TWI692528B - Methods for detecting E. coli and molecular markers used - Google Patents

Methods for detecting E. coli and molecular markers used Download PDF

Info

Publication number
TWI692528B
TWI692528B TW107145335A TW107145335A TWI692528B TW I692528 B TWI692528 B TW I692528B TW 107145335 A TW107145335 A TW 107145335A TW 107145335 A TW107145335 A TW 107145335A TW I692528 B TWI692528 B TW I692528B
Authority
TW
Taiwan
Prior art keywords
seq
coli
primer set
detecting
primer
Prior art date
Application number
TW107145335A
Other languages
Chinese (zh)
Other versions
TW202022120A (en
Inventor
張格東
Original Assignee
國立屏東科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立屏東科技大學 filed Critical 國立屏東科技大學
Priority to TW107145335A priority Critical patent/TWI692528B/en
Application granted granted Critical
Publication of TWI692528B publication Critical patent/TWI692528B/en
Publication of TW202022120A publication Critical patent/TW202022120A/en

Links

Images

Abstract

本發明提供一種可同時檢測大腸桿菌(Escherichia coli)及特定型致病性大腸桿菌的方法,以及用於檢測大腸桿菌的分子標記。該檢測方法靈敏度高,可檢測到多種大腸桿菌。該分子標記可用於檢測多種致病性大腸桿菌。 The invention provides a method for simultaneously detecting Escherichia coli ( Escherichia coli ) and specific pathogenic E. coli, and a molecular marker for detecting E. coli. The detection method has high sensitivity and can detect a variety of E. coli. The molecular marker can be used to detect various pathogenic E. coli.

Description

用於檢測大腸桿菌之方法以及使用之分子標記 Methods for detecting E. coli and molecular markers used

本發明係關於一種檢測大腸桿菌的方法,以及一種用於檢測大腸桿菌的分子標記。其特別係關於一種利用隨機擴增多型性(RAPD)及單一核苷酸多型性(SNP)檢測大腸桿菌及特定型致病性大腸桿菌的方法。 The invention relates to a method for detecting E. coli and a molecular marker for detecting E. coli. In particular, it relates to a method for detecting E. coli and specific pathogenic E. coli using random amplified polymorphism (RAPD) and single nucleotide polymorphism (SNP).

食物衛生與食源性疾病為近年被極度關注的議題,通常是由於病原菌經由食物或飲水的污染進入人體,導致食源性疾病的發生。其中,大腸桿菌(Escherichia coli)是引起腹瀉症狀的主要感染性病原菌,且會進一步導致致死率高的腸道內或腸道外疾病的發生。由於這些疾病的傳播途徑主要是經由未妥善加工的畜產品、糞肥,或受污染的生食、水源、人體糞便等,因此,在食品等產業上為了預防大腸桿菌透過人體等帶原者傳播,需要有效鑑定與檢驗大腸桿菌的技術手段。 Food hygiene and food-borne diseases are topics of great concern in recent years, usually because pathogenic bacteria enter the human body through the contamination of food or drinking water, resulting in the occurrence of food-borne diseases. Among them, Escherichia coli ( Escherichia coli ) is the main infectious pathogen causing diarrhea symptoms, and it will further lead to the occurrence of intestinal or extraintestinal diseases with high lethality. Since these diseases are mainly transmitted through inadequately processed livestock products, manure, or contaminated raw food, water sources, human feces, etc., in the food and other industries, in order to prevent the transmission of E. coli through humans and other carriers, it is necessary to Technical means for effective identification and testing of E. coli.

傳統的食源性微生物鑑定,是在培養後透過形態學與染色法等確認菌種。近年來,為了進一步提升菌種鑑定的效率,發展出在鑑定中應用酵素結合免疫吸附分析法(ELISA)、流動式細胞測量術、酵素連結螢光分析法(ELFA)、原位螢光雜合法、脈衝式凝膠電泳、聚合酶鏈反應(PCR)、即時聚合酶鏈反應的技術手段。然而,做為應用於食品產業的檢 測大腸桿菌的技術,這些技術仍有花費的時間與勞力成本較高的課題存在。 The traditional identification of food-borne microorganisms is to confirm the bacterial species through morphology and staining after cultivation. In recent years, in order to further improve the efficiency of strain identification, the application of enzyme-linked immunosorbent assay (ELISA), flow cytometry, enzyme-linked fluorescence analysis (ELFA), and in situ fluorescence hybridization methods have been developed in the identification , Pulse gel electrophoresis, polymerase chain reaction (PCR), real-time polymerase chain reaction technology. However, as an inspection for the food industry The technology of measuring E. coli, these technologies still have the problem of high time and labor cost.

對花費時間與實驗操作要求相對較低的大腸桿菌檢測技術,可列舉透過隨機擴增多型性(RAPD)建立各菌種之基因圖譜的RAPD-PCR。例如,Packey等人(參照非專利文獻1)揭露了用於RAPD-PCR的3H引子,此3H引子可根據擴增子(amplicon)片段大小的差異,分辨出無菌老鼠檢體中的大腸桿菌NC101、大腸桿菌K12等菌種。然而,對於如何進一步檢測多種致病性大腸桿菌菌株並提升其效率與敏感度(sensitivity),基於Packey等人實驗結果有限,僅使用前述3H引子的技術,並非可充分解決此等課題的技術手段。 For the detection technology of Escherichia coli that requires relatively low time and experimental requirements, RAPD-PCR to establish the genetic map of each bacterial species through random amplified polymorphism (RAPD) can be cited. For example, Packey et al. (refer to Non-Patent Document 1) disclosed a 3H primer used for RAPD-PCR. This 3H primer can distinguish E. coli NC101 in a sterile mouse specimen based on the difference in the fragment size of the amplicon (amplicon) , Escherichia coli K12 and other strains. However, for how to further detect various pathogenic E. coli strains and improve their efficiency and sensitivity, based on the limited experimental results of Packey et al., the technology using only the aforementioned 3H primers is not a technical means that can fully solve these problems. .

【先前技術文獻】【Prior Technical Literature】

【非專利文獻1】Packey CD, Shanahan MT, Manick S, Bower MA, Ellermann M, Tonkonogy SL, Carroll IM, Sartor RB (2013) Molecular detection of bacterial contamination in gnotobiotic rodent units. Gut Microbes, 4(5), 361-370. doi:10.4161/gmic.25824 [Non-Patent Document 1] Packey CD, Shanahan MT, Manick S, Bower MA, Ellermann M, Tonkonogy SL, Carroll IM, Sartor RB (2013) Molecular detection of bacterial contamination in gnotobiotic rodent units. Gut Microbes, 4(5), 361-370. doi:10.4161/gmic.25824

本發明鑑於上述問題,目的在於提供一種可檢測大腸桿菌的技術手段,其係可同時檢測大腸桿菌及多種特定型致病性大腸桿菌的技術手段,並且是在時間與勞力成本的觀點上較理想的技術手段。 In view of the above problems, the present invention aims to provide a technical means capable of detecting E. coli, which is a technical means capable of simultaneously detecting E. coli and various specific pathogenic E. coli, and is ideal from the viewpoint of time and labor cost Technical means.

本發明人深入研究,發現藉由使用大腸桿菌的c-末端區域谷氨酸-氨-連接酶腺苷酰轉移酶(c-terminal part of glutamate-ammonia-ligase)的核酸序列作為分子標記,可檢測多種大腸桿菌,該核酸序列為687個鹼基對,序列如SEQ ID No:9中第7~693個鹼基所示。 The inventors conducted in-depth research and found that by using the nucleic acid sequence of c-terminal part of glutamate-ammonia-ligase of c-terminal region of E. coli as a molecular marker, For detection of various E. coli, the nucleic acid sequence is 687 base pairs. The sequence is shown as the 7th to 693th bases in SEQ ID No: 9.

本發明人亦根據該分子標記的核酸序列,設計了可透過聚合酶鏈反應檢測該分子標記的第一引子組(分別具有SEQ ID No:1及SEQ ID No:2的核酸序列)、第二引子組(分別具有SEQ ID No:3及SEQ ID No:4的核酸序列)、及第三引子組(分別具有SEQ ID No:5及SEQ ID No:6的核酸序列)。 Based on the nucleic acid sequence of the molecular marker, the inventor also designed a first primer set (having the nucleic acid sequences of SEQ ID No: 1 and SEQ ID No: 2 respectively) that can detect the molecular marker through polymerase chain reaction, and the second A primer set (having nucleic acid sequences of SEQ ID No: 3 and SEQ ID No: 4 respectively) and a third primer set (having nucleic acid sequences of SEQ ID No: 5 and SEQ ID No: 6 respectively).

