a plurality of openings through which the charged particle beam passes through the openings, To generate a multi-beam including a plurality of micro-beams; and a projection system to reduce the projection of the multi-beam to the object to be drawn; and a masking portion between the aperture portion and the projection system to control the plurality of channels The tiny beam faces the projection system or a direction different from the projection system; and the control unit controls the beam generation unit, the projection system and the masking unit; and the acquisition unit acquires the object to be drawn Vector form The first drawing data; and the first image conversion part, which converts the first drawing data into a second drawing data in a raster form; and the image correction part, which corrects the second drawing data in pixel units, Generate the third drawing data in line-by-line format; and the second image conversion unit, which converts the third drawing data into vector form of fourth drawing data; and the first drawing data storage unit, which stores the fourth drawing data; and The inspection unit, after drawing the drawing object, performs an appearance inspection of the drawing pattern of the drawing object to determine whether there is a problem in appearance; and corrects the problem determination unit, if the problem is determined by the checking unit, Then, it is determined whether there is a problem with the correction process in the aforementioned image correction unit.

本揭示之另一態樣中,提供一種帶電粒子束描繪系統,具備:射束生成部,生成帶電粒子束;及孔徑部,具有複數個開口部,使前述帶電粒子束通過該些開口部,以生成含有複數道微小射束之多射束;及投影系統,將前述多射束縮小投影至描繪對象物;及遮沒部,介於前述孔徑部與前述投影系統之間,控制前述複數道微小射束朝向前述投影系統,或朝向和前述投影系統相異之方向;及控制部,控制前述射束生成部、前述投影系統及前述遮沒部;及取得部,取得用來對前述描繪對象物描繪之向量形式 的第1描繪資料;及第1圖像變換部,將前述第1描繪資料變換成逐線(raster)形式的第2描繪資料;及圖像修正部,對前述第2描繪資料以像素單位進行修正處理,生成逐線形式的第3描繪資料;及第2圖像變換部,將前述第3描繪資料變換成向量形式的第4描繪資料;及第1描繪資料記憶部,保存前述第4描繪資料;及控制部,基於前述第3描繪資料,控制前述射束生成部、前述投影系統及前述遮沒部,對前述描繪對象物將描繪圖樣予以描繪;及檢查部,於對前述描繪對象物之描繪後,進行前述描繪對象物的描繪圖樣之外觀檢查,判斷是否有外觀上的問題;及第1再生成部,若藉由前述檢查部判斷出有問題,則將前述第4描繪資料予以再生成;及第2再生成部,使用前述再生成之第4描繪資料,將逐線形式的前述第3描繪資料予以再生成;前述控制部,基於前述再生成之前述第3描繪資料,控制前述射束生成部、前述投影系統及前述遮沒部,對前述描繪對象物將描繪圖樣予以再描繪,前述第2圖像變換部,將前述再生成之第3描繪資料再變換成前述第4描繪資料,前述第1描繪資料記憶部,保存前述再變換而成之第 4描繪資料。 In another aspect of the present disclosure, there is provided a charged particle beam drawing system, comprising: a beam generating portion that generates a charged particle beam; and an aperture portion having a plurality of openings through which the charged particle beam passes through the openings, To generate a multi-beam including a plurality of micro-beams; and a projection system to reduce the projection of the multi-beam to the object to be drawn; and a masking portion between the aperture portion and the projection system to control the plurality of channels The tiny beam faces the projection system or a direction different from the projection system; and the control unit controls the beam generation unit, the projection system and the masking unit; and the acquisition unit acquires the object to be drawn Vector form The first drawing data; and the first image conversion part, which converts the first drawing data into a second drawing data in a raster format; and the image correction part, which performs the pixel unit on the second drawing data The correction process generates the third drawing data in the line-by-line format; and the second image conversion unit converts the third drawing data into the fourth drawing data in the vector format; and the first drawing data storage unit stores the fourth drawing data Data; and the control unit, based on the third drawing data, controls the beam generating unit, the projection system, and the masking unit to draw the drawing pattern on the drawing object; and the inspection unit, on the drawing object After drawing, perform a visual inspection of the drawing of the drawing object to determine whether there is a problem with the appearance; and the first regeneration section, if the inspection section determines that there is a problem, the fourth drawing data will be given Regeneration; and the second regeneration unit, using the regenerated fourth drawing data to regenerate the line-by-line third drawing data; the control unit, based on the regenerating third drawing data, control The beam generating unit, the projection system, and the masking unit redraw the drawing pattern of the object to be drawn, and the second image conversion unit converts the regenerated third drawing data into the fourth The drawing data, the first drawing data storage section, stores the first 4 Describe the information.

本揭示之一態樣中,提供一種描繪資料生成方法,係使用基於帶電粒子束而生成的含有複數道微小射束之多射束,來進行描繪對象物的描繪之帶電粒子束描繪裝置中所使用之描繪資料的生成方法,具備:取得用來對前述描繪對象物描繪之向量形式的第1描繪資料之步驟;及將前述第1描繪資料變換成逐線形式的第2描繪資料之步驟;及以像素單位修正前述第2描繪資料,生成逐線形式的第3描繪資料之步驟;及將前述第3描繪資料變換成向量形式的第4描繪資料之步驟;及將前述第4描繪資料保存於第1描繪資料記憶部之步驟。 In one aspect of the present disclosure, a method for generating drawing data is provided in a charged particle beam drawing device that uses multiple beams including a plurality of minute beams generated based on a charged particle beam to draw a drawing object The generating method of the drawing data used includes: a step of obtaining the first drawing data in the form of a vector for drawing the drawing object; and a step of converting the first drawing data into the second drawing data in a line-by-line format; And the step of correcting the second drawing data in pixel units to generate the third drawing data in a line-by-line format; and the step of converting the third drawing data into the fourth drawing data in the form of a vector; and saving the fourth drawing data Step 1 describes the data storage section.

亦可以是,前述變換成第4描繪資料之步驟,係將前述第3描繪資料予以二元化而生成二元化資料,抽出前述二元資料的輪廓,生成前述第4描繪資料。 Alternatively, the step of converting the fourth rendering data may be to binarize the third rendering data to generate a binary data, extract the outline of the binary data, and generate the fourth rendering data.

亦可以是,於對前述描繪對象物之描繪後,進行前述描繪對象物的描繪圖樣之外觀檢查,判斷是否有外觀上的問題,若判斷出有前述問題,則將有問題之處周邊的前述第4描繪資料從前述第1描繪資料記憶部讀出, 將前述讀出的前述第4描繪資料和前述第1描繪資料比較,基於前述比較之結果,判斷將前述第1描繪資料變換成前述第2描繪資料之處理是否有問題。 Alternatively, after drawing the drawing object, perform a visual inspection of the drawing pattern of the drawing object to determine whether there is a problem with the appearance. If it is determined that there is a problem, the problem surrounding the problem The fourth drawing data is read from the aforementioned first drawing data storage unit, The read fourth drawing data and the first drawing data are compared, and based on the result of the comparison, it is determined whether there is a problem with the process of converting the first drawing data into the second drawing data.

亦可以是,前述第3描繪資料,包含針對複數個像素各者之像素值,前述變換成第4圖像之步驟,係進行區域分割,該區域分割係將前述第3描繪資料內的具有同一像素值的鄰接之像素範圍統整成一個分割區域,生成將前述被區域分割而成的分割區域予以向量化而成之前述第4描繪資料。 It may also be that the third drawing data includes pixel values for each of the plurality of pixels, and the step of transforming to the fourth image is to perform region division, and the region division is the same as that in the third drawing data. The adjacent pixel range of the pixel value is unified into one divided area, and the fourth drawing data obtained by vectorizing the divided area divided by the area is generated.

亦可以是,前述第3描繪資料,包含針對複數個像素各者之像素值,基於前述第3描繪資料,進行將前述帶電粒子束的正向散射及背向散射納入考量之描繪模擬,取得蓄積劑量分布,將前述蓄積劑量分布變換成向量資料,將前述變換而成之向量資料的頂點數予以刪減,而生成前述第4描繪資料。 Alternatively, the third drawing data may include pixel values for each of the plurality of pixels. Based on the third drawing data, a drawing simulation that takes the forward scattering and backscattering of the charged particle beam into consideration may be performed to obtain accumulation. For the dose distribution, the accumulated dose distribution is converted into vector data, and the number of vertices of the converted vector data is truncated to generate the fourth drawing data.

亦可以是,於對前述描繪對象物之描繪後,進行前述描繪對象物的描繪圖樣之外觀檢查,判斷是否有外觀上的問題,若判斷出有前述問題,則將有問題之處周邊的前述第 4描繪資料從前述第1描繪資料記憶部讀出,將前述讀出的前述第4描繪資料和前述第1描繪資料比較,基於前述比較之結果,判斷修正前述第2描繪資料而生成前述第3描繪資料之處理是否有問題。 Alternatively, after drawing the drawing object, perform a visual inspection of the drawing pattern of the drawing object to determine whether there is a problem with the appearance. If it is determined that there is a problem, the problem surrounding the problem First 4 The drawing data is read from the first drawing data storage unit, the read fourth drawing data and the first drawing data are compared, and based on the result of the comparison, the second drawing data is judged and corrected to generate the third Describe whether there is a problem with the processing of data.

按照本揭示,會使管理修正處理後的描繪資料變得容易,能夠簡易且迅速地判斷從向量形式至逐線形式之資料變換或修正處理是否有問題。 According to the present disclosure, it is easy to manage the drawing data after the correction processing, and it is possible to easily and quickly determine whether there is a problem with the data conversion or correction processing from the vector format to the line-by-line format.

1‧‧‧帶電粒子束描繪裝置 1‧‧‧ charged particle beam drawing device

2‧‧‧照明系統 2‧‧‧Lighting system

3‧‧‧多射束生成系統 3‧‧‧Multi-beam generation system

4‧‧‧投影系統 4‧‧‧Projection system

5‧‧‧平台 5‧‧‧platform

6a‧‧‧第1電磁透鏡 6a‧‧‧The first electromagnetic lens

6b‧‧‧第2電磁透鏡 6b‧‧‧Second electromagnetic lens

6c‧‧‧第3電磁透鏡 6c‧‧‧The third electromagnetic lens

7‧‧‧電子槍 7‧‧‧ electron gun

8‧‧‧抽出系統 8‧‧‧Extraction system

9‧‧‧照明透鏡 9‧‧‧Illumination lens

9a‧‧‧遮沒偏向器 9a‧‧‧Massive deflector

10‧‧‧孔徑構件 10‧‧‧Aperture member

11‧‧‧第1偏向器 11‧‧‧The first deflector

12‧‧‧第2偏向器 12‧‧‧The second deflector

13‧‧‧描繪對象物 13‧‧‧Drawing objects

16‧‧‧孔徑板 16‧‧‧Aperture plate

17‧‧‧遮沒板 17‧‧‧Masking board

18‧‧‧接地電極 18‧‧‧Ground electrode

19‧‧‧偏向電極 19‧‧‧biased electrode

40‧‧‧描繪圖樣 40‧‧‧Draw a picture

41‧‧‧控制部 41‧‧‧Control Department

42‧‧‧取得部 42‧‧‧ Acquisition Department

43‧‧‧第1圖像變換部 43‧‧‧The first image conversion unit

44‧‧‧圖像修正部 44‧‧‧Image Correction Department

45‧‧‧第2圖像變換部 45‧‧‧The second image conversion unit

47‧‧‧第1描繪資料記憶部 47‧‧‧The first drawing data memory department

49‧‧‧第2描繪資料記憶部 49‧‧‧ 2nd drawing data memory department

50‧‧‧檢查部 50‧‧‧ Inspection Department

51‧‧‧修正問題判斷部 51‧‧‧Fixed problem judgment department

52‧‧‧第3圖像變換部 52‧‧‧ Third image conversion unit

53‧‧‧第1再生成部 53‧‧‧First Regeneration Department

54‧‧‧第2再生成部 54‧‧‧Second Regeneration Department

[圖1]依一實施形態之帶電粒子束描繪裝置的概略構成示意圖。 [Fig. 1] A schematic configuration diagram of a charged particle beam drawing device according to an embodiment.

[圖2]多射束生成系統的具體的構成一例示意圖。 [Fig. 2] A schematic diagram showing an example of a specific configuration of a multi-beam generating system.

[圖3]從孔徑板的上方觀看形成於孔徑板與遮沒板之複數個開口部的俯視圖。 [Fig. 3] A plan view of a plurality of openings formed in the aperture plate and the shielding plate, viewed from above the aperture plate.

[圖4]一實施形態之控制系統的具體的內部構成一例示意方塊圖。 [Fig. 4] A schematic block diagram showing an example of a specific internal structure of a control system according to an embodiment.

[圖5A]圖4的圖像修正部所進行之修正處理的第1例說明圖。 [FIG. 5A] An explanatory diagram of a first example of correction processing performed by the image correction unit in FIG. 4. [FIG.

[圖5B]圖4的圖像修正部所進行之修正處理的第1例說明圖。 [Fig. 5B] An explanatory diagram of a first example of correction processing performed by the image correction unit in Fig. 4.

[圖6]圖4的圖像修正部所進行之修正處理的第2例說明圖。 [Fig. 6] An explanatory diagram of a second example of correction processing performed by the image correction unit of Fig. 4.

[圖7]圖4的圖像修正部所進行之修正處理的第2例說明圖。 7 is an explanatory diagram of a second example of correction processing performed by the image correction unit in FIG. 4.

[圖8]圖4的圖像修正部所進行之修正處理的第2例說明圖。 [Fig. 8] An explanatory diagram of a second example of correction processing performed by the image correction unit of Fig. 4.

[圖9]圖4的圖像修正部所進行之修正處理的第2例說明圖。 9 is an explanatory diagram of a second example of correction processing performed by the image correction unit of FIG. 4.

[圖10]依一變形例之控制系統的具體的內部構成示意方塊圖。 [Fig. 10] A schematic block diagram of a specific internal configuration of a control system according to a modification.

[圖11]包括圖像修正處理與錯誤因素辨明處理在內之控制系統的處理手續的第1例示意流程圖。 [Fig. 11] A schematic flowchart of a first example of processing procedures of a control system including image correction processing and error factor identification processing.

[圖12]控制系統的再描繪處理的一例示意流程圖。 [Fig. 12] A schematic flowchart of an example of the redrawing process of the control system.

[圖13A]第3描繪資料的一例示意圖。 [FIG. 13A] A schematic diagram of an example of the third drawing data.

[圖13B]將圖13A的第3描繪資料予以二元化之例示意圖。 [FIG. 13B] A schematic diagram of an example of binarizing the third drawing data in FIG. 13A.

[圖14]基於圖13B的二元資料而抽出輪廓之例示意圖。 [Fig. 14] A schematic diagram of an example of extracting a contour based on the binary data of Fig. 13B.

[圖15]使用以圖12的第1手法生成的第4描繪資料來進行圖11的步驟S9的處理之情形之詳細處理手續示意流程圖。 [Fig. 15] A detailed flowchart of a detailed processing procedure in a case where the processing of step S9 in Fig. 11 is performed using the fourth drawing data generated by the first method in Fig. 12.

