TWI692038B - Three-dimensional stacked semiconductor device and method of manufacturing the same - Google Patents
Three-dimensional stacked semiconductor device and method of manufacturing the same Download PDFInfo
- Publication number
- TWI692038B TWI692038B TW108102914A TW108102914A TWI692038B TW I692038 B TWI692038 B TW I692038B TW 108102914 A TW108102914 A TW 108102914A TW 108102914 A TW108102914 A TW 108102914A TW I692038 B TWI692038 B TW I692038B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- conductive layers
- patterned
- patterned multilayer
- multilayer stacks
- Prior art date
Links
Images
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
本發明是有關於一種三維堆疊半導體裝置及其製造方法,且特別是有關於一種三維堆疊半導體裝置的資料儲存結構表面均勻一致及其製造方法。 The present invention relates to a three-dimensional stacked semiconductor device and a method for manufacturing the same, and in particular to a uniform storage surface of a three-dimensional stacked semiconductor device and a method for manufacturing the same.
非揮發性記憶體裝置在設計上有一個很大的特性是,當記憶體裝置失去或移除電源後仍能保存資料狀態的完整性。目前業界已經提出許多不同型態的非揮發性記憶體裝置。但相關業者仍不斷研發新的設計或是結合現有技術,進行記憶胞平面的堆疊以達到具有更高儲存容量的記憶體裝置。例如已有一些三維堆疊反及閘(NAND)型快閃記憶體裝置被提出。然而,傳統的三維堆疊記憶體裝置仍有一些問題需要被解決。 A great feature of the design of non-volatile memory devices is that when the memory device loses or removes power, it can still preserve the integrity of the data state. Many different types of non-volatile memory devices have been proposed in the industry. However, related companies continue to develop new designs or combine existing technologies to stack memory cell planes to achieve memory devices with higher storage capacity. For example, some three-dimensional stacked NAND flash memory devices have been proposed. However, the conventional three-dimensional stacked memory device still has some problems to be solved.
例如,對於三維堆疊反及閘型記憶體裝置來說,特別是對於電荷捕捉層在沿著多層導電層和多層絕緣層交替堆疊的方向上延伸的結構,未斷開的電荷捕捉層(例如氮化層)對於記憶體裝置的儲存時間(Retention)是一個重要的問題。根據傳統製造三維堆疊記憶體裝置的製造方式,多晶矽回拉(poly pull-back) 是製得侷限結構(confined structures)的一種常見步驟。然而,它的缺點是,用以形成侷限結構的凹陷區域其凹陷量並不均勻,因而導致侷限結構的側壁和電荷捕捉層的表面呈現波浪狀,進而影響三維堆疊記憶體裝置的電性表現。 For example, for a three-dimensional stacked anti-gate memory device, especially for a structure in which a charge trapping layer extends in a direction in which multiple conductive layers and multiple insulating layers are alternately stacked, an unbroken charge trapping layer (such as nitrogen Layer) is an important issue for the storage time (Retention) of the memory device. According to the traditional manufacturing method of manufacturing three-dimensional stacked memory devices, poly pull-back It is a common step to make confined structures. However, its disadvantage is that the recessed area used to form the confined structure has an uneven amount of recession, thus causing the side walls of the confined structure and the surface of the charge trapping layer to appear wavy, which further affects the electrical performance of the three-dimensional stacked memory device.
本發明係有關於一種三維堆疊半導體裝置及其製造方法。根據實施例之製造方法,係提供一種半導體裝置包括有表面均勻一致之元件或層,進而改善三維堆疊記憶體裝置之電性表現的可靠度。 The invention relates to a three-dimensional stacked semiconductor device and a manufacturing method thereof. According to the manufacturing method of the embodiment, a semiconductor device is provided that includes elements or layers with uniform surfaces, thereby improving the reliability of electrical performance of a three-dimensional stacked memory device.