同時,發明人發現藉由使用上述引子組,並結合高分辨率熔解曲線(HRM)與即時聚合酶鏈反應的技術,可透過分析高分辨率熔解曲線的熔解溫度,即時檢測檢體中的大腸桿菌 At the same time, the inventor found that by using the above primer set, combined with the technique of high-resolution melting curve (HRM) and real-time polymerase chain reaction, the large intestine in the specimen can be detected in real time by analyzing the melting temperature of the high-resolution melting curve Bacillus

同時,本發明人發現,藉由使用3H引子(具有SEQ ID No:17的核酸序列)進行高分辨率熔解曲線(HRM)分析,可對大腸桿菌進行半定量(semi-quantitative)分析。 At the same time, the inventors found that by using 3H primers (with nucleic acid sequence of SEQ ID No: 17) for high-resolution melting curve (HRM) analysis, semi-quantitative analysis of E. coli can be performed.

本發明人進一步構思出一種檢測大腸桿菌的方法,其係同時使用本發明的第一引子組及前述3H引子,第一段步驟先以3H引子進行RAPD-HRM PCR,第二段步驟再以本發明第一引子組(分別具有SEQ ID No:1及SEQ ID No:2的核酸序列)進行HRM-PCR。透過分析HRM-PCR的熔解曲線,可檢測大腸桿菌的存在。 The inventor further conceived a method for detecting E. coli, which uses the first primer set of the present invention and the aforementioned 3H primer at the same time. The first step of the first step is to perform RAPD-HRM PCR with the 3H primer, and the second step of the method The first primer set of the invention (having the nucleic acid sequences of SEQ ID No: 1 and SEQ ID No: 2 respectively) was subjected to HRM-PCR. By analyzing the melting curve of HRM-PCR, the presence of E. coli can be detected.

本發明人進一步研究後亦發現,藉由分析各大腸桿菌菌株在該分子標記上的單一核苷酸多型性,可用於辨識不同的大腸桿菌菌株。 After further research, the inventor also found that by analyzing the single nucleotide polymorphism of each E. coli strain on the molecular marker, it can be used to identify different E. coli strains.

因此,本發明係提供下列技術手段。 Therefore, the present invention provides the following technical means.

(1)一種用於檢測大腸桿菌(Escherichia coli)的分子標記,其特徵係其包含大腸桿菌的c-末端區域谷氨酸-氨-連接酶腺苷酰轉移酶基因的核酸序列,且該序列為687個鹼基對。 (1) A molecular marker for detecting Escherichia coli , which is characterized in that it contains the nucleic acid sequence of the glutamic acid-amino-ligase adenylyltransferase gene of the c-terminal region of E. coli, and the sequence It is 687 base pairs.

(2)一種用於檢測大腸桿菌的引子組,其特徵係前述引子組係選自第一引子組、第二引子組及第三引子組所成之群,前述第一引子組分別具有SEQ ID No:1及SEQ ID No:2之序列,前述第二引子組分別具有SEQ ID No:3及SEQ ID No:4之序列,前述第三引子組分別具有SEQ ID No:5及SEQ ID No:6的核酸序列。 (2) A primer set for detecting E. coli, characterized in that the primer set is selected from the group consisting of a first primer set, a second primer set, and a third primer set, and the first primer set has SEQ ID No: 1 and SEQ ID No: 2, the second primer set has the sequences of SEQ ID No: 3 and SEQ ID No: 4, respectively, and the third primer set has the sequences of SEQ ID No: 5 and SEQ ID No: Nucleic acid sequence of 6.

(3)一種用於檢測致病性大腸桿菌的探針,其特徵係其序列選自下述序列所成之群:用於檢測腸道外感染大腸桿菌(ExPEC)的SEQ ID No:10及SEQ ID No:11;用於檢測附侵襲性大腸桿菌(AIEC)的SEQ ID No:12;用於檢測腸出血性大腸桿菌(EHEC)的SEQ ID No:13、SEQ ID No:14、SEQ ID No:15;用於檢測產毒性大腸桿菌(ETEC)的SEQ ID No:16。 (3) A probe for detecting pathogenic E. coli, characterized in that its sequence is selected from the group consisting of SEQ ID No: 10 and SEQ for detecting extraintestinal infection of E. coli (ExPEC) ID No: 11; SEQ ID No: 12 for detecting invasive E. coli (AIEC); SEQ ID No: 13, SEQ ID No: 14, SEQ ID No for detecting enterohemorrhagic E. coli (EHEC) : 15; SEQ ID No: 16 for detecting Toxigenic Escherichia coli (ETEC).

(4)一種檢測大腸桿菌的方法,其特徵係其步驟包含:(a)對一受測檢體,使用第一引子組來進行聚合酶連鎖反應,檢測該反應產物是否含有大腸桿菌的c-末端區域谷氨酸-氨-連接酶腺苷酰轉移酶基因的核酸序列,反應產物含有大腸桿菌的c-末端區域谷氨 酸-氨-連接酶腺苷酰轉移酶基因的核酸序列,即檢體中檢測到大腸桿菌的存在;其中,第一引子組分別具有SEQ ID No:1及SEQ ID No:2之序列。 (4) A method for detecting E. coli, characterized in that the steps include: (a) For a test sample, the first primer set is used to perform a polymerase chain reaction to detect whether the reaction product contains E. coli c- The nucleic acid sequence of the glutamic acid-ammonia-ligase adenylyl transferase gene in the terminal region, the reaction product contains glutamine in the c-terminal region of E. coli The nucleic acid sequence of the acid-ammonia-ligase adenylyl transferase gene, that is, the presence of E. coli is detected in the specimen; wherein the first primer set has the sequences of SEQ ID No: 1 and SEQ ID No: 2, respectively.

(5)如第4項所記載之方法,其中,前述方法的步驟進一步包含:(b)使用3H引子對前述檢體進行聚合酶連鎖反應,檢測反應產物是否含有702個鹼基對大小的擴增子,反應產物含有702個鹼基對大小的擴增子,即檢體中檢測到大腸桿菌的存在;且,3H引子具有SEQ ID No:17之序列。 (5) The method according to item 4, wherein the steps of the foregoing method further include: (b) performing a polymerase chain reaction on the specimen using a 3H primer to detect whether the reaction product contains an expansion of 702 base pairs in size Increaser, the reaction product contains an amplicon with a size of 702 base pairs, that is, the presence of E. coli is detected in the sample; and, the 3H primer has the sequence of SEQ ID No:17.

(6)如第4或5項所記載之方法,其中,檢測前述核酸序列與擴增子的方法,係選自核酸染色、高分辨率熔解曲線分析(HRM)中至少一種。 (6) The method according to item 4 or 5, wherein the method for detecting the nucleic acid sequence and the amplicon is at least one selected from nucleic acid staining and high-resolution melting curve analysis (HRM).

(7)一種檢測大腸桿菌的套組,其特徵係該套組包含一受測檢體、以及一組以上的引子組,前述引子組係選自第一引子組、第二引子組、第三引子組及3H引子所成之群,其中,前述第一引子組分別具有SEQ ID No:1及SEQ ID No:2之序列;前述第二引子組分別具有SEQ ID No:3及SEQ ID No:4之序列;前述第三引子組分別具有SEQ ID No:5及SEQ ID No:6的核酸序列;前述3H引子具有SEQ ID No:17之序列。 (7) A kit for detecting E. coli, which is characterized in that the kit includes a test sample and more than one set of primers, and the aforementioned set of primers is selected from a first primer set, a second primer set, and a third A group of primer sets and 3H primers, wherein the first primer set has the sequences of SEQ ID No: 1 and SEQ ID No: 2, respectively; the second primer set has SEQ ID No: 3 and SEQ ID No: The sequence of 4; the aforementioned third primer set has the nucleic acid sequences of SEQ ID No: 5 and SEQ ID No: 6, respectively; the aforementioned 3H primer has the sequence of SEQ ID No: 17.

(8)如第7項所記載之套組,其中,該套組進一步包含一個以上的探針,且前述探針可檢測致病性大腸桿菌在c-末端區域谷氨酸-氨-連接酶腺苷酰轉移酶基因上具有單一核苷酸多型性的序列。 (8) The kit according to item 7, wherein the kit further includes more than one probe, and the probe can detect the glutamate-ammonia-ligase in the c-terminal region of pathogenic E. coli A sequence of single nucleotide polymorphism on the adenylyl transferase gene.

(9)一種大腸桿菌的篩檢方法,其特徵係其包括:對一受測檢體,偵測大腸桿菌的c-末端區域谷氨酸-氨-連接酶腺苷酰轉移酶基因所表現之蛋白質是否存在,若該蛋白質存在,即檢體中檢測到大腸桿菌的存在。 (9) A screening method for Escherichia coli, which is characterized by comprising: detecting the expression of glutamate-amino-ligase adenylyltransferase gene in the c-terminal region of E. coli for a test sample Whether the protein is present, and if the protein is present, the presence of E. coli is detected in the specimen.

