TWI691582B - Composition for etching - Google Patents

Composition for etching Download PDF

Info

Publication number
TWI691582B
TWI691582B TW104122910A TW104122910A TWI691582B TW I691582 B TWI691582 B TW I691582B TW 104122910 A TW104122910 A TW 104122910A TW 104122910 A TW104122910 A TW 104122910A TW I691582 B TWI691582 B TW I691582B
Authority
TW
Taiwan
Prior art keywords
chemical formula
inorganic acid
integer
etching
hydrogen
Prior art date
Application number
TW104122910A
Other languages
Chinese (zh)
Other versions
TW201604265A (en
Inventor
朴宰完
林廷訓
李珍旭
Original Assignee
南韓商秀博瑞殷股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140090662A external-priority patent/KR101539374B1/en
Priority claimed from KR1020140090663A external-priority patent/KR101539375B1/en
Priority claimed from KR1020140090661A external-priority patent/KR101539373B1/en
Priority claimed from KR1020150078400A external-priority patent/KR101627181B1/en
Application filed by 南韓商秀博瑞殷股份有限公司 filed Critical 南韓商秀博瑞殷股份有限公司
Publication of TW201604265A publication Critical patent/TW201604265A/en
Application granted granted Critical
Publication of TWI691582B publication Critical patent/TWI691582B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/06Etching, surface-brightening or pickling compositions containing an inorganic acid with organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Semiconductor Memories (AREA)
  • Element Separation (AREA)
  • Weting (AREA)
  • Non-Volatile Memory (AREA)
  • Silicon Polymers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The disclosure is related to a composition for etching, a method for manufacturing the composition, and a method for fabricating a semiconductor using the same. The composition may include a first inorganic acid, at least one of silane inorganic acid salts produced by reaction between a second inorganic acid and a silane compound, and a solvent. The second inorganic acid may be at least one selected from the group consisting of a sulfuric acid, a fuming sulfuric acid, a nitric acid, a phosphoric acid, and a combination thereof.

Description

蝕刻用組合物 Etching composition

本發明關於一種蝕刻製程用組合物,更具體地,關於一種高選擇性蝕刻組合物以及使用該蝕刻組合物製備半導體的方法,該組合物能夠選擇性地去除氮化物層,同時使氧化物層的蝕刻速度最小化。 The present invention relates to a composition for an etching process, and more specifically, to a highly selective etching composition and a method for preparing a semiconductor using the etching composition, the composition can selectively remove a nitride layer while enabling an oxide layer The etching speed is minimized.

在製備半導體時,已經將氧化物層和氮化物層用作絕緣層。氧化物層可以包括二氧化矽(SiO2)層,氮化物層可以包括氮化矽(SiN2)層。二氧化矽層和氮化矽(SiN2)層獨立地使用或者交替性地互相堆疊作為絕緣層。另外,氧化物層和氮化物層可以用作硬質遮罩用於形成金屬互連的導電圖案。 In preparing semiconductors, oxide layers and nitride layers have been used as insulating layers. The oxide layer may include a silicon dioxide (SiO 2 ) layer, and the nitride layer may include a silicon nitride (SiN 2 ) layer. The silicon dioxide layer and the silicon nitride (SiN 2 ) layer are used independently or alternately stacked on top of each other as an insulating layer. In addition, the oxide layer and the nitride layer can be used as a hard mask for forming conductive patterns of metal interconnections.

可以進行濕式蝕刻製程來去除此氮化物層。通常,作為蝕刻組合物,使用磷酸和去離子水的混合物來去除氮化物層。可以添加去離子水來防止蝕刻速度的劣化和蝕刻選擇性的變化。然而,即使去離子水提供量的很小變化也可能引起去除氮化物層的蝕刻製程的缺陷。另外,因為磷酸具有強酸性且具有腐蝕性或苛性,所以難以處理磷酸。 A wet etching process can be performed to remove this nitride layer. Generally, as an etching composition, a mixture of phosphoric acid and deionized water is used to remove the nitride layer. Deionized water can be added to prevent the deterioration of etching speed and the change of etching selectivity. However, even a small change in the amount of deionized water supplied may cause defects in the etching process to remove the nitride layer. In addition, because phosphoric acid is strongly acidic and corrosive or caustic, it is difficult to handle phosphoric acid.

為了克服常規蝕刻組合物的這種缺陷,提出包含與氫氟酸(HF)和硝酸(HNO3)中的一種進行混合的磷酸(H3PO4) 的蝕刻組合物。然而,此蝕刻組合物使氮化物層和氧化物層的蝕刻選擇性劣化。提出另一種包含磷酸和矽酸鹽與矽酸中的一種的蝕刻組合物。然而,矽酸鹽和矽酸產生嚴重影響基底的顆粒。 In order to overcome this defect of the conventional etching composition, an etching composition containing phosphoric acid (H 3 PO 4 ) mixed with one of hydrofluoric acid (HF) and nitric acid (HNO 3 ) is proposed. However, this etching composition deteriorates the etching selectivity of the nitride layer and the oxide layer. Another etching composition containing phosphoric acid and one of silicate and silicic acid is proposed. However, silicate and silicic acid produce particles that seriously affect the substrate.

提供本概述用於以簡化形式引出概念的選擇,這在下面的詳細說明中進一步描述。該概述的目的不是確定所要求保護的主題的關鍵特徵或實質特徵,也不是用於限制所要求保護的主題的範圍。 This overview is provided for the selection of concepts in a simplified form, which is further described in the detailed description below. The purpose of this summary is not to determine the key or essential characteristics of the claimed subject matter, nor is it intended to limit the scope of the claimed subject matter.

本發明的實施形態克服了上面所述的缺點和上面未描述的其他缺點。另外,本發明的實施形態不需要克服上面所述的缺點,並且本發明的實施形態可以不克服上面所述的任何問題。 The embodiments of the present invention overcome the disadvantages described above and other disadvantages not described above. In addition, the embodiment of the present invention does not need to overcome the disadvantages described above, and the embodiment of the present invention may not overcome any of the problems described above.

根據本實施形態之一,提供一種蝕刻組合物,該組合物選擇性地去除氮化物層,同時使氧化物層的蝕刻速度最小化。 According to one of the present embodiments, there is provided an etching composition which selectively removes the nitride layer and minimizes the etching rate of the oxide layer.

根據本實施形態之一,提供一種具有高選擇性的蝕刻組合物,該組合物用於防止在蝕刻製程中顆粒的產生。 According to one of the embodiments, there is provided an etching composition with high selectivity, which is used to prevent the generation of particles during the etching process.

根據本實施形態之一,提供一種半導體的製備方法,該製備方法使用具有選擇性去除氮化物層同時使氧化物層的蝕刻速度最小化的高選擇性的蝕刻組合物。 According to one of the present embodiments, there is provided a semiconductor preparation method using a highly selective etching composition having selective removal of a nitride layer while minimizing the etching rate of an oxide layer.

根據至少一個實施形態,組合物可以包含第一無機酸、至少一種通過第二無機酸和矽烷化合物之間的反應產生的矽烷無機酸鹽以及溶劑。所述第二無機酸可以為選自 硫酸、發煙硫酸、硝酸、磷酸、無水磷酸以及它們的組合中的至少一種。所述矽烷化合物可以為用第一化學式表示的化合物:

Figure 104122910-A0202-12-0003-1
其中,R1至R4中的每一個選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基和(C6-C30)芳基,並且R1至R4中的至少一個為鹵素和(C1-C10)烷基中的一種。 According to at least one embodiment, the composition may include a first inorganic acid, at least one silicate inorganic acid salt generated by a reaction between the second inorganic acid and the silane compound, and a solvent. The second inorganic acid may be at least one selected from sulfuric acid, fuming sulfuric acid, nitric acid, phosphoric acid, anhydrous phosphoric acid, and combinations thereof. The silane compound may be a compound represented by the first chemical formula:
Figure 104122910-A0202-12-0003-1
Wherein each of R 1 to R 4 is selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy and (C 6 -C 30 )aryl, and R At least one of 1 to R 4 is one of halogen and (C 1 -C 10 ) alkyl.

根據另一實施形態,組合物可以包含第一無機酸、至少一種通過多磷酸和矽烷化合物之間的反應生成的矽烷無機酸鹽以及溶劑。 According to another embodiment, the composition may include a first inorganic acid, at least one silicate inorganic acid salt generated by a reaction between polyphosphoric acid and a silane compound, and a solvent.

根據另一實施形態,組合物可以包含第一無機酸、至少一種通過第二無機酸和矽氧烷化合物之間的反應生成的矽氧烷無機酸鹽以及溶劑。所述第二無機酸可以為選自磷酸、無水磷酸、焦磷酸、多磷酸以及它們的組合中的一種。 According to another embodiment, the composition may include a first inorganic acid, at least one silicate inorganic acid salt generated by a reaction between the second inorganic acid and the siloxane compound, and a solvent. The second inorganic acid may be one selected from phosphoric acid, anhydrous phosphoric acid, pyrophosphoric acid, polyphosphoric acid, and combinations thereof.

根據另一實施形態,組合物可以包含第一無機酸、至少一種通過第二無機酸和矽氧烷化合物之間的反應生成的矽氧烷無機酸鹽以及溶劑。所述第二無機酸可以為選自硫酸、發煙硫酸以及它們的組合中的一種。 According to another embodiment, the composition may include a first inorganic acid, at least one silicate inorganic acid salt generated by a reaction between the second inorganic acid and the siloxane compound, and a solvent. The second inorganic acid may be one selected from sulfuric acid, fuming sulfuric acid, and combinations thereof.

根據另一實施形態,組合物可以包含第一無機酸、至少一種通過包括硝酸的第二無機酸和矽氧烷化合物之間誘導的反應生成的矽氧烷無機酸鹽以及溶劑。 According to another embodiment, the composition may include a first inorganic acid, at least one silicate inorganic acid salt generated by a reaction induced between a second inorganic acid including nitric acid and a siloxane compound, and a solvent.

