TWI695959B - Device of kinetic quantization of absorption/desorption for desiccant wheel - Google Patents

Device of kinetic quantization of absorption/desorption for desiccant wheel Download PDF

Info

Publication number
TWI695959B
TWI695959B TW108123846A TW108123846A TWI695959B TW I695959 B TWI695959 B TW I695959B TW 108123846 A TW108123846 A TW 108123846A TW 108123846 A TW108123846 A TW 108123846A TW I695959 B TWI695959 B TW I695959B
Authority
TW
Taiwan
Prior art keywords
wheel
temperature
humidity
dehumidification
desorption
Prior art date
Application number
TW108123846A
Other languages
Chinese (zh)
Other versions
TW202102802A (en
Inventor
楊昇府
王多美
徐啟振
李恒毅
Original Assignee
行政院原子能委員會核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員會核能研究所 filed Critical 行政院原子能委員會核能研究所
Priority to TW108123846A priority Critical patent/TWI695959B/en
Application granted granted Critical
Publication of TWI695959B publication Critical patent/TWI695959B/en
Publication of TW202102802A publication Critical patent/TW202102802A/en

Links

Images

Landscapes

  • Drying Of Gases (AREA)

Abstract

A device is provided for kinetic quantization of absorption/desorption (Abs/Des) for desiccant wheel. The device comprises a chamber having an environment of constant temperature and humidity; a desiccant wheel placed in the chamber; a weight sensor and a temperature/humidity sensor both deposed in the chamber; a micro-control unit and a communication unit both disposed outside the chamber; and a remote monitoring unit transferring data with the communication unit. Especially for a desiccant wheel of sustainable-type environmental adsorbent, that of another material, or that of another type, an isothermal Abs/Des kinetic test is processed to obtain the capacity of moisture Abs/Des. After the test, a good measurement capability is proved for defining the Abs/Des capacity of the desiccant wheel with an Abs/Des rate of the desiccant wheel effectively measured. Besides, weight changes of adsorbed moisture for a sample are recorded instantly; a built-in self-made software draws a weight-trend diagram over time; an internal self-operating design simultaneously shows the weight and percentage of adsorbed moisture per weight unit of the sample; temperature and humidity are set by programming according to needs to reach target values; after the sample is properly placed, a bottom can be easily set to start the test; a load cell can be replaced based on needs; and, setups of diversified selections and various forms of test samples can be made for tests to obtain kinetic curves of Abs/Des for fulfilling various requirements.

Description

除濕輪吸脫附動力量化裝置 Dehumidifying wheel suction desorption power quantification device

本發明係有關於一種除濕輪吸脫附動力量化裝置,尤指涉及一種以永續型環保吸附材料生產之除濕輪或其它材料組成之除濕輪或其它型態之除濕輪對於水份吸脫附之能力進行等溫吸脫附動力實驗,可定義除濕輪吸濕能力與乾燥能力,有效量測除濕輪吸附與脫附之速率者。 The invention relates to a dehumidifying wheel suction and desorption power quantification device, in particular to a dehumidification wheel composed of a dehumidifying wheel produced by a sustainable environmentally friendly adsorbent material or other materials or other types of dehumidifying wheels for moisture absorption and desorption The ability to conduct isothermal absorption and desorption power experiments can define the dehumidification wheel's moisture absorption capacity and drying capacity, and effectively measure the rate of dehumidification wheel adsorption and desorption.

除濕技術一般可分為壓縮式(compression)、冷凍式(refrigerati-on)、液態吸附式(liquid sorption)、固態吸附式(solid sorption)與薄膜分離式(membrane separation)等數種技術;其中壓縮式因為壓縮機造價高昻,使得成本難以降低,且壓縮機極為消耗電力,難免造成能源之浪費,因此以固態吸附式最為常見。而轉輪式吸附除濕裝置即不需使用壓縮機,其除濕輪上之除濕材質可以是具有多孔性之矽膠或沸石,惟矽膠易在高溫環境下產生二次硬化,造成元件變形之問題,而在能源危機衝擊下,以沸石進行固態吸濕之方式因為最為節能省電而受到研究者之注目。然而,沸石吸附材料之吸附量,與氣體自其脫附所需之能源與時間一直是待突破之議題。此外,沸石造粒(pelletize)之過程中所加入之黏著劑(binder),會大幅減少沸石之吸附能力,並降低吸附與脫附之速率。 Dehumidification technology can be generally divided into several technologies such as compression, refrigeration-on, liquid sorption, solid sorption and membrane separation; among them, compression Because of the high cost of the compressor, the cost is difficult to reduce, and the compressor consumes a lot of power, which inevitably causes a waste of energy. Therefore, the solid-state adsorption type is the most common. The rotary wheel adsorption dehumidification device does not need to use a compressor. The dehumidification material on the dehumidification wheel can be porous silicone or zeolite, but the silicone is easy to produce secondary hardening in high temperature environment, causing the problem of component deformation, and Under the impact of the energy crisis, the method of using zeolite for solid moisture absorption has attracted the attention of researchers because it is the most energy-saving and power-saving. However, the amount of adsorbed zeolite adsorbent material, and the energy and time required for the gas to be desorbed from it have always been issues to be broken through. In addition, the binder added during the zeolite pelletization process will greatly reduce the adsorption capacity of the zeolite and reduce the rate of adsorption and desorption.

鑑於轉輪式吸附除濕裝置以除濕輪吸濕之特性完成除濕機制,具 有不受環境氣體溫度及濕度條件限制,並且不需使用傳統之壓縮機,因此具有低噪音及避免冷煤使用等技術優勢。惟習知的除濕輪除濕效率不甚理想,且一般量化除濕輪除濕能力,為測試除濕輪上之原吸附材料之最大水氣吸附量,並未針對除濕輪結構對於恆溫恆濕環境中的水氣移除之動力及最大吸附量進行測量。由吸附材料做成除濕輪之過程中須經過多道物理化學程序,原吸附材料之特性及對於水氣吸附能力將會受到影響,因此,直接定義除濕輪對於水氣吸脫附能力,更具有意義及參考價值;藉此,發展一種可再生使用,減少煉鋁產業廢棄物(煉鋁爐渣),具有環保概念,通氣孔道空氣流通好,除濕效果佳之結構,並可對於水份吸脫附之能力進行等溫吸脫附動力量化之裝置實有必要。 In view of the characteristics of the wheel-type adsorption dehumidification device to complete the dehumidification mechanism with the characteristics of the dehumidification wheel, it has It is not limited by the ambient gas temperature and humidity conditions, and does not require the use of traditional compressors, so it has the technical advantages of low noise and avoiding the use of cold coal. However, the conventional dehumidification wheel dehumidification efficiency is not ideal, and the dehumidification capacity of the dehumidification wheel is generally quantified. It is to test the maximum moisture absorption of the original adsorbent material on the dehumidification wheel. The gas removal power and maximum adsorption capacity are measured. The process of making a dehumidifying wheel from an adsorbent material must go through multiple physical and chemical procedures. The characteristics of the original adsorbent material and its ability to adsorb water vapor will be affected. Therefore, it is more meaningful to directly define the dehumidifying wheel for the ability to adsorb and desorb water vapor. And reference value; by this, develop a renewable use, reduce aluminum smelting industry waste (aluminum smelting slag), has an environmental protection concept, the ventilation channel has good air circulation, good dehumidification structure, and can absorb and desorb moisture A device capable of quantifying isothermal absorption and desorption power is really necessary.

