TWI692062B - Circuit structure and method of manufacturing the same - Google Patents

Circuit structure and method of manufacturing the same Download PDF

Info

Publication number
TWI692062B
TWI692062B TW107138777A TW107138777A TWI692062B TW I692062 B TWI692062 B TW I692062B TW 107138777 A TW107138777 A TW 107138777A TW 107138777 A TW107138777 A TW 107138777A TW I692062 B TWI692062 B TW I692062B
Authority
TW
Taiwan
Prior art keywords
layer
conductive
pad
circuit structure
top surface
Prior art date
Application number
TW107138777A
Other languages
Chinese (zh)
Other versions
TW202018862A (en
Inventor
吳金能
朱彥瑞
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW107138777A priority Critical patent/TWI692062B/en
Application granted granted Critical
Publication of TWI692062B publication Critical patent/TWI692062B/en
Publication of TW202018862A publication Critical patent/TW202018862A/en

Links

Images

Abstract

Provided is a circuit structure including a substrate, a pad, a dielectric layer, a conductive layer, an adhesion layer, and a conductive bump. The pad is disposed on the substrate. The dielectric layer is disposed on the substrate and exposes a portion of the pad. The conductive layer contacts the pad and extends from the pad to cover a top surface of the dielectric layer. The adhesion layer is disposed between the dielectric layer and the conductive layer. The conductive bump extends from a top surface of the conductive layer upward. The conductive bump and the conductive layer are integrally formed. A method of manufacturing the circuit structure is also provided.

Description

線路結構及其製造方法Circuit structure and its manufacturing method

本發明是有關於一種半導體結構及其製造方法,且特別是有關於一種線路結構及其製造方法。 The invention relates to a semiconductor structure and a manufacturing method thereof, and particularly relates to a circuit structure and a manufacturing method thereof.

近年來,由於各種電子構件(例如電晶體、二極體、電阻器、電容器等)的積集度不斷提升,半導體工業因而快速成長。這種積集度的提升,大多是因為最小特徵尺寸的持續縮小,使得更多的構件整合在一特定的區域中。 In recent years, the semiconductor industry has grown rapidly due to the increasing accumulation of various electronic components (such as transistors, diodes, resistors, capacitors, etc.). This increase in accumulation is mostly due to the continuous reduction in the minimum feature size, which allows more components to be integrated in a specific area.

相較於傳統的封裝結構,這些尺寸較小的電子構件具有較小的面積,因而需要較小的封裝結構。舉例來說,半導體晶片或晶粒具有越來越多的輸入/輸出(I/O)焊墊,重佈線層(redistribution layer,RDL)可將半導體晶片或晶粒的原始I/O焊墊的位置重新佈局於半導體晶片或晶粒的周圍,以增加I/O數量。 Compared with the conventional packaging structure, these smaller electronic components have a smaller area, so a smaller packaging structure is required. For example, semiconductor wafers or die have more and more input/output (I/O) pads, and a redistribution layer (RDL) can replace the original I/O pads of the semiconductor wafer or die The position is relocated around the semiconductor wafer or die to increase the number of I/O.

然而,在傳統晶圓級封裝製程中,重佈線層結構與銅柱凸塊都是重複使用濺鍍、電鍍、微影、蝕刻等製程來形成多層結構。多道製程除了步驟繁瑣之外,各製程步驟之間的良率損失、 材料浪費以及機台多樣化皆會造成製造成本高漲。另外,多層結構中的各層間會有黏著性的問題,且不同金屬材料之間也容易產生金屬間化合物(intermetallic compound,IMC)。因此,傳統重佈線層結構與銅柱凸塊之間的界面常在可靠度測試時發生剝離和斷裂的問題。 However, in the traditional wafer-level packaging process, the redistribution layer structure and the copper pillar bumps are repeatedly used in sputtering, electroplating, lithography, etching and other processes to form a multilayer structure. In addition to the cumbersome steps in the multi-process, the yield loss between each process step, The waste of materials and the diversification of machines will cause high manufacturing costs. In addition, there is a problem of adhesion between layers in the multilayer structure, and intermetallic compounds (IMC) are also easily generated between different metal materials. Therefore, the interface between the traditional redistribution layer structure and the copper pillar bumps often suffers from peeling and cracking during reliability testing.

本發明提供一種線路結構,包括:基底、接墊、介電層、導電層、黏著層以及導電凸塊。接墊配置在基底上。介電層配置在基底上,且暴露出部分接墊。導電層接觸接墊且自接墊延伸覆蓋介電層的頂面。黏著層配置在介電層與導電層之間。導電凸塊自導電層的頂面向上延伸。導電凸塊與導電層為一體成型。 The invention provides a circuit structure, including: a substrate, a pad, a dielectric layer, a conductive layer, an adhesive layer and a conductive bump. The pad is arranged on the substrate. The dielectric layer is disposed on the substrate and exposes some pads. The conductive layer contacts the pad and extends from the pad to cover the top surface of the dielectric layer. The adhesive layer is disposed between the dielectric layer and the conductive layer. The conductive bump extends upward from the top surface of the conductive layer. The conductive bump and the conductive layer are integrally formed.