根據另一實施形態,組合物可以包含第一無機酸、至 少一種通過第二無機酸和第一矽烷化合物之間誘導的反應產生的矽烷無機酸鹽、第二矽烷化合物以及溶劑。所述第二無機酸可以為選自硫酸、發煙硫酸、硝酸、磷酸、無水磷酸、焦磷酸、多磷酸以及它們的組合中的一種。第一矽烷化合物和第二矽烷化合物可以為選自用第十化學式表示的化合物、用第十一化學式表示的化合物以及它們的組合中的一種。第十化學式為:

Figure 104122910-A0202-12-0004-3
,以及其中,第十一化學式為:
Figure 104122910-A0202-12-0004-5
According to another embodiment, the composition may include a first inorganic acid, at least one silicate mineral acid salt generated by a reaction induced between the second inorganic acid and the first silane compound, a second silane compound, and a solvent. The second inorganic acid may be one selected from sulfuric acid, fuming sulfuric acid, nitric acid, phosphoric acid, anhydrous phosphoric acid, pyrophosphoric acid, polyphosphoric acid, and combinations thereof. The first silane compound and the second silane compound may be one selected from the compound represented by the tenth chemical formula, the compound represented by the eleventh chemical formula, and combinations thereof. The tenth chemical formula is:
Figure 104122910-A0202-12-0004-3
, And among them, the eleventh chemical formula is:
Figure 104122910-A0202-12-0004-5

其中,i)R1至R10中的每一個選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基和(C6-C30)芳基,ii)R1至R4中的至少一個為鹵素和(C1-C10)烷氧基中的一種,iii)R5至R10中的至少一個為鹵素和(C1-C10)烷氧基中的一種,iv)n為1至10的一個整數。 Wherein, i) each of R 1 to R 10 is selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy and (C 6 -C 30 )aryl, ii) at least one of R 1 to R 4 is one of halogen and (C 1 -C 10 ) alkoxy, iii) at least one of R 5 to R 10 is halogen and (C 1 -C 10 ) alkane One of the oxygen groups, iv) n is an integer from 1 to 10.

根據另一實施形態,提供一種半導體裝置的製備方法。該方法可以包括使用所述蝕刻組合物進行蝕刻製程。 According to another embodiment, a method for manufacturing a semiconductor device is provided. The method may include performing an etching process using the etching composition.

10‧‧‧基底 10‧‧‧ base

11‧‧‧隧道氧化物列 11‧‧‧ Tunnel oxide column

12‧‧‧多晶矽層 12‧‧‧polysilicon layer

13‧‧‧緩衝氧化物層 13‧‧‧buffer oxide layer

14‧‧‧氮化物墊層 14‧‧‧Nitride pad

15‧‧‧SOD氧化物層 15‧‧‧SOD oxide layer

15A‧‧‧元件隔離層 15A‧‧‧Component isolation layer

20‧‧‧基底 20‧‧‧ base

21‧‧‧隧道氧化物層 21‧‧‧Tunnel oxide layer

22‧‧‧多晶矽層 22‧‧‧polysilicon layer

23‧‧‧緩衝氧化物層 23‧‧‧buffer oxide layer

24‧‧‧氮化物墊層 24‧‧‧Nitride pad

25‧‧‧溝槽 25‧‧‧groove

26‧‧‧氧化物層 26‧‧‧ oxide layer

26A‧‧‧隔離層 26A‧‧‧Isolation layer

30‧‧‧基底 30‧‧‧ base

31‧‧‧管閘電極層 31‧‧‧Tube gate electrode layer

31A‧‧‧第一導電層 31A‧‧‧The first conductive layer

31B‧‧‧第二導電層 31B‧‧‧Second conductive layer

32‧‧‧氮化物層 32‧‧‧Nitride layer

33‧‧‧第一層間絕緣層 33‧‧‧ First interlayer insulating layer

34‧‧‧第一閘電極層 34‧‧‧ First gate electrode layer

35‧‧‧氮化物層 35‧‧‧Nitride layer

36‧‧‧犧牲層 36‧‧‧Sacrifice

37‧‧‧第二層間絕緣層 37‧‧‧Second interlayer insulating layer

38‧‧‧第二閘電極層 38‧‧‧Second gate electrode layer

40‧‧‧基底 40‧‧‧ base

41‧‧‧導電區域 41‧‧‧conductive area

42‧‧‧多晶矽層 42‧‧‧polysilicon layer

43‧‧‧矽化鈦層 43‧‧‧Titanium silicide layer

44‧‧‧氮化鈦層 44‧‧‧Titanium nitride layer

45‧‧‧氮化物層 45‧‧‧Nitride layer

46‧‧‧氧化物層 46‧‧‧Oxide layer

H1~H4‧‧‧第一孔 H1~H4‧‧‧First hole

H2‧‧‧第二孔 H2‧‧‧Second hole

H3‧‧‧第三孔 H3‧‧‧The third hole

H4‧‧‧第四孔 H4‧‧‧Fourth hole

H5、H6‧‧‧隧道孔 H5, H6‧‧‧ Tunnel hole

H7‧‧‧管隧道孔 H7‧‧‧Tunnel hole

CGS‧‧‧單元閘結構 CGS‧‧‧unit gate structure

SGS‧‧‧選擇閘結構 SGS‧‧‧Select gate structure

S‧‧‧溝槽 S‧‧‧Groove

結合圖式,從實施形態的下述描述中,本發明的上面的和/或其他方面將變得顯而易見且更容易理解,其中。 The above and/or other aspects of the invention will become apparent and easier to understand from the following description of the embodiments in conjunction with the drawings.

圖1A和圖1B示出快閃記憶體裝置的裝置隔離製程。 1A and 1B show the device isolation process of the flash memory device.

圖2A至圖2C為示出根據至少一個實施形態的快閃記憶體裝置的裝置隔離製程的橫剖面圖。 2A to 2C are cross-sectional views illustrating a device isolation process of a flash memory device according to at least one embodiment.

圖3A至圖3F為示出根據至少一個實施形態形成快閃記憶體裝置的通道的製程的橫剖面圖。 3A to 3F are cross-sectional views illustrating a process of forming a channel of a flash memory device according to at least one embodiment.

圖4A和圖4B為示出根據至少一個實施形態形成相變儲存裝置的二極體的製程的橫剖面圖。 4A and 4B are cross-sectional views illustrating a process of forming a diode of a phase change memory device according to at least one embodiment.

圖5為示出根據第一實施形態A製備的矽烷無機酸鹽的核磁共振(NMR)資料的圖像。 5 is an image showing nuclear magnetic resonance (NMR) data of the silane inorganic acid salt prepared according to the first embodiment A.

現在將詳細地描述本發明的實施形態,本發明的實施例在圖式中進行說明,其中,相同的圖式標記在全文中指相同的元件。為了參照圖式解釋本發明,下面描述實施形態。 The embodiments of the present invention will now be described in detail. The embodiments of the present invention are illustrated in the drawings, in which the same drawing symbols refer to the same elements throughout. In order to explain the present invention with reference to the drawings, the embodiments will be described below.

圖式不必成比例,在某些情況下,為了清楚地說明實施形態的特徵,比例可能已經進行了放大。當提及第一層在第二層“之上”或者在基底“之上”時,並不單指第一層在第二層或基底上直接形成的情況,也指第三層存在於第一層和第二層或基底之間的情況。 The drawings need not be to scale, and in some cases, the scale may have been enlarged to clearly illustrate the features of the embodiment. When referring to the first layer being "on" the second layer or "on" the substrate, it does not only mean that the first layer is formed directly on the second layer or substrate, but also means that the third layer is present on the first Between the layer and the second layer or substrate.

在說明書中,術語“(C1-C10)烷基”指具有1至10個碳原子的直鏈或支鏈的非環飽和烴,術語“(C1-C10)烷氧基”指具有一個以上醚基和1至10個碳原子的直鏈或支鏈的非環烴。 In the specification, the term "(C 1 -C 10 )alkyl" refers to a linear or branched acyclic saturated hydrocarbon having 1 to 10 carbon atoms, and the term "(C 1 -C 10 )alkoxy" refers to Straight-chain or branched non-cyclic hydrocarbons having more than one ether group and 1 to 10 carbon atoms.

根據至少一個實施形態,蝕刻組合物可以包含第一無 機酸、至少一種矽烷無機酸鹽以及溶劑。所述至少一種矽烷無機酸鹽可以通過第二無機酸和矽烷化合物之間的反應產生。 According to at least one embodiment, the etching composition may include the first Organic acid, at least one silane inorganic acid salt and solvent. The at least one silane inorganic acid salt may be generated by the reaction between the second inorganic acid and the silane compound.

在根據至少一個實施形態製備半導體裝置中,蝕刻組合物中含有的至少一種矽烷無機酸鹽能夠容易和有效控制氧化物層的蝕刻速度,並且也能夠容易控制有效場氧化物高度(EFH)。 In preparing a semiconductor device according to at least one embodiment, the at least one silane inorganic acid salt contained in the etching composition can easily and effectively control the etching rate of the oxide layer, and can also easily control the effective field oxide height (EFH).

下文中,將參照圖式描述根據至少一個實施形態的這種蝕刻組合物。在描述根據至少一個實施形態的蝕刻組合物之前,將參照圖1A至圖1B描述在製備半導體裝置中蝕刻組合物的常規使用。 Hereinafter, such an etching composition according to at least one embodiment will be described with reference to the drawings. Before describing the etching composition according to at least one embodiment, the conventional use of the etching composition in preparing a semiconductor device will be described with reference to FIGS. 1A to 1B.

圖1A和圖1B示出快閃記憶體裝置的裝置隔離製程。參照圖1A,在基底10上依次形成隧道氧化物列11(tunnel oxide file 11)、多晶矽層12、緩衝氧化物層13和氮化物墊層14。通過選擇性地蝕刻多晶矽層12、緩衝氧化物層13和氮化物墊層14形成至少一個溝槽。通過形成SOD(Spin-on Dielectric;電介質旋塗)氧化物層15進行填充至少一個溝槽的間隙填充製程。然後,可以使用氮化物墊層14作為拋光停止層進行化學機械拋光(CMP)製程。 1A and 1B show the device isolation process of the flash memory device. Referring to FIG. 1A, a tunnel oxide file 11 (tunnel oxide file 11 ), a polysilicon layer 12, a buffer oxide layer 13 and a nitride pad layer 14 are sequentially formed on the substrate 10. At least one trench is formed by selectively etching the polysilicon layer 12, the buffer oxide layer 13, and the nitride pad layer 14. A gap filling process for filling at least one trench is performed by forming an SOD (Spin-on Dielectric; Dielectric Spin On) oxide layer 15. Then, a chemical mechanical polishing (CMP) process may be performed using the nitride pad layer 14 as a polishing stop layer.

