TWI696264B - Memory device and method for fabricating the same - Google Patents

Memory device and method for fabricating the same Download PDF

Info

Publication number
TWI696264B
TWI696264B TW108129510A TW108129510A TWI696264B TW I696264 B TWI696264 B TW I696264B TW 108129510 A TW108129510 A TW 108129510A TW 108129510 A TW108129510 A TW 108129510A TW I696264 B TWI696264 B TW I696264B
Authority
TW
Taiwan
Prior art keywords
channel opening
layer
channel
memory
conductive
Prior art date
Application number
TW108129510A
Other languages
Chinese (zh)
Other versions
TW202109832A (en
Inventor
呂君章
蔡文哲
吳冠緯
張耀文
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW108129510A priority Critical patent/TWI696264B/en
Application granted granted Critical
Publication of TWI696264B publication Critical patent/TWI696264B/en
Publication of TW202109832A publication Critical patent/TW202109832A/en

Links

Images

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

A 3D memory device includes a conductive strip stack structure having conductive strips and insulating layers stacked in a staggered manner and a channel opening passing through the conductive strips and the insulating layer; a memory layer disposed in the channel opening and overlying the conductive strips; a channel layer overlying the memory layer; a doped semiconductor pad extending upwards from a bottom of the channel opening beyond an upper surface of a bottom conductive strip, in contact with the channel layer, and electrically isolated from the conductive strips; wherein the channel layer includes a first portion having a first doping concentration and a second portion having a second doping concentration disposed on the first portion.

Description

記憶體元件及其製作方法Memory element and its manufacturing method

本揭露書是有關於一種記憶體元件及其製作方法。特別是有關於一種包括有多重記憶胞階層(multiple planes of memory cells)的立體記憶體元件。This disclosure is about a memory element and its manufacturing method. In particular, it relates to a three-dimensional memory device including multiple planes of memory cells.

隨著積體電路元件的臨界尺寸縮小到一般記憶胞技術領域(common memory cell technologies)的極限,工程設計師正持續尋找將多記憶體胞階層加以堆疊的技術,以達成更大儲存容量、更少每位元成本。使用矽-氧化矽-氮化矽-氧化矽- 矽(silicon-oxide-nitride-oxide-silicon,SONOS)結構的電荷捕捉記憶體技術,已被應用來建構具有垂直通道結構的記憶體元件,例如立體NAND快閃記憶體。其中,垂直通道結構包括穿過導電條帶堆疊結構的ONO電荷捕捉層,以及覆蓋於ONO電荷捕捉層的通道層。而記憶單胞(memory cells)位於並於每一個導電條帶與垂直通道結構的交叉介面上,並藉由通道層串接成一個記憶胞串列。As the critical dimensions of integrated circuit components shrink to the limit of common memory cell technologies, engineering designers are continuously looking for techniques to stack multiple memory cell hierarchies to achieve greater storage capacity and more Less cost per bit. Charge-trapping memory technology using silicon-oxide-nitride-oxide-silicon (SONOS) structure has been applied to construct memory devices with vertical channel structures, such as Three-dimensional NAND flash memory. The vertical channel structure includes an ONO charge trapping layer passing through the conductive strip stack structure, and a channel layer covering the ONO charge trapping layer. The memory cells (memory cells) are located on the intersection of each conductive strip and the vertical channel structure, and are connected in series by the channel layer to form a series of memory cells.

典型的垂直通道結構其通道層一般由沉積的半導體材料,例如磊晶多晶矽,所構成;容易生成晶粒邊界(Grain Boundaries,GBs)。而受到通道層中晶粒邊界的影響,記憶胞串列中的串列選擇開關、接地選擇開關和各個記憶胞的臨界電壓可會發生變異。尤其,當晶粒邊界生成於接地選擇開關和記憶胞串列之間的通道層的非閘極控制區(non-gate-control region)時,會使大幅降低通道的電流,並提高記憶胞的臨界電壓,嚴重影響記憶胞的操作(例如寫入、抹除獲驗證操作)的穩定性。In a typical vertical channel structure, the channel layer is generally composed of deposited semiconductor materials, such as epitaxial polysilicon; it is easy to generate grain boundaries (Grain Boundaries, GBs). Due to the influence of the grain boundary in the channel layer, the threshold voltages of the series selection switch, the ground selection switch and each memory cell in the memory cell series may vary. In particular, when the grain boundary is generated in the non-gate-control region of the channel layer between the ground selection switch and the memory cell string, it will greatly reduce the channel current and improve the memory cell The critical voltage seriously affects the stability of memory cell operations (such as write and erase verification operations).

因此,有需要提供一種先進的記憶體元件及其製作方法,以解決習知技術所面臨的問題。Therefore, there is a need to provide an advanced memory device and its manufacturing method to solve the problems faced by the conventional technology.

本說明書的一實施例揭露一種記憶體元件,此記憶體元件包括:導電條帶堆疊結構、記憶層、通道層以及摻雜的半導體銲墊。導電條帶堆疊結構包括多個導電條帶及與導電條帶交錯堆疊的多個絕緣層。導電條帶堆疊結構還具有至少一通道開口穿過這些導電條帶和絕緣層,將一部分的導電條帶和絕緣層暴露於外。記憶層位於通道開口之中並覆蓋在導電條帶經由通道開口暴露於外的部份上。通道層位於通道開口之中並覆蓋在記憶層上。摻雜的半導體銲墊,由通道開口的底部向上延伸超過導電條帶中的底部導電條帶的上方表面,並與通道層接觸,且與導電條帶電性隔離。通道層包括具有第一摻雜濃度的第一部分,以及位於第一部分上方,且具有第二摻雜濃度的第二部分。An embodiment of the present specification discloses a memory device. The memory device includes: a conductive strip stack structure, a memory layer, a channel layer, and a doped semiconductor pad. The conductive strip stack structure includes multiple conductive strips and multiple insulating layers stacked alternately with the conductive strips. The conductive strip stack structure further has at least one channel opening passing through the conductive strips and the insulating layer, exposing a part of the conductive strips and the insulating layer to the outside. The memory layer is located in the channel opening and covers the portion of the conductive strip exposed to the outside through the channel opening. The channel layer is located in the channel opening and covers the memory layer. The doped semiconductor pad extends upward from the bottom of the channel opening beyond the upper surface of the bottom conductive strip in the conductive strip, and contacts the channel layer and is electrically isolated from the conductive strip. The channel layer includes a first portion having a first doping concentration, and a second portion above the first portion and having a second doping concentration.

本說明書的一實施例揭露一種記憶體元件的製作方法,此記憶體元件的製作方法包括下述步驟:形成具有至少一個通道開口的導電條帶堆疊結構,其中導電條帶堆疊結構包括複數個導電條帶以及與導電條帶交錯堆疊的複數個絕緣層。通道開口穿過這些導電條帶和絕緣層,將一部分的導電條帶和絕緣層暴露於外。形成一個半導體銲墊,由通道開口的底部向上延伸超過導電條帶中的一個底部導電條帶的上方表面,並與導電條帶電性隔離。於半導體銲墊之中植入基底摻質。於通道開口之中形成一個記憶層,並覆蓋在導電條帶經由通道開口暴露於外的部份上。於通道開口之中形成一個通道層,並覆蓋在記憶層上,且與半導體銲墊接觸。以及將一部分基底摻質驅入通道層中,使通道層包括第一摻雜濃度的第一部分,以及位於第一部分上方,且具有第二摻雜濃度的第二部分。An embodiment of the present specification discloses a method for manufacturing a memory element. The method for manufacturing a memory element includes the following steps: forming a conductive strip stack structure having at least one channel opening, wherein the conductive strip stack structure includes a plurality of conductive A strip and a plurality of insulating layers stacked alternately with the conductive strip. The channel opening passes through these conductive strips and the insulating layer, exposing a part of the conductive strips and the insulating layer. A semiconductor pad is formed, which extends upward from the bottom of the channel opening beyond the upper surface of one of the conductive strips in the conductive strip and is electrically isolated from the conductive strip. The base dopant is implanted in the semiconductor bonding pad. A memory layer is formed in the channel opening and covers the portion of the conductive strip exposed to the outside through the channel opening. A channel layer is formed in the channel opening, covers the memory layer, and contacts the semiconductor pad. And driving a portion of the base dopant into the channel layer so that the channel layer includes a first portion with a first doping concentration and a second portion above the first portion and having a second doping concentration.