本發明提供一種線路結構的製造方法,其步驟如下。在基底上形成接墊。在基底上形成介電層。介電層具有開口,其暴露出部分接墊。在介電層上形成黏著層。黏著層覆蓋開口的側壁且延伸覆蓋介電層的頂面。藉由第一3D列印技術形成線路層。線路層包括:導電層與導電凸塊。導電層接觸接墊且自接墊沿著第一方向延伸覆蓋黏著層的頂面。導電凸塊自黏著層上的導電層的第一頂面沿著第二方向延伸。第一方向與第二方向不同。在線路層上形成鈍化層。鈍化層覆蓋導電層的第二頂面且覆蓋導電凸塊的部分側壁。在導電凸塊上形成焊料層。 The invention provides a method for manufacturing a circuit structure, the steps of which are as follows. A pad is formed on the substrate. A dielectric layer is formed on the substrate. The dielectric layer has an opening that exposes a portion of the pad. An adhesive layer is formed on the dielectric layer. The adhesive layer covers the sidewall of the opening and extends to cover the top surface of the dielectric layer. The circuit layer is formed by the first 3D printing technology. The circuit layer includes: a conductive layer and a conductive bump. The conductive layer contacts the pad and extends from the pad along the first direction to cover the top surface of the adhesive layer. The conductive bump extends from the first top surface of the conductive layer on the adhesive layer along the second direction. The first direction is different from the second direction. A passivation layer is formed on the circuit layer. The passivation layer covers the second top surface of the conductive layer and covers part of the side walls of the conductive bumps. A solder layer is formed on the conductive bump.

基於上述,本發明藉由3D列印技術形成線路層(其包括 導電層與導電凸塊),以使導電層與導電凸塊為一體成型。也就是說,導電層與導電凸塊是以相同製程步驟且以相同材料來形成,藉此避免不同材料之間的黏著性與IMC的問題。如此一來,本發明便可大幅增加線路結構中的導電層與導電凸塊之間的結構強度,進而提升產品可靠度。另外,本發明之線路結構的製造方法亦具有製程步驟簡單的優點,進而提升產品的商業競爭力。 Based on the above, the present invention uses 3D printing technology to form a circuit layer (which includes Conductive layer and conductive bump), so that the conductive layer and the conductive bump are integrally formed. That is to say, the conductive layer and the conductive bump are formed in the same process steps and in the same material, thereby avoiding the problems of adhesion and IMC between different materials. In this way, the present invention can greatly increase the structural strength between the conductive layer and the conductive bumps in the circuit structure, thereby improving product reliability. In addition, the manufacturing method of the circuit structure of the present invention also has the advantage of simple process steps, thereby enhancing the commercial competitiveness of the product.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more obvious and understandable, the embodiments are specifically described below in conjunction with the accompanying drawings for detailed description as follows.

100:基底 100: base

102:接墊 102: pad

102t:接墊的頂面 102t: the top surface of the pad

104:介電層 104: dielectric layer

104t:介電層的頂面 104t: the top surface of the dielectric layer

105:開口 105: opening

105s:開口的側壁 105s: open side wall

106:黏著層 106: Adhesive layer

106t:黏著層的頂面 106t: top surface of the adhesive layer

108:部分 108: part

110:線路層 110: line layer

112:導電層 112: conductive layer

112a:第一部分 112a: Part One

112b:第二部分 112b: Part Two

112c:第三部分 112c: Part III

112t、112t’:導電層的頂面 112t, 112t’: the top surface of the conductive layer

113:虛擬界面 113: Virtual interface

114:導電凸塊 114: conductive bump

114s:導電凸塊的部分側壁 114s: part of the side wall of the conductive bump

115:導電顆粒 115: conductive particles

116:鈍化層 116: Passivation layer

118:焊料層 118: solder layer

202、212、222、232:噴頭 202, 212, 222, 232: nozzle

204、224:絕緣墨水 204, 224: Insulating ink

214、234:導電墨水 214, 234: conductive ink

D1:第一方向 D1: First direction

D2:第二方向 D2: Second direction

圖1A至圖1E是依照本發明一實施例的一種線路結構的製造流程的剖面示意圖。 1A to 1E are schematic cross-sectional views of a manufacturing process of a circuit structure according to an embodiment of the invention.

圖2是圖1C的線路結構的一部分的剖面放大圖。 FIG. 2 is an enlarged cross-sectional view of a portion of the line structure of FIG. 1C.

參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之元件標號表示相同或相似之元件,以下段落將不再一一贅述。 The invention is explained more fully with reference to the drawings of this embodiment. However, the present invention can also be embodied in various forms, and should not be limited to the embodiments described herein. The thickness of layers and regions in the drawings will be exaggerated for clarity. The same or similar element reference numbers indicate the same or similar elements, and the following paragraphs will not repeat them one by one.