根據一實施例,係提出一種三維堆疊半導體裝置,包括:一基板,具有一陣列區域(array area)和一階梯區域(staircase area);複數個圖案化多層堆疊(patterned multi-layered stacks)形成於基板上方和位於陣列區域內,且圖案化多層堆疊係彼此相距,其中圖案化多層堆疊之一係包括複數個絕緣層(insulating layers)和複數個導電層(conductive layers)交替地設置,且一頂部閘極層(top gate layer)形成於導電層的上方;一垂直通道結構(vertical channel structure),位於圖案化多層堆疊之間,且垂直通道結構包括一穿隧層(tunneling layer)形成於圖案化多層堆疊上以及一通道層(channeling layer)形成於穿隧層上,其中圖案化多層堆疊前述之一者的頂部閘極層之側面(lateral sides)係直接接觸穿隧層;和分離的侷限結構(discrete confined structures),係形成於鄰近圖案化多層堆疊的導電層之 側壁(sidewalls)的凹陷區域中(recessed regions),且該些分離的侷限結構各包括一阻擋層(blocking layer)襯裡式地形成於凹陷區域中以及一電荷捕捉元件(charge chapping element)與阻擋層和穿隧層接觸。 According to an embodiment, a three-dimensional stacked semiconductor device is proposed, including: a substrate having an array area and a staircase area; a plurality of patterned multi-layered stacks are formed on Above the substrate and in the array area, and the patterned multilayer stacks are spaced apart from each other, wherein one of the patterned multilayer stacks includes a plurality of insulating layers and a plurality of conductive layers alternately arranged, and a top A top gate layer is formed above the conductive layer; a vertical channel structure is located between the patterned multilayer stacks, and the vertical channel structure includes a tunneling layer formed on the patterned A multi-layer stack and a channeling layer are formed on the tunneling layer, wherein the lateral sides of the top gate layer of one of the aforementioned patterned multi-layer stacks directly contact the tunneling layer; and the separated confinement structure (discrete confined structures), formed in the conductive layer adjacent to the patterned multilayer stack The recessed regions of the sidewalls, and the separate confinement structures each include a blocking layer lined in the recessed region and a charge chapping element and blocking layer Contact with the tunneling layer.
根據一實施例,係提出一種三維堆疊半導體裝置之製造方法,包括:形成複數個圖案化多層堆疊於一基板上方和位於基板的一陣列區域內,其中此些圖案化多層堆疊係彼此相距,且通道孔(channel holes)形成於相鄰設置的圖案化多層堆疊之間,圖案化多層堆疊其中之一係包括複數個絕緣層和複數個導電層交替地設置;於圖案化多層堆疊之前述一者的導電層之上方形成一頂部閘極層(top gate layer),且形成複數個分離的侷限結構於鄰近圖案化多層堆疊的導電層之側壁的凹陷區域中,其中各個分離的侷限結構包括一阻擋層襯裡式地形成於凹陷區域中以及一電荷捕捉元件與阻擋層接觸;和形成一垂直通道結構於圖案化多層堆疊上,其中垂直通道結構包括一穿隧層設置於圖案化多層堆疊上以及一通道層形成於穿隧層上;其中該些圖案化多層堆疊之一者的頂部閘極層之側面係直接接觸穿隧層。 According to an embodiment, a method for manufacturing a three-dimensional stacked semiconductor device is proposed, including: forming a plurality of patterned multilayer stacks above a substrate and within an array region of the substrate, wherein the patterned multilayer stacks are spaced apart from each other, and Channel holes are formed between adjacently arranged patterned multilayer stacks. One of the patterned multilayer stacks includes a plurality of insulating layers and a plurality of conductive layers alternately arranged; the aforementioned one of the patterned multilayer stacks A top gate layer is formed above the conductive layer, and a plurality of separate confinement structures are formed in the recessed regions adjacent to the sidewalls of the conductive layers of the patterned multilayer stack, wherein each separate confinement structure includes a barrier Layer lining is formed in the recessed area and a charge trapping element is in contact with the barrier layer; and forming a vertical channel structure on the patterned multilayer stack, wherein the vertical channel structure includes a tunneling layer disposed on the patterned multilayer stack and a The channel layer is formed on the tunneling layer; wherein the side of the top gate layer of one of the patterned multilayer stacks directly contacts the tunneling layer.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to have a better understanding of the above and other aspects of the present invention, the following examples are specifically described in conjunction with the accompanying drawings as follows:
10:基板 10: substrate
11M:多層堆疊 11M: Multi-layer stack
11M’:堆疊柱體 11M’: stacked cylinders
11MP:圖案化多層堆疊 11MP: patterned multilayer stack
111:絕緣層 111: Insulation
111L:最底絕緣層 111 L : the lowest insulating layer
111U:最上層絕緣層 111 U : uppermost insulating layer
111Ua:最上層絕緣層之上表面 111 Ua : upper surface of the uppermost insulating layer
112:導電層 112: conductive layer
112B:第一導電層 112 B : the first conductive layer
112WL:第二導電層 112 WL : second conductive layer
112S1:第一側壁 112S1: First side wall
111S2:第二側壁 111S2: second side wall
12:孔洞 12: Hole
HC:通道孔 H C : channel hole
13:凹陷區域 13: sunken area
AA:陣列區域 A A : Array area
AS:階梯區域 A S : stepped area
140:阻擋膜 140: barrier film
150:電荷捕捉膜 150: charge trapping membrane
1120:頂部導電膜 1120: Top conductive film
112T:頂部閘極層 112T: top gate layer
112T-S:頂部閘極層的側面 112T-S: the side of the top gate layer
SC:分離的侷限結構 S C : Separated limited structure
14:阻擋層 14: barrier
15:電荷捕捉元件 15: charge trapping element
151S:電荷捕捉元件的側面 151S: The side of the charge trapping element
16:穿隧層 16: Tunneling layer
17:通道層 17: channel layer
18:介電層 18: Dielectric layer
t1:第一厚度 t1: first thickness
t2:第二厚度 t2: second thickness
t3:第三厚度 t3: third thickness
WR:凹陷區域之寬度 W R : width of the recessed area
W1:第一寬度 W1: first width
W2:第二寬度 W2: second width
D1:第一方向 D1: First direction
D2:第二方向 D2: Second direction
第1A~1I圖繪示根據本發明一實施例之三維堆疊半導體裝置之製造方法。 FIGS. 1A-1I illustrate a method of manufacturing a three-dimensional stacked semiconductor device according to an embodiment of the invention.