參照圖1B,通過使用磷酸溶液進行濕式蝕刻製程去除氮化物墊層14。通過清洗製程去除緩衝氧化物層13。因此,形成元件隔離層15A。然而,當在濕式蝕刻製程中使用磷酸溶液時,氮化物層和氧化物層的蝕刻選擇性降低。由於此種降低,SOD氧化物層15會與氮化物墊層14一起 去除,而且難以控制有效場氧化物高度(EFH)。因此,由於磷酸溶液,難以i)保證濕式蝕刻去除氮化物墊層14的充足時間,ii)會需要額外的過程,以及iii)磷酸溶液引起嚴重影響裝置性能的波動。 Referring to FIG. 1B, the nitride pad layer 14 is removed by performing a wet etching process using a phosphoric acid solution. The buffer oxide layer 13 is removed through the cleaning process. Therefore, the element isolation layer 15A is formed. However, when a phosphoric acid solution is used in the wet etching process, the etching selectivity of the nitride layer and the oxide layer decreases. Due to this reduction, the SOD oxide layer 15 will be together with the nitride pad layer 14 Remove, and it is difficult to control the effective field oxide height (EFH). Therefore, due to the phosphoric acid solution, it is difficult to i) ensure sufficient time for the wet etching to remove the nitride pad layer 14, ii) an additional process may be required, and iii) the phosphoric acid solution causes fluctuations that seriously affect device performance.

因此,為了相對於氧化物層選擇性地蝕刻氮化物層、不產生顆粒,需要高選擇性的蝕刻組合物。 Therefore, in order to selectively etch the nitride layer with respect to the oxide layer without generating particles, a highly selective etching composition is required.

為了克服常規蝕刻組合物的缺陷並且滿足所述需求,根據至少一個實施形態,提供一種高選擇性蝕刻組合物,該組合物選擇性地去除氮化物層、同時使氧化物層的蝕刻速度最小化。此蝕刻組合物可以包含第一無機酸、至少一種矽烷無機酸鹽以及溶劑。根據至少一個實施形態,所述至少一種矽烷無機酸鹽可以通過第二無機酸和矽烷化合物之間的反應生成。 In order to overcome the defects of the conventional etching composition and meet the needs, according to at least one embodiment, a highly selective etching composition is provided that selectively removes the nitride layer while minimizing the etching rate of the oxide layer . The etching composition may include a first inorganic acid, at least one silane inorganic acid salt, and a solvent. According to at least one embodiment, the at least one silane inorganic acid salt can be generated by the reaction between the second inorganic acid and the silane compound.

由於蝕刻組合物中包含的至少一種矽烷無機酸鹽,能夠容易和有效地控制氧化物層的蝕刻速度。因此,在根據至少一個實施形態製備半導體裝置中,可以容易和有效地控制有效場氧化物高度(EFH)。 Due to the at least one silane inorganic acid salt contained in the etching composition, the etching rate of the oxide layer can be easily and effectively controlled. Therefore, in manufacturing a semiconductor device according to at least one embodiment, the effective field oxide height (EFH) can be easily and effectively controlled.

如上所述,所述至少一種矽烷無機酸鹽可以由第二無機酸和矽烷化合物之間的重複和連續反應生成。因此,所述至少一種矽烷無機酸鹽可以包括各種化學式而不是具有單一的化學式。 As described above, the at least one silane inorganic acid salt may be generated by repeated and continuous reactions between the second inorganic acid and the silane compound. Therefore, the at least one silane inorganic acid salt may include various chemical formulas instead of having a single chemical formula.

所述第二無機酸可以為選自硫酸、發煙硫酸、硝酸、磷酸、無水磷酸、焦磷酸、多磷酸以及它們的組合中的一種。較佳地,所述第二無機酸可以為硫酸、硝酸和磷酸中 的一種。 The second inorganic acid may be one selected from sulfuric acid, fuming sulfuric acid, nitric acid, phosphoric acid, anhydrous phosphoric acid, pyrophosphoric acid, polyphosphoric acid, and combinations thereof. Preferably, the second inorganic acid may be sulfuric acid, nitric acid and phosphoric acid Kind of.

所述矽烷化合物可以為選自用下面的化學式A1至A2表示的化合物以及它們的組合中的一種。 The silane compound may be one selected from compounds represented by the following chemical formulas A1 to A2 and combinations thereof.

Figure 104122910-A0202-12-0008-6
Figure 104122910-A0202-12-0008-6

在化學式A1中,R1至R4中的每一個可以選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基和(C6-C30)芳基。另外,R1至R4中的至少一個可以為鹵素和(C1-C10)烷基中的一種。 In the chemical formula A1, each of R 1 to R 4 may be selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy and (C 6 -C 30 )aryl base. In addition, at least one of R 1 to R 4 may be one of halogen and (C 1 -C 10 )alkyl.

所述鹵素可以包括氟、氯、溴和碘。較佳地,所述鹵素可以為氟和氯中的一種。 The halogen may include fluorine, chlorine, bromine and iodine. Preferably, the halogen may be one of fluorine and chlorine.

具體地,用化學式A1表示的矽烷化合物可以包括鹵矽烷化合物和烷氧基矽烷化合物。 Specifically, the silane compound represented by the chemical formula A1 may include a halosilane compound and an alkoxysilane compound.

所述鹵矽烷化合物可以選自三甲基氯矽烷、三乙基氯矽烷、三丙基氯矽烷、三甲基氟矽烷、三乙基氟矽烷、三丙基氟矽烷、二甲基二氯矽烷、二乙基二氯矽烷、二丙基二氯矽烷、二甲基二氟矽烷、二乙基二氟矽烷、二丙基二氟矽烷、乙基三氯矽烷、丙基三氯矽烷、甲基三氟矽烷、乙基三氟矽烷、丙基三氟矽烷以及它們的組合。 The halogenated silane compound may be selected from trimethylchlorosilane, triethylchlorosilane, tripropylchlorosilane, trimethylfluorosilane, triethylfluorosilane, tripropylfluorosilane, dimethyldichlorosilane , Diethyldichlorosilane, dipropyldichlorosilane, dimethyldifluorosilane, diethyldifluorosilane, dipropyldifluorosilane, ethyltrichlorosilane, propyltrichlorosilane, methyl Trifluorosilane, ethyl trifluorosilane, propyl trifluorosilane, and combinations thereof.

所述烷氧基矽烷化合物可以選自四甲氧基矽烷、四丙氧基矽烷、甲基三甲氧基矽烷(MTMOS)、甲基三乙氧基矽烷(MTEOS)、甲基三丙氧基矽烷、乙基三甲氧基矽烷、乙基三乙氧基矽烷、乙基三丙氧基矽烷、丙基三甲氧基矽烷 (PrTMOS)、丙基三乙氧基矽烷(PrTEOS)、丙基三丙氧基矽烷、二甲基二甲氧基矽烷、二甲基二乙氧基矽烷、二甲基二丙氧基矽烷、二乙基二甲氧基矽烷、二乙基二乙氧基矽烷、二乙基二丙氧基矽烷、二丙基二甲氧基矽烷、二丙基二乙氧基矽烷、二丙基二丙氧基矽烷、三甲基甲氧基矽烷、三甲基乙氧基矽烷、三甲基丙氧基矽烷、三乙基甲氧基矽烷、三乙基乙氧基矽烷、三乙基丙氧基矽烷、三丙基甲氧基矽烷、三丙基乙氧基矽烷、三丙基丙氧基矽烷、3-氯丙基三甲氧基矽烷、3-氨基丙基三甲氧基矽烷、3-氨基丙基三乙氧基矽烷、[3-(2-氨基乙基)氨基丙基]三甲氧基矽烷、3-巰基丙基三甲氧基矽烷、3-甲基丙烯醯氧基丙基三甲氧基矽烷、3-丙烯醯氧基丙基三甲氧基矽烷以及它們的組合。 The alkoxysilane compound may be selected from tetramethoxysilane, tetrapropoxysilane, methyltrimethoxysilane (MTMOS), methyltriethoxysilane (MTEOS), methyltripropoxysilane , Ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, propyltrimethoxysilane (PrTMOS), propyltriethoxysilane (PrTEOS), propyltripropoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldipropoxysilane, Diethyldimethoxysilane, diethyldiethoxysilane, diethyldipropoxysilane, dipropyldimethoxysilane, dipropyldiethoxysilane, dipropyldipropylene Oxysilane, trimethylmethoxysilane, trimethylethoxysilane, trimethylpropoxysilane, triethylmethoxysilane, triethylethoxysilane, triethylpropoxysilane Silane, tripropylmethoxysilane, tripropylethoxysilane, tripropylpropoxysilane, 3-chloropropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyl Triethoxysilane, [3-(2-aminoethyl)aminopropyl]trimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane , 3-propenyl propyl propyl trimethoxy silane and their combination.

Figure 104122910-A0202-12-0009-7
Figure 104122910-A0202-12-0009-7

在化學式A2中,R5至R10中的每一個可以選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基和(C6-C30)芳基。另外,R5至R10中的至少一個可以為鹵素和(C1-C10)烷氧基中的一種,n為1至10的一個整數。 In the chemical formula A2, each of R 5 to R 10 may be selected from hydrogen, halogen, (C 1 -C 10 ) alkyl, (C 1 -C 10 ) alkoxy, and (C 6 -C 30 ) aryl base. In addition, at least one of R 5 to R 10 may be one of halogen and (C 1 -C 10 ) alkoxy, and n is an integer of 1 to 10.

所述鹵素可以包括氟、氯、溴和碘。較佳地,所述鹵素可以為氟和氯中的一種。 The halogen may include fluorine, chlorine, bromine and iodine. Preferably, the halogen may be one of fluorine and chlorine.