[圖16]圖15的處理之模型化示意圖。 [Fig. 16] A modeled schematic diagram of the processing of Fig. 15.

[圖17]藉由第2手法進行圖11的步驟S5之情形之處理手續示意流程圖。 [Fig. 17] A schematic flowchart of the processing procedure in the case of performing step S5 in Fig. 11 by the second method.

[圖18A]第3描繪資料的一例示意圖。 [FIG. 18A] A schematic diagram of an example of the third drawing data.

[圖18B]將圖18A的第3描繪資料因應劑量而做區 域分割之例示意圖。 [FIG. 18B] The third drawing data of FIG. 18A is divided according to the dose Illustration of an example of domain segmentation.

[圖19]將圖18B的各分割區域變換成由多邊形化的向量資料所構成之第4描繪資料之例示意圖。 [Fig. 19] A schematic diagram of an example of converting each divided region in Fig. 18B into fourth drawing data composed of polygonal vector data.

[圖20]使用以圖17的第2手法生成的第4描繪資料來進行圖11的步驟S10的處理之情形之詳細處理手續示意流程圖。 [Fig. 20] A detailed flowchart of a detailed processing procedure in a case where the processing of step S10 of Fig. 11 is performed using the fourth drawing data generated by the second method of Fig. 17.

[圖21A]圖20的處理之模型化說明圖。 [FIG. 21A] A modeled explanatory diagram of the processing of FIG. 20. [FIG.

[圖21B]圖20的處理之模型化說明圖。 [Fig. 21B] A modeled explanatory diagram of the processing of Fig. 20.

[圖22]基於重做圖11的步驟S4的處理而生成之第3描繪資料,藉由圖20的處理而生成之第4描繪資料示意圖。 [Fig. 22] A schematic diagram of fourth drawing data generated by the process of Fig. 20 based on the third drawing data generated by redoing the process of step S4 of Fig. 11.

[圖23]藉由第3手法進行圖11的步驟S5之情形之處理手續示意流程圖。 [Fig. 23] A schematic flowchart of the processing procedure in the case where step S5 in Fig. 11 is performed by the third method.

[圖24A]第3描繪資料的一例示意圖。 [FIG. 24A] A schematic diagram of an example of the third drawing data.

[圖24B]使用圖24A的第3描繪資料進行描繪模擬而取得之蓄積劑量分布示意圖。 [FIG. 24B] A schematic diagram of the accumulated dose distribution obtained by drawing simulation using the third drawing data of FIG. 24A.

[圖25A]圖23的步驟S62與S63的處理說明圖。 [Fig. 25A] An explanatory diagram of the processing of steps S62 and S63 of Fig. 23.

[圖25B]圖23的步驟S62與S63的處理說明圖。 [Fig. 25B] An explanatory diagram of the processing of steps S62 and S63 of Fig. 23.

[圖26]使用以圖23的第3手法生成的第4描繪資料來進行圖11的步驟S10的處理之情形之詳細處理手續示意流程圖。 [Fig. 26] A detailed flowchart of a detailed processing procedure in a case where the processing of step S10 of Fig. 11 is performed using the fourth drawing data generated by the third method of Fig. 23.

[圖27]圖26的處理之模型化說明圖。 [Fig. 27] A modeled explanatory diagram of the processing of Fig. 26.

[圖28]控制系統的再描繪處理的一例示意流程圖。 [Fig. 28] A schematic flowchart of an example of the redrawing process of the control system.

[圖29]進行圖28的處理之控制系統的內部構成示意 方塊圖。 [FIG. 29] Schematic diagram of the internal configuration of the control system that performs the processing of FIG. 28 Block diagram.

[圖30]控制系統的處理手續的第2例示意流程圖。 [Fig. 30] A schematic flowchart of a second example of the processing procedure of the control system.

[圖31]依第2例之控制系統方塊圖。 [FIG. 31] A block diagram of a control system according to the second example.

以下,針對本揭示之實施形態詳細說明。圖1為依一實施形態之帶電粒子束描繪裝置1的概略構成示意圖。圖1的帶電粒子束描繪裝置1,是基於對曝光用光罩或矽晶圓等描繪對象物形成微細圖樣之目的而被使用。 Hereinafter, the embodiments of the present disclosure will be described in detail. FIG. 1 is a schematic configuration diagram of a charged particle beam drawing device 1 according to an embodiment. The charged particle beam drawing device 1 of FIG. 1 is used for the purpose of forming a fine pattern on an object to be drawn such as an exposure mask or a silicon wafer.

圖1的帶電粒子束描繪裝置1,概分之,係具備照明系統2、多射束生成系統3、投影系統4、及控制系統35。 The charged particle beam drawing device 1 of FIG. 1 is roughly divided into an illumination system 2, a multi-beam generating system 3, a projection system 4, and a control system 35.

照明系統2,具有電子槍(射束生成部)7、抽出系統8、偏向器9a、及照明透鏡9。電子槍7,放射電子束(電子線)。另,依本實施形態之帶電粒子束描繪裝置1用於描繪的帶電粒子,未必限定於電子束。例如,可為氫離子或重離子等各種離子的射束,亦可為帶電原子團簇或帶電分子的射束。此處,所謂重離子,係指比碳(C)還重的元素(例如氧、氮等)之離子。或是,所謂重離子,係指氖(Ne)、氬(Ar)、氪(Kr)、氙(Xe)等。以下,主要說明使用電子束作為帶電粒子束之例子。 The illumination system 2 includes an electron gun (beam generating unit) 7, an extraction system 8, a deflector 9a, and an illumination lens 9. The electron gun 7 emits electron beams (electron rays). In addition, the charged particles used for drawing by the charged particle beam drawing device 1 according to this embodiment are not necessarily limited to electron beams. For example, it may be a beam of various ions such as hydrogen ions or heavy ions, or a beam of charged atomic clusters or charged molecules. Here, the heavy ion means an ion of an element (for example, oxygen, nitrogen, etc.) heavier than carbon (C). Or, the heavy ion refers to neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and the like. In the following, an example of using an electron beam as a charged particle beam is mainly explained.

偏向器9a,控制電子槍7所放射的電子束的行進方向1a。照明透鏡9,將電子束的行進方向排列整 齊。通過了照明透鏡9的電子束,會成為幅度寬而遠心(telecentric)的射束1b。 The deflector 9a controls the traveling direction 1a of the electron beam emitted by the electron gun 7. Illuminating lens 9 aligns the traveling direction of the electron beam Qi. The electron beam passing through the illumination lens 9 becomes a telecentric beam 1b with a wide amplitude.

多射束生成系統3,如後詳述般,係從通過了照明透鏡9的電子束1b生成含有複數道微小射束之多射束1c。 The multi-beam generating system 3 generates a multi-beam 1c including a plurality of minute beams from the electron beam 1b passing through the illumination lens 9 as described in detail later.

投影系統4,具有第1電磁透鏡6a、第1偏向器11、第2電磁透鏡6b、孔徑構件10、第3電磁透鏡6c、及第2偏向器12。入射至投影系統4的多射束1c,會依序通過第1電磁透鏡6a、第1偏向器11及第2電磁透鏡6b。其後,僅有通過了孔徑構件10的開口部之多射束依序通過了第3電磁透鏡6c及第2偏向器12後,照射至被載置於平台5上之描繪對象物13而進行描繪。投影系統4,使用第1~第3電磁透鏡6a~6c,將多射束縮小投影至描繪對象物13上。平台5,被做成可於其設置面的二維方向移動。故,一面使平台5移動,一面藉由投影系統4將多射束縮小投影至描繪對象物13上,藉此便能對描繪對象物13上的任意場所進行描繪。描繪對象物13,為曝光用光罩或矽晶圓等。 The projection system 4 includes a first electromagnetic lens 6a, a first deflector 11, a second electromagnetic lens 6b, an aperture member 10, a third electromagnetic lens 6c, and a second deflector 12. The multi-beam 1c incident on the projection system 4 sequentially passes through the first electromagnetic lens 6a, the first deflector 11, and the second electromagnetic lens 6b. After that, only the multiple beams that have passed through the opening of the aperture member 10 sequentially pass through the third electromagnetic lens 6c and the second deflector 12, and then irradiate the drawing object 13 placed on the platform 5 to perform Portray. The projection system 4 uses the first to third electromagnetic lenses 6a to 6c to project the multi-beam down onto the object 13 to be drawn. The platform 5 is made movable in the two-dimensional direction of its installation surface. Therefore, while the platform 5 is moved, the multi-beam is reduced and projected onto the drawing object 13 by the projection system 4, whereby any place on the drawing object 13 can be drawn. The object 13 to be drawn is a mask for exposure, a silicon wafer, or the like.

除此之外,投影系統4,還進行將第1~第3電磁透鏡6a~6c及第1~第2偏向器11、12中的色像差及幾何性像差予以廣範圍地補償之光學性處理。 In addition, the projection system 4 also performs optical compensation for a wide range of chromatic and geometric aberrations in the first to third electromagnetic lenses 6a to 6c and the first to second deflectors 11, 12 Sexual treatment.

控制系統35,如後詳述般,係控制照明系統2、多射束生成系統3及投影系統4。除此之外,控制系統35,還進行描繪圖樣的外觀檢查、或後述修正處理之 控制等。 The control system 35 controls the illumination system 2, the multi-beam generating system 3, and the projection system 4 as described in detail later. In addition to this, the control system 35 also performs visual inspection of the drawing, or correction processing described later Control etc.

圖2為多射束生成系統3的具體的構成一例示意圖。圖2之多射束生成系統3,具有孔徑板(孔徑部)16、及遮沒板(遮沒部)17。 FIG. 2 is a schematic diagram of an example of a specific configuration of the multi-beam generating system 3. The multi-beam generating system 3 of FIG. 2 includes an aperture plate (aperture portion) 16 and a mask plate (a mask portion) 17.

孔徑板16,具有保護板16免受電子束衝撞之保護層15、及使多射束放射之複數個開口部16a。保護層15非必要的構件,省略亦無妨。 The aperture plate 16 has a protective layer 15 that protects the plate 16 from collision with electron beams, and a plurality of openings 16a that radiate multiple beams. The protective layer 15 is an unnecessary member, and it may be omitted.

遮沒板17,具有配合孔徑板16的各開口部16a而形成之複數個開口部17a。 The masking plate 17 has a plurality of openings 17a formed to fit the openings 16a of the aperture plate 16.

圖3為從孔徑板16的上方觀看形成於孔徑板16與遮沒板17之複數個開口部16a、17a的俯視圖。圖3例子中,於孔徑板16的面方向的二維方向以一定間隔配置有複數個開口部16a。 FIG. 3 is a plan view of the plurality of openings 16 a and 17 a formed in the aperture plate 16 and the mask plate 17 as viewed from above the aperture plate 16. In the example of FIG. 3, a plurality of openings 16 a are arranged at regular intervals in the two-dimensional direction of the plane direction of the aperture plate 16.

如圖2所示,在遮沒板17的各開口部17a的鄰近,設有一組電極亦即接地電極18與偏向電極19。藉由使接地電極18、與相對應的偏向電極19通電,會使通過相對應的開口部16a、17a之電子束偏向,而如圖2的箭頭21所示,讓電子束不通過圖1的孔徑板10。另一方面,當不使接地電極18、與相對應的偏向電極19通電的情形下,電子束不會被偏向,而如圖2的箭頭20所示,會通過圖1的孔徑板10。通電,是藉由將和非導通狀態下的預設電壓足夠相異之電壓施加於接地電極18與偏向電極19之間來進行。不通電狀態下的預設電壓為0V,接地電極18與偏向電極19成為同電位。接地電極18與偏 向電極19之電壓控制,是藉由控制系統35來進行。 As shown in FIG. 2, a group of electrodes, that is, a ground electrode 18 and a bias electrode 19 are provided adjacent to each opening 17 a of the masking plate 17. By energizing the ground electrode 18 and the corresponding deflection electrode 19, the electron beams passing through the corresponding openings 16a, 17a are deflected, and as shown by the arrow 21 in FIG. 2, the electron beams are not passed through the Aperture plate 10. On the other hand, when the ground electrode 18 and the corresponding deflection electrode 19 are not energized, the electron beam is not deflected, and as shown by the arrow 20 in FIG. 2, it passes through the aperture plate 10 in FIG. 1. The energization is performed by applying a voltage sufficiently different from the preset voltage in the non-conducting state between the ground electrode 18 and the bias electrode 19. The preset voltage in the non-energized state is 0V, and the ground electrode 18 and the bias electrode 19 have the same potential. Ground electrode 18 and bias The voltage control to the electrode 19 is performed by the control system 35.

像這樣,對於遮沒板17的各開口部17a各者,能夠控制是否使電子束偏向,因此能夠任意地控制通過圖1的孔徑板10之多射束的射束數及射束位置。 In this way, each of the openings 17a of the masking plate 17 can control whether or not to deflect the electron beam, and therefore the number of beams and the beam positions of the multiple beams passing through the aperture plate 10 of FIG. 1 can be arbitrarily controlled.

單射束方式之帶電粒子束描繪裝置1的情形下,只會對描繪對象物13上照射1道電子束,故可將該截面形狀加工成矩形等任意形狀,並在調節成任意強度的狀態下照射。是故,例如亦可達成於曝光對象面上一面掃描矩形的照射點一面描繪矩形狀的圖樣。因此,尺寸誤差不會發生,而能進行正確的圖樣形成,但無法期盼描繪速度的提升,因此會發生描繪時間耗費較久這樣的問題。 In the case of the charged particle beam drawing device 1 of the single beam method, only one electron beam is irradiated to the object to be drawn 13, so the cross-sectional shape can be processed into an arbitrary shape such as a rectangle and adjusted to an arbitrary intensity. Under irradiation. Therefore, for example, a rectangular pattern can be drawn while scanning a rectangular irradiation spot on the exposure target surface. Therefore, a dimensional error does not occur, and accurate pattern formation can be performed, but the improvement of the drawing speed cannot be expected, and therefore a problem that the drawing time takes a long time may occur.

相對於此,多射束方式之帶電粒子束描繪裝置1的情形下,具有能夠使用多數道電子束進行極高速的描繪之優點,但卻難以個別地控制各個射束的截面形狀,或個別地控制各個射束的強度。更具體而言,無法設置將通過了微細的孔徑板16的開口部16a之各個電子束予以個別地成形、或個別地做強度調節之機構。 On the other hand, in the case of the multi-beam charged particle beam drawing device 1, it has the advantage of being able to perform extremely high-speed drawing using a plurality of electron beams, but it is difficult to individually control the cross-sectional shape of each beam, or individually Control the intensity of each beam. More specifically, it is not possible to provide a mechanism for individually shaping or individually adjusting the intensity of each electron beam passing through the opening 16a of the fine aperture plate 16.