第2圖繪示本發明一實施例之三維堆疊半導體裝置之示意圖。 FIG. 2 is a schematic diagram of a three-dimensional stacked semiconductor device according to an embodiment of the invention.
在此揭露內容之實施例中,係提出一種三維堆疊半導體裝置及其製造方法。根據實施例之製法,可使三維堆疊半導體裝置的資料儲存結構(data storage structures),例如包括阻擋層(the blocking layers)、電荷捕捉元件(charge chapping elements)和穿隧層(tunneling layer),其具有均勻一致的表面(uniform surfaces),而可解決在傳統三維堆疊半導體裝置中於資料儲存結構產生波浪表面的問題。於一實施例,在形成一頂部導電層(top conductive film)之前(此頂部導電層係於之後步驟中製成頂部選擇閘極),係沈積一電荷捕捉層(charge chapping film)以填滿圖案化多層堆疊(patterned multi-layered stacks)之間的區域,且之後進行移除製程(例如蝕刻步驟)以隔絕該些電荷捕捉元件,並在鄰近於圖案化多層堆疊的導電層側壁處的凹陷區域中(recessed regions)形成侷限結構(confined structures)。因此,沒有侷限結構形成於鄰近實施例之頂部導電層的側面處。實施例之製造方法可使製得之一裝置其元件具有均勻且廓形一致之表面,進而改善三維堆疊記憶體裝置之電性表現的可靠度。再者,實施例方法不會對裝置中的相關層和元件造成損傷,且實施例方法亦 適合用於製造大量堆疊層的三維堆疊記憶體裝置而不影響實施例之裝置的構型。 In the embodiment disclosed herein, a three-dimensional stacked semiconductor device and a manufacturing method thereof are proposed. According to the manufacturing method of the embodiment, data storage structures of a three-dimensional stacked semiconductor device, for example, including the blocking layers, charge chapping elements, and tunneling layer, which It has uniform surfaces, and can solve the problem of generating a wavy surface in the data storage structure in the conventional three-dimensional stacked semiconductor device. In one embodiment, before forming a top conductive film (the top conductive layer is made into a top selection gate in a later step), a charge trapping film is deposited to fill the pattern Patterned multi-layered stacks, and then perform a removal process (such as an etching step) to isolate the charge trapping elements, and the recessed areas adjacent to the sidewalls of the conductive layers of the patterned multi-layer stack Recessed regions form confined structures. Therefore, no confinement structure is formed adjacent to the side of the top conductive layer of the embodiment. The manufacturing method of the embodiment can make a device with a uniform and uniform surface of the device, thereby improving the reliability of the electrical performance of the three-dimensional stacked memory device. Furthermore, the embodiment method does not cause damage to the relevant layers and components in the device, and the embodiment method also The three-dimensional stacked memory device suitable for manufacturing a large number of stacked layers does not affect the configuration of the device of the embodiment.
此揭露內容之實施例其應用十分廣泛,可應用在許多三維堆疊半導體裝置之製程。舉例來說,實施例可應用在三維垂直通道(vertical-channel,VC)式之半導體裝置,但本揭露並不以此應用為限。以下係提出相關實施例,配合圖示以詳細說明本揭露所提出之三維堆疊半導體裝置及其製造方法。然而本揭露並不僅限於此。實施例中之敘述,如細部結構、製程步驟和材料應用等等,僅為舉例說明之用,本揭露欲保護之範圍並非僅限於所述之態樣。 The disclosed embodiments are widely used, and can be used in many three-dimensional stacked semiconductor devices. For example, the embodiment can be applied to a three-dimensional vertical-channel (VC) type semiconductor device, but the disclosure is not limited to this application. The following are related embodiments, which are illustrated in detail to illustrate the three-dimensional stacked semiconductor device and the manufacturing method thereof provided in the present disclosure. However, this disclosure is not limited to this. The descriptions in the embodiments, such as detailed structure, process steps, material application, etc., are for illustrative purposes only, and the scope of protection to be disclosed in the present disclosure is not limited to the described state.
