TWI694249B - Light-trapping microbial identifying method - Google Patents

Light-trapping microbial identifying method Download PDF

Info

Publication number
TWI694249B
TWI694249B TW107143075A TW107143075A TWI694249B TW I694249 B TWI694249 B TW I694249B TW 107143075 A TW107143075 A TW 107143075A TW 107143075 A TW107143075 A TW 107143075A TW I694249 B TWI694249 B TW I694249B
Authority
TW
Taiwan
Prior art keywords
microorganism
light
trapping
identification method
escape speed
Prior art date
Application number
TW107143075A
Other languages
Chinese (zh)
Other versions
TW202022352A (en
Inventor
劉世崑
陳麗琴
侯孟良
陳韋達
黃俊捷
陳俊劭
Original Assignee
國立高雄科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立高雄科技大學 filed Critical 國立高雄科技大學
Priority to TW107143075A priority Critical patent/TWI694249B/en
Application granted granted Critical
Publication of TWI694249B publication Critical patent/TWI694249B/en
Publication of TW202022352A publication Critical patent/TW202022352A/en

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A light-trapping microbial identifying method includes: trapping a known-type microorganism with an optical tweezer to contain a trapped microorganism therein; moving the optical tweezer and the trapped microorganism with at least one predetermined speed to measure an escape velocity (velocity range or average velocity) of the trapped microorganism; utilizing a specific sample of the escape velocity (velocity range or average velocity) of the trapped microorganism to compare with that of an unknown-type microorganism; and determining a type of the unknown-type microorganism according to a result comparing the escape velocity of the unknown-type microorganism with the specific sample.

Description

光捕捉微生物鑑別方法 Light-trapping microorganism identification method

本發明係關於一種光捕捉〔light-trapping〕微生物鑑別〔microbial identifying〕方法;特別是關於一種雷射光束〔laser beam〕捕捉微生物鑑別方法;更特別是關於一種光鑷夾〔optical tweezer〕捕捉微生物類別鑑別方法;更特別是關於一種光纖〔optical fiber〕光鑷夾捕捉微生物鑑別定方法;更特別是關於一種雷射光纖光鑷夾捕捉微生物鑑別方法。 The invention relates to a light-trapping microbial identification method; in particular to a laser beam [laser beam] capturing microbial identification method; more particularly to an optical tweezer to capture microbes Category identification method; more particularly about a fiber optic optical tweezers to capture microorganism identification method; more particularly to a laser fiber optical tweezers to capture microorganism identification method.

舉例而言,有關習用光纖透鏡〔光纖微透鏡〕製造方法,例如:中華民國專利公告第TW-I241421號之〝製造雙曲線形式光纖透鏡之方法〞發明專利,其揭示一種製造雙曲線形式光纖透鏡之方法。該光纖透鏡製造方法包括以下步驟:〔a〕剝除一光纖之一預定長度之披附層,以形成一裸露部分;〔b〕清洗該裸露部分;〔c〕固定該待加工光纖於一光纖固定座內;〔d〕提供一容器,其包含一氫氟酸層、一機油層及一中間混合層;〔e〕將該光纖之裸露部分伸入該氫氟酸層,以進行蝕刻而形成一錐角;〔f〕利用兩電弧熔燒該錐角;及〔g〕調整該兩電弧與該錐角之相對位置,利用兩電弧放電形成的不均勻溫度場,以得到雙曲線形式之光纖透鏡及所設定之曲率半徑,提高光纖之耦光效率。 For example, regarding the manufacturing method of conventional fiber optic lens [fiber microlens], for example: the patent for invention of "Method of Manufacturing Hyperbolic Fiber Optic Lens" of the Republic of China Patent Announcement No. TW-I241421, which discloses a method of manufacturing a hyperbolic fiber optic lens Method. The manufacturing method of the optical fiber lens includes the following steps: [a] stripping a coating layer of a predetermined length of an optical fiber to form an exposed part; [b] cleaning the exposed part; [c] fixing the optical fiber to be processed on an optical fiber In the fixed seat; [d] Provide a container, which includes a hydrofluoric acid layer, an oil layer and an intermediate mixed layer; [e] extend the exposed portion of the optical fiber into the hydrofluoric acid layer for etching to form A cone angle; [f] melting the cone angle using two arcs; and [g] adjusting the relative positions of the two arcs and the cone angle, using the uneven temperature field formed by the two arc discharges to obtain a hyperbolic fiber The lens and the set radius of curvature improve the coupling efficiency of the optical fiber.

然而,前述第TW-I241421號僅揭示光纖透鏡製造方法及其適用於大量生產之技術而已。另外,該光纖 透鏡製造方法亦僅揭示如何將該光纖透鏡與雷射光場形成完美匹配,且利用調整該兩電弧與該光纖透鏡之錐角之相對位置,以獲得該光纖透鏡之最佳曲率半徑,對其耦光效率具有決定性影響之技術而已。 However, the aforementioned No. TW-I241421 only discloses the manufacturing method of the fiber lens and the technology suitable for mass production. In addition, the fiber The lens manufacturing method also only discloses how to perfectly match the fiber lens and the laser light field, and adjust the relative positions of the cone angles of the two arcs and the fiber lens to obtain the optimal radius of curvature of the fiber lens and couple it The technology of light efficiency has a decisive influence.

另一習用光纖光學鑷夾〔光纖光鑷夾〕製造方法,例如:中華民國專利公告第TW-I474061號之〝光纖光學鑷夾之製程〞發明專利,其揭示一種光學鑷夾製造方法。該光學鑷夾製造方法包括下列步驟:〔a〕剝除:剪裁適當長度之一光纖,並剝除該光纖之一披覆層〔coating〕而漏出一裸光纖,其包含一纖衣層〔cladding〕及一纖芯層〔core〕;〔b〕清潔:將光纖清洗潔淨;〔c〕切割:將該裸光纖之端面切割平整化;〔d〕蝕刻:將該光纖予以固定,於一容器內加入一氧化物緩衝蝕刻液〔buffered oxide etch,BOE〕,再將固定之該光纖對應該容器設置,將待加工之該光纖之末端浸入該氧化物緩衝蝕刻液進行蝕刻,光纖之末端即可形成一錐形狀,以製成光纖微透鏡或透鏡化光纖〔fiber microlens〕;亦可選擇進一步將該錐形狀之光纖末端利用兩端電弧裝置進行融燒,使其形成一半球形之光纖微透鏡。 Another conventional manufacturing method of fiber optic tweezers [fiber optic tweezers], for example: the invention patent of "Process of Fiber Optic Tweezers" No. TW-I474061 of the Republic of China Patent, which discloses a method of manufacturing optical tweezers. The manufacturing method of the optical tweezers includes the following steps: [a] stripping: cutting an optical fiber of an appropriate length, and stripping a coating layer of the optical fiber (coating) to leak a bare optical fiber, which includes a fiber coat layer [cladding ] And a core layer [core]; [b] cleaning: clean the optical fiber; [c] cutting: cutting and flattening the end surface of the bare fiber; [d] etching: fixing the optical fiber in a container Add an oxide buffer etching solution (buffered oxide etch, BOE), and then set the fixed optical fiber corresponding to the container, immerse the end of the optical fiber to be processed into the oxide buffer etching solution for etching, and the end of the optical fiber can be formed A tapered shape to make fiber microlenses or lensed fibers [fiber microlens]; the fiber ends of the tapered shape can also be further sintered with arc devices at both ends to form hemispherical fiber microlenses.

另外,前述第TW-I474061號利用該光纖光學鑷夾之半球形透鏡化光纖達成於整體製作上更為簡便,且能降低其製作成本之功效。倘若在生物技術或生物醫學應用領域上其操作利用光或光能以非接觸式進行捕捉微小物體或微生物,且其具有高捕捉效率及低捕捉功率。 In addition, the aforementioned No. TW-I474061 uses the hemispherical lensed optical fiber of the fiber optic tweezers to achieve a simpler overall manufacturing and the effect of reducing the manufacturing cost. If its operation in the field of biotechnology or biomedical applications uses light or light energy to capture small objects or microorganisms in a non-contact manner, and it has high capture efficiency and low capture power.

然而,前述第TW-I474061號僅揭示光纖光學鑷夾適用於非接觸式捕捉微小物體或微生物。此外,該光纖光學鑷夾適用於非接觸式捕捉微小物體或微生物亦必然存在提供使用於其它生物技術的未來應用〔例如:微生物鑑別的應用〕上的潛在需求。 However, the aforementioned No. TW-I474061 only discloses that the fiber optic tweezers are suitable for non-contact capture of tiny objects or microorganisms. In addition, the fiber optic tweezers are suitable for non-contact capture of small objects or microorganisms. There is also a potential need to provide future applications for other biotechnologies (for example, applications for microbial identification).