圖1A至圖1E是依照本發明一實施例的一種線路結構的製造流程的剖面示意圖。圖2是圖1C的線路結構的一部分的剖面 放大圖。於此,本實施例所繪示的線路結構可以是重佈線層(RDL)結構,但本發明不以此為限。在其他實施例中,所述線路結構也可以是後段(back-end-of-line,BEOL)製程中的內連線結構、電路板中的線路結構或類似結構。 1A to 1E are schematic cross-sectional views of a manufacturing process of a circuit structure according to an embodiment of the invention. 2 is a cross-section of a portion of the circuit structure of FIG. 1C Zoom in. Here, the circuit structure illustrated in this embodiment may be a redistribution layer (RDL) structure, but the invention is not limited thereto. In other embodiments, the circuit structure may also be an interconnect structure in a back-end-of-line (BEOL) process, a circuit structure in a circuit board, or the like.

請參照圖1A,本實施例提供一種線路結構的製造方法,其步驟如下。首先,提供基底100。在一實施例中,基底100包括半導體材料。具體來說,基底100可由選自於Si、Ge、SiGe、GaP、GaAs、SiC、SiGeC、InAs與InP所組成的族群中的至少一種半導體材料形成。在本實施例中,基底100可以是矽基底。此外,基底100亦可包括絕緣體上有矽基底。雖然圖1A中並未繪示出任何元件配置在基底100中,但本實施例之基底100可具有主動元件(例如是電晶體、二極體等)、被動元件(例如是電容器、電感器、電阻器等)、或其組合於其中。在其他實施例中,基底100可具有例如邏輯元件、記憶元件或其組合於其中。 Referring to FIG. 1A, this embodiment provides a method for manufacturing a circuit structure, and the steps are as follows. First, the substrate 100 is provided. In one embodiment, the substrate 100 includes semiconductor material. Specifically, the substrate 100 may be formed of at least one semiconductor material selected from the group consisting of Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs, and InP. In this embodiment, the substrate 100 may be a silicon substrate. In addition, the substrate 100 may also include a silicon substrate on the insulator. Although FIG. 1A does not show any components disposed in the substrate 100, the substrate 100 of this embodiment may have active components (such as transistors, diodes, etc.), passive components (such as capacitors, inductors, Resistors, etc.), or a combination thereof. In other embodiments, the substrate 100 may have, for example, logic elements, memory elements, or a combination thereof.

接著,在基底100上形成接墊102。在一實施例中,接墊102的材料包括金屬材料,其可例如是銅、鋁、金、銀、鎳、鈀或其組合。接墊102的形成方法包括物理氣相沉積法(physical vapor deposition,PVD)、鍍覆法(plating)或其組合。雖然圖1A中僅繪示一個接墊102,但本發明不限於此。在其他實施例中,接墊102的數量可依需求來調整。在一實施例中,接墊102可與基底100中的元件(未繪示)電性連接。 Next, the pad 102 is formed on the substrate 100. In an embodiment, the material of the pad 102 includes a metal material, which may be, for example, copper, aluminum, gold, silver, nickel, palladium, or a combination thereof. The forming method of the pad 102 includes physical vapor deposition (PVD), plating, or a combination thereof. Although only one pad 102 is shown in FIG. 1A, the invention is not limited thereto. In other embodiments, the number of pads 102 can be adjusted according to needs. In one embodiment, the pads 102 can be electrically connected to elements (not shown) in the substrate 100.

之後,在基底100上形成介電層104。介電層104覆蓋接 墊102的側壁且覆蓋接墊102的一部分頂面。如圖1A所示,介電層104具有開口105。開口105暴露出接墊102的另一部分頂面102t。在一實施例中,介電層104的材料包括介電材料,其可例如是氧化矽、氮化矽、氮氧化矽、聚醯亞胺(polyimide)或其組合。介電層104的形成方法包括PVD、化學氣相沉積法(chemical vapor deposition,CVD)或其組合。 After that, the dielectric layer 104 is formed on the substrate 100. The dielectric layer 104 covers the interface The side wall of the pad 102 also covers a part of the top surface of the pad 102. As shown in FIG. 1A, the dielectric layer 104 has an opening 105. The opening 105 exposes another part of the top surface 102t of the pad 102. In an embodiment, the material of the dielectric layer 104 includes a dielectric material, which may be, for example, silicon oxide, silicon nitride, silicon oxynitride, polyimide, or a combination thereof. The method for forming the dielectric layer 104 includes PVD, chemical vapor deposition (CVD), or a combination thereof.