需注意的是,本揭露並非顯示出所有可能的實施例,相關領域者可在不脫離本揭露之精神和範圍內對實施例之結構和製程加以變化與修飾,以符合實際應用所需。因此,未於本揭露提出的其他實施態樣也可能可以應用。再者,圖式係已簡化以利清楚說明實施例之內容,圖式上的尺寸比例並非按照實際產品等比例繪製。因此,說明書和圖示內容僅作敘述實施例之用,而非作為限縮本揭露保護範圍之用。 It should be noted that this disclosure does not show all possible embodiments, and those skilled in the relevant arts can change and modify the structure and process of the embodiments without departing from the spirit and scope of this disclosure to meet the needs of practical applications. Therefore, other implementations not mentioned in this disclosure may also be applicable. Furthermore, the drawings have been simplified to clearly explain the contents of the embodiments, and the size ratios on the drawings are not drawn according to the actual products. Therefore, the description and illustrations are only used to describe the embodiments, not to limit the scope of disclosure of the present disclosure.
再者,說明書與請求項中所使用的序數例如”第一”、”第二”、”第三”等之用詞,是為了修飾請求項之元件,其本身並不意含及代表該請求元件有任何之前的序數,也不代表某一請求元件與另一請求元件的順序、或是製造方法上的順序,該些序數的使用僅用來使具有某命名的一請求元件得以和另一具有相 同命名的請求元件能作出清楚區分。 In addition, the ordinal numbers used in the specification and the request items, such as "first", "second", "third", etc., are used to modify the element of the request item, which does not mean and represent the request element itself. The presence of any previous ordinal numbers does not mean the order of a request element and another request element, or the order of manufacturing method. The use of these ordinal numbers is only to enable a request element with a certain name to phase Request elements with the same name can be clearly distinguished.
第1A~1I圖繪示根據本發明一實施例之三維堆疊半導體裝置之製造方法。如第1A圖所示,一多層堆疊(a multi-layered stack)11M形成於一基板10上,且基板10具有一陣列區域(array area)AA和一階梯區域(staircase area)AS,多層堆疊11M包括複數個絕緣層(insulating layers)111和複數個導電層(conductive layers)112沿著垂直於基板10之一第二方向D2(例如Z方向)交替堆疊。一實施例中,絕緣層111例如是氧化層,導電層112例如是多晶矽層(例如N型重摻雜多晶矽層或P型重摻雜多晶矽層)。
FIGS. 1A-1I illustrate a method of manufacturing a three-dimensional stacked semiconductor device according to an embodiment of the invention. As shown in FIG. 1A, a
於一示例中(但不以此為限),位於基板10之陣列區域AA中的多層堆疊11M之其中一者的導電層112係包括複數個第一導電層112B和複數個第二導電層112WL。於一示例中,第一導電層112B形成於基板10上方且作為一底部閘極層(abottom gate layer)之用,第二導電層112WL形成於第一導電層112B之上方可作為裝置的字元線之用。
In an example (but not limited to), the
之後,對多層堆疊11M進行圖案化,例如蝕刻方式,以形成多個孔洞(holes)12,如第1B圖所示。於一示例中,孔洞12向下延伸並穿過第二導電層112WL和第一導電層112B,並暴露出一最底絕緣層111L(例如一埋置氧化層形成於基板10上)。
After that, the
如第1C圖所示,使導電層112,包括第一導電層
112B和第二導電層112WL,相對於絕緣層111而向內凹陷,以形成複數個堆疊柱體(stacked pillars)11M’垂直延伸於基板10上。因此,相鄰於此些堆疊柱體11M’之導電層112的側壁(sidewalls)係形成凹陷區域13。於一實施例中,導電層112具有第一側壁(first sidewalls)112S1,絕緣層111具有第二側壁(second sidewalls)111S2,其中此些第一側壁112S1係相對地內凹於此些第二側壁111S2,以定義出該些凹陷區域13。
As shown in FIG. 1C, the
另外,凹陷區域13的凹陷程度可視實際應用之需求而決定和修飾。於一示例中,凹陷區域13在平行於一第一方向D1(如第1C圖所示之X方向)上具有一寬度WR,其中此寬度WR可以小於或約等於凹陷步驟後剩餘導電層112的寬度(例如第1I圖所示之第二寬度W2)。然而本揭露並不以此為限。再者,第一導電層112B其中之一係具有一第一厚度t1(沿第二方向D2;例如Z-方向),第二導電層112WL其中之一係具有一第二厚度t2;於一示例中,第一厚度t1實質上等於第二厚度t2,但本揭露並不以此為限。
In addition, the degree of depression of the
之後,沈積一阻擋膜(blocking film)140以於此些凹陷區域13中形成阻擋襯裡(blocking liners);以及沈積一電荷捕捉膜(charge chapping film)150於阻擋膜140上,其中電荷捕捉膜150完全地填滿該些堆疊柱體11M’之間的空間,例如完全地填滿該些堆疊柱體11M’處阻擋膜140之相對兩襯裡部分(opposite liner portions)之間的空間,如第1D圖所示。再者,
阻擋膜140和形成於其上之電荷捕捉膜150係覆蓋最上層絕緣層111U。
Afterwards, a blocking
阻擋膜140可以是包括多層膜層之一種組合,以優化抹除飽和(optimize erase saturation)。舉例來說,多層膜層可包括材料層例如高介電係數(相較於二氧化矽是高介電係數)的介電材料、覆蓋型氮化矽(capped SiN)、雙重捕捉型BE-SONOS(能隙工程矽-氧化物-氮化物-氧化物-矽)之ONO(氧化物-氮化物-氧化物)。於一示例中,電荷捕捉膜150的材料一般包括氮化矽(silicon nitride,SiN)。於其他示例中,電荷捕捉膜150可包括SiON、HfO2、Al2O3等等。於實施例之示例圖示中,係繪示一整合層以表示電荷捕捉膜150,以簡化圖示而利於清楚說明。