(10)如第9項所記載之方法,其中,前述偵測步驟是使用辨識該蛋白之抗體來進行。 (10) The method according to item 9, wherein the detection step is performed using an antibody that recognizes the protein.

本發明提供了一種在檢測大腸桿菌上可應用的方法與分子標記,其係可同時檢測大腸桿菌及多種特定型致病性大腸桿菌的技術手段,且敏感度高,可達1.26×102/ml個菌落形成單位。在時間與勞力成本的觀點上,本發明所使用的方法可直接從檢體快速檢測大腸桿菌,且實驗操作難度相對較低,為理想的技術手段。 The invention provides an applicable method and molecular marker for detecting E. coli, which is a technical method that can simultaneously detect E. coli and a variety of specific pathogenic E. coli, and has high sensitivity, up to 1.26×10 2 / ml colony forming units. From the viewpoint of time and labor cost, the method used in the present invention can quickly detect E. coli directly from the specimen, and the experimental operation is relatively difficult, which is an ideal technical means.

【圖1】表示不同致病性大腸桿菌在c-末端區域谷氨酸-氨-連接酶腺苷酰轉移酶的核酸序列的單一核苷酸多型性位點。 [Figure 1] A single nucleotide polymorphism site showing the nucleic acid sequence of glutamate-ammonia-ligase adenylyltransferase in the c-terminal region of different pathogenic E. coli.

【圖2】表示實施例4中大腸桿菌的RAPD-PCR指紋圖譜,圖中M表示DNA分子量對照標準品,1-10表示源自人體糞便的大腸桿菌DNA,NTC表 示不含DNA模板的對照組,P.a.表示綠膿桿菌的外毒素A(ETA)基因表現對照組。 [Figure 2] shows the RAPD-PCR fingerprint of E. coli in Example 4, M in the figure represents the DNA molecular weight control standard, 1-10 represents the E. coli DNA derived from human feces, NTC table A control group without a DNA template is shown, and P.a. indicates a P. aeruginosa exotoxin A (ETA) gene expression control group.

【圖3A】表示實施例5中經純化的702bp擴增子及源自人體糞便大腸桿菌DNA樣本1-10使用3H引子得到的高分辨率熔解曲線,NTC表示不含DNA模板的對照組,綠膿桿菌的外毒素A(ETA)基因表現之熔解曲線為另一對照組。 [Figure 3A] shows the high-resolution melting curve obtained by using the 3H primer in the purified 702bp amplicon and human fecal E. coli DNA samples 1-10 in Example 5, NTC represents the control group without DNA template, green The melting curve of exotoxin A (ETA) gene expression of Pseudomonas was another control group.

【圖3B】表示實施例5使用3H引子進行高分辨率熔解曲線分析的結果中,源自人體糞便大腸桿菌DNA樣本1-10的平均熔解溫度。 [FIG. 3B] It shows the average melting temperature of E. coli DNA samples 1-10 from human feces in the results of high-resolution melting curve analysis using 3H primers in Example 5.

【圖3C】表示使用3H引子進行高分辨率熔解曲線分析中,根據不同濃度的大腸桿菌DNA的分析結果得到的半定量分析圖,圖中Y軸值為螢光訊號量(dF/dt) [Figure 3C] shows a semi-quantitative analysis chart based on the analysis results of E. coli DNA at different concentrations in the high-resolution melting curve analysis using 3H primers. The Y-axis value in the figure is the amount of fluorescent signal (dF/dt)

【圖4A】表示人體糞便樣本及實施例5中經純化的702bp擴增子,使用3H引子進行RAPD-HRM PCR後得到的高分辨率熔解曲線。 [FIG. 4A] This shows a high-resolution melting curve obtained from a human fecal sample and the purified 702bp amplicon in Example 5 using 3H primers after RAPD-HRM PCR.

【圖4B】表示人體糞便樣本及實施例5中經純化的702bp擴增子,使用本發明第一組引子進行HRM PCR後得到的高分辨率熔解曲線。 [FIG. 4B] This is a high-resolution melting curve obtained from a human fecal sample and the purified 702bp amplicon in Example 5 after HRM PCR using the first set of primers of the present invention.

【圖4C】表示人體糞便樣本及實施例5中經純化的702bp擴增子,使用3H引子進行RAPD-HRM PCR後所得PCR產物的瓊脂凝膠電泳圖結果 [Figure 4C] Agarose gel electrophoresis results of human fecal samples and the purified 702bp amplicon in Example 5 using 3H primers for RAPD-HRM PCR

【圖4D】表示人體糞便樣本及實施例5中經純化的702bp擴增子,使用本發明第一組引子進行HRM PCR後所得PCR產物的瓊脂凝膠電泳圖結果 [Figure 4D] The results of agarose gel electrophoresis of PCR products obtained from human fecal samples and the purified 702bp amplicon in Example 5 after performing HRM PCR using the first set of primers of the present invention

【圖5】表示RAPD-HRM對大腸桿菌檢測的敏感度的折線圖,X軸 表示稀釋程度,Y軸為菌落數,各點上標記數字為該稀釋程度下所測得菌落數,以此得知大腸桿菌原液樣本之菌落濃度。 [Figure 5] Line graph showing the sensitivity of RAPD-HRM to E. coli detection, X axis Denotes the degree of dilution. The Y-axis is the number of colonies. The number on each point is the number of colonies measured at this dilution level, so as to know the colony concentration of the E. coli stock solution sample.

本發明的實施型態之一,是提供一種用於檢測多種特定型致病性大腸桿菌的探針,具體而言,前述探針係藉由辨識各種致病性大腸桿菌在c-末端區域谷氨酸-氨-連接酶腺苷酰轉移酶基因上具有單一核苷酸多型性的序列,從而確認探針所檢測的檢體是否含有該種致病性大腸桿菌。 One of the embodiments of the present invention is to provide a probe for detecting a variety of specific types of pathogenic E. coli. Specifically, the aforementioned probe is used to identify various pathogenic E. coli in the c-terminal region valley A single nucleotide polymorphism sequence on the alanine-amino-ligase adenylyl transferase gene confirms whether the specimen detected by the probe contains the pathogenic Escherichia coli.

例如,該探針在設計上,可設計為辨識表1或圖1所示的位於c-末端區域谷氨酸-氨-連接酶腺苷酰轉移酶上的一個以上的核苷酸變異點。 For example, the probe can be designed to identify more than one nucleotide variation point on glutamate-ammonia-ligase adenylyltransferase located in the c-terminal region shown in Table 1 or FIG. 1.

Figure 107145335-A0101-12-0008-1
Figure 107145335-A0101-12-0008-1
Figure 107145335-A0101-12-0009-2
Figure 107145335-A0101-12-0009-2
Figure 107145335-A0101-12-0010-3
Figure 107145335-A0101-12-0010-3

本發明的實施型態之一,是提供一種大腸桿菌的篩檢方法,其係對一受測檢體,偵測大腸桿菌的c-末端區域谷氨酸-氨-連接酶腺苷酰轉移酶基因所表現之蛋白質是否存在,若該蛋白質存在,即檢體中檢測到大腸桿菌的存在。 One embodiment of the present invention is to provide a screening method for E. coli, which detects glutamic acid-amino-ligase adenylyltransferase in the c-terminal region of E. coli for a test sample Whether the protein expressed by the gene is present, and if the protein is present, the presence of E. coli is detected in the specimen.

前述方法中偵測蛋白質的步驟,可利用辨識該蛋白質的抗體完成。 The step of detecting a protein in the aforementioned method can be accomplished using an antibody that recognizes the protein.

前述抗體的製備,例如,可藉由真菌系統將大腸桿菌的c-末端區域谷氨酸-氨-連接酶腺苷酰轉移酶基因表現為蛋白質,再將此蛋白質作為抗原,以一般生產單株或多株抗體的方法製得抗體。 For the preparation of the aforementioned antibody, for example, the glutamic acid-amino-ligase adenylyltransferase gene of the c-terminal region of Escherichia coli can be expressed as a protein by a fungal system, and this protein can be used as an antigen to generally produce a single plant Or multiple antibodies to produce antibodies.

本發明另一實施型態,可進一步配合一般製備試劑或試紙之方法,將偵測大腸桿菌的c-末端區域谷氨酸-氨-連接酶腺苷酰轉移酶基 因所表現之蛋白質的抗體,製成可快速篩檢大腸桿菌的試劑或試紙。 In another embodiment of the present invention, it can be further combined with a general method of preparing reagents or test papers to detect glutamate-amino-ligase adenylyltransferase base in the c-terminal region of E. coli Due to the antibodies of the protein expressed, reagents or test papers can be quickly screened for E. coli.