另一習用光纖光學鑷夾〔光纖光鑷夾〕製造方法,例如:美國專利第US-9958663號之〝light-trapping cancer cell stage testing method〞發明專利,其揭示一種光捕捉癌細胞期別鑑定方法。該光捕捉癌細胞期別鑑定方法包含:測量一第一癌細胞平均逃脫速度或其範圍及一第二癌細胞平均逃脫速度或其範圍,而該第一癌細胞與第二癌細胞之癌細胞期別已知不相同,且該第一癌細胞與第二癌細胞為已知種類;再利用該第一癌細胞平均逃脫速度及第二癌細胞平均逃脫速度計算一逃脫速度比值或其範圍;選擇一待鑑定癌細胞,並測量一待鑑定癌細胞逃脫速度,且該待鑑定癌細胞為已知種類但未知期別;利用該逃脫速度比值或其範圍與待鑑定癌細胞逃脫速度進行比對;及依該待鑑定癌細胞逃脫速度之比對結果判定一癌細胞期別。 Another conventional manufacturing method of fiber optic tweezers [fiber optic tweezers], for example: the invention patent of "light-trapping cancer cell stage testing method" of US Patent No. US-9958663, which discloses a method for identifying stage of light-trapping cancer cells . The light-trapping cancer cell stage identification method includes: measuring the average escape speed or range of a first cancer cell and the average escape speed or range of a second cancer cell, and the cancer cells of the first cancer cell and the second cancer cell The stages are known to be different, and the first cancer cell and the second cancer cell are known types; then the average escape velocity of the first cancer cell and the average escape velocity of the second cancer cell are used to calculate an escape velocity ratio or range; Select a cancer cell to be identified, and measure the escape speed of a cancer cell to be identified, and the cancer cell to be identified is a known type but an unknown stage; use the ratio or range of the escape speed to compare with the escape speed of the cancer cell to be identified ; And determine a cancer cell stage based on the comparison result of the escape speed of the cancer cells to be identified.

然而,前述第US-9958663號僅揭示光捕捉癌細胞期別鑑定方法而已,且該癌細胞期別鑑定方法並不適用於鑑定其它物體。此外,該光捕捉癌細胞期別鑑定方法適用於非接觸式捕捉微小物體或微生物亦必然存在提供使用於其它生物技術的未來應用〔例如:各種微生物種類鑑別的應用〕上的潛在需求。 However, the aforementioned US-9958663 only discloses a light-trapping cancer cell stage identification method, and the cancer cell stage identification method is not suitable for identifying other objects. In addition, the light-trapping cancer cell stage identification method is suitable for non-contact capture of small objects or microorganisms. There is also a potential need to provide future applications for other biotechnologies (for example, the identification of various types of microorganisms).

前述中華民國專利公告第TW-I241421號、第TW-I474061號及第US-9958663號之發明專利僅為本發明技術背景之參考及說明目前技術發展狀態而已,其並非用以限制本發明之範圍。 The aforementioned invention patents No. TW-I241421, No. TW-I474061 and No. US-9958663 are the invention patents only for reference to the technical background of the present invention and to illustrate the current state of technological development, which is not intended to limit the scope of the invention .

有鑑於此,本發明為了滿足上述需求,其提供一種光捕捉微生物鑑別方法,其利用一光纖光鑷夾捕捉一微生物體〔已知種類微生物〕,以便在該光纖光鑷夾上形成一已捕捉微生物體,並控制該光纖光鑷夾及已捕捉微生物體以一預定速度進行移動,以測量一微生物逃脫速度〔或速度範圍或平均逃脫速度〕,且可選擇建立一微生物 鑑別標準資料庫,再利用該微生物逃脫速度〔或速度範圍或平均逃脫速度〕與一待鑑定微生物〔未知種類微生物〕逃脫速度進行比對,如此依該待鑑定微生物逃脫速度之比對結果判定一微生物種類,以擴大習用光纖光學鑷夾的進一步應用範圍。 In view of this, in order to meet the above requirements, the present invention provides a light-trapping microorganism identification method, which uses a fiber optic tweezers to capture a microbial organism [a known type of microorganism], so as to form a captured on the fiber optic tweezers Microorganisms, and control the optical fiber optical tweezers and the captured microorganisms to move at a predetermined speed to measure the escape speed of a microorganism [or speed range or average escape speed], and optionally establish a microorganism Identify the standard database, and then use the escape speed of the microorganism [or speed range or average escape speed] to compare with the escape speed of a microorganism to be identified [microorganism of unknown type]. Microbial species to expand the scope of further application of conventional fiber optic tweezers.

本發明較佳實施例之主要目的係提供一種光捕捉微生物鑑別方法,其利用一光纖光鑷夾捕捉一微生物體〔已知種類微生物〕,以便在該光纖光鑷夾上形成一已捕捉微生物體,並控制該光纖光鑷夾及已捕捉微生物體以一預定速度進行移動,以測量一微生物逃脫速度〔或速度範圍或平均逃脫速度〕,且可選擇建立一微生物鑑別標準資料庫,再利用該微生物逃脫速度〔或速度範圍或平均逃脫速度〕與一待鑑定微生物〔未知種類微生物〕逃脫速度進行比對,如此依該待鑑定微生物逃脫速度之比對結果判定一微生物種類,以達成準確鑑別微生物種類之目的。 The main objective of the preferred embodiment of the present invention is to provide a light-trapping microorganism identification method that uses a fiber optic tweezers to capture a microbial organism [a known type of microorganism] so as to form a captured microbe on the fiber optic tweezers , And control the optical fiber optical tweezers and the captured microorganisms to move at a predetermined speed to measure the escape speed of a microorganism [or speed range or average escape speed], and can choose to establish a database of microorganism identification standards, and then use the The microorganism escape speed [or speed range or average escape speed] is compared with the escape speed of a microorganism to be identified [microorganism of unknown type], so a microorganism type is determined according to the comparison result of the escape speed of the microorganism to be identified, so as to achieve accurate identification of microorganisms Kind of purpose.

為了達成上述目的,本發明較佳實施例之光捕捉微生物鑑別方法包含:利用一光纖光鑷夾捕捉一微生物體〔已知種類微生物〕,以便在該光纖光鑷夾上形成一已捕捉微生物體;控制該光纖光鑷夾及已捕捉微生物體以一預定速度進行移動,以測量一微生物逃脫速度〔或速度範圍或平均逃脫速度〕;利用該微生物逃脫速度〔或速度範圍或平均逃脫速度〕與一待鑑定微生物〔未知種類微生物〕逃脫速度進行比對;及依該待鑑定微生物逃脫速度之比對結果判定一微生物種類。 In order to achieve the above objective, the light-trapping microorganism identification method according to the preferred embodiment of the present invention includes: capturing a microbial organism [a known type of microorganism] with a fiber optic tweezers, so as to form a captured microbe on the fiber optic tweezers ; Control the optical fiber optical tweezers and the captured microorganisms to move at a predetermined speed to measure a microorganism's escape speed [or speed range or average escape speed]; use the microorganism's escape speed [or speed range or average escape speed] and A comparison of the escape speed of the microorganisms to be identified [microorganisms of unknown type]; and the determination of a microorganism type according to the comparison result of the escape speeds of the microorganisms to be identified.

本發明較佳實施例選定各種微生物作為一參考微生物種類別。 The preferred embodiment of the present invention selects various microorganisms as a reference microorganism category.

本發明較佳實施例建立光捕捉檢驗法所需之微生物鑑別標準資料庫。 The preferred embodiment of the present invention establishes a database of microbe identification standards required by the light capture inspection method.

本發明較佳實施例之該光纖光鑷夾用以量測一捕捉力、一捕捉效率或其組合。 The optical fiber optical tweezers of the preferred embodiment of the present invention are used to measure a capturing force, a capturing efficiency, or a combination thereof.

本發明較佳實施例之該微生物體置於一緩衝液。 The microorganism of the preferred embodiment of the present invention is placed in a buffer.

本發明較佳實施例之該預定速度為一固定速度。 In the preferred embodiment of the present invention, the predetermined speed is a fixed speed.

本發明較佳實施例之該微生物逃脫速度為一微生物逃脫速度範圍或一微生物平均逃脫速度。 In the preferred embodiment of the present invention, the microorganism escape speed is a microorganism escape speed range or an average microorganism escape speed.

本發明較佳實施例之該微生物逃脫速度範圍介於一最大微生物逃脫速度及一最小微生物逃脫速度之間。 In the preferred embodiment of the present invention, the microorganism escape speed range is between a maximum microorganism escape speed and a minimum microorganism escape speed.

本發明較佳實施例之該待鑑定微生物逃脫速度選自測量五次逃脫速度,並計算其平均之結果。 In the preferred embodiment of the present invention, the escape speed of the microorganism to be identified is selected from measuring the escape speed five times and calculating the average result.

本發明較佳實施例之該微生物體選自一細菌、一真菌、一病毒、一藻類或一病原細菌。 In the preferred embodiment of the present invention, the microorganism is selected from a bacterium, a fungus, a virus, an algae or a pathogenic bacterium.

