TWI694593B - Method for forming semiconductor memory device - Google Patents

Method for forming semiconductor memory device Download PDF

Info

Publication number
TWI694593B
TWI694593B TW107112972A TW107112972A TWI694593B TW I694593 B TWI694593 B TW I694593B TW 107112972 A TW107112972 A TW 107112972A TW 107112972 A TW107112972 A TW 107112972A TW I694593 B TWI694593 B TW I694593B
Authority
TW
Taiwan
Prior art keywords
top surface
material layer
floating gate
gate material
area
Prior art date
Application number
TW107112972A
Other languages
Chinese (zh)
Other versions
TW201944580A (en
Inventor
建軍 楊
明生 徐
母志強
許哲榮
張志謙
王獻德
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW107112972A priority Critical patent/TWI694593B/en
Publication of TW201944580A publication Critical patent/TW201944580A/en
Application granted granted Critical
Publication of TWI694593B publication Critical patent/TWI694593B/en

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Element Separation (AREA)

Abstract

A method for fabricating a semiconductor memory device: firstly, providing a substrate having an cell region and a logic region defined thereon, a plurality of shallow trench isolations are formed in the substrate, and forming a floating gate material layer on the substrate. A planarization step is then performed, and then a photoresist layer is formed to cover the logic region, a first etching step is performed to remove portions of the shallow trench isolation and part of the floating gate material layer in the cell region. Afterwards, removing the photoresist layer, and performing a second etching step, to remove portions of the shallow trench isolation and portions of the floating gate material layer in the cell region and in the logic region.

Description

半導體記憶元件的製作方法 Manufacturing method of semiconductor memory element

本發明係有關於半導體製程領域,尤其是一種提升半導體記憶元件製程的靈活性之方法。 The present invention relates to the field of semiconductor manufacturing processes, in particular to a method for improving the flexibility of semiconductor memory device manufacturing processes.

半導體記憶體係為電腦或電子產品中用於儲存資料或數據的半導體元件,其可概分為揮發性記憶體(volatile)與非揮發性記憶體,其中非揮發性記憶體由於具有不因電源供應中斷而造成儲存資料遺失的特性,而被廣泛地使用。 The semiconductor memory system is a semiconductor component used for storing data or data in computers or electronic products, which can be roughly divided into volatile memory (volatile) and non-volatile memory, in which non-volatile memory has no power supply The feature of interruption and loss of stored data is widely used.

然而,隨著電腦微處理器的功能越來越強大,對大容量且低成本的記憶體的需求也越來越高。為了滿足此一趨勢以及半導體科技對高積集度持續的挑戰,記憶體結構愈趨微縮,而記憶體結構的製程愈趨複雜。舉例來說,在記憶體元件的不同區域(例如元件區與周邊區),因為包含有不同的元件,因此各元件的尺寸等參數也不盡相同,因此造成製作記憶體元件的難度增加。 However, as the functions of computer microprocessors become more powerful, the demand for large-capacity and low-cost memory is also increasing. In order to meet this trend and the continuous challenges of semiconductor technology for high accumulation, the memory structure is becoming smaller and the manufacturing process of the memory structure is becoming more complicated. For example, in different areas of the memory device (such as the device area and the peripheral area), because different devices are included, the size and other parameters of each device are not the same, which makes it more difficult to manufacture the memory device.

本發明提供一種半導體記憶元件的製作方法,包含:首先,提供一基底,基底上定義有一元件區以及一邏輯區,接著形成複數個淺溝隔離於基底內,並且形成一浮動閘極材料層於基底上,進行一平坦化步驟,在該平坦化步驟之後,各該淺溝隔離的一頂面與該浮動閘極材料層的一頂面皆高於該基底的一頂面,然後形成一光阻層覆蓋該邏輯區,之後進行一第一蝕刻步驟,移除該元件區內的部分各該淺溝隔離以及部分該浮動閘極材料層,再移除該光阻層,以及進行一第二蝕刻步驟,移除該元件區內以及該邏輯區內的部分各該淺溝隔離以及部分該浮動閘極材料層。 The invention provides a method for manufacturing a semiconductor memory device, including: first, providing a substrate, a device region and a logic region are defined on the substrate, and then forming a plurality of shallow trenches to isolate in the substrate, and forming a floating gate material layer in On the substrate, a planarization step is performed. After the planarization step, a top surface of each shallow trench isolation and a top surface of the floating gate material layer are higher than a top surface of the substrate, and then a light is formed The resist layer covers the logic area, and then a first etching step is performed to remove a portion of the shallow trench isolation and a portion of the floating gate material layer in the device area, then remove the photoresist layer, and perform a second In the etching step, a portion of the shallow trench isolation and a portion of the floating gate material layer in the device area and the logic area are removed.