本說明書中,「致病性大腸桿菌」之用語,係指可能引起人類臨床病症的大腸桿菌,其包含黏附侵襲性大腸桿菌(AIEC)、產毒性大腸桿菌(ETEC)、腸道外感染大腸桿菌(ExPEC)、腸出血性大腸桿菌(EHEC)等。在說明書的文字或圖表中,為了表達上的簡潔,亦有以括號中縮寫簡稱的情況。 In this specification, the term "pathogenic E. coli" refers to E. coli that may cause clinical illness in humans, which includes adherent invasive E. coli (AIEC), toxigenic E. coli (ETEC), and extraintestinal infection E. coli ( ExPEC), enterohemorrhagic Escherichia coli (EHEC), etc. In the text or diagrams of the manual, for conciseness of expression, the abbreviations in parentheses may also be used.

以下,列舉實施例說明本發明的實施方式,但本發明的範圍並非限於此等者。 The following describes the embodiments of the present invention with examples, but the scope of the present invention is not limited to these.

【實施例】【Example】

實施例1:人體糞便樣本檢體的採集 Example 1: Collection of specimens from human feces

採取10位已記錄年齡與飲食習慣的健康人類捐贈者(男性4位,女性6位)的糞便樣本。將0.5~1g的糞便樣本置於1.5ml微量離心管中,於樣本加入1ml滅菌水均質後,離心沉降並收集上清液,作為後續分析使用的糞便樣本。 Stool samples from 10 healthy human donors (4 males and 6 females) with recorded age and eating habits were taken. Place 0.5-1g of the stool sample in a 1.5ml microcentrifuge tube, add 1ml of sterilized water to the sample to homogenize, centrifuge and collect the supernatant, as a stool sample for subsequent analysis.

實施例2:檢體中大腸桿菌的形態學鑑定 Example 2: Morphological identification of E. coli in the specimen

使用曙紅亞甲基藍瓊脂(EMB Agar,Difco TM,Heidelberg,Germany)預先篩選試驗來自糞便的大腸桿菌。以可拋式接種環取適量上清液,以四區畫線法接種於前述曙紅亞甲基藍瓊脂,於37℃培養。在37℃培養12小時後,從前述曙紅亞甲基藍瓊脂培養基挑選綠色金屬光澤之單一菌落,根據以下各試驗所使用套組的製造商說明,進行TSI試驗(BD Difco,Heidelberg,Germany)、Compact Dry EC平板試驗(R- Biopharm AG,Darmstadt,Germany)、革蘭氏染色(BASO®,Taipei,Taiwan)。在各試驗中,採用大腸桿菌菌株ATCC 23815、綠膿桿菌(Pseudomonas aeruginosa)菌株ATCC 31156及大腸桿菌DH5α作為對照組。 E. coli from feces was pre-screened using eosin methylene blue agar (EMB Agar, Difco™, Heidelberg, Germany). An appropriate amount of supernatant was taken in a disposable inoculation loop, inoculated on the aforementioned eosin methylene blue agar by a four-zone drawing method, and cultured at 37°C. After culturing at 37°C for 12 hours, single colonies with green metallic luster were selected from the aforementioned eosin methylene blue agar medium, and the TSI test (BD Difco, Heidelberg, Germany) and Compact Dry were performed according to the manufacturer's instructions for the kit used in the following tests EC plate test (R- Biopharm AG, Darmstadt, Germany), Gram stain (BASO®, Taipei, Taiwan). In each test, E. coli strain ATCC 23815, Pseudomonas aeruginosa strain ATCC 31156, and E. coli DH5α were used as control groups.

試驗結果如表1所示,與美國典型培養物保藏中心取得的大腸桿菌菌株ATCC 23815比較,所有從人體糞便樣本中分離的大腸桿菌皆為格蘭氏陰性菌桿菌,屬於大腸桿菌群,為厭氧葡萄糖發酵菌,為不生產硫化氫的產氣菌。此外,在Compact Dry EC平板試驗中,所有菌落皆呈現藍色,顯示其為對X-Gluc具有β-葡萄醣醛酸酶活性的大腸桿菌。 The test results are shown in Table 1. Compared with the E. coli strain ATCC 23815 obtained from the American Type Culture Collection, all E. coli isolated from human fecal samples are Gram-negative bacteria, belonging to the E. coli group, Oxyglucose fermenting bacteria are gas-producing bacteria that do not produce hydrogen sulfide. In addition, in the Compact Dry EC plate test, all colonies appeared blue, indicating that they were E. coli with β-glucuronidase activity against X-Gluc.

Figure 107145335-A0101-12-0012-35
Figure 107145335-A0101-12-0012-35

實施例3:大腸桿菌DNA的純化 Example 3: Purification of E. coli DNA

藉由QIAamp DNA Mini套組(QIAGEN,Hilden,Germany)純化來自糞便的大腸桿菌的基因組DNA。根據該套組製造商的說明,將1mL細菌懸浮液離心,並除去上清液。於沉澱物中加入QIAamp DNA Mini套組中的緩衝液,並進行離心。接著使用QIAamp DNA Mini套組提供的QIAamp Mini過濾管柱進行DNA分離。經分離的DNA,藉由Nanodrop超微量分光光度計(Maestrogen,Hsinchu City,Taiwan)定量糞 便DNA濃度,並儲存於-20℃。 Genomic DNA from E. coli from feces was purified by QIAamp DNA Mini kit (QIAGEN, Hilden, Germany). According to the kit manufacturer's instructions, 1 mL of the bacterial suspension was centrifuged and the supernatant was removed. Add the buffer in the QIAamp DNA Mini kit to the pellet and centrifuge. Then use the QIAamp Mini filter column provided by the QIAamp DNA Mini kit for DNA separation. The isolated DNA was quantified by Nanodrop ultra-micro spectrophotometer (Maestrogen, Hsinchu City, Taiwan) Stool DNA concentration, and stored at -20 ℃.

實施例4:RAPD-PCR分析 Example 4: RAPD-PCR analysis

以前述實施例3的大腸桿菌基因組為DNA模板進行RAPD-PCR反應。反應在20μL的最終體積中進行,反應液含有90ngDNA模板、2U Taq聚合酶(JMR,London,UK)、3μL MgCl2(25mM)、2.5μl 3H引子(20μM)、2μl dNTP(10mM)(Promega,WI,USA)。其中,引子為3H引子,為Packey等人研究(Packey et al.2013)所發表的引子,該引子具有SEQ ID No:17所示核酸序列。此外,以檢測綠膿桿菌(Pseudomonas aeruginosa)之ETA外毒素的引子組作為對照組,該引子組中,正向引子及反向引子分別具有SEQ ID No:7及SEQ ID No:8所示核酸序列。 RAPD-PCR reaction was carried out using the E. coli genome of the foregoing Example 3 as a DNA template. The reaction was carried out in a final volume of 20 μL. The reaction solution contained 90 ng DNA template, 2U Taq polymerase (JMR, London, UK), 3 μL MgCl 2 (25 mM), 2.5 μl 3H primer (20 μM), 2 μl dNTP (10 mM) (Promega, WI, USA). Among them, the primer is a 3H primer, a primer published by Packey et al. (Packey et al. 2013), and the primer has the nucleic acid sequence shown in SEQ ID No: 17. In addition, a primer set for detecting ETA exotoxin of Pseudomonas aeruginosa was used as a control group. In this primer set, the forward primer and the reverse primer had the nucleic acids shown in SEQ ID No: 7 and SEQ ID No: 8 respectively sequence.

RAPD-PCR的擴增在Thermalcycler聚合酶鏈鎖反應器(Biometra GmbH,Gottingen,Germany)中通過以下反應條件進行:95℃5分鐘;95℃1分鐘、36℃1分鐘、72℃ 2分鐘,以此重覆36個循環;最後72℃ 7分鐘完成DNA延伸。PCR產物儲存在4℃。 The amplification of RAPD-PCR was carried out in the Thermalcycler polymerase chain reaction reactor (Biometra GmbH, Gottingen, Germany) under the following reaction conditions: 95°C for 5 minutes; 95°C for 1 minute, 36°C for 1 minute, and 72°C for 2 minutes. This repeated 36 cycles; the DNA extension was completed in 7 minutes at 72°C. PCR products were stored at 4°C.

取PCR產物在1.7%瓊脂凝膠上進行80V電泳35分鐘,確認是否獲得702bp的擴增子(amplicon)。結果如圖2所示,健康人類捐贈者的糞便中分離的大腸桿菌DNA,其通過引子為3H引子的RAPD-PCR擴增後,擴增子大小一致,為702bp。 The PCR product was taken on a 1.7% agar gel and subjected to 80V electrophoresis for 35 minutes to confirm whether an 702 bp amplicon was obtained. The results are shown in Figure 2. After the E. coli DNA isolated from the feces of healthy human donors was amplified by RAPD-PCR with 3H primers, the size of the amplicons was the same, 702bp.