根據上述實施例,本說明書的實施例係提供一種記憶體元件及其製作方法。其係在記憶體元件中用來形成垂直記憶胞串列的通道開口底部先形成一個半導體銲墊,使半導體銲墊與後續形成於通道開口側壁,的垂直記憶胞串列通道層接觸。在形成通道層之前,先以離子植入製程將基底摻質植入半導體銲墊,並藉由後續製程的熱處理,將位於半導體銲墊中的一部分基底摻質驅入垂直通道層,藉以降低通道層中的通道電阻,進而提供垂直記憶胞串列較穩定的臨界電壓控制,解決習知技術因晶粒邊界生成於通道層的非閘極控制區,造成記憶胞串列操作不穩定的問題。According to the above-mentioned embodiments, the embodiments of the present specification provide a memory device and a manufacturing method thereof. It is to form a semiconductor pad at the bottom of the channel opening used to form the vertical memory cell string in the memory device, so that the semiconductor bonding pad contacts the vertical memory cell string channel layer formed later on the side wall of the channel opening. Before the channel layer is formed, the base dopant is implanted into the semiconductor pad using an ion implantation process, and a portion of the base dopant in the semiconductor pad is driven into the vertical channel layer by heat treatment in the subsequent process to reduce the channel The channel resistance in the layer further provides a more stable threshold voltage control of the vertical memory cell string, which solves the problem of the unstable operation of the memory cell string operation caused by the conventional technology in which the grain boundary is generated in the non-gate control area of the channel layer.

本說明書是提供一種記憶體元件及其製作方法,以解決習知技術因晶粒邊界生成於垂直通道層,導致記憶胞臨界電壓變異的問題。為了對本說明書之上述實施例及其他目的、特徵和優點能更明顯易懂,下文特舉複數個較佳實施例,並配合所附圖式作詳細說明。This specification provides a memory device and a manufacturing method thereof to solve the problem of the variation of the critical voltage of the memory cell due to the generation of grain boundaries in the vertical channel layer in the conventional technology. In order to make the above-mentioned embodiments of the specification and other objects, features and advantages more obvious and understandable, a plurality of preferred embodiments will be cited below in conjunction with the accompanying drawings for detailed description.

但必須注意的是,這些特定的實施案例與方法,並非用以限定本發明。本發明仍可採用其他特徵、元件、方法及參數來加以實施。較佳實施例的提出,僅係用以例示本發明的技術特徵,並非用以限定本發明的申請專利範圍。該技術領域中具有通常知識者,將可根據以下說明書的描述,在不脫離本發明的精神範圍內,作均等的修飾與變化。在不同實施例與圖式之中,相同的元件,將以相同的元件符號加以表示。However, it must be noted that these specific implementation examples and methods are not intended to limit the present invention. The present invention can still be implemented using other features, components, methods, and parameters. The proposed preferred embodiments are only used to illustrate the technical features of the present invention, and are not intended to limit the patent application scope of the present invention. Those with ordinary knowledge in this technical field will be able to make equivalent modifications and changes based on the description of the following description without departing from the spirit of the present invention. In different embodiments and drawings, the same elements will be denoted by the same element symbols.

第1A圖至第1G圖係根據本說明書的一實施例所繪示具有垂直通道結構之記憶體元件10的製程結構剖面示意圖。記憶體元件10的製作方法包括下述步驟:首先於基材101上形成至少一個導電條帶堆疊結構11。其中,導電條帶堆疊結構11的形成包括,提供複數個彼此堆疊,並藉由複數個絕緣層102所分隔的導電層103(如第1A所繪示)。在本說明書的一些實施例中,構成導電層103的材料可以是摻雜或未摻雜的半導體,例如包括矽(Si)、鍺(Ge)、矽鍺(SiGe)、碳化矽(SiC))、金屬(可以包括鎢(W)和鉑(Pt))和導電化合物(可以包括氮化鈦(TiN)、氮化鉭(TaN))等材料。構成絕緣層102的材料可以是矽氧化物、氮化矽、氮氧化矽、碳氧化矽、或其他合適的介電材料。FIGS. 1A to 1G are schematic cross-sectional views of a manufacturing process structure of a memory device 10 having a vertical channel structure according to an embodiment of the present specification. The manufacturing method of the memory device 10 includes the following steps: First, at least one conductive strip stack structure 11 is formed on the substrate 101. The formation of the conductive strip stack structure 11 includes providing a plurality of conductive layers 103 stacked on top of each other and separated by a plurality of insulating layers 102 (as shown in FIG. 1A). In some embodiments of the present specification, the material constituting the conductive layer 103 may be a doped or undoped semiconductor, for example, including silicon (Si), germanium (Ge), silicon germanium (SiGe), silicon carbide (SiC)) , Metals (may include tungsten (W) and platinum (Pt)) and conductive compounds (may include titanium nitride (TiN), tantalum nitride (TaN)) and other materials. The material constituting the insulating layer 102 may be silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, or other suitable dielectric materials.

之後,以圖案化製程,例如蝕刻製程,形成複數個通道開口104,穿過絕緣層102和導電層103,並將一部份的基材101於外。藉以絕緣層102和導電層103於基材101形成複數個導電條帶堆疊結構11(如第1B所繪示)。在本說明書的一些實施例中,通道開口104可以是一種溝槽或一通孔。在本實施例中,通道開口104可以是一種溝槽,穿過導電層103和絕緣層102,使一部分的導電條層103和絕緣層102的側壁暴露於外,並將絕緣層102和導電層103區隔成至少二個導電條帶堆疊結構11。After that, a patterning process, such as an etching process, is used to form a plurality of channel openings 104, pass through the insulating layer 102 and the conductive layer 103, and part of the substrate 101 is outside. A plurality of conductive strip stack structures 11 (as shown in FIG. 1B) are formed on the substrate 101 by the insulating layer 102 and the conductive layer 103. In some embodiments of the present specification, the channel opening 104 may be a trench or a through hole. In this embodiment, the channel opening 104 may be a trench that passes through the conductive layer 103 and the insulating layer 102 to expose part of the side walls of the conductive strip layer 103 and the insulating layer 102, and exposes the insulating layer 102 and the conductive layer 103 is divided into at least two conductive strip stack structures 11.

每一個導電條帶堆疊結構11都包含複數個與絕緣層102交錯堆疊的導電條帶103A、103B、103C、103D和103E。其中,導電條帶堆疊結構11位於中間階層的複數個導電條帶103B、103C、和103D,可以用來作為記憶體元件10的字元線(WLs);位於下方階層中的至少一個導電條帶103A,可以用來作為記憶體元件10的參考(例如接地)選擇線(GSLs);位於上方階層中的至少一個導電條帶103E,可以用來作為記憶體元件10的串列選擇線(SSLs)。Each conductive strip stack structure 11 includes a plurality of conductive strips 103A, 103B, 103C, 103D, and 103E stacked alternately with the insulating layer 102. The conductive strip stacking structure 11 is located in the middle level of the plurality of conductive strips 103B, 103C, and 103D, which can be used as word lines (WLs) of the memory element 10; at least one conductive strip in the lower level 103A, can be used as a reference (eg, ground) selection line (GSLs) of the memory device 10; at least one conductive strip 103E in the upper hierarchy can be used as a serial selection line (SSLs) of the memory device 10 .