本發明較佳實施例之該微生物體選自一酵母菌〔例如:天然酵母菌、饅頭酵母菌、啤酒酵母菌或葡萄酒酵母菌〕、一益生菌或一病原細菌。 In the preferred embodiment of the present invention, the microorganism is selected from a yeast (eg, natural yeast, bun yeast, beer yeast or wine yeast), a probiotic or a pathogenic bacteria.

本發明較佳實施例之該光纖光鑷夾為一雷射光纖光鑷夾。 The optical fiber optical tweezers of the preferred embodiment of the present invention is a laser optical fiber tweezers.

本發明較佳實施例之該光纖光鑷夾具有一捕捉傾角或一工作傾角,且該捕捉傾角或工作傾角為40°或50°。 In the preferred embodiment of the present invention, the optical fiber optical tweezers fixture has a catching tilt angle or a working tilt angle, and the catching tilt angle or working tilt angle is 40° or 50°.

本發明較佳實施例之該光纖光鑷夾具有一單模/多模光纖或一單模/多模光纖微透鏡。 The optical fiber optical tweezers fixture of the preferred embodiment of the present invention has a single-mode/multimode fiber or a single-mode/multimode fiber microlens.

1‧‧‧電腦系統 1‧‧‧ Computer system

2‧‧‧影像擷取系統 2‧‧‧Image capture system

21‧‧‧顯微鏡裝置 21‧‧‧Microscope device

22‧‧‧濾光片 22‧‧‧filter

3‧‧‧雷射光源裝置 3‧‧‧Laser light source device

31‧‧‧雷射光源 31‧‧‧Laser light source

32‧‧‧光纖耦光器 32‧‧‧Optical fiber coupler

33‧‧‧光纖 33‧‧‧ Fiber

34‧‧‧光纖微透鏡 34‧‧‧ fiber optic microlens

5‧‧‧工作平台 5‧‧‧Working platform

50‧‧‧待鑑別微生物培養容器 50‧‧‧Microbial culture container to be identified

51‧‧‧平移台控制裝置 51‧‧‧Pan control device

52‧‧‧第一電控平台 52‧‧‧First electronic control platform

53‧‧‧載物台 53‧‧‧stage

54‧‧‧載物台光源 54‧‧‧ stage light source

55‧‧‧第二電控平台 55‧‧‧Second electronic control platform

9‧‧‧微生物體 9‧‧‧ microorganism

第1圖:本發明較佳實施例之光捕捉微生物鑑別方法採用光鑷夾操作系統之架構示意圖。 Figure 1: Schematic diagram of an optical tweezers operating system for the light-trapping microorganism identification method according to the preferred embodiment of the present invention.

第2圖:本發明較佳實施例之光鑷夾操作系統執行光捕捉微生物作業之示意圖。 Figure 2: Schematic diagram of the optical tweezers operating system according to the preferred embodiment of the present invention performing light capture microbial operations.

第3圖:本發明較佳實施例之光捕捉微生物鑑別方法之流程示意圖。 Figure 3: Schematic flow chart of the light-trapping microorganism identification method according to the preferred embodiment of the present invention.

第3A圖:本發明較佳實施例之光捕捉微生物鑑別標準資料庫之建置流程示意圖。 Figure 3A: Schematic diagram of the construction process of the light-trapping microorganism identification standard database according to the preferred embodiment of the present invention.

第3B圖:本發明較佳實施例執行光捕捉微生物鑑別方法之流程示意圖。 FIG. 3B: A schematic flow chart of the method for identifying a light-trapping microorganism according to a preferred embodiment of the present invention.

第4圖:本發明較佳實施例之光捕捉微生物鑑別方法在開始進行捕捉微生物體時,光束受微生物體之作用力而產生光折射機制之示意圖。 Figure 4: A schematic diagram of a light refraction mechanism when the light beam is subjected to the force of the microorganisms when the microorganism capture method of the preferred embodiment of the present invention starts to capture the microorganisms.

第5圖:本發明較佳實施例之光捕捉微生物鑑別方法在開始進行捕捉微生物體時,微生物體受光束之反作用力而產生光捕捉機制之示意圖。 Figure 5: A schematic diagram of a light-capturing mechanism generated by the light-trapping microorganism identification method of the preferred embodiment of the present invention when the microorganisms are captured by the reaction force of the light beam.

第6圖:本發明較佳實施例之光捕捉微生物鑑別方法在已完成捕捉微生物體時,微生物體已受光束穩定束縛現象之示意圖。 Figure 6: A schematic diagram of the light trapping microorganism identification method of the preferred embodiment of the present invention when the microorganisms have been captured and the microorganisms have been stably bound by the light beam.

第7A圖:本發明較佳實施例之光捕捉微生物鑑別方法用於量測第一酵母菌之顯微影像示意圖。 Fig. 7A: A schematic diagram of a microscopic image of the light-trapping microorganism identification method used for measuring the first yeast according to the preferred embodiment of the present invention.

第7B圖:本發明較佳實施例之光捕捉微生物鑑別方法用於量測第二酵母菌之顯微影像示意圖。 Fig. 7B: A schematic diagram of a microscopic image of a light-trapping microorganism identification method for measuring a second yeast according to a preferred embodiment of the present invention.

第7C圖:本發明較佳實施例之光捕捉微生物鑑別方法用於量測第三酵母菌之顯微影像示意圖。 Figure 7C: A schematic diagram of a microscopic image of the third embodiment of the light-trapping microorganism identification method of the present invention for measuring the third yeast.

第8圖:本發明較佳實施例之光捕捉微生物鑑別方法用在量測第一、第二及第三酵母菌而獲得其逃脫速度之示 意圖。 Figure 8: The light-trapping microorganism identification method according to the preferred embodiment of the present invention is used to measure the first, second and third yeasts to obtain an indication of their escape speed intention.

第9圖:本發明較佳實施例之光捕捉微生物鑑別方法用在量測第一、第二及第三酵母菌而獲得其捕捉效率之示意圖。 Figure 9: A schematic diagram of the light-trapping microorganism identification method according to the preferred embodiment of the present invention is used to measure the first, second, and third yeasts to obtain their capturing efficiency.

為了充分瞭解本發明,於下文將舉例較佳實施例並配合所附圖式作詳細說明,且其並非用以限定本發明。 In order to fully understand the present invention, preferred embodiments will be exemplified below and described in detail in conjunction with the accompanying drawings, and they are not intended to limit the present invention.

本發明較佳實施例之光捕捉微生物鑑別方法可適用於鑑定各種微生物〔細菌屬原核生物,真菌、藻類、原生動物屬真核生物,病毒則無細胞結構〕之類別,例如:包含細菌、病原細菌〔例如:沙門氏菌、腸炎弧菌、弧形桿菌、大腸桿菌、肉毒桿菌或葡萄球菌〕、益生菌細胞〔例如:天然酵母菌、饅頭酵母菌、啤酒酵母菌或葡萄酒酵母菌〕或其它微生物細胞,但其並非用以限定本發明之應用範圍;再者,本發明較佳實施例之光捕捉微生物鑑別方法可採用各種適合波長範圍的光,例如:各種波長的雷射光〔紅外光雷射、紅光雷射、綠光雷射、藍光雷射或紫光雷射等〕,但其並非用以限定本發明之適用範圍。 The light-trapping microorganism identification method according to the preferred embodiment of the present invention can be applied to identify various microorganisms [bacteria are prokaryotes, fungi, algae, and protozoans are eukaryotes, and viruses have no cell structure], for example, including bacteria and pathogens. Bacteria [e.g. Salmonella, Vibrio enteritidis, Vibrio, Escherichia coli, Botox or Staphylococcus], probiotic cells [e.g. natural yeast, bun yeast, beer yeast or wine yeast] or other microorganisms Cells, but it is not used to limit the scope of application of the present invention; furthermore, the light-trapping microorganism identification method of the preferred embodiment of the present invention can use light of various suitable wavelength ranges, for example: laser light of various wavelengths [infrared laser light , Red laser, green laser, blue laser or purple laser, etc.], but it is not intended to limit the scope of the present invention.