本發明之主要目的係在於,克服習知技藝所遭遇之上述問題並提供一種以永續型環保吸附材料生產之除濕輪或其它材料組成之除濕輪或其它型態之除濕輪對於水份吸脫附之能力進行等溫吸脫附動力實驗,經測試證明具有良好的量測能力,可定義除濕輪吸濕能力與乾燥能力,有效量測除濕輪吸附與脫附速率之除濕輪吸脫附動力量化裝置。 The main purpose of the present invention is to overcome the above-mentioned problems encountered by the conventional art and provide a dehumidifying wheel made of a sustainable environmentally friendly adsorbent material or other materials or other types of dehumidifying wheels for moisture absorption and desorption With the ability to carry out isothermal absorption and desorption power experiments, the test proves that it has good measurement ability, and the dehumidification wheel absorption capacity and drying capacity can be defined, and the dehumidification wheel absorption and desorption power of the dehumidification wheel adsorption and desorption rate can be effectively measured Quantification device.

為達以上之目的,本發明係一種除濕輪吸脫附動力量化裝置,係包括:一腔體,提供一恆溫恆濕環境;一除濕輪,係置放在該腔體之內部,該除濕輪具有氣孔相互貫通之多孔陶瓷輪體,其為孔徑大於100nm之開孔型多孔三維網狀骨架結構,並在該多孔陶瓷輪體之表面均勻散佈有數個微孔,令該除濕輪形成微孔表面與多孔陶瓷之複合吸附材料;其中,該除濕輪之多 孔陶瓷輪體直徑介於1~120公分,孔隙密度介於10~60PPI(Pores per inch),孔隙率介於60~85%,抗彎強度大於20kgf/cm2,厚度介於10~100公分;一重量感測器,係設在該腔體之內部,用以承載該除濕輪,並在一吸附平衡過程中連續地量測該除濕輪重量資訊之變化量,以產生一除濕輪重量感測訊號;一溫濕度感測器,係設在該腔體之內部,且經由一支撐架定位在該除濕輪上方,用以感測該除濕輪之溫度及濕度,以產生一溫濕度感測訊號;一微控制單元,係設在該腔體之外側,且與該重量感測器及該溫濕度感測器電性連接,接收該除濕輪重量感測訊號及該溫濕度感測訊號,依據該除濕輪重量感測訊號及該溫濕度感測訊號產生一控制訊號;一通訊單元,係設在該腔體之外側,且與該微控制單元電性連接,接收該控制訊號,將該除濕輪重量感測訊號及該溫濕度感測訊號予以傳輸;以及一遠端監控裝置,係接收該通訊單元所傳輸之該除濕輪重量感測訊號及該溫濕度感測訊號,並將該除濕輪重量感測訊號及該溫濕度感測訊號進行判斷,以運算得出該除濕輪對於水份吸脫附量。 To achieve the above purpose, the present invention is a dehumidification wheel suction and desorption power quantification device, which includes: a cavity to provide a constant temperature and humidity environment; and a dehumidification wheel placed inside the cavity, the dehumidification wheel A porous ceramic wheel body with interpenetrating pores, which is an open-cell porous three-dimensional network skeleton structure with a pore diameter greater than 100 nm, and several micropores are evenly distributed on the surface of the porous ceramic wheel body, so that the dehumidification wheel forms a microporous surface Composite adsorption material with porous ceramics; wherein, the diameter of the porous ceramic wheel body of the dehumidifying wheel is between 1~120 cm, the pore density is between 10~60PPI (Pores per inch), the porosity is between 60~85%, bending resistance The strength is greater than 20kgf/cm 2 and the thickness is between 10 and 100 cm; a weight sensor is installed inside the cavity to carry the dehumidifying wheel and continuously measure the dehumidifying during an adsorption balance process The amount of change in wheel weight information to produce a dehumidification wheel weight sensing signal; a temperature and humidity sensor is located inside the cavity and is positioned above the dehumidification wheel via a support frame to sense the The temperature and humidity of the dehumidifying wheel to generate a temperature and humidity sensing signal; a micro-control unit is located outside the cavity and is electrically connected to the weight sensor and the temperature and humidity sensor to receive the The dehumidifying wheel weight sensing signal and the temperature and humidity sensing signal generate a control signal according to the dehumidifying wheel weight sensing signal and the temperature and humidity sensing signal; a communication unit is provided on the outside of the cavity and is connected to the The micro control unit is electrically connected, receives the control signal, transmits the dehumidification wheel weight sensing signal and the temperature and humidity sensing signal; and a remote monitoring device receives the dehumidification wheel weight sense transmitted by the communication unit Measuring signals and the temperature and humidity sensing signals, and judging the dehumidification wheel weight sensing signals and the temperature and humidity sensing signals to calculate the amount of moisture absorption and desorption of the dehumidification wheel.

於本發明上述實施例中,該除濕輪係以煉鋁爐渣經純化分離提取環保再生氫氧化鋁及氧化鋁吸附材料為基材,添加至3D網狀結構載體材料中,經由燒結程序,將載體材料移除留下開孔型多孔三維網狀骨架結構之多孔陶瓷輪體,以該多孔陶瓷輪體為主體,附加活性氧化鋁吸附單體,經高溫燒結使表面堅硬並附著於巨孔內部,在該多孔陶瓷輪體之表面均勻散佈許多微孔,形成微孔表面與多孔陶瓷之複合吸附材料者。 In the above embodiment of the present invention, the dehumidification wheel system uses aluminum slag after purification, separation and extraction of environmentally friendly regenerated aluminum hydroxide and alumina adsorption material as a base material, and is added to the 3D mesh structure carrier material. After the sintering process, the carrier The material is removed, leaving the porous ceramic wheel body with an open-pore porous three-dimensional network skeleton structure. Taking the porous ceramic wheel body as the main body, additional activated alumina adsorption monomer is added, and the surface is hardened by high-temperature sintering and attached to the inside of the macropore. Many micropores are evenly distributed on the surface of the porous ceramic wheel to form a composite adsorption material of the micropore surface and the porous ceramic.

於本發明上述實施例中,該除濕輪吸脫附動力量化裝置係針對以永續型環保吸附材料生產之除濕輪、或以其它生產方式得來蜂巢狀纖維紙結 構或直流通道燒結結構之除濕輪、或是有別於永續型環保吸附材料組成之除濕輪、或是有別於微孔表面與多孔陶瓷複合型態之除濕輪,提供對水份吸脫附之能力進行等溫吸脫附動力量化 In the above embodiment of the present invention, the dehumidification wheel suction and desorption power quantification device is directed to a dehumidification wheel produced by a sustainable environmentally friendly adsorbent material, or a honeycomb fiber knot obtained by other production methods Structure or DC channel sintered dehumidification wheel, or a dehumidification wheel that is different from the sustainable environmentally friendly adsorption material, or a dehumidification wheel that is different from the microporous surface and porous ceramic composite type, to provide moisture absorption and desorption The attached ability to quantify the isothermal absorption and desorption power

於本發明上述實施例中,該重量感測器具有一承載該除濕輪之秤面,且內建有一對該除濕輪重量變化連續偵測之荷重元(Load cell),其重量顯示為0~3200克,精度為0.01~0.001克,線性誤差為±0.04~±0.005克,再現性為0.01~0.001克,且穩定時間為0.5~1.0秒。 In the above embodiment of the invention, the weight sensor has a weighing surface carrying the dehumidifying wheel, and a built-in load cell for continuously detecting the weight change of the dehumidifying wheel is built, and the weight is displayed as 0~3200 Grams, the accuracy is 0.01~0.001 grams, the linear error is ±0.04~±0.005 grams, the reproducibility is 0.01~0.001 grams, and the stability time is 0.5~1.0 seconds.