接著,在通道開口104中形成一個記憶層105,使記憶層105覆蓋於絕緣層102和導電條帶103A、103B、103C、103D和103E經由通道開口104暴露於外的側壁上,並與通道開口104的底部104a接觸(如第1C圖所繪示)。其中,記憶層105可以包括一多層介電電荷捕捉結構(multilayer dielectric charge trapping structure)。例如,在本說明書的一些實施例中, 記憶層105可以包括快閃記憶體技術所習知的多層資料儲存結構,例如包括快閃記憶體技術所習知的矽氧化物-氮化矽-矽氧化物(oxide-nitride-oxide、ONO)結構、矽氧化物-氮化矽-矽氧化物-氮化矽-矽氧化物(oxide-nitride-oxide-nitride-oxide,ONONO)結構、一矽-矽氧化物-氮化矽-矽氧化物-矽 (silicon-oxide-nitride-oxide-silicon,SONOS)結構、能隙工程矽-矽氧化物-氮化矽-矽氧化物-矽(bandgap engineered silicon-oxide-nitride-oxide-silicon,BE-SONOS)結構、氮化鉭-氧化鋁-氮化矽-矽氧化物-矽(tantalum nitride, aluminum oxide, silicon nitride, silicon oxide, silicon,TANOS)結構以及金屬高介電係數能隙工程矽-矽氧化物-氮化矽-矽氧化物-矽(metal-high-k bandgap-engineered silicon-oxide-nitride-oxide-silicon,MA BE-SONOS)。Next, a memory layer 105 is formed in the channel opening 104, so that the memory layer 105 covers the insulating layer 102 and the conductive strips 103A, 103B, 103C, 103D, and 103E through the channel opening 104 and exposed to the outer side wall and the channel opening The bottom 104a of 104 is in contact (as shown in FIG. 1C). The memory layer 105 may include a multilayer dielectric charge trapping structure. For example, in some embodiments of the present specification, the memory layer 105 may include a multi-layer data storage structure known in flash memory technology, such as silicon oxide-silicon nitride-silicon known in flash memory technology. Oxide-nitride-oxide (ONO) structure, silicon oxide-silicon nitride-silicon oxide-silicon nitride-silicon oxide (oxide-nitride-oxide-nitride-oxide, ONONO) structure, one silicon- Silicon oxide-silicon nitride-silicon oxide-silicon (silicon-oxide-nitride-oxide-silicon, SONOS) structure, energy gap engineering silicon-silicon oxide-silicon nitride-silicon oxide-silicon (bandgap engineered silicon -oxide-nitride-oxide-silicon (BE-SONOS) structure, tantalum nitride-alumina-silicon nitride-silicon oxide-silicon (tantalum nitride, aluminum oxide, silicon nitride, silicon oxide, silicon, TANOS) structure and Metal high-k dielectric bandgap engineering silicon-silicon oxide-silicon nitride-silicon oxide-silicon (metal-high-k bandgap-engineered silicon-oxide-nitride-oxide-silicon, MA BE-SONOS).

之後,移除一部份記憶層105,以將通道開口104的底部104a暴露於外,再形成一個半導體銲墊106,由通道開口104的底部104a向上延伸超過底部導電條帶103A的上方表面103A1,使半導體銲墊106藉由剩餘的記憶層105與導電條帶103A、103B、103C、103D、103E和103F電性隔離(如第1D圖所繪示)。在本說明書的一些實施例中,半導體銲墊106可以是藉由沉積製程,例如採用由自對準選擇性磊晶成長技術,形成在通道開口104的底部104a的半導體結構。構成半導體銲墊106的材料可以是,矽、鍺、矽鍺、砷化鎵、碳化矽或其他合適的半導體材料。在本實施例中,半導體銲墊106可以是一種多晶矽磊晶結構。半導體銲墊106的頂部106a位於底部導電條帶103A的上方表面103A1與底部階層中高度次高的導電條帶103B的下方表面103B1之間。其中,底部導電條帶103A的上方表面103A1和導電條帶103B的下方表面103B1之間沒有其他的導電條帶。但在,本說明書的另一實施例中,半導體銲墊106的頂部106a可以向上延伸超過其他導電條帶(未繪示)。After that, a part of the memory layer 105 is removed to expose the bottom 104a of the channel opening 104, and a semiconductor pad 106 is formed. The bottom 104a of the channel opening 104 extends upward beyond the upper surface 103A1 of the bottom conductive strip 103A In order to electrically isolate the semiconductor pad 106 from the conductive strips 103A, 103B, 103C, 103D, 103E, and 103F through the remaining memory layer 105 (as shown in FIG. 1D). In some embodiments of the present specification, the semiconductor pad 106 may be a semiconductor structure formed at the bottom 104a of the channel opening 104 by a deposition process, for example, a self-aligned selective epitaxial growth technique. The material constituting the semiconductor pad 106 may be silicon, germanium, silicon germanium, gallium arsenide, silicon carbide, or other suitable semiconductor materials. In this embodiment, the semiconductor pad 106 may be a polysilicon epitaxial structure. The top 106a of the semiconductor pad 106 is located between the upper surface 103A1 of the bottom conductive strip 103A and the lower surface 103B1 of the second highest conductive strip 103B in the bottom hierarchy. There is no other conductive strip between the upper surface 103A1 of the bottom conductive strip 103A and the lower surface 103B1 of the conductive strip 103B. However, in another embodiment of the present specification, the top 106a of the semiconductor pad 106 may extend upward beyond other conductive strips (not shown).

然後,對半導體銲墊106進行一個離子植入製程,藉以將具有預設摻雜濃度的複數個基底摻質107,植入半導體銲墊106之中(如第1E圖所繪示)。在本說明書的一些實施例中,基底摻質107可以是一種p型摻質,例如硼(B),亦或者可以是一種n型摻質,例如磷(P)或砷(As)。在本實施例中,基底摻質107可以是一種n型摻質。Then, an ion implantation process is performed on the semiconductor pad 106 to implant a plurality of base dopants 107 with a predetermined doping concentration into the semiconductor pad 106 (as shown in FIG. 1E). In some embodiments of the present specification, the base dopant 107 may be a p-type dopant, such as boron (B), or may be an n-type dopant, such as phosphorus (P) or arsenic (As). In this embodiment, the base dopant 107 may be an n-type dopant.

接著,在通道開口104中形成通道層108,以覆蓋記憶層105以及半導體銲墊106的頂部106a,使通道層108與半導體銲墊106接觸。藉以分別在導電條帶103A、103B、103C、103D和103E與記憶層105、通道層108和半導體銲墊106重疊的交叉點上形成複數個電荷捕捉式薄膜電晶體(charge trapping thin film transistor)開關,並藉由通道層108串聯以形成一條記憶胞串列109(如第1F圖所繪示)。Next, a channel layer 108 is formed in the channel opening 104 to cover the memory layer 105 and the top 106 a of the semiconductor pad 106 so that the channel layer 108 is in contact with the semiconductor pad 106. A plurality of charge trapping thin film transistor switches are formed at the intersections where the conductive stripes 103A, 103B, 103C, 103D, and 103E overlap the memory layer 105, the channel layer 108, and the semiconductor pad 106, respectively , And through the channel layer 108 connected in series to form a memory cell string 109 (as shown in FIG. 1F).

例如,在本實施例中,電荷捕捉式薄膜電晶體開關109A形成在導電條帶103A與記憶層105和半導體銲墊106重疊的交叉點上,並經由半導體銲墊106與基材101電性連接,可用來做為記憶胞串列109的接地選擇開關;形成在導電條帶103B、103C和103D 與記憶層105和通道層108重疊的交叉點上的複數個電荷捕捉式薄膜電晶體開關109B、109C和109D可以做為記憶胞串列109的複數個記憶胞;形成在導電條帶103E與記憶層105和通道層108重疊的交叉點上的複數個電荷捕捉式薄膜電晶體開關109E 可以做為記憶胞串列109的串列選擇開關。For example, in this embodiment, the charge trapping thin film transistor switch 109A is formed at the intersection of the conductive strip 103A and the memory layer 105 and the semiconductor pad 106, and is electrically connected to the substrate 101 via the semiconductor pad 106 , Can be used as a ground selection switch of the memory cell string 109; a plurality of charge trapping thin film transistor switches 109B formed on the intersections of the conductive stripes 103B, 103C, and 103D overlapping the memory layer 105 and the channel layer 108, 109C and 109D can be used as a plurality of memory cells in the memory cell string 109; a plurality of charge trapping thin film transistor switches 109E formed on the intersection of the conductive strip 103E and the memory layer 105 and the channel layer 108 can be used as The series selection switch of the memory cell series 109.

構成通道層108的材料可以與構成半導體銲墊106的材料相同或不同。在本說明書的一些實施例中,構成通道層108的材料可以包括半導體材料,例如矽、鍺、矽鍺、砷化鎵(GaAs)、碳化矽或其他合適的半導體材料。在本實施例中,通道層108包括多晶矽。The material constituting the channel layer 108 may be the same as or different from the material constituting the semiconductor pad 106. In some embodiments of the present specification, the material constituting the channel layer 108 may include semiconductor materials, such as silicon, germanium, silicon germanium, gallium arsenide (GaAs), silicon carbide, or other suitable semiconductor materials. In this embodiment, the channel layer 108 includes polysilicon.