請參照圖1B,藉由三維(three-dimensional,3D)列印技術來形成黏著層106。在一實施例中,所述3D列印技術包括噴印式列印製程(Ink Jet Printing process)、氣溶膠噴塗列印製程(Aerosol Jet Printing process)或其組合。以氣溶膠噴塗列印製程為例,其是使用氣溶噴嘴沉積頭(aerosol jet deposition head),以形成由外部的鞘流(outer sheath flow)和內部的充滿氣溶的載體流(inner aerosol-laden carrier flow)構成的環狀傳播噴嘴。在環狀氣溶噴射製程中,將欲沉積的材料的氣溶流(aerosol stream)集中且沉積在欲形成的表面上。上述步驟可稱為無罩幕中尺度材料沉積(Maskless Mesoscale Material Deposition,M3D),也就是說,其可在不使用罩幕的情況下進行沉積。 1B, the adhesive layer 106 is formed by three-dimensional (3D) printing technology. In one embodiment, the 3D printing technology includes an ink jet printing process (Ink Jet Printing process), an aerosol spray printing process (Aerosol Jet Printing process), or a combination thereof. Taking the aerosol spray printing process as an example, it uses an aerosol jet deposition head (aerosol jet deposition head) to form an outer sheath flow (outer sheath flow) and an inner aerosol-containing carrier flow (inner aerosol- laden carrier flow). In the ring-shaped aerosol spraying process, aerosol streams of materials to be deposited are concentrated and deposited on the surface to be formed. The above step may be referred to as Maskless Mesoscale Material Deposition (M3D), that is, it may be deposited without using a mask.

在本實施例中,如圖1B所示,藉由3D列印裝置的噴頭202沿著第一方向D1噴出絕緣墨水204至介電層104上。在一實施例中,絕緣墨水204包括絕緣材料與溶劑。舉例來說,所述絕緣材料可以是聚醯亞胺、聚氨酯(Polyurethane,PU)等類似絕緣材料。而所述溶劑可以是N-甲基吡咯烷酮 (N-Methyl-2-pyrrolidone,NMP)、丙二醇甲醚(Propylene glycol monomethyl ether,PGME)、乙二醇等類似溶劑。在固化(curing)步驟之後,絕緣墨水204固化為黏著層106。在替代實施例中,所述固化步驟包括藉由加熱或照光,以使絕緣墨水204中的溶劑揮發而固化。在此情況下,如圖1B所示,黏著層106覆蓋開口105的側壁105s且延伸覆蓋介電層104的頂面104t。在一實施例中,黏著層106包括絕緣聚合物,其可例如是聚醯亞胺、聚氨酯、環氧樹脂(SU-8)、黏合劑或其組合。在本實施例中,黏著層106可增加介電層104與後續形成的導電層112(如圖1C所示)之間的黏著性。在另一實施例中,黏著層106的最小厚度可介於0.8μm至3μm之間。但本發明不以此為限,在其他實施例中,可藉由列印積層的方式來增加黏著層106的厚度。 In the present embodiment, as shown in FIG. 1B, the nozzle 202 of the 3D printing device ejects the insulating ink 204 onto the dielectric layer 104 along the first direction D1. In one embodiment, the insulating ink 204 includes an insulating material and a solvent. For example, the insulating material may be polyimide, polyurethane (PU), or similar insulating materials. And the solvent may be N-methylpyrrolidone (N-Methyl-2-pyrrolidone, NMP), Propylene glycol monomethyl ether (PGME), ethylene glycol and other similar solvents. After the curing step, the insulating ink 204 is cured into the adhesive layer 106. In an alternative embodiment, the curing step includes heating or illuminating to evaporate and cure the solvent in the insulating ink 204. In this case, as shown in FIG. 1B, the adhesive layer 106 covers the side wall 105 s of the opening 105 and extends to cover the top surface 104 t of the dielectric layer 104. In one embodiment, the adhesive layer 106 includes an insulating polymer, which may be, for example, polyimide, polyurethane, epoxy resin (SU-8), adhesive, or a combination thereof. In this embodiment, the adhesive layer 106 can increase the adhesion between the dielectric layer 104 and the subsequently formed conductive layer 112 (as shown in FIG. 1C). In another embodiment, the minimum thickness of the adhesive layer 106 may be between 0.8 μm and 3 μm. However, the present invention is not limited to this. In other embodiments, the thickness of the adhesive layer 106 can be increased by printing a layer.

請參照圖1C,藉由3D列印技術來形成線路層110。線路層110包括導電層112與導電凸塊114。詳細地說,藉由3D列印裝置的噴頭212沿著第一方向D1噴出導電墨水214至黏著層106上以形成導電層112,再沿著第二方向D2噴出導電墨水214至導電層112上以形成導電凸塊114。在此情況下,如圖1C所示,導電層112自接墊102沿著第一方向D1延伸覆蓋黏著層106的頂面106t。具體來說,導電層112可包括第一部分112a、第二部分112b以及第三部分112c。第一部分112a覆蓋且接觸接墊102的頂面102t。第二部分112b覆蓋且接觸黏著層106的頂面106t。第三部分112c位於第一部分112a與第二部分112b之間。換言之,第三 部分112c可視為連接部或傾斜部,以連接第一部分112a與第二部分112b。另外,導電凸塊114自黏著層106上的導電層112的頂面112t(可視為第一頂面)沿著第二方向D2延伸。也就是說,導電凸塊114自第二部分112b的頂面112t向上延伸。在一實施例中,第一方向D1不同於第二方向D2。舉例來說,第一方向D1與第二方向D2互相垂直或正交。 1C, the circuit layer 110 is formed by 3D printing technology. The circuit layer 110 includes a conductive layer 112 and a conductive bump 114. In detail, the nozzle 212 of the 3D printing device ejects the conductive ink 214 onto the adhesive layer 106 along the first direction D1 to form the conductive layer 112, and then ejects the conductive ink 214 onto the conductive layer 112 along the second direction D2 To form the conductive bump 114. In this case, as shown in FIG. 1C, the conductive layer 112 extends from the pad 102 along the first direction D1 to cover the top surface 106 t of the adhesive layer 106. Specifically, the conductive layer 112 may include a first portion 112a, a second portion 112b, and a third portion 112c. The first portion 112a covers and contacts the top surface 102t of the pad 102. The second portion 112b covers and contacts the top surface 106t of the adhesive layer 106. The third portion 112c is located between the first portion 112a and the second portion 112b. In other words, the third The portion 112c can be regarded as a connecting portion or an inclined portion to connect the first portion 112a and the second portion 112b. In addition, the conductive bump 114 extends along the second direction D2 from the top surface 112t (considered to be the first top surface) of the conductive layer 112 on the adhesive layer 106. That is, the conductive bump 114 extends upward from the top surface 112t of the second portion 112b. In one embodiment, the first direction D1 is different from the second direction D2. For example, the first direction D1 and the second direction D2 are perpendicular or orthogonal to each other.