於本發明上述實施例中,該微控制單元包括一恆溫恆濕感測器,可感測該腔體內的一溫濕度值,其溫度顯示為0~100℃,電流輸出為0~50毫安培。 In the above embodiment of the present invention, the micro control unit includes a constant temperature and humidity sensor, which can sense a temperature and humidity value in the cavity, the temperature display is 0~100°C, and the current output is 0~50 mA .

於本發明上述實施例中,該微控制單元包括一溫濕度調節器,可依據預設的一溫濕度預設值,藉由加熱或冷卻以調整該腔體內之溫度或濕度,提供該除濕輪水分脫附或水氣吸附。 In the above embodiment of the present invention, the micro control unit includes a temperature and humidity regulator, which can adjust the temperature or humidity in the cavity by heating or cooling according to a preset temperature and humidity preset value to provide the dehumidifying wheel Moisture desorption or moisture adsorption.

於本發明上述實施例中,該溫濕度調節器包括一加熱元件,用以調整該腔體內之溫度,提供該除濕輪水分脫附。 In the above embodiment of the present invention, the temperature and humidity regulator includes a heating element for adjusting the temperature in the cavity to provide desorption of moisture from the dehumidifying wheel.

於本發明上述實施例中,該溫濕度調節器包括一加濕元件,用以調整該腔體內之濕度,提供該除濕輪水氣吸附。 In the above embodiment of the present invention, the temperature and humidity regulator includes a humidifying element, which is used to adjust the humidity in the cavity to provide moisture absorption for the dehumidifying wheel.

於本發明上述實施例中,該通訊單元係藉由無線網路、藍芽傳輸、紅外線傳輸、乙太網路(ethernet)或電力線(power-line)方式與該遠端輸控裝置之間進行資料傳輸。 In the above embodiment of the present invention, the communication unit is communicated with the remote transmission and control device by wireless network, Bluetooth transmission, infrared transmission, Ethernet or power-line method Data transmission.

於本發明上述實施例中,該遠端監控裝置係為一手機、一平板電腦、一桌上型電腦、一觸控式工業電腦或一筆記型電腦,俾令該除濕輪材料之重量、吸附量變化可同步顯示,且可即時顯示及分析材料之吸附量。 In the above embodiment of the present invention, the remote monitoring device is a mobile phone, a tablet computer, a desktop computer, a touch industrial computer, or a notebook computer, so as to allow the weight of the dehumidifying wheel material, adsorption The changes in the amount can be displayed simultaneously, and the adsorption amount of the material can be displayed and analyzed in real time.

於本發明上述實施例中,該遠端監控裝置內建有一中央處理器、一可與該通訊單元相匹配之通訊介面、一顯示介面及一軟體應用程式(Application software,APP),該中央處理器透過該通訊介面接收由該通訊單元傳出之該除濕輪重量感測訊號及該溫濕度感測訊號,並送至該軟體應用程式內設有之一判斷機制,透過該判斷機制判斷運算而得出該除濕輪對於水份吸脫附量並輸出於該顯示介面紀錄並繪圖,可同時儲存資料及遠端網路監控。 In the above embodiment of the present invention, the remote monitoring device has a central processor, a communication interface matching the communication unit, a display interface, and an application software (APP). The central processing unit The device receives the weight-sensing signal of the dehumidifying wheel and the temperature-humidity sensing signal from the communication unit through the communication interface, and sends it to the software application with a judging mechanism. The moisture absorption and desorption amount of the dehumidifying wheel is obtained and output to the display interface for record and drawing, which can store data and remote network monitoring at the same time.

1:腔體 1: cavity

2:除濕輪 2: Dehumidification wheel

3:重量感測器 3: weight sensor

31:秤面 31: Scale surface

32:荷重元 32: Load element

4:溫濕度感測器 4: temperature and humidity sensor

41:支撐架 41: Support frame

5:微控制單元 5: Micro control unit

51:恆溫恆濕感測器 51: Constant temperature and humidity sensor

52:溫濕度調節器 52: temperature and humidity regulator

521:加熱元件 521: Heating element

522:加濕元件 522: Humidifying element

6:通訊單元 6: Communication unit

7:遠端監控裝置 7: Remote monitoring device

71:中央處理器 71: CPU

72:通訊介面 72: Communication interface

73:顯示介面 73: Display interface

74:軟體應用程式 74: Software application

第1圖,係本發明除濕輪吸脫附動力量化裝置之架構示意圖。 Figure 1 is a schematic diagram of the structure of the dehumidifying wheel suction desorption power quantization device of the present invention.

第2圖,係本發明除濕輪吸脫附動力量化裝置之方塊示意圖。 Fig. 2 is a block schematic diagram of a dequantification desorption power quantification device of the present invention.

第3圖,係本發明之等溫吸附測試流程示意圖。 Figure 3 is a schematic diagram of the isothermal adsorption test process of the present invention.

第4圖,係本發明之脫附動力反應測試流程示意圖。 Figure 4 is a schematic diagram of the desorption kinetic response test process of the present invention.

第5圖,係本發明之等溫吸附平衡結果示意圖。 Figure 5 is a schematic diagram of the isothermal adsorption equilibrium results of the present invention.

第6圖,本發明一具體實施例之結構態樣示意圖。 Fig. 6 is a schematic diagram of a structure of a specific embodiment of the present invention.

第7圖,本發明具體實施例之局部放大示意圖。 Figure 7 is a partially enlarged schematic view of a specific embodiment of the present invention.

請參閱『第1圖~第7圖』所示,係分別為本發明除濕輪吸脫附動力量化裝置之架構示意圖、本發明除濕輪吸脫附動力量化裝置之方塊示意圖、本發明綠色環保除濕輪之立體照片、本發明之等溫吸附測試流程示意圖、 本發明之脫附動力反應測試流程示意圖、本發明之等溫吸附平衡結果示意圖、本發明具體實施例之結構態樣示意圖、及本發明具體實施例之局部放大示意圖。如圖所示:本發明係一種除濕輪吸脫附動力量化裝置,係包括一腔體1、一除濕輪2、一重量感測器3、一溫濕度感測器4、一微控制單元5、一通訊單元6以及一遠端監控裝置7所構成。 Please refer to "Figure 1 ~ Figure 7", which are the schematic diagram of the structure of the dehumidification wheel suction and desorption power quantization device of the present invention, the block diagram of the dehumidification wheel suction and desorption power quantization device of the present invention, the green environmental protection dehumidification of the present invention Three-dimensional photo of the wheel, schematic diagram of the isothermal adsorption test process of the present invention, Schematic diagram of the desorption kinetic reaction test process of the present invention, schematic diagram of the isothermal adsorption equilibrium result of the present invention, schematic diagram of the structure of the specific embodiment of the present invention, and a partially enlarged schematic view of the specific embodiment of the present invention. As shown in the figure: the present invention is a dehumidification wheel suction and desorption power quantification device, which includes a cavity 1, a dehumidification wheel 2, a weight sensor 3, a temperature and humidity sensor 4, a micro control unit 5 , A communication unit 6 and a remote monitoring device 7 are formed.