本發明的特徵在於,利用光阻層遮蓋住部分區域(例如邏輯區),接下來再調整蝕刻製程的參數,以控制元件區以及邏輯區內的淺溝隔離與多晶矽層的高度差,並且進一步形成各種不同高度的元件。如此一來,本發明的方法可以增加製程的靈活度。此外,本發明須注意在沉積多晶矽層時,將其沉積厚度增加(大於400埃),以避免在平坦化步驟中多晶矽層被蝕穿,影響後續記憶體堆疊結構的品質。 The present invention is characterized by using a photoresist layer to cover some areas (such as the logic area), and then adjusting the etching process parameters to control the height difference between the shallow trench isolation and the polysilicon layer in the device area and the logic area, and further Forming elements of various heights. In this way, the method of the present invention can increase the flexibility of the manufacturing process. In addition, the present invention should pay attention to increase the deposition thickness (more than 400 angstroms) when depositing the polysilicon layer to avoid the polysilicon layer being etched through during the planarization step and affecting the quality of the subsequent memory stack structure.

100:基底 100: base

100S:頂面 100S: top surface

102:元件區 102: component area

103:襯墊層 103: liner layer

104:邏輯區 104: logical area

106:淺溝隔離 106: Shallow trench isolation

106A:淺溝隔離 106A: Shallow trench isolation

106B:淺溝隔離 106B: Shallow trench isolation

106S:頂面 106S: top surface

108:多晶矽層 108: polysilicon layer

108A:多晶矽層 108A: polysilicon layer

108B:多晶矽層 108B: polysilicon layer

108C:多晶矽層 108C: polysilicon layer

110:光阻層 110: photoresist layer

112:氧化矽層 112: silicon oxide layer

114:氮化矽層 114: silicon nitride layer

116:氧化矽層 116: Silicon oxide layer

118:多晶矽層 118: polysilicon layer

A:區域 A: area

P1:回蝕刻步驟 P1: Back etching step

P2:蝕刻步驟 P2: etching step

P3:蝕刻步驟 P3: etching step

H1:高度 H1: height

H2:高度 H2: height

H3:高度 H3: height

H4:高度 H4: height

H5:高度 H5: height

第1圖與第2圖提供了製作本發明半導體記憶元件的剖面流程示意圖。 Figures 1 and 2 provide schematic cross-sectional flow diagrams for manufacturing the semiconductor memory device of the present invention.

第3A圖繪示根據本發明的其中一實施例,係由第2圖所示的半導體記憶體結構繼續進行後續製程的結構示意圖。 FIG. 3A is a schematic structural view of continuing the subsequent manufacturing process from the semiconductor memory structure shown in FIG. 2 according to one embodiment of the present invention.

第3B圖繪示根據本發明的另外一實施例,係由第2圖所示的半導體記 憶體結構繼續進行後續製程的結構示意圖。 FIG. 3B illustrates another embodiment of the present invention, which is based on the semiconductor memory shown in FIG. 2 Schematic diagram of the memory structure to continue the subsequent process.

第4A圖與第4B圖分別繪示根據第3A圖與第3B圖所示的半導體記憶體結構繼續進行後續製程的結構示意圖。 FIG. 4A and FIG. 4B respectively illustrate the structural schematic diagrams of continuing the subsequent manufacturing process according to the semiconductor memory structure shown in FIGS. 3A and 3B.

第5圖提供了製作本發明半導體記憶元件的剖面流程示意圖。 FIG. 5 provides a schematic cross-sectional flow diagram of manufacturing the semiconductor memory device of the present invention.

為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。 In order to enable those of ordinary skill in the art of the present invention to further understand the present invention, the preferred embodiments of the present invention are specifically enumerated below, and in conjunction with the accompanying drawings, the composition of the present invention and the desired effects are described in detail .

為了方便說明,本發明之各圖式僅為示意以更容易了解本發明,其詳細的比例可依照設計的需求進行調整。在文中所描述對於圖形中相對元件之上下關係,在本領域之人皆應能理解其係指物件之相對位置而言,因此皆可以翻轉而呈現相同之構件,此皆應同屬本說明書所揭露之範圍,在此容先敘明。 For the convenience of description, the drawings of the present invention are only schematic diagrams to make it easier to understand the present invention, and the detailed proportions thereof can be adjusted according to design requirements. As described in the text, the relative relationship of the relative elements in the figure should be understood by those skilled in the art as it refers to the relative position of the objects, so they can be turned over to present the same components, which should belong to the The scope of disclosure is described here first.

請參考第1圖與第2圖,其提供了製作本發明半導體記憶元件的剖面流程圖。如第1圖所示,提供一基底100,基底100上定義有一元件區102以及一邏輯區104。其中元件區102通常包含有後續形成的位元線、字元線等元件,而邏輯區104內則通常包含有讀取/寫入電路以及/或其他電路的電晶體,以支持記憶體元件的運行。一般而言,元件區102內的元件具有較大的元件密度,也就是各元件排列得更加緊密,至於邏輯區104內的元件排列較為鬆散,元件密度較小。 Please refer to FIG. 1 and FIG. 2, which provide cross-sectional flow charts for manufacturing the semiconductor memory device of the present invention. As shown in FIG. 1, a substrate 100 is provided, and a device area 102 and a logic area 104 are defined on the substrate 100. The element area 102 usually contains elements such as bit lines and word lines that are formed later, and the logic area 104 usually contains transistors for read/write circuits and/or other circuits to support the memory element. run. Generally speaking, the elements in the element area 102 have a larger element density, that is, the elements are arranged closer, and the element arrangement in the logic area 104 is looser and the element density is smaller.