The
然後,回蝕(etch back)電荷捕捉膜150以暴露出最上層絕緣層111U之上表面111Ua,如第1E圖所示。如第1F圖所示,一頂部導電膜(top conductive film)1120形成於電荷捕捉膜150、阻擋膜140和該些堆疊柱體11M’上。並且,沈積另一絕緣層111於頂部導電膜1120上方以覆蓋頂部導電膜1120。
Then, the
之後,如第1G圖所示,移除部分的頂部導電膜1120、移除位於堆疊柱體之間的電荷捕捉膜150之一部份、與移除部分的阻擋膜140,以形成多個通道孔HC,此些通道孔HC係暴露出絕緣層111之側壁(亦即第二側壁111S2),其中通道孔HC係沿著第二方向D2(例如Z-方向)延伸並垂直於基板10之一延伸平面的方向。因此,多個圖案化多層堆疊11MP因而形成於基板
10上。
Then, as shown in FIG. 1G, a portion of the top
請參照第1F圖和第1G圖,根據一實施例,在基板10的陣列區域AA內,頂部導電膜1120的一些部分、位於堆疊柱體之間的電荷捕捉膜150之部份與阻擋膜140的部分,可藉由一個步驟而移除,例如利用單一蝕刻步驟而移除,因而形成頂部閘極層(top gate layers)112T於導電層112的上方,以及形成分離的侷限結構(discrete confined structures)SC於鄰近多個圖案化多層堆疊11MP的導電層112之側壁(例如第一側壁112S1)的凹陷區域13中。再者,所形成之通道孔HC係暴露出最底絕緣層111L(例如一埋置氧化層形成於基板10上)。於一示例中,如第1F圖所示之頂部導電膜1120係沿著基板10之延伸平面中的第一方向D1延伸(例如X-方向),且蝕刻步驟係如第1G圖所示透過沿著第二方向D2(例如Z-方向)切除相關材料層的方式進行。其中第二方向D2係垂直於第一方向D1。根據實施例,圖案化多層堆疊11MP具有均勻一致的廓形(uniformed profiles),亦即圖案化多層堆疊11MP的相關元件(例如頂部閘極層112T、導電層112和絕緣層111)不會形成波浪狀的側表面。
Referring to FIGS. 1F and 1G, according to an embodiment, in the array area A A of the
再者,於單一蝕刻步驟後,係於凹陷區域13中形成分離的侷限結構(discrete confined structures)SC,如第1G圖所示,其中該些分離的侷限結構SC係以之間的絕緣層111而彼此隔離。於一示例中,各個分離的侷限結構SC係包括一阻擋層(blocking layer)14如一襯裡(liner)的形成於凹陷區域13中,以
及一電荷捕捉元件(charge chapping element)15於阻擋層14之間,其中電荷捕捉元件15係與阻擋層14接觸。
Further, after the single etching step, based on the recessed
在形成通道孔HC之後,係沈積一穿隧層(tunneling layer)16於圖案化多層堆疊11MP上並覆蓋圖案化多層堆疊11MP,如第1H圖所示。穿隧層16並沿著圖案化多層堆疊11MP的側壁沈積。然後,形成一通道層(channeling layer)17於穿隧層16上。第1H圖中,各個圖案化多層堆疊11MP的頂部閘極層112T係埋置於穿隧層16內。根據實施例,穿隧層16係直接接觸圖案化多層堆疊11MP之頂部閘極層112T的側面(lateral sides)112T-S。於第1H圖中,例如,頂部閘極層112T的兩個相對側面112T-S係完全接觸穿隧層16並被穿隧層16完全地覆蓋。再者,於實施例中,穿隧層16直接接觸圖案化多層堆疊11MP之絕緣層111的側壁(亦即第二側壁111S2),且直接接觸分離的侷限結構SC;例如,穿隧層16直接接觸電荷捕捉元件15的側面151S。
After forming the via hole H C , a
於一實施例中,穿隧層16可包括一能隙工程複合穿隧介電層(bandgap engineered composite tunneling dielectric layer),其包括一二氧化矽層。於一示例中(但不以此為限),複合穿隧介電層係由一超薄氧化矽層、一超薄氮化矽層與一超薄氧化矽層所組成。再者,於一實施例中通道層17例如包括多晶矽。
In one embodiment, the
之後,沈積一介電層(dielectric layer)18於圖案
化多層堆疊11MP上,且介電層18填滿相鄰的圖案化多層堆疊11MP之間的剩餘空間,如第1I圖所示。於一示例中,介電層18接觸位於圖案化多層堆疊11MP之間的通道層17。於一示例中,介電層18可包括氧化物。
After that, a
第2圖繪示根據本發明一實施例之三維堆疊半導體裝置之示意圖。第2圖僅繪示一種形成於基板10之陣列區域AA中之三維堆疊半導體裝置之一構型,以利清楚說明。於第2圖中,陣列區域AA中的複數個圖案化多層堆疊11MP形成於基板10上方,且該些圖案化多層堆疊11MP彼此相距。圖案化多層堆疊11MP其中一者係包括複數個絕緣層111和複數個導電層112交替地設置,且一頂部閘極層(top gate layer)112T形成於該些導電層112的上方。再者,一垂直通道結構(vertical channel structure)係設置於圖案化多層堆疊11MP之間,其中此垂直通道結構包括一穿隧層16形成於圖案化多層堆疊11MP上,以及一通道層17形成於穿隧層16上。於實施例中,圖案化多層堆疊11MP其中之一的頂部閘極層112T之側面112T-S係直接接觸穿隧層16。再者,於實施例之三維堆疊半導體裝置中,分離的侷限結構SC係形成於鄰近圖案化多層堆疊11MP的導電層112之側壁(亦即第一側壁112S1)的凹陷區域13中,且各分離的侷限結構SC係包括一阻擋層(blocking layer)14如一襯裡的形成於凹陷區域13中,以及包括一電荷捕捉元件(charge chapping element)15與阻擋層14和穿隧層16接觸。於一示例中,一實施例之三維堆
疊半導體裝置的資料儲存結構(data storage structures)包括阻擋層14、電荷捕捉元件15和穿隧層16。
FIG. 2 is a schematic diagram of a three-dimensional stacked semiconductor device according to an embodiment of the invention. FIG. 2 only shows a configuration of a three-dimensional stacked semiconductor device formed in the array area A A of the
於第2圖中,阻擋層14可被視為形成於相鄰兩絕緣層111之間。再者,分離的侷限結構SC之電荷捕捉元件15亦沿著第二方向D2(例如Z方向)分隔開來地設置。根據實施例之製造方法,圖案化多層堆疊11MP的頂部閘極層112T以及分離的侷限結構SC可同時形成;例如,利用同一蝕刻步驟而同時形成,如第1G圖所示。因此,圖案化多層堆疊11MP的頂部閘極層112T之側面112T-S係實質上齊平於電荷捕捉元件15之側面151S。
In FIG. 2, the
再者,根據實施例之方法所製得之裝置,圖案化多層堆疊11MP其中一者的頂部導電層112T具有一第一寬度(first width)W1平行於第一方向D1(例如X-方向),且圖案化多層堆疊11MP的導電層112(沿著第二方向D2例如Z-方向堆疊)係具有一第二寬度(second width)W2平行於第一方向D1。其中第一寬度W1係大於第二寬度W2。於導電層112和頂部導電層112T之一示例(但非限制性的)構型中,第一導電層112B其中之一係具有一第一厚度t1(沿著第二方向D2;例如Z-方向),第二導電層112WL其中之一係具有一第二厚度t2(沿著第二方向D2),其中第一厚度t1實質上等於第二厚度t2,且第一厚度t1或第二厚度t2實質上小於頂部閘極層112T之厚度t3(沿著第二方向D2)。