上述所提之腔體1係為恆溫恆濕機,可提供一恆溫恆濕環境。該除濕輪2係置放在該腔體1之內部。該除濕輪2具有氣孔相互貫通之多孔陶瓷輪體,其為孔徑大於100nm之開孔型多孔三維網狀骨架結構,並在該多孔陶瓷輪體之表面均勻散佈有數個微孔,令該除濕輪形成微孔表面與多孔陶瓷之複合吸附材料;其中,該除濕輪之多孔陶瓷輪體直徑介於1~120公分,孔隙密度介於10~60PPI(Pores per inch),孔隙率介於60~85%,抗彎強度大於20kgf/cm2,厚度介於10~100公分。此外,本發明亦可針對其它生產方式之除濕輪(如蜂巢狀纖維紙結構及直流通道燒結結構)、其它材料組成之除濕輪、或其它型態之除濕輪,對於水份吸脫附之能力進行等溫吸脫附動力量化。 The cavity 1 mentioned above is a constant temperature and humidity machine, which can provide a constant temperature and humidity environment. The dehumidifying wheel 2 is placed inside the cavity 1. The dehumidifying wheel 2 has a porous ceramic wheel body with interpenetrating pores, which is an open-cell porous three-dimensional network skeleton structure with a pore diameter greater than 100 nm, and several micropores are evenly distributed on the surface of the porous ceramic wheel body, so that the dehumidifying wheel A composite adsorbent material forming a microporous surface and porous ceramics; wherein, the diameter of the porous ceramic wheel body of the dehumidifying wheel is between 1 and 120 cm, the pore density is between 10 and 60 PPI (Pores per inch), and the porosity is between 60 and 85 %, the bending strength is greater than 20kgf/cm2, and the thickness is between 10 and 100 cm. In addition, the present invention can also be directed to dehumidification wheels of other production methods (such as honeycomb fiber paper structure and DC channel sintering structure), dehumidification wheels made of other materials, or other types of dehumidification wheels, for their ability to absorb and desorb water. The quantification of isothermal absorption and desorption power was carried out.

該重量感測器3係設在該腔體1之內部,具有一秤面31,且內建有一荷重元(Load cell)32,以該秤面31承載該除濕輪2,該荷重元32於一吸附平衡過程中連續地量測該除濕輪2重量資訊之變化量,以產生一除濕輪重量感測訊號。其中,該荷重元32重量顯示範圍為0~3200克,精度範圍為0.01~0.001克,線性誤差範圍為±0.04~±0.005克,再現性範圍為0.01~0.001克,且穩定時間為0.5~1.0秒。 The weight sensor 3 is disposed inside the cavity 1 and has a weighing surface 31 with a load cell 32 built in. The weighing surface 31 carries the dehumidifying wheel 2 and the load cell 32 is During the adsorption balancing process, the weight change of the dehumidifying wheel 2 is continuously measured to generate a dehumidifying wheel weight sensing signal. Among them, the load cell 32 weight display range is 0~3200 grams, the accuracy range is 0.01~0.001 grams, the linear error range is ±0.04~±0.005 grams, the reproducibility range is 0.01~0.001 grams, and the stability time is 0.5~1.0 second.

該溫濕度感測器4係設在該腔體1之內部,且經由一支撐架41定位在該除濕輪2上方,用以感測該除濕輪2之溫度及濕度,以產生一溫濕度感測訊號。其中,該溫濕度感測器4之溫度顯示範圍為0~100℃,電流輸出範圍為0~50毫安培。 The temperature and humidity sensor 4 is disposed inside the cavity 1 and is positioned above the dehumidifying wheel 2 via a support frame 41 for sensing the temperature and humidity of the dehumidifying wheel 2 to generate a temperature and humidity sense Test signal. Wherein, the temperature display range of the temperature and humidity sensor 4 is 0~100°C, and the current output range is 0~50 mA.

該微控制單元5係設在該腔體1之外側,且與該重量感測器3及該溫濕度感測器4電性連接,用以控制該腔體1維持在該恆溫恆濕環境下,並接收該除濕輪重量感測訊號及該溫濕度感測訊號,依據該除濕輪重量感測訊號及該溫濕度感測訊號產生一控制訊號。 The micro-control unit 5 is disposed outside the cavity 1 and is electrically connected to the weight sensor 3 and the temperature and humidity sensor 4 to control the cavity 1 to be maintained under the constant temperature and humidity environment And receive the weight sensing signal of the dehumidifying wheel and the temperature and humidity sensing signal, and generate a control signal according to the weight sensing signal of the dehumidifying wheel and the temperature and humidity sensing signal.

該通訊單元6係設在該腔體1之外側,且與該微控制單元5電性連接,接收該控制訊號,將該除濕輪重量感測訊號及該溫濕度感測訊號予以傳輸至該遠端監控裝置7。其中,該通訊單元6係可藉由無線網路、藍芽傳輸、紅外線傳輸、乙太網路(ethernet)或電力線(power-line)等方式與該遠端監控裝置7之間進行資料傳輸,其具備10/100 BASE-T,RJ-45通訊,可支援DHCP Client、超文本傳輸協定(Hypertext Transfer Protocol,HTTP)、串行通訊協定/傳輸控制協定(Modbus/TCP)及8個獨立的用戶端指令對應到各別的串列輸入輸出(I/O),數位I/O,且所有指令可以同時進行,RS-232/RS-422/RS-485可由軟體切換,資料流量由RTS/CTS控制。 The communication unit 6 is disposed outside the cavity 1 and is electrically connected to the micro-control unit 5 to receive the control signal and transmit the dehumidification wheel weight sensing signal and the temperature and humidity sensing signal to the remote端保护装置7. End monitoring device 7. Wherein, the communication unit 6 can transmit data to the remote monitoring device 7 by means of wireless network, Bluetooth transmission, infrared transmission, Ethernet or power-line, etc. It has 10/100 BASE-T, RJ-45 communication, can support DHCP Client, Hypertext Transfer Protocol (Hypertext Transfer Protocol, HTTP), serial communication protocol / transmission control protocol (Modbus/TCP) and 8 independent users The terminal commands correspond to various serial input and output (I/O), digital I/O, and all commands can be performed at the same time, RS-232/RS-422/RS-485 can be switched by software, and the data flow rate is RTS/CTS control.

該遠端監控裝置7內建有一中央處理器71、一可與該通訊單元6相匹配之通訊介面72、一顯示介面73及一軟體應用程式(Application software,APP)74,該中央處理器71透過該通訊介面72接收由該通訊單元6所傳輸之該除濕輪重量感測訊號及該溫濕度感測訊號,並將該除濕輪重 量感測訊號及該溫濕度感測訊號送至該軟體應用程式74內作線性的紀錄,該軟體應用程式74內設有一判斷機制,透過該判斷機制分析運算以判斷出該除濕輪2對於水份吸脫附量並輸出於該顯示介面73紀錄並繪圖,可同時儲存資料及遠端網路監控。在本實施例中,該遠端監控裝置7係為一手機、一平板電腦、一桌上型電腦、一觸控式工業電腦或一筆記型電腦,亦可使用其他具有網路連線功能之裝置所取代,具體實施例如第6、7圖所示,可將除濕輪之重量、吸附量變化同步顯示,且可即時顯示及分析材料之吸附量。如是,藉由上述揭露之元件構成一全新之除濕輪吸脫附動力量化裝置。 The remote monitoring device 7 has a central processor 71, a communication interface 72 compatible with the communication unit 6, a display interface 73, and an application software (APP) 74. The central processor 71 Receiving the weight sensing signal of the dehumidifying wheel and the temperature and humidity sensing signal transmitted by the communication unit 6 through the communication interface 72, and weighing the dehumidifying wheel The quantity sensing signal and the temperature and humidity sensing signal are sent to the software application 74 for linear recording. The software application 74 is provided with a judging mechanism, through which the analytical operation is analyzed to judge the moisture content of the dehumidifying wheel 2 The amount of absorption and desorption is output to the display interface 73 for recording and drawing, which can store data and remote network monitoring at the same time. In this embodiment, the remote monitoring device 7 is a mobile phone, a tablet computer, a desktop computer, a touch industrial computer or a notebook computer, and other devices with network connection functions can also be used Replaced by the device, as shown in Figures 6 and 7 for specific implementation, the weight and adsorption amount of the dehumidifying wheel can be displayed simultaneously, and the adsorption amount of the material can be displayed and analyzed in real time. If so, a new dehumidification wheel suction and desorption power quantization device is constituted by the elements disclosed above.