依照當前利用的一般性的多射束方式之帶電粒子束描繪裝置1,雖能在曝光對象面上形成直徑

Figure 106103504-A0202-12-0017-38
的多數個圓形的照射點,但無法將照射點成形為任意形狀,不得不採用藉由各個電子束的ON/OFF控制來進行描繪之方法。鑑此,為了進行此多射束方式之帶電粒子束描繪裝置1的描繪控制,會利用藉由二維像素排列而構成之描繪資料。 According to the currently used general multi-beam method of charged particle beam drawing device 1, although the diameter can be formed on the exposure target surface
Figure 106103504-A0202-12-0017-38
There are many circular irradiation spots, but the irradiation spots cannot be shaped into arbitrary shapes, and the method of drawing by the ON/OFF control of each electron beam has to be adopted. In view of this, in order to perform the drawing control of the multi-beam charged particle beam drawing device 1, drawing data constituted by two-dimensional pixel arrangement is used.

此外,依照多射束方式之帶電粒子束描繪裝置1,無法個別地控制多數道電子束的強度。惟,藉由控制遮沒板17,便可將各個電子束予以個別地ON/OFF。鑑此,係採用下述方法,即,對於各個照射基準點各者,將分別照射之電子束予以個別地做ON/OFF控制,改變曝光時間,藉此改變曝光強度。這樣的曝光時間之控制,實際上是以曝光次數之控制這樣的形式來進行。這是由於實際上是一面使平台5二維地(圖1的左右方向及前後方向)移動,一面將多數道電子束於描繪對象物13上一面二維地掃描一面進行描繪之緣故。 In addition, the charged particle beam drawing device 1 according to the multi-beam method cannot individually control the intensity of a plurality of electron beams. However, by controlling the blanking plate 17, each electron beam can be individually turned on/off. In view of this, the following method is adopted, that is, for each of the irradiation reference points, the electron beams irradiated separately are individually turned on/off controlled to change the exposure time, thereby changing the exposure intensity. Such exposure time control is actually performed in the form of control of the number of exposures. This is because the platform 5 is actually moved two-dimensionally (the left-right direction and the front-rear direction in FIG. 1 ), and a plurality of electron beams are scanned on the object 13 to be drawn while drawing two-dimensionally.

例如,若設計成將數奈秒左右的曝光時間事先訂定為1次電子束照射時的單位曝光時間,每當1次的電子束照射完成,便使平台5於X軸方向移動恰好間距d,再進行下一次的電子束照射,那麼對於特定的照射基準點Q而言,是藉由每次相異的電子束(鄰接之電子束)來進行單位曝光時間份的曝光。此時,若對各個電子束各者進行個別的ON/OFF控制,則雖為階段式,但可達成對各個照射基準點各者設定獨特的(particular)曝光強度。如後述般,藉由控制曝光強度,便可達成將描繪圖樣的形狀或圖樣寬幅予以微調整。 For example, if it is designed to predetermine the exposure time of several nanoseconds in advance as the unit exposure time when one electron beam is irradiated, each time the electron beam irradiation is completed, the stage 5 is moved in the X-axis direction by exactly the interval d Then, the next electron beam irradiation is performed. For a specific irradiation reference point Q, exposure is performed by a unit of exposure time with different electron beams (adjacent electron beams) each time. At this time, if individual ON/OFF control is performed for each electron beam, although it is a step type, it is possible to achieve the setting of a particular exposure intensity for each irradiation reference point. As described later, by controlling the exposure intensity, it is possible to finely adjust the shape of the drawing or the width of the drawing.

圖4為本實施形態之控制系統35的具體的內部構成一例示意方塊圖。圖4之控制系統35,具有控制部41、取得部42、第1圖像變換部43、圖像修正部44、第2圖像變換部45、第1記憶控制部46、第1描繪資料 記憶部47、第2記憶控制部48、及第2描繪資料記憶部49。圖4當中,取得部42、第1圖像變換部43、圖像修正部44、第2圖像變換部45、第1記憶控制部46及第2記憶控制部48,係設於帶電粒子束描繪裝置1的內部,而第1描繪資料記憶部47及第2描繪資料記憶部49則設於和帶電粒子束描繪裝置1分開的裝置(例如檢查裝置)內。本說明書中,將帶電粒子束描繪裝置1與檢查裝置合稱為帶電粒子束描繪系統。 FIG. 4 is a schematic block diagram showing an example of a specific internal configuration of the control system 35 of this embodiment. The control system 35 of FIG. 4 includes a control unit 41, an acquisition unit 42, a first image conversion unit 43, an image correction unit 44, a second image conversion unit 45, a first memory control unit 46, and first drawing data The memory unit 47, the second memory control unit 48, and the second drawing data memory unit 49. In FIG. 4, the acquisition unit 42, the first image conversion unit 43, the image correction unit 44, the second image conversion unit 45, the first memory control unit 46, and the second memory control unit 48 are provided in the charged particle beam Inside the drawing device 1, the first drawing data storage unit 47 and the second drawing data storage unit 49 are provided in a device (for example, an inspection device) separate from the charged particle beam drawing device 1. In this specification, the charged particle beam drawing device 1 and the inspection device are collectively referred to as a charged particle beam drawing system.

控制部41,控制帶電粒子束描繪裝置1內的各部。控制部41,例如可由一台或複數台的電腦來構成,但實現控制部41之具體構成並不特別過問。控制部41,亦可包含後述取得部42、第1圖像變換部43、圖像修正部44及第2圖像變換部45的至少一部分功能。 The control unit 41 controls each unit in the charged particle beam drawing device 1. The control unit 41 may be constituted by, for example, one or a plurality of computers, but the specific configuration for implementing the control unit 41 is not particularly inconsequential. The control unit 41 may include at least a part of functions of an acquisition unit 42, a first image conversion unit 43, an image correction unit 44, and a second image conversion unit 45 described later.

取得部42,取得用來對描繪對象物13描繪之向量形式的第1描繪資料。此處,所謂向量形式,意指藉由線段資訊與線的方向資訊來管理描繪資料。取得部42,經由網路、或是透過光碟等記錄媒介取得以未圖示的布局設計工具等生成之第1描繪資料。第1描繪資料,為GDS或OASIS等泛用的向量形式的描繪資料。 The obtaining unit 42 obtains first drawing data in a vector format for drawing the drawing object 13. Here, the so-called vector form means that the drawing data is managed by line segment information and line direction information. The obtaining unit 42 obtains the first drawing data generated by a layout design tool (not shown) via a network or a recording medium such as an optical disc. The first drawing data is the general vector drawing data such as GDS or OASIS.

第1圖像變換部43,將取得部42取得的第1描繪資料,變換成逐線形式的第2描繪資料。此處,所謂逐線形式,意指藉由像素單位的像素資料來管理描繪資料。 The first image conversion unit 43 converts the first drawing data obtained by the obtaining unit 42 into second drawing data in a line-by-line format. Here, the so-called line-by-line means that the drawing data is managed by pixel data in pixel units.

圖像修正部44,以像素單位修正第2描繪資 料以使第2描繪資料趨近理想的描繪資料,而生成逐線形式的第3描繪資料。圖像修正部44,維持逐線形式來進行修正處理的理由在於,其僅抽出第2描繪資料的圖樣圖像的特徵性之處來進行修正處理。 The image correction unit 44 corrects the second rendering data in pixel units It is expected that the second drawing data will approach the ideal drawing data, and the third drawing data in line-by-line form will be generated. The reason why the image correction unit 44 performs the correction process while maintaining the line-by-line format is that it extracts only the characteristic features of the pattern image of the second drawing data and performs the correction process.

第2圖像變換部45,將第3描繪資料變換成向量形式的第4描繪資料。第2圖像變換部45,將描繪資料從逐線形式變換成向量形式的理由在於,若維持逐線形式,則資料量會變龐大,不適合保存。 The second image conversion unit 45 converts the third rendering data into a fourth rendering data in a vector format. The reason why the second image conversion unit 45 converts the drawing data from the line-by-line format to the vector format is that if the line-by-line format is maintained, the amount of data becomes large and it is not suitable for storage.

第1描繪資料記憶部47,保存第2圖像變換部45進行了圖像變換而成之向量形式的第4描繪資料。第1記憶控制部46,進行將第4描繪資料保存於第1描繪資料記憶部47之控制。此外,第2描繪資料記憶部49,保存修正處理前的向量形式的第1描繪資料。第2記憶控制部48,進行將第1描繪資料保存於第2描繪資料記憶部49之控制。另,第2描繪資料記憶部49,非必要的構成部分,因此亦可省略。設置第2描繪資料記憶部49的優點為,當在對描繪對象物13描繪之圖樣的外觀檢查中有問題,亦即被判斷有錯誤時,能夠協助探究該問題的原因。也就是說,圖樣的外觀檢查中就造成錯誤之原因而言,可認為有從向量形式至逐線形式之資料變換、修正處理之問題(錯誤)、和資料變換及修正處理以外之問題(錯誤)。欲判斷是否為修正處理之問題,只要將修正處理前的第1描繪資料與修正處理後的第4描繪資料比較即可。故,若第2描繪資料記憶部49中存儲有修正處理前 的第1描繪資料,便能簡易且迅速地判斷是否為修正處理之錯誤。 The first drawing data storage unit 47 stores the fourth drawing data in the form of a vector in which an image is converted by the second image conversion unit 45. The first memory control unit 46 controls to store the fourth drawing data in the first drawing data storage unit 47. In addition, the second drawing data storage unit 49 stores the first drawing data in the vector format before the correction process. The second memory control unit 48 controls to store the first drawing data in the second drawing data storage unit 49. In addition, the second drawing data storage unit 49 is an unnecessary component, and therefore may be omitted. The advantage of providing the second drawing data storage unit 49 is that if there is a problem in the visual inspection of the drawing drawn on the drawing object 13, that is, it is judged that there is an error, it is possible to assist in exploring the cause of the problem. That is to say, as for the cause of the error in the visual inspection of the drawing, it can be considered that there is a problem (error) of data conversion and correction processing from the vector form to the line-by-line format, and a problem (error) other than the data conversion and correction process ). To determine whether it is a problem of correction processing, it is sufficient to compare the first drawing data before correction processing with the fourth drawing data after correction processing. Therefore, if correction processing is stored in the second drawing data storage unit 49 The first drawing data can easily and quickly determine whether it is a correction error.

圖5為圖4的圖像修正部44所進行之修正處理的第1例說明圖。描繪於描繪對象物13上之描繪圖樣40的角部40a,即使設計上的理想圖樣為具有陡峭角度的角部,於實際描繪時也會容易變成帶有圓弧的形狀。這是由於,電子束的射束形狀帶圓弧、及電子束的射束徑有可能比像素寬幅還大、及電子束在射束口徑的中心部亮度最高而隨著愈接近周緣則亮度漸變弱等。 FIG. 5 is an explanatory diagram of a first example of correction processing performed by the image correction unit 44 of FIG. 4. The corner portion 40a of the drawing pattern 40 drawn on the drawing object 13, even if the ideal pattern in design is a corner portion having a steep angle, can easily become a shape with a circular arc during actual drawing. This is because the beam shape of the electron beam has an arc, and the beam diameter of the electron beam may be larger than the width of the pixel, and the brightness of the electron beam at the center of the beam aperture is the highest, and the brightness is closer to the periphery Weak gradients, etc.

鑑此,修正處理的第1例中,是將和描繪圖樣40的角部40a相對應之像素的曝光強度更加提高,以進行抑制實際的圖樣形狀的圓弧之修正處理。 In view of this, in the first example of the correction process, the exposure intensity of the pixel corresponding to the corner portion 40a of the drawing pattern 40 is further increased to perform the correction process of suppressing the arc of the actual pattern shape.

圖5係將描繪圖樣40的僅1個角部40a擴大圖示。圖5(a)揭示角部40a中的第1描繪資料、及角部40a中的第2描繪資料。第1描繪資料,為向量形式的描繪資料,包含描繪圖樣40的線方向資訊與線段長度資訊。第2描繪資料,包含構成描繪圖樣40之各像素的像素值資訊。此處,所謂像素,為描繪圖樣40內的單位區域,所謂像素值,為描繪圖樣40內的每單位區域的電子束的照射量亦即劑量。 FIG. 5 is an enlarged view of only one corner 40 a of the drawing 40. FIG. 5(a) reveals the first drawing data in the corner 40a and the second drawing data in the corner 40a. The first drawing data is drawing data in the form of a vector, and includes line direction information and line segment length information of the drawing pattern 40. The second drawing data includes pixel value information of each pixel constituting the drawing pattern 40. Here, the pixel refers to the unit area within the drawing 40, and the pixel value refers to the dose of the irradiation amount of the electron beam per unit area within the drawing 40.

圖5例子中,描繪圖樣40的角部40a的二邊相夾之角度為90度,描繪圖樣40的交界線通過各像素的中央。在此情形下,第2描繪資料,將描繪圖樣40存在於像素內的全域之像素的像素值訂為15、描繪圖樣40存 在於像素內的僅一半之像素的像素值訂為7、描繪圖樣40的角部40a所存在之像素的像素值訂為4、描繪圖樣40不存在於像素內之像素的像素值訂為0。描繪圖樣40的角部40a所存在之像素,其描繪圖樣40係存在於像素內的1/4面積,因此其像素值為15×1/4=3.75,四捨五入成為4。 In the example of FIG. 5, the angle between the two sides of the corner 40 a of the drawing 40 is 90 degrees, and the boundary of the drawing 40 passes through the center of each pixel. In this case, in the second drawing data, the pixel value of the pixels of the entire range in which the drawing pattern 40 exists in the pixel is set to 15, and the drawing pattern 40 is stored. The pixel value of only half of the pixels in the pixel is set to 7, the pixel value of the pixel present in the corner portion 40a of the drawing pattern 40 is set to 4, and the pixel value of the pixel where the drawing pattern 40 does not exist in the pixel is set to 0. The pixels present in the corner portion 40a of the drawing pattern 40 are present in the 1/4 area of the pixel. Therefore, the pixel value is 15×1/4=3.75, which is rounded to 4.

圖5(b)揭示圖像修正部44所做的修正處理後的第3描繪資料。修正處理前,是將描繪圖樣40的角部40a所存在之像素的像素值訂為4,但藉由進行修正處理,將此像素的像素值變更成15。如此一來,將第3描繪資料做向量變換而成之第4描繪資料,會成為角部40a被擴大成矩形狀之描繪資料。第1描繪資料記憶部47,保存此第4描繪資料。第4描繪資料為向量形式,因此相較於保存逐線形式的第3描繪資料,能夠大幅地刪減保存的資料量。 FIG. 5(b) reveals the third drawing data after the correction process by the image correction unit 44. Before the correction process, the pixel value of the pixel existing in the corner portion 40a of the drawing pattern 40 is set to 4, but by performing the correction process, the pixel value of this pixel is changed to 15. In this way, the fourth drawing data obtained by vector-converting the third drawing data becomes the drawing data in which the corner portion 40a is enlarged into a rectangular shape. The first drawing data storage unit 47 stores this fourth drawing data. The fourth drawing data is in the form of a vector, so compared to saving the third drawing data in a line-by-line format, the amount of stored data can be greatly reduced.