本發明較佳實施例之光捕捉微生物鑑別方法選擇預先設定光纖光鑷夾系統參數。其利用一光纖光鑷夾測量若干已知種類微生物之逃脫速度與其直徑。其利用統計數學方法計算各已知種類微生物之平均逃脫速度及逃脫速度範圍,並選定各種微生物參考種類,以此建立光捕捉檢驗法所需之微生物鑑別標準資料庫。再利用相同光纖光鑷夾系統參數與實驗方法測量一待鑑定微生物之逃脫速度與其直徑,並計算得到其逃脫速度比值與捕捉效率之平均值。將該待鑑定微生物逃脫速度比值與捕捉效率與標準資料庫之同一種類微生物之數值進行比對,如此依該待鑑定微生物逃脫速度與捕捉效率比值之比對結果判定一微生物 種類。 The optical capturing microorganism identification method of the preferred embodiment of the present invention selects preset parameters of the optical fiber optical tweezers system. It uses an optical fiber optical tweezers to measure the escape speed and diameter of several known types of microorganisms. It uses statistical mathematical methods to calculate the average escape speed and escape speed range of each known type of microorganism, and selects various reference types of microorganisms to establish a standard database of microorganism identification required by the light capture inspection method. Then use the same optical fiber optical tweezers system parameters and experimental methods to measure the escape speed and diameter of a microorganism to be identified, and calculate the average value of the escape speed ratio and capture efficiency. Compare the ratio of the escape speed of the microorganism to be identified and the capture efficiency with the value of the same type of microorganism in the standard database, so as to determine a microorganism according to the comparison result of the ratio of the escape speed of the microorganism to be identified and the capture efficiency species.

第1圖揭示本發明較佳實施例之光捕捉微生物鑑別方法採用光鑷夾操作系統之架構示意圖。請參照第1圖所示,舉例而言,在構造上本發明較佳實施例採用光鑷夾操作系統包含一電腦系統1、一影像擷取系統2、一顯微鏡裝置21、一雷射光源裝置3、一工作平台5及一平移台控制裝置51,其選擇適當相互連接組裝或對應配置,以形成該光鑷夾操作系統。 FIG. 1 shows a schematic diagram of the structure of a light-trapping microorganism identification method using an optical tweezers operating system according to a preferred embodiment of the present invention. Please refer to FIG. 1, for example, in construction, the preferred embodiment of the invention uses an optical tweezers operating system including a computer system 1, an image capture system 2, a microscope device 21, and a laser light source device 3. A working platform 5 and a translation stage control device 51, which are selected to be properly connected to each other for assembly or corresponding configuration to form the optical tweezers operating system.

請再參照第1圖所示,舉例而言,該電腦系統1選擇包含一電腦主機〔computer device〕及一顯示螢幕裝置〔display device〕或其它周邊設備〔peripheral〕,而該電腦系統1適當配置於一預定位置,且該電腦系統1之電腦主機連接至該影像擷取系統2或顯微鏡裝置21。另外,該電腦系統1亦選擇連接至該雷射光源裝置3、工作平台5或平移台控制裝置51。 Please refer to FIG. 1 again. For example, the computer system 1 includes a computer host [computer device] and a display device [display device] or other peripheral devices [peripheral], and the computer system 1 is appropriately configured. At a predetermined position, the computer host of the computer system 1 is connected to the image acquisition system 2 or the microscope device 21. In addition, the computer system 1 also chooses to connect to the laser light source device 3, the working platform 5 or the translation stage control device 51.

請再參照第1圖所示,舉例而言,該影像擷取系統2具有一影像擷取處理單元,且該影像擷取系統2連接與結合該顯微鏡裝置21,或該影像擷取系統2可選擇連接任一電子顯微鏡裝置,以便自該顯微鏡裝置21擷取至少一顯微影像〔例如:微生物細胞影像〕或一系列電子顯微影像。另外,該影像擷取系統2包含一濾光片22或其它設備。 Please refer to FIG. 1 again. For example, the image capturing system 2 has an image capturing processing unit, and the image capturing system 2 is connected to and combined with the microscope device 21, or the image capturing system 2 may Choose to connect any electron microscope device to capture at least one microscopic image (for example: microbial cell image) or a series of electron microscopic images from the microscope device 21. In addition, the image capture system 2 includes a filter 22 or other equipment.

請再參照第1圖所示,舉例而言,該顯微鏡裝置21選擇包含一CCD元件〔Charge Coupled Device〕及一顯微鏡或其它功能裝置〔例如:固定裝置〕,且該CCD裝置組合於該顯微鏡上,以便利用該CCD裝置經由該顯微鏡攝取至少一顯微影像或一系列顯微影像。在組裝操作時,該顯微鏡裝置21對應於該工作平台5上,以便在該工作平台5上方區域進行攝取作業影像。 Please refer to FIG. 1 again. For example, the microscope device 21 includes a CCD element [Charge Coupled Device] and a microscope or other functional devices [for example: a fixing device], and the CCD device is combined with the microscope In order to use the CCD device to take at least one microscopic image or a series of microscopic images through the microscope. During the assembly operation, the microscope device 21 corresponds to the working platform 5 so as to capture working images in the area above the working platform 5.

請再參照第1圖所示,舉例而言,該雷射光源裝置3選自一預定波長雷射光源裝置〔例如:650nm或其它波長〕,且該雷射光源裝置3選擇包含一雷射光源〔laser source,例如:半導體雷射或其它雷射〕31、一光纖耦光器〔fiber coupling device〕32、一光纖33及一光纖微透鏡34,而該雷射光源31經由該光纖耦光器32連接至該光纖33,且利用該光纖33及其光纖微透鏡34適當射出一雷射光束〔laser beam〕,以便形成一光纖光鑷夾。在微生物種類鑑別上,該光纖光鑷夾適用於執行光捕捉微生物作業。本發明較佳實施例之該光纖光鑷夾之光纖33具有一單模/多模光纖,且該光纖光鑷夾之光纖微透鏡34具有一單模/多模光纖微透鏡。 Please refer to FIG. 1 again. For example, the laser light source device 3 is selected from a predetermined wavelength laser light source device (for example: 650 nm or other wavelengths), and the laser light source device 3 optionally includes a laser light source [Laser source, for example: semiconductor laser or other lasers] 31, a fiber coupling device 32, a fiber 33 and a fiber microlens 34, and the laser light source 31 passes through the fiber coupler 32 is connected to the optical fiber 33, and a laser beam (laser beam) is appropriately emitted by the optical fiber 33 and its optical fiber microlens 34, so as to form an optical fiber optical tweezers. In the identification of microorganism types, the optical fiber optical tweezers are suitable for performing light capture microorganism operations. In the preferred embodiment of the present invention, the optical fiber 33 of the optical fiber optical tweezers has a single-mode/multimode optical fiber, and the optical fiber microlens 34 of the optical fiber optical tweezers has a single-mode/multimode optical fiber microlens.

請再參照第1圖所示,舉例而言,該工作平台〔operational platform〕5包含一平移台控制裝置51、一第一電控平台〔X-Y軸電控平台〕52、一載物台53、一載物台光源54及一第二電控平台〔X-Y-Z軸電控平台〕55或其它自動電控桌面,以便選擇利用自動或電控方式操作該工作平台5。在該工作平台5之載物台53上擺放一微生物培養容器或具類似功能之裝置,並利用該工作平台5之第一電控平台52進行適當調整操作該載物台53及載物台光源54之水平位置,且利用該工作平台5之第二電控平台55進行適當調整操作該光纖33及光纖微透鏡34之〔捕捉〕工作傾角、工作距離、水平位置及垂直位置。另外,在該載物台53及載物台光源54之間具有一預定照射角度。 Please refer again to FIG. 1, for example, the working platform [operational platform] 5 includes a translation stage control device 51, a first electric control platform [XY axis electric control platform] 52, a stage 53, A stage light source 54 and a second electric control platform [XYZ axis electric control platform] 55 or other automatic electronically controlled desktops, so as to choose to operate the working platform 5 in an automatic or electronically controlled manner. Place a microbial culture container or a device with a similar function on the stage 53 of the working platform 5, and use the first electronic control platform 52 of the working platform 5 to properly adjust the operation of the stage 53 and the stage The horizontal position of the light source 54, and the second electric control platform 55 of the working platform 5 is used to appropriately adjust the [capture] working tilt, working distance, horizontal position and vertical position of the optical fiber 33 and the optical fiber microlens 34. In addition, there is a predetermined irradiation angle between the stage 53 and the stage light source 54.

第2圖揭示本發明較佳實施例之光鑷夾操作系統執行光捕捉微生物作業之示意圖。請參照第2圖所示,舉例而言,本發明較佳實施例之光鑷夾操作系統之該光纖33選擇採用光纖直徑為125μm,其未蝕刻區段之纖芯直徑為8μm,其已蝕刻區段之光纖直徑約為14μm,而該光 纖微透鏡34位於已蝕刻區段之尾端,且該光纖微透鏡34為一圓錐體,且其具有一錐角〔tapered angle〕α,其介於90°及115°之間或其它角度之錐角範圍。 FIG. 2 shows a schematic diagram of the optical tweezers operating system according to the preferred embodiment of the present invention performing light capture microbial operations. Please refer to FIG. 2, for example, the optical fiber 33 of the optical tweezers operating system according to the preferred embodiment of the present invention selects an optical fiber diameter of 125 μm and a core diameter of 8 μm in the unetched section, which has been etched The fiber diameter of the section is about 14 μm, and the light The fiber microlens 34 is located at the tail end of the etched section, and the fiber microlens 34 is a cone, and it has a tapered angle α, which is between 90° and 115° or other angles Cone angle range.