實施例5:使用3H引子的RAPD-HRM分析 Example 5: RAPD-HRM analysis using 3H primers

將前述實施例4的702bp的擴增子,進一步以Qiaex II凝 膠提取套組(QIAGEN,Hilden,Germany)提取純化,純化步驟是根據該套組製造商的說明。接著,將前述實施例3的人類糞便大腸桿菌基因組DNA與前述經純化的擴增子DNA,作為DNA模板,進行使用前述3H引子的RAPD-HRM分析。 The 702bp amplicon of the foregoing Example 4 was further condensed with Qiaex II The gel extraction kit (QIAGEN, Hilden, Germany) is extracted and purified. The purification steps are according to the manufacturer's instructions. Next, the human fecal E. coli genomic DNA of the aforementioned Example 3 and the purified amplicon DNA were used as DNA templates to perform RAPD-HRM analysis using the aforementioned 3H primer.

根據Tulsiani等人的研究(Tulsiani et al.,2010)修改條件,使每管25μL的反應液包含:12.5μl HRM mix(QIAGEN,Hilden,Germany)、0.5μL 25mM MgCl2、1μL 20μM引子組、9μL DNA模板(90ng)及2μL分子級水。其中,引子組與前述實施例3相同,使用3H引子(引子具有SEQ ID No:17所示核酸序列)。 According to the study of Tulsiani et al. (Tulsiani et al., 2010), the conditions were modified so that each tube of 25 μL of reaction solution contained: 12.5 μl HRM mix (QIAGEN, Hilden, Germany), 0.5 μL 25 mM MgCl 2 , 1 μL 20 μM primer set, 9 μL DNA template (90ng) and 2μL molecular grade water. Among them, the primer set is the same as in the foregoing Example 3, and a 3H primer is used (the primer has the nucleic acid sequence shown in SEQ ID No: 17).

反應為具有綠色螢光的RAPD-HRM,在Rotor-Gene Q即時聚合酶連鎖反應儀(QIAGEN,Hilden,Germany)通過以下反應條件進行:95℃10分鐘;94℃1分鐘、40℃1分鐘、72℃2分鐘,以此重覆36個循環;72℃ 7分鐘。在RAPD-HRM期間,在PCR的黏合/延伸循環結束時取得螢光數據。HRM分析,是使溫度在75℃和95℃區間以0.1℃/2秒的升溫速率逐漸升高。使用Microsoft Excel 2010從三重複的實驗數據統計分析解鏈曲線的數據,將數據表示為平均值±SD。 The reaction was RAPD-HRM with green fluorescence, which was performed in the Rotor-Gene Q real-time polymerase chain reaction instrument (QIAGEN, Hilden, Germany) under the following reaction conditions: 95°C for 10 minutes; 94°C for 1 minute, 40°C for 1 minute, Repeat 72 cycles at 72°C for 2 minutes; 7 minutes at 72°C. During the RAPD-HRM, fluorescence data is obtained at the end of the PCR's adhesion/extension cycle. In HRM analysis, the temperature is gradually increased between 75°C and 95°C at a temperature increase rate of 0.1°C/2 seconds. Use Microsoft Excel 2010 to statistically analyze the data of the melting curve from the experimental data of the three replicates, and express the data as the mean ± SD.

分析結果如圖3A所示,純化的702bp的擴增子在熔解曲線中的熔解溫度為88.08℃,相對地,以人類糞便大腸桿菌基因組DNA反應得到的熔解曲線中出現顯性峰,且平均溫度如圖3B所示,為88.1±0.22℃。 The analysis results are shown in Figure 3A. The melting temperature of the purified 702bp amplicon in the melting curve is 88.08°C. Relatively, a dominant peak appears in the melting curve obtained from the reaction of human fecal E. coli genomic DNA and the average temperature As shown in FIG. 3B, it is 88.1±0.22°C.

實施例6:同時使用3H引子及本發明引子組的RAPD-HRM檢測大腸 桿菌 Example 6: RAPD-HRM detection of large intestine using 3H primer and primer set of the present invention Bacillus

使用前述實施例1中的人類糞便樣本,取五個直接從受測者取得之新鮮糞便樣本,分為兩段式步驟來檢測大腸桿菌,第一段步驟先以3H引子進行RAPD-HRM PCR,第二段步驟再以本發明第一引子組進行HRM-PCR。 Using the human stool sample from the foregoing Example 1, five fresh stool samples obtained directly from the subject were divided into two steps to detect Escherichia coli. In the first step, RAPD-HRM PCR was performed with 3H primers. In the second step, the first primer set of the present invention is used for HRM-PCR.

(1)使用3H引子的RAPD-HRM分析 (1) RAPD-HRM analysis using 3H primers

根據Tulsiani等人的研究(Tulsiani et al.,2010)修改條件,使每管25μL的反應液包含:12.5μl HRM mix(QIAGEN,Hilden,Germany)、0.5μL 25mM MgCl2、1μL 20μM引子組、9μL DNA模板(90ng)及2μL分子級水。其中,引子組是前述先前文獻發表的3H引子(引子具有SEQ ID No:17所示核酸序列)。 According to the study of Tulsiani et al. (Tulsiani et al., 2010), the conditions were modified so that each tube of 25 μL of reaction solution contained: 12.5 μl HRM mix (QIAGEN, Hilden, Germany), 0.5 μL 25 mM MgCl 2 , 1 μL 20 μM primer set, 9 μL DNA template (90ng) and 2μL molecular grade water. Among them, the primer set is the 3H primer published in the aforementioned previous document (the primer has the nucleic acid sequence shown in SEQ ID No: 17).

反應在具有綠色螢光發射的RAPD-HRM在Rotor-Gene Q即時聚合酶連鎖反應儀(QIAGEN,Hilden,Germany)通過以下反應條件進行:95℃10分鐘;94℃1分鐘、40℃1分鐘、72℃2分鐘,以此重覆36個循環;72℃ 7分鐘。在RAPD-HRM期間,在PCR的黏合/延伸循環結束時取得螢光數據。HRM分析,是使溫度在75℃和95℃區間以0.1℃/2秒之升溫速率逐漸升高。 The reaction was carried out in the RAPD-HRM with green fluorescent emission in a Rotor-Gene Q real-time polymerase chain reaction apparatus (QIAGEN, Hilden, Germany) under the following reaction conditions: 95°C for 10 minutes; 94°C for 1 minute, 40°C for 1 minute, Repeat 72 cycles at 72°C for 2 minutes; 7 minutes at 72°C. During the RAPD-HRM, fluorescence data is obtained at the end of the PCR's adhesion/extension cycle. In HRM analysis, the temperature is gradually increased between 75°C and 95°C at a temperature increase rate of 0.1°C/2 seconds.

(2)使用本發明第一引子組的HRM-PCR分析 (2) HRM-PCR analysis using the first primer set of the present invention

每管25μL的反應液包含:12.5μL HRM混合物(QIAGEN,Hilden,Germany),1.75μL引子組(10μM),2μL DNA模板和8.75μL molecular-grade water。其中,引子組是本發明的第一引子組(正向引子及反向引子分別具有SEQ ID No:1及SEQ ID No:2所示核酸序 列)。 Each tube of 25 μL of reaction solution contains: 12.5 μL HRM mixture (QIAGEN, Hilden, Germany), 1.75 μL primer set (10 μM), 2 μL DNA template and 8.75 μL molecular-grade water. Among them, the primer set is the first primer set of the present invention (the forward primer and the reverse primer have the nucleic acid sequences shown in SEQ ID No: 1 and SEQ ID No: 2 respectively) Column).

根據製造商的說明(Type-it HRM PCR kit,QIAGEN,Hilden,Germany),在Rotor-Gene Q(QIAGEN,Hilden,Germany)中進行實時PCR擴增,反應條件為:熱起始步驟95℃下5分鐘;變性步驟95℃10秒、黏合步驟58℃30秒、延伸步驟72℃25秒,以此重複35個循環;最後的HRM熔化步驟,溫度從65℃升高至95℃,速度為0.1℃/步驟,每步驟保持2秒。所有樣品的螢光閾值為手動設定。 According to the manufacturer's instructions (Type-it HRM PCR kit, QIAGEN, Hilden, Germany), real-time PCR amplification was performed in Rotor-Gene Q (QIAGEN, Hilden, Germany). The reaction conditions were: hot start step at 95°C 5 minutes; denaturation step 95 ℃ 10 seconds, bonding step 58 ℃ 30 seconds, extension step 72 ℃ 25 seconds, and thus repeat 35 cycles; the final HRM melting step, the temperature is increased from 65 ℃ to 95 ℃, the speed is 0.1 °C/step, hold each step for 2 seconds. The fluorescence threshold of all samples is set manually.