如圖5(b)所示,若基於描繪圖樣40的角部40a被擴大成矩形狀之描繪資料來實際地進行描繪,則角部40a的圓弧會受到抑制,而趨近設計上的理想的描繪圖樣40。 As shown in FIG. 5(b), if the corner portion 40a of the drawing pattern 40 is enlarged into rectangular drawing data to actually draw, the arc of the corner portion 40a will be suppressed, and the design ideal will be approached的drawing pattern 40.

像這樣,圖像修正部44,係從描繪對象物13的描繪資料亦即逐線形式的第2描繪資料當中,檢測描繪圖樣40的角部40a,而修正角部40a的像素值。第2圖像變換部45,將修正後的第3描繪資料變換成向量形式的第4描繪資料,保存於第1描繪資料記憶部47。如此一 來,便能以較少的資料量來管理修正後的描繪資料,因此能夠刪減當將修正後的第4描繪資料傳送至設計中心等做驗證時之資料量,而變得易於進行第4描繪資料之驗證。 In this way, the image correction unit 44 detects the corner portion 40a of the drawing pattern 40 from the second drawing data in the line-by-line format, which is the drawing data of the drawing object 13, and corrects the pixel value of the corner portion 40a. The second image conversion unit 45 converts the corrected third drawing data into a fourth drawing data in a vector format, and stores it in the first drawing data storage unit 47. Such a It is possible to manage the revised drawing data with a smaller amount of data, so it is possible to reduce the amount of data when the revised fourth drawing data is sent to the design center for verification, and it becomes easier to perform the fourth Describe the verification of the data.

另,圖像修正部44進行修正處理者,並不僅限定於描繪圖樣40的角部40a。例如,亦可針對描繪圖樣40的交界線也進行修正處理。 In addition, the image correction unit 44 performs correction processing, and is not limited to only the corner portion 40 a of the drawing 40. For example, the boundary line of the drawing pattern 40 may also be corrected.

圖6~圖9為圖4的圖像修正部44所進行之修正處理的第2例說明圖。當1個像素為5nm的圖樣寬幅的情形下,針對能夠被5整除之圖樣寬幅的描繪圖樣40,描繪圖樣40的交界線會通過像素的交界位置。圖6揭示和5的倍數的圖樣寬幅(例如20nm)的描繪圖樣40相對應之第3描繪資料的例子。圖6中,將描繪圖樣40所存在之像素的像素值訂為15、描繪圖樣40不存在之像素的像素值訂為0。圖6例子中,描繪圖樣40的交界線和像素的交界位置一致。 6 to 9 are explanatory diagrams of a second example of the correction process performed by the image correction unit 44 of FIG. 4. When one pixel is 5 nm wide in the pattern, for the drawing pattern 40 that is divisible by 5 in the wide pattern, the boundary line of the drawing pattern 40 will pass through the boundary position of the pixel. FIG. 6 shows an example of the third drawing data corresponding to the drawing pattern 40 with a pattern width of a multiple of 5 (for example, 20 nm). In FIG. 6, the pixel value of the pixel where the drawing pattern 40 exists is set to 15 and the pixel value of the pixel where the drawing pattern 40 does not exist is set to 0. In the example of FIG. 6, the boundary line of the drawing pattern 40 and the boundary position of the pixels match.

另一方面,針對無法被5整除之圖樣寬幅的描繪圖樣40,必須調整位於交界線之像素的像素值,將交界線從像素的交界位置挪移。圖7揭示欲描繪19nm的圖樣寬幅的描繪圖樣40,而將位於描繪圖樣40的交界線之像素的像素值訂為15之例子。 On the other hand, for the wide drawing pattern 40 that cannot be divisible by 5, the pixel value of the pixel located at the boundary line must be adjusted to move the boundary line away from the boundary position of the pixel. FIG. 7 discloses an example in which a drawing pattern 40 to be drawn with a wide pattern of 19 nm is drawn, and the pixel value of a pixel located at the boundary of the drawing pattern 40 is set to 15.

假設使用如圖7這樣的第3描繪資料進行了描繪時之圖樣寬幅為19.5nm。在此情形下,必須將圖樣寬幅再縮窄0.5nm份量,因此例如如圖8般,將位於描繪圖樣40的交界線之像素的像素值訂為更小的值亦即13。 此時的圖樣寬幅如圖8所示,假設為18.5nm,則例如如圖9般,將位於描繪圖樣40的交界線之像素的像素值,沿著交界線交互地反覆設為13與14。圖像修正部44,藉由反覆這樣的修正,來進行修正處理使成為最佳的圖樣寬幅。 It is assumed that the width of the pattern when drawing is performed using the third drawing data as shown in FIG. 7 is 19.5 nm. In this case, the width of the pattern must be narrowed by another 0.5 nm. Therefore, for example, as shown in FIG. 8, the pixel value of the pixel located at the boundary line drawing the pattern 40 is set to a smaller value, that is, 13. The width of the pattern at this time is as shown in FIG. 8 and it is assumed to be 18.5 nm. For example, as shown in FIG. 9, the pixel value of the pixel located at the boundary line of the drawing pattern 40 is alternately repeated as 13 and 14 along the boundary line. . The image correction unit 44 performs correction processing by repeating such correction so as to achieve the optimum pattern width.

圖9的情形下,沿著交界線之方向的像素值為13與14,將第3描繪資料變換而成之向量形式的第4描繪資料會成為折線形狀。即使交界線成為折線形狀,其凹凸差為0.5nm程度,實用上沒有問題。惟,第4描繪資料中,會變成包含折線的各交點座標、和折線的長度及方向,相較於具有直線狀的交界線之描繪圖樣40而言,資料量會增加。惟,相較於逐線形式的第3描繪資料而言,資料量仍少得多。 In the case of FIG. 9, the pixel values along the direction of the boundary line are 13 and 14, and the fourth drawing data in the form of a vector converted from the third drawing data becomes a polyline shape. Even if the boundary line has a broken line shape, the unevenness is about 0.5 nm, and there is no practical problem. However, in the fourth drawing data, the coordinates of each intersection point including a polyline, and the length and direction of the polyline, compared to the drawing pattern 40 having a straight boundary line, the amount of data will increase. However, the amount of data is still much smaller than that of the line-by-line third drawing data.

作為驗證圖像修正部44進行了修正處理的第3描繪資料中是否有錯誤之手法,雖亦可考慮把將第3描繪資料做向量變換而成之第4描繪資料傳送至上述的設計中心等來進行驗證,但亦可藉由控制系統35來驗證有無錯誤。錯誤,是基於第3描繪資料對描繪對象物13實際進行描繪,而使用第4描繪資料進行該描繪圖樣40的外觀檢查來檢測。作為檢測出錯誤的因素,有問題在於圖像修正部44的修正處理之情形、及問題在於修正處理以外的處理之情形。故,當檢測出錯誤的情形下,必須辨明錯誤的因素。 As a method of verifying whether the third drawing data that has been corrected by the image correction unit 44 is incorrect, it may be considered to transfer the fourth drawing data obtained by vector-converting the third drawing data to the above-mentioned design center, etc. To verify, but the control system 35 can also verify whether there are errors. The error is that the drawing object 13 is actually drawn based on the third drawing data, and the visual inspection of the drawing pattern 40 is performed using the fourth drawing data to detect it. As a factor for detecting an error, there are problems with the correction process of the image correction unit 44 and problems with processes other than the correction process. Therefore, when an error is detected, the factor of the error must be identified.

藉由控制系統35進行至錯誤因素的辨明處理 為止的情形下之方塊圖構成係成為圖10。圖10為對圖4追加了檢查部50及修正問題判斷部51而成者。檢查部50,進行描繪於描繪對象物13之描繪圖樣40的外觀檢查,判斷問題的原因是否在於圖像修正部44的修正處理。修正問題判斷部51,判斷圖像修正部44的修正處理是否有問題,若有問題,則再度對圖像修正部44指示修正處理。圖10當中,取得部42、第1圖像變換部43、圖像修正部44、第2圖像變換部45、第1描繪資料記憶部47、第2描繪資料記憶部49、檢查部50及修正問題判斷部51,係構成描繪資料驗證裝置。 Identification of error factors by the control system 35 The block diagram configuration in the case up to this point is shown in FIG. 10. FIG. 10 is a result of adding the inspection unit 50 and the correction problem determination unit 51 to FIG. 4. The inspection unit 50 performs an appearance inspection of the drawing pattern 40 drawn on the drawing object 13 to determine whether the cause of the problem is the correction process of the image correction unit 44. The correction problem determination unit 51 determines whether there is a problem with the correction process of the image correction unit 44, and if there is a problem, instructs the image correction unit 44 to perform the correction process again. In FIG. 10, the acquisition unit 42, the first image conversion unit 43, the image correction unit 44, the second image conversion unit 45, the first drawing data storage unit 47, the second drawing data storage unit 49, the inspection unit 50 and The correction problem determination unit 51 constitutes a drawing data verification device.

圖11為包括圖像修正處理與錯誤因素辨明處理在內之控制系統35的處理手續的第1例示意流程圖。 FIG. 11 is a schematic flowchart of a first example of processing procedures of the control system 35 including image correction processing and error factor identification processing.

首先,藉由取得部42,取得用來對描繪對象物13描繪之向量形式的第1描繪資料(步驟S1)。取得的第1描繪資料,被保存於第2描繪資料記憶部49(步驟S2)。此步驟S2之處理,係穿插於後述步驟S3~S6之處理進行。接著,藉由第1圖像變換部43,將第1描繪資料變換成逐線形式的第2描繪資料(步驟S3)。接著,藉由圖像修正部44進行第2描繪資料的修正處理,生成逐線形式的第3描繪資料(步驟S4)。接著,藉由第2圖像變換部45,將第3描繪資料變換成向量形式的第4描繪資料(步驟S5)。步驟S5之處理的細節後述。 First, the acquisition unit 42 acquires the first drawing data in a vector format for drawing the drawing object 13 (step S1). The acquired first drawing data is stored in the second drawing data storage unit 49 (step S2). The processing of this step S2 is interspersed with the processing of steps S3 to S6 described later. Next, the first image conversion unit 43 converts the first drawing data into second drawing data in a line-by-line format (step S3). Next, the image correction unit 44 performs correction processing of the second drawing data to generate third drawing data in a line-by-line format (step S4). Next, the second image conversion unit 45 converts the third drawing data into a fourth drawing data in a vector format (step S5). The details of the processing in step S5 will be described later.

接著,第1記憶控制部46,進行將第4描繪資料保存於第1描繪資料記憶部47之控制(步驟S6)。 第1描繪資料記憶部47,例如設於與帶電粒子束描繪裝置1進行資訊通訊之未圖示之伺服器的內部。 Next, the first memory control unit 46 performs control to store the fourth drawing data in the first drawing data storage unit 47 (step S6). The first drawing data storage unit 47 is provided, for example, in a server (not shown) that performs information communication with the charged particle beam drawing device 1.

接著,控制部41,基於第3描繪資料,對描繪對象物13進行描繪,形成描繪圖樣40(步驟S7)。上述步驟S1~S7之處理,是藉由帶電粒子束描繪裝置進行。後述步驟S8~S11之處理,是藉由檢查裝置進行。 Next, the control unit 41 draws the drawing object 13 based on the third drawing data to form a drawing pattern 40 (step S7). The above steps S1 to S7 are performed by the charged particle beam drawing device. The processing of steps S8 to S11 described later is performed by the inspection device.

步驟S8中,將形成的描繪圖樣40藉由未圖示之拍攝裝置拍攝,並分析拍攝的圖像,進行描繪圖樣40的外觀檢查。外觀檢查中,例如進行Die to Die檢查或Die to Database檢查。Die to Die檢查,為在形成有描繪圖樣40之描繪對象物13上,將同一種類的單元(cell)彼此比較之檢查。所謂單元,為構成描繪圖樣40的基本圖樣。一個描繪圖樣40,是將多數個單元組合而構成。雖可能存在形狀相異的複數種類的單元,但將各種類的單元以恰好任意的數量組合來構成描繪圖樣40。Die to Die檢查中,是將檢查對象單元的拍攝圖像,和同一形狀的另一單元的拍攝圖像比較,來進行外觀檢查。另一方面,Die to Database檢查,是將描繪圖樣40的拍攝圖像和第1描繪資料比較,來進行外觀檢查。比較所使用之第1描繪資料,亦可使用從第2描繪資料記憶部49讀出者。 In step S8, the formed drawing pattern 40 is captured by an unillustrated shooting device, and the captured image is analyzed to perform an appearance inspection of the drawing pattern 40. During the visual inspection, for example, Die to Die inspection or Die to Database inspection. The Die to Die inspection is an inspection that compares cells of the same type on the drawing object 13 on which the drawing pattern 40 is formed. The unit is a basic pattern constituting the drawing pattern 40. A drawing pattern 40 is formed by combining a plurality of units. Although there may be plural types of cells with different shapes, various types of cells may be combined in just an arbitrary number to constitute the drawing pattern 40. In the Die to Die inspection, the captured image of the unit to be inspected is compared with the captured image of another unit of the same shape to perform the visual inspection. On the other hand, the Die to Database inspection is to compare the captured image of the drawing pattern 40 with the first drawing data to perform a visual inspection. The first drawing data used for comparison may be used as well as those read from the second drawing data storage unit 49.

接著,外觀檢查之結果,判斷描繪圖樣40是否有外觀上的問題(步驟S9)。若沒有外觀上的問題則結束圖11之處理,若有外觀上的問題,則將被保存於第1描繪資料記憶部47之第4描繪資料、和被保存於第2 描繪資料記憶部49之第1描繪資料比較,判斷以圖像修正部44進行之修正處理是否有問題(步驟S10)。步驟S10之處理的細節後述。如果判斷修正處理沒有問題,則認定問題在於修正處理以外,並執行事先訂定好的錯誤處理(步驟S11)。若步驟S10中判斷修正處理有問題,則回到步驟S4,重做第2描繪資料的修正處理。 Next, as a result of the visual inspection, it is determined whether the drawing pattern 40 has a visual problem (step S9). If there is no appearance problem, the processing of FIG. 11 ends, and if there is an appearance problem, the fourth drawing data stored in the first drawing data storage unit 47 and the second drawing data are stored in the second The first drawing data of the drawing data storage unit 49 is compared to determine whether there is a problem with the correction process performed by the image correction unit 44 (step S10). The details of the processing in step S10 will be described later. If it is judged that there is no problem with the correction process, it is determined that the problem lies outside the correction process, and the error process predetermined in advance is executed (step S11). If it is determined in step S10 that there is a problem with the correction process, the process returns to step S4 and the correction process of the second drawing data is repeated.

欲進行步驟S5之處理,可考慮幾種手法。以下,依序說明代表性的第1手法~第3手法。 To perform the processing in step S5, several methods can be considered. Hereinafter, representative first to third techniques will be described in order.