具體地,用化學式A2表示的化合物可以包括氯二甲基矽氧基-氯二甲基矽烷、氯二乙基矽氧基-氯二甲基矽烷、二氯甲基矽氧基-氯二甲基矽烷、二氯乙基矽氧基-氯 二甲基矽烷、三氯矽氧基-氯二甲基矽烷、氟二甲基矽氧基-氯二甲基矽烷、二氟甲基矽氧基-氯二甲基矽烷、三氟矽氧基-氯二甲基矽烷、甲氧基二甲基矽氧基-氯二甲基矽烷、二甲氧基二甲基矽氧基-氯二甲基矽烷、三甲氧基矽氧基-氯二甲基矽烷、乙氧基二甲基矽氧基-氯二甲基矽烷、二乙氧基甲基矽氧基-氯二甲基矽烷、三乙氧基矽氧基-氯二甲基矽烷、氯二甲基矽氧基-二氯甲基矽烷、三氯矽氧基-二氯甲基矽烷、氯二甲基矽氧基-三氯矽烷、二氯甲基矽氧基-三氯矽烷和三氯矽氧基-三氯矽烷。 Specifically, the compound represented by Chemical Formula A2 may include chlorodimethylsiloxy-chlorodimethylsilane, chlorodiethylsiloxy-chlorodimethylsilane, dichloromethylsiloxy-chlorodimethyl Silane, dichloroethylsiloxy-chlorine Dimethylsilane, trichlorosiloxy-chlorodimethylsilane, fluorodimethylsiloxy-chlorodimethylsilane, difluoromethylsiloxy-chlorodimethylsilane, trifluorosiloxy -Chlorodimethylsilane, methoxydimethylsilyloxy-chlorodimethylsilane, dimethoxydimethylsilyloxy-chlorodimethylsilane, trimethoxysilyloxy-chlorodimethyl Silane, ethoxydimethylsiloxy-chlorodimethylsilane, diethoxymethylsiloxy-chlorodimethylsilane, triethoxysiloxy-chlorodimethylsilane, chlorine Dimethylsiloxy-dichloromethylsilane, trichlorosiloxy-dichloromethylsilane, chlorodimethylsiloxy-trichlorosilane, dichloromethylsiloxy-trichlorosilane and trichlorosilane Chlorosiloxy-trichlorosilane.

所述矽烷無機酸鹽可以通過i)將矽烷化合物添加到第二無機酸中,以及ii)在約20℃至約300℃的溫度範圍內,較佳地,在約50℃至約200℃的溫度範圍內引發反應來生成。此製程進行的同時去除空氣和水分。當反應溫度低於約20℃時,由於反應速度相對較低,所以矽烷化合物會結晶或蒸發。當反應溫度高於約300℃時,第二無機酸會蒸發。 The silane inorganic acid salt can be added by i) a silane compound to the second inorganic acid, and ii) within a temperature range of about 20°C to about 300°C, preferably, about 50°C to about 200°C The reaction is generated within the temperature range. This process is carried out while removing air and moisture. When the reaction temperature is lower than about 20°C, the silane compound will crystallize or evaporate due to the relatively low reaction rate. When the reaction temperature is higher than about 300°C, the second inorganic acid evaporates.

例如,可以使約100重量份的第二無機酸與約0.001至約50重量份的矽烷化合物反應。較佳地,可以使約0.01至約30重量份的矽烷化合物與約100重量份的第二無機酸反應。當矽烷化合物的含量小於約0.01重量份時,難以得到理想的選擇性。當矽烷化合物的含量大於約50重量份時,矽烷化合物可能結晶並形成不規則結構。 For example, about 100 parts by weight of the second inorganic acid may be reacted with about 0.001 to about 50 parts by weight of the silane compound. Preferably, about 0.01 to about 30 parts by weight of the silane compound can be reacted with about 100 parts by weight of the second inorganic acid. When the content of the silane compound is less than about 0.01 parts by weight, it is difficult to obtain desired selectivity. When the content of the silane compound is greater than about 50 parts by weight, the silane compound may crystallize and form an irregular structure.

在反應過程中,會產生揮發性副產物。此揮發性副產物可以通過減壓蒸餾去除。此反應產物可以進行蒸餾而且 將矽烷無機酸鹽從其中分離出來。分離後的矽烷無機酸鹽添加到蝕刻組合物中。然而,本實施形態不受此限制。例如,反應產物可以不經過蒸餾而添加到蝕刻組合物中。 During the reaction, volatile by-products are produced. This volatile by-product can be removed by distillation under reduced pressure. The reaction product can be distilled and Separate the silane inorganic acid salt from it. The separated silicate inorganic acid salt is added to the etching composition. However, this embodiment is not limited to this. For example, the reaction product may be added to the etching composition without distillation.

此反應可以在有非質子溶劑或沒有非質子溶劑的情況下進行。當使用非質子溶劑時,較佳使用在10013mbar下沸點高達120℃的溶劑或溶劑混合物。此溶劑可以包括:i)二噁烷、四氫呋喃、二乙醚、二異丙醚、二乙二醇單甲醚;ii)氯代烴,例如二氯甲烷、三氯甲烷、四氯甲烷、1,2-二氯乙烷和三氯乙烯;iii)烴,例如戊烷、正己烷、己烷同分異構體混合物、庚烷、辛烷、苯、石油醚、苯、甲苯和二甲苯;iv)酮,例如丙酮、甲基乙基酮、二異丙基酮和甲基異丁基甲酮(MIBK);v)酯,例如乙酸乙酯、乙酸丁酯、丙酸丙酯、丁酸乙酯、異丁酸乙酯、二硫化碳和硝基苯;以及它們的組合。 This reaction can be carried out with or without an aprotic solvent. When an aprotic solvent is used, it is preferred to use a solvent or solvent mixture having a boiling point of up to 120°C at 10013 mbar. This solvent may include: i) dioxane, tetrahydrofuran, diethyl ether, diisopropyl ether, diethylene glycol monomethyl ether; ii) chlorinated hydrocarbons, such as dichloromethane, chloroform, tetrachloromethane, 1, 2-dichloroethane and trichloroethylene; iii) hydrocarbons such as pentane, n-hexane, hexane isomer mixtures, heptane, octane, benzene, petroleum ether, benzene, toluene and xylene; iv ) Ketones, such as acetone, methyl ethyl ketone, diisopropyl ketone, and methyl isobutyl ketone (MIBK); v) esters, such as ethyl acetate, butyl acetate, propyl propionate, ethyl butyrate, Ethyl isobutyrate, carbon disulfide, and nitrobenzene; and combinations thereof.

如上所述,所述矽烷無機酸鹽通過誘導第二無機酸和矽烷化合物之間的反應生成。因此,根據至少一個實施形態,所述矽烷無機酸鹽具有不同的化學式。即,所述矽烷無機酸鹽可以由第二無機酸和矽烷化合物之間的重複和連續反應生成。根據鹵素原子的數目和鹵素原子的位置,此矽烷無機酸鹽可以具有可反應的複數種直鏈或支鏈化學式結構。 As described above, the silane inorganic acid salt is generated by inducing a reaction between the second inorganic acid and the silane compound. Therefore, according to at least one embodiment, the silane inorganic acid salt has a different chemical formula. That is, the silane inorganic acid salt may be generated by repeated and continuous reaction between the second inorganic acid and the silane compound. Depending on the number of halogen atoms and the position of the halogen atoms, the silane inorganic acid salt may have a plurality of linear or branched chemical formula structures that can react.

此矽烷無機酸鹽可以示例性地用下面的化學式表示。然而,本實施形態不受此限制。 This silane inorganic acid salt can be exemplified by the following chemical formula. However, this embodiment is not limited to this.

Figure 104122910-A0202-12-0012-8
Figure 104122910-A0202-12-0012-8

Figure 104122910-A0202-12-0012-9
Figure 104122910-A0202-12-0012-9

Figure 104122910-A0202-12-0012-10
Figure 104122910-A0202-12-0012-10

Figure 104122910-A0202-12-0012-11
Figure 104122910-A0202-12-0012-11

Figure 104122910-A0202-12-0013-12
Figure 104122910-A0202-12-0013-12

Figure 104122910-A0202-12-0013-13
Figure 104122910-A0202-12-0013-13

Figure 104122910-A0202-12-0013-14
Figure 104122910-A0202-12-0013-14

Figure 104122910-A0202-12-0013-15
Figure 104122910-A0202-12-0013-15

Figure 104122910-A0202-12-0014-16
Figure 104122910-A0202-12-0014-16

Figure 104122910-A0202-12-0014-17
Figure 104122910-A0202-12-0014-17

Figure 104122910-A0202-12-0014-19
Figure 104122910-A0202-12-0014-19

Figure 104122910-A0202-12-0015-20
Figure 104122910-A0202-12-0015-20

Figure 104122910-A0202-12-0015-21
Figure 104122910-A0202-12-0015-21

Figure 104122910-A0202-12-0015-24
Figure 104122910-A0202-12-0015-24

Figure 104122910-A0202-12-0015-25
Figure 104122910-A0202-12-0015-25

Figure 104122910-A0202-12-0016-26
Figure 104122910-A0202-12-0016-26

Figure 104122910-A0202-12-0016-27
Figure 104122910-A0202-12-0016-27

Figure 104122910-A0202-12-0016-28
Figure 104122910-A0202-12-0016-28

Figure 104122910-A0202-12-0016-29
Figure 104122910-A0202-12-0016-29

Figure 104122910-A0202-12-0017-30
Figure 104122910-A0202-12-0017-30

Figure 104122910-A0202-12-0017-31
Figure 104122910-A0202-12-0017-31

在化學式A3-1至A3-7、A4-1至A4-7和A5-1至A5-7中,R1-1至R1-8中的每一個可以選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基和(C6-C30)芳基。所述鹵素可以包括氟、氯、溴和碘。較佳地,所述鹵素可以為氟和氯中的一種。 In the chemical formulas A3-1 to A3-7, A4-1 to A4-7 and A5-1 to A5-7, each of R 1-1 to R 1-8 may be selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy and (C 6 -C 30 )aryl. The halogen may include fluorine, chlorine, bromine and iodine. Preferably, the halogen may be one of fluorine and chlorine.

基於蝕刻組合物的總重量,所述矽烷無機酸鹽的含量為約0.01至約15wt%,更佳約0.05至約15wt%,甚至更佳約1至約15wt%,更佳約3至約7wt%。 Based on the total weight of the etching composition, the content of the silane inorganic acid salt is about 0.01 to about 15 wt%, more preferably about 0.05 to about 15 wt%, even more preferably about 1 to about 15 wt%, even more preferably about 3 to about 7 wt% %.