另外,基底100上形成有複數個淺溝隔離106,以及多晶矽層108,位於元件區102以及邏輯區104內。其中淺溝隔離106通常是呈現線型且平行排列。在本實施例中,淺溝隔離106的上表面106S較基底100的表面100S更高。淺溝隔離106的材質例如為氧化矽,但不限於此。 In addition, a plurality of shallow trench isolations 106 and a polysilicon layer 108 are formed on the substrate 100, and are located in the device region 102 and the logic region 104. The shallow trench isolation 106 is generally linear and arranged in parallel. In this embodiment, the upper surface 106S of the shallow trench isolation 106 is higher than the surface 100S of the substrate 100. The material of the shallow trench isolation 106 is, for example, silicon oxide, but it is not limited thereto.

至於多晶矽層108,其形成方式例如為當各淺溝隔離106完成後,先全面性地形成一多晶矽材料層(圖未示)於元件區102以及邏輯區104內,接著進行一平坦化步驟,移除多餘的多晶矽材料層,直到至少部分的淺溝隔離106頂端被曝露出來為止。值得注意的是,上述提到在邏輯區104內的元件排列得較為鬆散,因此可能會有部分區域未形成任何元件,例如淺溝隔離106等,該些區域若面積較大,在蝕刻或平坦化步驟的過程中將會相較於其他區域被蝕刻得更快。舉例來說,第1圖中定義有大面積區域A,區域A在平坦化步驟時,蝕刻的速率會較其他元件密度更高的區域(例如元件區102內的任何區域)更快,因此當平坦化步驟完成後,區域A內的多晶矽層108將會被蝕刻更多,造成區域A的多晶矽層108之頂面較其他區域的多晶矽層108頂面更低。此外,相鄰於區域A之淺溝隔離106的表面也可能產生凹陷,造成部分的多晶矽層108殘留於淺溝隔離上(如第1圖的多晶矽層108C)。然而,在其他區域中(例如元件區102),平坦化步驟之後,淺溝隔離106的頂面與多晶矽層108頂面仍等高。除此之外,在基底100與各多晶矽層108之間還包含有襯墊層103,襯墊層的材質例如是氧化矽,或是由氧化矽與氮化矽所組成的複合層。 As for the polysilicon layer 108, for example, after each shallow trench isolation 106 is completed, a polysilicon material layer (not shown) is formed in the device region 102 and the logic region 104 in an all-round way, and then a planarization step is performed. The excess polysilicon material layer is removed until at least a portion of the top of the shallow trench isolation 106 is exposed. It is worth noting that the above-mentioned elements in the logic area 104 are arranged loosely, so there may be some areas where no elements are formed, such as shallow trench isolation 106. If these areas are large, they are etched or flat The etching process will be etched faster than other areas. For example, in Figure 1, a large area A is defined. During the planarization step, the etching rate of area A will be faster than other areas with higher density of devices (such as any area in device area 102), so when After the planarization step is completed, the polysilicon layer 108 in the area A will be etched more, causing the top surface of the polysilicon layer 108 in the area A to be lower than the top surface of the polysilicon layer 108 in other areas. In addition, the surface of the shallow trench isolation 106 adjacent to the area A may also be recessed, causing part of the polysilicon layer 108 to remain on the shallow trench isolation (such as the polysilicon layer 108C in FIG. 1). However, in other regions (such as the device region 102), after the planarization step, the top surface of the shallow trench isolation 106 and the top surface of the polysilicon layer 108 are still the same height. In addition, a liner layer 103 is also included between the substrate 100 and each polysilicon layer 108. The liner layer material is, for example, silicon oxide or a composite layer composed of silicon oxide and silicon nitride.

接下來,如第2圖所示,進行一回蝕刻步驟P1,在無遮罩的 情況下,同時移除部分的淺溝隔離106以及部分的多晶矽層108。值得注意的是,本發明中上述區域A內的多晶矽層108,在回蝕刻步驟P1之後,需要預留一定厚度的多晶矽層108位於區域A內,以避免後續蝕刻步驟中因厚度過薄而使基底100裸露。以本實施例為例,回蝕刻步驟P1之後,區域A內的多晶矽層108厚度(由基底100頂面算起的高度)較佳大於400埃,以本實施例為例,高度H1例如為500埃。至於在元件區102內,由於並沒有受到平坦化步驟產生的凹陷影響,因此元件區102內的多晶矽層108的高度切齊淺溝隔離106,而且元件區102內的多晶矽層108的高度H2應高於區域A內的多晶矽層108高度H1,以本實施例為例,例如為600埃,但不限於此。 Next, as shown in Figure 2, perform an etching step P1, in the unmasked In this case, part of the shallow trench isolation 106 and part of the polysilicon layer 108 are simultaneously removed. It is worth noting that, in the present invention, after the polysilicon layer 108 in the above-mentioned area A, after the etching back step P1, a certain thickness of the polysilicon layer 108 needs to be reserved in the area A to avoid the excessively thin thickness in the subsequent etching step The substrate 100 is exposed. Taking this embodiment as an example, after the etch back step P1, the thickness of the polysilicon layer 108 in the region A (the height from the top surface of the substrate 100) is preferably greater than 400 angstroms. Taking this embodiment as an example, the height H1 is, for example, 500 Egypt. As for the device region 102, the height of the polysilicon layer 108 in the device region 102 is aligned with the shallow trench isolation 106, and the height H2 of the polysilicon layer 108 in the device region 102 should not be affected by the depression caused by the planarization step. The height H1 of the polysilicon layer 108 in the region A is higher than the height H1 of the embodiment, for example, 600 angstroms, but not limited to this.

