TW202022353A - Light-trapping microorganism system and method thereof - Google Patents

Light-trapping microorganism system and method thereof Download PDF

Info

Publication number
TW202022353A
TW202022353A TW108136713A TW108136713A TW202022353A TW 202022353 A TW202022353 A TW 202022353A TW 108136713 A TW108136713 A TW 108136713A TW 108136713 A TW108136713 A TW 108136713A TW 202022353 A TW202022353 A TW 202022353A
Authority
TW
Taiwan
Prior art keywords
microorganism
light
microorganisms
optical fiber
tweezers
Prior art date
Application number
TW108136713A
Other languages
Chinese (zh)
Inventor
劉世崑
陳麗琴
侯孟良
陳韋達
黃俊捷
陳俊劭
Original Assignee
國立高雄科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立高雄科技大學 filed Critical 國立高雄科技大學
Priority to TW108136713A priority Critical patent/TW202022353A/en
Publication of TW202022353A publication Critical patent/TW202022353A/en

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A light-trapping microorganism system includes a microorganism container, a microscope device and an optical tweezer. The microorganism container contains a microorganism, with the microorganism container being aligned with the microscope device for displaying the microorganism. The optical tweezer generates a predetermined light beam to trap the microorganism thereon. The optical tweezer and the trapped microorganism are moved together by a predetermined speed from a first position to a second position, with displaying the optical tweezer and the trapped microorganism via the microscope device.

Description

光捕捉微生物系統及其方法 Light capture microorganism system and method

本發明係關於一種光捕捉〔light-trapping〕微生物〔microorganism〕系統及其方法;特別是關於一種雷射光束〔laser beam〕捕捉微生物系統及其方法;更特別是關於一種光鑷夾〔optical tweezer〕捕捉微生物系統及其方法;更特別是關於一種光纖〔optical fiber〕光鑷夾捕捉微生物系統及其方法;更特別是關於一種雷射光纖光鑷夾捕捉微生物系統及其方法。 The present invention relates to a light-trapping microbe (microorganism) system and its method; in particular, it relates to a laser beam (laser beam) microbial trapping system and its method; more particularly to an optical tweezer ] System and method for capturing microorganisms; more particularly, it relates to a system and method for capturing microorganisms with optical fiber (optical fiber); more particularly, it relates to a system and method for capturing microorganisms with laser optical fiber optical tweezers.

舉例而言,有關習用光纖透鏡〔光纖微透鏡〕製造方法,例如:中華民國專利公告第TW-I241421號之〝製造雙曲線形式光纖透鏡之方法〞發明專利,其揭示一種製造雙曲線形式光纖透鏡之方法。該光纖透鏡製造方法包括以下步驟:〔a〕剝除一光纖之一預定長度之披附層,以形成一裸露部分;〔b〕清洗該裸露部分;〔c〕固定該待加工光纖於一光纖固定座內;〔d〕提供一容器,其包含一氫氟酸層、一機油層及一中間混合層;〔e〕將該光纖之裸露部分伸入該氫氟酸層,以進行蝕刻而形成一錐角;〔f〕利用兩電弧熔燒該錐角;及〔g〕調整該兩電弧與該錐角之相對位置,利用兩電弧放電形成的不均勻溫度場,以得到雙曲線形式之光纖透鏡及所設定之曲率半徑,提高光纖之耦光效率。 For example, regarding the conventional manufacturing method of optical fiber lens [fiber microlens], for example, the invention patent of "Method of Manufacturing Hyperbolic Optical Fiber Lens" in the Republic of China Patent Publication No. TW-I241421, which discloses a manufacturing method of hyperbolic optical fiber lens的方法。 The method. The manufacturing method of the optical fiber lens includes the following steps: [a] stripping off a predetermined length of cladding layer of an optical fiber to form an exposed part; [b] cleaning the exposed part; [c] fixing the optical fiber to be processed to an optical fiber In the fixed seat; [d] Provide a container including a hydrofluoric acid layer, an oil layer and an intermediate mixing layer; [e] Extend the bare part of the optical fiber into the hydrofluoric acid layer to be formed by etching A cone angle; [f] use two arcs to melt the cone angle; and [g] adjust the relative position of the two arcs and the cone angle, and use the uneven temperature field formed by the two arc discharges to obtain a hyperbolic optical fiber The lens and the set radius of curvature improve the coupling efficiency of the optical fiber.

然而,前述第TW-I241421號僅揭示光纖透鏡製造方法及其適用於大量生產之技術而已。另外,該光纖 透鏡製造方法亦僅揭示如何將該光纖透鏡與雷射光場形成完美匹配,且利用調整該兩電弧與該光纖透鏡之錐角之相對位置,以獲得該光纖透鏡之最佳曲率半徑,對其耦光效率具有決定性影響之技術而已。 However, the aforementioned No. TW-I241421 only discloses the manufacturing method of the fiber lens and its technology suitable for mass production. In addition, the fiber The lens manufacturing method also only reveals how to form a perfect match between the fiber lens and the laser light field, and adjust the relative position of the two arcs and the cone angle of the fiber lens to obtain the best radius of curvature of the fiber lens, and to couple it. Light efficiency has a decisive influence on technology.

另一習用光纖光學鑷夾〔光纖光鑷夾〕製造方法,例如:中華民國專利公告第TW-I474061號之〝光纖光學鑷夾之製程〞發明專利,其揭示一種光學鑷夾製造方法。該光學鑷夾製造方法包括下列步驟:〔a〕剝除:剪裁適當長度之一光纖,並剝除該光纖之一披覆層〔coating〕而漏出一裸光纖,其包含一纖衣層〔cladding〕及一纖芯層〔core〕;〔b〕清潔:將光纖清洗潔淨;〔c〕切割:將該裸光纖之端面切割平整化;〔d〕蝕刻:將該光纖予以固定,於一容器內加入一氧化物緩衝蝕刻液〔buffered oxide etch,BOE〕,再將固定之該光纖對應該容器設置,將待加工之該光纖之末端浸入該氧化物緩衝蝕刻液進行蝕刻,光纖之末端即可形成一錐形狀,以製成光纖微透鏡或透鏡化光纖〔fiber microlens〕;亦可選擇進一步將該錐形狀之光纖末端利用兩端電弧裝置進行融燒,使其形成一半球形之光纖微透鏡。 Another conventional fiber optic tweezers [fiber optic tweezers] manufacturing method, for example, the Republic of China Patent Publication No. TW-I474061 "The manufacturing process of fiber optic tweezers" invention patent, which discloses a manufacturing method of optical tweezers. The optical tweezers manufacturing method includes the following steps: [a] Stripping: cutting an optical fiber of an appropriate length, and stripping off one of the coating layers (coating) of the optical fiber to leak a bare optical fiber, which includes a fiber coating layer (cladding) ] And a core layer [core]; [b] cleaning: clean the optical fiber; [c] cutting: cutting and flattening the end face of the bare optical fiber; [d] etching: fixing the optical fiber in a container Add a buffered oxide etch solution [buffered oxide etch, BOE], set the fixed optical fiber corresponding to the container, immerse the end of the optical fiber to be processed into the oxide buffered etching solution for etching, and the end of the optical fiber can be formed A tapered shape to make a fiber microlens or a lensed fiber [fiber microlens]; you can also choose to further melt the tapered fiber end with an arc device at both ends to form a hemispherical fiber microlens.

另外,前述第TW-I474061號利用該光纖光學鑷夾之半球形透鏡化光纖達成於整體製作上更為簡便,且能降低其製作成本之功效。倘若在生物技術或生物醫學應用領域上其操作利用光或光能以非接觸式進行捕捉微小物體或微生物,且其具有高捕捉效率及低捕捉功率。 In addition, the aforementioned No. TW-I474061 utilizes the hemispherical lensed optical fiber of the optical fiber optic tweezers to achieve a simpler overall production and lower production cost. If it uses light or light energy to capture tiny objects or microorganisms in a non-contact manner in the field of biotechnology or biomedical applications, and it has high capturing efficiency and low capturing power.

然而,前述第TW-I474061號僅揭示光纖光學鑷夾適用於非接觸式捕捉微小物體或微生物。此外,該光纖光學鑷夾適用於非接觸式捕捉微小物體或微生物亦必然存在提供使用於其它生物技術的未來應用〔例如:微生物鑑別的應用〕上的潛在需求。 However, the aforementioned No. TW-I474061 only discloses that the fiber optic tweezers are suitable for non-contact capture of small objects or microorganisms. In addition, the fiber optic tweezers are suitable for non-contact capture of small objects or microorganisms, and there must be a potential demand for future applications of other biotechnologies (for example, the application of microorganism identification).

另一習用光纖光學鑷夾〔光纖光鑷夾〕製造方法,例如:美國專利第US-9958663號之〝light-trapping cancer cell stage testing method〞發明專利,其揭示一種光捕捉癌細胞期別鑑定方法。該光捕捉癌細胞期別鑑定方法包含:測量一第一癌細胞平均逃脫速度或其範圍及一第二癌細胞平均逃脫速度或其範圍,而該第一癌細胞與第二癌細胞之癌細胞期別已知不相同,且該第一癌細胞與第二癌細胞為已知種類;再利用該第一癌細胞平均逃脫速度及第二癌細胞平均逃脫速度計算一逃脫速度比值或其範圍;選擇一待鑑定癌細胞,並測量一待鑑定癌細胞逃脫速度,且該待鑑定癌細胞為已知種類但未知期別;利用該逃脫速度比值或其範圍與待鑑定癌細胞逃脫速度進行比對;及依該待鑑定癌細胞逃脫速度之比對結果判定一癌細胞期別。 Another conventional fiber optic tweezers [fiber optic tweezers] manufacturing method, for example: US Patent No. US-9958663 "light-trapping cancer cell stage testing method" invention patent, which discloses a light-trapping cancer cell stage identification method . The light-captured cancer cell stage identification method includes: measuring the average escape speed or range of a first cancer cell and the average escape speed or range of a second cancer cell, and the cancer cells of the first cancer cell and the second cancer cell The stages are known to be different, and the first cancer cell and the second cancer cell are of a known type; then the average escape speed of the first cancer cell and the average escape speed of the second cancer cell are used to calculate an escape speed ratio or its range; Select a cancer cell to be identified, and measure the escape speed of a cancer cell to be identified, and the cancer cell to be identified is of a known type but unknown stage; use the escape speed ratio or its range to compare the escape speed of the cancer cell to be identified ; And according to the comparison result of the escape speed of the cancer cells to be identified, a cancer cell stage is determined.

然而,前述第US-9958663號僅揭示光捕捉癌細胞期別鑑定方法而已,且該癌細胞期別鑑定方法並不適用於鑑定其它物體。此外,該光捕捉癌細胞期別鑑定方法適用於非接觸式捕捉微小物體或微生物亦必然存在提供使用於其它生物技術的未來應用〔例如:各種微生物種類鑑別的應用〕上的潛在需求。 However, the aforementioned No. US-9958663 only discloses a method for identifying cancer cell stage by light capture, and the method for identifying cancer cell stage is not suitable for identifying other objects. In addition, the light-captured cancer cell stage identification method is suitable for non-contact capture of small objects or microorganisms, and there must be a potential demand for future applications of other biotechnologies (such as applications for identification of various types of microorganisms).

前述中華民國專利公告第TW-I241421號、第TW-I474061號及第US-9958663號之發明專利僅為本發明技術背景之參考及說明目前技術發展狀態而已,其並非用以限制本發明之範圍。 The aforementioned ROC Patent Publication Nos. TW-I241421, TW-I474061, and US-9958663 for invention patents are only a reference for the technical background of the present invention and illustrate the current state of the technology development. They are not intended to limit the scope of the present invention. .

有鑑於此,本發明為了滿足上述技術問題及需求,其提供一種光捕捉微生物系統及其方法,其利用一光纖光鑷夾捕捉一微生物體〔已知種類微生物〕,以便在該光纖光鑷夾上形成一已捕捉微生物體,並另控制該光纖光鑷夾及已捕捉微生物體以一預定速度進行移動,以測量一微生物逃脫速度〔或速度範圍或平均逃脫速度〕,且可選 擇建立一微生物鑑別標準資料庫,再利用該微生物逃脫速度〔或速度範圍或平均逃脫速度〕與一待鑑定微生物〔未知種類微生物〕逃脫速度進行比對,如此依該待鑑定微生物逃脫速度之比對結果判定一微生物種類,以擴大習用光纖光學鑷夾的進一步應用範圍。 In view of this, in order to meet the above technical problems and needs, the present invention provides a light-trapping microorganism system and method, which uses an optical fiber optical tweezers to capture a microorganism (a known species of microorganisms), so that the optical fiber optical tweezers A captured microorganism is formed on the top, and the fiber optic tweezers and the captured microorganism are controlled to move at a predetermined speed to measure a microorganism's escape speed (or speed range or average escape speed), and optional Choose to establish a microbial identification standard database, and then use the microbial escape speed (or speed range or average escape speed) to compare with the escape speed of a microorganism to be identified (unknown species of microorganism), so as to compare the escape speed of the microorganism to be identified The result is to determine a microorganism type to expand the further application range of conventional fiber optic tweezers.

本發明之主要目的係提供一種光捕捉微生物系統及其方法,其利用一光纖光鑷夾以一預定光束捕捉一微生物體,以便在該光纖光鑷夾上形成一已捕捉微生物體,並將該光纖光鑷夾及已捕捉微生物體以一預定速度進行移動,且經由該顯微鏡裝置顯示該光纖光鑷夾及已捕捉微生物體,且將該光纖光鑷夾及已捕捉微生物體自一第一位置移動至一第二位置,以達成準確捕捉微生物之目的。 The main purpose of the present invention is to provide a light trapping microorganism system and method, which uses an optical fiber optical tweezers to capture a microorganism with a predetermined light beam, so as to form a trapped microorganism on the optical fiber optical tweezers, and combine the The optical fiber optical tweezers and the captured microorganisms move at a predetermined speed, and the optical fiber optical tweezers and the captured microorganisms are displayed through the microscope device, and the optical fiber optical tweezers and the captured microorganisms are moved from a first position Move to a second position to achieve the purpose of accurately capturing microorganisms.

本發明之另一目的係提供一種光捕捉微生物鑑別方法,其利用一光纖光鑷夾捕捉一微生物體〔已知種類微生物〕,以便在該光纖光鑷夾上形成一已捕捉微生物體,並另控制該光纖光鑷夾及已捕捉微生物體以一預定速度進行移動,以測量一微生物逃脫速度〔或速度範圍或平均逃脫速度〕,且可選擇建立一微生物鑑別標準資料庫,再利用該微生物逃脫速度〔或速度範圍或平均逃脫速度〕與一待鑑定微生物〔未知種類微生物〕逃脫速度進行比對,如此依該待鑑定微生物逃脫速度之比對結果判定一微生物種類,以達成準確鑑別微生物種類之目的。 Another object of the present invention is to provide a method for identifying microbes captured by light, which uses an optical fiber optical tweezers to capture a microorganism (known species of microorganisms) so as to form a captured microorganism on the optical fiber optical tweezers, and another Control the fiber optic tweezers and the captured microorganisms to move at a predetermined speed to measure a microorganism escape speed (or speed range or average escape speed), and optionally establish a microorganism identification standard database, and then use the microorganism to escape The speed (or speed range or average escape speed) is compared with the escape speed of a microorganism to be identified (unknown species of microorganism), so that a microorganism type is determined based on the comparison result of the escape speed of the microorganism to be identified, so as to achieve accurate identification of the microorganism type purpose.

為了達成上述目的,本發明較佳實施例之光捕捉微生物鑑別方法包含:利用一光纖光鑷夾捕捉一微生物體〔已知種類微生物〕,以便在該光纖光鑷夾上形成一已捕捉微生物體;控制該光纖光鑷夾及已捕捉微生物體以一預 定速度進行移動,以測量一微生物逃脫速度〔或速度範圍或平均逃脫速度〕;利用該微生物逃脫速度〔或速度範圍或平均逃脫速度〕與一待鑑定微生物〔未知種類微生物〕逃脫速度進行比對;及依該待鑑定微生物逃脫速度之比對結果判定一微生物種類。 In order to achieve the above objective, the light-trapped microorganism identification method of a preferred embodiment of the present invention includes: using an optical fiber optical tweezers to capture a microorganism (known species of microorganisms) so as to form a captured microorganism on the optical fiber optical tweezers ; Control the fiber optic tweezers and captured microorganisms to a pre- Move at a constant speed to measure the escape speed of a microorganism (or speed range or average escape speed); compare the escape speed of the microorganism (or speed range or average escape speed) with the escape speed of a microorganism to be identified (unknown species of microorganism) ; And determine a microorganism type according to the comparison result of the escape speed of the microorganism to be identified.

本發明較佳實施例選定各種微生物作為一參考微生物種類別。 The preferred embodiment of the present invention selects various microorganisms as a reference microorganism species category.

本發明較佳實施例建立光捕捉檢驗法所需之微生物鑑別標準資料庫。 The preferred embodiment of the present invention establishes a microbial identification standard database required by the light capture test method.

本發明較佳實施例之該光纖光鑷夾用以量測一捕捉力、一捕捉效率或其組合。 The optical fiber optical tweezers of the preferred embodiment of the present invention are used to measure a capturing force, a capturing efficiency or a combination thereof.

本發明較佳實施例之該微生物體置於一緩衝液。 In a preferred embodiment of the present invention, the microorganism is placed in a buffer.

本發明較佳實施例之該預定速度為一固定速度。 In the preferred embodiment of the present invention, the predetermined speed is a fixed speed.

本發明較佳實施例之該微生物逃脫速度為一微生物逃脫速度範圍或一微生物平均逃脫速度。 In the preferred embodiment of the present invention, the microorganism escape speed is a range of microorganism escape speed or an average microorganism escape speed.

本發明較佳實施例之該微生物逃脫速度範圍介於一最大微生物逃脫速度及一最小微生物逃脫速度之間。 In the preferred embodiment of the present invention, the microbial escape speed range is between a maximum microbial escape speed and a minimum microbial escape speed.

本發明較佳實施例之該待鑑定微生物逃脫速度選自測量五次逃脫速度,並計算其平均之結果。 The escape speed of the microorganism to be identified in the preferred embodiment of the present invention is selected from the result of measuring the escape speed of five times and calculating the average.

本發明較佳實施例之該微生物體選自一細菌、一真菌、一病毒、一藻類或一病原細菌。 The microorganism in the preferred embodiment of the present invention is selected from a bacterium, a fungus, a virus, an algae or a pathogenic bacterium.

本發明較佳實施例之該微生物體選自一酵母菌〔例如:天然酵母菌、饅頭酵母菌、啤酒酵母菌或葡萄酒酵母菌〕、一益生菌或一病原細菌。 In a preferred embodiment of the present invention, the microorganism is selected from a yeast (for example: natural yeast, steamed bread yeast, beer yeast or wine yeast), a probiotic or a pathogenic bacteria.

本發明較佳實施例之該光纖光鑷夾為一雷射光纖光鑷夾。 The optical fiber optical tweezers in the preferred embodiment of the present invention is a laser optical fiber optical tweezers.

本發明較佳實施例之該光纖光鑷夾具有一捕捉傾角或一工作傾角,且該捕捉傾角或工作傾角為40°或50°。 The optical fiber optical tweezers fixture of the preferred embodiment of the present invention has a capturing inclination or a working inclination, and the capturing inclination or the working inclination is 40° or 50°.

本發明較佳實施例之該光纖光鑷夾具有一單模/多模光纖或一單模/多模光纖微透鏡。 The optical fiber optical tweezers holder of the preferred embodiment of the present invention has a single-mode/multi-mode fiber or a single-mode/multi-mode fiber micro lens.

為了達成上述目的,本發明較佳實施例之光捕捉微生物系統包含:一微生物容器,其用以容置一微生物體;至少一顯微鏡裝置,其對應於該微生物容器,以便利用該顯微鏡裝置顯示該微生物容器之微生物體;及至少一光纖光鑷夾,其於該微生物容器利用該光纖光鑷夾以一預定光束捕捉至少一個該微生物體,以便在該光纖光鑷夾上形成一已捕捉微生物體;其中控制該光纖光鑷夾及已捕捉微生物體以至少一預定速度進行移動,並經由該顯微鏡裝置顯示該光纖光鑷夾及已捕捉微生物體,且將該光纖光鑷夾及已捕捉微生物體自一第一位置〔例如:微生物容器內〕移動至一第二位置〔例如:其它位置〕。 In order to achieve the above-mentioned object, the light-trapping microorganism system of a preferred embodiment of the present invention includes: a microorganism container for accommodating a microorganism; at least one microscope device corresponding to the microorganism container so that the microscope device can display the microorganism Microorganisms of the microbial container; and at least one optical fiber optical tweezers, which uses the optical fiber optical tweezers to capture at least one microbial body with a predetermined light beam in the microbial container, so as to form a captured microorganism on the optical fiber optical tweezers ; Wherein the optical fiber optical tweezers and the captured microorganisms are controlled to move at at least a predetermined speed, and the optical fiber optical tweezers and the captured microorganisms are displayed through the microscope device, and the optical fiber optical tweezers and the captured microorganisms are displayed Move from a first position (for example: inside the microorganism container) to a second position (for example: other positions).

為了達成上述目的,本發明較佳實施例之光捕捉微生物方法包含:提供一微生物容器,且該微生物容器用以容置一微生物體;提供至少一顯微鏡裝置,且該顯微鏡裝置對應於該微生物容器,以便利用該顯微鏡裝置顯示該微生物容器之微生物體;提供至少一光纖光鑷夾,並於該微生物容器利用該光纖光鑷夾以一預定光束捕捉至少一個該微生物體, 以便在該光纖光鑷夾上形成一已捕捉微生物體;控制該光纖光鑷夾及已捕捉微生物體以至少一預定速度進行移動,並經由該顯微鏡裝置顯示該光纖光鑷夾及已捕捉微生物體,且將該光纖光鑷夾及已捕捉微生物體自一第一位置〔例如:微生物容器內〕移動至一第二位置〔例如:其它位置〕。 In order to achieve the above objective, the method for capturing microorganisms by light in a preferred embodiment of the present invention includes: providing a microorganism container, and the microorganism container is used for accommodating a microorganism; providing at least one microscope device, and the microscope device corresponds to the microorganism container , In order to use the microscope device to display the microorganisms of the microorganism container; provide at least one optical fiber optical tweezers, and use the optical fiber optical tweezers to capture at least one microorganism in the microorganism container with a predetermined light beam, In order to form a captured microorganism on the optical fiber optical tweezers; control the optical fiber optical tweezers and the captured microorganisms to move at at least a predetermined speed, and display the optical fiber optical tweezers and the captured microorganisms through the microscope device , And move the fiber optic tweezers and the captured microorganisms from a first position (for example: inside the microorganism container) to a second position (for example: other positions).

本發明較佳實施例之該顯微鏡裝置連接至少一影像擷取系統,且該顯微鏡裝置對應於該微生物體,以便該影像擷取系統自該顯微鏡裝置擷取一微生物體影像。 The microscope device of the preferred embodiment of the present invention is connected to at least one image capturing system, and the microscope device corresponds to the microorganism, so that the image capturing system captures a microorganism image from the microscope device.

本發明較佳實施例另包含一工作平台及一平移台控制裝置,而將該微生物容器配置於該工作平台上,且該平移台控制裝置用以控制該工作平台。 The preferred embodiment of the present invention further includes a work platform and a translation platform control device, and the microorganism container is arranged on the work platform, and the translation platform control device is used to control the work platform.

本發明較佳實施例另包含一電腦系統,且該電腦系統連接於該顯微鏡裝置,或該電腦系統連接於一雷射光源裝置,或該電腦系統連接於一工作平台、一平移台控制裝置或一影像擷取系統。 The preferred embodiment of the present invention further includes a computer system, and the computer system is connected to the microscope device, or the computer system is connected to a laser light source device, or the computer system is connected to a work platform, a translation stage control device, or An image capture system.

本發明較佳實施例之該光纖光鑷夾配置於一雷射光源裝置。 The optical fiber optical tweezers of the preferred embodiment of the present invention are arranged in a laser light source device.

本發明較佳實施例之該微生物體選自一酵母菌〔例如:天然酵母菌、饅頭酵母菌、啤酒酵母菌或葡萄酒酵母菌〕、一益生菌或一病原細菌。 In a preferred embodiment of the present invention, the microorganism is selected from a yeast (for example: natural yeast, steamed bread yeast, beer yeast or wine yeast), a probiotic or a pathogenic bacteria.

1‧‧‧電腦系統 1‧‧‧Computer system

2‧‧‧影像擷取系統 2‧‧‧Image capture system

21‧‧‧顯微鏡裝置 21‧‧‧Microscope device

22‧‧‧濾光片 22‧‧‧Filter

3‧‧‧雷射光源裝置 3‧‧‧Laser light source device

31‧‧‧雷射光源 31‧‧‧Laser light source

32‧‧‧光纖耦光器 32‧‧‧Fiber Optic Coupler

33‧‧‧光纖 33‧‧‧Optical fiber

34‧‧‧光纖微透鏡 34‧‧‧Fiber Microlens

5‧‧‧工作平台 5‧‧‧Working platform

50‧‧‧待鑑別微生物培養容器 50‧‧‧Microbial culture container to be identified

51‧‧‧平移台控制裝置 51‧‧‧Pan stage control device

52‧‧‧第一電控平台 52‧‧‧The first electronic control platform

53‧‧‧載物台 53‧‧‧ Stage

54‧‧‧載物台光源 54‧‧‧Light source of stage

55‧‧‧第二電控平台 55‧‧‧Second Electronic Control Platform

9‧‧‧微生物體 9‧‧‧Microorganism

第1圖:本發明較佳實施例之光捕捉微生物系統及其光鑷夾操作系統之架構示意圖。 Figure 1: A schematic diagram of a light trapping microbe system and its optical tweezers operating system according to a preferred embodiment of the present invention.

第2圖:本發明較佳實施例之光鑷夾操作系統執行光捕捉微生物作業之示意圖。 Figure 2: A schematic diagram of the optical tweezers operating system of the preferred embodiment of the present invention performing light trapping of microorganisms.

第3圖:本發明較佳實施例之光捕捉微生物鑑別方法之流程示意圖。 Figure 3: A schematic flow diagram of a light-trapping microorganism identification method according to a preferred embodiment of the present invention.

第3A圖:本發明較佳實施例之光捕捉微生物鑑別標準資料庫之建置流程示意圖。 Figure 3A: A schematic diagram of the establishment process of the light-captured microorganism identification standard database according to a preferred embodiment of the present invention.

第3B圖:本發明較佳實施例執行光捕捉微生物鑑別方法之流程示意圖。 Figure 3B: A schematic flow diagram of a method for identifying microorganisms by light trapping in a preferred embodiment of the present invention.

第4圖:本發明較佳實施例之光捕捉微生物系統及其方法在開始進行捕捉微生物體時,光束受微生物體之作用力而產生光折射機制之示意圖。 Figure 4: A schematic diagram of the mechanism of light refraction generated by the light beam under the force of the microorganisms when the light trapping microorganisms system and the method of the preferred embodiment of the present invention begin to capture microorganisms.

第5圖:本發明較佳實施例之光捕捉微生物系統及其方法在開始進行捕捉微生物體時,微生物體受光束之反作用力而產生光捕捉機制之示意圖。 Figure 5: When the light trapping microorganism system and method of the preferred embodiment of the present invention begin to capture microorganisms, the microorganisms are subjected to the reaction force of the light beam to generate light trapping mechanism.

第6圖:本發明較佳實施例之光捕捉微生物系統及其方法在已完成捕捉微生物體時,微生物體已受光束穩定束縛現象之示意圖。 Figure 6: The light trapping microorganism system and method of the preferred embodiment of the present invention is a schematic diagram of the phenomenon that the microorganisms have been stabilized by the light beam when the microorganisms have been captured.

第7A圖:本發明較佳實施例之光捕捉微生物系統及其方法用於量測第一酵母菌之顯微影像示意圖。 Fig. 7A: A schematic diagram of a microscopic image of the light-trapping microorganism system and its method for measuring the first yeast in a preferred embodiment of the present invention.

第7B圖:本發明較佳實施例之光捕捉微生物系統及其方法用於量測第二酵母菌之顯微影像示意圖。 Fig. 7B: A schematic diagram of a microscopic image of the light-trapping microorganism system and its method for measuring the second yeast in a preferred embodiment of the present invention.

第7C圖:本發明較佳實施例之光捕捉微生物系統及其方法用於量測第三酵母菌之顯微影像示意圖。 Fig. 7C: A schematic diagram of a microscopic image of the light-trapping microorganism system and its method for measuring the third yeast in a preferred embodiment of the present invention.

第8圖:本發明較佳實施例之光捕捉微生物鑑別方法用在量測第一、第二及第三酵母菌而獲得其逃脫速度之示意圖。 Figure 8: A schematic diagram of the light trapping microorganism identification method of the preferred embodiment of the present invention used to measure the first, second and third yeasts to obtain their escape speed.

第9圖:本發明較佳實施例之光捕捉微生物鑑別方法用在量測第一、第二及第三酵母菌而獲得其捕捉效率之示意圖。 Figure 9: A schematic diagram of the light trapping microorganism identification method of the preferred embodiment of the present invention used to measure the first, second and third yeasts to obtain their trapping efficiency.

為了充分瞭解本發明,於下文將舉例較佳實施例並配合所附圖式作詳細說明,且其並非用以限定本發明。 In order to fully understand the present invention, preferred embodiments are exemplified below and described in detail with the accompanying drawings, and they are not intended to limit the present invention.

本發明較佳實施例之光捕捉微生物系統及其 方法或光捕捉微生物鑑別方法可適用於捕捉或鑑定各種微生物〔細菌屬原核生物,真菌、藻類、原生動物屬真核生物,病毒則無細胞結構〕之類別,例如:包含細菌、病原細菌〔例如:沙門氏菌、腸炎弧菌、弧形桿菌、大腸桿菌、肉毒桿菌或葡萄球菌〕、益生菌細胞〔例如:天然酵母菌、饅頭酵母菌、啤酒酵母菌或葡萄酒酵母菌〕或其它微生物細胞,但其並非用以限定本發明之應用範圍;再者,本發明較佳實施例之光捕捉微生物系統及其方法或光捕捉微生物鑑別方法可採用各種適合波長範圍的光,例如:各種波長的雷射光〔紅外光雷射、紅光雷射、綠光雷射、藍光雷射或紫光雷射等〕,但其並非用以限定本發明之適用範圍。 The light trapping microorganism system of the preferred embodiment of the present invention and the same The method or light-trapping microorganism identification method can be applied to capture or identify various types of microorganisms (bacteria are prokaryotes, fungi, algae, protozoa are eukaryotes, viruses have no cell structure), such as bacteria, pathogenic bacteria (e.g. : Salmonella, Vibrio enteritidis, Vibrio bacillus, Escherichia coli, Clostridium botulinum or Staphylococcus], probiotic cells (e.g. natural yeast, steamed bread yeast, beer yeast or wine yeast) or other microbial cells, but It is not intended to limit the scope of application of the present invention; furthermore, the light trapping microorganism system and its method or the light trapping microorganism identification method of the preferred embodiment of the present invention can use light of various suitable wavelength ranges, for example: laser light of various wavelengths [Infrared laser, red laser, green laser, blue laser or purple laser, etc.], but it is not intended to limit the scope of application of the present invention.

本發明較佳實施例之光捕捉微生物系統及其方法或光捕捉微生物鑑別方法選擇預先設定光纖光鑷夾系統參數。其利用一光纖光鑷夾測量若干已知種類微生物之逃脫速度與其直徑。其利用統計數學方法計算各已知種類微生物之平均逃脫速度及逃脫速度範圍,並選定各種微生物參考種類,以此建立光捕捉檢驗法所需之微生物鑑別標準資料庫。再利用相同光纖光鑷夾系統參數與實驗方法測量一待鑑定微生物之逃脫速度與其直徑,並計算得到其逃脫速度比值與捕捉效率之平均值。將該待鑑定微生物逃脫速度比值與捕捉效率與標準資料庫之同一種類微生物之數值進行比對,如此依該待鑑定微生物逃脫速度與捕捉效率比值之比對結果判定一微生物種類。 The optical trapping microorganism system and its method or the optical trapping microorganism identification method of the preferred embodiment of the present invention select the preset optical fiber optical tweezers system parameters. It uses a fiber optic tweezer to measure the escape velocity and diameter of several known types of microorganisms. It uses statistical mathematics methods to calculate the average escape velocity and escape velocity range of each known species of microorganisms, and selects various reference species of microorganisms to establish a microbial identification standard database required by the light capture inspection method. Then use the same fiber optic tweezers system parameters and experimental methods to measure the escape velocity and diameter of a microorganism to be identified, and calculate the average value of the escape velocity ratio and the capture efficiency. The ratio of the escape rate of the microorganism to be identified and the capture efficiency is compared with the value of the same type of microorganism in the standard database, so that a microorganism type is determined based on the comparison result of the ratio of the escape rate of the microorganism to be identified to the capture efficiency.

第1圖揭示本發明較佳實施例之光捕捉微生物系統及其光鑷夾操作系統之架構示意圖。請參照第1圖所示,舉例而言,在構造上本發明較佳實施例採用光鑷夾操作系統包含一電腦系統1、一影像擷取系統2、一顯微鏡裝置21、一雷射光源裝置3、一工作平台5及一平移台控制裝置51,其選擇適當相互連接組裝或對應配置,以形成該 光鑷夾操作系統。 Figure 1 shows a schematic diagram of the light trapping microbe system and its optical tweezers operating system according to a preferred embodiment of the present invention. Please refer to Figure 1. For example, the preferred embodiment of the present invention uses optical tweezers in terms of structure. The operating system includes a computer system 1, an image capturing system 2, a microscope device 21, and a laser light source device. 3. A working platform 5 and a translation stage control device 51, which are appropriately connected to each other and assembled or correspondingly configured to form the Optical tweezers operating system.

請再參照第1圖所示,舉例而言,該電腦系統1選擇包含一電腦主機〔computer device〕及一顯示螢幕裝置〔display device〕或其它周邊設備〔peripheral〕,而該電腦系統1適當配置於一預定位置,且該電腦系統1之電腦主機連接至該影像擷取系統2或顯微鏡裝置21。另外,該電腦系統1亦選擇連接至該雷射光源裝置3、工作平台5或平移台控制裝置51。 Please refer to Figure 1 again. For example, the computer system 1 chooses to include a computer host (computer device) and a display device (display device) or other peripheral devices (peripheral), and the computer system 1 is appropriately configured At a predetermined location, and the computer host of the computer system 1 is connected to the image capturing system 2 or the microscope device 21. In addition, the computer system 1 can also be connected to the laser light source device 3, the work platform 5, or the translation stage control device 51.

請再參照第1圖所示,舉例而言,該影像擷取系統2具有一影像擷取處理單元,且該影像擷取系統2連接與結合該顯微鏡裝置21,或該影像擷取系統2可選擇連接任一電子顯微鏡裝置,以便自該顯微鏡裝置21擷取至少一顯微影像〔例如:微生物細胞影像〕或一系列電子顯微影像。另外,該影像擷取系統2包含一濾光片22或其它設備。 Please refer to Figure 1 again. For example, the image capturing system 2 has an image capturing processing unit, and the image capturing system 2 is connected and combined with the microscope device 21, or the image capturing system 2 can be Choose to connect any electron microscope device to capture at least one microscopic image (such as microbial cell image) or a series of electron microscopic images from the microscope device 21. In addition, the image capturing system 2 includes a filter 22 or other equipment.

請再參照第1圖所示,舉例而言,該顯微鏡裝置21選擇包含一CCD元件〔Charge Coupled Device〕及一顯微鏡或其它功能裝置〔例如:固定裝置〕,且該CCD裝置組合於該顯微鏡上,以便利用該CCD裝置經由該顯微鏡攝取至少一顯微影像或一系列顯微影像。在組裝操作時,該顯微鏡裝置21對應於該工作平台5上,以便在該工作平台5上方區域進行攝取作業影像。 Please refer to Figure 1 again. For example, the microscope device 21 may optionally include a CCD device [Charge Coupled Device] and a microscope or other functional devices (such as a fixing device), and the CCD device is combined on the microscope In order to use the CCD device to capture at least one microscopic image or a series of microscopic images through the microscope. During the assembling operation, the microscope device 21 corresponds to the work platform 5 so as to capture images of the work in the area above the work platform 5.

請再參照第1圖所示,舉例而言,該雷射光源裝置3選自一預定波長雷射光源裝置〔例如:650nm或其它波長〕,且該雷射光源裝置3選擇包含一雷射光源〔laser source,例如:半導體雷射或其它雷射〕31、一光纖耦光器〔fiber coupling device〕32、一光纖33及一光纖微透鏡34,而該雷射光源31經由該光纖耦光器32連接至該光纖33,且利用該光纖33及其光纖微透鏡34適當射出一雷射 光束〔laser beam〕,以便形成一光纖光鑷夾。在微生物種類鑑別上,該光纖光鑷夾適用於執行光捕捉微生物作業。本發明較佳實施例之該光纖光鑷夾之光纖33具有一單模/多模光纖,且該光纖光鑷夾之光纖微透鏡34具有一單模/多模光纖微透鏡。 Please refer to Figure 1 again. For example, the laser light source device 3 is selected from a predetermined wavelength laser light source device (for example: 650nm or other wavelengths), and the laser light source device 3 optionally includes a laser light source [Laser source, such as semiconductor laser or other laser] 31, a fiber coupling device 32, an optical fiber 33 and a fiber micro lens 34, and the laser light source 31 passes through the fiber coupling device 32 is connected to the optical fiber 33, and the optical fiber 33 and its optical fiber microlens 34 are used to properly emit a laser Beam [laser beam] to form a fiber optic tweezers. In the identification of microorganisms, the optical fiber optical tweezers are suitable for light capture of microorganisms. In the preferred embodiment of the present invention, the optical fiber 33 of the optical fiber optical tweezers has a single-mode/multimode optical fiber, and the optical fiber microlens 34 of the optical fiber optical tweezers has a single-mode/multimode optical fiber microlens.

請再參照第1圖所示,舉例而言,該工作平台〔operational platform〕5包含一平移台控制裝置51、一第一電控平台〔X-Y軸電控平台〕52、一載物台53、一載物台光源54及一第二電控平台〔X-Y-Z軸電控平台〕55或其它自動電控桌面,以便選擇利用自動或電控方式操作該工作平台5。在該工作平台5之載物台53上擺放一微生物培養容器或具類似功能之裝置,並利用該工作平台5之第一電控平台52進行適當調整操作該載物台53及載物台光源54之水平位置,且利用該工作平台5之第二電控平台55進行適當調整操作該光纖33及光纖微透鏡34之〔捕捉〕工作傾角、工作距離、水平位置及垂直位置。另外,在該載物台53及載物台光源54之間具有一預定照射角度。 Please refer to Figure 1 again. For example, the working platform [operational platform] 5 includes a translation stage control device 51, a first electronic control platform [XY axis electric control platform] 52, and a stage 53, A stage light source 54 and a second electronic control platform [XYZ axis electronic control platform] 55 or other automatic electronic control tabletops, so that the working platform 5 can be operated automatically or electronically. Place a microorganism culture container or a device with similar functions on the stage 53 of the work platform 5, and use the first electronic control platform 52 of the work platform 5 to properly adjust and operate the stage 53 and the stage The horizontal position of the light source 54 and the second electronic control platform 55 of the working platform 5 are used to properly adjust and operate the [capture] working inclination angle, working distance, horizontal position and vertical position of the optical fiber 33 and the optical fiber microlens 34. In addition, there is a predetermined illumination angle between the stage 53 and the stage light source 54.

第2圖揭示本發明較佳實施例之光鑷夾操作系統執行光捕捉微生物作業之示意圖。請參照第2圖所示,舉例而言,本發明較佳實施例之光鑷夾操作系統之該光纖33選擇採用光纖直徑為125μm,其未蝕刻區段之纖芯直徑為8μm,其已蝕刻區段之光纖直徑約為14μm,而該光纖微透鏡34位於已蝕刻區段之尾端,且該光纖微透鏡34為一圓錐體,且其具有一錐角〔tapered angle〕α,其介於90°及115°之間或其它角度之錐角範圍。 Figure 2 shows a schematic diagram of the optical tweezers operating system of the preferred embodiment of the present invention for light trapping microbes. Please refer to Figure 2. For example, the optical fiber 33 of the optical tweezers operating system of the preferred embodiment of the present invention selects an optical fiber with a diameter of 125μm, and the core diameter of the unetched section is 8μm, which has been etched The fiber diameter of the section is about 14μm, and the fiber microlens 34 is located at the end of the etched section, and the fiber microlens 34 is a cone, and it has a tapered angle (tapered angle) α, which is between Cone angle range between 90° and 115° or other angles.

請參照第1及2圖所示,舉例而言,該雷射光源裝置3選擇採用捕捉功率調整為7mW或其它適當捕捉功率〔例如:5mW、20mW或其區間〕,而該光纖蝕刻圓錐體34對應於一待鑑別微生物培養容器50,以光〔雷射〕 捕捉一微生物體〔待鑑別微生物〕9。此時,操作者可選擇利用該工作平台5之第一電控平台52進行適當調整操作該載物台53及待鑑別微生物培養容器50之角度及其水平位置。本發明較佳實施例之該微生物體9置於一緩衝液〔buffer solution〕。 Please refer to Figures 1 and 2. For example, the laser light source device 3 chooses to adjust the capture power to 7mW or other appropriate capture power (for example: 5mW, 20mW or its interval), and the optical fiber etched cone 34 Corresponding to a microorganism culture container 50 to be identified, with light [laser] Capture a microorganism [microorganism to be identified] 9. At this time, the operator can choose to use the first electronic control platform 52 of the work platform 5 to appropriately adjust the angle and horizontal position of the stage 53 and the microorganism culture container 50 to be identified. The microorganism 9 in the preferred embodiment of the present invention is placed in a buffer solution.

請再參照第2圖所示,舉例而言,在該待鑑別微生物培養容器50進行光捕捉微生物鑑別作業時,可操作至在該雷射光源裝置3之光纖微透鏡34之端面尖部及微生物體9之間具有一預定工作距離〔working distance〕D或一預定工作距離範圍,且在該雷射光源裝置3之光纖微透鏡34之縱向軸及微生物體9之間具有一預定工作傾角〔working angle〕θ或一預定工作傾角範圍,即光束行進方向與水平方向之夾角。 Please refer to Fig. 2 again. For example, when the microorganism culture container 50 to be identified is performing light-trapping microorganism identification operation, it can be operated to the tip of the end surface of the optical fiber micro lens 34 of the laser light source device 3 and the microorganism There is a predetermined working distance (working distance) D or a predetermined working distance range between the bodies 9 and a predetermined working inclination (working distance) between the longitudinal axis of the optical fiber microlens 34 of the laser light source device 3 and the microorganism 9 angle]θ or a predetermined working inclination range, that is, the angle between the beam's traveling direction and the horizontal direction.

第3圖揭示本發明較佳實施例之光捕捉微生物鑑別方法之流程示意圖。請參照第1、2及3圖所示,舉例而言,本發明較佳實施例之光捕捉微生物鑑別方法包含第一步驟S1:首先,利用該光鑷夾操作系統或光纖光鑷夾適當捕捉量測一微生物體〔已知種類微生物〕,以便在該光纖光鑷夾上形成一已捕捉微生物體。本發明較佳實施例之該微生物體亦可選自一細菌、一真菌、一病毒、一藻類、一原生動物〔原生蟲〕或一病原細菌。 Figure 3 shows a schematic flow diagram of a light-trapping microorganism identification method according to a preferred embodiment of the present invention. Please refer to Figures 1, 2 and 3, for example, the light-trapping microorganism identification method of the preferred embodiment of the present invention includes the first step S1: First, use the optical tweezers operating system or the optical fiber optical tweezers to properly capture Measure a microorganism (a known type of microorganism) to form a captured microorganism on the fiber optic tweezers. The microorganism of the preferred embodiment of the present invention can also be selected from a bacterium, a fungus, a virus, an algae, a protozoan (protozoa) or a pathogenic bacteria.

請再參照第1、2及3圖所示,舉例而言,本發明較佳實施例之光捕捉微生物鑑別方法包含第二步驟S2:接著,控制該光纖光鑷夾及已捕捉微生物體以至少一預定速度及適當技術手段〔例如:動態量測法〔dynamic measurement method〕或靜態量測法〔static measurement method〕〕進行移動,以測量一微生物逃脫速度〔或速度範圍或平均逃脫速度〕。利用該光鑷夾操作系統或光纖光鑷夾選擇測量一第一微生物體〔例如:啤酒酵母菌〕之一 第一微生物平均逃脫速度或其範圍及一第二微生物體〔例如:釀酒酵母菌〕之一第二微生物平均逃脫速度或其範圍。 Please refer to Figures 1, 2 and 3 again. For example, the light-trapping microorganism identification method of the preferred embodiment of the present invention includes a second step S2: Next, the optical fiber optical tweezers and the captured microorganisms are controlled to at least A predetermined speed and appropriate technical means (for example: dynamic measurement method [dynamic measurement method] or static measurement method [static measurement method] move to measure the escape velocity of a microorganism [or velocity range or average escape velocity]. Use the optical tweezers operating system or optical fiber optical tweezers to select and measure one of the first microorganisms (such as beer yeast) The average escape velocity of the first microorganism or its range and the average escape velocity of a second microorganism (for example: Saccharomyces cerevisiae) or its range.

本發明另一較佳實施例建立光捕捉檢驗法所需之微生物鑑別標準資料庫,以儲存已知該第一微生物平均逃脫速度或其範圍及第二微生物平均逃脫速度或其範圍,亦可用以儲存已知微生物直徑。該第一微生物平均逃脫速度〔或第二微生物平均逃脫速度〕介於一最大微生物平均逃脫速度與一最小微生物平均逃脫速度之間。 Another preferred embodiment of the present invention establishes a microbial identification standard database required by the light capture test method to store the known average escape velocity or range of the first microorganism and the average escape velocity or range of the second microorganism, which can also be used Store the known microbial diameter. The average escape velocity of the first microorganism (or the average escape velocity of the second microorganism) is between a maximum average escape velocity of microorganisms and a minimum average escape velocity of microorganisms.

請再參照第1及2圖所示,舉例而言,本發明較佳實施例選定各種微生物作為一參考微生物種類別,而該光纖光鑷夾用以量測一捕捉力〔或橫向捕捉力,transverse trapping force〕、一捕捉效率或其組合,且該預定速度可選擇為一固定速度〔即均等速度〕,如第2圖之y軸方向所示。 Please refer to Figures 1 and 2. For example, the preferred embodiment of the present invention selects various microorganisms as a reference microorganism species, and the optical fiber tweezers are used to measure a capturing force (or lateral capturing force, transverse trapping force], a trapping efficiency, or a combination thereof, and the predetermined speed can be selected as a fixed speed (ie, uniform speed), as shown in the y-axis direction in Figure 2.

請再參照第1及2圖所示,舉例而言,本發明較佳實施例之光捕捉微生物鑑別方法包含第三步驟S3:接著,利用該微生物逃脫速度〔或速度範圍或平均逃脫速度〕與一待鑑定微生物〔未知種類微生物〕逃脫速度進行比對,並選擇一待鑑定微生物〔或待測微生物〕,且利用該光纖光鑷夾可選擇以自動或其它方式測量一待鑑定微生物逃脫速度。本發明較佳實施例之該待鑑定微生物逃脫速度選自測量五次逃脫速度,並計算其平均之結果。 Please refer to Figures 1 and 2. For example, the light-trapping microorganism identification method of the preferred embodiment of the present invention includes the third step S3: Then, the microorganism escape speed (or speed range or average escape speed) is used with The escape speed of a microorganism to be identified (an unknown species of microorganism) is compared, and a microorganism to be identified (or a microorganism to be tested) is selected, and the fiber optic tweezers can be used to measure the escape speed of a microorganism to be identified automatically or in other ways. The escape speed of the microorganism to be identified in the preferred embodiment of the present invention is selected from the result of measuring the escape speed of five times and calculating the average.

請再參照第1及2圖所示,舉例而言,本發明較佳實施例之光捕捉微生物鑑別方法包含第四步驟S4:接著,依該待鑑定微生物逃脫速度之比對結果鑑別判定一微生物種類。利用該微生物逃脫速度〔或速度範圍或平均逃脫速度〕與待鑑定微生物逃脫速度可選擇以自動或其它方式進行比對。在微生物鑑別比對上,本發明較佳實施例之光捕捉微生物鑑別方法及其建置微生物鑑別標準資料庫可 選擇採用各種微生物種類鑑別的數學式或公式。 Please refer to Figures 1 and 2. For example, the light-captured microorganism identification method of the preferred embodiment of the present invention includes a fourth step S4: Next, identify and determine a microorganism based on the comparison result of the escape speed of the microorganism to be identified species. The escape speed (or speed range or average escape speed) of the microorganisms can be compared with the escape speed of the microorganisms to be identified in automatic or other ways. In the comparison of microbial identification, the light-captured microbial identification method of the preferred embodiment of the present invention and its establishment of a microbial identification standard database can be Choose to use mathematical formulas or formulas for identifying various types of microorganisms.

第3A圖揭示本發明較佳實施例之光捕捉微生物鑑別標準資料庫之建置流程示意圖。請參照第3A圖所示,舉例而言,本發明較佳實施例之光捕捉微生物鑑別標準資料庫之建置包含:設定光鑷夾系統參數;選擇已知種類酵母菌〔或其它微生物〕若干;量測各類酵母菌細胞〔或其它微生物〕之直徑與其逃脫速度若干次;計算各類酵母菌細胞〔或其它微生物〕逃脫速度平均值;建立各類酵母菌細胞〔或其它微生物〕直徑、平均逃脫速度及逃脫速度範圍資料庫;完成活菌分類法所需之光捕捉酵母菌〔或其它微生物〕鑑別標準資料庫。 FIG. 3A shows a schematic diagram of the establishment process of the light-trapping microorganism identification standard database according to a preferred embodiment of the present invention. Please refer to Fig. 3A. For example, the establishment of the light-trapping microorganism identification standard database of the preferred embodiment of the present invention includes: setting the parameters of the optical tweezers system; selecting several known types of yeast (or other microorganisms) Measure the diameter of various yeast cells (or other microorganisms) and their escape speed several times; calculate the average value of the escape speed of various yeast cells (or other microorganisms); establish the diameter of various yeast cells (or other microorganisms), Database of average escape speed and range of escape speed; standard database for identification of light-trapped yeast (or other microorganisms) required to complete the classification of live bacteria.

第3B圖揭示本發明較佳實施例執行光捕捉微生物鑑別方法之流程示意圖。請參照第3B圖所示,舉例而言,本發明較佳實施例之光捕捉微生物鑑別方法包含:依據標準資料庫設定光鑷夾系統參數,且依據標準資料庫設定相同實驗參數;選擇未知種類酵母菌〔或其它微生物〕若干;量測各種酵母菌〔或其它微生物〕之直徑及其逃脫速度若干次;量測各待測酵母菌〔或其它微生物〕之直徑、平均逃脫速度及捕捉效率;依據已建置之標準資料庫進行比對,完成各待測酵母菌〔或其它微生物〕類別鑑定。 Figure 3B shows a schematic flow diagram of the light-trapping microorganism identification method according to a preferred embodiment of the present invention. Please refer to Figure 3B. For example, the light-trapping microorganism identification method of the preferred embodiment of the present invention includes: setting the optical tweezers system parameters according to the standard database, and setting the same experimental parameters according to the standard database; selecting unknown species Number of yeasts (or other microorganisms); measure the diameter of various yeasts (or other microorganisms) and their escape speed several times; measure the diameter, average escape speed and capture efficiency of each yeast (or other microorganisms) to be tested; According to the established standard database, complete the identification of each yeast (or other microorganism) type to be tested.

請再參照第1、2及3A圖所示,舉例而言,本發明較佳實施例在光捕捉微生物鑑別標準資料庫之建置上,採用各種微生物種類鑑別的數學式或公式,並選擇一種數學式舉例說明於下文。 Please refer to Figures 1, 2 and 3A again. For example, the preferred embodiment of the present invention uses various mathematical formulas or formulas for the identification of microorganisms in the establishment of a standard database for identification of light-capture microorganisms, and selects one The mathematical formula is illustrated below.

舉例而言,本發明較佳實施例之光捕捉微生物鑑別方法採用該捕捉力F為:F=6πηrv For example, the light trapping microorganism identification method of the preferred embodiment of the present invention adopts the trapping force F as: F = 6 πηrv

其中η為溶液之黏滯係數,r為樣本〔類似球體〕之 半徑,v為樣本之逃脫速度。 Where η is the viscosity coefficient of the solution, r is the radius of the sample (similar to a sphere), and v is the escape velocity of the sample.

舉例而言,本發明較佳實施例之光捕捉微生物鑑別方法採用該捕捉效率Q為:

Figure 108136713-A0101-12-0015-21
For example, the optical capture microorganism identification method of the preferred embodiment of the present invention adopts the capture efficiency Q as:
Figure 108136713-A0101-12-0015-21

其中c為真空中的光速,n為溶液之折射率,P為光鑷夾之捕捉功率。 Where c is the speed of light in vacuum, n is the refractive index of the solution, and P is the capture power of the optical tweezers.

請再參照第1及2圖所示,舉例而言,若同一光纖之輸出光功率增加時,則被捕捉物所需的逃脫速度亦也會跟著上升。因此,當輸出光功率固定時,每一種類之微生物皆有其對應逃脫速度之範圍,如此可達成微生物種類之鑑別檢驗。一般而言,在相同光捕捉功率的條件下,相同種類但不同直徑大小的微生物之逃脫速度相較不明顯;而在不同種類微生物之間,其逃脫速度相差則相對明顯。至於微生物的逃脫速度,依其生物體內部生物化學組成不同而造成其各種光學特性〔折射、反射、透射、吸收〕皆不相同,因而進一步造成其逃脫速度不相同的結果。 Please refer to Figures 1 and 2 again. For example, if the output optical power of the same fiber increases, the escape speed required by the captured object will also increase. Therefore, when the output light power is fixed, each type of microorganism has its corresponding escape speed range, so that the identification test of the microorganism type can be achieved. Generally speaking, under the condition of the same light capture power, the escape speed of microorganisms of the same type but with different diameters is not obvious; while the difference in escape speed between different types of microorganisms is relatively obvious. As for the escape speed of microorganisms, their various optical properties (refraction, reflection, transmission, absorption) are different depending on the internal biochemical composition of their organisms, which further results in different escape speeds.

一般而言,單光束光鑷夾的捕捉原理可用幾何光學〔ray optics〕進行說明。當光傳播經過不同折射率的介質時,會因光速的差異,使光行進的方向產生彎折,並產生光折射〔refraction〕現象及光動量〔momentum〕變化。光鑷夾原理為利用光折射原理或機制及光動量變化對微生物〔透明且微小的物體〕進行光學捕捉。即雷射光線〔光場〕接近或進入所欲捕捉的微生物時,光線在該微生物體內產生折射現象,並造成光動量的改變而產生捕捉住該微生物的現象。若遇上不透明的微生物,需要採用雙光束光鑷夾進行捕捉,其捕捉原理採用幅射壓或光壓〔radiation pressure〕理論進行說明。 Generally speaking, the capturing principle of single-beam optical tweezers can be explained by geometric optics [ray optics]. When light travels through media with different refractive indices, the difference in the speed of light will cause the direction of light to bend, and cause light refraction (refraction) phenomena and light momentum (momentum) changes. The principle of optical tweezers is to use the principle or mechanism of light refraction and the change of light momentum to optically capture microorganisms (transparent and tiny objects). That is, when the laser light (light field) approaches or enters the microorganisms to be captured, the light refractions in the microorganisms, and changes the light momentum to capture the microorganisms. If you encounter opaque microorganisms, you need to use double-beam optical tweezers to capture. The capture principle is explained by the theory of radiation pressure or light pressure (radiation pressure).

第4圖揭示本發明較佳實施例之光捕捉微生物 系統及其方法在開始進行捕捉微生物體時,光束受微生物體之作用力而產生光折射機制之示意圖。請參照第1、2及4圖所示,舉例而言,本發明較佳實施例之光捕捉微生物鑑別定方法利用該光纖微透鏡34所輸出之光束開始進行捕捉一微生物體9。該光纖光鑷夾為一雷射光纖光鑷夾〔例如:650nm雷射光纖光鑷夾〕。該光纖光鑷夾具有一捕捉傾角或一工作傾角,且該捕捉傾角或工作傾角為40°、50°或其它適當角度。該光纖光鑷夾具有一單模光纖或其它適當光纖,且該光纖經加工製成光纖微透鏡。 Figure 4 discloses the light trapping microorganisms of the preferred embodiment of the present invention When the system and method begin to capture microorganisms, the light beam is subjected to the force of the microorganisms to produce a schematic diagram of the light refraction mechanism. Please refer to FIGS. 1, 2 and 4. For example, the light-trapping microorganism identification method of the preferred embodiment of the present invention uses the light beam output by the optical fiber microlens 34 to capture a microorganism 9. The optical fiber optical tweezers clamp is a laser optical fiber optical tweezers clamp (for example: 650nm laser optical fiber optical tweezers clamp). The optical fiber optical tweezers clamp has a capturing inclination or a working inclination, and the capturing inclination or the working inclination is 40°, 50° or other appropriate angles. The fiber optic tweezers holder has a single-mode fiber or other appropriate fiber, and the fiber is processed into a fiber micro lens.

請再參照第4圖所示,當通過光纖微透鏡的光束〔雷射光束〕入射至該微生物體9之表面時,若其未受偏折則穿透光應行進直線路徑〔兩條對稱虛線所示〕,但因微生物體的折射率〔refractive index〕與周圍環境不同,入射光進入微生物體受到偏折〔兩條對稱實線所示,即折射光〕,由該微生物體9之內部物質對稱中心之兩側向內方向〔向該光纖微透鏡34之縱軸〕偏折,如同該微生物體內部物質施加作用力F1〔兩支對稱向內箭頭所示〕於穿透光,使其偏離原虛線所示路徑,即其折射光與原入射光相較之下產生之光動量變化。 Please refer to Figure 4 again. When the light beam (laser beam) passing through the optical fiber microlens is incident on the surface of the microorganism 9, if it is not deflected, the penetrating light should travel a straight path (two symmetrical dotted lines) However, because the microbial body’s refractive index (refractive index) is different from the surrounding environment, the incident light entering the microbial body is deflected (shown by the two symmetrical solid lines, that is, the refracted light), and the internal material of the microorganism 9 The two sides of the center of symmetry are deflected inward [to the longitudinal axis of the optical fiber microlens 34], as if the internal substance of the microorganism exerts a force F1 [indicated by the two symmetrical inward arrows] on the penetrating light, causing it to deviate The path shown by the original dashed line is the change of light momentum generated by the refracted light compared with the original incident light.

第5圖揭示本發明較佳實施例之光捕捉微生物系統及其方法在開始進行捕捉微生物體時,微生物體受光束之反作用力而產生光捕捉機制之示意圖。請參照第4及5圖所示,由該微生物體9之內部物質施加作用力F1〔第4圖之兩支對稱向內箭頭所示〕於入射光,使入射光偏折,依牛頓第三運動定律,該折射光亦產生一大小相同但方向相反之作用力F2〔第5圖之兩支對稱向外箭頭所示〕於該微生物體9之內部物質,即光子〔折射光〕亦同時施加反作用力F2於該微生物體9。該微生物體9受反作用力F2之垂直向量的總和F3〔第5圖之垂直向上箭頭所示〕而可 沿著該光纖微透鏡34之縱軸產生適當運動。 Figure 5 shows a schematic diagram of the light trapping mechanism generated by the light trapping mechanism when the microorganisms are subjected to the reaction force of the light beam when the light trapping microorganism system and the method of the preferred embodiment of the present invention begin to trap microorganisms. Please refer to Figures 4 and 5, the internal matter of the microorganism 9 exerts a force F1 (shown by the two symmetrical inward arrows in Figure 4) on the incident light, which deflects the incident light, according to Newton's third According to the law of motion, the refracted light also produces a force F2 of the same magnitude but opposite directions (shown by the two symmetrical outward arrows in Figure 5) on the internal matter of the microorganism 9, namely photons (refracted light). The reaction force F2 is on the microorganism 9. The microbial body 9 is subjected to the sum of the vertical vectors F3 of the reaction force F2 (shown by the vertical upward arrow in Figure 5). Proper movement is generated along the longitudinal axis of the fiber microlens 34.

第6圖揭示本發明較佳實施例之光捕捉微生物系統及其方法在已完成捕捉微生物體時,微生物體已受光束穩定束縛現象之示意圖。請參照第5及6圖所示,當光子〔折射光〕同時施加反作用力F2於該微生物體9時,該微生物體9受反作用力F2之垂直向量的總和〔第5圖之垂直向上箭頭所示〕而可沿著該光纖微透鏡34之縱軸產生適當運動。當該微生物體9移動至該光纖微透鏡34之光學焦點時,由入射該光纖微透鏡34之〔雷射〕光束在該焦點附近產生一個穩定的光學位能井〔optical potential well〕,並在該位能井處形成作用力平衡點〔合力為零的位置〕,且形成捕捉限制該微生物體9。此時,一旦將該光鑷夾之光纖微透鏡34進行移動時,該微生物體9亦隨著產生移動,即可利用該光纖微透鏡34之光束操控該微生物體9之運動。 Fig. 6 shows a schematic diagram of the phenomenon that the light trapping microorganism system and method of the preferred embodiment of the present invention have been trapped by the light beam when the microorganisms have been captured. Please refer to Figures 5 and 6, when a photon [refracted light] simultaneously exerts a reaction force F2 on the microorganism 9, the microorganism 9 is subjected to the sum of the vertical vectors of the reaction force F2 (as shown by the vertical upward arrow in Figure 5). As shown], proper movement can be generated along the longitudinal axis of the optical fiber microlens 34. When the microorganism 9 moves to the optical focus of the fiber microlens 34, the [laser] beam incident on the fiber microlens 34 generates a stable optical potential well [optical potential well] near the focus, and The potential energy well forms a force balance point (a position where the resultant force is zero), and forms a trap to restrict the microorganism 9. At this time, once the optical fiber microlens 34 clamped by the optical tweezers is moved, the microorganism 9 also moves along with it, and the light beam of the optical fiber microlens 34 can be used to control the movement of the microorganism 9.

第7A圖揭示本發明較佳實施例之光捕捉微生物系統及其方法用於量測第一酵母菌之顯微影像示意圖。請參照第7A圖所示,本發明較佳實施例之光捕捉微生物系統及其方法與光捕捉微生物鑑別方法用於量測第一酵母菌選自saf-instant品牌,其量測結果顯示於表1及4。 FIG. 7A shows a schematic diagram of a microscopic image of the light capturing microorganism system and its method for measuring the first yeast in a preferred embodiment of the present invention. Please refer to Figure 7A, the light-trapping microorganism system and method and the light-trapping microorganism identification method of the preferred embodiment of the present invention are used to measure the first yeast selected from saf-instant brands, and the measurement results are shown in the table 1 and 4.

Figure 108136713-A0101-12-0017-3
Figure 108136713-A0101-12-0017-3

第7B圖揭示本發明較佳實施例之光捕捉微生物系統及其方法用於量測第二酵母菌之顯微影像示意圖。 請參照第7B圖所示,本發明較佳實施例之光捕捉微生物系統及其方法與光捕捉微生物鑑別方法用於量測第二酵母菌選自brown品牌,其量測結果顯示於表2及4。 FIG. 7B shows a schematic diagram of a microscopic image of the light-trapping microorganism system and its method for measuring the second yeast in a preferred embodiment of the present invention. Please refer to Figure 7B, the light-trapping microorganism system and method thereof and the light-trapping microorganism identification method of the preferred embodiment of the present invention are used to measure the second yeast selected from the brown brand. The measurement results are shown in Table 2 and 4.

Figure 108136713-A0101-12-0018-4
Figure 108136713-A0101-12-0018-4

第7C圖揭示本發明較佳實施例之光捕捉微生物系統及其方法用於量測第三酵母菌之顯微影像示意圖。請參照第7C圖所示,本發明較佳實施例之光捕捉微生物系統及其方法與光捕捉微生物鑑別方法用於量測第三酵母菌選自fermipan品牌,其量測結果顯示於表3及4。 FIG. 7C shows a schematic diagram of a microscopic image of the light-trapping microorganism system and its method for measuring the third yeast in a preferred embodiment of the present invention. Please refer to Figure 7C, the light trapping microorganism system and method and the light trapping microorganism identification method of the preferred embodiment of the present invention are used to measure the third yeast selected from the fermipan brand. The measurement results are shown in Table 3 and 4.

Figure 108136713-A0101-12-0018-5
Figure 108136713-A0101-12-0018-5

Figure 108136713-A0101-12-0018-6
Figure 108136713-A0101-12-0018-6

如表4所示,在不同種類酵母菌具有不同逃脫速度及捕捉效率之特性。因此,將第一、第二及第三酵母菌混合狀況下,可利用光鑷夾系統捕捉該混合酵母菌,並在獲得其逃脫速度及捕捉效率後,可知受捕捉之酵母菌〔廠牌〕種類。 As shown in Table 4, different types of yeast have different escape speed and capture efficiency characteristics. Therefore, when the first, second and third yeasts are mixed, the optical tweezers system can be used to capture the mixed yeast, and after obtaining its escape speed and capture efficiency, the captured yeast can be known [brand] species.

第8圖揭示本發明較佳實施例之光捕捉微生物鑑別方法用在量測第一、第二及第三酵母菌而獲得其逃脫速度之示意圖。請參照第8圖及表4所示,第一酵母菌之逃脫速度為25.58至29.95μm/s、第二酵母菌之逃脫速度為12.22至14.40μm/s及第三酵母菌之逃脫速度為8.49至10.4μm/s。 Figure 8 shows a schematic diagram of the light-trapping microorganism identification method of the preferred embodiment of the present invention used to measure the first, second and third yeasts to obtain their escape speed. Please refer to Figure 8 and Table 4, the escape speed of the first yeast is 25.58 to 29.95 μm/s, the escape speed of the second yeast is 12.22 to 14.40 μm/s, and the escape speed of the third yeast is 8.49 To 10.4μm/s.

第9圖揭示本發明較佳實施例之光捕捉微生物鑑別方法用在量測第一、第二及第三酵母菌而獲得其捕捉效率之示意圖。請參照第9及表4圖所示,第一酵母菌之捕捉效率為3.17至3.46%、第二酵母菌之捕捉效率為2.26至2.80%及第三酵母菌捕捉效率為1.43至1.82%。 Fig. 9 shows a schematic diagram of the light trapping microorganism identification method used in measuring the first, second and third yeasts to obtain the trapping efficiency of the preferred embodiment of the present invention. Please refer to Figure 9 and Table 4, the capture efficiency of the first yeast is 3.17 to 3.46%, the capture efficiency of the second yeast is 2.26 to 2.80%, and the capture efficiency of the third yeast is 1.43 to 1.82%.

上述實驗數據為在特定條件之下所獲得的初步實驗結果,其僅用以易於瞭解或參考本發明之技術內容而已,其尚需進行其他相關實驗。該實驗數據及其結果並非用以限制本發明之權利範圍。 The above-mentioned experimental data are preliminary experimental results obtained under specific conditions, which are only used to easily understand or refer to the technical content of the present invention, and other related experiments are needed. The experimental data and results are not intended to limit the scope of rights of the present invention.

前述較佳實施例僅舉例說明本發明及其技術特徵,該實施例之技術仍可適當進行各種實質等效修飾及/或替換方式予以實施;因此,本發明之權利範圍須視後附申請專利範圍所界定之範圍為準。本案著作權限制使用於中華民國專利申請用途。 The foregoing preferred embodiments only illustrate the present invention and its technical features. The technology of this embodiment can still be implemented with various substantially equivalent modifications and/or alternatives; therefore, the scope of rights of the present invention is subject to patent application. The scope defined by the scope shall prevail. The copyright in this case is restricted to the use of patent applications in the Republic of China.

1‧‧‧電腦系統 1‧‧‧Computer system

2‧‧‧影像擷取系統 2‧‧‧Image capture system

21‧‧‧顯微鏡裝置 21‧‧‧Microscope device

22‧‧‧濾光片 22‧‧‧Filter

3‧‧‧雷射光源裝置 3‧‧‧Laser light source device

31‧‧‧雷射光源 31‧‧‧Laser light source

32‧‧‧光纖耦光器 32‧‧‧Fiber Optic Coupler

33‧‧‧光纖 33‧‧‧Optical fiber

34‧‧‧光纖微透鏡 34‧‧‧Fiber Microlens

5‧‧‧工作平台 5‧‧‧Working platform

51‧‧‧平移台控制裝置 51‧‧‧Pan stage control device

52‧‧‧第一電控平台 52‧‧‧The first electronic control platform

53‧‧‧載物台 53‧‧‧ Stage

54‧‧‧載物台光源 54‧‧‧Light source of stage

55‧‧‧第二電控平台 55‧‧‧Second Electronic Control Platform

Claims (10)

一種光捕捉微生物系統,其包含:一微生物容器,其用以容置一微生物體;至少一顯微鏡裝置,其對應於該微生物容器,以便利用該顯微鏡裝置顯示該微生物容器之微生物體;及至少一光纖光鑷夾,其於該微生物容器利用該光纖光鑷夾以一預定光束捕捉至少一個該微生物體,以便在該光纖光鑷夾上形成一已捕捉微生物體;其中控制該光纖光鑷夾及已捕捉微生物體以至少一預定速度進行移動,並經由該顯微鏡裝置顯示該光纖光鑷夾及已捕捉微生物體,且將該光纖光鑷夾及已捕捉微生物體自一第一位置移動至一第二位置。 A light capturing microorganism system, comprising: a microorganism container for accommodating a microorganism; at least one microscope device corresponding to the microorganism container so that the microscope device can be used to display the microorganism of the microorganism container; and at least one Optical fiber optical tweezers, which uses the optical fiber optical tweezers to capture at least one microorganism with a predetermined light beam in the microorganism container, so as to form a captured microorganism on the optical fiber optical tweezers; wherein the optical fiber optical tweezers and The captured microorganisms move at at least a predetermined speed, and the optical fiber optical tweezers and the captured microorganisms are displayed through the microscope device, and the optical fiber optical tweezers and the captured microorganisms are moved from a first position to a second position. Two positions. 依申請專利範圍第1項所述之光捕捉微生物系統,其中該顯微鏡裝置連接至少一影像擷取系統,且該顯微鏡裝置對應於該微生物體,以便該影像擷取系統自該顯微鏡裝置擷取一微生物體影像。 According to the light capturing microorganism system described in claim 1, wherein the microscope device is connected to at least one image capturing system, and the microscope device corresponds to the microorganism, so that the image capturing system captures one from the microscope device Microorganism image. 依申請專利範圍第1項所述之光捕捉微生物系統,其中另包含一工作平台及一平移台控制裝置,而將該微生物容器配置於該工作平台上,且該平移台控制裝置用以控制該工作平台。 According to the light-trapping microorganism system described in item 1 of the scope of patent application, which further includes a working platform and a translation stage control device, the microorganism container is arranged on the working platform, and the translation stage control device is used to control the Work platform. 依申請專利範圍第1項所述之光捕捉微生物系統,其中另包含一電腦系統,且該電腦系統連接於該顯微鏡裝置,或該電腦系統連接於一雷射光源裝置,或該電腦系統連接於一工作平台、一平移台控制裝置或一影像擷取系統。 According to the light-trapping microorganism system described in item 1 of the scope of patent application, it also includes a computer system, and the computer system is connected to the microscope device, or the computer system is connected to a laser light source device, or the computer system is connected to A working platform, a translation stage control device or an image capture system. 依申請專利範圍第1項所述之光捕捉微生物系統,其中該微生物體選自一酵母菌、一益生菌或一病原細菌。 According to the light-trapping microorganism system described in item 1 of the scope of patent application, the microorganism is selected from a yeast, a probiotic or a pathogenic bacteria. 一種光捕捉微生物方法,其包含:提供一微生物容器,且該微生物容器用以容置一微生物體;提供至少一顯微鏡裝置,且該顯微鏡裝置對應於該微生 物容器,以便利用該顯微鏡裝置顯示該微生物容器之微生物體;提供至少一光纖光鑷夾,並於該微生物容器利用該光纖光鑷夾以一預定光束捕捉至少一個該微生物體,以便在該光纖光鑷夾上形成一已捕捉微生物體;及控制該光纖光鑷夾及已捕捉微生物體以至少一預定速度進行移動,並經由該顯微鏡裝置顯示該光纖光鑷夾及已捕捉微生物體,且將該光纖光鑷夾及已捕捉微生物體自一第一位置移動至一第二位置。 A method for capturing microorganisms by light, comprising: providing a microorganism container, and the microorganism container is used for accommodating a microorganism; providing at least one microscope device, and the microscope device corresponds to the microorganism Object container to display the microorganisms of the microorganism container by the microscope device; provide at least one optical fiber optical tweezers, and use the optical fiber optical tweezers to capture at least one microorganism in the microorganism container with a predetermined light beam, so as to A captured microorganism is formed on the optical tweezers; and the optical fiber optical tweezers and the captured microorganisms are controlled to move at at least a predetermined speed, and the optical fiber optical tweezers and the captured microorganisms are displayed through the microscope device, and The fiber optic tweezers and the captured microorganism move from a first position to a second position. 依申請專利範圍第6項所述之光捕捉微生物方法,其中該顯微鏡裝置連接至少一影像擷取系統,且該顯微鏡裝置對應於該微生物體,以便該影像擷取系統自該顯微鏡裝置擷取一微生物體影像。 According to the method of light capturing microorganisms described in the scope of patent application, the microscope device is connected to at least one image capturing system, and the microscope device corresponds to the microorganism, so that the image capturing system captures one from the microscope device Microorganism image. 依申請專利範圍第6項所述之光捕捉微生物方法,其中另包含一工作平台及一平移台控制裝置,而將該微生物容器配置於該工作平台上,且該平移台控制裝置用以控制該工作平台。 According to the method of light capturing microorganisms described in item 6 of the scope of patent application, it further includes a working platform and a translation stage control device, and the microorganism container is arranged on the working platform, and the translation stage control device is used to control the Work platform. 依申請專利範圍第6項所述之光捕捉微生物方法,其中另包含一電腦系統,且該電腦系統連接於該顯微鏡裝置,或該電腦系統連接於一雷射光源裝置,或該電腦系統連接於一工作平台、一平移台控制裝置或一影像擷取系統。 According to the method of light capturing microorganisms described in item 6 of the scope of patent application, which further includes a computer system, and the computer system is connected to the microscope device, or the computer system is connected to a laser light source device, or the computer system is connected to A working platform, a translation stage control device or an image capture system. 依申請專利範圍第6項所述之光捕捉微生物方法,其中該微生物體選自一酵母菌、一益生菌或一病原細菌。 According to the method for capturing microorganisms by light according to item 6 of the scope of patent application, the microorganism is selected from a yeast, a probiotic or a pathogenic bacteria.
TW108136713A 2018-11-30 2018-11-30 Light-trapping microorganism system and method thereof TW202022353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108136713A TW202022353A (en) 2018-11-30 2018-11-30 Light-trapping microorganism system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108136713A TW202022353A (en) 2018-11-30 2018-11-30 Light-trapping microorganism system and method thereof

Publications (1)

Publication Number Publication Date
TW202022353A true TW202022353A (en) 2020-06-16

Family

ID=72175607

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108136713A TW202022353A (en) 2018-11-30 2018-11-30 Light-trapping microorganism system and method thereof

Country Status (1)

Country Link
TW (1) TW202022353A (en)

Similar Documents

Publication Publication Date Title
Pesce et al. Step-by-step guide to the realization of advanced optical tweezers
Zhang et al. Defects evaluation system for spherical optical surfaces based on microscopic scattering dark-field imaging method
Chen et al. Subwavelength imaging and detection using adjustable and movable droplet microlenses
Sala et al. High-throughput 3D imaging of single cells with light-sheet fluorescence microscopy on chip
TWI569016B (en) Light-trapping cancer cell stage testing method
Dos Santos et al. Axial nanoscale localization by normalized total internal reflection fluorescence microscopy
US20220197002A1 (en) Methods and systems for multidimensional imaging
Shinoj et al. Design, fabrication, and characterization of thermoplastic microlenses for fiber-optic probe imaging
AU2015314363B2 (en) Optical fiber with a hollow channel along the center of the fiber core for receiving a sample
CN108732738B (en) Immersion objective for microscopes
CN106403843A (en) Contour scanning measurement device and method for large-aperture high-curvature optical element based on confocal microscopy
Gell et al. TIRF microscopy evanescent field calibration using tilted fluorescent microtubules
US9075235B2 (en) Method and system for optical microscopy
Fallah et al. Demonstration of side coupling to cladding modes through zinc oxide nanorods grown on multimode optical fiber
Lei et al. Long-distance axial trapping with focused annular laser beams
Parks et al. Enhancement of ARROW photonic device performance via thermal annealing of PECVD-based SiO2 waveguides
Jiang et al. Label-free non-invasive subwavelength-resolution imaging using yeast cells as biological lenses
TWM576591U (en) Light trapping microbial identification system
Duan et al. Probe alignment and design issues of microelectromechanical system based optical coherence tomography endoscopic imaging
TWI694249B (en) Light-trapping microbial identifying method
Förster et al. Hyperchromatic lens doublets with an extremely small equivalent Abbe number employing diffractive elements and refractive materials with exceptional dispersion properties
Girkin A practical guide to optical microscopy
Zhang et al. Highly flexible MTF measurement system for tunable micro lenses
TW202022353A (en) Light-trapping microorganism system and method thereof
Bratton et al. Simple experimental methods for determining the apparent focal shift in a microscope system