上述微控制單元5係包括一恆溫恆濕感測器51,可感測該腔體1內的一溫濕度值,該微控制單元5可依據接收到之溫濕度值與其中預設的一溫濕度預設值之間的差異,對應調節該腔體1內之溫度或濕度,以監控該恆溫恆濕感測器51所測溫濕度值是否達到該溫濕度預設值。 The micro control unit 5 includes a constant temperature and humidity sensor 51, which can sense a temperature and humidity value in the cavity 1. The micro control unit 5 can be based on the received temperature and humidity value and a preset temperature therein The difference between the preset humidity values adjusts the temperature or humidity in the cavity 1 accordingly to monitor whether the temperature and humidity values measured by the constant temperature and humidity sensor 51 reach the preset temperature and humidity values.

該微控制單元5可包括一溫濕度調節器52,係依據預設之溫濕度預設值,藉由加熱或冷卻以調整該腔體1內之溫度或濕度,提供該除濕輪2水分脫附或水氣吸附。其中,該溫濕度調節器52包括一加熱元件521,例如:熱風機。該微控制單元5可於該腔體2內溫度不足時啟動該加熱元件521加熱空氣以調節環境溫度,提供該除濕輪2水分脫附,並依據該恆溫恆濕感測器51傳回之數值自動啟動或關閉該加熱元件521;該溫濕度調節器52還包括一加濕元件522,例如:超音波加濕機,該微控制單元5可於該腔體2內濕度不足時啟動該加濕元件522製造濕空氣以調節環境濕度,提供該除濕輪2水氣吸附,並依據該恆溫恆濕感測器51傳回之數值自 動啟動或關閉該加濕元件522。 The micro-control unit 5 may include a temperature and humidity regulator 52, which adjusts the temperature or humidity in the cavity 1 by heating or cooling according to a preset temperature and humidity preset value to provide moisture desorption of the dehumidifying wheel 2 Or moisture adsorption. Wherein, the temperature and humidity regulator 52 includes a heating element 521, such as a hot air fan. The micro-control unit 5 can activate the heating element 521 to heat the air to adjust the ambient temperature when the temperature in the cavity 2 is insufficient, to provide moisture desorption of the dehumidifying wheel 2 and according to the value returned by the constant temperature and humidity sensor 51 The heating element 521 is automatically started or turned off; the temperature and humidity regulator 52 further includes a humidifying element 522, such as an ultrasonic humidifier, and the micro control unit 5 can start the humidification when the humidity in the cavity 2 is insufficient The element 522 produces humid air to regulate the ambient humidity, provides moisture absorption of the dehumidifying wheel 2, and is based on the value returned by the constant temperature and humidity sensor 51. The humidifying element 522 is activated or deactivated.

本發明所提除濕輪2係以環保再生吸附材料為基材,製作蜂巢轉輪結構體,再整合開發環保高效除濕輪。其製作方法係將未經煅燒的廢鋁渣加入鹼性水溶液,pH介於10~14,提取鋁元素成為鋁酸鈉水溶液,從而生產高純度氫氧化鋁及氧化鋁吸附材料。接著,以該氫氧化鋁及氧化鋁吸附材料為基材,加入流變助劑(0.1%~50%)、抗發泡劑(0.1%~30%)、及凝聚劑(0.1%~60%)形成陶瓷漿料,促進該陶瓷漿料黏流性質減少架橋。然後,將該陶瓷漿料添加至具3D網狀結構之載體材料中。最後,經由燒結程序,高溫燃燒移除該載體材料,製得可循環再用之除濕輪2。因此,本發明所提除濕輪2係以煉鋁爐渣經純化分離提取環保再生氫氧化鋁及氧化鋁吸附材料為基材,添加至具3D網狀結構之泡棉載體中,經由燒結程序,將泡棉移除留下開孔型多孔三維網狀骨架結構之多孔陶瓷輪體,以該多孔陶瓷輪體為主體,附加活性氧化鋁吸附單體,經高溫燒結使表面堅硬並附著於巨孔內部,在該多孔陶瓷輪體之表面均勻散佈許多微孔,形成微孔表面與多孔陶瓷之複合吸附材料者,可增加與潮濕空氣之接觸面積,提高吸濕能力,最後整合完成綠色環保高效除濕輪開發。 The dehumidifying wheel 2 provided by the present invention uses an environmentally friendly regenerated adsorbent material as a base material to make a honeycomb rotor structure, and then integrates and develops an environmentally friendly and efficient dehumidifying wheel. The manufacturing method is to add the uncalcined waste aluminum slag to the alkaline aqueous solution, the pH is between 10 and 14, and the aluminum element is extracted into an aqueous solution of sodium aluminate, thereby producing high-purity aluminum hydroxide and alumina adsorption material. Next, using the aluminum hydroxide and the alumina adsorption material as a substrate, add a rheology aid (0.1% to 50%), an anti-foaming agent (0.1% to 30%), and a coagulant (0.1% to 60% ) Form a ceramic slurry to promote the viscous flow of the ceramic slurry and reduce bridging. Then, the ceramic slurry is added to a carrier material with a 3D network structure. Finally, through a sintering process, the carrier material is burned at high temperature to remove the dehumidifying wheel 2 that can be recycled. Therefore, the dehumidifying wheel 2 proposed by the present invention uses aluminum slag purified and separated to extract environmentally friendly regenerated aluminum hydroxide and aluminum oxide adsorbent material as the base material, and is added to a foam carrier with a 3D network structure. The foam removes the porous ceramic wheel body with an open-pore porous three-dimensional network skeleton structure. Taking the porous ceramic wheel body as the main body, the activated alumina is used to adsorb the monomer, and the surface is hardened by high-temperature sintering and attached to the inside of the macropore , The surface of the porous ceramic wheel is evenly distributed with many micropores, forming a composite adsorption material of microporous surface and porous ceramic, can increase the contact area with moist air, improve the capacity of moisture absorption, and finally integrate and complete the green environmental protection and efficient dehumidification wheel Development.

本發明可針對各種生產方式之除濕輪(如多孔陶瓷結構蜂巢狀纖維紙結構及直流通道燒結結構),或其它材料組成之除濕輪,或其它型態之除濕輪,對於水份吸脫附之能力進行等溫吸脫附動力量化。除濕輪之重量、吸附量變化可同步顯示,且可即時顯示及分析材料之吸附量。具有下列優點:樣品吸附水氣重量變化即時記錄、內建自製軟體可繪出重量隨時間變化趨勢 圖、內部自行運算設計可同步顯示出單位重樣品吸附水氣重量及百分比、溫度及濕度可依需求進行程式設定達到目標值、樣品放置妥當一鍵啟動測試簡便、以及荷重元可依需求進行更換、設定多樣化選擇及各種形態測試樣品皆可測試獲得吸脫附動力曲線滿足需求。 The present invention can be directed to dehumidification wheels of various production methods (such as porous ceramic structure honeycomb fiber paper structure and DC channel sintering structure), or dehumidification wheels composed of other materials, or other types of dehumidification wheels. Ability to quantify isothermal absorption and desorption power. The weight and adsorption amount of the dehumidifying wheel can be displayed simultaneously, and the adsorption amount of the material can be displayed and analyzed in real time. It has the following advantages: real-time recording of the weight change of the adsorbed water vapor, and the built-in self-made software can plot the weight change trend with time The graph and internal self-calculation design can simultaneously display the weight and percentage of adsorbed water vapor per unit of weight, temperature and humidity can be programmed according to requirements to reach the target value, the sample is placed properly, one-click start-up test is simple, and the load cell can be replaced according to demand , Set a variety of choices and test samples of various forms can be tested to obtain the suction and desorption power curve to meet the demand.