在平坦化步驟以及回蝕刻步驟P1進行後,接下來,如第3A圖以及第3B圖所示,其中第3A圖繪示根據本發明的其中一實施例,由第2圖所示的半導體記憶體結構繼續進行後續製程的結構示意圖,第3B圖繪示根據本發明的另外一實施例,由第2圖所示的半導體記憶體結構繼續進行後續製程的結構示意圖。請參考第3A圖與第3B圖,在邏輯區104內覆蓋一光阻層110,接著對元件區102內所曝露出的淺溝隔離106以及多晶矽層108進行一蝕刻步驟P2,並部分移除元件區102內的淺溝隔離106以及多晶矽層108。上述第3A圖與第3B圖所示的實施例不同之處在於,藉由調整蝕刻步驟P2的參數,或是選擇不同種類的蝕刻劑,調整蝕刻劑的混和比例等,可以控制蝕刻步驟P2對於淺溝隔離106以及多晶矽層108之蝕刻速率的快慢。在第3A圖所示的實施例中,調整蝕刻步驟P2的參數,使得蝕刻淺溝隔離106以及多晶矽層108之蝕刻速率接近一致,在蝕刻步驟P2進行後,元件區102內的淺溝隔離106與多晶 矽層108的高度都減少為H3,也就是說元件區102內的淺溝隔離106與多晶矽層108大致上等高。其中在本實施例中,H3大約為450埃,但不限於此。 After the planarization step and the etch-back step P1 are performed, next, as shown in FIGS. 3A and 3B, FIG. 3A illustrates a semiconductor memory shown in FIG. 2 according to one embodiment of the present invention. FIG. 3B is a structural schematic diagram of the body structure to continue the subsequent process. FIG. 3B is a schematic structural diagram of the semiconductor memory structure shown in FIG. 2 to continue the subsequent process according to another embodiment of the present invention. Referring to FIGS. 3A and 3B, a photoresist layer 110 is covered in the logic region 104, and then an etching step P2 is performed on the shallow trench isolation 106 and the polysilicon layer 108 exposed in the device region 102, and partially removed The shallow trench isolation 106 and the polysilicon layer 108 in the device region 102. The difference between the embodiment shown in FIG. 3A and FIG. 3B is that the etching step P2 can be controlled by adjusting the parameters of the etching step P2, or selecting different types of etchants, adjusting the mixing ratio of the etchant, etc. The etching rate of the shallow trench isolation 106 and the polysilicon layer 108. In the embodiment shown in FIG. 3A, the parameters of the etching step P2 are adjusted so that the etching rates of the shallow trench isolation 106 and the polysilicon layer 108 are nearly the same. After the etching step P2 is performed, the shallow trench isolation 106 in the element region 102 With polycrystalline The height of the silicon layer 108 is reduced to H3, which means that the shallow trench isolation 106 in the device region 102 and the polysilicon layer 108 are approximately the same height. In this embodiment, H3 is about 450 angstroms, but it is not limited thereto.

至於第3B圖所示的實施例中,調整蝕刻步驟P2的參數,使得蝕刻多晶矽層108的速率小於蝕刻淺溝隔離106的速率,例如多晶矽層蝕刻速率:淺溝隔離=3:5,因此在蝕刻步驟P2進行後,元件區102內的淺溝隔離106高度為H4,多晶矽層108的高度為H5,其中在本實施例中,H4大約為350埃,H5大約為450埃,但不限於此。 As for the embodiment shown in FIG. 3B, the parameters of the etching step P2 are adjusted so that the rate of etching the polysilicon layer 108 is less than the rate of etching the shallow trench isolation 106, for example, the polysilicon layer etching rate: shallow trench isolation=3:5, so After the etching step P2 is performed, the height of the shallow trench isolation 106 in the device region 102 is H4, and the height of the polysilicon layer 108 is H5. In this embodiment, H4 is about 350 angstroms and H5 is about 450 angstroms, but not limited to this .