請參照第1及2圖所示,舉例而言,該雷射光源裝置3選擇採用捕捉功率調整為7mW或其它適當捕捉功率〔例如:5mW、20mW或其區間〕,而該光纖蝕刻圓錐體34對應於一待鑑別微生物培養容器50,以光〔雷射〕捕捉一微生物體〔待鑑別微生物〕9。此時,操作者可選擇利用該工作平台5之第一電控平台52進行適當調整操作該載物台53及待鑑別微生物培養容器50之角度及其水平位置。本發明較佳實施例之該微生物體9置於一緩衝液〔buffer solution〕。 Please refer to Figs. 1 and 2, for example, the laser light source device 3 chooses to adopt the capture power adjusted to 7mW or other appropriate capture power [for example: 5mW, 20mW or its interval], and the optical fiber etching cone 34 Corresponding to a microorganism cultivation container 50 to be identified, a microbial organism [microorganism to be identified] 9 is captured with light [laser]. At this time, the operator may choose to use the first electronic control platform 52 of the working platform 5 to properly adjust the angle and horizontal position of the stage 53 and the microorganism cultivation container 50 to be identified. The microorganism 9 of the preferred embodiment of the present invention is placed in a buffer solution.

請再參照第2圖所示,舉例而言,在該待鑑別微生物培養容器50進行光捕捉微生物鑑別作業時,可操作至在該雷射光源裝置3之光纖微透鏡34之端面尖部及微生物體9之間具有一預定工作距離〔working distance〕D或一預定工作距離範圍,且在該雷射光源裝置3之光纖微透鏡34之縱向軸及微生物體9之間具有一預定工作傾角〔working angle〕θ或一預定工作傾角範圍,即光束行進方向與水平方向之夾角。 Referring again to FIG. 2, for example, when the microorganism-cultivating container 50 to be identified performs light-trapping microorganism identification, it can be operated up to the tip of the end face of the fiber microlens 34 of the laser light source device 3 and microorganisms There is a predetermined working distance D or a predetermined working distance range between the bodies 9, and there is a predetermined working inclination angle between the longitudinal axis of the fiber microlens 34 of the laser light source device 3 and the microorganism 9 angle] θ or a predetermined range of working tilt angle, that is, the angle between the traveling direction of the light beam and the horizontal direction.

第3圖揭示本發明較佳實施例之光捕捉微生物鑑別方法之流程示意圖。請參照第1、2及3圖所示,舉例而言,本發明較佳實施例之光捕捉微生物鑑別方法包含第一步驟S1:首先,利用該光鑷夾操作系統或光纖光鑷夾適當捕捉量測一微生物體〔已知種類微生物〕,以便在該光纖光鑷夾上形成一已捕捉微生物體。本發明較佳實施例之該微生物體亦可選自一細菌、一真菌、一病毒、一藻類、一原生動物〔原生蟲〕或一病原細菌。 FIG. 3 shows a schematic flow chart of the light-trapping microorganism identification method according to the preferred embodiment of the present invention. Please refer to FIGS. 1, 2 and 3, for example, the light capturing microorganism identification method according to the preferred embodiment of the present invention includes a first step S1: First, the optical tweezers operating system or optical fiber tweezers are used to properly capture Measure a microorganism [a known type of microorganism] to form a captured microorganism on the optical fiber optical tweezers. The microorganism in the preferred embodiment of the present invention may also be selected from a bacterium, a fungus, a virus, an algae, a protozoan [protozoa] or a pathogenic bacterium.

請再參照第1、2及3圖所示,舉例而言,本 發明較佳實施例之光捕捉微生物鑑別方法包含第二步驟S2:接著,控制該光纖光鑷夾及已捕捉微生物體以至少一預定速度及適當技術手段〔例如:動態量測法〔dynamic measurement method〕或靜態量測法〔static measurement method〕〕進行移動,以測量一微生物逃脫速度〔或速度範圍或平均逃脫速度〕。利用該光鑷夾操作系統或光纖光鑷夾選擇測量一第一微生物體〔例如:啤酒酵母菌〕之一第一微生物平均逃脫速度或其範圍及一第二微生物體〔例如:釀酒酵母菌〕之一第二微生物平均逃脫速度或其範圍。 Please refer again to Figures 1, 2 and 3, for example, this The method for identifying light-trapping microorganisms according to a preferred embodiment of the invention includes a second step S2: Next, the optical fiber tweezers and the captured microorganisms are controlled at least a predetermined speed and appropriate technical means [for example: dynamic measurement method [dynamic measurement method] 〔Or static measurement method〕to move to measure the escape speed of a microorganism [or speed range or average escape speed]. Use the optical tweezers operating system or optical fiber optical tweezers to select and measure the average escape speed or range of a first microorganism [e.g. Saccharomyces cerevisiae] and a second microorganism [e.g. Saccharomyces cerevisiae] One of the average escape speed of the second microorganism or its range.

本發明另一較佳實施例建立光捕捉檢驗法所需之微生物鑑別標準資料庫,以儲存已知該第一微生物平均逃脫速度或其範圍及第二微生物平均逃脫速度或其範圍,亦可用以儲存已知微生物直徑。該第一微生物平均逃脫速度〔或第二微生物平均逃脫速度〕介於一最大微生物平均逃脫速度與一最小微生物平均逃脫速度之間。 Another preferred embodiment of the present invention establishes a database of microorganism identification standards required by the light capture inspection method to store the known average escape speed or range of the first microorganism and the average escape speed or range of the second microorganism, which can also be used Store known microorganism diameters. The average escape speed of the first microorganism [or the average escape speed of the second microorganism] is between a maximum average escape speed of the microorganism and a minimum average escape speed of the microorganism.

請再參照第1及2圖所示,舉例而言,本發明較佳實施例選定各種微生物作為一參考微生物種類別,而該光纖光鑷夾用以量測一捕捉力〔或橫向捕捉力,transverse trapping force〕、一捕捉效率或其組合,且該預定速度可選擇為一固定速度〔即均等速度〕,如第2圖之y軸方向所示。 Please refer to FIGS. 1 and 2 again. For example, the preferred embodiment of the present invention selects various microorganisms as a reference microorganism category, and the optical fiber optical tweezers are used to measure a capture force [or lateral capture force, transverse trapping force], a trapping efficiency, or a combination thereof, and the predetermined speed may be selected as a fixed speed (ie, equal speed), as shown in the y-axis direction in FIG. 2.

請再參照第1及2圖所示,舉例而言,本發明較佳實施例之光捕捉微生物鑑別方法包含第三步驟S3:接著,利用該微生物逃脫速度〔或速度範圍或平均逃脫速度〕與一待鑑定微生物〔未知種類微生物〕逃脫速度進行比對,並選擇一待鑑定微生物〔或待測微生物〕,且利用該光纖光鑷夾可選擇以自動或其它方式測量一待鑑定微生物逃脫速度。本發明較佳實施例之該待鑑定微生物逃脫速度選自測量五次逃脫速度,並計算其平均之結果。 Please refer to FIGS. 1 and 2 again. For example, the light-trapping microorganism identification method according to the preferred embodiment of the present invention includes a third step S3: Then, using the microorganism escape speed [or speed range or average escape speed] and A microorganism to be identified [a microorganism of unknown type] is compared for the escape speed, and a microorganism to be identified [or a microorganism to be tested] is selected, and the optical fiber optical tweezers can be used to choose to automatically or otherwise measure the escape speed of a microorganism to be identified. In the preferred embodiment of the present invention, the escape speed of the microorganism to be identified is selected from measuring the escape speed five times and calculating the average result.

請再參照第1及2圖所示,舉例而言,本發明較佳實施例之光捕捉微生物鑑別方法包含第四步驟S4:接著,依該待鑑定微生物逃脫速度之比對結果鑑別判定一微生物種類。利用該微生物逃脫速度〔或速度範圍或平均逃脫速度〕與待鑑定微生物逃脫速度可選擇以自動或其它方式進行比對。在微生物鑑別比對上,本發明較佳實施例之光捕捉微生物鑑別方法及其建置微生物鑑別標準資料庫可選擇採用各種微生物種類鑑別的數學式或公式。 Please refer to FIG. 1 and FIG. 2 again, for example, the light-trapping microorganism identification method according to the preferred embodiment of the present invention includes a fourth step S4: Then, a microorganism is identified and determined according to the comparison result of the escape speed of the microorganism to be identified species. Using the microorganism escape speed [or speed range or average escape speed] and the escape speed of the microorganism to be identified can be selected to be compared in an automatic or other manner. In the comparison of microbial identification, the light-trapping microbial identification method of the preferred embodiment of the present invention and the built standard database of microbial identification can choose to use various mathematical expressions or formulas for microbial identification.