以下實施例僅舉例以供了解本發明之細節與內涵,但不用於限制本發明之申請專利範圍。 The following embodiments are only examples for understanding the details and connotation of the present invention, but are not intended to limit the patent application scope of the present invention.

為了解除濕輪對於水份吸脫附之能力進行等溫吸脫附動力實驗。等溫吸附平衡實驗步驟如第3圖所示,提供四種不同孔隙度除濕輪,分別為20、30、40及50PPI,輪體厚度皆為5公分如步驟s11。於恆溫恆濕機試驗操作條件下:溫度25~80℃、濕度60~100%,連續運轉如步驟s12。定義吸附平衡時間,於吸附平衡時進行取樣如步驟s13。吸附平衡過程進行除濕輪重量變化連續監控,定義轉輪體水氣吸附量如步驟s14。當系統達到吸附平衡,進行脫附動力反應實驗,其步驟如第4圖所示,提供吸附平衡後四種不同孔隙度除濕輪,分別為20、30、40及50PPI,輪體厚度皆為5公分如步驟s15。於熱風或熱室操作條件下:溫度120~200℃,進行除濕輪輪體重量變化觀察如步驟s16。取樣時間為10s、20s、30s、1min、3min、5min、10min如步驟s17。定義轉輪體水氣脫附量如步驟s18。 In order to release the wet wheel's ability to absorb and desorb water, an isothermal absorption and desorption power experiment was conducted. As shown in Figure 3, the isothermal adsorption equilibrium experiment procedure provides four different porosity dehumidification wheels, respectively 20, 30, 40 and 50PPI, and the wheel body thickness is 5 cm as in step s11. Under the test operating conditions of constant temperature and humidity machine: temperature 25~80℃, humidity 60~100%, continuous operation as step s12. The adsorption equilibrium time is defined, and sampling is performed during the adsorption equilibrium as in step s13. The adsorption balance process continuously monitors the weight change of the dehumidifying wheel, and defines the amount of water vapor adsorption of the rotor body as in step s14. When the system reaches the adsorption equilibrium, the desorption kinetic reaction experiment is carried out. The steps are shown in Figure 4. Provide four different porosity dehumidification wheels after adsorption equilibrium, respectively 20, 30, 40 and 50PPI, the wheel thickness is 5 The centimeter is as step s15. Under the operating conditions of hot air or hot room: temperature 120 ~ 200 ℃, the weight change of the dehumidification wheel body is observed as in step s16. The sampling time is 10s, 20s, 30s, 1min, 3min, 5min, 10min as in step s17. The amount of water vapor desorption of the runner body is defined as in step s18.

因此,本發明所提除濕輪2具有下列優點:1.良好化學穩定性;2.適宜機械強度;3.耐高溫環境操作; 4.無粉末化、不老化;5.無需使用壓縮機,構造為三維複合多孔陶瓷流道與結構體、毫米及微米複合多孔吸附流道與結構體,可增加與潮濕空氣的接觸面積提高吸濕能力,達到有效節能效應;6.除濕輪的水氣吸附量大於20%。如第5圖所示,以除濕輪的初始重量為331.543g之大小進行等溫吸附平衡實驗,將恆溫恆濕環境控制在溫度25.7℃,濕度64.6%之條件下量測;經量測結果發現,此除濕輪的水氣吸附量在3分鐘處達吸附平衡,吸附量為28.773g,顯示水氣大約吸附20%左右;7.除濕輪乾燥能力大於200g/h;以及8.可重複清洗再使用。 Therefore, the dehumidification wheel 2 proposed by the present invention has the following advantages: 1. Good chemical stability; 2. Suitable mechanical strength; 3. High temperature environment operation; 4. No powder, no aging; 5. No need to use compressor, it is constructed as three-dimensional composite porous ceramic flow channel and structure, millimeter and micrometer composite porous adsorption flow channel and structure, which can increase the contact area with humid air and improve the suction Moisture capacity, to achieve effective energy-saving effect; 6. Dehumidification wheel moisture absorption is greater than 20%. As shown in Figure 5, an isothermal adsorption equilibrium experiment was carried out with the initial weight of the dehumidification wheel at 331.543g, and the temperature and humidity environment was controlled at a temperature of 25.7°C and a humidity of 64.6%; the measurement results found that The moisture adsorption capacity of the dehumidifier wheel reaches adsorption equilibrium at 3 minutes, the adsorption capacity is 28.773g, indicating that the moisture adsorption is about 20%; 7. The drying capacity of the dehumidifier wheel is greater than 200g/h; and 8. Repeatable cleaning and then use.

綜上所述,本發明係一種除濕輪吸脫附動力量化裝置,可有效改善習用之種種缺點,以永續型環保吸附材料生產之除濕輪或其它材料組成之除濕輪或其它型態之除濕輪對於水份吸脫附之能力進行等溫吸脫附動力實驗,經測試證明其具有良好的量測能力,可定義除濕輪吸濕能力與乾燥能力,有效量測除濕輪吸附與脫附之速率,進而使本發明之產生能更進步、更實用、更符合使用者之所須,確已符合發明專利申請之要件,爰依法提出專利申請。 In summary, the present invention is a dehumidification wheel suction and desorption power quantification device, which can effectively improve the various shortcomings of the conventional use. The dehumidification wheel or other types of dehumidification wheels composed of dehumidification wheels made of sustainable environmentally friendly absorbent materials or other types The wheel performs an isothermal absorption and desorption power experiment on the ability of moisture absorption and desorption. The test proves that it has good measurement ability. The moisture absorption capacity and drying capacity of the dehumidification wheel can be defined, and the absorption and desorption of the dehumidification wheel can be effectively measured. The speed, which in turn makes the invention more advanced, more practical, and more in line with the needs of users, has indeed met the requirements for invention patent applications, and filed patent applications in accordance with the law.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍;故,凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。 However, the above are only preferred embodiments of the present invention, which should not be used to limit the scope of implementation of the present invention; therefore, simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the invention description , Should still fall within the scope of this invention patent.

1:腔體 1: cavity

2:除濕輪 2: Dehumidification wheel

3:重量感測器 3: weight sensor

31:秤面 31: Scale surface

32:荷重元 32: Load element

4:溫濕度感測器 4: temperature and humidity sensor

41:支撐架 41: Support frame

5:微控制單元 5: Micro control unit

6:通訊單元 6: Communication unit

7:遠端監控裝置 7: Remote monitoring device

Claims (10)