請參考第4A圖與第4B圖,其分別繪示根據第3A圖與第3B圖所示的半導體記憶體結構繼續進行後續製程的結構示意圖。在移除光阻層110之後,繼續進行一蝕刻步驟P3。同樣地,可以藉由調整蝕刻步驟P3的蝕刻參數,達到控制淺溝隔離106與多晶矽層108的高度之目的。在第4A圖與第4B圖所示的本實施例中,由於沒有光阻層110的保護,因此元件區102以及邏輯區104內所有的淺溝隔離106與多晶矽層108都會在蝕刻步驟P3的過程中被部分移除。不過蝕刻步驟P3並不會完全移除元件區102內的多晶矽層108。第4A圖與第4B圖所示的實施例不同之處在於,蝕刻步驟P3的蝕刻選擇比不同。也就是說,調整蝕刻步驟P3,使得蝕刻淺溝隔離106的速率與蝕刻多晶矽層108的速率不同。在第4A圖所示的實施例中,蝕刻步驟P3造成元件區102以及邏輯區104內各多晶矽層108的頂面高度下降約50埃,而元件區102以及邏輯區104內各淺溝隔離106的頂面高度下降約200埃。在第4B圖所示的實施例中,蝕刻步驟P3造成元件區102以及邏輯區104內各多晶矽層108的頂面 高度下降約50埃,而元件區102以及邏輯區104內各淺溝隔離106的頂面高度下降約100埃。當然可理解的是,本發明並不以此為限制,上述蝕刻參數可以依照實際需求而調整。 Please refer to FIG. 4A and FIG. 4B, which respectively show schematic structural diagrams of continuing the subsequent manufacturing process according to the semiconductor memory structure shown in FIG. 3A and FIG. 3B. After the photoresist layer 110 is removed, an etching step P3 is continued. Similarly, the height of the shallow trench isolation 106 and the polysilicon layer 108 can be controlled by adjusting the etching parameters of the etching step P3. In this embodiment shown in FIGS. 4A and 4B, since there is no protection of the photoresist layer 110, all the shallow trench isolations 106 and the polysilicon layer 108 in the device region 102 and the logic region 104 will be in the etching step P3. It was partially removed during the process. However, the etching step P3 does not completely remove the polysilicon layer 108 in the device region 102. The difference between the embodiment shown in FIG. 4A and FIG. 4B is that the etching selection ratio of the etching step P3 is different. That is, the etching step P3 is adjusted so that the rate of etching the shallow trench isolation 106 and the rate of etching the polysilicon layer 108 are different. In the embodiment shown in FIG. 4A, the etching step P3 causes the top surface height of each polysilicon layer 108 in the device region 102 and the logic region 104 to decrease by about 50 angstroms, and the shallow trench isolation 106 in the device region 102 and the logic region 104 The height of the top surface drops by about 200 angstroms. In the embodiment shown in FIG. 4B, the etching step P3 causes the top surface of each polysilicon layer 108 in the device region 102 and the logic region 104 The height decreases by about 50 angstroms, and the top surface of each shallow trench isolation 106 in the device region 102 and the logic region 104 decreases by about 100 angstroms. Of course, it is understandable that the present invention is not limited thereto, and the above etching parameters can be adjusted according to actual needs.

在蝕刻步驟P3進行之後,參考第4A圖或第4B圖,元件區102內的淺溝隔離106與多晶矽層108之頂面高度,以及邏輯區104內的淺溝隔離106與多晶矽層108之頂面高度各自不同。此外值得注意的是,以第4A圖為例,元件區102內的淺溝隔離106(例如第4A圖中的淺溝隔離106A)與邏輯區104內的淺溝隔離106(例如第4A圖中的淺溝隔離106B)兩者的底面位於同一水平面上,然而淺溝隔離106A的頂面卻低於淺溝隔離106B的頂面。同樣地,元件區102內的多晶矽層108A與邏輯區104內的多晶矽層108B兩者底面位於同一水平面上,而多晶矽層108A的頂面卻高於多晶矽層108B的頂面。 After the etching step P3 is performed, referring to FIG. 4A or FIG. 4B, the top surface height of the shallow trench isolation 106 and the polysilicon layer 108 in the device region 102, and the top of the shallow trench isolation 106 and the polysilicon layer 108 in the logic region 104 The surface heights are different. It is also worth noting that, taking FIG. 4A as an example, the shallow trench isolation 106 in the device region 102 (eg, shallow trench isolation 106A in FIG. 4A) and the shallow trench isolation 106 in the logic region 104 (eg, FIG. 4A) (The shallow trench isolation 106B) The bottom surfaces of the two are on the same horizontal plane, but the top surface of the shallow trench isolation 106A is lower than the top surface of the shallow trench isolation 106B. Similarly, the bottom surfaces of the polysilicon layer 108A in the device region 102 and the polysilicon layer 108B in the logic region 104 are on the same horizontal plane, while the top surface of the polysilicon layer 108A is higher than the top surface of the polysilicon layer 108B.