圖12為第1手法的處理手續示意流程圖。首先,將以圖11的步驟S4生成的第3描繪資料予以二元化(binarization)(二元化部,步驟S21)。圖13A為第3描繪資料的一例示意圖,圖13B為將圖13A的第3描繪資料予以二元化之例示意圖。圖13A的第3描繪資料,為最小值0,最大值15之像素單位的逐線資料。圖12的步驟S21中,適當設定閾值,將閾值以上的逐線資料設為1、未滿閾值的逐線資料設為0而予以二元化。閾值可設定任意的值,但圖13B揭示將閾值訂為5而二元化之例子。藉由此二元化,能夠將像素單位的資料以1位元來表現,因此能夠大幅地刪減資料量。 FIG. 12 is a schematic flowchart of the processing procedure of the first method. First, the third drawing data generated in step S4 of FIG. 11 is binarized (binarization unit, step S21). 13A is a schematic diagram of an example of the third drawing data, and FIG. 13B is a schematic diagram of an example of binarizing the third drawing data of FIG. 13A. The third drawing data in FIG. 13A is line-by-line data in pixel units with a minimum value of 0 and a maximum value of 15. In step S21 of FIG. 12, the threshold is appropriately set, and the line-by-line data above the threshold is set to 1 and the line-by-line data under the threshold is set to 0 to binarize. The threshold value can be set to an arbitrary value, but FIG. 13B discloses an example in which the threshold value is set to 5 to be binarized. By this binarization, data in pixel units can be expressed in one bit, so the amount of data can be greatly reduced.

當進行步驟S21之處理時,亦可設置相異值的複數個閾值,依各閾值各者生成二元資料。二元資料,其資料量遠比原本的第3描繪資料還小,因此即使設置複數個二元資料,也不會有資料量極端增大之虞。 When the process of step S21 is performed, a plurality of thresholds with different values can also be set, and binary data is generated according to each threshold. The amount of binary data is much smaller than the original 3rd drawing data. Therefore, even if a plurality of binary data is set, there will be no risk of extremely increasing the amount of data.

接著,基於二元化後的資料,抽出描繪圖樣 的輪廓,生成向量資料亦即第4描繪資料(輪廓抽出部,步驟S22)。生成的第4描繪資料,藉由圖11的步驟S6,被保存於第1描繪資料記憶部。 Then, based on the binarized data, draw a drawing pattern Of the outline, generating vector data, that is, fourth drawing data (outline extraction unit, step S22). The generated fourth drawing data is stored in the first drawing data storage unit in step S6 in FIG. 11.

圖14為基於圖13B的二元資料而抽出輪廓之例示意圖。輪廓沿著1與0的交界被抽出,生成含有輪廓資訊之向量資料。 FIG. 14 is a schematic diagram showing an example of contour extraction based on the binary data of FIG. 13B. The contour is extracted along the boundary between 1 and 0, and vector data containing contour information is generated.

圖15為使用以圖12的第1手法生成的第4描繪資料來進行圖11的步驟S9的處理之情形之詳細處理手續示意流程圖。若圖11的步驟S9中判定描繪圖樣有問題,則將被判定有問題之處附近的第4描繪資料,自第1描繪資料記憶部讀出(步驟S31)。 FIG. 15 is a schematic flowchart of a detailed processing procedure in a case where the processing of step S9 of FIG. 11 is performed using the fourth drawing data generated by the first method of FIG. 12. If it is determined in step S9 of FIG. 11 that there is a problem with the drawing pattern, the fourth drawing data in the vicinity of the problematic location is read from the first drawing data storage unit (step S31).

接著,將步驟S31中讀出的第4描繪資料和第1描繪資料比較(步驟S32)。比較之結果,判定是否發生了規定尺寸以上的資料不一致(步驟S33)。若步驟S33中檢測出不一致,則判定從第1描繪資料變換至第2描繪資料時發生了某種問題(步驟S34),而移往圖11的步驟S3。若步驟S33中未檢測出不一致,則進行圖11的步驟S11之錯誤處理。 Next, the fourth drawing data read in step S31 and the first drawing data are compared (step S32). As a result of the comparison, it is determined whether or not data mismatches of a predetermined size or more have occurred (step S33). If an inconsistency is detected in step S33, it is determined that a certain problem has occurred when switching from the first drawing data to the second drawing data (step S34), and the process moves to step S3 in FIG. 11. If no discrepancy is detected in step S33, the error processing in step S11 of FIG. 11 is performed.

圖16為圖15的處理之模型化示意圖。圖16的實線為第4描繪資料,虛線為第1描繪資料,×為圖11的步驟S9中被判定出的問題處。圖15之處理,只要讀出描繪圖樣當中於圖11的步驟S9中被判定有問題之處附近的第4描繪資料,並和相對應之第1描繪資料比較即可,因此不需進行描繪圖樣全體的第4描繪資料和第1描繪資 料之比較,因此能夠高速地檢查問題處。 FIG. 16 is a model diagram of the processing of FIG. 15. The solid line in FIG. 16 is the fourth drawing data, the dashed line is the first drawing data, and × is the problem area determined in step S9 of FIG. 11. In the processing of FIG. 15, it is only necessary to read out the fourth drawing data in the vicinity of the spot where the problem is determined in step S9 of FIG. 11 among the drawing patterns, and compare it with the corresponding first drawing data, so no drawing pattern is necessary. The entire fourth drawing data and first drawing data The comparison of materials makes it possible to check the problem at high speed.

如上述般,當將閾值相異的複數個第4描繪資料保存於第1描繪資料記憶部47的情形下,亦可將複數個第4描繪資料的各者和第1描繪資料比較來進行問題處之檢查。如此一來,便能更佳高精度地進行問題處之檢查。 As described above, when a plurality of fourth drawing data having different thresholds are stored in the first drawing data storage unit 47, each of the plurality of fourth drawing data and the first drawing data may be compared to perform a problem Check the place. In this way, the problem can be inspected with higher accuracy.

圖17為藉由第2手法進行圖11的步驟S5之情形之處理手續示意流程圖。首先,將以圖11的步驟S4生成的第3描繪資料依各像素值各者進行區域分割(區域分割部,步驟S41)。此處,所謂第3描繪資料的各像素值,係表示電子束的劑量。步驟S41中,將具有相同劑量的鄰接之像素範圍訂為一個分割區域。 FIG. 17 is a schematic flowchart of the processing procedure in the case where step S5 of FIG. 11 is performed by the second method. First, the third drawing data generated in step S4 of FIG. 11 is divided into regions for each pixel value (region division unit, step S41). Here, each pixel value of the third drawing data indicates the dose of the electron beam. In step S41, the adjacent pixel ranges having the same dose are defined as one divided area.

圖18A為第3描繪資料的一例示意圖,圖18B為將圖18A的第3描繪資料因應劑量而做區域分割之例示意圖。圖18B中,揭示設置劑量為「15」的1個分割區域、及劑量為「7」的3個分割區域、及劑量為「4」的1個分割區域之例子。 FIG. 18A is a schematic diagram of an example of the third drawing data, and FIG. 18B is a schematic diagram of an example of segmenting the third drawing data of FIG. 18A according to the dose. FIG. 18B discloses an example of setting one divided area with a dose of “15”, three divided areas with a dose of “7”, and one divided area with a dose of “4”.

接著,將藉由區域分割而得到的各分割區域內的第3描繪資料變換成向量資料亦即第4描繪資料(向量變換部,步驟S42)。圖19為將圖18B的各分割區域變換成由多邊形化的向量資料所構成之第4描繪資料之例示意圖。例如,分割區域d1,其劑量為「15」,因此被變換成包含「15」的值與多邊形資訊之第4描繪資料。生成的第4描繪資料,藉由圖11的步驟S6,被保存於第1 描繪資料記憶部47。 Next, the third drawing data in each divided area obtained by the area division is converted into vector data, that is, fourth drawing data (vector conversion section, step S42). FIG. 19 is a schematic diagram of an example of converting each divided region of FIG. 18B into fourth drawing data composed of polygonal vector data. For example, the divided area d1 has a dose of "15", so it is converted into fourth drawing data including the value of "15" and polygon information. The generated fourth drawing data is saved in the first by step S6 in FIG. 11 Draw data memory 47.

圖20為使用以圖17的第2手法生成的第4描繪資料來進行圖11的步驟S10的處理之情形之詳細處理手續示意流程圖。若圖11的步驟S9中判定描繪圖樣有問題,則將被判定有問題之處附近的第4描繪資料,自第1描繪資料記憶部47讀出(步驟S51)。 FIG. 20 is a schematic flowchart of a detailed processing procedure in a case where the processing of step S10 of FIG. 11 is performed using the fourth drawing data generated by the second method of FIG. 17. If it is determined in step S9 of FIG. 11 that there is a problem with the drawing pattern, the fourth drawing data in the vicinity of the problematic location is read from the first drawing data storage unit 47 (step S51).

接著,將步驟S51中讀出的第4描繪資料和第1描繪資料比較(步驟S52)。比較之結果,判定圖11的步驟S4之修正處理所做的修正是否過度(步驟S53)。若判定修正過度,則導出藉由圖11的步驟S4從第2描繪資料變換成第3描繪資料時有問題之結論(修正問題判斷部,步驟S54),進行圖11的步驟S11之錯誤處理。若判定步驟S53中修正並未過度,則移往圖11的步驟S4。 Next, the fourth drawing data read in step S51 and the first drawing data are compared (step S52). As a result of the comparison, it is determined whether the correction made by the correction process of step S4 of FIG. 11 is excessive (step S53). If it is determined that the correction is excessive, the conclusion that there is a problem when converting from the second drawing data to the third drawing data in step S4 of FIG. 11 is derived (correction problem determination unit, step S54), and the error processing in step S11 of FIG. 11 is performed. If it is determined that the correction is not excessive in step S53, the process moves to step S4 in FIG. 11.

圖21A及圖21B為圖20的處理之模型化說明圖。圖21的實線為第4描繪資料,虛線為第1描繪資料,×為圖11的步驟S9中被判定出的問題處。圖21A的問題處,為描繪圖樣的角部。圖21B的問題處,為描繪圖樣的端部。無論哪一情形,藉由再度重做圖11的步驟S4之修正處理,調整×附近的像素值,便能消弭問題。 21A and 21B are model explanatory diagrams of the processing of FIG. 20. The solid line in FIG. 21 is the fourth drawing data, the dashed line is the first drawing data, and × is the problem area determined in step S9 of FIG. 11. The problem in FIG. 21A is the corner of the drawing. The problem in FIG. 21B is the end of the drawing. In either case, by redoing the correction process in step S4 of FIG. 11 again and adjusting the pixel value around ×, the problem can be eliminated.

圖22為當發現了圖21A之問題時基於重做圖11的步驟S4的處理而生成之第3描繪資料,藉由圖20的處理而生成之第4描繪資料示意圖。將圖22的第4描繪資料和圖21A比較可知,描繪圖樣的角部之像素值受到 變更。如此一來,圖11的步驟S8及S9之外觀檢查中便會被判定為正常。 22 is a schematic diagram of the fourth drawing data generated by the processing of FIG. 20 based on the third drawing data generated by redoing the process of step S4 of FIG. 11 when the problem of FIG. 21A is found. Comparing the fourth drawing data of FIG. 22 with FIG. 21A, the pixel value of the corner of the drawing pattern is affected by change. As a result, the visual inspection of steps S8 and S9 in FIG. 11 will be determined to be normal.

圖20之處理,只要讀出於圖11的步驟S9中被判定有問題之處附近的第4描繪資料,並和相對應之第1描繪資料比較即可,因此不需進行描繪圖樣全體的第4描繪資料和第1描繪資料之比較,因此能夠高速地檢查問題處。 In the processing of FIG. 20, it is only necessary to read out the fourth drawing data near the point where the problem is determined in step S9 of FIG. 11 and compare it with the corresponding first drawing data, so there is no need to perform the first drawing of the entire drawing. 4. The comparison between the drawing data and the first drawing data enables the problem to be checked at high speed.

圖23為藉由第3手法進行圖11的步驟S5之情形之處理手續示意流程圖。首先,使用以圖11的步驟S4生成的第3描繪資料,進行將電子束的正向散射或背向散射納入考量之描繪模擬,取得蓄積劑量分布(蓄積劑量分布取得部,步驟S61)。所謂正向散射,係指電子束不僅目標照射位置,還照射至目標照射位置的周圍之散射現象。所謂背向散射,係指電子束的一部分貫通阻劑膜而在基底之基板反射,而照射至目標照射位置的周圍之散射現象。步驟S61中,藉由進行將正向散射或背向散射納入考量之描繪模擬,來取得照射至目標照射位置的周圍之電子束的劑量分布而作為蓄積劑量分布。 FIG. 23 is a schematic flowchart of the processing procedure in the case where step S5 of FIG. 11 is performed by the third method. First, using the third drawing data generated in step S4 of FIG. 11, a drawing simulation that takes the forward scattering or backscattering of the electron beam into consideration is performed, and the accumulated dose distribution is acquired (accumulated dose distribution acquisition section, step S61 ). The so-called forward scattering refers to the scattering phenomenon that the electron beam is irradiated not only on the target irradiation position but also around the target irradiation position. The so-called backscattering refers to a scattering phenomenon in which a part of the electron beam penetrates the resist film and is reflected on the base substrate, and is irradiated to the periphery of the target irradiation position. In step S61, by performing a drawing simulation that takes forward scattering or backscatter into consideration, the dose distribution of the electron beam irradiated to the target irradiation position is obtained as the accumulated dose distribution.

圖24A為第3描繪資料的一例示意圖,圖24B為使用圖24A的第3描繪資料進行描繪模擬而取得之蓄積劑量分布示意圖。蓄積劑量分布,其特性為愈遠離目標照射位置,則劑量愈減少。 FIG. 24A is a schematic diagram of an example of third drawing data, and FIG. 24B is a schematic diagram of an accumulated dose distribution obtained by performing a drawing simulation using the third drawing data of FIG. 24A. The characteristic of the accumulated dose distribution is that the farther away from the target irradiation position, the smaller the dose.

一旦以圖23的步驟S61取得蓄積劑量分布,接著,將蓄積劑量分布以任意閾值予以限制,而生成阻劑 圖樣像,並將此阻劑圖樣像變換成向量資料(蓄積劑量變換部,步驟S62)。接著,把將以步驟S62變換出的向量資料的頂點數予以減少而成之矩形資料保存於第1描繪資料記憶部而作為第4描繪資料(頂點數刪減部,步驟S63)。 Once the accumulated dose distribution is obtained in step S61 of FIG. 23, then, the accumulated dose distribution is limited to an arbitrary threshold to generate a resist Pattern image, and convert the resist pattern image into vector data (accumulated dose conversion unit, step S62). Next, the rectangular data obtained by reducing the number of vertices of the vector data converted in step S62 is stored in the first drawing data storage unit as the fourth drawing data (vertical number reduction unit, step S63).

圖25A及圖25B為圖23的步驟S62與S63的處理說明圖。圖24B所示之蓄積劑量分布當中,例如僅抽出具有閾值為5以上的劑量之像素,則會得到如圖25A般的向量資料。此向量資料的輪廓線,如圖25A所示般為曲線,具有多數個頂點資料。故,圖23的步驟S63中,將圖25A般具有曲線的輪廓線之向量資料,變換成圖25B般具有直線狀的輪廓線之矩形資料。如此一來,便得到由將頂點數減少而成之向量資料所構成之第4描繪資料。 25A and 25B are explanatory diagrams of the processes of steps S62 and S63 of FIG. 23. In the accumulated dose distribution shown in FIG. 24B, for example, only pixels with doses above a threshold of 5 are extracted, and vector data as shown in FIG. 25A is obtained. The outline of this vector data is a curve as shown in FIG. 25A, and it has many vertex data. Therefore, in step S63 of FIG. 23, the vector data having a contour line as shown in FIG. 25A is converted into rectangular data having a straight line contour as shown in FIG. 25B. In this way, the fourth drawing data composed of vector data obtained by reducing the number of vertices is obtained.