之後,以介電材料110填充通道開口104,並在對介電材料110進行平坦化後,以回蝕移除一部份介電材料110,形成複數個對準通道開口104的凹室(未繪示),並且填充導電材料以形成連接位元線(未繪示) 與通道層108的接觸墊111。後續,再進行一連串後段製程(未繪示),以形成如第1G圖所繪示的記憶體元件10。After that, the channel opening 104 is filled with the dielectric material 110, and after the dielectric material 110 is planarized, a part of the dielectric material 110 is etched back to form a plurality of recesses aligned with the channel opening 104 (not (Shown), and filled with a conductive material to form a contact pad 111 connecting the bit line (not shown) and the channel layer 108. Subsequently, a series of subsequent processes (not shown) are performed to form the memory device 10 as shown in FIG. 1G.

在本說明書的一些實施例中,由於後段製程包含複數個熱製程,可以將一部分的基底摻質107B由摻雜的半導體銲墊106驅入通道層108之中,使擴散進入通道層108之中的一部分的基底摻質107B的摻質濃度,實質小於殘留在半導體銲墊106中的剩餘部分基底摻質107A的摻質濃度。其中,擴散進入通道層108之中的一部分的基底摻質107B,可以被區分為位於半導體銲墊106頂部106a上方,且具有第一摻質濃度的第一部分107B1,以及位於第一部分上方,且具有第二摻質濃度的第二部分107B2;第一摻質濃度大於第二摻質濃度;且第一摻質濃度具有由半導體銲墊106頂部106a,沿著遠離通道開口104的底部104a方向,向上逐漸減少的濃度梯度;第二摻雜濃度具有由第一部份107B1,沿著遠離通道開口104的底部104a方向,向上逐漸減少的濃度梯度。In some embodiments of the present specification, since the subsequent process includes a plurality of thermal processes, a portion of the base dopant 107B can be driven into the channel layer 108 from the doped semiconductor pad 106 to diffuse into the channel layer 108 The dopant concentration of a portion of the base dopant 107B is substantially smaller than the dopant concentration of the remaining portion of the base dopant 107A remaining in the semiconductor pad 106. Among them, a portion of the base dopant 107B diffused into the channel layer 108 can be divided into a first portion 107B1 having a first dopant concentration above the top 106a of the semiconductor pad 106, and having a first dopant concentration above, and having The second portion 107B2 of the second dopant concentration; the first dopant concentration is greater than the second dopant concentration; and the first dopant concentration has a top 106a from the semiconductor pad 106, along the direction away from the bottom 104a of the channel opening 104, upward A gradually decreasing concentration gradient; the second doping concentration has a concentration gradient that gradually decreases upward from the first portion 107B1 along the direction away from the bottom 104a of the channel opening 104.

在本實施例中,擴散進入通道層108之中的基底摻質107B的第一部分107B1和第二部分107B2,並無明顯的分界。換言之,擴散進入通道層108之中的一部分基底摻質107B的摻質濃度,具有由半導體銲墊106頂部106a沿著遠離通道開口104的底部104a方向,向上遞減的濃度梯度。其中,位於通道層108之中的一部分的基底摻質107B的延伸高度(即第二部分107B2的高度),最高並未向上延伸超過導電條帶103B的下方表面103B1。In this embodiment, there is no obvious boundary between the first portion 107B1 and the second portion 107B2 of the base dopant 107B diffused into the channel layer 108. In other words, the dopant concentration of a portion of the base dopant 107B that diffuses into the channel layer 108 has a concentration gradient that decreases upward from the top 106a of the semiconductor pad 106 along the direction away from the bottom 104a of the channel opening 104. Wherein, the extension height of a portion of the base dopant 107B in the channel layer 108 (that is, the height of the second portion 107B2) does not extend upward beyond the lower surface 103B1 of the conductive strip 103B.

藉由被驅入通道層108之中的一部分基底摻質107B,可以降低通道層108中晶粒邊界位能障(Grain boundary barrier)和通道電阻,在相同操作電壓下,可提供記憶胞串列109較高的通道電流,進而使記憶胞串列109中的電荷捕捉式薄膜電晶體開關109A、109B、109C、109D和109E具有較穩定的臨界電壓,解決習知技術因晶粒邊界生成於垂直通道層108的非閘極控制區,造成記憶胞串列109操作不穩定的問題。By driving a part of the base dopant 107B into the channel layer 108, the grain boundary barrier and channel resistance in the channel layer 108 can be reduced, and the memory cell string can be provided under the same operating voltage The higher channel current of 109 makes the charge trapping thin film transistor switches 109A, 109B, 109C, 109D, and 109E in the memory cell string 109 have a more stable threshold voltage, which solves the conventional technology because the grain boundaries are generated vertically The non-gate control region of the channel layer 108 causes the operation of the memory cell string 109 to be unstable.

第2A圖至第2G圖係根據本說明書的另一實施例所所繪示具有垂直通道結構之記憶體元件20的製程結構剖面示意圖。記憶體元件20的製作方法包括下述步驟:首先於基材201上形成至少一個犧牲條帶堆疊結構21。其中,犧牲條帶堆疊結構21的形成包括,提供複數個彼此堆疊,並藉由複數個絕緣層202所分隔的犧牲層213(如第2A所繪示)。在本說明書的一些實施例中,構成犧牲層213的材料可以是與絕緣層202不同的介電材料。例如在本實施例中,構成絕緣層202的材料可以是二氧化矽;構成犧牲層213的材料可以是氮化矽。FIGS. 2A to 2G are schematic cross-sectional views of the manufacturing process structure of the memory device 20 having a vertical channel structure according to another embodiment of the present specification. The manufacturing method of the memory element 20 includes the following steps: First, at least one sacrificial strip stack structure 21 is formed on the substrate 201. The formation of the sacrificial strip stack structure 21 includes providing a plurality of sacrificial layers 213 stacked on each other and separated by a plurality of insulating layers 202 (as shown in FIG. 2A). In some embodiments of the present specification, the material constituting the sacrificial layer 213 may be a dielectric material different from the insulating layer 202. For example, in this embodiment, the material constituting the insulating layer 202 may be silicon dioxide; the material constituting the sacrificial layer 213 may be silicon nitride.

之後,以圖案化製程,例如蝕刻製程,形成複數個通道開口204,穿過絕緣層202和犧牲層213,並將一部份的基材201於外。藉以於基材201形成複數個犧牲條帶堆疊結構21(如第2B所繪示)。在本說明書的一些實施例中,通道開口204可以是一種溝槽或一通孔。在本實施例中,通道開口204可以是一種通孔,穿過導電層213和犧牲層213,使一部分的犧牲層213和絕緣層202的側壁暴露於外,並將犧牲層213和絕緣層202區隔成至少二個犧牲條帶堆疊結構21。其中,每一個犧牲條帶堆疊結構21都包括複數個與絕緣層202交互堆疊並彼此隔離的犧牲條帶213A、213B、213C、213D和213E。After that, a patterning process, such as an etching process, is used to form a plurality of channel openings 204, pass through the insulating layer 202 and the sacrificial layer 213, and expose a portion of the substrate 201 outside. Thereby, a plurality of sacrificial strip stack structures 21 (as shown in FIG. 2B) are formed on the substrate 201. In some embodiments of the present specification, the channel opening 204 may be a trench or a through hole. In this embodiment, the channel opening 204 may be a through hole, passing through the conductive layer 213 and the sacrificial layer 213, exposing a part of the sidewalls of the sacrificial layer 213 and the insulating layer 202, and exposing the sacrificial layer 213 and the insulating layer 202 At least two sacrificial strip stack structures 21 are divided. Each of the sacrificial strip stacking structures 21 includes a plurality of sacrificial strips 213A, 213B, 213C, 213D, and 213E that are alternately stacked with the insulating layer 202 and isolated from each other.