本發明中,先利用光阻層110遮蓋住部分區域(例如邏輯區104),接下來再調整蝕刻製程的參數,以控制元件區102以及邏輯區104內的淺溝隔離106與多晶矽層108的高度差,並且進一步形成各種不同高度的元件。在特定的半導體製程中,位於元件區102內的元件與位於邏輯區104內的元件之大小、尺寸、分布都不同,也因此需要更加容易調控參數的製程以配合不同元件尺寸的需求。本發明的方法可以增加製程的靈活度。 In the present invention, the photoresist layer 110 is used to cover part of the region (such as the logic region 104), and then the parameters of the etching process are adjusted to control the shallow trench isolation 106 and the polysilicon layer 108 in the device region 102 and the logic region 104 The height difference, and further form a variety of different height components. In a specific semiconductor manufacturing process, the devices located in the device region 102 and the devices located in the logic region 104 have different sizes, sizes, and distributions. Therefore, it is necessary to more easily adjust the parameters of the process to meet the requirements of different device sizes. The method of the present invention can increase the flexibility of the manufacturing process.

後續介紹形成記憶體閘極結構的方法。如第5圖所示,於多晶矽層108上依序形成一圖案化多層結構,其中圖案化多層結構可能包 含有氧化矽層112、氮化矽層114、氧化矽層116(以上三者在一些實施例中可以合稱ONO堆疊層)以及多晶矽層118。其中上述多晶矽層108作為後續記憶體的浮動閘極(floating gate,FG)的材料層,而多晶矽層118則作為後續記憶體的控制閘極(control gate,CG)的材料層。值得注意的是,第5圖的段落與相關圖式著重在描述記憶體的結構形成,因此對於部分元件的製作將被省略,例如在基底中摻雜形成P型阱或是N型阱等。該些技術特徵屬於本領域的技術人員已知相關知識,在此不多加贅述。 The method of forming the gate structure of the memory will be described later. As shown in FIG. 5, a patterned multilayer structure is sequentially formed on the polysilicon layer 108, wherein the patterned multilayer structure may include It includes a silicon oxide layer 112, a silicon nitride layer 114, a silicon oxide layer 116 (the above three may be collectively referred to as ONO stack layers in some embodiments), and a polysilicon layer 118. The polysilicon layer 108 is used as a material layer for the floating gate (FG) of the subsequent memory, and the polysilicon layer 118 is used as a material layer for the control gate (CG) of the subsequent memory. It is worth noting that the paragraphs and related drawings in FIG. 5 focus on describing the structure formation of the memory, so the fabrication of some elements will be omitted, such as doping P-type wells or N-type wells in the substrate. These technical features belong to the relevant knowledge known to those skilled in the art, and will not be repeated here.

後續步驟中,將上述ONO堆疊層(包含氧化矽層112、氮化矽層114、氧化矽層116)與多晶矽層118圖案化,於元件區102內形成多個記憶體閘極結構,並選擇性形成側壁子(圖未示)於圖案化後的記憶體閘極旁。另外,部分元件(例如電阻等)也將會隨後步驟中被形成於邏輯區104內,此處所述的步驟也屬於本領域的已知技術,在此不多加贅述。 In the subsequent steps, the above ONO stack layer (including the silicon oxide layer 112, the silicon nitride layer 114, and the silicon oxide layer 116) and the polysilicon layer 118 are patterned to form a plurality of memory gate structures in the device region 102 and select Side walls (not shown) are formed by the patterned memory gate. In addition, some elements (such as resistors) will also be formed in the logic area 104 in subsequent steps. The steps described herein also belong to known technologies in the art, and will not be described here.

綜上所述,本發明的特徵在於,利用光阻層遮蓋住部分區域(例如邏輯區),接下來再調整蝕刻製程的參數,以控制元件區以及邏輯區內的淺溝隔離與多晶矽層的高度差,並且進一步形成各種不同高度的元件。如此一來,本發明的方法可以增加製程的靈活度。此外,本發明須注意沉積多晶矽層時,將其沉積厚度增加(大於400埃),以避免在平坦化步驟中多晶矽層被蝕穿,影響後續記憶體堆疊結構的品質。 In summary, the present invention is characterized by using a photoresist layer to cover some areas (such as the logic area), and then adjusting the etching process parameters to control the shallow trench isolation in the device area and the logic area and the polysilicon layer. The height difference, and further form a variety of different height components. In this way, the method of the present invention can increase the flexibility of the manufacturing process. In addition, when depositing a polysilicon layer in the present invention, the thickness of the polysilicon layer is increased (greater than 400 angstroms) to avoid the erosion of the polysilicon layer during the planarization step, which affects the quality of the subsequent memory stack structure.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之 均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention. Equal changes and modifications shall fall within the scope of the present invention.