一種除濕輪吸脫附動力量化裝置,係包括:一腔體,提供一恆溫恆濕環境;一除濕輪,係置放在該腔體之內部,該除濕輪具有氣孔相互貫通之多孔陶瓷輪體,其為孔徑大於100nm之開孔型多孔三維網狀骨架結構,並在該多孔陶瓷輪體之表面均勻散佈有數個微孔,令該除濕輪形成微孔表面與多孔陶瓷之複合吸附材料;其中,該除濕輪之多孔陶瓷輪體直徑介於1~120公分,孔隙密度介於10~60PPI(Pores per inch),孔隙率介於60~85%,抗彎強度大於20kgf/cm2,厚度介於10~100公分;一重量感測器,係設在該腔體之內部,用以承載該除濕輪,並在一吸附平衡過程中連續地量測該除濕輪重量資訊之變化量,以產生一除濕輪重量感測訊號;一溫濕度感測器,係設在該腔體之內部,且經由一支撐架定位在該除濕輪上方,用以感測該除濕輪之溫度及濕度,以產生一溫濕度感測訊號;一微控制單元,係設在該腔體之外側,且與該重量感測器及該溫濕度感測器電性連接,用以控制該腔體維持在該恆溫恆濕環境下,並接收該除濕輪重量感測訊號及該溫濕度感測訊號,依據該除濕輪重量感測訊號及該溫濕度感測訊號產生一控制訊號;一通訊單元,係設在該腔體之外側,且與該微控制單元電性連接,接收該控制訊號,將該除濕輪重量感測訊號及該溫濕度感測訊號予以傳輸;以及 一遠端監控裝置,係接收該通訊單元所傳輸之該除濕輪重量感測訊號及該溫濕度感測訊號,並將該除濕輪重量感測訊號及該溫濕度感測訊號進行判斷,以運算得出該除濕輪對於水份吸脫附量。 A dehumidifying wheel suction and desorption power quantifying device includes: a cavity to provide a constant temperature and constant humidity environment; a dehumidifying wheel is placed inside the cavity, the dehumidifying wheel has a porous ceramic wheel body with interpenetrating pores , Which is an open-cell porous three-dimensional network skeleton structure with a pore diameter greater than 100nm, and several micropores are evenly distributed on the surface of the porous ceramic wheel body, so that the dehumidification wheel forms a composite adsorption material of micropore surface and porous ceramic; wherein The diameter of the porous ceramic wheel body of the dehumidifying wheel is between 1~120 cm, the pore density is between 10~60PPI (Pores per inch), the porosity is between 60~85%, the bending strength is greater than 20kgf/cm 2 , the thickness is between 10~100 cm; a weight sensor is installed inside the cavity to carry the dehumidifier wheel, and continuously measures the amount of change in the weight information of the dehumidifier wheel during an adsorption balance process to produce A dehumidification wheel weight sensing signal; a temperature and humidity sensor is located inside the cavity and is positioned above the dehumidification wheel through a support frame to sense the temperature and humidity of the dehumidification wheel to generate A temperature and humidity sensing signal; a micro-control unit is located outside the cavity, and is electrically connected to the weight sensor and the temperature and humidity sensor to control the cavity to maintain the constant temperature In a wet environment, and receiving the weight sensing signal of the dehumidifying wheel and the temperature and humidity sensing signal, a control signal is generated based on the weight sensing signal of the dehumidifying wheel and the temperature and humidity sensing signal; a communication unit is located in the cavity The outside of the body is electrically connected to the micro control unit, receives the control signal, transmits the dehumidification wheel weight sensing signal and the temperature and humidity sensing signal; and a remote monitoring device receives the communication unit Transmitting the weight sensing signal of the dehumidifying wheel and the temperature and humidity sensing signal, and judging the weight sensing signal of the dehumidifying wheel and the temperature and humidity sensing signal to calculate the amount of moisture absorption and desorption of the dehumidifying wheel . 依申請專利範圍第1項所述之除濕輪吸脫附動力量化裝置,其中,該除濕輪係以煉鋁爐渣經純化分離提取環保再生氫氧化鋁及氧化鋁吸附材料為基材,添加至3D網狀結構載體材料中,經由燒結程序,將載體材料移除留下開孔型多孔三維網狀骨架結構之多孔陶瓷輪體,以該多孔陶瓷輪體為主體,附加活性氧化鋁吸附單體,經高溫燒結使表面堅硬並附著於巨孔內部,在該多孔陶瓷輪體之表面均勻散佈許多微孔,形成微孔表面與多孔陶瓷之複合吸附材料者。 The dehumidification wheel suction and desorption power quantification device described in item 1 of the patent application scope, wherein the dehumidification wheel is based on aluminum slag purified and separated to extract environmentally friendly regenerated aluminum hydroxide and alumina adsorption material as a substrate, which is added to 3D In the carrier material of the mesh structure, the carrier material is removed through the sintering process to leave the porous ceramic wheel body with an open-cell porous three-dimensional mesh skeleton structure, with the porous ceramic wheel body as the main body, an additional activated alumina adsorption monomer is added, After high-temperature sintering, the surface is hard and attached to the inside of the giant pores, and many micropores are evenly distributed on the surface of the porous ceramic wheel body to form a composite adsorption material of micropore surface and porous ceramics. 依申請專利範圍第1項所述之除濕輪吸脫附動力量化裝置,係針對以永續型環保吸附材料生產之除濕輪、或蜂巢狀纖維紙結構或直流通道燒結結構之除濕輪、或是有別於永續型環保吸附材料組成之除濕輪、或是有別於微孔表面與多孔陶瓷複合型態之除濕輪,提供對水份吸脫附之能力進行等溫吸脫附動力量化。 The dehumidification wheel suction and desorption power quantification device described in item 1 of the scope of the patent application is aimed at a dehumidification wheel made of sustainable environmentally friendly adsorbent materials, or a honeycomb fiber paper structure or a DC channel sintered structure, or It is different from the dehumidification wheel composed of sustainable environmentally friendly adsorbent materials, or the dehumidification wheel which is different from the micro-porous surface and porous ceramic composite type, which provides the ability to quantify the isothermal absorption and desorption power of the moisture absorption and desorption ability. 依申請專利範圍第1項所述之除濕輪吸脫附動力量化裝置,其中,該重量感測器具有一承載該除濕輪之秤面,且內建有一對該除濕輪重量變化連續偵測之荷重元(Load cell),其重量顯示為0~3200克,精度為0.01~0.001克,線性誤差為±0.04~±0.005克,再現性為0.01~0.001克,且穩定時間為0.5~1.0秒。 The dehumidification wheel suction and desorption power quantification device as described in item 1 of the patent scope, wherein the weight sensor has a weighing surface carrying the dehumidification wheel and a built-in load for continuously detecting the weight change of the dehumidification wheel Load cell, its weight is shown as 0~3200 grams, the accuracy is 0.01~0.001 grams, the linear error is ±0.04~±0.005 grams, the reproducibility is 0.01~0.001 grams, and the stability time is 0.5~1.0 seconds. 依申請專利範圍第1項所述之除濕輪吸脫附動力量化裝置,其中,該微控制單元包括一恆溫恆濕感測器,可感測該腔體內的一溫 濕度值,其溫度顯示為0~100℃,電流輸出為0~50毫安培。 The dehumidification wheel suction and desorption power quantification device as described in item 1 of the patent scope, wherein the micro-control unit includes a constant temperature and humidity sensor that can sense a temperature in the cavity Humidity value, its temperature display is 0~100℃, current output is 0~50 mA. 依申請專利範圍第1項所述之除濕輪吸脫附動力量化裝置,其中,該微控制單元包括一溫濕度調節器,可依據預設的一溫濕度預設值,藉由加熱或冷卻以調整該腔體內之溫度或濕度,提供該除濕輪水分脫附或水氣吸附。 The dehumidification wheel suction and desorption power quantification device described in item 1 of the patent scope, wherein the micro-control unit includes a temperature and humidity regulator, which can be heated or cooled according to a preset temperature and humidity preset value Adjust the temperature or humidity in the cavity to provide moisture desorption or moisture adsorption of the dehumidifying wheel. 依申請專利範圍第6項所述之除濕輪吸脫附動力量化裝置,其中,該溫濕度調節器包括:一加熱元件,用以調整該腔體內之溫度,提供該除濕輪水分脫附;以及一加濕元件,用以調整該腔體內之濕度,提供該除濕輪水氣吸附。 The dehumidification wheel suction and desorption power quantification device according to item 6 of the patent application scope, wherein the temperature and humidity regulator includes: a heating element for adjusting the temperature in the chamber to provide moisture desorption of the dehumidification wheel; and A humidifying element is used to adjust the humidity in the cavity to provide moisture absorption of the dehumidifying wheel. 依申請專利範圍第1項所述之除濕輪吸脫附動力量化裝置,其中,該通訊單元係藉由無線網路、藍芽傳輸、紅外線傳輸、乙太網路(ethernet)或電力線(power-line)方式與該遠端監控裝置之間進行資料傳輸。 The dehumidification wheel suction and desorption power quantification device as described in item 1 of the patent scope, wherein the communication unit is via wireless network, Bluetooth transmission, infrared transmission, Ethernet or power line (power- line) mode and the remote monitoring device for data transmission. 依申請專利範圍第1項所述之除濕輪吸脫附動力量化裝置,其中,該遠端監控裝置係為一手機、一平板電腦、一桌上型電腦、一觸控式工業電腦或一筆記型電腦,俾令該除濕輪材料之重量、吸附量變化可同步顯示,且可即時顯示及分析材料之吸附量。 The dehumidification wheel suction and desorption power quantification device as described in item 1 of the patent scope, wherein the remote monitoring device is a mobile phone, a tablet computer, a desktop computer, a touch-control industrial computer or a note Type computer, so that the weight and adsorption amount of the dehumidification wheel material can be displayed simultaneously, and the adsorption amount of the material can be displayed and analyzed in real time. 依申請專利範圍第1項所述之除濕輪吸脫附動力量化裝置,其中,該遠端監控裝置內建有一中央處理器、一可與該通訊單元相匹配之通訊介面、一顯示介面及一軟體應用程式(Application software,APP),該中央處理器透過該通訊介面接收由該通訊單元傳出之該除濕輪重量感測訊號及該溫濕度感測訊號,並送至該軟 體應用程式內設有之一判斷機制,透過該判斷機制判斷運算而得出該除濕輪對於水份吸脫附量並輸出於該顯示介面紀錄並繪圖,可同時儲存資料及遠端網路監控。 The dehumidification wheel suction and desorption power quantification device described in item 1 of the patent application scope, wherein the remote monitoring device has a built-in central processor, a communication interface that can be matched with the communication unit, a display interface and a Application software (APP), the central processor receives the weight sensing signal of the dehumidifying wheel and the temperature and humidity sensing signal transmitted from the communication unit through the communication interface, and sends it to the software There is a judgment mechanism in the body application program. Through the judgment mechanism, the operation of the dehumidification wheel can be obtained and the amount of moisture absorption and desorption is output and recorded on the display interface and plotted, which can simultaneously store data and remote network monitoring .
TW108123846A 2019-07-05 2019-07-05 Device of kinetic quantization of absorption/desorption for desiccant wheel TWI695959B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108123846A TWI695959B (en) 2019-07-05 2019-07-05 Device of kinetic quantization of absorption/desorption for desiccant wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108123846A TWI695959B (en) 2019-07-05 2019-07-05 Device of kinetic quantization of absorption/desorption for desiccant wheel