在一實施例中,導電層112的最小厚度可介於0.5μm至5μm之間;而導電凸塊114的最小高度介於20μm至30μm之間。但本發明不以此為限,在其他實施例中,可藉由列印積層的方式來增加導電層112的厚度或是增加導電凸塊114的高度。 In an embodiment, the minimum thickness of the conductive layer 112 may be between 0.5 μm and 5 μm; and the minimum height of the conductive bump 114 is between 20 μm and 30 μm. However, the present invention is not limited to this. In other embodiments, the thickness of the conductive layer 112 or the height of the conductive bump 114 can be increased by printing a layer.

在一實施例中,導電墨水214包括多個導電顆粒115與溶劑。所述溶劑包括N-甲基吡咯烷酮、丙二醇甲醚、乙二醇等類似溶劑。更進一步地說,請參照圖1C的線路層110的一部分108的放大圖2,在固化步驟後,線路層110(其包括導電層112與導電凸塊114)是由彼此接觸的多個導電顆粒115所構成。在一實施例中,導電顆粒115包括多個金屬奈米顆粒,其可例如是銀奈米顆粒、銅銀奈米顆粒、銅奈米顆粒或其組合。在另一實施例中,導電顆粒115的平均粒徑可介於5nm至1000nm之間。導電顆粒115的粒徑分布的標準差可介於4.55至43之間。在一些實施例中,線路層110是將粒徑一致的球狀導電顆粒115緊密地連接在一起,以達到均勻導電的功效。在其他實施例中,導電顆粒115亦可具有不同粒徑。 In one embodiment, the conductive ink 214 includes a plurality of conductive particles 115 and a solvent. The solvent includes N-methylpyrrolidone, propylene glycol methyl ether, ethylene glycol and the like. Furthermore, please refer to the enlarged view 2 of a portion 108 of the circuit layer 110 of FIG. 1C. After the curing step, the circuit layer 110 (which includes the conductive layer 112 and the conductive bump 114) is composed of a plurality of conductive particles in contact with each other 115 constituted. In an embodiment, the conductive particles 115 include a plurality of metal nano particles, which may be, for example, silver nano particles, copper silver nano particles, copper nano particles, or a combination thereof. In another embodiment, the average particle diameter of the conductive particles 115 may be between 5 nm and 1000 nm. The standard deviation of the particle size distribution of the conductive particles 115 may be between 4.55 and 43. In some embodiments, the circuit layer 110 tightly connects spherical conductive particles 115 with a uniform particle size to achieve uniform conduction. In other embodiments, the conductive particles 115 may also have different particle sizes.

另一方面,如圖2所示,導電層112與導電凸塊114共享(share)導電顆粒115中的至少一個或多個。也就是說,導電顆粒115中的至少一個或多個橫跨導電層112與導電凸塊114之間的虛擬界面113。需注意的是,導電層112與導電凸塊114之間實際上不具有界面。於此所述的虛擬界面113是為了清楚界定導電層112與導電凸塊114是一體成型而定義的。所謂的一體成型可視為以同一製程且以相同材料來形成。舉例來說,導電層112與導電凸塊114是以相同的3D列印技術且以相同的導電墨水214所形成。由於導電層112與導電凸塊114是一體成型的,所以,本實施例可避免不同材料之間的黏著性與IMC的問題。因此,本實施例可大幅增加導電層112與導電凸塊114之間的結構強度,進而提升產品可靠度。也就是說,相較於傳統RDL結構,本實施例的導電層112與導電凸塊114之間的黏著性較強,而不易剝離或斷裂。 On the other hand, as shown in FIG. 2, the conductive layer 112 and the conductive bump 114 share at least one or more of the conductive particles 115. That is, at least one or more of the conductive particles 115 span the virtual interface 113 between the conductive layer 112 and the conductive bump 114. It should be noted that there is actually no interface between the conductive layer 112 and the conductive bump 114. The virtual interface 113 described herein is defined to clearly define that the conductive layer 112 and the conductive bump 114 are integrally formed. The so-called integral molding can be regarded as being formed by the same process and using the same material. For example, the conductive layer 112 and the conductive bump 114 are formed by the same 3D printing technology and the same conductive ink 214. Since the conductive layer 112 and the conductive bump 114 are integrally formed, this embodiment can avoid the problems of adhesion and IMC between different materials. Therefore, this embodiment can greatly increase the structural strength between the conductive layer 112 and the conductive bump 114, thereby improving product reliability. In other words, compared with the conventional RDL structure, the adhesion between the conductive layer 112 and the conductive bump 114 in this embodiment is strong, and it is not easy to peel off or break.