100:基底 100: base

100S:頂面 100S: top surface

102:元件區 102: component area

103:襯墊層 103: liner layer

104:邏輯區 104: logical area

106:淺溝隔離 106: Shallow trench isolation

108:多晶矽層(浮動閘極) 108: polysilicon layer (floating gate)

110:光阻層 110: photoresist layer

P2:蝕刻步驟 P2: etching step

H1:高度 H1: height

H3:高度 H3: height

Claims (15)

一種半導體記憶元件的製作方法,包含:提供一基底,基底上定義有一元件區以及一邏輯區;形成複數個淺溝隔離於基底內,並且形成一浮動閘極材料層於基底上;進行一平坦化步驟,在該平坦化步驟之後,各該淺溝隔離的一頂面與該浮動閘極材料層的一頂面皆高於該基底的一頂面;在該浮動閘極材料層與該淺溝隔離形成後,形成一光阻層覆蓋該邏輯區;進行一第一蝕刻步驟,移除該元件區內的部分各該淺溝隔離以及部分該浮動閘極材料層;移除該光阻層;以及進行一第二蝕刻步驟,移除該元件區內以及該邏輯區內的部分各該淺溝隔離以及部分該浮動閘極材料層。 A method for manufacturing a semiconductor memory device includes: providing a substrate with a device area and a logic area defined on the substrate; forming a plurality of shallow trenches isolated in the substrate, and forming a floating gate material layer on the substrate; performing a flattening After the planarization step, a top surface of each shallow trench isolation and a top surface of the floating gate material layer are higher than a top surface of the substrate; in the floating gate material layer and the shallow After trench isolation is formed, a photoresist layer is formed to cover the logic region; a first etching step is performed to remove a portion of the shallow trench isolation and a portion of the floating gate material layer in the device area; and remove the photoresist layer And performing a second etching step to remove portions of the shallow trench isolation and a portion of the floating gate material layer in the device area and the logic area. 如申請專利範圍第1項所述的方法,其中在該平坦化步驟之後,更包含進行一回蝕刻步驟,以移除該元件區內以及該邏輯區內的部分各該淺溝隔離以及部分該浮動閘極材料層。 The method as described in item 1 of the patent application scope, wherein after the planarization step, an etching step is further performed to remove a portion of the shallow trench isolation and a portion of the part in the device region and the logic region Floating gate material layer. 如申請專利範圍第2項所述的方法,其中在該邏輯區內更定義有一大面積區,且在該平坦化步驟之後,該大面積區內的該浮動閘極材料層之一頂面低於該邏輯區內的各該淺溝隔離之該頂面。 The method as described in item 2 of the patent application scope, wherein a large area area is further defined in the logic area, and after the planarization step, one of the floating gate material layers in the large area area has a low top surface The top surfaces are isolated by the shallow trenches in the logic area. 如申請專利範圍第3項所述的方法,其中在該回蝕刻步驟進 行之後,該大面積區內的該基底之該頂面至該浮動閘極材料層之該頂面的一垂直距離大於400埃。 The method as described in item 3 of the patent application scope, in which the step of etching back After the row, a vertical distance from the top surface of the substrate in the large area area to the top surface of the floating gate material layer is greater than 400 angstroms. 如申請專利範圍第1項所述的方法,其中在該平坦化步驟之後,該元件區內的該浮動閘極材料層之該頂面與該元件區內的各該淺溝隔離之該頂面切齊。 The method according to item 1 of the patent application scope, wherein after the planarization step, the top surface of the floating gate material layer in the device region is isolated from the top surface of each shallow trench in the device region Cut it all. 如申請專利範圍第1項所述的方法,其中在該第一蝕刻步驟之後,該元件區內的各該淺溝隔離的頂面與該浮動閘極材料層的頂面切齊。 The method as described in item 1 of the patent application scope, wherein after the first etching step, the top surface of each shallow trench isolation in the element region is aligned with the top surface of the floating gate material layer. 如申請專利範圍第1項所述的方法,其中在該第一蝕刻步驟之後,該元件區內的各該淺溝隔離的頂面低於該浮動閘極材料層的頂面。 The method according to item 1 of the patent application scope, wherein after the first etching step, the top surface of each shallow trench isolation in the element region is lower than the top surface of the floating gate material layer. 如申請專利範圍第1項所述的方法,其中在該第二蝕刻步驟之後,仍有部分的該浮動閘極材料層位於該元件區內。 The method as described in item 1 of the patent application scope, wherein after the second etching step, a part of the floating gate material layer is still located in the device region. 如申請專利範圍第1項所述的方法,其中在該第二蝕刻步驟之後,位於該邏輯區內的該浮動閘極材料層的頂面高於該元件區內的該浮動閘極材料層的頂面。 The method as described in item 1 of the patent application scope, wherein after the second etching step, the top surface of the floating gate material layer in the logic region is higher than that of the floating gate material layer in the device region Top surface. 如申請專利範圍第1項所述的方法,其中在該第二蝕刻步驟之後,位於該邏輯區內的該淺溝隔離的頂面高於該元件區內的該淺 溝隔離的頂面。 The method according to item 1 of the patent application scope, wherein after the second etching step, the top surface of the shallow trench isolation in the logic region is higher than the shallow surface in the device region Top surface of trench isolation. 如申請專利範圍第1項所述的方法,在該第二蝕刻步驟之後,更包含覆蓋一堆疊結構於該元件區內以及該邏輯區內。 According to the method described in item 1 of the patent application scope, after the second etching step, a method of covering a stacked structure in the device area and the logic area is further included. 如申請專利範圍第11項所述的方法,更包含進行一圖案化步驟,移除部分該堆疊結構,以於該邏輯區內形成至少一記憶體閘極結構。 The method described in item 11 of the patent application scope further includes performing a patterning step to remove a part of the stacked structure to form at least one memory gate structure in the logic area. 如申請專利範圍第12項所述的方法,其中該記憶體閘極結構,由下而上至少包含部分該浮動閘極材料層、一氧化矽-氮化矽-氧化矽的堆疊層以及一控制閘極材料層。 The method as described in item 12 of the patent application range, wherein the memory gate structure includes at least a portion of the floating gate material layer, a stack layer of silicon oxide-silicon nitride-silicon oxide, and a control Gate material layer. 如申請專利範圍第12項所述的方法,其中更包含形成至少一側壁子位於該記憶體閘極結構的側壁。 The method as recited in item 12 of the patent application scope, further comprising forming at least one sidewall on the sidewall of the memory gate structure. 如申請專利範圍第12項所述的方法,其中在該記憶體閘極結構形成之後,更包含進行一第三蝕刻步驟,以完全移除位於該元件區內的該浮動閘極材料層。 The method as described in item 12 of the patent application scope, wherein after the formation of the memory gate structure, a third etching step is further performed to completely remove the floating gate material layer located in the device area.
TW107112972A 2018-04-17 2018-04-17 Method for forming semiconductor memory device TWI694593B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107112972A TWI694593B (en) 2018-04-17 2018-04-17 Method for forming semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107112972A TWI694593B (en) 2018-04-17 2018-04-17 Method for forming semiconductor memory device