接著,形成一個半導體銲墊206,由通道開口204的底部204a向上延伸超過最底層犧牲條帶213A的上方表面213A1 (如第2C圖所繪示)。在本說明書的一些實施例中,半導體銲墊206可以是藉由沉積製程,例如採用由自對準選擇性磊晶成長技術,形成在通道開口204的底部204a的磊晶半導體結構。構成半導體銲墊206的材料可以是,矽、多晶矽、鍺、矽鍺、砷化鎵、碳化矽或其他合適的半導體材料。在本實施例中,半導體銲墊206可以是一種多晶矽結構。半導體銲墊206的頂部206a位於底層犧牲條帶213A的上方表面213A1與高度次高的犧牲條帶213B的下方表面213B1之間。Next, a semiconductor pad 206 is formed, extending upward from the bottom 204a of the channel opening 204 beyond the upper surface 213A1 of the bottommost sacrificial strip 213A (as shown in FIG. 2C). In some embodiments of the present specification, the semiconductor pad 206 may be formed on the bottom 204a of the channel opening 204 by a deposition process, for example, a self-aligned selective epitaxial growth technique. The material constituting the semiconductor pad 206 may be silicon, polysilicon, germanium, silicon germanium, gallium arsenide, silicon carbide, or other suitable semiconductor materials. In this embodiment, the semiconductor pad 206 may be a polysilicon structure. The top 206a of the semiconductor pad 206 is located between the upper surface 213A1 of the underlying sacrificial strip 213A and the lower surface 213B1 of the sacrificial strip 213B of the next highest height.

然後,對半導體銲墊206進行一個離子植入製程,藉以將複數個具有預設摻雜濃度的基底摻質207,植入半導體銲墊206之中(如第2C圖所繪示)。在本說明書的一些實施例中,基底摻質207可以是一種p型摻質,例如硼,抑或者可以是一種n型摻質,例如磷或砷。在本實施例中,基底摻質207可以是一種n型摻質,且預設摻雜濃度具有由半導體銲墊206頂部206a往通道開口204的底部204a方向遞減的濃度梯度。Then, an ion implantation process is performed on the semiconductor pad 206, so as to implant a plurality of base dopants 207 with a predetermined doping concentration into the semiconductor pad 206 (as shown in FIG. 2C). In some embodiments of the present specification, the base dopant 207 may be a p-type dopant, such as boron, or may be an n-type dopant, such as phosphorus or arsenic. In this embodiment, the base dopant 207 may be an n-type dopant, and the predetermined doping concentration has a concentration gradient that decreases from the top 206a of the semiconductor pad 206 toward the bottom 204a of the channel opening 204.

接著,於每一個通道開口204中形成一個記憶層205,使記憶層205覆蓋於絕緣層202和犧牲條帶213B、213C、213D和213E經由通道開口204暴露於外的側壁上。之後,移除一部份記憶層205,以將半導體銲墊206頂部206a暴露於外,再於每一個通道開口204中形成一個通道層208,覆蓋記憶層205以及半導體銲墊206的頂部206a上,使通道層208與半導體銲墊206接觸(如第2D圖所繪示)。Next, a memory layer 205 is formed in each channel opening 204, so that the memory layer 205 covers the insulating layer 202 and the sacrificial strips 213B, 213C, 213D, and 213E through the channel opening 204 and exposed to the outer side wall. After that, a portion of the memory layer 205 is removed to expose the top 206a of the semiconductor pad 206, and a channel layer 208 is formed in each channel opening 204 to cover the memory layer 205 and the top 206a of the semiconductor pad 206 To make the channel layer 208 contact with the semiconductor pad 206 (as shown in FIG. 2D).

在本說明書的一些實施例中, 記憶層205可以包括快閃記憶體技術所習知的矽氧化物-氮化矽-矽氧化物結構、矽氧化物-氮化矽-矽氧化物-氮化矽-矽氧化物結構、一矽-矽氧化物-氮化矽-矽氧化物-矽結構、能隙工程矽-矽氧化物-氮化矽-矽氧化物-矽結構、氮化鉭-氧化鋁-氮化矽-矽氧化物-矽結構以及金屬高介電係數能隙工程矽-矽氧化物-氮化矽-矽氧化物-矽。通道層208可以包括半導體材料,例如矽、多晶矽、鍺、矽鍺、砷化鎵、碳化矽和石墨烯等材料,或其他導電材料如金屬矽化物和金屬。在本實施例中,記憶層205可以包括快閃記憶體技術所習知的矽氧化物-氮化矽-矽氧化物結構;通道層208可以是一種多晶矽薄膜。In some embodiments of the present specification, the memory layer 205 may include a silicon oxide-silicon nitride-silicon oxide structure, a silicon oxide-silicon nitride-silicon oxide-nitride known in flash memory technology Silicon-silicon oxide structure, a silicon-silicon oxide-silicon nitride-silicon oxide-silicon structure, energy gap engineering silicon-silicon oxide-silicon nitride-silicon oxide-silicon structure, tantalum nitride-oxidation Aluminum-silicon nitride-silicon oxide-silicon structure and metal high dielectric constant energy gap engineering silicon-silicon oxide-silicon nitride-silicon oxide-silicon. The channel layer 208 may include semiconductor materials such as silicon, polysilicon, germanium, silicon germanium, gallium arsenide, silicon carbide, and graphene, or other conductive materials such as metal silicides and metals. In this embodiment, the memory layer 205 may include a silicon oxide-silicon nitride-silicon oxide structure known in flash memory technology; the channel layer 208 may be a polysilicon film.

再以介電材料210填充通道開口204,並在對介電材料210進行平坦化後,以回蝕移除一部份介電材料210,形成複數個對準通道開口204的凹室(未繪示),並且填充導電材料以形成連接位元線(未繪示)與通道層208的接觸墊211 (如第2E圖所繪示)。The dielectric material 210 is then used to fill the channel opening 204, and after the dielectric material 210 is planarized, a portion of the dielectric material 210 is etched back to form a plurality of recesses (not shown) aligned with the channel opening 204 Shown), and filled with a conductive material to form a contact pad 211 (as shown in FIG. 2E) connecting the bit line (not shown) and the channel layer 208.

然後,選擇性地去除犧牲條帶堆疊結構21中的犧牲條帶213A、213B、213C、213D和213E,藉以在絕緣層202之間形成空隙212,將一部分記憶層205和半導體銲墊206的側壁206b暴露於外。並在空隙212中形成介電襯裡214,至少覆蓋半導體銲墊206經由空隙212暴露於外的側壁206b(如第2F圖所繪示)。Then, the sacrificial strips 213A, 213B, 213C, 213D, and 213E in the sacrificial strip stacking structure 21 are selectively removed, thereby forming a gap 212 between the insulating layers 202, and part of the side walls of the memory layer 205 and the semiconductor pad 206 206b is exposed. A dielectric liner 214 is formed in the gap 212 to cover at least the side wall 206b (as shown in FIG. 2F) of the semiconductor pad 206 exposed to the outside through the gap 212.

在本說明書的一些實施例中,可以在犧牲條帶堆疊結構21中形成貫穿犧牲條帶213A、213B、213C、213D和213E和絕緣層202的溝槽215,再以選擇性蝕刻製程,通過溝槽215來移除這些犧牲條帶213A、213B、213C、213D和213E。例如在本實施例中,選擇具有較易於蝕刻氮化矽的蝕刻化學物質,例如磷酸(H 3PO 4),來移除犧牲條帶213A、213B、213C、213D和213E。在本說明書的一些實施例中,介電襯裡214係藉由對半導體銲墊206的側壁206b進行熱氧化製程所形成。 In some embodiments of the present specification, a trench 215 penetrating the sacrificial strips 213A, 213B, 213C, 213D, and 213E and the insulating layer 202 may be formed in the sacrificial strip stack structure 21, and then through a selective etching process, through the trench Groove 215 to remove these sacrificial strips 213A, 213B, 213C, 213D, and 213E. For example, in the present embodiment, an etching chemistry having a relatively easy etching of silicon nitride, such as phosphoric acid (H 3 PO 4 ), is selected to remove the sacrificial strips 213A, 213B, 213C, 213D, and 213E. In some embodiments of the present specification, the dielectric liner 214 is formed by performing a thermal oxidation process on the sidewall 206b of the semiconductor pad 206.