請參照圖1D,藉由3D列印技術來形成鈍化層116。具體來說,藉由3D列印裝置的噴頭222沿著第一方向D1噴出絕緣墨水224至導電層112上。在一實施例中,絕緣墨水224包括絕緣材料與溶劑。所述絕緣材料包括聚醯亞胺、聚氨酯等類似絕緣材料。所述溶劑包括N-甲基吡咯烷酮、丙二醇甲醚、乙二醇等類似溶劑。在固化步驟之後,絕緣墨水224固化為鈍化層116。在替代實施例中,所述固化步驟包括藉由加熱或照光,以使絕緣墨水224中的溶劑揮發而固化。在此情況下,如圖1D所示,鈍化層116 覆蓋導電層112的未被導電凸塊114所覆蓋的頂面112t’(可視為第二頂面)且覆蓋導電凸塊114的部分側壁114s。在一實施例中,鈍化層116包括絕緣聚合物,其可例如是聚醯亞胺、黏合劑或其組合。在本實施例中,鈍化層116可保護導電層112不受氧氣或濕氣所影響。在另一實施例中,鈍化層116的最小厚度可介於0.7μm至4μm之間。但本發明不以此為限,在其他實施例中,可藉由列印積層的方式來增加鈍化層116的厚度。 Referring to FIG. 1D, a passivation layer 116 is formed by 3D printing technology. Specifically, the nozzle 222 of the 3D printing device ejects the insulating ink 224 onto the conductive layer 112 along the first direction D1. In one embodiment, the insulating ink 224 includes an insulating material and a solvent. The insulating material includes polyimide, polyurethane and other similar insulating materials. The solvent includes N-methylpyrrolidone, propylene glycol methyl ether, ethylene glycol and the like. After the curing step, the insulating ink 224 is cured into the passivation layer 116. In an alternative embodiment, the curing step includes heating or illuminating to evaporate and cure the solvent in the insulating ink 224. In this case, as shown in FIG. 1D, the passivation layer 116 The top surface 112t' of the conductive layer 112 which is not covered by the conductive bump 114 (which can be regarded as a second top surface) and covers a part of the side wall 114s of the conductive bump 114. In one embodiment, the passivation layer 116 includes an insulating polymer, which may be, for example, polyimide, an adhesive, or a combination thereof. In this embodiment, the passivation layer 116 can protect the conductive layer 112 from oxygen or moisture. In another embodiment, the minimum thickness of the passivation layer 116 may be between 0.7 μm and 4 μm. However, the present invention is not limited to this. In other embodiments, the thickness of the passivation layer 116 can be increased by printing a build-up layer.

請參照圖1E,藉由3D列印技術形成焊料層118。詳細地說,藉由3D列印裝置的噴頭232噴出導電墨水234至導電凸塊114上以形成焊料層118。在一實施例中,導電墨水234包括導電顆粒與溶劑。所述導電顆粒包括多個金屬奈米顆粒,其可例如是銀奈米顆粒、銅銀奈米顆粒、銅奈米顆粒或其組合。所述溶劑包括N-甲基吡咯烷酮、丙二醇甲醚、乙二醇等類似溶劑。在另一實施例中,焊料層118的最小厚度可介於0.7μm至4μm之間。但本發明不以此為限,在其他實施例中,可藉由重複堆疊的方式來增加焊料層118的厚度。在替代實施例中,焊料層118與線路層110可以是相同材料或是不同材料。舉例來說,線路層110的材料包括銅銀合金;而焊料層118的材料包括錫銀合金。 1E, the solder layer 118 is formed by 3D printing technology. In detail, the conductive ink 234 is ejected onto the conductive bump 114 by the nozzle 232 of the 3D printing device to form the solder layer 118. In one embodiment, the conductive ink 234 includes conductive particles and a solvent. The conductive particles include a plurality of metal nanoparticles, which may be, for example, silver nanoparticles, copper silver nanoparticles, copper nanoparticles, or a combination thereof. The solvent includes N-methylpyrrolidone, propylene glycol methyl ether, ethylene glycol and the like. In another embodiment, the minimum thickness of the solder layer 118 may be between 0.7 μm and 4 μm. However, the present invention is not limited to this. In other embodiments, the thickness of the solder layer 118 can be increased by repeated stacking. In alternative embodiments, the solder layer 118 and the circuit layer 110 may be the same material or different materials. For example, the material of the circuit layer 110 includes copper-silver alloy; and the material of the solder layer 118 includes tin-silver alloy.