Publications (2)

Publication Number Publication Date
TW201944580A TW201944580A (en) 2019-11-16
TWI694593B true TWI694593B (en) 2020-05-21

Family

ID=69184760

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107112972A TWI694593B (en) 2018-04-17 2018-04-17 Method for forming semiconductor memory device

Country Status (1)

Country Link
TW (1) TWI694593B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW492143B (en) * 2001-05-11 2002-06-21 Macronix Int Co Ltd Manufacturing method of shallow trench isolation structure
TW201351654A (en) * 2012-06-14 2013-12-16 Taiwan Semiconductor Mfg Field effect transistor structure and method for forming the same
TW201703193A (en) * 2015-02-13 2017-01-16 台灣積體電路製造股份有限公司 Method of semiconductor fabrication with height control through active region profile
TWI606576B (en) * 2015-04-16 2017-11-21 台灣積體電路製造股份有限公司 A method for preventing floating gate variation
TW201803020A (en) * 2016-04-28 2018-01-16 台灣積體電路製造股份有限公司 Method for manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW492143B (en) * 2001-05-11 2002-06-21 Macronix Int Co Ltd Manufacturing method of shallow trench isolation structure
TW201351654A (en) * 2012-06-14 2013-12-16 Taiwan Semiconductor Mfg Field effect transistor structure and method for forming the same
TW201703193A (en) * 2015-02-13 2017-01-16 台灣積體電路製造股份有限公司 Method of semiconductor fabrication with height control through active region profile
TWI606576B (en) * 2015-04-16 2017-11-21 台灣積體電路製造股份有限公司 A method for preventing floating gate variation
TW201803020A (en) * 2016-04-28 2018-01-16 台灣積體電路製造股份有限公司 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
TW201944580A (en) 2019-11-16

Similar Documents

Publication Publication Date Title
US8846541B2 (en) Methods of forming fine patterns in semiconductor devices
TWI490982B (en) Semiconductor structure and method of forming the same
US10381358B2 (en) Semiconductor device and manufacturing method thereof
CN102282666A (en) Multiple depth shallow trench isolation process
US20110312184A1 (en) Method for forming pattern of semiconductor device
CN103021951B (en) Flash memory and manufacturing method thereof as well as formation method of grids in different thicknesses
US8143156B2 (en) Methods of forming high density semiconductor devices using recursive spacer technique
US8242583B2 (en) Semiconductor device having CMP dummy pattern
US8143163B2 (en) Method for forming pattern of semiconductor device
KR101572482B1 (en) Method Manufactruing of Flash Memory Device
JP5266672B2 (en) Manufacturing method of semiconductor device
US9117695B1 (en) Method for fabricating semiconductor device
TWI710114B (en) Method for manufacturing semiconductor device and semiconductor device thereof
TWI694593B (en) Method for forming semiconductor memory device
CN1201388C (en) Manufacture of flash memory
US7713820B2 (en) Method for manufacturing non-volatile memory
US7592036B2 (en) Method for manufacturing NAND flash memory
JP4398420B2 (en) Manufacturing method of semiconductor device
US20100093165A1 (en) Method of fabricating integrated circuit semiconductor device having gate metal silicide layer
TWI469269B (en) Method of forming word line of embedded flash memory
JP2010010716A (en) Semiconductor device
US20090047765A1 (en) Method of manufacturing non-volatile memory
US7060561B2 (en) Method for fabricating memory device
US7982258B2 (en) Flash memory device and method for manufacturing the device
US7109082B2 (en) Flash memory cell