之後,使用導電材料來填充空隙212,藉以在絕緣層202之間形成複數個導電條帶203A、203B、203C和203D,並將原來的犧牲條帶堆疊結構21轉換成複數個條導電條帶堆疊結構22(如第2G圖所繪示)。其中,位於每一個導電條帶堆疊結構22間階層中的複數個導電條帶203B、203C和203D,可以用來作為記憶體元件20的字元線;位於下方階層中的至少一個導電條帶203A,可以用來作為記憶體元件20的參考(例如接地)選擇線;位於上方階層中的至少一個導電條帶203E,可以用來作為記憶體元件20的串列選擇線。進而,分別在導電條帶203A、203B、203C、203D和203E與記憶層205、通道層208、介電襯裡214和半導體銲墊206重疊的交叉點上形成複數個電荷捕捉式薄膜電晶體開關,並藉由通道層208串聯以形成一條記憶胞串列209。Then, a conductive material is used to fill the void 212, thereby forming a plurality of conductive strips 203A, 203B, 203C, and 203D between the insulating layers 202, and converting the original sacrificial strip stack structure 21 into a plurality of conductive strip stacks Structure 22 (as shown in Figure 2G). Among them, a plurality of conductive stripes 203B, 203C, and 203D located in a hierarchy between each conductive strip stack structure 22 can be used as a character line of the memory element 20; at least one conductive strip 203A located in the lower hierarchy , Can be used as a reference (eg, ground) selection line of the memory element 20; at least one conductive strip 203E in the upper hierarchy can be used as a serial selection line of the memory element 20. Furthermore, a plurality of charge trapping thin film transistor switches are formed at intersections where the conductive stripes 203A, 203B, 203C, 203D, and 203E overlap the memory layer 205, the channel layer 208, the dielectric liner 214, and the semiconductor pad 206, The channel layer 208 is connected in series to form a series of memory cells 209.

例如在本實施例中,薄膜電晶體開關209A形成在導電條帶203A、介電襯裡214和半導體銲墊206重疊的交叉點上,並經由半導體銲墊206與基材201電性連接,可用來做為記憶胞串列209的接地選擇開關;形成在導電條帶203B、203C和203D與記憶層205和通道層208重疊的交叉點上的複數個薄膜電晶體開關209B、209C和209D可以做為記憶胞串列209的複數個記憶胞;形成在導電條帶203E與記憶層205和通道層208重疊的交叉點上的複數個薄膜電晶體開關209E可以做為記憶胞串列209的串列選擇開關。For example, in this embodiment, the thin film transistor switch 209A is formed at the intersection of the conductive strip 203A, the dielectric liner 214, and the semiconductor pad 206, and is electrically connected to the substrate 201 via the semiconductor pad 206, and can be used to As a ground selection switch for the memory cell string 209; a plurality of thin film transistor switches 209B, 209C, and 209D formed on the intersections of the conductive strips 203B, 203C, and 203D overlapping the memory layer 205 and the channel layer 208 can be used as A plurality of memory cells of the memory cell string 209; a plurality of thin film transistor switches 209E formed on the intersection of the conductive strip 203E and the memory layer 205 and the channel layer 208 can be used as the string selection of the memory cell string 209 switch.

後續,在溝槽215中形成包括間隙壁216和源極線217。之後,再進行一連串後段製程(未繪示),以形成如第2G圖所繪示的記憶體元件20。在本說明書的一些實施例中,由於後段製程包含複數個熱製程,可以將一部分的基底摻質207B由半導體銲墊206驅入通道層208之中,使擴散進入通道層208之中的一部分基底摻質207B的摻質濃度,實質小於殘留在半導體銲墊206中之剩餘部分基底摻質207A的摻質濃度。擴散進入通道層208之中的一部分基底摻質207B,可以被區分為至少二個部分,例如位於半導體銲墊206頂部206a上方,且具有第一摻質濃度的第一部分207B1,以及位於第一部分上方,且具有第二摻質濃度的第二部分207B2。其中,第一摻質濃度大於第二摻質濃度;且第一摻質濃度具有由半導體銲墊206頂部206a,沿著遠離通道開口204的底部204a方向,向上逐漸減少的濃度梯度;第二摻雜濃度具有由第一部份207B1,沿著遠離通道開口204的底部204a方向,向上逐漸減少的濃度梯度。Subsequently, a spacer 216 and a source line 217 are formed in the trench 215. After that, a series of post-processes (not shown) are performed to form the memory device 20 as shown in FIG. 2G. In some embodiments of the present specification, since the subsequent process includes a plurality of thermal processes, a portion of the substrate dopant 207B can be driven into the channel layer 208 from the semiconductor pad 206 to diffuse into a portion of the substrate in the channel layer 208 The dopant concentration of the dopant 207B is substantially smaller than the dopant concentration of the remaining base dopant 207A remaining in the semiconductor pad 206. A part of the base dopant 207B diffused into the channel layer 208 can be divided into at least two parts, for example, a first part 207B1 having a first dopant concentration above the top 206a of the semiconductor bonding pad 206 and above the first part , And has a second portion 207B2 with a second dopant concentration. The first dopant concentration is greater than the second dopant concentration; and the first dopant concentration has a concentration gradient that gradually decreases upward from the top 206a of the semiconductor pad 206 along the direction away from the bottom 204a of the channel opening 204; the second dopant The impurity concentration has a concentration gradient that gradually decreases upward from the first portion 207B1 along the direction away from the bottom 204a of the channel opening 204.

在本實施例中,擴散進入通道層208之中的一部分基底摻質207B的第一部分207B1和第二部分207B2,並無明顯的分界。換言之,擴散進入通道層208之中的一部分基底摻質207B的濃度,具有由半導體銲墊206頂部206a,沿著遠離通道開口204的底部204a方向,向上遞減的濃度梯度。且擴散進入通道層208之中的一部分基底摻質207B的延伸高度(即第二部分207B2的高度),最高並未向上延伸超過導電條帶203B的下方表面203B1。In this embodiment, there is no obvious boundary between the first portion 207B1 and the second portion 207B2 of a portion of the base dopant 207B diffused into the channel layer 208. In other words, the concentration of a portion of the base dopant 207B diffused into the channel layer 208 has a concentration gradient that decreases upward from the top 206a of the semiconductor pad 206 along the direction away from the bottom 204a of the channel opening 204. And the extension height of a portion of the base dopant 207B (that is, the height of the second portion 207B2) diffused into the channel layer 208 does not extend upward beyond the lower surface 203B1 of the conductive strip 203B.

藉由被驅入通道層208之中的一部分基底摻質207B,可以降低通道層208中晶粒邊界位能障和通道電阻,在相同操作電壓下,可提供記憶胞串列209較高的通道電流,進而使記憶胞串列209中的電荷捕捉式薄膜電晶體開關209A、209B、209C、209D和209E具有較穩定的臨界電壓,解決習知技術因晶粒邊界生成於垂直通道層208的非閘極控制區,造成記憶胞串列109操作不穩定的問題。By driving a part of the base dopant 207B into the channel layer 208, the energy barrier and the channel resistance of the grain boundary in the channel layer 208 can be reduced, and under the same operating voltage, a higher channel of the memory cell string 209 can be provided Current, which in turn enables the charge trapping thin film transistor switches 209A, 209B, 209C, 209D, and 209E in the memory cell string 209 to have a more stable threshold voltage, which solves the problem of the conventional technology that the grain boundary is generated in the vertical channel layer 208. The gate control area causes the unstable operation of the memory cell string 109.

根據上述實施例,本說明書的實施例係提供一種記憶體元件及其製作方法。其係在記憶體元件中用來形成垂直記憶胞串列的通道開口底部先形成一個半導體銲墊,使半導體銲墊與後續形成於通道開口側壁,的垂直記憶胞串列通道層接觸。在形成通道層之前,先以離子植入製程將基底摻質植入半導體銲墊,並藉由後續製程的熱處理,將位於半導體銲墊中的一部分基底摻質驅入垂直通道層,藉以降低通道層中的通道電阻,進而提供垂直記憶胞串列較穩定的臨界電壓控制,解決習知技術因晶粒邊界生成於通道層的非閘極控制區,造成記憶胞串列操作不穩定的問題。According to the above-mentioned embodiments, the embodiments of the present specification provide a memory device and a manufacturing method thereof. It is to form a semiconductor pad at the bottom of the channel opening used to form the vertical memory cell string in the memory device, so that the semiconductor bonding pad contacts the vertical memory cell string channel layer formed later on the side wall of the channel opening. Before the channel layer is formed, the base dopant is implanted into the semiconductor pad using an ion implantation process, and a portion of the base dopant in the semiconductor pad is driven into the vertical channel layer by heat treatment in the subsequent process to reduce the channel The channel resistance in the layer further provides a more stable threshold voltage control of the vertical memory cell string, which solves the problem of the unstable operation of the memory cell string operation caused by the conventional technology in which the grain boundary is generated in the non-gate control area of the channel layer.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何該技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in this technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be deemed as defined by the appended patent application scope.