結果顯示,如圖4A所示,若僅使用3H引子通過RAPD-HRM篩選新鮮未處理過的5個人類糞便中的大腸桿菌,與作為對照組的702bp擴增子的在熔解溫度88.45℃處的波峰相比,人類糞便樣本得到的熔解曲線中,雖在88.48±0.13℃處亦有波峰,但不具明顯。 The results showed that, as shown in FIG. 4A, if only 3H primers were used to screen E. coli in fresh untreated human feces by RAPD-HRM, the 702bp amplicon as the control group at the melting temperature of 88.45℃ Compared with the peaks, although the melting curve obtained from the human stool samples also has a peak at 88.48±0.13℃, it is not obvious.

然而,當進一步使用本發明第一引子組進行第二階段的HRM-PCR,結果如圖4B所示,從702bp擴增子與5個人類糞便樣本得到的熔解曲線都在熔解溫度88.35±0.11℃處有明顯的波峰,且平均峰值高。 However, when the first primer set of the present invention is further used for the second stage of HRM-PCR, the results are shown in FIG. 4B. The melting curves obtained from the 702bp amplicon and 5 human fecal samples are all at the melting temperature of 88.35±0.11℃ There are obvious peaks and the average peak is high.

以瓊脂糖凝膠電泳確認RAPD-HRM與HRM-PCR產物,如圖4C、圖4D所示,可分別確認到為702bp與687bp大小的擴增子,與目標DNA分子量相符。雖然圖4D中,不含模板的對照組亦有一約為600bp的條帶,但該PCR產物在HRM熔解曲線上的對應波峰,與用於篩選的目標波峰熔解溫度相差約3℃,因此可明顯區別該產物為非專一性PCR產物,不影響實際檢測時的判斷。 The RAPD-HRM and HRM-PCR products were confirmed by agarose gel electrophoresis. As shown in FIGS. 4C and 4D, amplicons of 702 bp and 687 bp in size were confirmed, which were consistent with the target DNA molecular weight. Although the control group without template also has a band of about 600bp in Figure 4D, the corresponding peak of the PCR product on the HRM melting curve differs from the melting temperature of the target peak used for screening by about 3°C, so it can be obvious The difference between this product and the non-specific PCR product does not affect the judgment during actual detection.

實施例7:半定量分析 Example 7: Semi-quantitative analysis

取不同濃度的前述實施例3的人類糞便大腸桿菌基因組DNA,以和實施例5相同的條件進行HRM反應後,用Graph Pad Prism version 7(GraphPad Software,CA)進行半定量分析。以DNA濃度為X軸,螢光訊號(dF/dt)為Y軸,將分析數據表示為XY圖中的平均值±SD,並計算Spearman相關係數(r)和單純概率檢定(one-tailed probability test)的計算值P。若P值<0.05,則認為具有統計學意義。 The human fecal E. coli genomic DNA of the aforementioned Example 3 was collected at different concentrations, and subjected to an HRM reaction under the same conditions as in Example 5, and then subjected to semi-quantitative analysis using Graph Pad Prism version 7 (GraphPad Software, CA). Taking the DNA concentration as the X axis and the fluorescent signal (dF/dt) as the Y axis, the analysis data is expressed as the average ±SD in the XY graph, and the Spearman correlation coefficient (r) and one-tailed probability test (one-tailed probability test) are calculated test) calculated value P. If the P value is <0.05, it is considered statistically significant.

不同濃度的大腸桿菌DNA(90ng、180ng、270ng及360ng)進行RAPD-HRM定量分析的結果如圖3C所示,螢光訊號隨著大腸桿菌DNA濃度增加而提高,兩者為正相關,Spearman相關係數(r)和單尾概率檢驗(one-tailed probability test)(p)的計算值為r=0.9,P<0.05,N=5。此結果顯示使用3H引子進行RAPD-HRM分析,可半定量受測檢體中的大腸桿菌。 The results of RAPD-HRM quantitative analysis of different concentrations of E. coli DNA (90ng, 180ng, 270ng and 360ng) are shown in Figure 3C. The fluorescent signal increases with the increase of E. coli DNA concentration, and the two are positively correlated, Spearman correlation The calculated values of the coefficient (r) and the one-tailed probability test (p) are r=0.9, P<0.05, and N=5. This result shows that RAPD-HRM analysis using 3H primers can semi-quantitate E. coli in the test specimen.

實施例8:RAPD-HRM對大腸桿菌檢測的敏感度 Example 8: Sensitivity of RAPD-HRM to E. coli detection

首先,根據Haase等人的研究(Haase et al.,2017),修改條件後計算實施例3中萃取的DNA源自多少原始菌落型成單位(CFU)。以曙紅亞甲基藍瓊脂篩選純化大腸桿菌後,使用接種環挑選純化的大腸桿菌,接種至LB Broth(Neogen,Lansing,MI,USA)中,在37℃下培養12小時,培養後製備一組10倍序列稀釋液,將10μL的各稀釋液接種於LB Agar(MDBio,Inc,Xinbei,Taiwan)平板上,並在37℃下培養12小時。藉由計數序列稀釋液所培養的菌落,觀察到區分的菌落,並用於計算原始溶液中存活細菌的數量。如圖5所示,計算結果顯示1ml原始菌液 中含有1.48×105個菌落形成單位,並含有105,652ng的大腸桿菌DNA。由於前述實施例6的PCR反應中,每反應所需DNA量為90ng,因此,進一步回推,可求出在使用3H引子進行RAPD-HRM檢測時,檢測敏感度為每ml大腸桿菌1.26×102個菌落形成單位。比起先前技術中利用傳統PCR在糞便樣本檢測大腸桿菌的已知最高敏感度,即102至103個菌落形成單位(Dutta et al.2001;Persson et al.2007),毫不遜色。 First, according to the research by Haase et al. (Haase et al., 2017), after modifying the conditions, calculate how many original colony type units (CFU) the DNA extracted in Example 3 originated from. After screening and purifying E. coli with eosin methylene blue agar, the purified E. coli was selected using an inoculation loop, inoculated into LB Broth (Neogen, Lansing, MI, USA), cultured at 37°C for 12 hours, and a group of 10 times was prepared after cultivation For serial dilutions, 10 μL of each dilution was inoculated on LB Agar (MDBio, Inc, Xinbei, Taiwan) plates and incubated at 37° C. for 12 hours. By counting the colonies cultured in serial dilutions, differentiated colonies were observed and used to count the number of viable bacteria in the original solution. 5, the calculation results show that the original 1ml broth containing 1.48 × 10 5 colony forming units, and containing the E. coli DNA 105,652ng. Since the amount of DNA required for each reaction in the PCR reaction in the foregoing Example 6 was 90 ng, further backstepping can be used to determine the detection sensitivity of 1.26×10 per ml of E. coli when using 3H primers for RAPD-HRM detection. 2 colony forming units. Compared to the prior art known to the highest sensitivity of detection of E. coli in fecal samples, i.e., 102 to 103 colony forming units (Dutta et al.2001; Persson et al.2007 ) the PCR using a conventional, favorably.

實施例9:致病性大腸桿菌菌株687bp片段的檢測 Example 9: Detection of 687bp fragment of pathogenic E. coli strain

以與實施例3相同的方法,從UMN026、O83:H1、O104:H4、O157:H7及O169:H41五個已知致病性大腸桿菌菌株抽取基因組DNA,此等菌株係由美國典型培養物保藏中心取得。採用本發明第二組引子(分別具有SEQ ID No:3及SEQ ID No:4所示核酸序列)或第三引子組(分別具有SEQ ID No:5及SEQ ID No:6的核酸序列),與表3所示的標記不同螢光的探針(分別根據SEQ ID No:10至SEQ ID No:16的核酸序列設計),進行透過SNP基因型檢測的即時PCR。每管25μL的PCR反應液包含:12.5μl PCR master mix(Type-it Fast SNP Probe PCR Kit,Qiagen)、0.9μM引子、0.2μM探針。PCR反應在Rotor-Gene Q即時聚合酶連鎖反應儀(QIAGEN,Hilden,Germany)通過以下反應條件進行:95℃5分鐘;95℃15秒、60℃30秒,以此重覆36個循環。反應後確認各菌株的各探針螢光標記是否為陽性訊號。 In the same way as in Example 3, genomic DNA was extracted from five known pathogenic E. coli strains UMN026, O83:H1, O104:H4, O157:H7 and O169:H41. Obtained by the deposit center. Using the second set of primers of the present invention (having the nucleic acid sequences shown in SEQ ID No: 3 and SEQ ID No: 4 respectively) or the third set of primers (having the nucleic acid sequences of SEQ ID No: 5 and SEQ ID No: 6 respectively), Probes with fluorescent labels different from those shown in Table 3 (designed according to the nucleic acid sequences of SEQ ID No: 10 to SEQ ID No: 16, respectively) were subjected to real-time PCR through SNP genotype detection. Each 25 μL PCR reaction solution contains: 12.5 μl PCR master mix (Type-it Fast SNP Probe PCR Kit, Qiagen), 0.9 μM primer, and 0.2 μM probe. The PCR reaction was performed in the Rotor-Gene Q real-time polymerase chain reaction apparatus (QIAGEN, Hilden, Germany) under the following reaction conditions: 95°C for 5 minutes; 95°C for 15 seconds, and 60°C for 30 seconds, thereby repeating 36 cycles. After the reaction, confirm whether the fluorescent label of each probe of each strain is a positive signal.