Furthermore, according to the device manufactured by the method of the embodiment, the top
根據上述實施例提出三維堆疊半導體裝置及其製造方法,於一實施例,在形成一頂部導電層(top conductive film)
之前(此頂部導電層於之後步驟中製成頂部選擇閘極),係沈積一電荷捕捉層以填滿圖案化多層堆疊(patterned multi-layered stacks)之間的區域,且之後進行移除製程(例如蝕刻步驟)以隔絕該些電荷捕捉元件,並在鄰近於圖案化多層堆疊的導電層側壁處的凹陷區域中形成侷限結構(confined structures)。因此,沒有侷限結構形成於鄰近實施例之頂部導電層的側面處。根據實施例之一種三維堆疊半導體裝置的製造方法,三維堆疊半導體裝置的資料儲存結構(data storage structures),例如包括阻擋層14、電荷捕捉元件15和穿隧層16(如第2圖所示),其具有均勻一致的表面,而可解決在傳統三維堆疊半導體裝置中於資料儲存結構產生波浪表面的問題。因此,實施例之製造方法可使製得之一裝置其元件具有均勻且廓形一致之表面,進而改善三維堆疊記憶體裝置之電性表現的可靠度。再者,實施例方法不會對裝置中的相關層和元件造成損傷,且實施例方法亦適合用於製造大量堆疊層的三維堆疊記憶體裝置而不影響實施例之裝置的構型(亦即,實施例之裝置具有穩固的架構、相關元件和層具有完整構型)。再者,實施例之三維堆疊記憶體裝置係採用不費時和非昂貴之製程進行製作,十分適合量產。
According to the above embodiment, a three-dimensional stacked semiconductor device and a manufacturing method thereof are proposed. In one embodiment, a top conductive film is formed
Before (the top conductive layer was made into the top selective gate in the next step), a charge trapping layer was deposited to fill the area between the patterned multi-layered stacks, and then the removal process was performed ( For example, an etching step) to isolate the charge trapping elements and form confined structures in the recessed regions adjacent to the sidewalls of the conductive layers of the patterned multilayer stack. Therefore, no confinement structure is formed adjacent to the side of the top conductive layer of the embodiment. According to a method for manufacturing a three-dimensional stacked semiconductor device according to an embodiment, data storage structures of the three-dimensional stacked semiconductor device include, for example, a
如上述圖示之結構和步驟,是用以敘述本揭露之部分實施例或應用例,本揭露並不限制於上述結構和步驟之範圍與應用態樣。其他不同結構態樣之實施例,例如不同內部組件的已知構件都可應用,其示例之結構和步驟可根據實際應用之需求而 調整。因此圖示之結構僅為舉例說明之用,而非限制之用。通常知識者當知,應用本揭露之相關結構和步驟過程,例如三維堆疊半導體裝置中於陣列區域的相關元件和層的排列方式或構型,或製造步驟細節等,都可能以依實際應用樣態所需而可能有相應的調整和變化。 The structures and steps shown above are used to describe some embodiments or application examples of the present disclosure, and the present disclosure is not limited to the scope and application of the above structures and steps. Other embodiments of different structural aspects, such as known components of different internal components, can be applied, and the example structure and steps can be based on actual application requirements. Adjustment. Therefore, the illustrated structure is for illustrative purposes only, not for limitation. Generally, the knowledgeable person knows that the related structures and steps of the present disclosure, such as the arrangement or configuration of related elements and layers in the array area in the three-dimensional stacked semiconductor device, or the details of the manufacturing steps, etc., may be based on the actual application. There may be corresponding adjustments and changes required by the state.
綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In summary, although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs can make various modifications and retouching without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be deemed as defined by the scope of the attached patent application.
10:基板 10: substrate
11MP:圖案化多層堆疊 11MP: patterned multilayer stack
111:絕緣層 111: Insulation
111L:最底絕緣層 111 L : the lowest insulating layer
111U:最上層絕緣層 111 U : uppermost insulating layer
112:導電層 112: conductive layer
112B:第一導電層 112 B : the first conductive layer
112WL:第二導電層 112 WL : second conductive layer
112S1:第一側壁 112S1: First side wall
111S2:第二側壁 111S2: second side wall
HC:通道孔 H C : channel hole
112T:頂部閘極層 112T: top gate layer
112T-S:頂部閘極層的側面 112T-S: the side of the top gate layer