當所述矽烷無機酸鹽的含量低於約0.01wt%時,不能實現氮化物層的高蝕刻選擇性。當所述矽烷無機酸鹽的含量高於約15wt%時,含量的增大不會引起蝕刻選擇性的進一步提高而且會引起諸如顆粒的產生等問題。 When the content of the silane inorganic acid salt is less than about 0.01 wt%, a high etching selectivity of the nitride layer cannot be achieved. When the content of the silane inorganic acid salt is higher than about 15 wt%, the increase in the content does not cause a further increase in etching selectivity and causes problems such as generation of particles.

例如,當矽烷無機酸鹽的含量高於約0.7wt%時,蝕刻組合物的氮化物蝕刻速度和氧化物蝕刻速度之間的選擇性 高於約200:1(例如,氮化物蝕刻速度Å/min:氧化物蝕刻速度Å/min)。例如,蝕刻組合物的選擇性可以為約200:1、約200:5和約200:10。 For example, when the content of the silicate inorganic acid salt is higher than about 0.7 wt%, the selectivity between the nitride etching rate and the oxide etching rate of the etching composition Above about 200:1 (for example, nitride etching rate Å/min: oxide etching rate Å/min). For example, the selectivity of the etching composition may be about 200:1, about 200:5, and about 200:10.

例如,當矽烷無機酸鹽的含量高於約1.4wt%時,矽烷無機酸鹽的氮化物蝕刻速度和氧化物蝕刻速度之間的選擇性可以為約200:無窮大(氮化物蝕刻速度:氧化物蝕刻速度)。如上所述,根據至少一個實施形態的蝕刻組合物具有氮化物層相對於氧化物層的高選擇性。因此,蝕刻組合物能夠容易控制氧化物層的蝕刻速度並且容易控制EFH。 For example, when the content of the silane inorganic acid salt is higher than about 1.4 wt%, the selectivity between the nitride etching speed and the oxide etching speed of the silane inorganic acid salt may be about 200: infinity (nitride etching speed: oxide Etching speed). As described above, the etching composition according to at least one embodiment has a high selectivity of the nitride layer relative to the oxide layer. Therefore, the etching composition can easily control the etching rate of the oxide layer and easily control the EFH.

根據至少一個實施形態,矽烷無機酸鹽可以由多磷酸與矽烷化合物的反應生成。此矽烷無機酸鹽可以用下面的化學式B1表示。 According to at least one embodiment, the silane inorganic acid salt can be generated by the reaction of polyphosphoric acid and a silane compound. This silane inorganic acid salt can be represented by the following chemical formula B1.

Figure 104122910-A0202-12-0018-32
Figure 104122910-A0202-12-0018-32

在化學式B1中,R1可以選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基和(C6-C30)芳基。所述鹵素可以包括氟、氯、溴和碘。較佳地,所述鹵素可以為氟和氯中的一種。n1為1至4的一個整數,m1為1至10的一個整數。R2至R4中的每一個可以為氫。選擇性地,選自R2至R4中的至少一個氫可以被用下面的化學式B2表示的取代基取代。 In the chemical formula B1, R 1 may be selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy and (C 6 -C 30 )aryl. The halogen may include fluorine, chlorine, bromine and iodine. Preferably, the halogen may be one of fluorine and chlorine. n 1 is an integer from 1 to 4, and m 1 is an integer from 1 to 10. Each of R 2 to R 4 may be hydrogen. Alternatively, at least one hydrogen selected from R 2 to R 4 may be substituted with a substituent represented by the following Chemical Formula B2.

Figure 104122910-A0202-12-0019-33
Figure 104122910-A0202-12-0019-33

在化學式B2中,R5中的一個R5可以與化學式B1連接並且其他的R5可以選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基和(C6-C30)芳基。例如,當有四個R5時,其中一個R5與化學式B1連接,剩餘三個R5中的每一個可以選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基和(C6-C30)芳基。又如,當有一個R5時,它與化學式B1連接。n2為0至3的一個整數,m2為1至10的一個整數。 In the chemical formula B2, one R 5 of the R 5 may be connected to the chemical formula B1 and the other R 5 may be selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy and (C 6 -C 30 )aryl. For example, when there are four R 5 , one R 5 is connected to the chemical formula B1, and each of the remaining three R 5 may be selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 ) Alkoxy and (C 6 -C 30 ) aryl. As another example, when there is an R 5 , it is connected to the chemical formula B1. n 2 is an integer from 0 to 3, and m 2 is an integer from 1 to 10.

在化學式B2中,R2至R4的每一個可以為氫或者被用化學式B2表示的取代基取代。即,R2至R4中的一個可以被用化學式B2表示的取代基取代。另外,用第二化學式B2表示的取代基的R2至R4中的一個也可以被用第三化學式B2表示的取代基取代。 In Chemical Formula B2, each of R 2 to R 4 may be hydrogen or substituted with a substituent represented by Chemical Formula B2. That is, one of R 2 to R 4 may be substituted with a substituent represented by Chemical Formula B2. In addition, one of R 2 to R 4 of the substituent represented by the second chemical formula B2 may be substituted with the substituent represented by the third chemical formula B2.

這是因為矽烷無機酸鹽通過多磷酸和矽烷化合物之間的反應生成。例如,用化學式B1表示的組合物通過多磷酸和矽烷化合物之間的反應生成。在所生成的用化學式B1表示的組合物中,羥基可以與所述矽烷化合物再次反應。此處,羥基位於來自多磷酸的部分的R2至R4中的一個位置上,矽烷化合物為引發這個重複反應的反應物。連續地,反應後的矽烷化合物與多磷酸再次反應。此反應可以重複並連續進行。 This is because silane inorganic acid salts are generated by the reaction between polyphosphoric acid and silane compounds. For example, the composition represented by the chemical formula B1 is generated by the reaction between the polyphosphoric acid and the silane compound. In the resulting composition represented by the chemical formula B1, the hydroxyl group can react with the silane compound again. Here, the hydroxyl group is located at one of R 2 to R 4 from the portion of the polyphosphoric acid, and the silane compound is a reactant that initiates this repeated reaction. Continuously, the reacted silane compound and polyphosphoric acid react again. This reaction can be repeated and continued.

由於重複和連續反應,可以生成下面的矽烷無機酸鹽的組合物。 Due to the repeated and continuous reaction, the following composition of silane inorganic acid salts can be produced.

在化學式B1中,n1為1,m1為1,R2至R4都為氫。此時,可以生成用下面的化學式B3-1表示的矽烷無機酸鹽。R1-1至R1-3的定義與R1的定義相同。 In the chemical formula B1, n 1 is 1, m 1 is 1, and R 2 to R 4 are all hydrogen. At this time, a silane inorganic acid salt represented by the following chemical formula B3-1 can be generated. The definition of R 1-1 to R 1-3 is the same as the definition of R 1 .

Figure 104122910-A0202-12-0020-34
Figure 104122910-A0202-12-0020-34

除了m1為2外,用下面的化學式B3-2表示的化合物與用化學式B3-1表示的化合物基本相同。 Except that m 1 is 2, the compound represented by the following chemical formula B3-2 is substantially the same as the compound represented by the chemical formula B3-1.

Figure 104122910-A0202-12-0020-35
Figure 104122910-A0202-12-0020-35

下面的化學式B3-3示例性地表示當化學式B1具有以下條件:i)n1為2,ii)m1為1,iii)R2至R4中的每一個為氫時的化合物。R1-1至R1-2的定義與R1的定義相同。 The following chemical formula B3-3 exemplarily represents a compound when chemical formula B1 has the following conditions: i) n 1 is 2, ii) m 1 is 1, iii) each of R 2 to R 4 is hydrogen. The definition of R 1-1 to R 1-2 is the same as the definition of R 1 .

Figure 104122910-A0202-12-0020-36
Figure 104122910-A0202-12-0020-36

下面的化學式B3-4示例性地表示當化學式B1具有以下條件:i)n1為1,ii)m1為1,iii)所有R2至R3為氫,iv)R4被用化學式B2表示的取代基取代時的化合物。在化學式B2的取代基中,n2為0,並且至少一個R5與化學式B1連接。此處,R1-1至R1-6的定義與R1的定義相同。 The following chemical formula B3-4 exemplarily shows that when the chemical formula B1 has the following conditions: i) n 1 is 1, ii) m 1 is 1, iii) all R 2 to R 3 are hydrogen, iv) R 4 is used as the chemical formula B2 The compound when the indicated substituent is substituted. In the substituent of the chemical formula B2, n 2 is 0, and at least one R 5 is connected to the chemical formula B1. Here, the definition of R 1-1 to R 1-6 is the same as the definition of R 1 .

用下面的化學式B3-4表示的此化合物通過i)由具有用化學式B1表示的化合物的R4取代基的多磷酸產生的部分與ii)矽烷化合物之間的重複反應生成。此處,所述矽烷化合物為引發重複反應的反應物。 This compound represented by the following Chemical Formula B3-4 is generated by a repeated reaction between i) a portion derived from polyphosphoric acid having an R 4 substituent of the compound represented by Chemical Formula B1 and ii) a silane compound. Here, the silane compound is a reactant that initiates repeated reactions.

Figure 104122910-A0202-12-0021-37
Figure 104122910-A0202-12-0021-37

下面的化學式B3-5示例性地表示當化學式B1具有以下條件:i)n1為1,ii)m1為1,iii)R3至R4為氫,iv)R2被化學式B2取代時的化合物。此處,化學式B2具有以下條件:i)n2為1,ii)m2為1,iii)至少一個R5與化學式B1連接,iv)所有的R2至R4為氫時的化合物。此處,R1-1至R1-5的定義與R1的定義相同。 The following chemical formula B3-5 exemplarily shows that when chemical formula B1 has the following conditions: i) n 1 is 1, ii) m 1 is 1, iii) R 3 to R 4 are hydrogen, and iv) R 2 is substituted by chemical formula B2 compound of. Here, the chemical formula B2 has the following conditions: i) n 2 is 1, ii) m 2 is 1, iii) at least one R 5 is connected to the chemical formula B1, and iv) all the compounds when R 2 to R 4 are hydrogen. Here, the definition of R 1-1 to R 1-5 is the same as the definition of R 1 .