綜上所述,本發明藉由3D列印技術形成線路層(其包括導電層與導電凸塊),以使導電層與導電凸塊為一體成型。也就是說,導電層與導電凸塊是以相同製程步驟且以相同材料來形成,藉此避免不同材料之間的黏著性與IMC的問題。如此一來,本發 明便可大幅增加線路結構中的導電層與導電凸塊之間的結構強度,進而提升產品可靠度。另外,本發明之線路結構的製造方法亦具有製程步驟簡單的優點,進而提升產品的商業競爭力。 In summary, the present invention forms a circuit layer (which includes a conductive layer and a conductive bump) by 3D printing technology, so that the conductive layer and the conductive bump are integrally formed. That is to say, the conductive layer and the conductive bump are formed in the same process steps and in the same material, thereby avoiding the problems of adhesion and IMC between different materials. As a result, this issue Clearly, the structural strength between the conductive layer and the conductive bumps in the circuit structure can be greatly increased, thereby improving product reliability. In addition, the manufacturing method of the circuit structure of the present invention also has the advantage of simple process steps, thereby enhancing the commercial competitiveness of the product.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to the scope defined in the appended patent application.

100:基底 100: base

102:接墊 102: pad

104:介電層 104: dielectric layer

106:黏著層 106: Adhesive layer

110:線路層 110: line layer

112:導電層 112: conductive layer

114:導電凸塊 114: conductive bump

116:鈍化層 116: Passivation layer

118:焊料層 118: solder layer

232:噴頭 232: nozzle

234:導電墨水 234: conductive ink

Claims (9)

一種線路結構,包括:接墊,配置在基底上;介電層,配置在所述基底上,且暴露出部分所述接墊;導電層,接觸所述接墊且自所述接墊延伸覆蓋所述介電層的頂面;黏著層,配置在所述介電層與所述導電層之間;鈍化層,配置在所述導電層上;以及導電凸塊,自所述導電層的頂面向上突出於所述鈍化層的頂面,其中所述導電凸塊與所述導電層為一體成型。 A circuit structure includes: a pad arranged on a substrate; a dielectric layer arranged on the substrate and exposing a part of the pad; a conductive layer contacting the pad and extending from the pad to cover A top surface of the dielectric layer; an adhesive layer, disposed between the dielectric layer and the conductive layer; a passivation layer, disposed on the conductive layer; and conductive bumps, from the top of the conductive layer The surface protrudes upward from the top surface of the passivation layer, wherein the conductive bump and the conductive layer are integrally formed. 如申請專利範圍第1項所述的線路結構,其中所述導電層與所述導電凸塊由彼此接觸的多個導電顆粒所構成。 The circuit structure as described in item 1 of the patent application range, wherein the conductive layer and the conductive bump are composed of a plurality of conductive particles in contact with each other. 如申請專利範圍第2項所述的線路結構,其中所述導電層與所述導電凸塊共享所述多個導電顆粒中的至少一個。 The line structure as described in item 2 of the patent application range, wherein the conductive layer and the conductive bump share at least one of the plurality of conductive particles. 如申請專利範圍第2項所述的線路結構,其中所述多個導電顆粒包括多個金屬奈米顆粒,所述多個金屬奈米顆粒包括銀奈米顆粒、銅銀奈米顆粒、銅奈米顆粒或其組合。 The circuit structure as described in item 2 of the patent application range, wherein the plurality of conductive particles include a plurality of metal nanoparticles, and the plurality of metal nanoparticles include silver nanoparticles, copper silver nanoparticles, copper nanoparticles Rice granules or combinations thereof. 如申請專利範圍第1項所述的線路結構,其中所述導電層與所述導電凸塊之間不具有界面。 The circuit structure as described in item 1 of the patent application scope, wherein the conductive layer does not have an interface between the conductive bumps. 如申請專利範圍第1項所述的線路結構,其中所述黏著層包括絕緣聚合物,所述絕緣聚合物包括聚醯亞胺、聚氨酯、環氧樹脂、黏合劑或其組合。 The circuit structure according to item 1 of the patent application scope, wherein the adhesive layer includes an insulating polymer, and the insulating polymer includes polyimide, polyurethane, epoxy resin, adhesive, or a combination thereof. 如申請專利範圍第1項所述的線路結構,更包括:焊料層,配置在所述導電凸塊上。 The circuit structure as described in item 1 of the patent application scope further includes a solder layer disposed on the conductive bump. 一種線路結構的製造方法,包括:在基底上形成接墊;在所述基底上形成介電層,所述介電層具有開口,其暴露出部分所述接墊;藉由第一3D列印技術在所述介電層上形成黏著層,所述黏著層覆蓋所述開口的側壁且延伸覆蓋所述介電層的頂面;藉由第二3D列印技術形成線路層,所述線路層包括:導電層,接觸所述接墊且自所述接墊沿著第一方向延伸覆蓋所述黏著層的頂面;以及導電凸塊,自所述黏著層上的所述導電層的第一頂面沿著第二方向延伸,其中所述第一方向與所述第二方向不同;藉由第三3D列印技術在所述線路層上形成鈍化層,所述鈍化層覆蓋所述導電層的第二頂面且覆蓋所述導電凸塊的部分側壁;以及藉由第四3D列印技術在所述導電凸塊上形成焊料層。 A method of manufacturing a circuit structure includes: forming a pad on a substrate; forming a dielectric layer on the substrate, the dielectric layer having an opening that exposes a portion of the pad; by first 3D printing Technology forms an adhesive layer on the dielectric layer, the adhesive layer covers the side wall of the opening and extends to cover the top surface of the dielectric layer; the circuit layer is formed by the second 3D printing technology, the circuit layer The method includes: a conductive layer contacting the pad and extending from the pad along the first direction to cover the top surface of the adhesive layer; and a conductive bump from the first of the conductive layer on the adhesive layer The top surface extends along a second direction, wherein the first direction is different from the second direction; a passivation layer is formed on the circuit layer by a third 3D printing technology, the passivation layer covers the conductive layer A second top surface of and covering part of the side wall of the conductive bump; and forming a solder layer on the conductive bump by a fourth 3D printing technique. 如申請專利範圍第8項所述的線路結構的製造方法,其中藉由所述第二3D列印技術形成所述線路層包括使用導電墨水,所述導電墨水包括多個金屬奈米顆粒,所述多個金屬奈米顆粒包括銀奈米顆粒、銅銀奈米顆粒、銅奈米顆粒或其組合。 The method for manufacturing a circuit structure as described in item 8 of the patent application range, wherein the formation of the circuit layer by the second 3D printing technology includes the use of conductive ink, the conductive ink including a plurality of metal nanoparticles, so The plurality of metal nanoparticles include silver nanoparticles, copper silver nanoparticles, copper nanoparticles, or a combination thereof.
TW107138777A 2018-11-01 2018-11-01 Circuit structure and method of manufacturing the same TWI692062B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107138777A TWI692062B (en) 2018-11-01 2018-11-01 Circuit structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107138777A TWI692062B (en) 2018-11-01 2018-11-01 Circuit structure and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TWI692062B true TWI692062B (en) 2020-04-21
TW202018862A TW202018862A (en) 2020-05-16