第3A圖揭示本發明較佳實施例之光捕捉微生物鑑別標準資料庫之建置流程示意圖。請參照第3A圖所示,舉例而言,本發明較佳實施例之光捕捉微生物鑑別標準資料庫之建置包含:設定光鑷夾系統參數;選擇已知種類酵母菌〔或其它微生物〕若干;量測各類酵母菌細胞〔或其它微生物〕之直徑與其逃脫速度若干次;計算各類酵母菌細胞〔或其它微生物〕逃脫速度平均值;建立各類酵母菌細胞〔或其它微生物〕、平均逃脫速度及逃脫速度範圍資料庫;完成活菌分類法所需之光捕捉酵母菌〔或其它微生物〕鑑別標準資料庫。 FIG. 3A shows a schematic diagram of the construction process of the light-trapping microorganism identification standard database according to the preferred embodiment of the present invention. Please refer to FIG. 3A. For example, the construction of the standard database of light-trapping microorganism identification according to the preferred embodiment of the present invention includes: setting the parameters of the optical tweezers system; selecting several known types of yeast [or other microorganisms] ; Measure the diameter of various types of yeast cells [or other microorganisms] and their escape speed several times; calculate the average value of various types of yeast cells [or other microorganisms] escape speed; establish various types of yeast cells [or other microorganisms], average Database of escape speed and escape speed range; standard database for identification of light-capturing yeasts (or other microorganisms) required to complete the classification of live bacteria.

第3B圖揭示本發明較佳實施例執行光捕捉微生物鑑別方法之流程示意圖。請參照第3B圖所示,舉例而言,本發明較佳實施例之光捕捉微生物鑑別方法包含:依據標準資料庫設定光鑷夾系統參數,且依據標準資料庫設定相同實驗參數;選擇未知種類酵母菌〔或其它微生物〕若干;量測各種酵母菌〔或其它微生物〕之直徑及其逃脫速度若干次;量測各待測酵母菌〔或其它微生物〕之直徑、平均逃脫速度及捕捉效率;依據已建置之標準資料庫進行比對,完成各待測酵母菌〔或其它微生物〕類別鑑定。 FIG. 3B shows a schematic flowchart of a method for identifying a light-trapping microorganism according to a preferred embodiment of the present invention. Please refer to FIG. 3B. For example, the light-trapping microorganism identification method according to the preferred embodiment of the present invention includes: setting optical tweezers system parameters according to a standard database, and setting the same experimental parameters according to the standard database; selecting unknown species Several yeasts (or other microorganisms); measure the diameters of various yeasts (or other microorganisms) and their escape speed several times; measure the diameters, average escape speeds and capture efficiency of each yeast (or other microorganisms) to be tested; Compare with the established standard database to complete the identification of each yeast (or other microorganism) to be tested.

請再參照第1、2及3A圖所示,舉例而言,本發明較佳實施例在光捕捉微生物鑑別標準資料庫之建置 上,採用各種微生物種類鑑別的數學式或公式,並選擇一種數學式舉例說明於下文。 Please refer again to Figures 1, 2 and 3A. For example, the preferred embodiment of the present invention is built on a standard database for identification of light-trapping microorganisms. In the above, the mathematical formulas or formulas for the identification of various types of microorganisms are used, and the selection of a mathematical formula is illustrated below.

舉例而言,本發明較佳實施例之光捕捉微生物鑑別方法採用該捕捉力F為:F=6πηrv For example, the light-trapping microorganism identification method of the preferred embodiment of the present invention uses the trapping force F as: F = 6 πηrv

其中η為溶液之黏滯係數,r為樣本〔類似球體〕之半徑,v為樣本之逃脫速度。 Where η is the viscosity coefficient of the solution, r is the radius of the sample [similar to a sphere], and v is the escape velocity of the sample.

舉例而言,本發明較佳實施例之光捕捉微生物鑑別方法採用該捕捉效率Q為:

Figure 107143075-A0101-12-0013-1
For example, the light-trapping microorganism identification method of the preferred embodiment of the present invention uses the capture efficiency Q as:
Figure 107143075-A0101-12-0013-1

其中c為真空中的光速,n為溶液之折射率,P為光鑷夾之捕捉功率。 Where c is the speed of light in vacuum, n is the refractive index of the solution, and P is the capture power of the optical tweezers.

請再參照第1及2圖所示,舉例而言,若同一光纖之輸出光功率增加時,則被捕捉物所需的逃脫速度亦也會跟著上升。因此,當輸出光功率固定時,每一種類之微生物皆有其對應逃脫速度之範圍,如此可達成微生物種類之鑑別檢驗。一般而言,在相同光捕捉功率的條件下,相同種類但不同直徑大小的微生物之逃脫速度相較不明顯;而在不同種類微生物之間,其逃脫速度相差則相對明顯。至於微生物的逃脫速度,依其生物體內部生物化學組成不同而造成其各種光學特性〔折射、反射、透射、吸收〕皆不相同,因而進一步造成其逃脫速度不相同的結果。 Please refer to Figures 1 and 2 again. For example, if the output optical power of the same fiber increases, the escape speed required by the captured object will also increase. Therefore, when the output optical power is fixed, each type of microorganism has its corresponding range of escape speed, so that the identification test of the type of microorganism can be achieved. Generally speaking, under the condition of the same light capture power, the escape speed of microorganisms of the same type but different diameters is relatively insignificant; and among different types of microorganisms, the difference in escape speed is relatively obvious. As for the escape speed of microorganisms, their various optical characteristics [refraction, reflection, transmission, absorption] are different according to the different biochemical composition of their organisms, which further results in their different escape speeds.

一般而言,單光束光鑷夾的捕捉原理可用幾何光學〔ray optics〕進行說明。當光傳播經過不同折射率的介質時,會因光速的差異,使光行進的方向產生彎折,並產生光折射〔refraction〕現象及光動量〔momentum〕變化。光鑷夾原理為利用光折射原理或機制及光動量變化對 微生物〔透明且微小的物體〕進行光學捕捉。即雷射光線〔光場〕接近或進入所欲捕捉的微生物時,光線在該微生物體內產生折射現象,並造成光動量的改變而產生捕捉住該微生物的現象。若遇上不透明的微生物,需要採用雙光束光鑷夾進行捕捉,其捕捉原理採用幅射壓或光壓〔radiation pressure〕理論進行說明。 In general, the capturing principle of single-beam optical tweezers can be explained with geometric optics (ray optics). When light propagates through media with different refractive indexes, the direction of light travel will be bent due to the difference in light speed, and the phenomenon of light refraction [refraction] and the change of light momentum [momentum] will occur. The principle of optical tweezers is to use the principle or mechanism of light refraction and the change of light momentum Microorganisms [transparent and tiny objects] are optically captured. That is, when the laser light [light field] approaches or enters the microorganism to be captured, the light produces a refraction phenomenon within the microorganism and causes a change in the light momentum to produce a phenomenon of capturing the microorganism. If you encounter opaque microorganisms, you need to use a double-beam optical tweezers to capture, the principle of capture using radiation pressure or radiation pressure [radiation pressure] theory to explain.

第4圖揭示本發明較佳實施例之光捕捉微生物鑑別方法在開始進行捕捉微生物體時,光束受微生物體之作用力而產生光折射機制之示意圖。請參照第1、2及4圖所示,舉例而言,本發明較佳實施例之光捕捉微生物鑑別定方法利用該光纖微透鏡34所輸出之光束開始進行捕捉一微生物體9。該光纖光鑷夾為一雷射光纖光鑷夾〔例如:650nm雷射光纖光鑷夾〕。該光纖光鑷夾具有一捕捉傾角或一工作傾角,且該捕捉傾角或工作傾角為40°、50°或其它適當角度。該光纖光鑷夾具有一單模光纖或其它適當光纖,且該光纖經加工製成光纖微透鏡。 FIG. 4 shows a schematic diagram of the light refraction mechanism when the light beam is subjected to the force of the microorganisms when the microorganism capturing method of the preferred embodiment of the present invention starts to capture the microorganisms. Please refer to FIGS. 1, 2 and 4, for example, the light capturing microorganism identification method according to the preferred embodiment of the present invention uses the light beam output from the fiber microlens 34 to start capturing a microorganism 9. The optical fiber optical tweezers is a laser optical fiber tweezers (for example: 650nm laser optical fiber tweezers). The optical fiber optical tweezers fixture has a catch tilt angle or a working tilt angle, and the catch tilt angle or working tilt angle is 40°, 50° or other suitable angles. The optical fiber optical tweezers fixture has a single-mode optical fiber or other suitable optical fiber, and the optical fiber is processed to form an optical fiber microlens.