用下面的化學式B3-5表示的此化合物由重複和連續反應生成。例如,i)羥基,位於化學式B1表示的化合物中來自多磷酸的部分的R4位置處,與所述矽烷化合物再次反應。此處,所述矽烷化合物為引發這個重複反應的反應物。然後,ii)與用化學式B1表示的化合物連續反應的所述矽烷化合物與所述多磷酸連續反應。此處,所述多磷酸為引發這個連續反應的反應物。 This compound represented by the following chemical formula B3-5 is formed by repeated and continuous reactions. For example, i) the hydroxyl group, located at the R 4 position of the portion derived from polyphosphoric acid in the compound represented by the chemical formula B1, reacts with the silane compound again. Here, the silane compound is a reactant that initiates this repeated reaction. Then, ii) the silane compound continuously reacted with the compound represented by the chemical formula B1 and the polyphosphoric acid are continuously reacted. Here, the polyphosphoric acid is the reactant that initiates this continuous reaction.

Figure 104122910-A0202-12-0022-38
Figure 104122910-A0202-12-0022-38

下面的化學式B3-6和化學式B3-7示例性地表示除了用化學式B2表示的取代基的位置不同之外與用化學式B3-5表示的化合物基本相同的化合物。在化學式B3-6中,用化學式B2表示的取代基位於化學式B1的R3位置處。在化學式B3-7中,用化學式B2表示的取代基位於化學式B1的R4位置處。 The following Chemical Formula B3-6 and Chemical Formula B3-7 exemplarily represent compounds that are substantially the same as the compound represented by Chemical Formula B3-5 except that the positions of the substituents represented by Chemical Formula B2 are different. In Chemical Formula B3-6, the substituent represented by Chemical Formula B2 is located at the R 3 position of Chemical Formula B1. In the chemical formula B3-7, the substituent represented by the chemical formula B2 is located at the R 4 position of the chemical formula B1.

Figure 104122910-A0202-12-0022-40
Figure 104122910-A0202-12-0022-40

Figure 104122910-A0202-12-0022-41
Figure 104122910-A0202-12-0022-41

下面的化學式B3-8示例性地表示當化學式B1具有以下條件:i)n1為1,ii)m1為1,iii)R2至R3為氫,iv)化學 式B1的R4被用化學式B2表示的第一取代基取代,v)用化學式B2表示的取代基的R4被用化學式B2表示的第二取代基取代時的化合物。此處,化學式B2具有以下條件:i)n2為1,ii)m2為1,iii)至少一個R5與化學式B1連接,iv)R2和R3中的至少一個為氫。此處,R1-1至R1-7的定義與R1的定義相同。 The following chemical formula B3-8 exemplarily shows that when chemical formula B1 has the following conditions: i) n 1 is 1, ii) m 1 is 1, iii) R 2 to R 3 are hydrogen, iv) R 4 of chemical formula B1 is used The compound substituted by the first substituent represented by the chemical formula B2, v) when the R 4 of the substituent represented by the chemical formula B2 is substituted by the second substituent represented by the chemical formula B2. Here, the chemical formula B2 has the following conditions: i) n 2 is 1, ii) m 2 is 1, iii) at least one R 5 is connected to the chemical formula B1, and iv) at least one of R 2 and R 3 is hydrogen. Here, the definition of R 1-1 to R 1-7 is the same as the definition of R 1 .

用下面的化學式B3-8表示的此化合物由重複和連續反應生成。例如,i)羥基與所述矽烷化合物再次反應。此處,反應後的羥基位於用化學式B3-7表示的化合物的右端的來自多磷酸的部分處,並且矽烷化合物為引發這個重複反應的反應物。然後,ii)與用化學式B3-7表示的化合物反應的矽烷化合物與多磷酸連續反應。此處,多磷酸為引發這個連續反應的反應物。 This compound represented by the following chemical formula B3-8 is formed by repeated and continuous reactions. For example, i) the hydroxyl group reacts with the silane compound again. Here, the hydroxyl group after the reaction is located at a portion derived from polyphosphoric acid at the right end of the compound represented by Chemical Formula B3-7, and the silane compound is a reactant that initiates this repeated reaction. Then, ii) the silane compound reacted with the compound represented by the chemical formula B3-7 is continuously reacted with the polyphosphoric acid. Here, polyphosphoric acid is the reactant that initiates this continuous reaction.

Figure 104122910-A0202-12-0023-42
Figure 104122910-A0202-12-0023-42

如上所述,根據至少一個實施形態,可以生成用化學式B3-1至B3-8表示的不同組合物。然而,實施形態不受此限制。 As described above, according to at least one embodiment, different compositions represented by chemical formulas B3-1 to B3-8 can be produced. However, the embodiment is not limited to this.

如上所述,矽烷化合物可以與多磷酸反應並由於該反應生成用化學式B1表示的矽烷無機酸鹽。此矽烷化合物可以為用化學式A1表示的化合物。由於已經描述了用化學式A1表示的化合物,所以此處省略了其詳細描述。 As described above, the silane compound can react with polyphosphoric acid and generate a silane inorganic acid salt represented by the chemical formula B1 due to the reaction. The silane compound may be a compound represented by Chemical Formula A1. Since the compound represented by the chemical formula A1 has been described, its detailed description is omitted here.

所述多磷酸可以為含有兩個磷酸原子的焦磷酸或含有三個以上磷酸原子的多磷酸。 The polyphosphoric acid may be pyrophosphoric acid containing two phosphoric acid atoms or polyphosphoric acid containing three or more phosphoric acid atoms.

除了使用多磷酸而不是使用第二無機酸之外,由多磷酸與矽烷化合物反應生成矽烷無機酸鹽的方法可以與由第二無機酸與矽烷化合物反應生成矽烷無機酸鹽的方法基本相同。 Except for using polyphosphoric acid instead of the second inorganic acid, the method of generating the silicate inorganic acid salt from the reaction of the polyphosphoric acid and the silane compound can be basically the same as the method of generating the silane inorganic acid salt from the reaction of the second inorganic acid and the silane compound.

根據至少一個實施形態,矽烷無機酸鹽可以為用下面的化學式C1表示的矽氧烷無機酸鹽。此矽氧烷無機酸鹽可以由第二無機酸與矽氧烷化合物反應生成。此處,第二無機酸可以選自磷酸、無水磷酸、焦磷酸、多磷酸以及它們的組合中。 According to at least one embodiment, the silicate inorganic acid salt may be a siloxane inorganic acid salt represented by the following chemical formula C1. The inorganic acid salt of siloxane can be generated by the reaction of the second inorganic acid and the siloxane compound. Here, the second inorganic acid may be selected from phosphoric acid, anhydrous phosphoric acid, pyrophosphoric acid, polyphosphoric acid, and combinations thereof.

Figure 104122910-A0202-12-0024-43
Figure 104122910-A0202-12-0024-43

在化學式C1中,R1至R2中的每一個可以選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基和(C6-C30)芳基。所述鹵 素可以包括氟、氯、溴和碘。較佳地,所述鹵素可以為氟和氯中的一種。 In the chemical formula C1, each of R 1 to R 2 may be selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy and (C 6 -C 30 )aryl base. The halogen may include fluorine, chlorine, bromine and iodine. Preferably, the halogen may be one of fluorine and chlorine.

在化學式C1中,n1為0至3的一個整數,n2為0至2的一個整數,m1為整數0和1中的一個,其中,n1、n2和m1之和等於或大於1(例如,n1+n2+m1

Figure 104122910-A0202-12-0025-141
1)。例如,化學式C1可以包括至少一個來自第二無機酸例如磷酸的原子基團。 In the chemical formula C1, n 1 is an integer from 0 to 3, n 2 is an integer from 0 to 2, and m 1 is one of integers 0 and 1, wherein the sum of n 1 , n 2 and m 1 is equal to or Greater than 1 (for example, n 1 +n 2 +m 1
Figure 104122910-A0202-12-0025-141
1). For example, the chemical formula C1 may include at least one atomic group from a second inorganic acid such as phosphoric acid.

在化學式C1中,l1為1至10的一個整數並且O1至O3中的每一個為0至10的一個整數。 In the chemical formula C1, l 1 is an integer of 1 to 10 and each of O 1 to O 3 is an integer of 0 to 10.

在化學式C1中,R3至R11中的每一個為氫。選擇性地,選自R3至R11中的至少一個氫可以被用下面的化學式C2表示的取代基取代。 In the chemical formula C1, each of R 3 to R 11 is hydrogen. Alternatively, at least one hydrogen selected from R 3 to R 11 may be substituted with a substituent represented by the following chemical formula C2.

Figure 104122910-A0202-12-0025-44
Figure 104122910-A0202-12-0025-44

在化學式C2中,R12和R13中的一個可以與化學式C1連接並且其他的可以獨立地選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基和(C6-C30)芳基。例如,當有兩個R12和一個R13時,它們中的一個可以與化學式C1連接,剩餘兩個的每一個可以選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基和(C6-C30)芳基。又例如,當有一個R12且沒有R13時,R12與化學式C1連接。 In the chemical formula C2, one of R 12 and R 13 may be connected to the chemical formula C1 and the other may be independently selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy And (C 6 -C 30 )aryl. For example, when there are two R 12 and one R 13 , one of them may be connected to the chemical formula C1, and each of the remaining two may be selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy and (C 6 -C 30 )aryl. For another example, when there is one R 12 and no R 13 , R 12 is connected to the chemical formula C1.

n3為0至3的一個整數,n4為0至2的一個整數,m1為0至1的一個整數。l1為1至10的一個整數,O1至O3中的每一個為0至10的一個整數。 n 3 is an integer from 0 to 3, n 4 is an integer from 0 to 2, and m 1 is an integer from 0 to 1. l 1 is an integer from 1 to 10, and each of O 1 to O 3 is an integer from 0 to 10.

在化學式C2中,R3至R11可以為氫或者可以被用化學式C2表示的取代基(稱作第二化學式C2)取代。即,化學式C2的R3至R11中的至少一個可以被用第二化學式C2表示的取代基取代,第二化學式C2的R3至R11中的至少一個可以被用化學式C2表示的取代基(稱作第三化學式C2)再次取代。 In the chemical formula C2, R 3 to R 11 may be hydrogen or may be substituted with a substituent represented by the chemical formula C2 (referred to as a second chemical formula C2). That is, at least one of R 3 to R 11 of the chemical formula C2 may be substituted with the substituent represented by the second chemical formula C2, and at least one of the R 3 to R 11 of the second chemical formula C2 may be substituted by the substituent represented by the chemical formula C2 (Referred to as the third chemical formula C2) substituted again.