SC:分離的侷限結構 S C : Separated limited structure
14:阻擋層 14: barrier
15:電荷捕捉元件 15: charge trapping element
151S:電荷捕捉元件的側面 151S: The side of the charge trapping element
16:穿隧層 16: Tunneling layer
17:通道層 17: channel layer
18:介電層 18: Dielectric layer
W1:第一寬度 W1: first width
W2:第二寬度 W2: second width
t1:第一厚度 t1: first thickness
t2:第二厚度 t2: second thickness
t3:第三厚度 t3: third thickness
D1:第一方向 D1: First direction
D2:第二方向 D2: Second direction
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108102914A TWI692038B (en) | 2019-01-25 | 2019-01-25 | Three-dimensional stacked semiconductor device and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108102914A TWI692038B (en) | 2019-01-25 | 2019-01-25 | Three-dimensional stacked semiconductor device and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI692038B true TWI692038B (en) | 2020-04-21 |
TW202029353A TW202029353A (en) | 2020-08-01 |
Family
ID=71134367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108102914A TWI692038B (en) | 2019-01-25 | 2019-01-25 | Three-dimensional stacked semiconductor device and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI692038B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113380826A (en) * | 2020-05-28 | 2021-09-10 | 台湾积体电路制造股份有限公司 | Memory device and method of forming the same |
TWI773176B (en) * | 2020-05-28 | 2022-08-01 | 台灣積體電路製造股份有限公司 | 3d memory device and method for forming the same |
US11716856B2 (en) | 2021-03-05 | 2023-08-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Three-dimensional memory device and method |
US11839080B2 (en) | 2020-05-28 | 2023-12-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3D memory with graphite conductive strips |
US11985825B2 (en) | 2020-06-25 | 2024-05-14 | Taiwan Semiconductor Manufacturing Co., Ltd. | 3D memory array contact structures |
US12022659B2 (en) | 2020-07-30 | 2024-06-25 | Taiwan Semiconductor Manufacturing Co., Ltd. | Three-dimensional memory device and method |
US12040006B2 (en) | 2020-06-26 | 2024-07-16 | Taiwan Semiconductor Manufacturing Co., Ltd. | Memory array including dummy regions |
US12087621B2 (en) | 2020-06-26 | 2024-09-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Air gaps in memory array structures |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11574929B2 (en) | 2020-05-28 | 2023-02-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3D ferroelectric memory |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201528493A (en) * | 2014-01-10 | 2015-07-16 | Macronix Int Co Ltd | Semiconductor structure and manufacturing method of the same |
US20160071860A1 (en) * | 2014-09-05 | 2016-03-10 | Sandisk Technologies Inc. | 3d semicircular vertical nand string with self aligned floating gate or charge trap cell memory cells and methods of fabricating and operating the same |
-
2019
- 2019-01-25 TW TW108102914A patent/TWI692038B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201528493A (en) * | 2014-01-10 | 2015-07-16 | Macronix Int Co Ltd | Semiconductor structure and manufacturing method of the same |
US20160071860A1 (en) * | 2014-09-05 | 2016-03-10 | Sandisk Technologies Inc. | 3d semicircular vertical nand string with self aligned floating gate or charge trap cell memory cells and methods of fabricating and operating the same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113380826A (en) * | 2020-05-28 | 2021-09-10 | 台湾积体电路制造股份有限公司 | Memory device and method of forming the same |
TWI763352B (en) * | 2020-05-28 | 2022-05-01 | 台灣積體電路製造股份有限公司 | Memory device and method of manufacturing the same |