10、20:記憶體元件 101、201:基材 11、22:導電條帶堆疊結構 102、202:絕緣層 103、203:導電層 103A、103B、103C、103D、103E:導電條帶 103A1:底部導電條帶的上方表面 103B1、203B1:高度次高的導電條帶的下方表面 104、204:通道開口 104a、204a:通道開口的底部 105、205:記憶層 106、206:半導體銲墊 106a、206a:半導體銲墊的頂部 107、207:基底摻質 107A、207A:剩餘部分基底摻質 107B、207B:擴散進入通道層中的一部分基底摻質 107B1、207B1:第一部分 107B2、207B2:第二部分 108、208:通道層 109、209:記憶胞串列 109A、109B、109C、109D、109E:電荷捕捉式薄膜電晶體開關 110、210:介電材料 111、211:接觸墊 203A、203B、203C、203D、203E:導電條帶 213A1:底部犧牲條帶的上方表面 213B1:高度次高的犧牲條帶的下方表面 206b:半導體銲墊的側壁 209A、209B、209C、209D、209E:電荷捕捉式薄膜電晶體開關 212:空隙 213:犧牲層 213A、213B、213C、213D、213E:犧牲條帶 214:介電襯裡 215:溝槽 216:隙壁 217:源極線10, 20: memory components 101, 201: substrate 11, 22: conductive strip stack structure 102, 202: insulating layer 103, 203: conductive layer 103A, 103B, 103C, 103D, 103E: conductive strip 103A1: the upper surface of the bottom conductive strip 103B1, 203B1: the lower surface of the next highest conductive strip 104, 204: channel opening 104a, 204a: the bottom of the channel opening 105, 205: memory layer 106, 206: Semiconductor pad 106a, 206a: the top of the semiconductor pad 107, 207: base doping 107A, 207A: the remaining part of the base adulterant 107B, 207B: part of the base dopant diffused into the channel layer 107B1, 207B1: Part One 107B2, 207B2: Part Two 108, 208: channel layer 109, 209: memory cell series 109A, 109B, 109C, 109D, 109E: charge trapping thin film transistor switch 110, 210: dielectric materials 111, 211: contact pad 203A, 203B, 203C, 203D, 203E: conductive strip 213A1: the upper surface of the bottom sacrificial strip 213B1: the lower surface of the next highest sacrificial strip 206b: sidewall of semiconductor pad 209A, 209B, 209C, 209D, 209E: charge trapping thin film transistor switch 212: gap 213: Sacrificial layer 213A, 213B, 213C, 213D, 213E: Sacrificial strip 214: Dielectric lining 215: Groove 216: Wall 217: source line

為了對本說明書之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式和申請專利範圍詳細說明如下: 第1A圖至第1G圖係根據本說明書的一實施例所繪示具有垂直通道結構之記憶體元件的製程結構剖面示意圖; 第2A圖至第2G圖係根據本說明書的另一實施例所所繪示具有垂直通道結構之記憶體元件的製程結構剖面示意圖。 In order to have a better understanding of the above and other aspects of this specification, the following specific examples are given, together with the attached drawings and the scope of patent application, as detailed below: FIGS. 1A to 1G are schematic cross-sectional views of a manufacturing process structure of a memory device having a vertical channel structure according to an embodiment of this specification; FIGS. 2A to 2G are schematic cross-sectional views of a manufacturing process structure of a memory device having a vertical channel structure according to another embodiment of this specification.

無。no.

10:記憶體元件 10: Memory components

101:基材 101: substrate

11:導電條帶堆疊結構 11: conductive strip stack structure

102:絕緣層 102: insulating layer

103:導電層 103: conductive layer

103A1:底部導電條帶的上方表面 103A1: the upper surface of the bottom conductive strip

103A、103B、103C、103D、103E:導電條帶 103A, 103B, 103C, 103D, 103E: conductive strip

103B1:高度次高的導電條帶的下方表面 103B1: the lower surface of the next highest conductive strip

104:通道開口 104: channel opening

104a:通道開口的底部 104a: bottom of the channel opening

105:記憶層 105: memory layer

106:半導體銲墊 106: semiconductor pad

106a:半導體銲墊的頂部 106a: top of semiconductor pad

107:基底摻質 107: basal adulterant

107A:剩餘的部分基底摻質 107A: The remaining part of the base adulterant

107B:擴散進入通道層中的一部分基底摻質 107B: A portion of the base dopant diffused into the channel layer

107B1:第一部分 107B1: Part One

107B2:第二部分 107B2: Part Two

108:通道層 108: channel layer

109:記憶胞串列 109: Memory cell series

109A、109B、109C、109D、109E:電荷捕捉式薄膜電晶體開關 109A, 109B, 109C, 109D, 109E: charge trapping thin film transistor switch

110:介電材料 110: Dielectric material

111:接觸墊 111: contact pad

Claims (10)