Figure 107145335-A0101-12-0018-5
Figure 107145335-A0101-12-0018-5
Figure 107145335-A0101-12-0019-6
Figure 107145335-A0101-12-0019-6

【產業利用可能性】【Possibility of industrial utilization】

本發明提供了一種在檢測大腸桿菌上可應用的方法與分子標記,其係可同時檢測大腸桿菌及多種特定型致病性大腸桿菌的技術手段,且敏感度高,可達1.26×102個菌落形成單位。在時間與勞力成本的觀點上,本發明所使用的方法可直接從檢體快速檢測大腸桿菌,且實驗操作難度相對較低,為理想的技術手段。 The invention provides an applicable method and molecular marker for detecting E. coli, which is a technical method that can simultaneously detect E. coli and a variety of specific pathogenic E. coli, and has high sensitivity, up to 1.26×10 2 Colony forming unit. From the viewpoint of time and labor cost, the method used in the present invention can quickly detect E. coli directly from the specimen, and the experimental operation is relatively difficult, which is an ideal technical means.

進一步地,本發明所提供的分子標記,即大腸桿菌的c-末端區域谷氨酸-氨-連接酶腺苷酰轉移酶的核酸序列,適合用於發展檢驗微生物之試劑或套組,尤其是檢驗病原性大腸桿菌的試劑或套組。 Further, the molecular marker provided by the present invention, that is, the nucleic acid sequence of the glutamic acid-amino-ligase adenylyl transferase in the c-terminal region of E. coli, is suitable for developing reagents or kits for testing microorganisms, especially Reagents or kits for testing for pathogenic E. coli.

<110> National Pingtung University of Science and Technology <110> National Pingtung University of Science and Technology

<120> 用於檢測大腸桿菌之方法以及使用之分子標記 <120> Methods for detecting E. coli and molecular markers used

<160> 17 <160> 17

<170> PatentIn version 3.5 <170> PatentIn version 3.5

<210> 1 <210> 1

<211> 20 <211> 20

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> SCAR Foward Primer <223> SCAR Foward Primer

<400> 1

Figure 107145335-A0101-12-0020-7
<400> 1
Figure 107145335-A0101-12-0020-7

<210> 2 <210> 2

<211> 16 <211> 16

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> SCAR Reverse Primer <223> SCAR Reverse Primer

<400> 2

Figure 107145335-A0101-12-0020-8
<400> 2
Figure 107145335-A0101-12-0020-8

<210> 3 <210> 3

<211> 20 <211> 20

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> Probe Primer 1F <223> Probe Primer 1F

<400> 3

Figure 107145335-A0101-12-0021-9
<400> 3
Figure 107145335-A0101-12-0021-9

<210> 4 <210> 4

<211> 17 <211> 17

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> Probe Primer 1R <223> Probe Primer 1R

<400> 4

Figure 107145335-A0101-12-0021-10
<400> 4
Figure 107145335-A0101-12-0021-10

<210> 5 <210> 5

<211> 16 <211> 16

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> Probe Primer 2F <223> Probe Primer 2F

<400> 5

Figure 107145335-A0101-12-0021-11
<400> 5
Figure 107145335-A0101-12-0021-11

<210> 6 <210> 6

<211> 16 <211> 16

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> Probe Primer 2R <223> Probe Primer 2R

<400> 6

Figure 107145335-A0101-12-0021-12
<400> 6
Figure 107145335-A0101-12-0021-12

<210> 7 <210> 7

<211> 20 <211> 20

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> ETA Forward Primer <223> ETA Forward Primer

<400> 7

Figure 107145335-A0101-12-0022-13
<400> 7
Figure 107145335-A0101-12-0022-13

<210> 8 <210> 8

<211> 20 <211> 20

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> ETA Reverse Primer <223> ETA Reverse Primer

<400> 8

Figure 107145335-A0101-12-0022-14
<400> 8
Figure 107145335-A0101-12-0022-14

<210> 9 <210> 9

<211> 702 <211> 702

<212> DNA <212> DNA

<213> Escherichia coli <213> Escherichia coli

<220> <220>

<221> CDS <221> CDS

<222> (7)...(693) <222> (7)...(693)

<223> c-terminal part of glutamate-ammonia-ligase <223> c-terminal part of glutamate-ammonia-ligase

<400> 9

Figure 107145335-A0101-12-0022-15
Figure 107145335-A0101-12-0023-16
<400> 9
Figure 107145335-A0101-12-0022-15
Figure 107145335-A0101-12-0023-16

<210> 10 <210> 10

<211> 10 <211> 10

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> UMN026 Probe 1 <223> UMN026 Probe 1

<400> 10

Figure 107145335-A0101-12-0023-17
<400> 10
Figure 107145335-A0101-12-0023-17

<210> 11 <210> 11

<211> 24 <211> 24

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> UMN026 Probe 2 <223> UMN026 Probe 2

<400> 11

Figure 107145335-A0101-12-0023-18
<400> 11
Figure 107145335-A0101-12-0023-18

<210> 12 <210> 12

<211> 19 <211> 19

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> O83:H1 Probe <223> O83: H1 Probe

<400> 12

Figure 107145335-A0101-12-0024-19
<400> 12
Figure 107145335-A0101-12-0024-19

<210> 13 <210> 13

<211> 22 <211> 22

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> O104:H4 Probe <223> O104: H4 Probe

<400> 13

Figure 107145335-A0101-12-0024-20
<400> 13
Figure 107145335-A0101-12-0024-20

<210> 14 <210> 14

<211> 17 <211> 17

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> O157:H7 Probe 1 <223> O157: H7 Probe 1

<400> 14

Figure 107145335-A0101-12-0024-21
<400> 14
Figure 107145335-A0101-12-0024-21

<210> 15 <210> 15

<211> 11 <211> 11

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> O157:H7 Probe 2 <223> O157: H7 Probe 2

<400> 15

Figure 107145335-A0101-12-0024-22
<400> 15
Figure 107145335-A0101-12-0024-22

<210> 16 <210> 16

<211> 22 <211> 22

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> O169:H41 Probe <223> O169: H41 Probe

<400> 16

Figure 107145335-A0101-12-0025-23
<400> 16
Figure 107145335-A0101-12-0025-23

<210> 17 <210> 17

<211> 14 <211> 14

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> 3H Primer <223> 3H Primer

<400> 17

Figure 107145335-A0101-12-0025-24
<400> 17
Figure 107145335-A0101-12-0025-24

Claims (8)