TWI773176B (en) * | 2020-05-28 | 2022-08-01 | 台灣積體電路製造股份有限公司 | 3d memory device and method for forming the same |
US11839080B2 (en) | 2020-05-28 | 2023-12-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3D memory with graphite conductive strips |
US12041776B2 (en) | 2020-05-28 | 2024-07-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3D memory with graphite conductive strips |
US11985825B2 (en) | 2020-06-25 | 2024-05-14 | Taiwan Semiconductor Manufacturing Co., Ltd. | 3D memory array contact structures |
US12040006B2 (en) | 2020-06-26 | 2024-07-16 | Taiwan Semiconductor Manufacturing Co., Ltd. | Memory array including dummy regions |
US12087621B2 (en) | 2020-06-26 | 2024-09-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Air gaps in memory array structures |
US12022659B2 (en) | 2020-07-30 | 2024-06-25 | Taiwan Semiconductor Manufacturing Co., Ltd. | Three-dimensional memory device and method |
US11716856B2 (en) | 2021-03-05 | 2023-08-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Three-dimensional memory device and method |
Also Published As
Publication number | Publication date |
---|---|
TW202029353A (en) | 2020-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI692038B (en) | Three-dimensional stacked semiconductor device and method of manufacturing the same | |
US10930674B2 (en) | Three-dimensional flat NAND memory device having curved memory elements and methods of making the same | |
US8980712B2 (en) | 3D non-volatile memory device and method for fabricating the same | |
US11024635B2 (en) | Three-dimensional flat NAND memory device having curved memory elements and methods of making the same | |
US8158479B2 (en) | Semiconductor memory device and manufacturing method thereof | |
KR101206508B1 (en) | Method for manufacturing 3d-nonvolatile memory device | |
KR101907069B1 (en) | Nonvolatile memory device and method for fabricating the same | |
KR101075494B1 (en) | Vertical channel type non-volatile memory device and method for fabricating the same | |
US9543313B2 (en) | Nonvolatile memory device and method for fabricating the same | |
US20220028882A1 (en) | Memory device and method of forming the same | |
US7589374B2 (en) | Semiconductor device and related fabrication method | |
US9006089B2 (en) | Nonvolatile memory device and method for fabricating the same | |
US20150014761A1 (en) | Semiconductor device and manufacturing method thereof | |
CN109698203B (en) | Three-dimensional memory and preparation method thereof | |
US20220359568A1 (en) | Memory device | |
TWI642169B (en) | Method of manufacturing three-dimensional stacked semiconductor structure and structure manufactured by the same | |
CN111490051A (en) | Three-dimensional stacked semiconductor device and method of manufacturing the same | |
TW201626549A (en) | Method of fabricating deep trench semiconductor devices, and deep trench semiconductor devices | |
US10312256B1 (en) | Method of manufacturing three-dimensional stacked semiconductor structure and structure manufactured by the same | |
US20230225125A1 (en) | Three-dimensional memory structure and manufacturing method for the same | |
TWI767818B (en) | Nand type flash memory and manufacturing method thereof | |
CN109801919B (en) | Method for fabricating three-dimensional stacked semiconductor structure and structure fabricated thereby | |
US7893519B2 (en) | Integrated circuit with conductive structures | |
KR101116263B1 (en) | Manufacturing method of a semiconductor device | |
US20150303212A1 (en) | Semiconductor memory device |