這是因為所述矽氧烷無機酸鹽通過第二無機酸和矽氧烷化合物的重複和連續反應來生成。例如,用化學式C1表示的化合物通過第二無機酸和矽氧烷化合物之間的反應生成。在所生成的用化學式C1表示的化合物中,羥基可以與矽氧烷化合物再次反應。此處,矽氧烷化合物為引發這個重複反應的反應物,與矽氧烷反應的羥基位於來自第二無機酸的部分的R3至R11的位置處。連續地,與所生成的用化學式C1表示的化合物反應後的矽氧烷化合物,與 第二無機酸再次反應。此處,第二無機酸為引發這個連續反應的反應物。此反應可以重複並連續進行。 This is because the inorganic acid salt of siloxane is generated by the repeated and continuous reaction of the second inorganic acid and the siloxane compound. For example, the compound represented by the chemical formula C1 is generated by the reaction between the second inorganic acid and the siloxane compound. In the generated compound represented by the chemical formula C1, the hydroxyl group can react with the siloxane compound again. Here, the siloxane compound is a reactant that initiates this repeated reaction, and the hydroxyl group that reacts with the siloxane is located at the position of R 3 to R 11 from the portion of the second inorganic acid. Continuously, the siloxane compound that has reacted with the generated compound represented by the chemical formula C1 reacts again with the second inorganic acid. Here, the second inorganic acid is a reactant that initiates this continuous reaction. This reaction can be repeated and continued.

下面的化學式示例性地表示此重複和連續反應生成的矽氧烷無機酸鹽。 The following chemical formula exemplarily represents the silicate inorganic acid salt produced by this repeated and continuous reaction.

下面的化學式C1-1示例性地示出當化學式C1具有以下條件:i)n1為1,ii)n2為0,iii)m1為0,iv)l1為1,v)O1至O3為0,vi)所有的R3至R11為氫時的化合物。此處,R1-1至R1-2的定義與R1的定義相同,R2-1至R2-2的定義與R2的定義相同。 The following chemical formula C1-1 exemplarily shows that when the chemical formula C1 has the following conditions: i) n 1 is 1, ii) n 2 is 0, iii) m 1 is 0, iv) l 1 is 1, v) O 1 When O 3 is 0, vi) all the compounds when R 3 to R 11 are hydrogen. Here, the definition of R 1-1 to R 1-2 is the same as the definition of R 1 , and the definition of R 2-1 to R 2-2 is the same as the definition of R 2 .

Figure 104122910-A0202-12-0027-45
Figure 104122910-A0202-12-0027-45

下面的化學式C1-2表示除了當n2為1時之外與用化學式C1-1表示的化合物基本相同的化合物。 The following Chemical Formula C1-2 represents a compound that is substantially the same as the compound represented by Chemical Formula C1-1 except when n 2 is 1.

Figure 104122910-A0202-12-0027-46
Figure 104122910-A0202-12-0027-46

下面的化學式C1-3表示除了當O2和O3為1時之外與用化學式C1-1表示的化合物基本相同的化合物。 The following chemical formula C1-3 represents a compound that is substantially the same as the compound represented by the chemical formula C1-1 except when O 2 and O 3 are 1.

Figure 104122910-A0202-12-0028-47
Figure 104122910-A0202-12-0028-47

下面的化學式C1-4表示除了當l1為2時之外與用化學式C1-2表示的化合物基本相同的化合物。 The following chemical formula C1-4 represents a compound that is substantially the same as the compound represented by the chemical formula C1-2 except when l 1 is 2.

Figure 104122910-A0202-12-0028-48
Figure 104122910-A0202-12-0028-48

下面的化學式C1-5示例性地表示當化學式C1具有以下條件:i)n1為2,ii)n2為2,iii)m1為0,iv)l1為1,v)O1至O3中的至少一個為0,vi)所有的R3至R11為氫時的 化合物。 The following chemical formula C1-5 exemplarily shows that when the chemical formula C1 has the following conditions: i) n 1 is 2, ii) n 2 is 2, iii) m 1 is 0, iv) l 1 is 1, v) O 1 to At least one of O 3 is 0, vi) a compound in which all R 3 to R 11 are hydrogen.

Figure 104122910-A0202-12-0029-49
Figure 104122910-A0202-12-0029-49

下面的化學式C1-6示例性地表示當化學式C1具有以下條件:i)n1為1,ii)n2為1,iii)m1為0,iv)l1為1,v)O1至O3中的至少一個為0,vi)R6、R9和R11為氫,vii)R8被用化學式C2表示的取代基取代時的化合物。此處,在取代基的化學式C2中,i)n3和n4為0,ii)m1為0,iii)l1為1,iv)R12中的至少一個與化學式C1連接。 The following chemical formula C1-6 exemplarily shows that when the chemical formula C1 has the following conditions: i) n 1 is 1, ii) n 2 is 1, iii) m 1 is 0, iv) l 1 is 1, v) O 1 to At least one of O 3 is 0, vi) R 6 , R 9 and R 11 are hydrogen, and vii) R 8 is a compound when a substituent represented by the chemical formula C2 is substituted. Here, in the chemical formula C2 of the substituent, i) n 3 and n 4 are 0, ii) m 1 is 0, iii) l 1 is 1, and iv) at least one of R 12 is connected to the chemical formula C1.

此處,R1-1至R1-7的定義與R1的定義相同,R2-1的定義與R2的定義相同。用下面的化學式C1-6表示的此化合物由i)羥基和ii)矽氧烷化合物之間的重複反應生成。反應後的羥基位於用化學式C1表示的化合物中來自第二無機酸的部分的R8位置處,矽氧烷化合物為引發這個重複反應的反應物。 Here, the definition of R 1-1 to R 1-7 is the same as the definition of R 1 , and the definition of R 2-1 is the same as the definition of R 2 . This compound represented by the following chemical formula C1-6 is generated by the repeated reaction between i) a hydroxyl group and ii) a siloxane compound. The hydroxyl group after the reaction is located at the R 8 position of the portion derived from the second inorganic acid in the compound represented by the chemical formula C1, and the siloxane compound is a reactant that initiates this repeated reaction.

Figure 104122910-A0202-12-0030-50
Figure 104122910-A0202-12-0030-50

下面的化學式C1-7示例性地表示當化學式C1具有以下條件:i)n1為1,ii)n2為1,iii)m1為0,iv)l1為1,v)O1至O3中的至少一個為0,vi)R6、R9和R11為氫,vii)R8被用化學式C2表示的取代基取代時的化合物。此處,在取代基的化學式C2中,i)n3和n4為1,ii)m1為0,iii)O2和O3為0,iv)R12中的至少一個與化學式C1連接,v)R6、R8、R9和R11為氫。此處,R1-1至R1-3、R2-1、R2-2、R3-1和R3-2的定義分別與R1、R2和R3的定義相同。 The following chemical formula C1-7 exemplarily shows that when the chemical formula C1 has the following conditions: i) n 1 is 1, ii) n 2 is 1, iii) m 1 is 0, iv) l 1 is 1, v) O 1 to At least one of O 3 is 0, vi) R 6 , R 9 and R 11 are hydrogen, and vii) R 8 is a compound when a substituent represented by the chemical formula C2 is substituted. Here, in the chemical formula C2 of the substituent, i) n 3 and n 4 are 1, ii) m 1 is 0, iii) O 2 and O 3 are 0, iv) at least one of R 12 is connected to the chemical formula C1 , V) R 6 , R 8 , R 9 and R 11 are hydrogen. Here, the definitions of R 1-1 to R 1-3 , R 2-1 , R 2-2 , R 3-1 and R 3-2 are the same as the definitions of R 1 , R 2 and R 3 , respectively.

用化學式C1-7表示的此化合物由重複和連續反應生成。例如,羥基與矽氧烷化合物再次反應。此處,反應的羥基為化學式C1表示的化合物中位於來自第二無機酸的部分的R8處的羥基。然後,反應後的矽氧烷化合物與第二無機酸連續反應。此處,第二無機酸為引發這個連續反應的反應物。 This compound represented by the chemical formula C1-7 is formed by repeated and continuous reactions. For example, the hydroxyl group reacts with the siloxane compound again. Here, the reacted hydroxyl group is the hydroxyl group located at R 8 in the portion derived from the second inorganic acid in the compound represented by Chemical Formula C1. Then, the reacted siloxane compound continuously reacts with the second inorganic acid. Here, the second inorganic acid is a reactant that initiates this continuous reaction.

Figure 104122910-A0202-12-0031-51
Figure 104122910-A0202-12-0031-51

除了用化學式C2表示的取代基位於化學式C1-7的R1-3位置處並與化學式C1連接之外,下面的化學式C1-8表示與用化學式C1-7表示的化合物基本相同的化合物。 Except that the substituent represented by the chemical formula C2 is located at the R 1-3 position of the chemical formula C1-7 and is connected to the chemical formula C1, the following chemical formula C1-8 represents a compound substantially the same as the compound represented by the chemical formula C1-7.