Publications (2)

Publication Number Publication Date
TWI695959B true TWI695959B (en) 2020-06-11
TW202102802A TW202102802A (en) 2021-01-16

Family

ID=72176274

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108123846A TWI695959B (en) 2019-07-05 2019-07-05 Device of kinetic quantization of absorption/desorption for desiccant wheel

Country Status (1)

Country Link
TW (1) TWI695959B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792648B (en) * 2021-11-01 2023-02-11 行政院原子能委員會核能研究所 Apparatus of deep-dehumidifying wheels
CN116943368A (en) * 2023-07-11 2023-10-27 河北升益环保科技有限公司 Environment-friendly treatment system and method for waste gas from steel smelting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089503A (en) * 2007-07-06 2007-12-19 北京时代嘉华环境控制科技有限公司 Quality and regulation control method and system for chill station of central air conditioner
CN103097155A (en) * 2010-09-09 2013-05-08 渡边琢昌 Anti-fogging and air-conditioning system for electric vehicle, dehumidifying unit, dehumidifying cassette, and dehumidifying member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089503A (en) * 2007-07-06 2007-12-19 北京时代嘉华环境控制科技有限公司 Quality and regulation control method and system for chill station of central air conditioner
CN103097155A (en) * 2010-09-09 2013-05-08 渡边琢昌 Anti-fogging and air-conditioning system for electric vehicle, dehumidifying unit, dehumidifying cassette, and dehumidifying member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792648B (en) * 2021-11-01 2023-02-11 行政院原子能委員會核能研究所 Apparatus of deep-dehumidifying wheels
CN116943368A (en) * 2023-07-11 2023-10-27 河北升益环保科技有限公司 Environment-friendly treatment system and method for waste gas from steel smelting
CN116943368B (en) * 2023-07-11 2024-04-05 山西晋钢智造科技实业有限公司 Environment-friendly treatment system and method for waste gas from steel smelting

Also Published As

Publication number Publication date
TW202102802A (en) 2021-01-16

Similar Documents

Publication Publication Date Title
TWI695959B (en) Device of kinetic quantization of absorption/desorption for desiccant wheel
Younes et al. Synthesis and characterization of silica gel composite with polymer binders for adsorption cooling applications
Chang et al. Effects of the thickness and particle size of silica gel on the heat and mass transfer performance of a silica gel-coated bed for air-conditioning adsorption systems
Nakabayashi et al. Improvement of water vapor adsorption ability of natural mesoporous material by impregnating with chloride salts for development of a new desiccant filter
Wang et al. Investigation of adsorption performance deterioration in silica gel–water adsorption refrigeration
Liu et al. Experimental evaluation of the dehumidification performance of a metal organic framework desiccant wheel
Nawaz et al. Effect of catalyst used in the sol–gel process on the microstructure and adsorption/desorption performance of silica aerogels
Narayanan et al. Design and optimization of high performance adsorption-based thermal battery
CN105801122A (en) Preparation method of silicon carbide-based porous ceramic with gradient pore structure
Liu et al. Dehumidification performance of aluminum fumarate metal organic framework and its composite
CN105158315B (en) Current mode NO based on NASICONXThe preparation method of sensor
CN109001283B (en) Self-constant-temperature electrochemical sheet type gas sensor and preparation method thereof
Cerrah et al. Sorbent based enthalpy recovery ventilator
Cai et al. Performance analysis of adsorption refrigeration using a composite adsorbent with improved heat and mass transfer
Hu et al. Enhancement of thermal conductivity by using polymer-zeolite in solid adsorption heat pumps
CN108562513B (en) Device for measuring moisture content of different forms in sludge
Liu et al. The heat and mass transfer performance of facile synthesized silica gel/carbon-fiber based consolidated composite adsorbents developed by freeze-drying method
CN112701321A (en) Fuel cell air management device, system and method
JP3799446B2 (en) Adsorption performance prediction method for porous adsorbents
CN212006140U (en) Humidity adjusting device
Zhao et al. Preparation and characterization of composite adsorbent LiCl/zeolite 13X for adsorption system
WO2012079314A1 (en) Thermobalance with controllable high heating rate
Li et al. Experimental study on adsorption characteristics of SAPO-34 zeolite and silica gel in vacuum condition
JP5597048B2 (en) Adsorption / desorption device and rotor rotation speed control method
JP2004012410A (en) Method and apparatus for testing adsorbent