請再參照第4圖所示,當通過光纖微透鏡的光束〔雷射光束〕入射至該微生物體9之表面時,若其未受偏折則穿透光應行進直線路徑〔兩條對稱虛線所示〕,但因微生物體的折射率〔refractive index〕與周圍環境不同,入射光進入微生物體受到偏折〔兩條對稱實線所示,即折射光〕,由該微生物體9之內部物質對稱中心之兩側向內方向〔向該光纖微透鏡34之縱軸〕偏折,如同該微生物體內部物質施加作用力F1〔兩支對稱向內箭頭所示〕於穿透光,使其偏離原虛線所示路徑,即其折射光與原入射光相較之下產生之光動量變化。 Please refer to Fig. 4 again. When the light beam [laser beam] passing through the fiber microlens is incident on the surface of the microbial body 9, if it is not deflected, the penetrating light should travel a straight path [two symmetrical broken lines [Shown], but because the refractive index of the microorganism [refractive index] is different from the surrounding environment, the incident light enters the microorganism and is deflected [shown by two symmetric solid lines, that is, refracted light]. Both sides of the center of symmetry are deflected inwardly [toward the longitudinal axis of the fiber microlens 34] as if the internal material of the microorganism exerts a force F1 (shown by two symmetrical inward arrows) on the penetrating light, causing it to deviate The path shown by the original dotted line, that is, the change of the light momentum generated by the refracted light compared with the original incident light.

第5圖揭示本發明較佳實施例之光捕捉微生物鑑別方法在開始進行捕捉微生物體時,微生物體受光束之反作用力而產生光捕捉機制之示意圖。請參照第4及5圖 所示,由該微生物體9之內部物質施加作用力F1〔第4圖之兩支對稱向內箭頭所示〕於入射光,使入射光偏折,依牛頓第三運動定律,該折射光亦產生一大小相同但方向相反之作用力F2〔第5圖之兩支對稱向外箭頭所示〕於該微生物體9之內部物質,即光子〔折射光〕亦同時施加反作用力F2於該微生物體9。該微生物體9受反作用力F2之垂直向量的總和F3〔第5圖之垂直向上箭頭所示〕而可沿著該光纖微透鏡34之縱軸產生適當運動。 FIG. 5 shows a schematic diagram of the light capture mechanism when the microorganism capture method of the preferred embodiment of the present invention starts capturing microorganisms, and the microorganisms are subjected to the reaction force of the light beam. Please refer to figures 4 and 5 As shown, the internal substance of the microbial body 9 exerts a force F1 (shown by the two symmetrical inward arrows in Figure 4) on the incident light to deflect the incident light. According to Newton's third law of motion, the refracted light also Generates a force F2 of the same size but in the opposite direction (shown by two symmetric outward arrows in Figure 5) on the internal substance of the microbial body 9, that is, the photon [refracted light] also exerts a reaction force F2 on the microbial body 9. The microbial body 9 can be appropriately moved along the longitudinal axis of the optical fiber microlens 34 by the sum of the vertical vectors F3 of the reaction force F2 (shown by the vertical upward arrows in FIG. 5).

第6圖揭示本發明較佳實施例之光捕捉微生物鑑別方法在已完成捕捉微生物體時,微生物體已受光束穩定束縛現象之示意圖。請參照第5及6圖所示,當光子〔折射光〕同時施加反作用力F2於該微生物體9時,該微生物體9受反作用力F2之垂直向量的總和〔第5圖之垂直向上箭頭所示〕而可沿著該光纖微透鏡34之縱軸產生適當運動。當該微生物體9移動至該光纖微透鏡34之光學焦點時,由入射該光纖微透鏡34之〔雷射〕光束在該焦點附近產生一個穩定的光學位能井〔optical potential well〕,並在該位能井處形成作用力平衡點〔合力為零的位置〕,且形成捕捉限制該微生物體9。此時,一旦將該光鑷夾之光纖微透鏡34進行移動時,該微生物體9亦隨著產生移動,即可利用該光纖微透鏡34之光束操控該微生物體9之運動。 FIG. 6 shows a schematic diagram of the light trapping microorganism identification method of the preferred embodiment of the present invention when the microorganisms have been captured, and the microorganisms have been stably bound by the light beam. Please refer to Figures 5 and 6, when the photon [refracted light] applies a reaction force F2 to the microbial body 9 at the same time, the microbial body 9 is subjected to the sum of the vertical vectors of the reaction force F2 [vertical upward arrows in Figure 5 It is possible to produce proper motion along the longitudinal axis of the fiber microlens 34. When the microorganism 9 moves to the optical focus of the fiber microlens 34, a stable optical potential well is generated near the focus by the [laser] beam incident on the fiber microlens 34, and at A force balance point [a position where the total force is zero] is formed at the potential energy well, and the microbial body 9 is formed to trap and restrict the microorganism. At this time, once the optical fiber microlens 34 of the optical tweezers is moved, the microbial body 9 also moves, so that the light beam of the optical fiber microlens 34 can be used to control the movement of the microbial body 9.

第7A圖揭示本發明較佳實施例之光捕捉微生物鑑別方法用於量測第一酵母菌之顯微影像示意圖。請參照第7A圖所示,本發明較佳實施例之光捕捉微生物鑑別方法用於量測第一酵母菌選自saf-instant品牌,其量測結果顯示於表1及4。 FIG. 7A shows a schematic diagram of a microscopic image of the light capturing microorganism identification method used for measuring the first yeast according to the preferred embodiment of the present invention. Referring to FIG. 7A, the light-trapping microorganism identification method according to the preferred embodiment of the present invention is used to measure the first yeast selected from the saf-instant brand. The measurement results are shown in Tables 1 and 4.

Figure 107143075-A0101-12-0016-2
Figure 107143075-A0101-12-0016-2

第7B圖揭示本發明較佳實施例之光捕捉微生物鑑別方法用於量測第二酵母菌之顯微影像示意圖。請參照第7B圖所示,本發明較佳實施例之光捕捉微生物鑑別方法用於量測第二酵母菌選自brown品牌,其量測結果顯示於表2及4。 FIG. 7B shows a schematic diagram of a microscopic image of the light-trapping microorganism identification method used for measuring the second yeast according to the preferred embodiment of the present invention. Referring to FIG. 7B, the light-trapping microorganism identification method according to the preferred embodiment of the present invention is used to measure the second yeast selected from the brown brand. The measurement results are shown in Tables 2 and 4.

Figure 107143075-A0101-12-0016-3
Figure 107143075-A0101-12-0016-3

第7C圖揭示本發明較佳實施例之光捕捉微生物鑑別方法用於量測第三酵母菌之顯微影像示意圖。請參照第7C圖所示,本發明較佳實施例之光捕捉微生物鑑別方法用於量測第三酵母菌選自fermipan品牌,其量測結果顯示於表3及4。 FIG. 7C shows a schematic diagram of a microscopic image of the light-trapping microorganism identification method used for measuring the third yeast according to the preferred embodiment of the present invention. Referring to FIG. 7C, the light-trapping microorganism identification method according to the preferred embodiment of the present invention is used to measure the third yeast selected from the fermipan brand. The measurement results are shown in Tables 3 and 4.

Figure 107143075-A0101-12-0017-4
Figure 107143075-A0101-12-0017-4

Figure 107143075-A0101-12-0017-5
Figure 107143075-A0101-12-0017-5

如表4所示,在不同種類酵母菌具有不同逃脫速度及捕捉效率之特性。因此,將第一、第二及第三酵母菌混合狀況下,可利用光鑷夾系統捕捉該混合酵母菌,並在獲得其逃脫速度及捕捉效率後,可知受捕捉之酵母菌〔廠牌〕種類。 As shown in Table 4, different types of yeast have different characteristics of escape speed and capture efficiency. Therefore, in the mixed state of the first, second and third yeasts, the mixed yeast can be captured by the optical tweezers system, and after obtaining its escape speed and capturing efficiency, the yeasts caught can be known [brand] species.

第8圖揭示本發明較佳實施例之光捕捉微生物鑑別方法用在量測第一、第二及第三酵母菌而獲得其逃脫速度之示意圖。請參照第8圖及表4所示,第一酵母菌之逃脫速度為25.58至29.95μm/s、第二酵母菌之逃脫速度為12.22至14.40μm/s及第三酵母菌之逃脫速度為8.49至10.4μm/s。 FIG. 8 shows a schematic diagram of the light-trapping microorganism identification method of the preferred embodiment of the present invention used in measuring the first, second, and third yeasts to obtain their escape speed. Please refer to Figure 8 and Table 4, the escape speed of the first yeast is 25.58 to 29.95 μm/s, the escape speed of the second yeast is 12.22 to 14.40 μm/s and the escape speed of the third yeast is 8.49 To 10.4μm/s.

第9圖揭示本發明較佳實施例之光捕捉微生物鑑別方法用在量測第一、第二及第三酵母菌而獲得其捕捉效率之示意圖。請參照第9及表4圖所示,第一酵母菌之捕捉效率為3.17至3.46%、第二酵母菌之捕捉效率為2.26至2.80%及第三酵母菌捕捉效率為1.43至1.82%。 FIG. 9 shows a schematic diagram of the light-trapping microorganism identification method according to the preferred embodiment of the present invention for measuring the first, second, and third yeasts to obtain their capturing efficiency. Please refer to Figure 9 and Table 4. The first yeast capture efficiency is 3.17 to 3.46%, the second yeast capture efficiency is 2.26 to 2.80% and the third yeast capture efficiency is 1.43 to 1.82%.