Family

ID=71134503

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107138777A TWI692062B (en) 2018-11-01 2018-11-01 Circuit structure and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI692062B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201618970A (en) * 2014-11-25 2016-06-01 Univ Hwa Hsia Technology Three-dimensional printing device
TW201640976A (en) * 2015-05-08 2016-11-16 華邦電子股份有限公司 Stacked electronic device and method for fabricating the same
TW201640599A (en) * 2015-05-14 2016-11-16 聯發科技股份有限公司 Semiconductor package and fabrication method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201618970A (en) * 2014-11-25 2016-06-01 Univ Hwa Hsia Technology Three-dimensional printing device
TW201640976A (en) * 2015-05-08 2016-11-16 華邦電子股份有限公司 Stacked electronic device and method for fabricating the same
TW201640599A (en) * 2015-05-14 2016-11-16 聯發科技股份有限公司 Semiconductor package and fabrication method thereof

Also Published As

Publication number Publication date
TW202018862A (en) 2020-05-16

Similar Documents

Publication Publication Date Title
TWI553749B (en) Package and methods of forming thereof
US20180374807A1 (en) System and Method for an Improved Interconnect Structure
TWI712141B (en) Semiconductor package
US9418955B2 (en) Plasma treatment for semiconductor devices
US8227924B2 (en) Substrate stand-offs for semiconductor devices
US8294264B2 (en) Radiate under-bump metallization structure for semiconductor devices
US7709954B2 (en) Redistribution layer for wafer-level chip scale package and method therefor
TWI776795B (en) Semiconductor package and manufacturing method thereof
US10319692B2 (en) Semiconductor structure and manufacturing method thereof
TWI653722B (en) Semiconductor device and method of manufacturing
US10636745B2 (en) Semiconductor package device and method of manufacturing the same
US11610857B2 (en) Method of manufacturing circuit structure
US10115686B2 (en) Semiconductor structure and fabricating method thereof
TWI692062B (en) Circuit structure and method of manufacturing the same
US9472516B2 (en) Fan out package structure and methods of forming
US7176117B2 (en) Method for mounting passive components on wafer
KR101571604B1 (en) Single mask package apparatus and method
CN111211104B (en) Circuit structure and manufacturing method thereof
TWI668829B (en) Redistribution layer (rdl) structure and method of manufacturing the same
US11063010B2 (en) Redistribution layer (RDL) structure and method of manufacturing the same
TWI635546B (en) Semiconductor structure and manufacturing method thereof
CN111211105A (en) Redistribution layer structure and method for manufacturing the same
Töpper The importance of polymers in wafer-level packaging