圖26為使用以圖23的第3手法生成的第4描繪資料來進行圖11的步驟S10的處理之情形之詳細處理手續示意流程圖。若圖11的步驟S9中判定描繪圖樣有問題,則將發現了問題之處附近的第4描繪資料,自第1描繪資料記憶部讀出(步驟S71)。 FIG. 26 is a schematic flowchart of a detailed processing procedure in a case where the processing of step S10 of FIG. 11 is performed using the fourth drawing data generated by the third method of FIG. 23. If it is determined in step S9 of FIG. 11 that there is a problem with the drawing pattern, the fourth drawing data near the point where the problem is found is read from the first drawing data storage unit (step S71).

接著,將步驟S71中讀出的第4描繪資料和第1描繪資料比較(比較部,步驟S72)。比較之結果,判定圖11的步驟S4之修正處理所做的修正是否過度(修正問題判斷部,步驟S73)。若判定修正過度,則導出藉由圖11的步驟S4從第2描繪資料變換成第3描繪資料時有問題之結論(步驟S74),進行圖11的步驟S11之錯 誤處理。若判定步驟S73中修正並未過度,則移往圖11的步驟S4。 Next, the fourth drawing data read in step S71 and the first drawing data are compared (comparator, step S72). As a result of the comparison, it is determined whether the correction made by the correction process of step S4 of FIG. 11 is excessive (correction problem determination unit, step S73). If it is determined that the correction is excessive, it is concluded that there is a problem when converting from the second drawing data to the third drawing data by step S4 of FIG. 11 (step S74), and the error of step S11 of FIG. 11 is performed Mishandling. If it is determined that the correction is not excessive in step S73, the process moves to step S4 in FIG. 11.

圖27為圖26的處理之模型化說明圖。圖27的實線為第4描繪資料,虛線為第1描繪資料,×為圖11的步驟S9中被判定出的問題處。第3手法中,是考量電子束的正向散射或背向散射來生成第4描繪資料,因此能夠提升第4描繪資料的精度,能夠高精度地檢查描繪圖樣的問題處。 FIG. 27 is a model explanatory diagram of the processing of FIG. 26. FIG. The solid line in FIG. 27 is the fourth drawing data, the dashed line is the first drawing data, and X is the problem area determined in step S9 of FIG. 11. In the third method, the forward drawing or backscattering of the electron beam is considered to generate the fourth drawing data. Therefore, the accuracy of the fourth drawing data can be improved, and the problem of drawing patterns can be checked with high accuracy.

第3描繪資料,一旦藉由圖11的步驟S7對描繪對象物將描繪圖樣予以描繪之處理結束後,便被刪除。惟,能夠使用被保存於第1描繪資料記憶部47之第4描繪資料,來對描繪對象物進行再描繪。再描繪,係當最初描繪的描繪對象物(例如光罩)於描繪後成為了不良之情形下、或當因顧客方的要求而委託製造複數個光罩之情形下會進行。需要再描繪之情形,例如為以下的1)、2)或3)這樣的情形。 The third drawing data is deleted once the process of drawing the drawing pattern on the drawing object in step S7 of FIG. 11 is completed. However, the fourth drawing data stored in the first drawing data storage unit 47 can be used to redraw the drawing object. Redrawing is performed when the object to be drawn initially (for example, a photomask) becomes defective after drawing, or when a plurality of photomasks are commissioned due to a customer's request. The situations that need to be redrawn are, for example, the following situations 1), 2) or 3).

1)當製造光罩作為描繪對象物13的情形下,會對光罩用底板(blanks)塗布電子線感光性阻劑,以電子線進行圖樣之描繪,其後藉由顯影與蝕刻將基板加工來製作光罩。製作出的光罩,藉由圖11的步驟S8,進行描繪圖樣之外觀檢查。若藉由外觀檢查得知描繪圖樣未能加工成期望的形狀,則會備妥新的光罩用底板,再度進行描繪。 1) When manufacturing a photomask as the object 13 to be drawn, an electron beam photosensitive resist is applied to the blanks for the photomask, and the pattern is drawn with the electron line, and then the substrate is processed by development and etching To make a photomask. The manufactured mask is subjected to visual inspection of the drawn pattern by step S8 in FIG. 11. If the visual inspection reveals that the drawing pattern cannot be processed into the desired shape, a new mask base plate will be prepared and drawn again.

2)對塗布於光罩用底板上的感光性阻劑以電 子線描繪圖樣後予以顯影,若顯影後的圖樣發現不良,則將阻劑剝離,於同一底板上再次塗布感光性阻劑,再度描繪。 2) The photosensitive resist coated on the bottom After drawing the pattern, the sub-line is developed. If the developed pattern is found to be defective, the resist is peeled off, the photosensitive resist is coated again on the same base plate, and drawn again.

3)製作出光罩並出貨後,當因顧客方的要求等而有必須再度製作具有相同描繪圖樣之光罩的情形下,會以同一描繪條件對新的光罩用底板塗布電子線感光性阻劑,再度進行描繪。 3) After a photomask is produced and shipped, when it is necessary to remake a photomask with the same drawing pattern due to the customer's request, etc., the new photomask base plate will be coated with electronic wire sensitivity under the same drawing conditions Resist, and draw again.

另,再描繪時,有依照和以前完全相同的描繪圖樣來進行描繪之情形、及依照對以前的描繪圖樣施加了更正或修正的描繪圖樣來進行描繪之情形。 In addition, when redrawing, there may be a case where drawing is performed according to the same drawing pattern as before, and a case where drawing is performed according to a drawing pattern to which correction or correction is applied to the previous drawing pattern.

圖28為控制系統35的再描繪處理之一例示意流程圖,圖29為進行圖28的處理之控制系統35的內部構成示意方塊圖。圖29為對圖10構成中追加了第3圖像變換部52而成者。第3圖像變換部52,將被保存於第1描繪資料記憶部47之第4描繪資料變換成逐線形式的第5描繪資料。控制部41,基於第5描繪資料,控制多射束生成系統3、孔徑構件10、投影系統4及偏向器9a等,對描繪對象物將描繪圖樣予以再描繪。 FIG. 28 is a schematic flowchart of an example of the redraw process of the control system 35, and FIG. 29 is a schematic block diagram of the internal configuration of the control system 35 that performs the process of FIG. 28. FIG. 29 is a structure obtained by adding the third image conversion unit 52 to the configuration of FIG. 10. The third image conversion unit 52 converts the fourth drawing data stored in the first drawing data storage unit 47 into fifth drawing data in a line-by-line format. The control unit 41 controls the multi-beam generating system 3, the aperture member 10, the projection system 4, the deflector 9a, and the like based on the fifth drawing data, and redraws the drawing pattern on the drawing object.

圖28中,首先,讀出並取得被保存於第1描繪資料記憶部47之第4描繪資料(步驟S81)。接著,藉由第3圖像變換部52,將第4描繪資料變換成逐線形式的第5描繪資料(步驟S82)。接著,使用第5描繪資料,藉由控制部41對描繪對象物將描繪圖樣予以描繪(步驟S83)。 In FIG. 28, first, the fourth drawing data stored in the first drawing data storage unit 47 is read out and acquired (step S81). Next, the third image conversion unit 52 converts the fourth drawing data into line-by-line fifth drawing data (step S82). Next, using the fifth drawing data, the control unit 41 draws a drawing pattern on the drawing object (step S83).

圖30為控制系統35的處理手續之第2例示意流程圖,圖31為依第2例之控制系統35的方塊圖。第2例,為當判定出描繪圖樣有問題,且第2描繪資料之修正處理有問題的情形下,不重做第2描繪資料之修正處理,而是重新生成第4描繪資料。如圖31所示,依第2例之控制系統35,除圖10之構成外,還具有第1再生成部53、及第2再生成部54。第1再生成部53,若藉由修正問題判斷部51判斷出圖像修正部44之修正處理有問題,則將被保存於第1描繪資料記憶部47之第4描繪資料予以再生成。第2再生成部54,基於再生成之第4描繪資料,將逐線形式的第3描繪資料予以再生成。 FIG. 30 is a schematic flowchart of a second example of the processing procedure of the control system 35, and FIG. 31 is a block diagram of the control system 35 according to the second example. In the second example, when it is determined that there is a problem with the drawing pattern and the correction process of the second drawing data is problematic, the fourth drawing data is regenerated instead of the correction process of the second drawing data. As shown in FIG. 31, the control system 35 according to the second example includes a first regeneration unit 53 and a second regeneration unit 54 in addition to the configuration of FIG. The first regeneration unit 53 regenerates the fourth drawing data stored in the first drawing data storage unit 47 if the correction problem determination unit 51 determines that there is a problem with the correction process of the image correction unit 44. The second regeneration unit 54 regenerates the third drawing data in a line-by-line format based on the regenerated fourth drawing data.

圖30之步驟S91~S101和圖11之步驟S1~S11共通。步驟S100中若判定修正處理有問題,則讀出被保存於第1描繪資料記憶部47之第4描繪資料,藉由第1再生成部53進行再生成(步驟S102)。接著,基於再生成之第4描繪資料,藉由第2再生成部54將逐線形式的第3描繪資料予以再生成(步驟S103)。再生成的第3描繪資料,會被使用於描繪步驟S97的描繪圖樣,並且被用於步驟S95中變換成第4描繪資料。 Steps S91 to S101 in FIG. 30 are common to steps S1 to S11 in FIG. 11. If it is determined in step S100 that there is a problem with the correction process, the fourth drawing data stored in the first drawing data storage unit 47 is read out and regenerated by the first regeneration unit 53 (step S102). Next, based on the regenerated fourth drawing data, the second drawing unit 54 regenerates the line-by-line third drawing data (step S103). The regenerated third drawing data is used in the drawing pattern in the drawing step S97, and is used in step S95 to convert to the fourth drawing data.

圖30的步驟S102及S103中的第4描繪資料及第3描繪資料之再生成處理,例如依以下方式進行。從第1描繪資料記憶部47讀出第4描繪資料,變換成逐線形式的第5描繪資料,對此第5描繪資料再度進行修正處理以便消弭圖11的步驟S10中發現之問題,而重新生成 第3描繪資料。此外,將重新生成的第3描繪資料,變換成向量資料而重新生成第4描繪資料並保存於第1描繪資料記憶部47。 The regeneration processing of the fourth drawing data and the third drawing data in steps S102 and S103 of FIG. 30 is performed as follows, for example. The fourth drawing data is read from the first drawing data storage unit 47 and converted into line-by-line fifth drawing data, and the fifth drawing data is corrected again to eliminate the problem found in step S10 of FIG. 11 and restart generate The third depicts the information. In addition, the regenerated third drawing data is converted into vector data, and the fourth drawing data is regenerated and stored in the first drawing data storage unit 47.

像這樣,本實施形態中,將應描繪於描繪對象物13之向量形式的第1描繪資料,變換成逐線形式的第2描繪資料後,基於第2描繪資料,辨明描繪圖樣40的應進行修正之場所,並以像素單位進行修正處理,生成逐線形式的第3描繪資料。第3描繪資料,因資料量大,難以直接傳送至設計中心等來進行驗證。鑑此,本實施形態,是將第3描繪資料變換成向量形式的第4描繪資料,於減少了資料量之狀態下,記憶於第1描繪資料記憶部47。故,視必要能夠容易地進行從第1描繪資料記憶部47讀出第4描繪資料而驗證,能夠簡易且迅速地判斷修正處理是否確切。 In this way, in the present embodiment, after converting the first drawing data in the vector format to be drawn on the drawing object 13 into the second drawing data in the line-by-line format, based on the second drawing data, it is recognized that the drawing pattern 40 should be performed The correction location is corrected in pixel units to generate the third drawing data in a line-by-line format. The third drawing data is difficult to send directly to the design center for verification because of the large amount of data. In view of this, in the present embodiment, the third drawing data is converted into the fourth drawing data in the form of a vector, and stored in the first drawing data storage unit 47 in a state where the amount of data is reduced. Therefore, if necessary, the fourth drawing data can be easily read out from the first drawing data storage unit 47 for verification, and it is possible to easily and quickly determine whether the correction process is correct.

本揭示之態樣,並非限定於上述各個實施形態,還包含所屬技術領域者可思及之種種變形,本揭示之效果並非限定於上述內容。也就是說,在不脫離申請專利範圍所規範之內容及由其均等物推導出之本揭示的概念性思想與要旨之範圍內可做種種追加、變更及部分刪除。 The aspect of the present disclosure is not limited to the above-mentioned embodiments, but also includes various modifications conceivable by those skilled in the art, and the effect of the present disclosure is not limited to the above content. In other words, various additions, changes, and partial deletions can be made within the scope of the conceptual ideas and gist of the disclosure that do not deviate from the content regulated by the scope of the patent application and the equivalents derived from them.