上述實驗數據為在特定條件之下所獲得的初步實驗結果,其僅用以易於瞭解或參考本發明之技術內容而已,其尚需進行其他相關實驗。該實驗數據及其結果並非用以限制本發明之權利範圍。 The above experimental data are preliminary experimental results obtained under specific conditions. They are only for easy understanding or reference to the technical content of the present invention, and other relevant experiments are still required. The experimental data and results are not intended to limit the scope of the present invention.

前述較佳實施例僅舉例說明本發明及其技術特徵,該實施例之技術仍可適當進行各種實質等效修飾及/或替換方式予以實施;因此,本發明之權利範圍須視後附申請專利範圍所界定之範圍為準。本案著作權限制使用於中華民國專利申請用途。 The foregoing preferred embodiment only exemplifies the present invention and its technical features, and the technology of this embodiment can still be appropriately implemented with various substantial equivalent modifications and/or replacements; therefore, the scope of the present invention is subject to the appended patent application The scope defined by the scope shall prevail. The copyright in this case is restricted to the use of patent applications in the Republic of China.

S1‧‧‧第一步驟 S1‧‧‧ First step

S2‧‧‧第二步驟 S2‧‧‧The second step

S3‧‧‧第三步驟 S3‧‧‧The third step

S4‧‧‧第四步驟 S4‧‧‧The fourth step

Claims (10)

一種光捕捉微生物鑑別方法,其包含:利用一光纖光鑷夾捕捉一微生物體,以便在該光纖光鑷夾上形成一已捕捉微生物體;控制該光纖光鑷夾及已捕捉微生物體以至少一預定速度進行移動,以測量一微生物逃脫速度;利用該微生物逃脫速度與一待鑑定微生物逃脫速度進行比對;及依該待鑑定微生物逃脫速度之比對結果判定一微生物種類。 A light-trapping microorganism identification method, comprising: using a fiber optic tweezers to capture a microorganism, so as to form a captured microbe on the fiber optic tweezers; controlling the fiber optic tweezers and the captured microbes with at least one Move at a predetermined speed to measure the escape speed of a microorganism; use the escape speed of the microorganism to compare with the escape speed of a microorganism to be identified; and determine a type of microorganism according to the comparison result of the escape speed of the microorganism to be identified. 依申請專利範圍第1項所述之光捕捉微生物鑑別方法,其中選定各種微生物作為一參考微生物種類別。 According to the light-trapping microorganism identification method described in item 1 of the patent scope, various microorganisms are selected as a reference microorganism category. 依申請專利範圍第1項所述之光捕捉微生物鑑別方法,其中建立光捕捉檢驗法所需之微生物鑑別標準資料庫。 According to the light-trapping microorganism identification method described in item 1 of the scope of patent application, a standard database of microorganism identification required by the light-trapping inspection method is established. 依申請專利範圍第1項所述之光捕捉微生物鑑別方法,其中該光纖光鑷夾用以量測一捕捉力、一捕捉效率或其組合。 According to the light-trapping microorganism identification method described in item 1 of the patent scope, wherein the optical fiber optical tweezers are used to measure a catching force, a catching efficiency, or a combination thereof. 依申請專利範圍第1項所述之光捕捉微生物鑑別方法,其中該預定速度為一固定速度。 According to the light-trapping microorganism identification method described in item 1 of the patent application scope, wherein the predetermined speed is a fixed speed. 依申請專利範圍第1項所述之光捕捉微生物鑑別方法,其中該微生物逃脫速度為一微生物逃脫速度範圍或一微生物平均逃脫速度。 According to the light-trapping microorganism identification method described in item 1 of the patent application scope, wherein the microorganism escape speed is a microorganism escape speed range or a microorganism average escape speed. 依申請專利範圍第6項所述之光捕捉微生物鑑別方法,其中該微生物逃脫速度範圍介於一最大微生物逃脫速度及一最小微生物逃脫速度之間。 According to the light-trapping microorganism identification method described in item 6 of the patent application scope, wherein the microorganism escape speed range is between a maximum microorganism escape speed and a minimum microorganism escape speed. 依申請專利範圍第1項所述之光捕捉微生物鑑別方法,其中該微生物體選自一細菌、一真菌、一病毒、一藻類或一原生動物〔原生蟲〕。 According to the light-trapping microorganism identification method described in item 1 of the patent application scope, wherein the microorganism is selected from a bacterium, a fungus, a virus, an algae or a protozoan [protozoa]. 依申請專利範圍第1項所述之光捕捉微生物鑑別方法,其中該微生物體選自一酵母菌、一益生菌或一病原細 菌。 The method for identifying light-trapping microorganisms according to item 1 of the patent application scope, wherein the microorganism is selected from a yeast, a probiotic or a pathogen bacteria. 依申請專利範圍第1項所述之光捕捉微生物鑑別方法,其中該光纖光鑷夾為一雷射光纖光鑷夾。 According to the light-trapping microorganism identification method described in item 1 of the patent application scope, wherein the optical fiber optical tweezers is a laser optical fiber optical tweezers.
TW107143075A 2018-11-30 2018-11-30 Light-trapping microbial identifying method TWI694249B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107143075A TWI694249B (en) 2018-11-30 2018-11-30 Light-trapping microbial identifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107143075A TWI694249B (en) 2018-11-30 2018-11-30 Light-trapping microbial identifying method

Publications (2)

Publication Number Publication Date
TWI694249B true TWI694249B (en) 2020-05-21
TW202022352A TW202022352A (en) 2020-06-16

Family

ID=71896229

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107143075A TWI694249B (en) 2018-11-30 2018-11-30 Light-trapping microbial identifying method

Country Status (1)

Country Link
TW (1) TWI694249B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI352824B (en) * 2007-09-06 2011-11-21 Univ Nat Chiao Tung Optical tweezers device and optical tweezers syste
TW201538719A (en) * 2014-04-08 2015-10-16 Nat Univ Tsing Hua Cyclic microfluidic chip and method using the same
TWI569016B (en) * 2015-10-19 2017-02-01 國立高雄應用科技大學 Light-trapping cancer cell stage testing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI352824B (en) * 2007-09-06 2011-11-21 Univ Nat Chiao Tung Optical tweezers device and optical tweezers syste
TW201538719A (en) * 2014-04-08 2015-10-16 Nat Univ Tsing Hua Cyclic microfluidic chip and method using the same
TWI569016B (en) * 2015-10-19 2017-02-01 國立高雄應用科技大學 Light-trapping cancer cell stage testing method

Also Published As

Publication number Publication date
TW202022352A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
Tehrani et al. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm
Chen et al. Subwavelength imaging and detection using adjustable and movable droplet microlenses
Zhang et al. Defects evaluation system for spherical optical surfaces based on microscopic scattering dark-field imaging method
TWI569016B (en) Light-trapping cancer cell stage testing method
Germann et al. Three-dimensional tracking of a single fluorescent nanoparticle using four-focus excitation in a confocal microscope
CN108732738B (en) Immersion objective for microscopes
Shinoj et al. Design, fabrication, and characterization of thermoplastic microlenses for fiber-optic probe imaging
Singh et al. Comparison of objective lenses for multiphoton microscopy in turbid samples
AU2015314363B2 (en) Optical fiber with a hollow channel along the center of the fiber core for receiving a sample
CN106403843A (en) Contour scanning measurement device and method for large-aperture high-curvature optical element based on confocal microscopy
Gell et al. TIRF microscopy evanescent field calibration using tilted fluorescent microtubules
Lei et al. Long-distance axial trapping with focused annular laser beams
Jiang et al. Label-free non-invasive subwavelength-resolution imaging using yeast cells as biological lenses
TWM576591U (en) Light trapping microbial identification system
TWI694249B (en) Light-trapping microbial identifying method
Hassan et al. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors
Huang et al. Improving axial resolution for holographic tracking of colloids and bacteria over a wide depth of field by optimizing different factors
Duan et al. Probe alignment and design issues of microelectromechanical system based optical coherence tomography endoscopic imaging
Förster et al. Hyperchromatic lens doublets with an extremely small equivalent Abbe number employing diffractive elements and refractive materials with exceptional dispersion properties
CN104090329B (en) A kind of optical fiber optical tweezers based on graded index multimode fiber cone and using method thereof
Zhang et al. Highly flexible MTF measurement system for tunable micro lenses
TW202022353A (en) Light-trapping microorganism system and method thereof
CN103389311A (en) Line scanning phase differential imaging device for optical element phase defect detection
Ryu et al. Lensed fiber-optic probe design for efficient photon collection in scattering media
Kim et al. Quantification of glistenings in intraocular lenses using a ballistic-photon removing integrating-sphere method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees