TWI692753B - 生成增強的聲場描述的裝置與方法及其計算機程式與記錄媒體、和生成修改的聲場描述的裝置及方法及其計算機程式 - Google Patents

生成增強的聲場描述的裝置與方法及其計算機程式與記錄媒體、和生成修改的聲場描述的裝置及方法及其計算機程式 Download PDF

Info

Publication number
TWI692753B
TWI692753B TW107124519A TW107124519A TWI692753B TW I692753 B TWI692753 B TW I692753B TW 107124519 A TW107124519 A TW 107124519A TW 107124519 A TW107124519 A TW 107124519A TW I692753 B TWI692753 B TW I692753B
Authority
TW
Taiwan
Prior art keywords
sound field
source
sound
layer
description
Prior art date
Application number
TW107124519A
Other languages
English (en)
Other versions
TW201909170A (zh
Inventor
捷爾根 賀瑞
艾曼紐 哈貝特斯
Original Assignee
弗勞恩霍夫爾協會
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 弗勞恩霍夫爾協會 filed Critical 弗勞恩霍夫爾協會
Publication of TW201909170A publication Critical patent/TW201909170A/zh
Application granted granted Critical
Publication of TWI692753B publication Critical patent/TWI692753B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • H04S7/304For headphones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/012Head tracking input arrangements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0272Voice signal separating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/01Multi-channel, i.e. more than two input channels, sound reproduction with two speakers wherein the multi-channel information is substantially preserved
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/11Positioning of individual sound objects, e.g. moving airplane, within a sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/15Aspects of sound capture and related signal processing for recording or reproduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/01Enhancing the perception of the sound image or of the spatial distribution using head related transfer functions [HRTF's] or equivalents thereof, e.g. interaural time difference [ITD] or interaural level difference [ILD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/03Application of parametric coding in stereophonic audio systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/11Application of ambisonics in stereophonic audio systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/008Systems employing more than two channels, e.g. quadraphonic in which the audio signals are in digital form, i.e. employing more than two discrete digital channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/02Systems employing more than two channels, e.g. quadraphonic of the matrix type, i.e. in which input signals are combined algebraically, e.g. after having been phase shifted with respect to each other
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/305Electronic adaptation of stereophonic audio signals to reverberation of the listening space
    • H04S7/306For headphones

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Stereophonic System (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Pinball Game Machines (AREA)
  • Building Environments (AREA)

Abstract

一種用於生成一增強聲場描述的一裝置,其包括:一聲場生成器,用於產生至少兩個聲場層描述,以指示相對於至少一個參考位置的聲場;一後設資料生成器,用於生成與該聲場的空間資訊有關的後設資料,其中,該聲場描述和該後設資料構成該增強的聲場描述。該後設資料可以是每一層的一幾何資訊,例如到該參考位置的一代表性距離。

Description

生成增強的聲場描述的裝置與方法及其計算機程式與記錄媒 體、和生成修改的聲場描述的裝置及方法及其計算機程式
本揭露涉及音頻處理,並且特別是,涉及相對於諸如一麥克風或一虛擬麥克風位置的一參考位置所定義的聲場的音頻處理。
高保真度環繞聲信號(Ambisonics signals)包括該聲場的一截斷球形諧波分解。高保真度環繞聲有不同的風格。在文獻[31],其揭露「傳統的」高保真度環繞聲,其現在被稱為「一階高保真度環繞聲」(FOA、First-Order Ambisonics)並且包括四個信號(亦即,一個全向信號和多達三個數字8字形方向信號)。最近的高保真度環繞聲變體被稱為「高階高保真度環繞聲」(HOA、Higher-Order Ambisoncis),並且以攜帶更多信號為代價,提供增強的空間分辨率和更大的聆聽者最佳聆聽位置區域。通常,一完全定義的N階HOA表示係由(N+1)2個信號組成。
與該高保真度環繞聲概念相關,該定向音頻編碼(DirAC、Directional Audio Coding)表示已經被設想為以一更緊湊的參數樣式,以表示一FOA或HOA聲音場景。更具體地,該空間聲音場景係由一個(或多個)發送的音頻聲道表示,其表示該聲學場景的一降混合以及在每個時間頻率(TF)區間中的該方向和擴散的相關聯的輔助資訊。有關定向音頻編碼(DirAC)的更多資訊可以在文獻[32,33]中找到。
在文獻[32]中,DirAC可以和不同的麥克風系統和任意揚聲器設置一起被使用。該DirAC系統的該目的是使用多聲道/3D揚聲器系統盡可能精確地再現一既有聲學環境的該空間印象。在該所選擇的環境中,響應(連續聲音或脈衝響應)係由一全向麥克風(W)和一組麥克風所測量,其能夠測量聲音的該到達方向和聲音的該擴散。在文獻[34]中,一種常見的方法是應用與相應的笛卡爾坐標軸對齊的三個8字形麥克風(X、Y、Z)。一種方法是使用一聲場麥克風,它直接產生所有想要的響應。該W、X、Y和Z信號也可以從一組離散的全向麥克風計算出來。
在DirAC中,該聲音信號首先將被分成頻率通道。根據每個頻率通道的時間測量該聲音方向和擴散。在傳輸時,一個或多個音頻通道以及分析的方向和擴散資料一起被發送。在合成時,施加到該揚聲器的該音頻可以是例如該全向通道W,或者每個揚聲器的該聲音可以被計算為W、X、Y和Z的一加權和,其形成具有針對每個揚聲器的一某種方向特性的一訊號。每個音頻通道被分成頻率通道,接著根據分析的擴散性將其可選擇的劃分為擴散串流和非擴散串流。利用一種技術,擴散串流被再現,該技術產生聲音場景的擴散感知,在文獻[35-37]中,例如雙耳線索編碼(Binaural Cue Coding)中使用的該去相關 (decorrelation)技術。利用一種技術(例如在文獻[38]中的VBAP),非擴散聲音被再現,該技術其目的是根據該方向資料產生一類似點狀虛擬來源。
三種具有一有限自由度的六個自由度(6DoF、six-degrees-of-freedom)的導航技術在文獻[39]中被提出。給定一單個高保真度環繞聲信號,一單個高保真度環繞聲信號被使用以下方法計算:1)模擬在一虛擬揚聲器陣列內的HOA回放和聆聽者移動、2)沿著平面波計算和平移、以及3)重新擴展關於該聆聽者的該聲場。
此外,參考所描述的該DirAC技術,例如於2009年11月11-13日在日本宮城縣Zao舉行的International Workshop on the Principles and Applications of Spatial Hearing中由V.Pulkki等人著作的該出版物“Directional Audio Coding-Perception-Based Reproduction of Spatial Sound”。該參考文獻描述了定向音頻編碼作為相關聲場處理的一參考位置的一範例,特別是作為用於空間音頻處理的一感知激勵技術。在電話會議、在定向濾波和在虛擬聽覺環境,其具有空間聲音的捕獲、編碼和重新合成之應用。
聲音場景的再現通常聚焦在揚聲器設置上,因為這是在私人場所的該典型再現,例如起居室和專業環境(亦即電影院)。此處,該場景與該再現幾何的該關係是靜態的,因為它伴隨著強迫該聆聽者在該正面方向上看的一二維圖像。隨後,在生產時,該聲音和該視覺對象的該空間關係被定義並固定。
在虛擬實境(VR、Virtual Reality)中,藉由允許該用戶在該場景中自由移動而明確地實現該沉浸。因此,有必要追蹤該用戶的移動並將該視覺和聽覺再現調整到該用戶的位置。通常,該用戶佩戴一頭 戴式顯示器(HMD、Head-Mounted Display)和耳機。對耳機的一沉浸式體驗,該音頻必須被雙耳化。雙耳化是一種模擬人類頭部、耳朵和上部軀幹如何根據其方向和距離改變一聲源的該聲音。在文獻[1,2]中,這是經由將該信號與頭部相關轉移函數(HRTF、Head-Related Transfer Functions)針對它們相對方向執行卷積運算來實現的。在文獻[3]中,雙耳化也使聲音看起來來自場景而不是來自頭部內。在文獻[4,5]中,已經成功解決的一常見情況是360°影片再現。此處,該用戶戴著一HMD或是手持一平板電腦或手機。藉由移動她/他的頭部或設備,該用戶可以向任何方向環顧四周。這是一個三自由度(3DoF、three-Degrees-Of-Freedom)場景,因為用戶有三個移動度(俯仰、偏轉、滾動)。在視覺上,這藉由將該影片投影在該用戶周圍的一球體上來實現。在文獻[6]中,音頻通常用一空間麥克風記錄,例如,靠近該攝像機的一階高保真度環繞聲(FOA、First-Order Ambisonics)。在文獻[7]中,在高保真度環繞聲領域,該用戶的頭部旋轉以一直接的方式進行調整。接著例如該音頻被呈現給放置在該用戶周圍的虛擬揚聲器。這些虛擬揚聲器信號接著被雙耳化。
現代VR應用程式允許六個自由度(6DoF、six-Degrees-Of-Freedom)。除了該頭部旋轉之外,該用戶可以四處移動,從而造成在三個空間維度上平移她/他的位置。該6DoF再現受到該步行區域的該整體尺寸的限制。在許多情況下,該區域相當小,例如一傳統的起居室。6DoF在VR遊戲中經常被遇到。這裡,該整個場景是由計算機生成的圖像(CGI、Computer-Generated Imagery)合成的。該音頻通常使用對象基礎的渲染而被生成,其中每個音頻對象係與距離相關的增益和基於該追蹤資料的來自該用戶的相對方向而被渲染。在文獻[8,9,10]中, 經由人工混響(artificial reverberation)和衍射,可以增強真實性。
關於錄製的內容,對於令人信服的視聽6DoF再現係存在一些明顯的挑戰。於文獻[11,12]中,在該空間平移領域中空間聲音操縱的一早期例子是「聲學變焦」技術。此處,該聆聽者位置被虛擬地移動到該記錄的視覺場景中,類似於放大一圖像。該用戶選擇一個方向或圖像部分,接著可以從一平移點收聽。這必需要所有該到達方向(DoAs、Direction of Arrivals)係相對於原始的非縮放再現而改變。
用於記錄內容的6DoF再現的方法係已經被提出,該記錄內容的6DoF再現已經使用空間分佈記錄位置。於文獻[13]中,對於影片,相機陣列可以被使用來生成光場渲染(light-field rendering)。對於音頻,一類似的設置採用分佈式麥克風陣列或高保真度環繞聲麥克風。於文獻[14]中,其已經表明,從這種記錄可以生成放置在任意位置的一「虛擬麥克風」的該信號。
為了以一技術上方便的方式實現這種空間聲音修改,可以採用參數聲音處理或編碼技術(參見文獻[15]的概述)。於文獻[16]中,定向音頻編碼(DirAC、Directional Audio Coding)是一種受歡迎的方法,用於將該記錄轉換為一表示,該表示係由該聲音方向和擴散性的一音頻頻譜和參數輔助資訊所組成。它用於文獻[11]中的聲學變焦和文獻[14]中的虛擬麥克風的應用。
這裡提出的方法能夠藉由一單個FOA(First-Order Ambisonics)麥克風的該記錄來實現6DoF再現。來自一單個空間位置的記錄已被用於3DoF再現或聲學變焦。但是,就發明人所知,到目前為止還沒有提出用於從這種資料進行交互式、完全6DoF再現的方法。經由整合關於在該記錄中該聲源的該距離的資訊,其可以實現6DoF再 現。該距離資訊被合併到DirAC的該參數表示中,使得該聆聽者的該改變視角係被正確映射。
沒有任何該高保真度環繞聲聲場表示(無論是常規FOA或HOA高保真度環繞聲還是DirAC風格的參數聲場表示)能提供足夠的資訊,以允許6DoF應用程式所需的該聆聽者位置的一平移,因為在該聲音場景中的物件距離和絕對物件位置都不是以這些格式決定的。應該注意的是,該聆聽者位置的該移動可以轉移為該聲音場景在該相反方向上的一等效移位。
當在6DoF中移動時的一典型問題如圖1b所示。讓我們假設使用高保真度環繞聲在位置A處描述該聲音場景。在這種情況下,來自來源A和來源B的聲音從相同方向到達,即它們具有相同的到達方向(DOA、Direction-Of-Arrival)。如果一個人移動到位置B處,來源A和來源B的該DOA是不同的。使用該聲場的一標準高保真度環繞聲描述,亦即沒有附加資訊,在給定位置A處的高保真度環繞聲信號時,其係不可能計算在位置B處的高保真度環繞聲信號。
本揭露的一個目的是一方面提供一增強聲場描述或另一方面提供一改進的聲場描述的一生成,其允許一改進的、或靈活的、或有效的處理。
該目的經由申請專利範圍第1項的用於生成一增強聲場描述的一裝置、申請專利範圍第10項的用於生成一修改聲場描述的一裝置、申請專利範圍第27項的生成一增強聲場描述的一方法,申請專利範圍第28項的生成一修改聲場描述的一方法,申請專利範圍第29項 的一計算機程式或申請專利範圍第30項的一增強聲場描述來實現。
本揭露基於以下發現:與一參考位置相關的典型聲場描述需要附加資訊,以便這些聲場描述可以被處理,使得與該原始參考位置無關但是與另一個參考位置的一修改聲場描述可以被計算。至此,與該聲場的空間資訊有關的後設資料(metadata)被生成,並且該後設資料與該聲場描述一起對應於該增強聲場描述,其可以例如發送或存儲的。為了從該聲場描述和該後設資料生成一修改聲場描述,具體地,該後設資料與該聲場描述的空間資訊有關,使用該空間資訊、該聲場描述以及指示從一參考位置到一不同參考位置的一平移的一平移資訊,該修改聲場描述被計算。因此,由一聲場描述和與該聲場描述下的該聲場的空間資訊相關的後設資料所組成的該增強聲場描述,其係被處理,以獲得一修改聲場描述,該修改聲場描述係與由附加平移資訊定義的一不同參考位置相關的,例如,其可以在解碼器側被提供或被使用。
然而,本揭露不僅涉及一編碼器/解碼器場景,但也可以被應用於一應用程式中,其中包含基本上在同一個位置發生的該增強聲場描述的該生成和該修改聲場描述的該生成。例如,該修改聲場描述可以是該修改聲場本身的一描述,或者實際上是在聲道信號中、雙耳信號的該修改聲場,或者再次是一參考位置相關的聲場,然而現在是相關到該新的或不同的參考位置而不是該原始的參考位置。例如,這樣的一應用將處在於一虛擬實境場景中,其中存在一聲場描述以及一後設資料,並且其中一聆聽者從給出該聲場的該參考位置移出並移動到不同的參考位置,並且其中,接著,在該虛擬區域中移動的該聆聽者的該聲場被計算,以對應於該聲場,但現在係在用戶移動到的該不同參考位置處。
在一實施例中,針對多數的至少兩層之每一層,該聲場生 成器可生成該聲場的一DirAC描述,其具有一個或多個降混信號和個別的方向資料以及對不同時間頻率區間的可選擇的擴散資料。在此上下文中,該後設資料生成器被配置為對每一層生成附加距離或深度資訊以作為該後設資料,該後設資料對於該層中包含的所有來源以及與該層相關的所有頻率區間都是相同的。該較佳實施例具有與該層相關的一距離或距離範圍。或者,可以為每層提供一深度圖。特別地,並且在一實施例中,與空間資訊有關的該後設資將是一深度圖,其將一某個的距離與諸如一到達方向資訊之類的一某個位置資訊相關聯。
在實施例中,該到達方向僅由高度或僅由方位角或兩個角度給出,並且該深度圖接著對一層的每個來源關聯到該相同的距離資訊,例如以米為單位的一距離或一相對距離或一量化的絕對或相對距離或任何其他距離資訊,最後,可以從中導出與該聲場相關的該不同或新的參考位置的一距離。
隨後,概略描述了其他較佳實施方式。
高保真度環繞聲已成為虛擬、增強和混合實境應用環境中針對3D音頻最常用的格式之一。已經開發的各種各樣的音頻擷取和生產工具,它們係以高保真度環繞聲格式以生成一輸出信號。為了在交互式虛擬實境(VR)應用中呈現高保真度環繞聲編碼內容,該高保真度環繞聲格式係被轉換為用於再現的一雙耳信號或通道。在該上述應用中,該聆聽者通常能夠以交互方式改變在所呈現場景中他/她的方向至該程度,使得他/她能夠在該聲音場景中旋轉他/她的頭部,從而實現三個自由度(3DoF,即,俯仰、偏轉角及滾動)並且仍然可以體驗到一合適的音質。這是根據該頭部方向經由在渲染之前旋轉該聲音場景所實現,這可以以低計算複雜度而被實現並且是高保真度環繞聲表示的一優點。然而, 在諸如VR的新興應用中,其期望允許該用戶在該聲音場景中自由移動而不僅僅是方向的改變(所謂的「六個自由度」或6DoF)。其結果係為,需要信號處理來改變該聲音場景的該角度(即,沿著x軸、y軸或z軸在該聲音場景內虛擬地移動)。然而,高保真度環繞聲的一個主要缺點是該格式從該聲場中的一單個角度描述了該聲場。具體來說,它不包含該聲音場景中聲源的該實際位置的資訊,該實際位置的資訊其可允許移動該聲音場景(「平移」),因為它是6DoF所需的。本揭露的描述提供了高保真度環繞聲的幾個擴展,以克服該問題並且還促進該平移,並因此實現真正的6DoF。
一階高保真度環繞聲(FOA)錄音可以藉由耳機而被處理和再現。它們可以被旋轉以考慮該聆聽者頭部方向。然而,虛擬實境(VR)系統允許該聆聽者以六個自由度(6DoF)移動,即三個旋轉自由度加三個過渡自由度。此處,該聲源的該視角和距離係取決於該聆聽者的位置。一種技術以促進6DoF係被描述。特別地,一FOA記錄係被使用一參數模型來描述,該參數模型係基於該聆聽者的位置和關於到該來源的該距離的資訊來修改。該方法經由一聽力測試來評估,比較該聆聽者可以自由移動的一合成聲音場景的不同雙耳渲染。
在進一步較佳的實施例中,該增強聲場描述由一輸出界面輸出,用於生成用於傳輸或存儲的一輸出信號,對一時間幀內,其中該輸出信號包括在該時間幀內從該聲場和該空間資訊所導出的一個或多個音頻信號。特別地,該聲場生成器在進一步的實施例中適於從該聲場導出方向資料,該方向資料指的是在一時間區段或一頻率區間內聲音的一到達方向,並且後設資料生成器被配置為導出該空間資訊,作為將一距離資訊與該方向資料相關聯的資料項目。
特別地,在這樣的一實施例中,一輸出界面被配置為生成該輸出信號,使得該時間幀的資料項目係被鏈結到該不同頻率區間內的該方向資料。
在一另一實施例中,該聲場生成器還被配置為生成該聲場的一時間幀的多個頻率區間內的一擴散資訊,其中,該後設資料生成器被配置為僅生成用於與一預定值不同的或者與無窮大不同的一頻率區間內的一距離資訊,或者當該擴散低於一預定或自適應閾值時,它根本生成該頻率區間內的一距離值。因此,對於具有一高擴散的時間/頻率區間,任何距離值一點也不被生成,或者生成由一解碼器以一某種方式解釋的一預定距離值。因此,確保對於具有一高擴散的時間/頻率區間,任何與距離相關的渲染係不被執行,因為一高擴散表示對於這樣的時間/頻區間,聲音不是來自一某個的局部的來源,但來自任何方向,因此,無論該聲場是在該原始參考位置還是在不同的或新的參考位置處,其被感知都是相同的。
關於聲場計算器,較佳實施例包括一平移界面,其用於提供該平移資訊的或指示一預期聆聽者對該修改聲場的一旋轉的旋轉資訊,用於將該後設資料提供給該聲場計算器的一後設資料提供器和用於將該聲場描述提供給該聲場計算器的一聲場供應器,以及附加的用於輸出包括該修改聲場描述和修改後設資料的該修改聲場的一輸出界面,該修改後設資料使用該平移資訊從該後設資料被導出,或該輸出界面輸出多個揚聲器通道,每個揚聲器通道與一預定義的揚聲器位置相關,或者該輸出界面輸出該修改聲場的一雙耳表示。
在一個實施例中,該聲場描述包括多個聲場分量。多個聲場分量包括一全向分量和至少一個方向分量。這樣的聲場描述例如是具 有一全向分量和三個方向分量X、Y、Z的一階高保真度環繞聲聲場描述,或者這樣的一聲場是一個高階高保真度環繞聲描述,其包括該全向分量、相對於X、Y和Z方向的三個方向分量、以及另外的與X、Y、Z方向之外的其他方向相關的方向分量。
在一個實施例中,該裝置包括一分析器,用於分析該聲場分量,以針對不同的時間或頻率區間導出到達方向(DoA、direction of arrival)資訊。該裝置還具有一平移變換器,用於使用該DoA資訊和該後設資料以計算每個頻率或時間區間的修改DoA資訊,其中該後設資料涉及一深度圖,其將一距離與一層描述相關聯,亦即,對於一時間幀的所有頻率區間,對於一層的所有來源。因此,對於每一層來說,一非常簡單的「深度圖」就足夠了。如圖4c所示的一層,一層的該深度圖僅需要該層的至少一距離或距離範圍。
此外,該聲場計算器具有一距離補償器,用於使用一距離補償資訊計算該修改聲場,該距離補償資訊基於對於來自該層的一來源的每個頻率或時間區間是相同的該後設資料、以及取決於與該時間或頻率區間相關聯的一新距離所提供的該距離,該新距離與該修改DoA資訊相關。
在一個實施例中,該聲場計算器計算從該參考位置指向經由該聲場分析所獲得的一聲源的一第一向量。此外,該聲場計算器計算從該不同參考位置指向該聲源的一第二向量,並且此計算係使用該第一向量和該平移資訊所完成,其中該平移資訊定義從該參考位置到該不同參考位置的一平移向量。並且接著,使用該第二向量來計算從該不同參考位置到該聲源的一距離。
此外,該聲場計算器被配置為除了該平移資訊之外還接收 一旋轉資訊,該旋轉資訊指示該聆聽者的頭部在由俯仰、偏轉和滾動所給出的該三個旋轉方向之一的一旋轉。該聲場計算器接著被配置為執行該旋轉變換,以使用該旋轉資訊俾旋轉針對一聲場的一修改的到達方向資料,其中,從經由該聲場描述和該平移資訊的一聲音分析所獲得的一到達方向資料,該修改的到達方向資料被導出。
在一個實施例中,該聲場計算器被配置為經由一聲音分析來決定來自該聲場描述的來源信號、以及與該參考位置相關的該來源信號的方向。
接著,計算與該不同參考位置相關的該聲源的新方向,並且此計算係使用該後設資料來完成,並且接著與該不同參考位置相關的該聲源的距離資訊被計算,接著使用該距離資訊和該聲源的該新方向來合成該修改聲場。
在一個實施例中,經由將該聲源信號平移到由關於一再現設置的該新方向資訊所給出的一方向來執行一聲場合成,並且在執行該平移操作之前或執行該平移操作之後,使用該距離資訊完成該聲源信號的一縮放。如果該距離改變,該來源信號可能需要與一新層相關聯。接著,如果一聲場描述被生成,則使用不同於1的一縮放因子。在一轉碼器的該意義上,如果一新的多層描述被生成,則僅從一個層到另一個層的一改變足夠考量該距離改變。該「平移」可以如圖4i中概述的那樣被完成,用於以與一特定位置相關的一場的形式生成一新的聲場描述。然而,為了生成揚聲器信號,使用從該新DoA導出的平移增益的平移可以被執行。
在一另一實施例中,藉由將一層中的該FOA或HOA聲源信號旋轉到由該新方向資訊給出的一方向,一聲場合成被執行,該新 方向資訊係關於一再現設置、該聲源信號的一縮放、以及最終使用該距離資訊將該聲源信號關聯至一層。這可以取代所討論的該「平移」。
在一另一實施例中,該聲源信號的一擴散部分被添加到該聲源信號的一直接部分,該直接部分在被添加到該擴散部分之前,藉由該距離資訊來修改該直接部分。
在一另一實施例中,該聲源信號的一擴散部分被添加到一專用層。基於與一再現設置有關的該新方向資訊,與該專用層相關聯的該信號被旋轉。
特別地,執行該聲源合成較佳地以一頻譜表示,其中針對每個頻率區間來計算該新的方向資訊,其中針對每個頻率區間來計算該距離資訊,並且其中使用該頻率區間的該音頻信號對每個頻率區間的一直接合成是使用該頻率區間的一音頻信號來執行的,從該新方向資訊導出的針對該頻率區間的一平移增益和從該頻率區間的該距離資訊所導出的針對該頻率區間的一縮放因子係被執行。
此外,使用從來自該頻率區間的該音頻信號所導出的一擴散音頻信號以及使用由針對該頻率區間的該信號分析所導出的一擴散參數來執行一擴散合成,並且接著針對該時間或頻率區間,該直接信號和該擴散信號被組合以獲得一合成音頻信號,並且接著針對其他時間/頻率區間,使用音頻信號,執行一頻率-時間轉換,以獲得一時域合成音頻信號,俾作為該修改聲場。
因此,通常,該聲場計算器被配置為針對每個聲源合成與該不同參考位置相關的一聲場,例如,針對每個來源,使用該來源信號的該新方向來處理一來源信號,以獲得與該不同/新參考位置相關的該來源信號的一聲場描述。此外,在處理該來源信號之前或在使用該方向 資訊處理該來源信號之後,該來源信號被修改。並且,最後,將該來源的該聲場描述被相加在一起以獲得與該不同參考位置相關的該修改聲場。
在一另一實施例中,該聲場計算器可替代一DirAC分析或任何其他聲源分析,執行一來源分離算法。該來源分離算法最終產生聲源信號,例如,在時域或頻域中。接著經由從該原始聲場中減去該聲源信號來計算一擴散信號,使得該原始聲場被分解成一擴散信號和幾個聲源信號,其中每個聲源信號與一某個方向相關聯。
依據較佳實施例,該聲場生成器生成關於該參考位置的一第一聲場描述,其中,該第一聲場描述僅包括來自位於該參考位置周圍的該第一聲場描述中的聲源中的聲音資料,並且該聲場生成器另外生成關於該參考位置的一第二聲場描述,其中,該第二聲場描述僅具有來自位於該參考位置周圍的一第二體積中的第二來源的聲音資料,第二體積不同於第一體積。每個體積包括一個且較佳地多於一個聲源,但是該後設資料被配置為提供該第一體積和/或該第二體積的該空間描述,其接著適用於該體積內的所有聲源。例如,當該空間描述是該某個層到參該考位置的一代表性距離時,則該距離以相同的方式用於該層內的所有來源,以便與相應的到達方向估計一起決定在該層內該來源的該位置。然而,僅以一個徑向方式相對於該參考位置,以決定該層中的該位置,而在該同一層中的每個來源的該距離對應於該空間描述,或者在該特定實施例中,該代表距離關聯於這個體積/層。因此,可獲得一非常有效和緊湊的後設資料表示,其通常包括在該層內一任意數量的來源的一單個值,並且此外,對於一聲音信號的所有子頻帶是相同的。例如,當一層聲場的一聲音分析被使用時,對於每個子頻帶,該距離資訊將是相同的。
這裡應注意的是,每個體積由一個層表示,並且較佳地由一分離的層表示,使得該等體積不重疊。
因此,本揭露涉及該多層聲場描述,其一方面具有一非常緊湊的輔助資訊,但是就一單個聲場描述而言,其具有更多的負荷,因為針對每一層,其提供了完整的聲場描述。例如,當一單個層由B格式信號表示時,則對於每個層,其需要四個聲音分量,亦即該全向分量和該三個方向分量。因此,當聲場由三個層表示時,則總共有十二個聲音分量,即當每一層由第一階高保真度環繞聲信號(first-order Ambisonics signals)或B格式信號表示時,每層需要四個聲音分量。因此,當該聲場由三個層表示時,則總共有十二個聲音分量,亦即當每一層由第一階高保真度環繞聲信號(first-order Ambisonics signals)或B格式信號表示時,每一層需要四個聲音分量。自然地,不同的聲場描述可以用於不同的層,例如針對具有一較多數量來源的一層的一較高階聲場描述,與具有一較少數量分量的一層的一聲場描述相比較,其具有一低數量的來源。
然而,另一方面,僅需要一單個幾何資訊作為每個聲場層的後設資料。
在較佳實施例中,該體積是圍繞該參考位置的球體或球形殼體,通常,該最低層是圍繞該參考位置的一球體,而一較高層是圍繞由一球體表示的該第一層所延伸的一球形殼體。
然而,由一聲場表示的一體積不一定必須是球體。或者,該體積可以是一立方體、一平行六面體元件或任何其他的形式,通常是三維幾何形式。然而,本揭露也可以應用於一個二維情況,使得該體積由一面積表示,並且通常在該第三維度中表示一極微小的小延伸。因此, 該術語「體積」不僅指一個真正的三維體積,而且還指一個二維情況,其中在該二維情況下的該體積是在該第三方向上具有一極微小的小延伸的一平面。因此,該二維情況下的該「體積」將是針對該第一層的圍繞該參考點的一圓圈、和圍繞該第一「體積」的一圓環,其具有比該第一層的一代表半徑更高的代表半徑。
此外,用於生成一增強聲場描述的裝置不僅可以被配置為一種編碼器,其從一原始聲場生成兩個或更多個分層的聲場描述,並且將這些聲場描述與該第一體積和/或該第二體積的空間描述相關聯。在其他實施例中,用於生成一增強聲場描述的該裝置還可以被實現為一轉碼器,其接收具有後設資料的一層描述、並生成具有新後設資料的一新分層描述。例如,當每個層的該後設資料由到該參考點的一代表距離所表示時,且當轉碼後的該增強聲場描述具有與該不同(新)參考點具有該相同代表距離的層時,則針對該增強聲場且由該轉碼器生成的該後設資料將與該原始後設資料相同,但是該轉碼器將為每個層生成一修改的聲場描述,其中該個別來源的該新方向係被考慮,並且其中另外,一聲源到該參考位置的一新距離經由將一聲源從一層移動到另一層來解決,當然,經由衰減或放大該聲源的聲該源信號。特別地,當該聲源從一較低層移動到一較高層時,一衰減將被提供給該聲源信號,或者當該聲源從一較高層移動到一較低層時,一放大將被提供給該聲源信號,即更靠近該新的參考位置。
每一層的每個聲場描述可以經由任何來源分離技術進行分析,例如,其可以是任何全頻帶來源分離技術,其不僅從該層描述生成一來源信號,而且還另外地決定這個來源的一到達方向。或者,也可以經由執行一頻率選擇的來源分離的一DirAC分析器來分析其聲場描 述,使得對於每個時間/頻率區間,一來源音頻信號以及通常伴隨一擴散度值被計算。
然而,當涉及計算一某個來源到該新參考位置的該距離時,從每一個層的該後設資料獲得的該距離資訊,其對於從一某個層描述所決定的每個來源是相同的。因此,在一寬頻帶分析情況下,例如,已經從一個層描述決定了具有不同到達方向的兩個或更多個來源,對於每個來源,該距離資訊是相同的。
或者,當經由一DirAC分析器分析一個層的該聲場描述時,每個時間/頻率區間的該距離資訊將再次相同,亦即,將等於該相應層的該參考距離。
在將本揭露應用為一解碼器的情況下,亦即其中,當該聲場計算器以例如一全方位分量表示(例如,一高保真度環繞聲表示)的形式計算該修改的聲場時,僅需要該後設資料,以縮放相應的聲音信號,該相應的聲音信號係根據到該參考位置的該舊/新距離。接著,可以為每一個層的每一個聲源計算一某個高保真度環繞聲表示,並且使用從該舊的到達方向資訊、和從該舊的參考位置到該新的參考位置的該平移資訊所決定的該新的到達方向,來計算該特定高保真度環繞聲表示,接著,每個來源信號將被縮放,以便考慮從該較早的參考位置到該新的參考位置的該來源的該距離,並且在一相應的縮放之後,該等來源的該各個高保真度環繞聲表示可以互相疊加,以擁有該聲場的一完整高保真度環繞聲表示。因此,這樣的一個「解碼器」將被配置為將一分層表示變換為關於該新參考位置的一單個聲場描述,其接著可以被進一步處理,例如轉換成揚聲器信號等。
或者,該聲場計算器可以被配置為針對來自每個單獨層的 一預期真實或虛擬揚聲器設置,而執行一揚聲器表示,例如,一層的該聲場描述的一個DirAC合成,接著,來自該不同層的該等單獨的揚聲器信號可以被加在一起,以最終形成一揚聲器表示,接著可以經由該預定的揚聲器設置來渲染該揚聲器表示,或者甚至可以經由一雙耳渲染器將其轉換成一雙耳表示。
因此,本揭露可以用於生成具有關於一某個參考位置的後設資料之一個分層聲場描述,或者用於再次使用一分層表示俾生成一轉碼的增強聲場,但是現在使用與該新參考位置相關的層,或者本揭露可以應用於將該分層表示加後設資料解碼成一某個聲場描述,而無需與該新參考位置相關的後設資料。
本揭露的較佳實施例係隨後參照附圖描述。
依據本揭露之一特色,本揭露提出一種用於生成一增強聲場描述的裝置,其包含:一聲場生成器、及一後設資料生成器。該聲場生成器用於生成至少一個聲場描述,該聲場描述指示相對於至少一個參考位置的一聲場。該後設資料生成器用於生成與該聲場的空間資訊有關的後設資料。其中,該至少一個聲場描述和該後設資料構成該增強聲場描述。
依據本揭露之另一特色,本揭露提出一種根據一聲場描述以及與該聲場描述的空間資訊有關的後設資料生成一修改聲場描述的一裝置,包括一聲場計算器。該聲場計算器用於使用該空間資訊、該聲場描述和指示從一參考位置到一不同參考位置的一平移的一平移資訊來計算該修改的聲場。
依據本揭露之又一特色,本揭露提出一種生成一增強聲場描述的方法,包括:成至少一個聲場描述,該聲場描述指示關於至 少一個參考位置的一聲場;以及生成與該聲場的空間資訊有關的後設資料;其中,該至少一個聲場描述和該後設資料構成該增強聲場描述。
依據本揭露之再一特色,本揭露提出一種從一聲場描述和與該聲場描述的空間資訊有關的後設資料生成一修改聲場描述的方法,該方法包括:使用該空間資訊、該聲場描述和指示從一參考位置到一不同參考位置的一平移的一平移資訊,來計算該修改聲場。
依據本揭露之更一特色,本揭露提出一種計算機程式聲稱用當其用於一計算機或處理器上運行時,執行前述的方法。
依據本揭露之再一特色,本揭露提出一種增強的聲場描述,包括至少一個聲場描述及後設資料,該至少一個聲場描述指示關於至少一個參考位置的一聲場,該後設資料與該聲場的空間資訊有關。
本揭露主題的各種目的、特徵、面向和優點將從以下對優選實施例的詳細描述以及附圖中變得更加明顯,附圖中相同的附圖標記表示相同的部件。
所示實施例在附圖中以例子,而非限制的方式顯示,其中相同的參考標號表示相似的元件。
100:聲場描述生成器
110:後設資料生成器
120:組合器
120:輸出界面
250、260:聲場生成器
330:第一聲場描述
340:第二聲場描述
350:幾何資訊
350:後設資料
351:參考點
352:第一幾何資訊
353:第二幾何資訊
354:第三幾何資訊
1、2、3、4、5、6:聲源
210:聲場分析器
422、422a、422b:DoA估計區塊
450:渲染器
422、422a、422b:分析區塊
422、422a、422b:來源分離
601、602、603、600、604:加法器
601、602、603:區塊
430:區塊
423、423a、423b:區塊
810:層區塊
422c:來源分離和DoA估計
422c:區塊
425:合成器
427:渲染器
423a:平移
425a、422a:區塊
424b:旋轉變換
422b:來源分離
423b:平移變換
600:組合器
600:區塊
810:層
420:聲場計算器
400:輸入界面
210:區塊
351、352、353、354:可選
410:平移界面
402:後設資料提供器
404:聲場提供器
430:高保真度環繞聲信號生成器
422、422a、422b:DirAC分析器
425、425a、425b:DirAC合成器
352、353、354:項目
422:DirAC編碼器
423、424:變換
425:DirAC解碼器
427:雙耳化
800、802、804、806:區塊
808:對象信號處理器/縮放
427:區塊
350:不同的層資訊
510:聲源的位置
520:麥克風
500:聆聽者位置
320:距離圖
1100:區塊
1120:距離決定器
1120、1140、1110、1130、1140:區塊
1102、1104、1106、1108:區塊
520~510:項目
520~500:項目
510:聲源
1200、1210、1220、1230、1240、1250、1260:區塊
1270a、1270b、1270c:區塊
430:高保真度環繞聲編碼器或計算器
1310:一組帶通濾波器
1320:能量分析器
1330:強度分析器
1340:時間平均區塊
1350:擴散度計算器
1360:方向計算器
1370:一組帶通濾波器
1400:虛擬麥克風區塊
1450:直接/擴散合成器塊
1460:確定的揚聲器設置或虛擬預期揚聲器設置
1380:擴散-增益變換器
1390:基於向量的振幅平移增益表區塊
1420:麥克風補償區塊
1430:揚聲器增益平均區塊
1440:分配器
1460:揚聲器設置
圖1a係用於生成一增強聲場描述的一裝置的一較佳實施例。
圖1b係說明本揭露的一示例性問題的一圖式。
圖2係用於生成一增強聲場描述的該裝置的一較佳實施方式。
圖3a係顯示包括音頻資料和音頻資料的輔助資訊的該增強聲場描述。
圖3b係顯示一增強聲場的一進一步說明,該增強聲場包括與空間資訊(例如針對每一個層描述的幾何資訊)有關的音頻資料和後設資料。
圖4a係顯示生成一修改聲場描述的一裝置的一實現。
圖4b係顯示生成一修改聲場描述的一裝置的一另一實現;。
圖4c係顯示一多層方案。
圖4d係顯示一解碼器或一轉碼器選項1的一實施例。
圖4e係顯示一單個對象的一渲染器。
圖4f係顯示一解碼器或一轉碼器選項2的一實施例。
圖4g係顯示一解碼器/渲染器的一部分。
圖4h係顯示一轉碼器的一部分。
圖4i係顯示用於從諸如一單一信號和到達方向資料的一音頻信號生成一聲場描述的一示例性設備。
圖5係顯示空間音頻的該六個DoF再現。
圖6係顯示一第六DoF再現的一較佳實施例,其包括用於生成一增強聲場描述的一裝置和用於生成一修改聲場描述的一裝置。
圖7係顯示用於計算相對於一新的/不同的參考位置的一聲源的一新的DoA和一新距離的一較佳實施方式。
圖8係顯示一縮放因子決定和應用的一實施例。
圖9係顯示一第六DoF再現的另一個較佳實施例,其包括用於生成一增強聲場描述的一裝置和用於在每層之DirAC的該上下文中產生每層的一修改聲場描述的一裝置。
圖10係顯示用於生成一修改的聲場描述的該裝置的一較佳實施方式。
圖11係顯示用於生成一修改聲場描述的一裝置的一另一較佳實施方式。
圖12a係顯示一現有技術的DirAC分析實現。
圖12b係顯示一現有技術的DirAC合成實現。
針對上述高保真度環繞聲/定向音頻編碼(Ambisonics/DirAC、Ambisonics/Directional Audio Coding)表示以致能六個自由度(6DoF、six-Degrees-Of-Freedom)應用程式,其有必要以一方式擴展這些表示,以提供平移處理所缺失的資訊。應注意的是,該擴展可以例如是1)將該對象的該距離或位置添加到該現有場景表示,和/或2)添加能促進各個對象分離的該過程的資訊。
此外,實施例的一目的是保留/重新使用現有(非參數或參數)高保真度環繞聲系統的該結構,以在這種意義上提供與這些表示/系統的向後兼容性:●該擴展表示可以轉換為現有的非擴展表示(例如,針對渲染);以及●允許在使用該擴展表示時,重新使用現有的軟體和硬體實現。
在下文中,幾種方法將被描述,即一種有限(但非常簡單)的方法和三種不同的擴展的高保真度環繞聲格式,以實現6DoF。
代替該常規的高保真度環繞聲表示,多個高保真度環繞聲信號(即,多個信號的集合)被定義了。每個高保真度環繞聲信號對應於該聲音場景的一特定距離範圍。該距離範圍可包括均勻分區(例如,0-1米、1-2米、2-3米......)或非均勻分區(例如,0-1米、1-3米、大於3 米)。非重疊距離範圍可以靜態地被定義或動態響應於該聲音場景的該實際屬性而被定義,並且以該多層高保真度環繞聲格式來定義。或者,重疊距離範圍以及窗戶函數可以被定義。該其中一個層可以被分離配置為擴散/環境聲音,其不需要一精確的距離描述,而是分佈在該整個聲音場景中。
多層高保真度環繞聲表示的該概念適用於傳統和參數(DirAC風格)的高保真度環繞聲。具有三個層的一範例在圖4c中被顯示。
以下正文描述所提出的多層高保真度環繞聲如何被使用以實現平移。
選項I(圖4d):經由應用一來源分離技術生成每個高保真度環繞聲層中的對象。還可以生成一環境/擴散/殘餘高保真度環繞聲信號。使用一維/二維(1D/2D)來源局部化來獲得DOA,並且該距離由該層的該後設資料給出。該注意的是,在許多情況下,該DOA也可以從該來源分離濾波器中被擷取,並且存在用於執行聯合來源分離和DOA估計的方法。
如圖4e所示,接著每個單通道對象被渲染到一個或多個層。首先,基於該平移資訊(例如,表示為一向量)和該層距離(例如,該層的該平均或代表距離),平移後的該DOA和距離被計算,分別表示為DOA,和Distance’。其次,基於該DOA’為該對象生成一高保真度環繞聲信號。第三,基於該Distance’和從中擷取該對象的該層距離,該對象被渲染到該適當的層。在為所有對象生成該修改的高保真度環繞聲信號之後,經由將所有對象的層i的該修改的高保真度環繞聲輸出一起相加,該第i個修改的高保真度環繞聲層(i
Figure 107124519-A0305-02-0024-18
{1,...,L})被計算。該第i 層的該環境/擴散/殘餘高保真度環繞聲信號直接添加到該第i個修改的高保真度環繞聲輸出。
另外,可以應用一所謂的距離補償濾波器(distance-compensation filter)來補償距離的該變化。可以基於Distance’和該層距離,該濾波器能直接應用於該對象。
選項II(圖4f):經由應用一來源分離技術,使用所有L層以生成對象。也可以生成一單個環境/擴散/殘餘高保真度環繞聲信號。
接著將每個單通道對象渲染到一個或多個層,如圖4e所示。首先,基於該平移資訊(例如,表示為一向量)和該層距離(例如,該層的該平均或代表距離),平移後的該DOA和距離被計算,分別表示為DOA’和Distance’。其次,基於該DOA’為該對象生成一高保真度環繞聲信號。第三,基於該Distance’和從中擷取該對象的該層距離,該對象被渲染到該適當的層。另外,可以應用一所謂的距離補償濾波器來補償距離的該變化。在為所有對象生成該修改的高保真度環繞聲信號之後,經由將所有對象的層i的該修改的高保真度環繞聲輸出一起相加,該第i個修改的高保真度環繞聲層(i
Figure 107124519-A0305-02-0025-17
{1,...,L})被計算。該第i層的該環境/擴散/殘餘高保真度環繞聲信號直接添加到該第i個修改的高保真度環繞聲輸出。
另外,可以應用一所謂的距離補償濾波器來補償距離的該變化。可以基於Distance’和該層距離,該濾波器能直接應用於該對象。
生成多層高保真度環繞聲信號對於計算機生成和生成的內容來說非常直接。將自然記錄經由麥克風陣列或空間麥克風(例如,B格式麥克風)轉換為多層高保真度環繞聲信號並不那麼直接。
可以經由投影、求和或向降混合將這些層轉換為一傳統的 高保真度環繞聲信號。圖4g係顯示一簡單且計算效率高的轉換。
經由對每個該多層高保真度環繞聲信號應用一與層無關的旋轉、或者經由對該傳統的高保真度環繞聲信號應用一單個旋轉,方向的一改變可以被實現。該與層無關的旋轉可以在該平移之前或之後執行。
圖1a係顯示用於生成一增強聲場描述的一裝置,其包括一聲場(描述)生成器100,用於生成指示關於至少一個參考位置的一聲場的至少一個聲場描述。此外,該裝置包括一後設資料生成器110,用於生成與該聲場的空間資訊有關的後設資料。該後設資料接收該聲場作為一輸入,或者替代地或另外地,接收關於聲源的分離資訊。
該聲場描述生成器100和該後設資料生成器110的輸出都構成該增強聲場描述。在一個實施例中,該聲場描述生成器100和該後設資料生成器110的該輸出都可以在一組合器120或輸出界面120內被組合,以獲得該增強聲場描述,其包括由該後設資料生成器110生成的該空間後設資料或該聲場的空間資訊。
圖1b圖式說明了本揭露所解決的情況。例如,該位置A是該至少一個參考位置,並且一聲場係由來源A和來源B所生成,並且位於該位置A的例如一某種實際或虛擬麥克風檢測來自來源A和來源B的該聲音。該聲音是來自該等發射聲源的該聲音的一疊加。這表示該聲場描述係由該聲場描述生成器所生成的。
另外,經由某種實現,該後設資料生成器將導出關於來源A的一空間資訊和關於來源B的另一空間資訊,諸如這些來源到該參考位置的距離,諸如位置A。
理所當然地,該參考位置另外也可以是位置B。接著,該 實際或虛擬麥克風將被放置在位置B,並且該聲場描述將是一聲場,例如,由一階高保真度環繞聲分量、或更高階的高保真度環繞聲分量、或任何其他聲音分量所表示的,其具有該潛力以描述關於至少一個參考位置(即位置B)的一聲場。
接著,該後設資料生成器可以生成關於該聲源的該資訊、來源A到位置B的該距離或者來源B到位置B的該距離。當然,關於聲源的另外資訊可以是相對於一參考位置的該絕對或相對位置。該參考位置可以是一個一般坐標系統的該原點,或者可以位在與一個一般坐標系統的該原點有一個定義關係的位置處。
其他後設資料可以是一個聲源的該絕對位置和相對於該第一聲源的另一個聲源的該相對位置等等。
圖2係顯示用於生成一增強的聲場描述的一裝置,其中該聲場生成器包括用於該第一聲場的一聲場生成器250、用於該第二聲場的一聲場生成器260、以及用於一個或多個聲場的一任意數量的聲場生成器,該一個或多個聲場例如是一第三、第四等聲場。另外,該後設資料被配置為計算並向該組合器120轉發關於該第一聲場和該第二聲場的一資訊。所有這資訊被該組合器120所使用,以便生成該增強的聲場描述。因此,該組合器120還被配置為一輸出界面,以生成該增強的聲場描述。
圖3a係顯示作為一資料流的一增強聲場描述,其包括一第一聲場描述330、一第二聲場描述340以及與其相關聯的後設資料350,該後設資料350包括關於該第一聲場描述和該第二個聲場描述的資訊。例如,該第一聲場描述可以是一B格式描述、或一更高階描述、或任何其他描述,該任何其他描述允許決定以一全頻帶表示或一頻率選 擇表示的聲源的一方向分佈的。因此,例如該第一聲場描述330和該第二聲場描述340也可以是該個別層的參數聲場描述,其具有例如一降混信號和不同時間/頻率區間的到達方向資料。
然而,該第一和該第二聲場描述的該幾何資訊350對於包括在該第一聲場描述330中的所有來源或者對於該第二聲場描述340中的該來源分別是相同的。因此,當示例性地在該第一聲場描述330中存在三個來源和關於該第一聲場描述存在一幾何資訊時,則該幾何資訊對於該第一聲場描述中的該三個來源是相同的。類似地,例如當在該第二聲場描述中存在五個來源時,則被包括在該後設資料350中的關於該第二聲場的該幾何資訊對於該第二聲場場描述中的所有來源是相同的。
圖3b係顯示圖3a的該後設資料350的一示例性構造。在一個實施例中,該參考點351可以被包括在該後設資料中。然而,該參考點資訊351也可以被省略,這不一定是必要的情況。
對於該第一聲場,所給出一第一幾何資訊,其可以例如是該第一層的一中半徑或一代表半徑,其例如是將在後面描述的圖4c的該示例性實施例的一0.5米的值。
該第二聲場由第二幾何資訊353描述,其例如對應於第二層的中半徑,例如圖4c實施例中的兩米,因為該第二層從一米延伸到三米。
一第三聲場將由第三幾何資訊354描述,並且該代表距離例如是該第三層的“中半徑”,例如四米左右。自然地,每個聲場描述較佳地包括不止一個來源,但是情況也可以是一某個層的一聲場描述僅包括一單個來源。
例如,當圖4c被認為顯示了一較佳的多層高保真度環繞 聲方法時,一第一層從0或一最小距離(例如,0.5m)延伸至1m。該第二層從1m延伸到3m,該第三層包括距離該第一參考點距離高於3m的所有聲源,該第一參考點是圖4c所示的三個圓的該中心。
此外,圖4c係顯示包括在層1中的該兩個聲源1、2,包括在層2中的該兩個聲源3、4,包括在層3中的該聲源5和6。
如概述的,圖3a係顯示包括該增強聲場描述的一位元流或通用資料流的一範例。該資料流將包括時間幀i、i+1等、以及相應時間幀的相關輔助資訊。
圖4b係顯示另一種實現方式,其中圖2中的該聲場分析器210實際上不生成一降混,而是針對一某個時間期間生成該B格式、或A格式或任何其他諸如高階表示的一完整表示。
圖4c還說明了一新的聆聽者位置。當在該新的聆聽者位置周圍繪製相同的層時,由於該平移到該新的聆聽者位置,這可清楚地看到,聲源1從第1層移到第3層,因此必須(強烈地)衰減。
此外,聲源2從層1移動到層2,因此也應該(弱)衰減。
此外,聲源3從較早的層2移動到新的層3中,因此也必須(弱)衰減。
另外,聲源4保留在該第二層中,因此不需要任何衰減。此外,聲源5也保持在該同一層中,因此不需要縮放。最後,聲源6從該較早的第三層移動到該新的第一層,因此需要(強烈)放大。
因此,通常,當一聲源移動時,由於從該參考點到該不同(新)參考點的該平移,則一某個縮放因子被決定。當該聲源的該「移動」從一較高層到一較低層時,則該縮放是一衰減,並且當該「移動」從一較低層到一較高層時,該縮放是一衰減。此外,當該「移動」從一層到 下一層時,該縮放因子將是一弱縮放因子,例如一弱衰減或一弱放大,並且當該移動不是從一層到下一層而是從一層移動到不是與該一層相鄰的另一層,亦即從該第一層到該第三層,或反之亦然,則該縮放因子將使得一更強的衰減或放大被執行。
例如,當一來源從該第三層移動到該第二層時,並且當考慮圖3b中的示例性數值時,該縮放因子將是2.0的一放大因子,即4m除以2m。然而,當一聲源從該第二層移動到該第三層時,該縮放因子將為0.5,即2m除以4m。
或者,當一聲源從該第一層移動到該第三層時,並且假設圖3b的該示例性圖形,則該縮放因子將是經由將0.5m除以5m而獲得的0.1到5。
或者,當該聲源從該第三聲場移動到該第一聲場時,諸如圖4c實施例中的該聲源6,則該縮放因子將是經由將4m除以0.5m而獲得的8.0。
自然地,儘管已經針對圖4c中所示的一個二維「體積」情況描述了這些範例,當圖4c中的該圓被考慮為表示層1的一球體和層2或層3的一球殼時,對於一真實的三維體積情況也可以使用相同的考量。
圖4d一般地顯示用於生成一修改的聲場描述的一裝置的該聲場計算器的該實現,或者替代地,用於在一轉碼器表示的該上下文中生成一增強的聲場描述的該裝置的該實現。該第一層表示係示例性地圖式說明為高保真度環繞聲層1、該第二聲場描述係圖式說明為高保真度環繞聲層2、和一可選的附加聲場描述係圖式說明在高保真度環繞聲層L處,其被引入到不同的來源分離和DoA估計區塊422、 422a、422b中。此外,使用一渲染器450,其被配置用於將由區塊422、422a、422b中的該程序找到的該對象渲染到對應的「新」層。此外,該分析區塊422、422a、422b不僅被配置為擷取該對象信號和該對象信號的到達方向,而且還被配置為從每個層的聲場描述生成一環境/擴散/殘留信號。例如,該信號可以經由從該個別的表示中減去由一來源分離程序導出的所有個別的來源信號的一總和而被獲得。或者,當該來源分離422、422a、422b被配置為例如一DirAC分析時,則該擴散/環境/殘留信號將以一參數方式由擴散參數表示。
此外,圖4d圖式說明加法器601、602、603,用於向一某個層的該修改的高保真度環繞聲表示添加該層的該相應擴散信號。
這是針對層1、層2、層L中的每一個完成的,並且圖4d中的該輸出再次表示一轉碼的增強聲場描述,因為對於區塊601、602、603輸出的該不同修改的表示,某些後設資料將與指示層1、層2和層L的該代表距離相關聯。
對於圖4d中的情況,圖4e係顯示針對一單個對象或來源的一渲染器。該對象例如經由用於該第一層的區塊422或用於該第二層的區塊422a或用於該第L層的422b,而被輸入到區塊430中以用於計算一高保真度環繞聲信號而被獲得,並且區塊430可以例如是被配置如圖4i所示。為了計算該高保真度環繞聲信號,新的DoA',即一來源的該到達方向值,經由該舊的DoA、以及從該原始參考位置到該新的聆聽者位置的該平移資訊而由區塊423、423a、423b生成的。
因此,關於新DoA'的對象的一新的高保真度環繞聲信號 被計算並輸出為object’。因此,例如,圖4i的區塊430的該輸出將是object’信號。此外,區塊423、423a、423b將如前面關於圖4c所討論的那樣計算/決定該新距離,並且因此將例如計算如前面關於圖4c所討論的和圖4b中的範例的縮放因子,接著,對層區塊810的一渲染可以被配置為利用從該舊距離(層距離)和該新距離導出的一某個縮放因子,來縮放從區塊430獲得的該object’信號,接著,屬於一某個層1、2或L的圍繞圖4c的該新聆聽者位置的所有信號,可以相應地加在一起以再次具有一分層表示。因此,關於圖4c的實施例,現在在層1中的唯一來源將是原始來源6,而原始來源5、3、1將在該縮放之後相對於他們的高保真度環繞聲表示被加在一起,當L=3時,如針對每個來源單獨決定以獲得層3信號,並且類似地,來源2、4的該來源信號不代表該第2層信號,如圖4c中的表格所示,來源4不需要縮放,但是來源2需要一縮放操作。
因此,圖4e係顯示針對每個層該對象如何被決定、並且在加法器601、602、603添加該環境/擴散/殘留信號之後,每個層的該完整修改的高保真度環繞聲表示被獲得,接著如圖4h所示,可以輸出作為該增強/修改的聲場描述以及相關的後設資料。
然而,另外地,每個層的該高保真度環繞聲表示可以簡單地經由圖4g中所示的一加法器600加在一起,以便將該多層高保真度環繞聲表示轉換為該傳統的高保真度環繞聲表示,接著該傳統的高保真度環繞聲表示可以被傳統地渲染至一實際或揚聲器表示、至一雙耳表示。
圖4f中所示的另一選項II與圖4e的不同之處在於,從所有單獨層僅生成一單個環境/擴散/殘留信號,並且該單個環境/擴散/ 殘留信號僅由該加法器604添加到該最高層。例如,如圖4d所示的針對每個層,該來源分離和DoA估計422c可以分別的對每個層的每個聲場描述執行。然而,該來源分離和DoA估計演算法也可以實現為將所有單獨的層描述加在一起,接著獲得一單個信號層描述,接著對該單個高保真度環繞聲表示執行該來源分離和DoA估計。然而,較佳的是對每一層單獨進行,並且為了產生該單個擴散信號,由圖4d的實施例所獲得的該各別擴散信號可以在區塊422c內加在一起。
因此,選項II可能導致較低層的完全乾燥的高保真度環繞聲表示、並且僅在最高層的一「濕」表示中,單個擴散信號僅被添加到該最高層。自然地,這個程序很有用,因為該擴散信號無論如何都不是經由一距離程序縮放的,但是與最初被決定之該相同的方式被使用,而不管該聲場描述是否與一原始參考位置或者一新的參考位置例如對應於圖4c的該聆聽者位置有關。
圖6係顯示每一層的一來源分離演算法,其可以例如被配置為DirAC分析。接著,由區塊422輸出的圖6中所示的該擴散信號將不在那裡,但是該擴散信號將由該擴散參數表示,亦即,將參數化地表示。相應地,對於該DirAC程序,該對象信號將是每個時間/頻率區間的該壓力信號。然而,在一般情況下,該對象信號也可以是一全頻帶信號。
該第一層由該上分支表示,該第二層由圖6的該中間的該分支表示,該第三層由圖6的該底部的該分支表示。
在一通用來源分離程序的該情況下,該相應的合成器425將為每一層產生一高保真度環繞聲信號,例如,如圖4d或4f所示。接著,所有這些高保真度環繞聲信號可以如關於圖4g一般討論的 那樣被組合,接著,該信號可以由渲染器427渲染,例如,在一雙耳情況下,當該信號係被發送到一耳機,該耳機係應用在圖6中的500處所顯示的該虛擬實境的環境中的一聆聽者的一頭部。
圖6還另外指出了以下事實:來源分離、平移、高保真度環繞聲信號的該生成或旋轉的該程序可以以許多不同的順序被應用。
而在圖6中,上層係顯示該來源分離係在該旋轉變換之前以及在該平移變換/體積縮放之前被執行,圖6中的該中間分支表明該來源分離533a係在該平移423a和由區塊425a執行之高保真度環繞聲信號的該生成之前被執行,但是,在該步驟之後,該旋轉變換在區塊422a中被應用。
同樣,圖6中的下分支圖式說明該旋轉變換424b甚至可以在該來源分離422b之前被應用,但是也可以在該來源分離之後被應用,當然,因為,一聆聽者的該頭部的該移動是對於一層的所有來源、甚至對於所有層的所有來源都是相同的。此外,該平移變換423b還可以在高保真度環繞聲信號的該生成之前、甚至在該旋轉變換之前被執行,而不是在該來源分離之前被執行,因為任一平移都需要每個來源的該到達方向。
高保真度環繞聲信號在輸入到該組合器600中的情況下,並且當該組合器600的該輸出另外是一傳統的高保真度環繞聲信號時,例如,參考圖4g所討論的,則該旋轉變換甚至可以是在區塊600之後被應用,接著,該渲染器427必須經由一虛擬揚聲器表示直接渲染到一雙耳表示中、或直接渲染到一揚聲器表示或一雙耳表示中。然而,一完全平移變換和完全旋轉的聲場描述不再是分層的,而 是由於組合器600中的該組合,該層「特徵」被放棄了。
在這種上下文情況下,從圖6和圖4e也清楚的表示,在不僅僅對該信號進行轉碼的情況下,但是在生成一單個聲場描述的情況下,在圖4c中的表格的上下文中討論的該「渲染到層810」對於圖4c相關所示的方式不是必需的。由於僅生成一單個聲場,因此一來源是否從一個層移動到另一個層是無關緊要的。相反,只有該縮放因子是必須的,但是這些縮放因子可以直接從該層的該代表距離導出、或者這些縮放因子可以由該層資訊350給出的該舊距離和藉由使用該舊距離所獲得的該新距離、該來源的該DoA、以及例如關於圖7所討論的平移資訊所導出。因此,一來源是否從一層改變或「移動」到另一層僅是一轉碼器表示的一問題,但在圖4g或圖6的該情況下不是一問題。
圖4a係顯示用於根據一聲場描述以及與該聲場描述的空間資訊有關的後設資料生成一修改聲場描述的一裝置的一較佳實施方式。特別地,該裝置包括一聲場計算器420,其使用後設資料、該聲場描述、以及平移資訊以生成該修改的聲場,該平移資訊係指示從一參考位置到一不同參考位置的一平移。
舉例而言,當相對於圖1b中的位置A給出該聲場時,接著該不同的參考位置可以是位置B,並且該平移資訊例如將是指示位置A到位置B的該平移的一向量。接著,該聲場計算器420將計算該修改聲場,就好像它將被位於位置B處的一聆聽者所感知,並且針對該計算,該聲場計算器具有與位置A有關的該聲場描述和該平移資訊,並且另外地具有關於來源A和來源B的該空間位置的該後設資料。
在一個實施例中,該聲場計算器420連接到一輸入界面 400,用於接收該增強的聲場描述,例如,參考圖1a或2討論,接著該輸入界面400一方面分離該聲場描述,亦即由圖1a的區塊100或圖2的區塊210所生成的。此外,該輸入界面400將該後設資料從該增強聲場描述分離,亦即圖3a的項目350或圖3b的可選351和352至354。
此外,一平移界面410從一聆聽者獲得該平移資訊和/或附加或分離的旋轉資訊。該平移界面410的一實現可以是一頭部追蹤單元,其不僅追蹤在一虛擬實境環境中的一頭部的該旋轉,而且還追蹤該頭部從一個位置(即,圖1b中的位置A)到另一個位置(即圖1b中的位置B)的一平移。
圖4b係顯示與圖1a類似的另一種實現方式,但與一編碼器/解碼器方案無關,但與一個一般方案有關,其中該後設資料供應係由一後設資料提供器402所指示的,由一聲場提供器404指示的該聲場供應在沒有一某個輸入界面的情況下完成,其分隔一編碼或增強聲場描述的,但舉例而言,在一虛擬實境應用中的一實際方案中全部完成。然而,本揭露不限於虛擬實境應用,而是還可以在任何其他應用中實現,其中與一參考位置相關的聲場的該空間音頻處理是有用的,以將與一第一參考位置相關的一聲場轉換至與一不同的第二參考位置相關的另一聲場。
該聲場計算器420接著生成該修改聲場描述、或者生成一(虛擬)揚聲器表示、或者生成諸如用於一耳機再現的一雙聲道表示之一雙耳表示。因此,該聲場計算器420可以生成一修改聲場描述,以作為該修改聲場,其基本上與該原始聲場描述相同,但是現在係相對於一新的參考位置。在一替代實施例中,可以為諸如5.1方案的一預定揚聲 器設置或具有更多揚聲器的一揚聲器設置生成一虛擬或實際揚聲器表示,並且特別地,具有揚聲器的一個三維佈置而不是僅一個二維佈置,亦即一揚聲器安排,其揚聲器相對於該用戶位置而被升高。對虛擬實境應用特別有用的其他應用係用於雙耳再現的應用,即用於可應用於該虛擬實境用戶頭部的一耳機。
示例性地,隨後描述的圖6或圖9係顯示一種情況,其中一DirAC合成器僅在諸如全向或壓力分量的一降混合分量上操作,而在關於圖12b所示的一另一替代實施例中,該DirAC合成器在整個聲場資料上操作,即在圖12b中的該實施例中,該完整分量表示係具有全向分量w和三個方向分量x、y、z的一字段描述。
圖4i係顯示用於執行與該DirAC合成器不同的一合成的另一實現。例如,當一聲場分析器為每個來源信號生成一分離的單聲道信號S和一原始到達方向時,並且根據該平移資訊,當一新的到達方向被計算時,則例如圖4i的該高保真度環繞聲信號生成器430將被用於生成針對該聲源信號的一聲場描述,即該單聲道信號S,但是針對該新的到達方向(DoA)資料,其由一水平角度θ或一仰角θ和一方位角φ組成的。接著,由圖4b的該聲場計算器420執行的一程序將生成例如一個一階高保真度環繞聲聲場表示,其針對具有該新的到達方向的每個聲源,並且接著,可以使用一縮放因子來執行每個聲源的一進一步修改,該縮放因子取決於該聲場到該新參考位置的該距離,並且接著,來自各別來源的所有聲場可以再一次例如在一高保真度環繞聲表示被相關至一某個的新參考位置相互疊加以最終獲得該修改聲場。
當解釋由6或圖9的一DirAC分析器422、422a、422b處理的每個時間/頻率區間係表示一某個的(頻寬受限)聲源時,則該高保 真度環繞聲信號生成器430可以被使用,以取代該DirAC合成器425、425a、425b,來為每個時間/頻率區間生成一完整的高保真度環繞聲表示,其使用該降混信號或壓力信號或該時間/頻率區間的全向分量,以作為圖4i的該「單聲道信號S」。接著,針對W、X、Y、Z分量中的每一個,頻率-時間轉換器中的一單獨頻率-時間轉換將導致不同於圖4c中所示的一聲場描述,其係聲場描述。
以下進一步的實施方案將被概略描述。該目標是在給定該原始記錄位置處的一信號以及從該距記錄位置的聲源的該距離的有關資訊的情況下,在該聆聽者的位置處獲得一虛擬雙耳信號。該物理來源係假設可以藉由朝向該記錄位置的其角度而被分離。
該場景係從該麥克風的該視點(PoV、Point of View)而被記錄,該位置用作為該參考坐標系的該原點。該場景必須從該聆聽者的該視點(PoV)中再次生成,該聆聽者在6DoF中被追蹤,參見圖5。這裡係顯示一單個聲源用於圖式說明,該關係適用於每個時間頻率區間。
圖5係顯示空間音頻的該6DoF再現。一聲源藉由一麥克風而被記錄,其具有在該距離dr的該到達方向r r(DoA r r),該距離dr及該到達方向r r係相對於該麥克風位置和方向(黑線和弧線)的該。它必須相對於具有該到達方向r 1(DoA r 1)和距離d 1(虛線)的該移動聆聽者而被再現。這必須考慮該聆聽者平移1和旋轉o(點線)。
在坐標 d r
Figure 107124519-A0305-02-0038-16
的該聲源是從表示為單位向量 r r = d r /∥ d r ∥的該到達方向(DoA)所記錄的。該到達方向(DoA)可以經由分析該記錄而被估計。它來自該距離d r =∥ d r ∥。假設該資訊被包括在每層的該後設資料中作為該層距離,或者通常作為圖3b的項目352、353、354,並且可以以一深度圖m(l,r )的形式表示為距離資訊,該深度圖m(l,r ) 將具有從該記錄位置來的任何方向r的一個層1的每個來源映射到從該參考點到該層的該距離(例如,以米為單位給出)。
該聆聽者在6DoF中被追蹤。在一給定的時間,相對於該麥克風,他位於 l
Figure 107124519-A0305-02-0039-14
的位置,並且相對於該麥克風的坐標系統具有一旋轉 o
Figure 107124519-A0305-02-0039-15
。該記錄位置係被選為該坐標系統的原點,俾簡化符號。
因此,該聲音必須以一不同的距離d 1再現,導致一音量改變,並且一不同的該到達方向r 1(DoA r 1)是平移和隨後旋轉的結果。
如以下分段所解釋,一種用於藉由基於一參數表示的專用變換從該聆聽者的角度獲得一虛擬信號的方法被概述。
所提出的該方法可參見文獻[16],其係基於針對參數空間聲音編碼的該基本DirAC方法。假設在該分析頻譜的每個時頻實例中存在一個主要直接來源,並且這些可以獨立地處理。使用短時傅立葉變換(STFT、Short Time Fourier transform)將該記錄變換為一時頻表示。該時間幀索引用n表示,該頻率索引用k表示。該變換後的記錄接著被分析,以估計該複數頻譜P(k,n)的每個時間頻率區間的方向 r r(k,n)和擴散率ψ(k,n)。在該合成中,該信號被分成一直接和擴散部分。此處,經由根據該揚聲器位置而平移該直接部分並添加該擴散部分,來計算揚聲器信號。
參見圖6,根據在6DoF中的該聆聽者觀點之轉換一個一階高保真度環繞聲(FOA)信號的方法可以被分為五個步驟。
圖6係顯示一6DoF再現的方法。以B格式的該記錄FOA信號係由一DirAC編碼器處理,該編碼器計算該複數頻譜的每個時頻區間的方向和擴散值。經由該聆聽者的追蹤位置並根據針對每一層的一距離圖中給所出的該距離資訊,該方向向量接著被變換。根據該頭部旋 轉,該所得的方向向量接著被旋轉。最後,在該DirAC解碼器中,用於8+4個虛擬揚聲器聲道的信號被合成。接著它們將被雙耳化。
在該實施例中,該輸入信號係在該DirAC編碼器422中被分析,該距離資訊係從該距離圖m( l )中被添加,該距離圖m( l )為每一層給出一距離,接著該聆聽者被追蹤的平移和旋轉係在該新穎變換423和424中被應用。該DirAC解碼器425合成用於8+4個虛擬揚聲器的信號,其另外被雙耳化427以用於耳機回放。須注意的是,由於在該平移之後該聲音場景的該旋轉是一獨立操作,所以它可以另外地應用在該雙耳渲染器中。為6DoF所轉換的該唯一參數是該方向向量。經由模型定義,該擴散部分係被假設為等向性和同質性的,因此保持不變。
該DirAC編碼器的輸入是B格式表示的一FOA聲音信號。其由四個通道組成,即該全向聲壓和三個一階空間梯度,它們在某個的假設下與粒子速度成比例。參見文獻[18],該信號以參數方式被編碼。該參數從該複數聲壓P(k,n)所導出,它是該已被變換的全向信號、以及對應於該已被變換的梯度信號的該複數粒子速度向量 U (k,n)=[U X (k,n),U Y (k,n),U Z (k,n)] T
該DirAC表示係由在每個時間頻率區間處的該聲波的該信號P(k,n)、該擴散ψ(k,n)和方向 r (k,n)所組成。為了得到後者,如文獻[18]所示,首先,該有效聲音強度向量 l a (k,n)被計算,其係為壓力向量與該速度向量的共軛複數(由()*表示)的乘積的實部(由Re(.)表示):
Figure 107124519-A0305-02-0040-1
如文獻[18]所示,從該向量的該變異係數,該擴散性被估計為:
Figure 107124519-A0305-02-0041-2
其中E表示沿時間幀的期望運算子,實現為移動平均。
由於打算使用一方向基礎距離圖來操縱該聲音,該距離圖具有一層的每個來源到該參考位置的一距離,因此該方向估計的該變異數應該較低。由於幀通常很短,但情況並非總是如此。因此,一移動平均被應用以獲得一平滑的方向估計
Figure 107124519-A0305-02-0041-12
(k,n)。該信號的該直接部分的該DoA接著被計算,以作為相反方向的單位長度向量:
Figure 107124519-A0305-02-0041-3
由於該方向被編碼為針對每個時間頻率區間的單位長度的一個三維向量,因此可以直接對該距離資訊進行積分。該方向向量與其對應的地圖項目相乘,使得該向量長度表示該相應聲源dr(k,n)的該距離: d r (k,n)= r r (k,n)d r (k,n)= r r (k,n)m(l,r r (k,n)), (公式4)其中d r(k,n)是從該麥克風的該記錄位置指向在時間n和頻率區間k活躍的該聲源的一向量。
該聆聽者位置由當前處理幀的該追蹤系統給出為 l (n)。參考圖7,利用來源位置的該向量表示,可以減去該追蹤位置向量 l (n)以生成具有長度d 1(k,n)=∥ d 1(k,n)∥的該新的平移方向向量 d 1(k,n)。從該聆聽者的PoV到該聲源的該距離係被導出,並且該DoA在一單一步驟中被調整: d 1(k,n)= d r (k,n)-l(n)。 (公式5)
真實再現的一個重要觀點是該距離衰減。於文獻[19]中, 該衰減假設是聲源和聆聽者之間該距離的一函數。該方向向量的該長度用於編碼該衰減或放大,以用於再現。到該記錄位置的該距離係根據該距離圖以 d r (k,n)編碼,並且要再現的該距離以d 1 (k,n)編碼。如果將該向量正規化為單位長度,接著乘以舊的及新的距離的該比率,則可以看出該所需長度可經由將d 1 (k,n)除以該原始向量的該長度而被給出:
Figure 107124519-A0305-02-0042-4
該聆聽者的方向的該更改將被應用於以下步驟。該追蹤所給出的該方向可以被寫為由該俯仰、偏轉和滾動組成的向量 o (n)=[o X (n),o Z (n),o Y (n)] T ,其係相對於作為該原點的該記錄位置。該來源方向根據該聆聽者方向而被旋轉,這是使用2D旋轉矩陣實現的: d p (k,n)= R Y (o Y (n)) R Z (o Z (n)) R X (o X (n)) d v (k,n)。 (公式7)
為該聆聽者的該結果DoA,接著由被正規化為單位長度的該向量所給出:
Figure 107124519-A0305-02-0042-5
該經變換的方向向量、該擴散和該複數頻譜係用於合成一均勻分佈的8+4虛擬揚聲器設置的信號。八個虛擬揚聲器位於該聆聽者平面(高度0°)上的45°方位角步階,並且四個位於以上45°仰角的90°交叉陣列中。於文獻[16]中,對於每個揚聲器通道i,該合成被分成一直接和擴散部分,其中1
Figure 107124519-A0305-02-0042-10
i
Figure 107124519-A0305-02-0042-11
I、I=12是揚聲器的該數量:Y i (k,n)=Y i,S (k,n)+Y i,D (k,n)。 (公式9)
於文獻[20]中,對於該直接部分,邊緣衰落幅度平移(EFAP,Edge Fading Amplitude Panning)係在給定該虛擬揚聲器幾何結構的情況下被應用於從該正確方向再現該聲音。給定DoA向量r p(k, n),這為每個虛擬揚聲器通道i提供一平移增益Gi(r)。每個DoA的該距離相關增益是從該方向向量d p(k,n)的該結果長度所導出的。通道i的該直接合成變為:
Figure 107124519-A0305-02-0043-6
其中指數γ是一個調整因子,於文獻[19]中其通常設置為約1。注意,當γ=0時,該距離相關增益被關閉。
該壓力P(k,n)用於生成I去相關信號
Figure 107124519-A0305-02-0043-9
(k,n)。這些去相關的信號作為擴散分量被添加到該個別揚聲器通道。這遵循文獻[16]中的標準方法:
Figure 107124519-A0305-02-0043-7
每個通道的該擴散和直接部分被加在一起,並且經由一逆STFT將該信號轉換回時域。取決於該揚聲器位置,這些通道時域信號針對左耳和右耳而與的HRTF進行卷積運算,以產生雙耳信號。
圖8係顯示一轉碼器實現的一較佳實現,該轉碼器實現例如在沒有代表性距離的情況下操作,但是具有不是從該層的該距離導出的縮放因子的一般決定,而是僅從一來源從一層移動到另一層的縮放因子的一般決定,該另一層係與該較早的層相鄰或不相鄰。因此,區塊800被配置為決定一來源是否保留在該同一層中。如果決定該相同的層是該結果,例如對於來源4和來源5,則該區塊802將決定不需要針對該新的到達方向的該對象信號的特定縮放,並且一「縮放因子」指示沒有縮放會被設置為1,或者,可以簡單地以任何方式標記或通知對於這樣的來源,不執行任何縮放。
然而,當其決定該來源移動到一較低層時,區塊804將決定大於1的一比例因子。可以經由使用兩個層(亦即,該來源層和該目標層)的該代表性距離來完成該決定。然而,一某個比例因子也可以被使用,例如,當發生從一層移到該相鄰層的該移動時,該比例因子在1和2之間,並且當該來源移動兩層時,該比例因子例如等於4等等。
圖8另外顯示了在區塊806處的一情況,其中該來源移動到一更高層,例如,來源1、2、3。接著,該來源的一比例因子會被決定小於1。再次,該縮放因子可以如前所述從該代表距離而被決定,但也可以另外經由使用固定縮放因子而被獲得,該縮放因子取決於由於從該原始參考位置到該新的參考位置或聆聽者位置的平移,其間移動了多少層。例如,當發生僅經由一個層的一移動時,則一中等縮放因子可以被使用,例如介於0.5和1之間,並且當發生經由兩個或更多個層的移動時,則介於0.1和0.5之間的一更高縮放因子可以被使用。
接著,在高保真度環繞聲生成之前,該對象信號處理器/縮放808將對該對象信號應用一縮放,或者該對象信號處理器/縮放808將對該高保真度環繞聲表示的所有分量應用該縮放,以最終用每個來源的一個單表示或在一個高保真度環繞聲表示中獲得該處理的對象信號。
圖9係顯示一另一實施例,其類似於圖6,但是其中例如圖4d的各個區塊422、422a、422b被實現為DirAC編碼器/解碼器實現。接著,該結果可以是單獨的揚聲器聲道信號或高保真度環繞聲信號或任何其他信號表示,例如,用於一轉碼器。然而,當該輸出是通道信號或甚至是雙耳信號時,那些相應的信號可以在該組合器600中被加在一起,以表示一單個聲場描述,接著可以經由任何進一步的程序在區塊427中被渲染。
圖10係顯示該聲場計算器420的一另一較佳實施方式。圖10中所顯示的程序分別對每一層執行。唯一的區別在於,對於每個層,一個不同的層資訊350被使用,並且該層資訊對於該層中的每個來源是相同的。該距離決定器1120從該後設資料讀取該層資訊,該距離決定器1120生成一距離值。如果該後設資料已經包括以米為單位的該距離,則該區塊1120簡單地從一資料流中擷取該資料或者將該資訊轉發到該區塊1140。因此,該相同層中的每個來源的每個DoA的該相同距離資訊被區塊1140生成並使用。
基於該聲場描述,一全波段到達方向或一每波段到達方向在1100中被決定。這些到達方向資訊表示該聲場的該到達方向資料。基於該到達方向資料,一平移變換在區塊1110中被執行。至此,區塊1120針對一層檢索該聲場描述的後設資料。基於該資料,區塊1110生成該聲場的該新的到達方向資料,在這個實現中,其僅取決於從該參考位置到該不同參考位置的該平移。至此,區塊1110接收例如經由在一虛擬實境實現的上下文中的一追蹤而生成的該平移資訊。
較佳地或替代地,也使用一旋轉資料。至此,區塊1130使用該旋轉資訊執行一旋轉變換。當平移和旋轉兩者被執行時,則在計算已經包括來自該平移的該資訊以及來自區塊1120的該層距離的該聲場的該新DoA之後,其較佳地執行該旋轉變換。
接著,在區塊1140中,該新的聲場描述被生成。至此,該原始聲場描述可以被使用,或者,經由一來源分離算法從該聲場描述分離的來源信號可以被使用,或者任何其他應用可以被使用。基本上,該新的聲場描述可以是,例如,由該高保真度環繞聲生成器430獲得的或由一DirAC合成器425生成的一方向聲場描述,或者可以是在該隨 後的雙耳渲染中從一虛擬揚聲器表示所生成的一雙耳表示。
較佳地,如圖10所示,每個到達方向的該距離也被用於生成該新的聲場描述,以使一某個的聲源的該音量或響度適應該新的位置,即該新的或不同的參考位置。
儘管圖10係顯示一情況,其係在該平移變換之後執行該旋轉變換的,但是應注意,該順序可以是不同的。特別地,該旋轉變換可以被應用於由區塊1100所生成的該聲場的該DoA,並且接著,由於一對象從該參考位置到該不同參考位置的該平移引起的,該附加平移變換係被應用。
一旦該聲場的該DoA被區塊1100決定了,該距離資訊就使用區塊1120而從該後設資料中被擷取,該距離資訊接著在區塊1140中被使用,以生成該新的聲場描述,用來計算一改變的距離,並且因此改變了該某個的來源相對於一某個的參考位置的響度。基本上,其可以說在該距離變大的情況下,該特定聲源信號被衰減,而當該距離變短時,則該聲源信號被放大。自然地,取決於該距離的該某個的聲源的該衰減或放大與該距離變化成比例地進行,但是,在其他實施例中,可以以非常粗略的增量將較不復雜的操作應用於該聲源信號的這種放大或衰減。與任何距離變化完全被忽略的一情況相比,即使是這一種不太複雜的實現也能提供更好的結果。
圖7係顯示該聲場計算器420的一較佳實施方式。在區塊1102中,對於每個源的一來源分離和一到達方向或一般方向資訊計算係被執行。接著,在區塊1104中,該到達方向向量被乘以該距離資訊向量,即,從該原始參考位置到該聲源的該向量,亦即例如,從圖5的項目520到項目510的該向量。接著,在區塊1106中,該平移資訊, 亦即,從圖5的項目520到項目500的該向量被考量,以便計算該新的平移方向向量,該新的平移方向向量是從該聆聽者位置500到該聲源的位置510。接著,由d v所指示的具有該正確長度的該新到達方向向量的在區塊1108中被計算。該向量係指向與d r該相同的方向,但具有一不同的長度,因為該向量的該長度反映了該聲源510被記錄在具有一某個的聲量的該原始聲場中的該事實,因此,d v的該長度或多或少表示該響度變化。這是藉由將向量d l除以該記錄距離d r來獲得的,亦即從該麥克風520到該聲源510的向量d r的該長度來獲得的。
當如圖5所示,該再現距離大於該記錄距離時,則d v的該長度將低於1。這將導致該聲源510的一衰減,其針對在該新的聆聽者位置處的該再現。然而,當該再現距離d l小於該記錄距離時,由區塊1108計算的d v的該長度將大於1,並且一相應的縮放因子將導致該聲源的一放大。
圖11係顯示該聲場計算器的一另一較佳實施方式。
在區塊1200中,來自該聲場的該各別來源係被決定,例如,每個頻帶或全頻帶。當每幀和頻帶的一決定被執行時,則這可以經由一DirAC分析來完成。如果一全頻帶或子頻帶的一決定被執行時,則可以經由任何類型的一全頻帶或子頻帶來源分離算法來完成。
在區塊1210中,例如藉由頭部追蹤來決定一聆聽者的一平移和/或一旋轉。
在區塊1220中,藉由使用該後設資料並且例如藉由使用該層的該後設資料例如該代表距離,每個來源的一舊距離係被決定。因此,每個頻帶被認為是一某個的來源(假設該擴散係低於一某個的閾值),並且接著,針對每一個時間/頻率區間的具有一低擴散的一某個的距離 係被決定。
接著,在區塊1230中,例如經由每個頻帶的一向量計算,例如在圖7的上下文中討論,或是,使用圖8中依賴於一層變化的該檢測的該程序,每個來源的一新距離被獲得。
接著,如區塊1240所示,例如,經由在一DirAC分析中被獲得的一DoA計算或例如經由一來源分離算法中的一到達方向或方向資訊分析,每個來源的一舊方向被決定。
接著,在區塊1250中,例如經由執行每個頻帶或全頻帶的一向量計算,每個來源的一新方向被決定。
接著,在區塊1260,一新的聲場為該平移和旋轉的聆聽者而被生成。例如,這可以經由在該DirAC合成中縮放每個通道的該直接部分來完成。取決於該具體實施方式,除了在區塊1260中執行該距離修改,新增地或替代地,在區塊1270a、1270b或1270c中該距離修改可被完成。
例如,當決定該聲場僅具有一單個源時,則該距離修改可以在區塊1270a中已經被執行。
或者,當各別來源信號被區塊1200計算時,該實際新聲場在區塊1260中被生成之前,針對各個來源,該距離修改可以在區塊1270b中被執行。
另外,例如,當在區塊1260中的該聲場生成不渲染為一揚聲器設置信號或一雙耳信號,而是另一聲場描述時,例如,使用一高保真度環繞聲編碼器或計算器430,則該距離修改也可以是在區塊1260中該生成之後被執行,這意指在區塊1270c中。根據該實施方式,一距離修改也可以被分配給多個修改器,以便最終一某個的聲源處於一某個 的響度,該某個的響度由該原始距離與該新距離之間的該差異所引導,該原始距離係該聲源和該參考位置之間的距離、該新距離係該聲源和該不同參考位置之間的距離。
圖12a係顯示最初公開的一DirAC分析器,例如,在2009年IWPASH的早先引用的參考文獻“Directional Audio Coding”中。
該DirAC分析器包括一組帶通濾波器1310、一能量分析器1320、一強度分析器1330、一時間平均區塊1340和一擴散度計算器1350以及該方向計算器1360。
在DirAC中,分析和合成兩者都在頻域中進行。有幾種方法可以將該聲音分成頻帶,每種方法都在不同的屬性中。該最常用的頻率變換包括短時傅立葉變換(STFT、Short Time Fourier Transform)和正交鏡像濾波器組(QMF、Quadrature Mirror Filter)。除了這些之外,還可以完全自由地設計具有任意濾波器的一濾波器組,該濾波器組可針對任何特定目的進行優化。無論該選擇的時頻變換如何,該設計目標都是模仿該人類空間聽覺的該分辨率。方向分析的該目標是在每個頻帶中估計聲音的該到達方向,以及聲音是否同時從一個或多個方向到達的一估計。原則上,這可以用許多技術來執行,然而,聲場的該能量分析已經被發現是合適的,這在圖12a圖式說明。當從一單個位置捕獲一維、二維或三維中的該壓力信號和速度信號時,該能量分析可以被執行。在第一階B格式信號中,該全向信號被稱為W信號,其已經被該2的 平方根縮小。該聲壓可以被估計為
Figure 107124519-A0305-02-0049-8
,在該STFT域中被表示。
該X、Y和Z通道具有沿該笛卡爾軸定向的一偶極子的該方向樣型,其一起形成一向量U=[X,Y,Z]。該向量估計該聲場速度向量,並且也在STFT域中被表示。該聲場的該能量E被計算。可以經 由定向麥克風的重合定位或者一使用緊密間隔的全向麥克風組,B格式信號的該捕獲可被獲得。在一些應用中,該麥克風信號可以在一計算域中被形成,亦即模擬。
該聲音方向被定義為該強度向量I的該相反方向。在該發送的後設資料中,該方向被表示為對應的角度方位角和仰角值。還使用該強度向量和該能量的一期望運算子來計算聲場的該擴散。該公式的該結果是在0和1之間的一實數值,其特徵在於該聲音能量是從一單個方向到達(擴散是零)還是從所有方向(擴散是1)。在該完整的3D或更小尺寸的速度資訊可用的情況下,該程序是適當的。
圖12b係顯示一DirAC合成,再一次,其具有一組帶通濾波器1370、一虛擬麥克風區塊1400、一直接/擴散合成器塊1450、以及一某個的揚聲器設置或一虛擬預期揚聲器設置1460。另外,一擴散-增益變換器1380、一基於向量的振幅平移(VBAP、Vector Based Amplitude Panning)增益表區塊1390、一麥克風補償區塊1420、一揚聲器增益平均區塊1430和用於其他通道的一分配器1440係被使用。
在利用揚聲器的這種DirAC合成中,圖12b中所示高的高品質版本的DirAC合成接收所有B格式信號,為此針對該揚聲器設置1460的每個揚聲器方向,一虛擬麥克風信號被計算。該所使用的定向樣型通常是一偶極子。接著,取決於該後設資料,該虛擬麥克風信號以非線性方式被修改。DirAC的該低位元率版本未在圖12b中顯示,然而,在這種情況下,如圖6所示,僅一個音頻聲道被發送。處理的該不同之處在於所有虛擬麥克風信號都將被所接收的該單個音頻通道所取代。該虛擬麥克風信號被分成兩個串流:該擴散串流和該非擴散串流,它們被分開處理。
藉由使用向量基礎幅度平移(VBAP,Vector Base Amplitude Panning),該非擴散聲音將被再現為點來源。在平移中,在與揚聲器特定的增益因子相乘之後,一單聲道聲音信號將被應用於揚聲器的一子集。使用一揚聲器設置的該資訊和特定的平移方向,該增益因子被計算。在低位元率版本中,該輸入信號簡單地平移到該後設資料所隱含的該方向。在該高品質版本中,每個虛擬麥克風信號與該相應的增益因子相乘,這會產生與平移相同的該效果,然而它不太容易出現任何非線性人工瑕疵。
在許多情況下,該方向後設資料受到突然的時間變化的影響。為了避免人工瑕疵,VBAP計算的揚聲器的該增益因子經由與頻率相關的時間常數的時間積分而被平滑,該時間常數等於每個頻帶處的約50個循環週期。這有效地消除了人工瑕疵,然而,在大多數情況下,方向的該變化不會被認為比沒有平均的更慢。
該擴散聲音的該合成的該目的是創造圍繞該聆聽者的聲音感知。在該低位元率版本中,經由去相關該輸入信號並將其從每個揚聲器再現,該擴散串流被再現。在該高品質版本中,擴散串流的該虛擬麥克風信號在某種程度上已經不連貫,並且它們需要僅稍微去相關。與該低位元率版本相比,這種方法為環繞聲混響和環境聲音提供了更好的空間品質。
對於使用耳機進行該DirAC合成,DirAC針對該非擴散串流採用圍繞該聆聽者的一某個數量的虛擬揚聲器規劃、以及針對該擴散串流採用一某個數量的揚聲器規劃。該虛擬揚聲器被實現為輸入信號與具有一測量的頭部相關轉移函數(HRTF,Head-Related Transfer Functions)的捲積運算。
儘管已經在一裝置的上下文中描述了一些觀點,但是顯然這些觀點也表示該對應方法的一描述,其中一區塊或設備對應於一方法步驟或一方法步驟的一特徵。類似地,在一方法步驟的上下文中描述的觀點還表示一對應裝置的一對應區塊或項目或特徵的一描述。
本揭露的增強聲場描述可以存儲在一數位存儲媒體或非暫時性存儲媒體上,或者可以在一傳輸媒體上被傳輸,諸如一無線傳輸媒體、或諸如網際網路的一有線傳輸媒體。
根據某些實現要求,本揭露的實施例可以用硬體或軟體實現。該實現可以使用一數位存儲媒體來執行,例如一軟性磁碟、一DVD、一CD、一ROM、一PROM、一EPROM、一EEPROM或一LASH記憶體,其上存儲有電子可讀取控制信號,它們配合(或者能夠與)一可編程計算機系統協作,以便執行該相應的方法。
根據本揭露的一些實施例,其包括具有一電子可讀取控制信號的非暫時性資料載體,其能夠與一可編程計算機系統協作,從而執行本文所述的該方法之一。
通常,本揭露的實施例可以實現為具有一程式編碼的計算機程式產品,該程式編碼可操作用於在該計算機程式產品在一計算機上運行時執行這些方法之一。該程式編碼可以例如存儲在一機器可讀載體上。
其他實施例包括用於執行存儲在一機器可讀載體上的本文所述方法之一的該計算機程式。
換句話說,本揭露方法的一實施例因此是具有一程式編碼的一計算機程式,當該計算機程式在一計算機上運行時,該程式編碼用於執行本文所述的該方法之一。
因此,本揭露方法的一另一實施例是一資料載體(或一數位存儲媒體、或一計算機可讀媒體),其包括記錄在其上的用於執行本文所述方法之一的該計算機程式。
因此,本揭露方法的一另一實施例是表示用於執行本文所述方法之一的計算機程式的一資料串流或一信號序列。該資料串流或該信號序列可以例如被配置為經由一資料通信連接傳輸,例如經由該網際網路。
一另一實施例包括一處理裝置,例如一計算機或一可編程邏輯設備,其被配置為或適於執行本文所述的該方法之一。
另一實施例包括一計算機,其上安裝有用於執行本文所述方法之一的該計算機程式。
在一些實施例中,一可編輯邏輯器件(例如現場可編輯閘陣列)可用於執行本文所述方法的一些或全部該功能。在一些實施例中,該現場可編輯閘陣列可以與一微處理器協作,以便執行本文描述的方法之一。通常,該方法較佳地由任何硬體設備執行。
在借助附圖對本揭露的實施例進行詳細說明之前,應當注意的是,在不同的附圖中,相同的、功能上相同的和相等的元件、物件和/或結構被提供有相同的附圖標記,使得不同實施例中的這些元件的描述是可互換和/或相互適用的。
儘管已經在一設備的上下文中描述了一些觀點,但是應當理解,所述觀點還表示對應方法的一描述,使得一設備的一區塊或一結構組件也應被理解為一對應的方法步驟、或作為一方法步驟的一個特徵。經由類推,已經結合一方法步驟或作為一方法步驟描述的觀點也表示一對應設備的一對應區塊或細節或特徵的一描述。
上述實施例僅代表了本揭露該原理的一說明。應理解,本領域其他技術人員將理解本文所述的佈置和細節的任何修改和變化。上述實施例僅係為了方便說明而舉例而已,本揭露所主張之權利範圍自應以申請專利範圍該為準,而非僅限於上述實施例。
參考文獻
[1] Liitola, T., Headphone sound externalization, Ph.D. thesis, Helsinki University of Technology. Department of Electrical and Communications Engineering Laboratory of Acoustics and Audio Signal Processing., 2006.
[2] Blauert, J., Spatial Hearing - Revised Edition: The Psychophysics of Human Sound Localization, The MIT Press, 1996, ISBN 0262024136.
[3] Zhang, W., Samarasinghe, P. N., Chen, H., and Abhayapala, T. D., “Surround by Sound: A Re-view of Spatial Audio Recording and Reproduction,” Applied Sciences, 7(5), p. 532, 2017.
[4] Bates, E. and Boland, F., “Spatial Music, Virtual Reality, and 360 Media,” in Audio Eng. Soc. Int. Conf. on Audio for Virtual and Augmented Reality, Los Angeles, CA, U.S.A., 2016.
[5] Anderson, R., Gallup, D., Barron, J. T., Kontkanen, J., Snavely, N., Esteban, C. H., Agarwal, S., and Seitz, S. M., “Jump: Virtual Reality Video,” ACM Transactions on Graphics, 35(6), p. 198, 2016.
[6] Merimaa, J., Analysis, Synthesis, and Perception of Spatial Sound: Binaural Localization Modeling and Multichannel Loudspeaker Reproduction, Ph.D. thesis, Helsinki University of Technology, 2006.
[7] Kronlachner, M. and Zotter, F., “Spatial Trans-formations for the Enhancement of Ambisonics Recordings,” in 2nd International Conference on Spatial Audio, Erlangen, Germany, 2014.
[8] Tsingos, N., Gallo, E., and Drettakis, G., “Perceptual Audio Rendering of Complex Virtual Environments,” ACM Transactions on Graphics, 23(3), pp. 249- 258, 2004.
[9] Taylor, M., Chandak, A., Mo, Q., Lauterbach, C., Schissler, C., and Manocha, D., “Guided multi-view ray tracing for fast auralization,” IEEE Trans. Visualization & Comp. Graphics, 18, pp. 1797- 1810, 2012.
[10] Rungta, A., Schissler, C., Rewkowski, N., Mehra, R., and Manocha, D., “Diffraction Kernels for Interactive Sound Propagation in Dynamic Environments,” IEEE Trans. Visualization & Comp. Graphics, 24(4), pp. 1613- 1622, 2018.
[11] Thiergart, O., Kowalczyk, K., and Habets, E. A. P., “An Acoustical Zoom based on Informed Spatial Filtering,” in Int. Workshop on Acoustic Signal Enhancement, pp. 109-113, 2014.
[12] Khaddour, H., Schimmel, J., and Rund, F., “A Novel Combined System of Direction Estimation and Sound Zooming of Multiple Speakers,” Radioengineering, 24(2), 2015.
[13] Ziegler, M., Keinert, J., Holzer, N., Wolf, T., Jaschke, T., op het Veld, R., Zakeri, F. S., and Foessel, S., “Immersive Virtual Reality for Live-Action Video using Camera Arrays,” in IBC, Amsterdam, Netherlands, 2017.
[14] Thiergart, O., Galdo, G. D., Taseska, M., and Habets, E. A. P., “Geometry-Based Spatial Sound Acquisition using Distributed Microphone Arrays,” IEEE Trans. Audio, Speech, Language Process., 21 (12), pp. 2583-2594, 2013.
[15] Kowalczyk, K., Thiergart, O., Taseska, M., Del Galdo, G., Pulkki, V., and Habets, E. A. P., “Parametric Spatial Sound Processing: A Flexible and Efficient Solution to Sound Scene Acquisition, Modification, and Reproduction,” IEEE Signal Process. Mag., 32(2), pp. 31-42, 2015.
[16] Pulkki, V., “Spatial Sound Reproduction with Directional Audio Coding,” J. Audio Eng. Soc., 55(6), pp. 503-516, 2007.
[17] International Telecommunication Union, “ITU-R BS.1534-3, Method for the subjective assessment of intermediate quality level of audio systems,” 2015.
[18] Thiergart, O., Del Galdo, G., Kuech, F., and Prus, M., “Three-Dimensional Sound Field Analysis with Directional Audio Coding Based on Signal Adaptive Parameter Estimators,” in Audio Eng. Soc. Conv. Spatial Audio: Sense the Sound of Space, 2010.
[19] Kuttruff, H., Room Acoustics, Taylor & Francis, 4 edition, 2000.
[20] Borß, C., “A polygon-based panning method for 3D loudspeaker setups,” in Audio Eng. Soc. Conv., pp. 343-352, Los Angeles, CA, USA, 2014.
[21] Rummukainen, O., Schlecht, S., Plinge, A., and Habets, E. A. P., “Evaluating Binaural Reproduction Systems from Behavioral Patterns in a Virtual Reality - A Case Study with Impaired Binaural Cues and Tracking Latency,” in Audio Eng. Soc. Conv. 143, New York, NY, USA, 2017.
[22] Engelke, U., Darcy, D. P., Mulliken, G. H., Bosse, S., Martini, M. G., Arndt, S., Antons, J.-N., Chan, K. Y., Ramzan, N., and Brunnström, K., “Psychophysiology-Based QoE Assessment: A Survey,” IEEE Selected Topics in Signal Processing, 11(1), pp. 6-21, 2017.
[23] Schlecht, S. J. and Habets, E. A. P., “Sign-Agnostic Matrix Design for Spatial Artificial Reverberation with Feedback Delay Networks,” in Proc. Audio Eng. Soc. Conf., pp. 1-10- accepted, Tokyo, Japan, 2018
[31] M. A. Gerzon, "Periphony: With-height sound reproduction," J. Acoust. Soc. Am., vol. 21,110. 1, pp. 2-10, 1973.
[32] V. Pulkki, "Directional audio coding in spatial sound reproduction and stereo upmixing," in Proc. of the 28th AES International Conference, 2006.
[33] --, "Spatial sound reproduction with directional audio coding," Journal Audio Eng. Soc,, vol. 55, no. 6, pp. 503-516, Jun. 2007.
[34] C. G. and G. M., "Coincident microphone simulation covering three dimensional space and yielding various directional outputs," U.S. Patent 4 042 779, 1977.
[35] C. Faller and F. Baumgarte, "Binaural cue coding - part ii: Schemes and applications, "IEEE Trans. Speech Audio Process,, vol. 11, no. 6, Nov. 2003.
[36] C. Faller, "Parametric multichannel audio coding: Synthesis of coherence cues," IEEE Trans. Speech Audio Process., vol. 14, no. 1, Jan. 2006.
[37] H. P. J. E. E. Schuijers, J. Breebaart, "Low complexity parametric stereo coding," in Proc. of the 116th A ES Convention, Berlin, Germany, 2004.
[38] V. Pulkki, "Virtual sound source positioning using vector base amplitude panning," J. Acoust. Soc. A m,, vol. 45, no. 6, pp. 456-466, Jun. 1997.
[39] J. G. Tylka and E. Y. Choueiri, "Comparison of techniques for binaural navigation of higher- order ambisonics sound fields," in Proc. of the AES International Conference on Audio for Virtual and Augmented Reality, New York, Sep. 2016.
110:後設資料生成器
120:組合器
250、260:聲場生成器

Claims (30)

  1. 一種用於生成一增強聲場描述的裝置,包括:一聲場生成器,用於生成至少一個聲場描述,該聲場描述指示相對於至少一個參考位置的一聲場;以及一後設資料生成器,用於生成與該聲場的空間資訊有關的後設資料,其中,該至少一個聲場描述和該後設資料構成該增強聲場描述,其中,該聲場生成器被配置為生成關於該參考位置的一第一聲場描述,其中該第一聲場描述僅包括來自位於該參考位置周圍的一第一體積中的聲源的聲音資料,及生成關於該參考位置的一第二聲場描述,其中該第二聲場描述僅包括來自位於該參考位置周圍的一第二體積中的第二來源的聲音資料,該第二體積與該第一體積不同,以及其中,該後設資料生成器被配置為提供該第一體積和/或該第二體積的一空間描述;或其中,該裝置被配置為生成該增強的聲場描述,使得該增強的聲場描述包括一第一聲場描述、一第二聲場描述和該第一個聲場描述和該第二個聲場描述的一空間資訊以作為該後設資料;或其中,該後設資料生成器被配置為生成用於該第一聲場描述的一第一幾何資訊、用於該第二聲場描述的一第二幾何資訊,以作為該後設資料。
  2. 如申請專利範圍第1項之該裝置,其中,該第一體積是圍繞該參考位置的一球體,並且其中該第二體積是圍繞該參考位置的一球形殼體,該球形殼體的一直徑大於該球體的該直徑,或者其中該第一體積是一第一球形殼體,該第二體積是一第二球形殼體,其中該第一球形殼體的一直徑小於該第二球形殼體的一直徑,其中,該後設資料生成器被配置為提供該球體以及該球形殼體或該第一球形殼體以及該第二球形殼體的一空間描述。
  3. 如申請專利範圍第1項之該裝置,其中,該第一聲場描述和該第二聲場描述是高保真度環繞聲(Ambisonics)描述或定向音頻編碼(DirAC、Directional Audio Coding)描述。
  4. 如申請專利範圍第1項之該裝置,其中,該聲場生成器被配置為靜態地或取決於該聲場以決定該第一和該第二不同的體積。
  5. 如申請專利範圍第1項之該裝置,其中,該後設資料生成器被配置為決定每個聲場描述的一距離範圍,該距離範圍對於每個體積是均勻的或者是非均勻的,其中,當每個體積的該距離範圍不均勻時,遠離該參考位置延伸的一體積的一距離範圍大於更接近該參考位置的一距離範圍。
  6. 如申請專利範圍第1項之該裝置,其中,該聲場生成器被配置為針對多個層中的每個層生成一聲場的一定向音頻編碼描述,其具有一個或多個降混信號和個別的方向資料以及對不同時間頻率區間的可選擴散資料,以及其中,該後設資料生成器被配置為為每一個層生成一單個距離資訊項目。
  7. 如申請專利範圍第1項之該裝置,其更包括一輸出界面,用於生成針對傳輸或存儲一的輸出信號,針對一時間幀,該輸出信號包括從該聲場和該空間資訊所導出的一個或多個音頻信號用於該時間幀。
  8. 如申請專利範圍第1項之該裝置,其中,該第一幾何描述是一第一代表距離,形成一第一體積到該參考位置;其中該第二幾何資訊是一第二體積到該參考點的一第二代表距離,其中該參考點是該參考位置或從該參考位置指向該參考點的一向量。
  9. 一種根據一聲場描述以及與該聲場描述的空間資訊有關的後設資料生成一修改聲場描述的一裝置,包括:一聲場計算器,用於使用該空間資訊、該聲場描述和指示從一參考位置到一不同參考位置的一平移的一平移資訊來計算該修改的聲場;其中該聲場計算器被配置為接收作為該聲場描述的一第一層聲場描述和一第二層聲場描述,在該第一和第二層聲場描述上執行一來源分離,以擷取該第一和該第二層聲場描述的來源、以及被擷取的來源的到達方向(DoA)資料,使用該DoA資料和該平移資訊,針對每個被擷取的來源計算關於該不同位置的修改的DoA資料,以及處理該被擷取的來源和該修改的DoA資料,以獲得該修改的聲場描述;或其中,該聲場計算器被配置為 單獨執行每一層聲場描述的該來源分離,並為每一層擷取一環境/擴散/殘留信號,或為所有層一起執行該來源分離,並為至少兩層擷取一單個環境/擴散/殘留信號;或其中,該聲場計算器被配置為針對每個來源計算一修改的距離、並使用該被擷取的來源的該修改的距離來計算一修改的層聲場描述;或其中,該聲場計算器被配置為針對每一個層聲場描述的每一個對應分量添加該層聲場描述以獲得一整體聲場描述;或其中,該聲場計算器被配置為針對一定向音頻編碼(DirAC)描述作為該聲場描述,為不同時間頻率區間,使用該方向資料、該深度資訊和該平移資訊以計算修改的方向資料,以及使用該修改的方向資料將該定向音頻編碼描述呈現為包括多個音頻通道的一聲音描述,或者使用該修改的方向資料而不是該時間頻率區間的該方向資料,並且可選地使用包含在該定向音頻編碼描述中的該相同的擴散資料,來發送或存儲該定向音頻編碼描述;或其中,該聲場計算器被配置為針對每一層的一時間頻率區間決定維持該方向資料、或者基於該時間頻率區間的擴散資料計算一修改的方向資料,其中一修改的方向資料僅針對一擴散資料而被計算,其表示一擴散低於一預定義或自適應擴散水平;或其中,該聲場計算器被配置為針對每個層聲場描述從該後設資料接收該層聲場描述的一代表性距離,及 使用一決定來決定從一層聲場描述所決定的一來源的一縮放值,該來源相對於由該平移資訊所決定的一新參考位置是否保持在同一層中,其中,如果該來源相對於該不同的參考位置處於一較低層,則決定該縮放值大於1,或者,其中,如果該來源相對於該不同的參考位置處於一更高層,則決定該縮放值小於1;或其中聲場計算器針對每一層包括:一聲場分析器,用於分析該聲場分量,以針對不同的頻率區間導出到達方向資訊;一平移變換器,用於使用該方向資訊和後設資料,以計算每個頻率區間的修改的到達方向資訊,該後設資料包括將一距離資訊與一層相關聯的一深度圖;以及一距離補償器,用於使用一距離補償資訊計算該修改聲場,該距離補償資訊取決於該深度圖為該層提供的該距離、以及與該頻率區間內相關聯的一新距離,該新距離與該修改到達方向資訊相關;或其中,該聲場計算器被配置為分析每一個層聲場描述,以獲得包含在該層聲場描述中的每個來源的一到達方向資訊,使用該到達方向資訊和該層聲場描述的該後設資料來決定該層聲場描述的一來源到該新參考位置的一距離,以及使用該層聲場描述的該來源到該新參考位置的該距離以及從中擷取來源的該聲場描述的該後設資料來決定一縮放因子;或其中,該聲場計算器被配置為 針對一來源使用該到達方向資訊和幾何資訊以形成從該參考位置到該來源的一第一向量,其中該相同的幾何資訊係被用於在一層聲場描述中的每一個來源,從該第一向量和在該層聲場描述中的每一個來源的該平移資訊,以形成一第二向量,以及藉由將該第二向量的一長度除以該第一向量的一長度來計算每一個來源的該縮放值。
  10. 如申請專利範圍第9項之該裝置,其中,該聲場計算器被配置為使用該修改的DoA資料為每個被擷取的來源生成一聲場描述,基於對應的被擷取的來源與一特定層的該不同參考位置之間的一距離,以選擇聲源的聲場描述,並在該層中添加每個所選來源的該聲場描述,以獲得一修改的層聲場描述,或者添加該聲音場景中每個來源的該聲場描述,以獲得一修改的整體聲場描述。
  11. 如申請專利範圍第10項之該裝置,其中,該聲場計算器被配置用於在計算一修改層聲場描述時為每一個層添加一環境/擴散/殘留信號、或者計算要添加到該整個聲場描述的一單個環境/擴散/殘留信號。
  12. 如申請專利範圍第9項之該裝置,其中,該聲場計算器被配置為將一旋轉應用於該修改的聲場描述,該修改的聲場描述是一個層聲場描述或與該不同參考位置有關的一整體聲場描述。
  13. 如申請專利範圍第9項之該裝置,其更包含: 一平移界面,用於提供該平移資訊或旋轉資訊,指示一預定聆聽者對該修改聲場的一旋轉;一後設資料提供器,用於將該後設資料提供給該聲場計算器;一聲場提供器,用於將該聲場描述提供給該聲場計算器;以及一輸出界面,用於輸出包括該修改聲場描述和該修改後設資料的該修改聲場,該修改後設資料是使用該平移資訊從該後設資料導出的,或者用於輸出多個揚聲器聲道,每個揚聲器聲道與一預定義的揚聲器位置相關,或者用於輸出該修改聲場的一雙耳表示。
  14. 如申請專利範圍第9項之該裝置,其中,該聲場描述針對每一層包括多個聲場分量,該多個聲場分量包括一全向分量和至少一個方向分量。
  15. 如申請專利範圍第9項之該裝置,其中,聲場計算器針對每一層被配置為:用於計算從該參考位置指向一聲源的第一向量,其由該聲場的該分析而獲得的;用於計算一第二向量,其使用該第一向量和該平移資訊計,該第二向量從該不同參考位置指向該聲源,該平移資訊係定義為從該參考位置到該不同參考地點的一平移向量;以及用於計算一距離修改值,其使用該不同參考位置、該聲源的一位置和該第二向量,或是使用從該不同參考位置到該聲源的該位置的一距離和該第二向量。
  16. 如申請專利範圍第9項之該裝置,其中,經由將一到達方向的單位向量乘以該後設資料中所包括的一距離來計算一第一向量,或 其中,經由從該第一向量中減去該平移向量來計算一第二向量,或者其中,經由將該第二向量除以該第一向量的一範數來計算該距離修改值。
  17. 如申請專利範圍第9項之該裝置,其中,該聲場計算器被配置為除了該平移資訊之外還接收一旋轉資訊,以及其中該聲場計算器被配置為使用該旋轉資訊執行一旋轉變換,以旋轉一聲場的一到達方向資料,其中該到達方向資料係從藉由該聲場描述的一聲音分析所獲得的一到達方向資料以及使用該平移資訊所導出。
  18. 如申請專利範圍第9項之該裝置,其中,該聲場計算器針對每一層被配置為:經由一聲場分析,決定來自該聲場描述的來源和該來源的方向;針對每個來源,使用該後設資料決定該來源與該參考位置的一距離;使用該來源的該方向和該平移資訊決定與該不同參考位置相關的該來源的一新方向;決定與該不同參考位置相關的該來源的一新距離資訊;以及使用該來源的該新方向、該新距離資訊、以及該聲場描述或對應於從該聲場描述導出的該來源的來源信號生成該修改聲場。
  19. 如申請專利範圍第9項之該裝置,其中,該聲場計算器針對每一層被配置為:經由一聲音分析,以決定來自該聲場描述的來源信號和與該參考位置相關的該來源信號的方向; 使用該平移資訊,以計算與該不同參考位置相關的該來源信號的新方向;計算與該不同參考位置相關的該聲源的距離資訊;以及使用該距離資訊、該來源信號和該新方向,以合成該修改聲場。
  20. 如申請專利範圍第19項之該裝置,其中,該聲場計算器配置為:經由將一聲源信號平移到與一重放設置相關的該新方向所給出的一方向,來合成該修改聲場,以及經由在執行該平移之前或者在執行該平移之後,使用該距離資訊,俾縮放該聲源信號。
  21. 如申請專利範圍第19項之該裝置,其中,該聲場計算器被配置為針對每一個層或僅對一單個層將一擴散信號添加到該聲源信號的一直接部分,該直接部分在被添加到該擴散信號之前由被該距離資訊修改。
  22. 如申請專利範圍第19項之該裝置,其中,該聲場計算器針對每一層被配置為:執行該聲場描述的一時頻轉換以及計算一時間幀的多個頻率區間的一到達方向;計算每個頻率區間的該新方向;計算每個頻率區間的該距離資訊;以及使用針對一頻率區間的一音頻信號對每個頻率區間的一直接合成,從該頻率區間的該新方向資訊導出的針對該頻率區間執行一平移增益、和從該相關層的該距離資訊所導出的針對該頻率區間執行一縮放值。
  23. 如申請專利範圍第22項之該裝置,其中,該聲場計算器針對每一層被配置為:使用從針對該頻率區間的該音頻信號導出的一擴散音頻信號、並使用針對該頻率區間的該聲音分析導出的一擴散參數來執行一擴散合成,並且組合該直接部分和該擴散部分以獲得該頻率區間的一合成音頻信號;以及使用針對一時間幀的該頻率區間的音頻信號,執行一頻率-時間轉換,以獲得一時域合成音頻信號,俾作為該修改聲場。
  24. 如申請專利範圍第19項之該裝置,其中,該聲場計算器被配置為針對每個聲源合成與該不同參考位置相關的一聲場,該合成包括:對於每個來源,使用針對該來源信號的該新方向處理一來源信號,以獲得與該不同參考位置相關的該來源信號的的一聲場描述;在處理該來源信號之前修改該來源信號、或使用該方向資訊修改該聲場描述;以及添加該來源的該聲場描述以獲得與該不同參考位置相關的一修改聲場。
  25. 如申請專利範圍第19項之該裝置,其中,該聲音分析被配置為經由一來源分離演算法決定該來源信號,並從該聲場描述中減去至少一些該來源信號,以獲得該擴散信號。
  26. 如申請專利範圍第9項之該裝置,其中,該聲場計算器被配置為使用該來源的該位置和該平移資訊來決定從該新參考位置到該來源的該位置的一距離,以及 將與該新參考位置的該距離與該不同參考位置周圍的一層的一代表性距離進行比較,以便根據該比較將該來源渲染到該不同參考位置周圍的一層。
  27. 一種生成一增強聲場描述的方法,包括:生成至少一個聲場描述,該聲場描述指示關於至少一個參考位置的一聲場;以及生成與該聲場的空間資訊有關的後設資料,其中,該至少一個聲場描述和該後設資料構成該增強聲場描述;其中,生成該至少一個聲場描述之步驟包括生成關於該參考位置的一第一聲場描述,其中該第一聲場描述僅包括來自位於該參考位置周圍的一第一體積中的聲源的聲音資料,及生成關於該參考位置的一第二聲場描述,其中該第二聲場描述僅包括來自位於該參考位置周圍的一第二體積中的第二來源的聲音資料,該第二體積與該第一體積不同,其中,該後設資料生成器被配置為提供該第一體積和/或該第二體積的一空間描述;或其中,該生成該增強聲場描述的方法包括生成該增強的聲場描述,使得該增強的聲場描述包括一第一聲場描述、一第二聲場描述和該第一個聲場描述和該第二個聲場描述的一空間資訊以作為該後設資料;或其中,生成該後設資料之步驟包括生成用於該第一聲場描述的一第一幾何資訊、用於該第二聲場描述的一第二幾何資訊,以作為該後設資料。
  28. 一種從一聲場描述和與該聲場描述的空間資訊有關的後設資料生成一修改聲場描述的方法,該方法包括:使用該空間資訊、該聲場描述和指示從一參考位置到一不同參考位置的一平移的一平移資訊,來計算該修改聲場;其中,計算該修改聲場之步驟包括:接收作為該聲場描述的一第一層聲場描述和一第二層聲場描述,在該第一和第二層聲場描述上執行一來源分離,以擷取該第一和該第二層聲場描述的來源、以及被擷取的來源的到達方向(DoA)資料,使用該DoA資料和該平移資訊,針對每個被擷取的來源計算關於該不同位置的修改的DoA資料,以及處理該被擷取的來源和該修改的DoA資料,以獲得該修改的聲場描述;或其中,計算該修改聲場之步驟包括:單獨執行每一層聲場描述的該來源分離,並為每一層擷取一環境/擴散/殘留信號,或為所有層一起執行該來源分離,並為至少兩層擷取一單個環境/擴散/殘留信號;或其中,計算該修改聲場之步驟包括:針對每個來源計算一修改的距離、並使用該被擷取的來源的該修改的距離來計算一修改的層聲場描述;或其中,計算該修改聲場之步驟包括:針對每一個層聲場描述的每一個對應分量添加該層聲場描述以獲得一整體聲場描述;或其中,計算該修改聲場之步驟包括為每一層: 針對一定向音頻編碼描述作為該聲場描述,為不同時間頻率區間,使用該方向資料、該深度資訊和該平移資訊以計算修改的方向資料,以及使用該修改的方向資料將該定向音頻編碼描述呈現為包括多個音頻通道的一聲音描述,或者使用該修改的方向資料而不是該時間頻率區間的該方向資料,並且可選地使用包含在該定向音頻編碼描述中的該相同的擴散資料,來發送或存儲該定向音頻編碼描述;或其中,計算該修改聲場之步驟包括:針對每一層的一時間頻率區間決定維持該方向資料、或者基於該時間頻率區間的擴散資料計算一修改的方向資料,其中一修改的方向資料僅針對一擴散資料而被計算,其表示一擴散低於一預定義或自適應擴散水平;或其中,計算該修改聲場之步驟包括:針對每個層聲場描述從該後設資料接收該層聲場描述的一代表性距離,及使用一決定來決定從一層聲場描述所決定的一來源的一縮放值,該來源相對於由該平移資訊所決定的一新參考位置是否保持在同一層中,其中,如果該來源相對於該不同的參考位置處於一較低層,則決定該縮放值大於1,或者,其中,如果該來源相對於該不同的參考位置處於一更高層,則決定該縮放值小於1;或其中,計算該修改聲場之步驟包括對每一層:分析該聲場分量,以針對不同的頻率區間導出到達方向資訊;使用該方向資訊和後設資料,以計算每個頻率區間的修改的到達方向資訊,該後設資料包括將一距離資訊與一層相關聯的一深度圖;以及 使用一距離補償資訊計算該修改聲場,該距離補償資訊取決於該深度圖為該層提供的該距離、以及與該頻率區間內相關聯的一新距離,該新距離與該修改到達方向資訊相關;或其中,計算該修改聲場之步驟包括:分析每一個層聲場描述,以獲得包含在該層聲場描述中的每個來源的一到達方向資訊,使用該到達方向資訊和該層聲場描述的該後設資料來決定該層聲場描述的一來源到該新參考位置的一距離,以及使用該層聲場描述的該來源到該新參考位置的該距離以及從中擷取來源的該聲場描述的該後設資料來決定一縮放因子;或其中,計算該修改聲場之步驟包括:針對一來源使用該到達方向資訊和幾何資訊以形成從該參考位置到該來源的一第一向量,其中該相同的幾何資訊係被用於在一層聲場描述中的每一個來源,從該第一向量和在該層聲場描述中的每一個來源的該平移資訊,以形成一第二向量,以及藉由將該第二向量的一長度除以該第一向量的一長度來計算每一個來源的該縮放值。
  29. 一種計算機程式,用於當其用於一計算機或處理器上運行時,執行申請專利範圍第27或28項的方法。
  30. 一種記錄媒體,其係儲存一增強的聲場描述,包括:至少一個聲場描述及後設資料,該至少一個聲場描述指示關於至少一個參考位置的一聲場,該後設資料與該聲場的空間資訊有關; 其中,該至少一個聲場描述包括關於該參考位置的一第一聲場描述,其中該第一聲場描述僅包括來自位於該參考位置周圍的一第一體積中的聲源的聲音資料,以及相對於該參考位置的一第二聲場描述,其中該第二聲場描述僅包括來自位於該參考位置周圍的一第二體積中的第二來源的聲音資料,該第二體積與該第一體積不同,並且其中,該後設資料包括該第一體積和/或該第二體積的一空間描述。
TW107124519A 2017-07-14 2018-07-16 生成增強的聲場描述的裝置與方法及其計算機程式與記錄媒體、和生成修改的聲場描述的裝置及方法及其計算機程式 TWI692753B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP17181484 2017-07-14
EPEP17181484.1 2017-07-14
??EP17181484.1 2017-07-14
PCT/EP2018/069145 WO2019012133A1 (en) 2017-07-14 2018-07-13 CONCEPT OF GENERATING AN ENHANCED AUDIO FIELD DESCRIPTION OR A MODIFIED AUDIO FIELD DESCRIPTION USING A MULTILAYER DESCRIPTION
??PCT/EP2018/069145 2018-07-13
WOPCT/EP2018/069145 2018-07-13

Publications (2)

Publication Number Publication Date
TW201909170A TW201909170A (zh) 2019-03-01
TWI692753B true TWI692753B (zh) 2020-05-01

Family

ID=59631529

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107124519A TWI692753B (zh) 2017-07-14 2018-07-16 生成增強的聲場描述的裝置與方法及其計算機程式與記錄媒體、和生成修改的聲場描述的裝置及方法及其計算機程式

Country Status (14)

Country Link
US (2) US11153704B2 (zh)
EP (1) EP3652736A1 (zh)
JP (1) JP6983484B2 (zh)
KR (2) KR102540642B1 (zh)
CN (1) CN111183479B (zh)
AR (1) AR112504A1 (zh)
AU (2) AU2018298876A1 (zh)
BR (1) BR112020000759A2 (zh)
CA (1) CA3069403C (zh)
RU (1) RU2740703C1 (zh)
SG (1) SG11202000285QA (zh)
TW (1) TWI692753B (zh)
WO (1) WO2019012133A1 (zh)
ZA (1) ZA202000023B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109683845B (zh) * 2017-10-18 2021-11-23 宏达国际电子股份有限公司 声音播放装置、方法及非暂态存储媒体
US11019449B2 (en) * 2018-10-06 2021-05-25 Qualcomm Incorporated Six degrees of freedom and three degrees of freedom backward compatibility
US11432097B2 (en) * 2019-07-03 2022-08-30 Qualcomm Incorporated User interface for controlling audio rendering for extended reality experiences
US11430451B2 (en) 2019-09-26 2022-08-30 Apple Inc. Layered coding of audio with discrete objects
JPWO2021140959A1 (zh) * 2020-01-10 2021-07-15
CN113747335A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 音频渲染方法及装置
US11558707B2 (en) 2020-06-29 2023-01-17 Qualcomm Incorporated Sound field adjustment
JP2024531541A (ja) * 2021-09-03 2024-08-29 ドルビー ラボラトリーズ ライセンシング コーポレイション 空間的メタデータ出力を有する音楽シンセサイザー
GB2614254A (en) * 2021-12-22 2023-07-05 Nokia Technologies Oy Apparatus, methods and computer programs for generating spatial audio output
GB2620591A (en) * 2022-07-12 2024-01-17 Frontier Dev Ltd System for audio and video simulation
US20240298131A1 (en) * 2023-03-03 2024-09-05 Sony Interactive Entertainment Inc. Systems and methods for modifying spatial audio

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201237849A (en) * 2010-12-03 2012-09-16 Fraunhofer Ges Forschung Apparatus and method for geometry-based spatial audio coding
US20130016842A1 (en) * 2009-12-17 2013-01-17 Richard Schultz-Amling Apparatus and a method for converting a first parametric spatial audio signal into a second parametric spatial audio signal
US20130142341A1 (en) * 2011-12-02 2013-06-06 Giovanni Del Galdo Apparatus and method for merging geometry-based spatial audio coding streams
US20130216070A1 (en) * 2010-11-05 2013-08-22 Florian Keiler Data structure for higher order ambisonics audio data

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1512514A (en) 1974-07-12 1978-06-01 Nat Res Dev Microphone assemblies
JPH08107600A (ja) 1994-10-04 1996-04-23 Yamaha Corp 音像定位装置
US5970152A (en) 1996-04-30 1999-10-19 Srs Labs, Inc. Audio enhancement system for use in a surround sound environment
JP2006074589A (ja) 2004-09-03 2006-03-16 Matsushita Electric Ind Co Ltd 音響処理装置
EP2205007B1 (en) 2008-12-30 2019-01-09 Dolby International AB Method and apparatus for three-dimensional acoustic field encoding and optimal reconstruction
EP2469741A1 (en) * 2010-12-21 2012-06-27 Thomson Licensing Method and apparatus for encoding and decoding successive frames of an ambisonics representation of a 2- or 3-dimensional sound field
EP2541547A1 (en) * 2011-06-30 2013-01-02 Thomson Licensing Method and apparatus for changing the relative positions of sound objects contained within a higher-order ambisonics representation
EP2600637A1 (en) 2011-12-02 2013-06-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for microphone positioning based on a spatial power density
US9584912B2 (en) 2012-01-19 2017-02-28 Koninklijke Philips N.V. Spatial audio rendering and encoding
US9479886B2 (en) 2012-07-20 2016-10-25 Qualcomm Incorporated Scalable downmix design with feedback for object-based surround codec
JP6038312B2 (ja) * 2012-07-27 2016-12-07 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン ラウドスピーカ・エンクロージャ・マイクロホンシステム記述を提供する装置及び方法
EP2891338B1 (en) 2012-08-31 2017-10-25 Dolby Laboratories Licensing Corporation System for rendering and playback of object based audio in various listening environments
WO2014080074A1 (en) 2012-11-20 2014-05-30 Nokia Corporation Spatial audio enhancement apparatus
CN104019885A (zh) * 2013-02-28 2014-09-03 杜比实验室特许公司 声场分析系统
US9685163B2 (en) 2013-03-01 2017-06-20 Qualcomm Incorporated Transforming spherical harmonic coefficients
US9466305B2 (en) * 2013-05-29 2016-10-11 Qualcomm Incorporated Performing positional analysis to code spherical harmonic coefficients
US9384741B2 (en) 2013-05-29 2016-07-05 Qualcomm Incorporated Binauralization of rotated higher order ambisonics
US20140355769A1 (en) * 2013-05-29 2014-12-04 Qualcomm Incorporated Energy preservation for decomposed representations of a sound field
CN104244164A (zh) 2013-06-18 2014-12-24 杜比实验室特许公司 生成环绕立体声声场
US20150127354A1 (en) 2013-10-03 2015-05-07 Qualcomm Incorporated Near field compensation for decomposed representations of a sound field
EP2866475A1 (en) 2013-10-23 2015-04-29 Thomson Licensing Method for and apparatus for decoding an audio soundfield representation for audio playback using 2D setups
DE102013225892A1 (de) 2013-12-13 2015-06-18 Robert Bosch Gmbh Schrägscheibenmaschine, Schrägscheibe und Verfahren zur hydrostatischen Entlastung einer Stellteilanbindung einer Schrägscheibenmaschine und zum Druckabbau eines Arbeitsmediums während eines Umsteuervorgangs der Schrägscheibenmaschine
SG11201605692WA (en) 2014-01-16 2016-08-30 Sony Corp Audio processing device and method, and program therefor
US10412522B2 (en) 2014-03-21 2019-09-10 Qualcomm Incorporated Inserting audio channels into descriptions of soundfields
EP3007167A1 (en) 2014-10-10 2016-04-13 Thomson Licensing Method and apparatus for low bit rate compression of a Higher Order Ambisonics HOA signal representation of a sound field
CN105635635A (zh) 2014-11-19 2016-06-01 杜比实验室特许公司 调节视频会议系统中的空间一致性
WO2017098949A1 (ja) * 2015-12-10 2017-06-15 ソニー株式会社 音声処理装置および方法、並びにプログラム
US10659906B2 (en) * 2017-01-13 2020-05-19 Qualcomm Incorporated Audio parallax for virtual reality, augmented reality, and mixed reality
US10182303B1 (en) 2017-07-12 2019-01-15 Google Llc Ambisonics sound field navigation using directional decomposition and path distance estimation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130016842A1 (en) * 2009-12-17 2013-01-17 Richard Schultz-Amling Apparatus and a method for converting a first parametric spatial audio signal into a second parametric spatial audio signal
US20130216070A1 (en) * 2010-11-05 2013-08-22 Florian Keiler Data structure for higher order ambisonics audio data
TW201237849A (en) * 2010-12-03 2012-09-16 Fraunhofer Ges Forschung Apparatus and method for geometry-based spatial audio coding
US20130142341A1 (en) * 2011-12-02 2013-06-06 Giovanni Del Galdo Apparatus and method for merging geometry-based spatial audio coding streams
TW201334580A (zh) * 2011-12-02 2013-08-16 Fraunhofer Ges Forschung 整合幾何空間音源編碼串流之設備及方法

Also Published As

Publication number Publication date
AU2018298876A1 (en) 2020-02-27
TW201909170A (zh) 2019-03-01
AR112504A1 (es) 2019-11-06
BR112020000759A2 (pt) 2020-07-14
JP6983484B2 (ja) 2021-12-17
RU2740703C1 (ru) 2021-01-20
KR102652670B1 (ko) 2024-04-01
SG11202000285QA (en) 2020-02-27
EP3652736A1 (en) 2020-05-20
CA3069403C (en) 2023-05-09
KR102540642B1 (ko) 2023-06-08
JP2020527745A (ja) 2020-09-10
US20210289310A1 (en) 2021-09-16
ZA202000023B (en) 2021-10-27
KR20220044973A (ko) 2022-04-12
WO2019012133A1 (en) 2019-01-17
KR20200041860A (ko) 2020-04-22
CA3069403A1 (en) 2019-01-17
US11153704B2 (en) 2021-10-19
US11863962B2 (en) 2024-01-02
US20200145776A1 (en) 2020-05-07
AU2021225242B2 (en) 2023-07-06
CN111183479B (zh) 2023-11-17
AU2021225242A1 (en) 2021-09-30
CN111183479A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
TWI713866B (zh) 用於生成增強聲場描述的裝置與方法以及其計算機程式與記錄媒體
TWI692753B (zh) 生成增強的聲場描述的裝置與方法及其計算機程式與記錄媒體、和生成修改的聲場描述的裝置及方法及其計算機程式
TWI684978B (zh) 用於生成增強聲場描述的裝置及方法與其計算機程式及記錄媒體、和生成修改聲場描述的裝置及方法與其計算機程式