35‧‧‧控制系統 35‧‧‧Control system

41‧‧‧控制部 41‧‧‧Control Department

42‧‧‧取得部 42‧‧‧ Acquisition Department

43‧‧‧第1圖像變換部 43‧‧‧The first image conversion unit

44‧‧‧圖像修正部 44‧‧‧Image Correction Department

45‧‧‧第2圖像變換部 45‧‧‧The second image conversion unit

46‧‧‧第1記憶控制部 46‧‧‧ First Memory Control Department

47‧‧‧第1描繪資料記憶部 47‧‧‧The first drawing data memory department

48‧‧‧第2記憶控制部 48‧‧‧ 2nd Memory Control Department

49‧‧‧第2描繪資料記憶部 49‧‧‧ 2nd drawing data memory department

Claims (15)

一種帶電粒子束描繪裝置,具備:射束生成部,生成帶電粒子束;及孔徑部,具有複數個開口部,使前述帶電粒子束通過該些開口部,以生成含有複數道微小射束之多射束;及投影系統,將前述多射束縮小投影至描繪對象物;及遮沒部,介於前述孔徑部與前述投影系統之間,控制前述複數道微小射束朝向前述投影系統,或朝向和前述投影系統相異之方向;及控制部,控制前述射束生成部、前述投影系統及前述遮沒部;及取得部,取得用來對前述描繪對象物描繪之向量形式的第1描繪資料;及第1圖像變換部,將前述第1描繪資料變換成逐線(raster)形式的第2描繪資料;及圖像修正部,以像素單位修正前述第2描繪資料,生成逐線形式的第3描繪資料;及第2圖像變換部,將前述第3描繪資料變換成向量形式的第4描繪資料;及第1記憶控制部,進行將前述第4描繪資料保存於第1描繪資料記憶部之控制;及檢查部,於對前述描繪對象物之描繪後,藉由Die to Die檢查或Die to Database檢查來進行前述描繪對象物的描繪圖樣之外觀檢查,判斷是否有外觀上的問題;及 第1記憶控制部,若藉由前述檢查部判斷出有問題,則將有問題之處周邊的前述第4描繪資料從前述第1描繪資料記憶部讀出;及比較手段,將藉由前述第1記憶控制部讀出的前述第4描繪資料和前述第1描繪資料比較;及修正問題判斷部,基於前述比較手段所做的比較結果,當在前述第4描繪資料和前述第1描繪資料發生了規定尺寸以上的資料不一致的情形下,判斷前述第1圖像變換部將前述第1描繪資料變換成前述第2描繪資料之處理有問題;前述控制部,基於前述第3描繪資料,控制前述射束生成部、前述投影系統及前述遮沒部,對前述描繪對象物將描繪圖樣予以描繪,前述第2圖像變換部,具有:二元化(binarization)部,生成將前述第3描繪資料予以二元化而成之二元資料;及輪廓抽出部,抽出前述二元資料的輪廓,生成前述第4描繪資料。 A charged particle beam drawing device, comprising: a beam generating part which generates a charged particle beam; and an aperture part having a plurality of openings through which the charged particle beam passes through the openings to generate as many micro beams as possible A beam; and a projection system that reduces the projection of the multi-beam to the object to be drawn; and an obscuration section between the aperture section and the projection system to control the plurality of tiny beams toward the projection system, or toward A direction different from the projection system; and a control unit that controls the beam generation unit, the projection system, and the occlusion unit; and an acquisition unit, which acquires the first drawing data in the form of a vector for drawing the drawing object ; And the first image conversion unit, which converts the first drawing data into second drawing data in a line-by-line (raster) form; and the image correction unit, corrects the second drawing data in pixel units to generate a line-by-line format The third drawing data; and the second image conversion unit, which converts the third drawing data into a vector form of fourth drawing data; and the first memory control unit, which stores the fourth drawing data in the first drawing data memory The control of the department; and the inspection department, after drawing the aforementioned drawing object, perform a visual inspection of the drawing pattern of the drawing object by Die to Die inspection or Die to Database inspection to determine whether there is a problem in appearance; and The first memory control unit, if it is judged by the inspection unit that there is a problem, reads the fourth drawing data around the problem from the first drawing data memory unit; and the comparison means will use the first 1 The fourth drawing data read by the memory control unit is compared with the first drawing data; and the correction problem determination unit, based on the comparison result by the comparison means, occurs when the fourth drawing data and the first drawing data occur If the data above the specified size is not consistent, it is judged that there is a problem with the processing of the first image conversion unit converting the first drawing data into the second drawing data; the control unit controls the foregoing based on the third drawing data The beam generating unit, the projection system, and the masking unit draw the drawing pattern of the drawing object, and the second image conversion unit includes a binarization unit that generates the third drawing data Binary data obtained by binarization; and an outline extraction unit, which extracts the outline of the aforementioned binary data to generate the aforementioned fourth drawing data. 一種帶電粒子束描繪裝置,具備:射束生成部,生成帶電粒子束;及孔徑部,具有複數個開口部,使前述帶電粒子束通過該些開口部,以生成含有複數道微小射束之多射束;及投影系統,將前述多射束縮小投影至描繪對象物;及遮沒部,介於前述孔徑部與前述投影系統之間,控制 前述複數道微小射束朝向前述投影系統,或朝向和前述投影系統相異之方向;及控制部,控制前述射束生成部、前述投影系統及前述遮沒部;及取得部,取得用來對前述描繪對象物描繪之向量形式的第1描繪資料;及第1圖像變換部,將前述第1描繪資料變換成逐線(raster)形式的第2描繪資料;及圖像修正部,以像素單位修正前述第2描繪資料,生成逐線形式的第3描繪資料;及第2圖像變換部,將前述第3描繪資料變換成向量形式的第4描繪資料;及第1記憶控制部,進行將前述第4描繪資料保存於第1描繪資料記憶部之控制;前述控制部,基於前述第3描繪資料,控制前述射束生成部、前述投影系統及前述遮沒部,對前述描繪對象物將描繪圖樣予以描繪,前述第3描繪資料,包含針對複數個像素各者之像素值,前述第2圖像變換部,具有:區域分割部,進行區域分割,該區域分割係將前述第3描繪資料內的具有同一像素值的鄰接之像素範圍統整成一個分割區域;及向量變換部,生成將前述被區域分割而成的分割區域 予以向量化而成之前述第4描繪資料。 A charged particle beam drawing device, comprising: a beam generating part which generates a charged particle beam; and an aperture part having a plurality of openings through which the charged particle beam passes through the openings to generate as many micro beams as possible A beam; and a projection system that reduces the projection of the multi-beam to the object to be drawn; and a masking portion between the aperture portion and the projection system to control The plurality of microscopic beams are directed to the projection system or to a direction different from the projection system; and the control unit controls the beam generation unit, the projection system and the occlusion unit; and the acquisition unit acquires The first drawing data in the form of a vector drawn by the drawing object; and the first image conversion unit, which converts the first drawing data into second drawing data in a raster format; and the image correction unit, in pixels The unit corrects the second drawing data to generate the third drawing data in a line-by-line format; and the second image conversion unit converts the third drawing data into the fourth drawing data in the vector format; and the first memory control unit performs The control of storing the fourth drawing data in the first drawing data storage unit; the control unit, based on the third drawing data, controls the beam generating unit, the projection system, and the masking unit to control the drawing object The drawing image is drawn. The third drawing data includes pixel values for each of the plurality of pixels. The second image conversion unit includes an area dividing unit that performs area division. The area division is based on the third drawing data. The adjacent pixel ranges with the same pixel value within the are integrated into one divided area; and the vector transformation unit generates the divided area divided by the aforementioned area The fourth drawing data obtained by vectorization. 一種帶電粒子束描繪裝置,具備:射束生成部,生成帶電粒子束;及孔徑部,具有複數個開口部,使前述帶電粒子束通過該些開口部,以生成含有複數道微小射束之多射束;及投影系統,將前述多射束縮小投影至描繪對象物;及遮沒部,介於前述孔徑部與前述投影系統之間,控制前述複數道微小射束朝向前述投影系統,或朝向和前述投影系統相異之方向;及控制部,控制前述射束生成部、前述投影系統及前述遮沒部;及取得部,取得用來對前述描繪對象物描繪之向量形式的第1描繪資料;及第1圖像變換部,將前述第1描繪資料變換成逐線(raster)形式的第2描繪資料;及圖像修正部,以像素單位修正前述第2描繪資料,生成逐線形式的第3描繪資料;及第2圖像變換部,將前述第3描繪資料變換成向量形式的第4描繪資料;及第1記憶控制部,進行將前述第4描繪資料保存於第1描繪資料記憶部之控制;前述控制部,基於前述第3描繪資料,控制前述射束生成部、前述投影系統及前述遮沒部,對前述描繪對象物將描繪圖樣予以描繪, 前述第3描繪資料,包含針對複數個像素各者之像素值,前述第2圖像變換部,具有:蓄積劑量分布取得部,基於前述第3描繪資料,進行將前述帶電粒子束的正向散射及背向散射納入考量之描繪模擬,取得蓄積劑量分布;及蓄積劑量變換部,將前述蓄積劑量分布變換成向量資料;及頂點數刪減部,將藉由前述蓄積劑量變換部變換而成之向量資料的頂點數予以刪減,而生成前述第4描繪資料。 A charged particle beam drawing device, comprising: a beam generating part which generates a charged particle beam; and an aperture part having a plurality of openings through which the charged particle beam passes through the openings to generate as many micro beams as possible A beam; and a projection system that reduces the projection of the multi-beam to the object to be drawn; and an obscuration section between the aperture section and the projection system to control the plurality of tiny beams toward the projection system, or toward A direction different from the projection system; and a control unit that controls the beam generation unit, the projection system, and the occlusion unit; and an acquisition unit, which acquires the first drawing data in the form of a vector for drawing the drawing object ; And the first image conversion unit, which converts the first drawing data into second drawing data in a line-by-line (raster) form; and the image correction unit, corrects the second drawing data in pixel units to generate a line-by-line format The third drawing data; and the second image conversion unit, which converts the third drawing data into a vector form of fourth drawing data; and the first memory control unit, which stores the fourth drawing data in the first drawing data memory Control of the part; the control part controls the beam generating part, the projection system and the masking part based on the third drawing data, and draws the drawing pattern on the drawing object, The third drawing data includes pixel values for each of the plurality of pixels, and the second image conversion unit includes an accumulated dose distribution obtaining unit that forward scatters the charged particle beam based on the third drawing data And backscattering into consideration in the simulation of drawing to obtain the accumulated dose distribution; and the accumulated dose conversion unit, which converts the aforementioned accumulated dose distribution into vector data; and the vertex number reduction unit, which will be transformed by the aforementioned accumulated dose conversion unit The number of vertices of the vector data is reduced, and the fourth drawing data described above is generated. 如申請專利範圍第2項或第3項所述之帶電粒子束描繪裝置,其中,具備:檢查部,於對前述描繪對象物之描繪後,藉由Die to Die檢查或Die to Database檢查來進行前述描繪對象物的描繪圖樣之外觀檢查,判斷是否有外觀上的問題;及第1記憶控制部,若藉由前述檢查部判斷出有問題,則將有問題之處周邊的前述第4描繪資料從前述第1描繪資料記憶部讀出;及比較手段,將藉由前述第1記憶控制部讀出的前述第4描繪資料和前述第1描繪資料比較;及修正問題判斷部,基於前述比較手段所做的比較結果,判斷修正前述第2描繪資料而生成前述第3描繪資料之前述圖像修正部所進行之處理是否修正過度。 The charged particle beam drawing device as described in item 2 or item 3 of the patent application scope, comprising: an inspection part, which is performed by Die to Die inspection or Die to Database inspection after drawing the aforementioned drawing object Visual inspection of the drawing of the drawing object to determine whether there is a problem with the appearance; and the first memory control unit, if the problem is determined by the inspection unit, the fourth drawing data around the problem Read from the first drawing data memory section; and comparing means, comparing the fourth drawing data read out by the first memory control section with the first drawing data; and the correction problem judgment section, based on the comparing means As a result of the comparison, it is determined whether the processing performed by the image correction unit that generates the third drawing data by correcting the second drawing data is excessively corrected. 如申請專利範圍第1項至第3項中任一項所述之帶電粒子束描繪裝置,其中,具備:第3圖像變換部,將被保存於前述第1描繪資料記憶部之前述第4描繪資料變換成逐線形式的第5描繪資料,前述控制部,基於前述第5描繪資料,控制前述射束生成部、前述投影系統及前述遮沒部,對前述描繪對象物將描繪圖樣予以再描繪。 The charged particle beam drawing device according to any one of claims 1 to 3, further comprising: a third image conversion unit to be stored in the fourth of the first drawing data storage unit The drawing data is converted into line-by-line fifth drawing data, and the control unit controls the beam generating unit, the projection system, and the masking unit based on the fifth drawing data, and redraws the drawing pattern for the drawing object Portray. 如申請專利範圍第1項至第3項中任一項所述之帶電粒子束描繪裝置,其中,前述圖像修正部,修正前述第2描繪資料中包含之描繪圖樣的角部的像素的像素值而生成前述第3描繪資料。 The charged particle beam drawing device according to any one of claims 1 to 3, wherein the image correction unit corrects the pixels of the pixels in the corners of the drawing pattern included in the second drawing data Value to generate the third drawing data. 如申請專利範圍第6項所述之帶電粒子束描繪裝置,其中,重疊於前述描繪圖樣之像素,相較於未重疊於前述描繪圖樣之像素,像素值被設定得較大,前述圖像修正部,將前述第2描繪資料中包含之描繪圖樣的角部的像素的像素值修正成比目前的像素值更大的值,而生成前述第3描繪資料。 The charged particle beam drawing device as described in item 6 of the patent application scope, wherein the pixels superimposed on the drawing pattern are set to have a larger pixel value than the pixels not superimposed on the drawing pattern, and the aforementioned image correction The unit corrects the pixel value of the pixel at the corner of the drawing pattern included in the second drawing data to a value larger than the current pixel value, and generates the third drawing data. 如申請專利範圍第1項至第3項中任一項所述之帶電粒子束描繪裝置,其中,前述圖像修正部,修正前述第2描繪資料中包含之描繪圖樣的交界線所位處的複數個像素的像素值而生成前述第3描繪資料。 The charged particle beam drawing device according to any one of claims 1 to 3, wherein the image correction section corrects the position of the boundary line of the drawing pattern included in the second drawing data The pixel value of a plurality of pixels generates the third drawing data. 如申請專利範圍第1項至第3項中任一項所述之帶 電粒子束描繪裝置,其中,具備:第2記憶控制部,進行將前述第1描繪資料保存於第2描繪資料記憶部之控制。 As described in any one of the first to third patent application scope The electric particle beam drawing device includes a second memory control unit that controls to store the first drawing data in the second drawing data storage unit. 一種帶電粒子束描繪系統,具備:射束生成部,生成帶電粒子束;及孔徑部,具有複數個開口部,使前述帶電粒子束通過該些開口部,以生成含有複數道微小射束之多射束;及投影系統,將前述多射束縮小投影至描繪對象物;及遮沒部,介於前述孔徑部與前述投影系統之間,控制前述複數道微小射束朝向前述投影系統,或朝向和前述投影系統相異之方向;及控制部,控制前述射束生成部、前述投影系統及前述遮沒部;及取得部,取得用來對前述描繪對象物描繪之向量形式的第1描繪資料;及第1圖像變換部,將前述第1描繪資料變換成逐線(raster)形式的第2描繪資料;及圖像修正部,以像素單位修正前述第2描繪資料,生成逐線形式的第3描繪資料;及第2圖像變換部,將前述第3描繪資料變換成向量形式的第4描繪資料;及第1描繪資料記憶部,保存前述第4描繪資料;及檢查部,於對前述描繪對象物之描繪後,藉由Die to Die檢查或Die to Database檢查來進行前述描繪對象物的描繪圖樣之外觀檢查,判斷是否有外觀上的問題;及 修正問題判斷部,若藉由前述檢查部判斷出有問題,則判斷前述圖像修正部中的修正處理是否修正過度。 A charged particle beam drawing system, comprising: a beam generating part to generate a charged particle beam; and an aperture part having a plurality of openings to pass the charged particle beams through the openings to generate as many micro beams as possible A beam; and a projection system that reduces the projection of the multi-beam to the object to be drawn; and an obscuration section between the aperture section and the projection system to control the plurality of tiny beams toward the projection system, or toward A direction different from the projection system; and a control unit that controls the beam generation unit, the projection system, and the occlusion unit; and an acquisition unit, which acquires the first drawing data in the form of a vector for drawing the drawing object ; And the first image conversion unit, which converts the first drawing data into second drawing data in a line-by-line (raster) form; and the image correction unit, corrects the second drawing data in pixel units to generate a line-by-line format The third drawing data; and the second image conversion unit, which converts the third drawing data into a vector form of fourth drawing data; and the first drawing data storage unit, which stores the fourth drawing data; and the inspection unit, on the After the drawing of the drawing object, the Die to Die check or Die to Database check is used to conduct a visual inspection of the drawing pattern of the drawing object to determine whether there is a problem with the appearance; and The correction problem determination unit determines whether the correction process in the image correction unit has been excessively corrected if the problem is determined by the inspection unit. 一種帶電粒子束描繪系統,具備:射束生成部,生成帶電粒子束;及孔徑部,具有複數個開口部,使前述帶電粒子束通過該些開口部,以生成含有複數道微小射束之多射束;及投影系統,將前述多射束縮小投影至描繪對象物;及遮沒部,介於前述孔徑部與前述投影系統之間,控制前述複數道微小射束朝向前述投影系統,或朝向和前述投影系統相異之方向;及控制部,控制前述射束生成部、前述投影系統及前述遮沒部;及取得部,取得用來對前述描繪對象物描繪之向量形式的第1描繪資料;及第1圖像變換部,將前述第1描繪資料變換成逐線(raster)形式的第2描繪資料;及圖像修正部,對前述第2描繪資料以像素單位進行修正處理,生成逐線形式的第3描繪資料;及第2圖像變換部,將前述第3描繪資料變換成向量形式的第4描繪資料;及第1描繪資料記憶部,保存前述第4描繪資料;及控制部,基於前述第3描繪資料,控制前述射束生成部、前述投影系統及前述遮沒部,對前述描繪對象物將描繪圖樣予以描繪;及 檢查部,於對前述描繪對象物之描繪後,藉由Die to Die檢查或Die to Database檢查來進行前述描繪對象物的描繪圖樣之外觀檢查,判斷是否有外觀上的問題;及第1再生成部,若藉由前述檢查部判斷出有問題,則將前述第4描繪資料予以再生成;及第2再生成部,使用前述再生成之第4描繪資料,將逐線形式的前述第3描繪資料予以再生成;前述控制部,基於前述再生成之前述第3描繪資料,控制前述射束生成部、前述投影系統及前述遮沒部,對前述描繪對象物將描繪圖樣予以再描繪,前述第2圖像變換部,將前述再生成之第3描繪資料再變換成前述第4描繪資料,前述第1描繪資料記憶部,保存前述再變換而成之第4描繪資料。 A charged particle beam drawing system, comprising: a beam generating part to generate a charged particle beam; and an aperture part having a plurality of openings to pass the charged particle beams through the openings to generate as many micro beams as possible A beam; and a projection system that reduces the projection of the multi-beam to the object to be drawn; and an obscuration section between the aperture section and the projection system to control the plurality of tiny beams toward the projection system, or toward A direction different from the projection system; and a control unit that controls the beam generation unit, the projection system, and the occlusion unit; and an acquisition unit, which acquires the first drawing data in the form of a vector for drawing the drawing object ; And the first image conversion unit, which converts the first drawing data into second drawing data in a line-by-line (raster) form; and the image correction unit, which performs correction processing on the second drawing data in pixel units to generate a The third drawing data in line form; and the second image conversion unit, which converts the third drawing data into fourth drawing data in vector form; and the first drawing data storage unit, which stores the fourth drawing data; and the control unit , Based on the third drawing data, controlling the beam generating section, the projection system, and the masking section, and drawing the drawing pattern on the drawing object; and The inspection section, after drawing the drawing object, performs a visual inspection of the drawing pattern of the drawing object by Die to Die inspection or Die to Database inspection to determine whether there is a problem with the appearance; and the first regeneration Department, if the inspection unit determines that there is a problem, the fourth drawing data is regenerated; and the second regenerating unit uses the regenerated fourth drawing data to draw the third drawing line by line The data is regenerated; the control unit controls the beam generating unit, the projection system, and the masking unit based on the regenerated third drawing data, and redraws the drawing pattern of the drawing object, the first 2 The image conversion unit converts the reconstructed third rendering data into the fourth rendering data, and the first rendering data storage unit stores the reconstructed fourth rendering data. 一種描繪資料生成方法,係使用基於帶電粒子束而生成的含有複數道微小射束之多射束,來進行描繪對象物的描繪之帶電粒子束描繪裝置中所使用之描繪資料的生成方法,具備:取得用來對前述描繪對象物描繪之向量形式的第1描繪資料之步驟;及將前述第1描繪資料變換成逐線形式的第2描繪資料之步驟;及以像素單位修正前述第2描繪資料,生成逐線形式的第3描繪資料之步驟;及 將前述第3描繪資料變換成向量形式的第4描繪資料之步驟;及將前述第4描繪資料保存於第1描繪資料記憶部之步驟;於對前述描繪對象物之描繪後,藉由Die to Die檢查或Die to Database檢查來進行前述描繪對象物的描繪圖樣之外觀檢查,判斷是否有外觀上的問題,若判斷出有前述問題,則將有問題之處周邊的前述第4描繪資料從前述第1描繪資料記憶部讀出,將前述讀出的前述第4描繪資料和前述第1描繪資料比較,基於前述比較之結果,當在前述第4描繪資料和前述第1描繪資料發生了規定尺寸以上的資料不一致的情形下,判斷將前述第1描繪資料變換成前述第2描繪資料之處理有問題,前述變換成第4描繪資料之步驟,係將前述第3描繪資料予以二元化而生成二元化資料,抽出前述二元資料的輪廓,生成前述第4描繪資料。 A method for generating drawing data, which is a method for generating drawing data used in a charged particle beam drawing device for drawing a drawing object using multiple beams including a plurality of minute beams generated based on a charged particle beam, and includes : The step of obtaining the first drawing data in the form of a vector for drawing the object to be drawn; and the step of converting the first drawing data into the second drawing data in a line-by-line format; and correcting the second drawing in pixel units Data, the step of generating line-by-line third drawing data; and The step of transforming the aforementioned third drawing data into the fourth drawing data in the form of a vector; and the step of storing the aforementioned fourth drawing data in the first drawing data storage unit; after drawing the aforementioned drawing object, by Die to Die inspection or Die to Database inspection to perform the visual inspection of the drawing of the drawing object to determine whether there is a problem with the appearance. If the problem is determined, the fourth drawing data around the problem is taken from the above The first drawing data storage unit reads and compares the read fourth drawing data with the first drawing data, and based on the result of the comparison, when a predetermined size occurs between the fourth drawing data and the first drawing data When the above data is inconsistent, it is judged that there is a problem with the process of converting the first drawing data into the second drawing data. The step of converting the fourth drawing data into the fourth drawing data is generated by binarizing the third drawing data. Binary data, extract the outline of the aforementioned binary data, and generate the aforementioned fourth drawing data. 如申請專利範圍第12項所述之描繪資料生成方法,其中,前述第3描繪資料,包含針對複數個像素各者之像素值,前述變換成第4圖像之步驟,係進行區域分割,該區域分割係將前述第3描繪資料內 的具有同一像素值的鄰接之像素範圍統整成一個分割區域,生成將前述被區域分割而成的分割區域予以向量化而成之前述第4描繪資料。 The method for generating drawing data as described in item 12 of the patent application scope, wherein the third drawing data includes pixel values for each of a plurality of pixels, and the step of converting the fourth image into the fourth image is to perform region division. The area segmentation system incorporates the aforementioned third drawing data The adjacent pixel ranges having the same pixel value are integrated into one divided area, and the fourth drawing data obtained by vectorizing the divided areas divided by the area is generated. 如申請專利範圍第12項所述之描繪資料生成方法,其中,前述第3描繪資料,包含針對複數個像素各者之像素值,基於前述第3描繪資料,進行將前述帶電粒子束的正向散射及背向散射納入考量之描繪模擬,取得蓄積劑量分布,將前述蓄積劑量分布變換成向量資料,將前述變換而成之向量資料的頂點數予以刪減,而生成前述第4描繪資料。 The drawing data generation method as described in item 12 of the patent application scope, wherein the third drawing data includes pixel values for each of a plurality of pixels, and the forward direction of the charged particle beam is performed based on the third drawing data Scattering and backscattering are considered in the simulation of drawing, the accumulated dose distribution is obtained, the accumulated dose distribution is converted into vector data, and the number of vertices of the converted vector data is truncated to generate the fourth drawing data. 如申請專利範圍第13項或第14項所述之描繪資料生成方法,其中,於對前述描繪對象物之描繪後,藉由Die to Die檢查或Die to Database檢查來進行前述描繪對象物的描繪圖樣之外觀檢查,判斷是否有外觀上的問題,若判斷出有前述問題,則將有問題之處周邊的前述第4描繪資料從前述第1描繪資料記憶部讀出,將前述讀出的前述第4描繪資料和前述第1描繪資料比較,基於前述比較之結果,判斷修正前述第2描繪資料而 生成前述第3描繪資料之處理是否修正過度。 The drawing data generation method as described in item 13 or item 14 of the patent application scope, wherein after drawing the drawing object, drawing the drawing object is performed by Die to Die inspection or Die to Database inspection Check the appearance of the drawing to determine whether there is a problem with the appearance. If the problem is determined, read the fourth drawing data around the problem from the first drawing data storage section, and read the previously read The fourth drawing data is compared with the first drawing data, and based on the result of the comparison, the second drawing data is judged and corrected. Whether the process of generating the aforementioned third drawing data is excessively corrected.
TW106103504A 2016-01-28 2017-02-02 Charged particle beam drawing device, charged particle beam drawing system, and drawing data generation method TWI696897B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-014509 2016-01-28
JP2016014509 2016-01-28