一種用於檢測大腸桿菌(Escherichia coli)的分子標記,其特徵係其包含大腸桿菌的c-末端區域谷氨酸-氨-連接酶腺苷酰轉移酶基因的核酸序列,且該序列如SEQ ID No:9中第7~693個鹼基所示。 A molecular marker for detecting Escherichia coli , which is characterized in that it contains the nucleic acid sequence of the glutamic acid-amino-ligase adenylyl transferase gene of the c-terminal region of E. coli, and the sequence is as SEQ ID No: 7 to 693 bases in 9. 一種用於檢測大腸桿菌的引子組,其特徵係前述引子組係選自第一引子組、第二引子組及第三引子組所成之群,且前述第一引子組分別具有SEQ ID No:1及SEQ ID No:2之序列;前述第二引子組分別具有SEQ ID No:3及SEQ ID No:4之序列;前述第三引子組分別具有SEQ ID No:5及SEQ ID No:6的核酸序列。 A primer set for detecting E. coli, characterized in that the primer set is selected from the group consisting of a first primer set, a second primer set, and a third primer set, and the first primer set has SEQ ID No: 1 and SEQ ID No: 2 sequences; the aforementioned second primer set has the sequences of SEQ ID No: 3 and SEQ ID No: 4, respectively; the aforementioned third primer set has the sequences of SEQ ID No: 5 and SEQ ID No: 6 respectively Nucleic acid sequence. 一種用於檢測致病性大腸桿菌的探針,其特徵係其序列選自下述序列所成之群:用於檢測腸道外感染大腸桿菌(ExPEC)的SEQ ID No:10及SEQ ID No:11;用於檢測附侵襲性大腸桿菌(AIEC)的SEQ ID No:12;用於檢測腸出血性大腸桿菌(EHEC)的SEQ ID No:13、SEQ ID No:14、SEQ ID No:15:用於檢測產毒性大腸桿菌(ETEC)的SEQ ID No:16。 A probe for detecting pathogenic Escherichia coli, characterized in that its sequence is selected from the group consisting of SEQ ID No: 10 and SEQ ID No for detecting extraintestinal infection of E. coli (ExPEC): 11; SEQ ID No: 12 for detecting invasive E. coli (AIEC); SEQ ID No: 13, SEQ ID No: 14, SEQ ID No: 15 for detecting enterohemorrhagic E. coli (EHEC): SEQ ID No: 16 for the detection of Toxigenic E. coli (ETEC). 一種檢測大腸桿菌(Escherichia coli)的方法,其特徵係其步驟包含:(a)對一受測檢體,使用第一引子組來進行聚合酶連鎖反應,檢測該反應產物是否含有大腸桿菌的c-末端區域谷氨酸-氨-連接酶腺苷酰轉移酶基因的核酸序列,反應產物含有大腸桿菌的c-末端區域谷氨酸-氨-連接酶腺苷酰轉移酶基因的核酸序列,即檢體中檢測到大腸桿菌的存在;其中,第一引子組分別具有SEQ ID No:1及SEQ ID No:2之序列。 A method for detecting Escherichia coli , characterized in that the steps include: (a) For a test sample, the first primer set is used to perform a polymerase chain reaction to detect whether the reaction product contains E. coli c -The nucleic acid sequence of the glutamic acid-amino-ligase adenylyl transferase gene in the terminal region, and the reaction product contains the nucleic acid sequence of the glutamic acid-amino-ligase adenylyl transferase gene in the c-terminal region of E. coli, namely The presence of E. coli was detected in the specimen; where the first primer set had the sequences of SEQ ID No: 1 and SEQ ID No: 2, respectively. 如申請專利範圍第4項所記載之方法,其中,前述方法的步驟進一步包含:(b)使用3H引子對前述檢體進行聚合酶連鎖反應,檢測反應產物是否含有702個鹼基對大小的擴增子,反應產物含有702個鹼基對大小的擴增子,即檢體中檢測到大腸桿菌的存在;且,3H引子具有SEQ ID No:17之序列。 The method as described in item 4 of the patent application scope, wherein the steps of the aforementioned method further include: (b) performing a polymerase chain reaction on the aforementioned sample using a 3H primer to detect whether the reaction product contains an expansion of 702 base pairs in size Increaser, the reaction product contains an amplicon with a size of 702 base pairs, that is, the presence of E. coli is detected in the sample; and, the 3H primer has the sequence of SEQ ID No:17. 如申請專利範圍第4或5項所記載之方法,其中,檢測前述核酸序列與擴增子的方法,係選自核酸染色、高分辨率熔解曲線分析(HRM)中至少一種。 The method as described in item 4 or 5 of the patent application scope, wherein the method for detecting the aforementioned nucleic acid sequence and amplicon is at least one selected from nucleic acid staining and high-resolution melting curve analysis (HRM). 一種檢測大腸桿菌的套組,其特徵係該套組包含一受測檢體、以及一組以上的引子組,前述引子組係選自第一引子組、第二引子組、第三引子組及3H引子所成之群,其中,前述第一引子組分別具有SEQ ID No:1及SEQ ID No:2之序列;前述第二引子組分別具有SEQ ID No:3及SEQ ID No:4之序列;前述第三引子組分別具有SEQ ID No:5及SEQ ID No:6之序列;前述3H引子具有SEQ ID No:17之序列。 A kit for detecting Escherichia coli, characterized in that the kit includes a test specimen and more than one primer set, the primer set is selected from a first primer set, a second primer set, a third primer set and A group of 3H primers, wherein the first primer set has the sequences of SEQ ID No: 1 and SEQ ID No: 2, respectively; the second primer set has the sequences of SEQ ID No: 3 and SEQ ID No: 4 respectively The aforementioned third primer set has the sequences of SEQ ID No: 5 and SEQ ID No: 6, respectively; the aforementioned 3H primer has the sequence of SEQ ID No: 17. 如申請專利範圍第7項所記載之套組,其中,該套組進一步包含一個以上的探針,且前述探針可檢測致病性大腸桿菌在c-末端區域谷氨酸-氨-連接酶腺苷酰轉移酶基因上具有單一核苷酸多型性的序列。 The kit as described in item 7 of the patent application scope, wherein the kit further includes more than one probe, and the aforementioned probe can detect pathogenic E. coli in the c-terminal region glutamate-ammonia-ligase A single nucleotide polymorphism in the adenylyltransferase gene.
TW107145335A 2018-12-14 2018-12-14 Methods for detecting E. coli and molecular markers used TWI692528B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107145335A TWI692528B (en) 2018-12-14 2018-12-14 Methods for detecting E. coli and molecular markers used

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107145335A TWI692528B (en) 2018-12-14 2018-12-14 Methods for detecting E. coli and molecular markers used

Publications (2)

Publication Number Publication Date
TWI692528B true TWI692528B (en) 2020-05-01
TW202022120A TW202022120A (en) 2020-06-16

Family

ID=71895844

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107145335A TWI692528B (en) 2018-12-14 2018-12-14 Methods for detecting E. coli and molecular markers used

Country Status (1)

Country Link
TW (1) TWI692528B (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Chen, Y. C., et al. "C-Terminal Part of Glutamate-Ammonia-Ligase Adenyltransferase Gene Identified by RAPD-HRM with 3H Primer for E. Coli Screening." Folia biologica 65.2 (2019): 88-100.
Harrison, Lucas B., and Nancy D. Hanson. "High-resolution melting analysis for rapid detection of sequence type 131 Escherichia coli." Antimicrobial agents and chemotherapy 61.6 (2017): e00265-17.
Packey, Christopher D., et al. "Molecular detection of bacterial contamination in gnotobiotic rodent units." Gut microbes 4.5 (2013): 361-370.
Packey, Christopher D., et al. "Molecular detection of bacterial contamination in gnotobiotic rodent units." Gut microbes 4.5 (2013): 361-370. Harrison, Lucas B., and Nancy D. Hanson. "High-resolution melting analysis for rapid detection of sequence type 131 Escherichia coli." Antimicrobial agents and chemotherapy 61.6 (2017): e00265-17. Chen, Y. C., et al. "C-Terminal Part of Glutamate-Ammonia-Ligase Adenyltransferase Gene Identified by RAPD-HRM with 3H Primer for E. Coli Screening." Folia biologica 65.2 (2019): 88-100. *

Also Published As

Publication number Publication date
TW202022120A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
JP5238248B2 (en) Method for quantitative analysis of microorganisms targeting rRNA
Pal et al. Rapid detection and differentiation of Erysipelothrix spp. by a novel multiplex real‐time PCR assay
CN107746879A (en) Detect RPA primers, probe, kit and the detection method of staphylococcus aureus
Lowe et al. PCR-based Methodologies Used to Detect and Differentiate the Burkholderia pseudomallei complex: B. pseudomallei, B. mallei, and B. thailandensis
US20090226895A1 (en) Method of detecting vibrio parahaemolyticus via real-time PCR-hybridization
CN116042902A (en) Real-time fluorescent nucleic acid isothermal amplification detection kit for simultaneously detecting six candida species and special primer and probe thereof
JP5961171B2 (en) Method for detecting toxin-producing Clostridium difficile
CN102628042B (en) Specific ribonucleotide of legionella pneumophilia O9 wzm gene and application thereof
JP5048622B2 (en) PCR primers for detection of lactic acid bacteria
CN115747361B (en) Real-time fluorescence MIRA and MIRA-LFD primer group for detecting streptococcus iniae and detection method
TWI692528B (en) Methods for detecting E. coli and molecular markers used
CN102936621B (en) Bacillus cereus detection method and kit
KR101752274B1 (en) Primer set for high sensitive real-time multiplex loop-mediated isothermal amplification reaction for determining type of shiga toxin genes stx1 and stx2 of Enterohemorrhagic Escherichia coli, and method for determining type of shiga toxin genes of Enterohemorrhagic Escherichia coli using the same
CN114134218A (en) Fluorescent detection method based on CRISPR-Cas12a
TWI658048B (en) Specific primers for detection of photobacterium damselae subsp. piscicida and the method of use thereof
JP2007075017A (en) Method for detecting campylobacter jejuni
KR20090122554A (en) Primer set and probe for detecting salmonella typhimurium
K Ibraheim et al. Conventional and molecular detection of Pasteurella multocida in outbreak of respiratory tract infection of sheep and goats in Basrah Province
JP2007189980A (en) Primer for detecting staphylococcus aureus and detection method using the same
CN104032000A (en) Method and kit for detecting bacillus cereus
JP2014064543A (en) Oligonucleotides for detecting and/or quantifying bifidobacterium longum
JP2005110545A (en) Method for quickly detecting pathogenic bacteria for respiratory tract infection and kit therefor
JP2005525804A (en) Microbial identification method using in situ hybridization and flow cytometry
CN110512013B (en) Method for identifying three corynebacteria by using high-resolution melting curve method
JP2007075018A (en) Method for detecting campylobacter coli