一種記憶體元件包括: 一導電條帶堆疊結構,包括複數個導電條帶以及複數個絕緣層,與該複數個導電條帶交錯堆疊;該導電條帶堆疊結構還具有至少一通道開口穿過該複數個導電條帶和該複數個絕緣層; 一記憶層,位於該至少一通道開口之中,並覆蓋在該複數個導電條帶經由該至少一通道開口暴露於外的部份上; 一通道層,位於該至少一通道開口之中並覆蓋在該記憶層上;以及 一摻雜的半導體銲墊,由該至少一通道開口的一底部向上延伸超過該複數個導電條帶中的一底部導電條帶的一上方表面,並與該通道層接觸,且與該複數個導電條帶電性隔離; 其中,該通道層包括具有一第一摻雜濃度的一第一部分以及位於該第一部份上方具有一第二摻雜濃度的一第二部分。 A memory element includes: A conductive strip stack structure, including a plurality of conductive strips and a plurality of insulating layers, stacked alternately with the plurality of conductive strips; the conductive strip stack structure also has at least one channel opening through the plurality of conductive strips and The plurality of insulating layers; A memory layer located in the at least one channel opening and covering the portion of the plurality of conductive strips exposed to the outside through the at least one channel opening; A channel layer located in the at least one channel opening and covering the memory layer; and A doped semiconductor pad extending upward from a bottom of the at least one channel opening beyond an upper surface of a bottom conductive strip of the plurality of conductive strips and in contact with the channel layer and with the plurality of Conductive strips are electrically isolated; The channel layer includes a first portion having a first doping concentration and a second portion having a second doping concentration above the first portion. 如申請專利範圍第1項所述之記憶體元件,其中該第二摻雜濃度小於該第一摻雜濃度。The memory device as described in item 1 of the patent application range, wherein the second doping concentration is less than the first doping concentration. 如申請專利範圍第1項所述之記憶體元件,其中該第一部份位於該摻雜的半導體銲墊的一頂部上方;該第一摻雜濃度大於該第二摻雜濃度,且該第一摻雜濃度具有由該摻雜的半導體銲墊的一頂部遠離該至少一通道開口的該底部,向上逐漸減少的一梯度。The memory device according to item 1 of the patent application scope, wherein the first portion is located above a top of the doped semiconductor pad; the first doping concentration is greater than the second doping concentration, and the first A doping concentration has a gradient that gradually decreases upward from a top of the doped semiconductor pad away from the bottom of the at least one channel opening. 如申請專利範圍第3項所述之記憶體元件,其中該第二摻雜濃度具有由該第一部份遠離該至少一通道開口的該底部,向上逐漸減少的一梯度。The memory device of claim 3, wherein the second doping concentration has a gradient that gradually decreases upward from the bottom of the first portion away from the bottom of the at least one channel opening. 如申請專利範圍第4項所述之記憶體元件,其中該摻雜的半導體銲墊的該頂部,位於該底部導電條帶的該上方表面與該複數個導電條帶中的一次高底部導電條帶的一下方表面之間,且該上方表面與該下方表面之間,沒有該複數個導電條帶中的任一者。The memory device as described in item 4 of the patent application range, wherein the top of the doped semiconductor pad is located on the upper surface of the bottom conductive strip and the primary high bottom conductive strip among the plurality of conductive strips Between a lower surface of the belt, and between the upper surface and the lower surface, there is no one of the plurality of conductive strips. 如申請專利範圍第5項所述之記憶體元件,其中該第二部分未延伸超過該下方表面。The memory device as recited in item 5 of the patent application range, wherein the second portion does not extend beyond the lower surface. 如申請專利範圍第1項所述之記憶體元件,其中該記憶層包括一多層介電電荷捕捉結構(multilayer dielectric charge trapping structure)。The memory device as described in item 1 of the patent application range, wherein the memory layer includes a multilayer dielectric charge trapping structure. 一種記憶體元件的製作方法,包括: 形成具有至少一通道開口的一導電條帶堆疊結構,其中該導電條帶堆疊結構包括複數個導電條帶以及複數個絕緣層,與該複數個導電條帶交錯堆疊;該至少一通道開口穿過該複數個導電條帶和該複數個絕緣層; 形成一半導體銲墊,由該至少一通道開口的一底部向上延伸超過該複數個導電條帶中的一底部導電條帶的一上方表面,並與該複數個導電條帶電性隔離; 於該半導體銲墊之中植入一基底摻質; 於該至少一通道開口之中形成一記憶層,並覆蓋在該複數個導電條帶經由該至少一通道開口暴露於外的部份上; 於該至少一通道開口之中形成一通道層,並覆蓋在該記憶層上,且與該半導體銲墊接觸;以及 將一部分該基底摻質驅入該通道層中,使該通道層包括具有一第一摻雜濃度的一第一部分,以及位於該第一部份上方,且具有一第二摻雜濃度的一第二部分。 A method for manufacturing a memory element includes: Forming a conductive strip stack structure having at least one channel opening, wherein the conductive strip stack structure includes a plurality of conductive strips and a plurality of insulating layers, stacked alternately with the plurality of conductive strips; the at least one channel opening passes through The plurality of conductive strips and the plurality of insulating layers; Forming a semiconductor pad, extending upward from a bottom of the at least one channel opening beyond an upper surface of a bottom conductive strip of the plurality of conductive strips, and electrically isolated from the plurality of conductive strips; Implanting a base dopant in the semiconductor pad; Forming a memory layer in the at least one channel opening, and covering a portion of the plurality of conductive strips exposed to the outside through the at least one channel opening; Forming a channel layer in the at least one channel opening, covering the memory layer, and contacting the semiconductor pad; and Driving a portion of the base dopant into the channel layer, such that the channel layer includes a first portion having a first doping concentration, and a first portion above the first portion and having a second doping concentration Two parts. 如申請專利範圍第8項所述之記憶體元件的製作方法,其中形成具有該至少一通道開口的該導電條帶堆疊結構的步驟,包括: 形成複數個犧牲材料層與該複數個絕緣層交錯排列; 形成該至少一通道開口穿過該複數個犧牲材料層; 於該至少一通道開口的該底部上形成該半導體銲墊; 於該至少一通道開口之中形成該記憶層,並覆蓋在該複數個犧牲條帶經由該至少一通道開口暴露於外的部份上; 於該至少一通道開口之中形成該通道層,並覆蓋在該記憶層上,且與該半導體銲墊接觸; 選擇性地移除該複數個犧牲層,以在該複數個絕緣層之間形成複數個空隙,將一部分該記憶層和該半導體銲墊的一側壁暴露於外; 於該複數個空隙中形成至少一介電襯裡,至少覆蓋該半導體銲墊的該側壁;以及 以一導電材料填充該複數個空隙,藉以在該複數個絕緣層之間形成該複數個導電條帶。 The method for manufacturing a memory element as described in item 8 of the patent application scope, wherein the step of forming the conductive strip stack structure having the at least one channel opening includes: Forming a plurality of sacrificial material layers staggered with the plurality of insulating layers; Forming the at least one channel opening through the plurality of sacrificial material layers; Forming the semiconductor pad on the bottom of the at least one channel opening; Forming the memory layer in the at least one channel opening and covering the exposed portion of the plurality of sacrificial strips through the at least one channel opening; Forming the channel layer in the at least one channel opening, covering the memory layer, and contacting the semiconductor pad; Selectively removing the plurality of sacrificial layers to form a plurality of gaps between the plurality of insulating layers, exposing a portion of the memory layer and a sidewall of the semiconductor pad to the outside; Forming at least one dielectric liner in the plurality of voids, covering at least the sidewall of the semiconductor pad; and Filling the plurality of voids with a conductive material, thereby forming the plurality of conductive strips between the plurality of insulating layers. 如申請專利範圍第8項所述之記憶體元件的製作方法,其中在形成該具有至少一通道開口的一導電條帶堆疊結構之後,更包括: 於該至少一通道開口中形成該記憶層,其中該記憶層與該至少一通道開口的該底部接觸; 移除一部份該記憶層,以將該至少一通道開口的該底部暴露於外; 形成該半導體銲墊;以及 形成該通道層,以覆蓋該記憶層以及該半導體銲墊的一頂部。 The method for manufacturing a memory element as described in item 8 of the patent application scope, wherein after forming the conductive strip stack structure having at least one channel opening, the method further includes: Forming the memory layer in the at least one channel opening, wherein the memory layer is in contact with the bottom of the at least one channel opening; Removing a portion of the memory layer to expose the bottom of the at least one channel opening to the outside; Forming the semiconductor pad; and The channel layer is formed to cover the memory layer and a top of the semiconductor pad.
TW108129510A 2019-08-19 2019-08-19 Memory device and method for fabricating the same TWI696264B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108129510A TWI696264B (en) 2019-08-19 2019-08-19 Memory device and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108129510A TWI696264B (en) 2019-08-19 2019-08-19 Memory device and method for fabricating the same

Publications (2)

Publication Number Publication Date
TWI696264B true TWI696264B (en) 2020-06-11
TW202109832A TW202109832A (en) 2021-03-01

Family

ID=72176285

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108129510A TWI696264B (en) 2019-08-19 2019-08-19 Memory device and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI696264B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI762270B (en) * 2021-04-12 2022-04-21 華邦電子股份有限公司 Memory device and method of fabricating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201705451A (en) * 2015-07-24 2017-02-01 旺宏電子股份有限公司 Memory device and method for fabricating the same
TWI643317B (en) * 2017-12-01 2018-12-01 旺宏電子股份有限公司 Memory device and method for fabricating the same
TWI663715B (en) * 2018-04-10 2019-06-21 旺宏電子股份有限公司 String select line gate oxide method for 3d vertical channel nand memory
TWI667741B (en) * 2018-10-15 2019-08-01 旺宏電子股份有限公司 Three dimensional memory device and method for fabricating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201705451A (en) * 2015-07-24 2017-02-01 旺宏電子股份有限公司 Memory device and method for fabricating the same
TWI643317B (en) * 2017-12-01 2018-12-01 旺宏電子股份有限公司 Memory device and method for fabricating the same
TWI663715B (en) * 2018-04-10 2019-06-21 旺宏電子股份有限公司 String select line gate oxide method for 3d vertical channel nand memory
TWI667741B (en) * 2018-10-15 2019-08-01 旺宏電子股份有限公司 Three dimensional memory device and method for fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI762270B (en) * 2021-04-12 2022-04-21 華邦電子股份有限公司 Memory device and method of fabricating the same

Also Published As

Publication number Publication date
TW202109832A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
US11515327B2 (en) Semiconductor device and method for manufacturing same
CN109449160B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
CN109148463B (en) Semiconductor device with a semiconductor layer having a plurality of semiconductor layers
USRE40532E1 (en) Non-volatile memory cell and fabrication method
KR101868799B1 (en) Nonvolatile memory device and method for fabricating the same
CN113380814B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
US10559584B2 (en) Semiconductor device including a dielectric layer
US8399323B2 (en) Method for fabricating vertical channel type nonvolatile memory device
US11018154B2 (en) Memory device and method for fabricating the same
US11189628B2 (en) Trench gate high voltage transistor for embedded memory
US20230380171A1 (en) Trench gate high voltage transistor for embedded memory
US11239249B2 (en) Vertical-type memory device
TWI696264B (en) Memory device and method for fabricating the same
US7323383B2 (en) Method for fabricating an NROM memory cell arrangement
TWI667741B (en) Three dimensional memory device and method for fabricating the same
JP2021136346A (en) Semiconductor storage device and method for manufacturing the same
KR20240025972A (en) Semiconductor device and method for fabricating the same
US11903197B2 (en) Semiconductor device
US11737273B2 (en) Three-dimensional semiconductor memory devices
US20240008288A1 (en) Nor-type memory device, method of manufacturing nor-type memory device, and electronic apparatus including memory device
CN114975615A (en) Non-volatile memory element and manufacturing method thereof
JP2021103773A (en) Semiconductor device
CN115132738A (en) NOR type memory device, method of manufacturing the same, and electronic apparatus including the same