Publications (2)

Publication Number Publication Date
TW201743140A TW201743140A (en) 2017-12-16
TWI696897B true TWI696897B (en) 2020-06-21

Family

ID=59566388

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106103504A TWI696897B (en) 2016-01-28 2017-02-02 Charged particle beam drawing device, charged particle beam drawing system, and drawing data generation method

Country Status (2)

Country Link
JP (1) JP6788839B2 (en)
TW (1) TWI696897B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7073668B2 (en) * 2017-10-25 2022-05-24 株式会社ニューフレアテクノロジー Multi-charged particle beam lithography
JP7126367B2 (en) * 2018-03-29 2022-08-26 株式会社ニューフレアテクノロジー Charged particle beam writing apparatus and charged particle beam writing method
JP7159970B2 (en) * 2019-05-08 2022-10-25 株式会社ニューフレアテクノロジー Charged particle beam writing method and charged particle beam writing apparatus
JP7234052B2 (en) 2019-06-28 2023-03-07 株式会社ニューフレアテクノロジー Multi-electron beam image acquisition device and multi-electron beam image acquisition method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274290B1 (en) * 1997-01-28 2001-08-14 Etec Systems, Inc. Raster scan gaussian beam writing strategy and method for pattern generation
JP2006251160A (en) * 2005-03-09 2006-09-21 Fuji Photo Film Co Ltd Drawing method and apparatus
CN101109910A (en) * 2006-07-18 2008-01-23 Asml荷兰有限公司 Inspection method and apparatus, lithographic apparatus, lithographic process line and device manufacturing method
JP2008242885A (en) * 2007-03-28 2008-10-09 Fujifilm Corp Drawing data inspection method and drawing data inspection device
TW201009514A (en) * 2008-06-11 2010-03-01 Asml Netherlands Bv Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
US20140065548A1 (en) * 2012-08-29 2014-03-06 Canon Kabushiki Kaisha Lithography apparatus and article manufacturing method using same
TW201527903A (en) * 2013-12-20 2015-07-16 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2015124613A1 (en) * 2014-02-21 2015-08-27 Mapper Lithography Ip B.V. Enhanced stitching by overlap dose and feature reduction
JP2015162504A (en) * 2014-02-26 2015-09-07 大日本印刷株式会社 Patterning method employing multibeam electron beam lithography device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274290B1 (en) * 1997-01-28 2001-08-14 Etec Systems, Inc. Raster scan gaussian beam writing strategy and method for pattern generation
JP2006251160A (en) * 2005-03-09 2006-09-21 Fuji Photo Film Co Ltd Drawing method and apparatus
CN101109910A (en) * 2006-07-18 2008-01-23 Asml荷兰有限公司 Inspection method and apparatus, lithographic apparatus, lithographic process line and device manufacturing method
JP2008242885A (en) * 2007-03-28 2008-10-09 Fujifilm Corp Drawing data inspection method and drawing data inspection device
TW201009514A (en) * 2008-06-11 2010-03-01 Asml Netherlands Bv Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
US20140065548A1 (en) * 2012-08-29 2014-03-06 Canon Kabushiki Kaisha Lithography apparatus and article manufacturing method using same
TW201527903A (en) * 2013-12-20 2015-07-16 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2015124613A1 (en) * 2014-02-21 2015-08-27 Mapper Lithography Ip B.V. Enhanced stitching by overlap dose and feature reduction
JP2015162504A (en) * 2014-02-26 2015-09-07 大日本印刷株式会社 Patterning method employing multibeam electron beam lithography device

Also Published As

Publication number Publication date
JP2017139458A (en) 2017-08-10
JP6788839B2 (en) 2020-11-25
TW201743140A (en) 2017-12-16

Similar Documents

Publication Publication Date Title
KR102357185B1 (en) Customizing a particle-beam writer using a convolution kernel
TWI696897B (en) Charged particle beam drawing device, charged particle beam drawing system, and drawing data generation method
TWI612553B (en) Multi-charged particle beam drawing device and multi-charged particle beam depicting method
US9671686B2 (en) Exposure methods using e-beams and methods of manufacturing masks and semiconductor devices therefrom
JP5063035B2 (en) Charged particle beam drawing method and charged particle beam drawing apparatus
KR102380475B1 (en) Correction of short-range dislocations in a multi-beam writer
US10762383B2 (en) Pattern inspection apparatus and pattern inspection method
KR101476389B1 (en) Electron beam writing apparatus and electron beam writing method
KR101782337B1 (en) Charged particle beam writing apparatus and charged particle beam writing method
US11774860B2 (en) Writing data generating method, multi charged particle beam writing apparatus, pattern inspecting apparatus, and computer-readable recording medium
JP7126367B2 (en) Charged particle beam writing apparatus and charged particle beam writing method
TW201539117A (en) Method and system for forming a pattern on a surface using multi-beam charged particle beam lithography
KR101782335B1 (en) Drawing data generation method, multi charged particle beam drawing device and pattern inspection device
US11789372B2 (en) Writing data generating method and multi charged particle beam writing apparatus
CN110737178B (en) Drawing data generating method, computer-readable recording medium, and multi-charged particle beam drawing device
JP3930411B2 (en) Charged beam drawing apparatus and drawing method
WO2017131119A1 (en) Charged particle beam rendering device, charged particle beam rendering system, and rendering data generating method
KR101753196B1 (en) Drawing data examination method and multi electric charge beam drawing device
JP2012243939A (en) Charged particle beam lithography apparatus and charged particle beam lithography method
JP7326480B2 (en) PATTERN INSPECTION APPARATUS AND PATTERN INSPECTION METHOD
JP7344706B2 (en) Electron beam inspection equipment
TW202335020A (en) Aligning a distorted image
KR20180136409A (en) Data processing method, charged-particle beam writing apparatus and charged-particle beam writing system