Figure 104122910-A0202-12-0031-52
Figure 104122910-A0202-12-0031-52

下面的化學式C1-9示例性地表示當化學式C1具有以下條件:i)n1為1,ii)n2為1,iii)m1為0,iv)l1為1,v)O1至O3中的至少一個為0,vi)R3、R6、R9和R11為氫,vii)化學式C1的R8被用化學式C2(稱作第一化學式C2)表示的第一取代基取代,viii)第一取代基R8(例如,第一化學式C2)被用化學式C2(稱作第二化學式C2)表示的第二取 代基取代時的化合物。此處,在第一取代基的第一化學式C2中,i)n3和n4為1,ii)m1為0,iii)l1為1,iv)O2和O3為0,v)R12中的至少一個與化學式C1連接,v)R6、R9和R11為氫,vi)R8為用第二化學式C2表示的第二取代基。在第二取代基的第二化學式C2中,i)n3和n4為1,ii)m1為0,iii)l1為1,iv)O2和O3為0,v)R12中的至少一個與第一化學式C2連接,v)R6、R8、R9和R11為氫。此處,R1-1至R1-4、R2-1至R2-3和R3-1至R3-3的定義分別與R1、R2和R3的定義相同。 The following chemical formula C1-9 exemplarily shows that when the chemical formula C1 has the following conditions: i) n 1 is 1, ii) n 2 is 1, iii) m 1 is 0, iv) l 1 is 1, v) O 1 to At least one of O 3 is 0, vi) R 3 , R 6 , R 9 and R 11 are hydrogen, vii) R 8 of the chemical formula C1 is the first substituent represented by the chemical formula C2 (referred to as the first chemical formula C2) Substitution, viii) The compound when the first substituent R 8 (for example, the first chemical formula C2) is substituted with the second substituent represented by the chemical formula C2 (referred to as the second chemical formula C2). Here, in the first chemical formula C2 of the first substituent, i) n 3 and n 4 are 1, ii) m 1 is 0, iii) l 1 is 1, iv) O 2 and O 3 are 0, v ) At least one of R 12 is connected to the chemical formula C1, v) R 6 , R 9 and R 11 are hydrogen, vi) R 8 is the second substituent represented by the second chemical formula C2. In the second chemical formula C2 of the second substituent, i) n 3 and n 4 are 1, ii) m 1 is 0, iii) l 1 is 1, iv) O 2 and O 3 are 0, v) R 12 At least one of them is connected to the first chemical formula C2, and v) R 6 , R 8 , R 9 and R 11 are hydrogen. Here, the definitions of R 1-1 to R 1-4 , R 2-1 to R 2-3 and R 3-1 to R 3-3 are the same as the definitions of R 1 , R 2 and R 3 , respectively.

用下面的化學式C1-9表示的此化合物由重複和連續反應生成。例如,化學式B1-7表示的化合物的右端的來自第二無機酸的部分與矽氧烷化合物再次反應。然後,反應後的矽氧烷化合物與第二無機酸連續反應。此處,第二無機酸為引發這個連續反應的反應物。 This compound represented by the following chemical formula C1-9 is formed by repeated and continuous reactions. For example, the part derived from the second inorganic acid at the right end of the compound represented by Chemical Formula B1-7 reacts again with the siloxane compound. Then, the reacted siloxane compound continuously reacts with the second inorganic acid. Here, the second inorganic acid is a reactant that initiates this continuous reaction.

Figure 104122910-A0202-12-0032-53
Figure 104122910-A0202-12-0032-53

除了用化學式C2表示的取代基位於化學式C1-9的R1-4位置並與化學式C1連接之外,下面的化學式C1-10表示與用化學式C1-9表示的化合物基本相同的化合物。 Except that the substituent represented by the chemical formula C2 is located at the R 1-4 position of the chemical formula C1-9 and is connected to the chemical formula C1, the following chemical formula C1-10 represents a compound substantially the same as the compound represented by the chemical formula C1-9.

Figure 104122910-A0202-12-0033-54
Figure 104122910-A0202-12-0033-54

根據實施形態的化合物不限於用化學式C1-1至C1-10表示的化合物。 The compound according to the embodiment is not limited to the compounds represented by Chemical Formulas C1-1 to C1-10.

例如,根據至少一個實施形態,矽烷化合物可以為用下面的化學式C3表示並且通過第二無機酸和矽氧烷化合物的反應生成的矽氧烷無機酸鹽。此處,第二無機酸可以選自硫酸、發煙硫酸以及它們的組合。 For example, according to at least one embodiment, the silane compound may be a silicate inorganic acid salt represented by the following chemical formula C3 and generated by the reaction of a second inorganic acid and a siloxane compound. Here, the second inorganic acid may be selected from sulfuric acid, fuming sulfuric acid, and combinations thereof.

Figure 104122910-A0202-12-0033-55
Figure 104122910-A0202-12-0033-55

在化學式C3中,R21和R22中的每一個可以獨立地選 自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基和(C6-C30)芳基。所述鹵素可以包括氟、氯、溴和碘。較佳地,所述鹵素可以為氟和氯中的一種。 In the chemical formula C3, each of R 21 and R 22 may be independently selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy and (C 6 -C 30 )Aryl. The halogen may include fluorine, chlorine, bromine and iodine. Preferably, the halogen may be one of fluorine and chlorine.

在化學式C3中,n1為0至3的一個整數,n2為0至2的一個整數,m1為整數0和1中的一個,其中,n1、n2和m1之和等於或大於1(例如,n1+n2+m1

Figure 104122910-A0202-12-0034-144
1)。例如,化學式C3可以包括至少一個來自所述第二無機酸例如硫酸的原子基團。 In the chemical formula C3, n 1 is an integer from 0 to 3, n 2 is an integer from 0 to 2, and m 1 is one of integers 0 and 1, wherein the sum of n 1 , n 2 and m 1 is equal to or Greater than 1 (for example, n 1 +n 2 +m 1
Figure 104122910-A0202-12-0034-144
1). For example, the chemical formula C3 may include at least one atomic group from the second inorganic acid such as sulfuric acid.

在化學式C3中,l1為1至10的一個整數。 In Chemical Formula C3, l 1 is an integer from 1 to 10.

在化學式C3中,R23至R25中的每一個為氫。選擇性地,選自R23至R25中的至少一個氫可以被用下面的化學式C4表示的取代基取代。 In the chemical formula C3, each of R 23 to R 25 is hydrogen. Alternatively, at least one hydrogen selected from R 23 to R 25 may be substituted with a substituent represented by the following chemical formula C4.

Figure 104122910-A0202-12-0034-56
Figure 104122910-A0202-12-0034-56

在化學式C4中,R26和R27中的一個可以與化學式C3 連接並且其他的可以獨立地選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基和(C6-C30)芳基。例如,當有兩個R26和一個R27時,它們中的一個與化學式C3連接,剩餘兩個的每一個可以選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基和(C6-C30)芳基中。又例如,當有一個R26且沒有R27時,R26與化學式C3連接。 In the chemical formula C4, one of R 26 and R 27 may be connected to the chemical formula C3 and the other may be independently selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy And (C 6 -C 30 )aryl. For example, when there are two R 26 and one R 27 , one of them is connected to the chemical formula C3, and each of the remaining two may be selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1- C 10 ) alkoxy and (C 6 -C 30 ) aryl. For another example, when there is one R 26 and no R 27 , R 26 is connected to the chemical formula C3.

在化學式C4中,n3為0至3的一個整數,n4為0至2的一個整數,m1為0至1的一個整數,l1為1至10的一個整數。 In the chemical formula C4, n 3 is an integer from 0 to 3, n 4 is an integer from 0 to 2, m 1 is an integer from 0 to 1, and l 1 is an integer from 1 to 10.

在化學式C4中,R23至R25可以為獨立地為氫。R23至R25可以被用化學式C4(稱作第二化學式C4)表示的取代基取代。即,化學式C4中的R23至R25中的至少一個可以被用第二化學式C2表示的取代基取代,第二化學式C4的R23至R25中的至少一個可以被用化學式C4(稱作第三化學式C4)表示的取代基再次取代。 In the chemical formula C4, R 23 to R 25 may independently be hydrogen. R 23 to R 25 may be substituted with a substituent represented by a chemical formula C4 (referred to as a second chemical formula C4). That is, at least one of R 23 to R 25 in Chemical Formula C4 may be substituted with a substituent represented by second chemical formula C2, and at least one of R 23 to R 25 of Second Chemical Formula C4 may be substituted by chemical formula C4 (referred to as The substituent represented by the third chemical formula C4) is substituted again.

下面的化學式C3-1至C3-9示例性地表示由上述重複和連續反應生成的矽氧烷無機酸鹽,這與化學式C1-1至C1-10類似。在化學式C3-1至C3-9中,R11-1至R11-7、R12-1至R12-3和R13-1至R13-3的定義與R11、R12和R13的定義相同。 The following chemical formulas C3-1 to C3-9 exemplarily represent siloxane inorganic acid salts generated by the above-mentioned repeated and continuous reactions, which are similar to the chemical formulas C1-1 to C1-10. In the chemical formulas C3-1 to C3-9, the definitions of R 11-1 to R 11-7 , R 12-1 to R 12-3 and R 13-1 to R 13-3 are the same as R 11 , R 12 and R 13 has the same definition.

Figure 104122910-A0202-12-0036-57
Figure 104122910-A0202-12-0036-57

Figure 104122910-A0202-12-0036-58
Figure 104122910-A0202-12-0036-58

Figure 104122910-A0202-12-0036-60
Figure 104122910-A0202-12-0036-60

Figure 104122910-A0202-12-0037-61
Figure 104122910-A0202-12-0037-61

Figure 104122910-A0202-12-0037-62
Figure 104122910-A0202-12-0037-62

Figure 104122910-A0202-12-0037-63
Figure 104122910-A0202-12-0037-63

Figure 104122910-A0202-12-0038-64
Figure 104122910-A0202-12-0038-64

Figure 104122910-A0202-12-0038-65
Figure 104122910-A0202-12-0038-65

Figure 104122910-A0202-12-0038-66
Figure 104122910-A0202-12-0038-66

根據至少一個實施形態的化合物不限於用化學式 C3-1至C3-9表示的化合物。 The compound according to at least one embodiment is not limited to the chemical formula Compounds represented by C3-1 to C3-9.

根據至少一個實施形態,矽烷無機酸鹽可以為通過第二無機酸例如硝酸與矽氧烷化合物反應生成的矽烷無機酸鹽。此矽烷無機酸鹽可以用下面的化學式C5表示。 According to at least one embodiment, the silane inorganic acid salt may be a silane inorganic acid salt generated by reacting a second inorganic acid such as nitric acid with a siloxane compound. This silane inorganic acid salt can be represented by the following chemical formula C5.

Figure 104122910-A0202-12-0039-67
Figure 104122910-A0202-12-0039-67

在化學式C5中,R31和R32中的每一個可以獨立地選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基和(C6-C30)芳基。所述鹵素可以包括氟、氯、溴和碘。較佳地,所述鹵素可以為氟和氯中的一種。 In the chemical formula C5, each of R 31 and R 32 may be independently selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy and (C 6 -C 30 )Aryl. The halogen may include fluorine, chlorine, bromine and iodine. Preferably, the halogen may be one of fluorine and chlorine.

在化學式C5中,n1為0至3的一個整數,n2為0至2的一個整數,m1為整數0和1中的一個,其中,n1、n2和m1之和等於或大於1(例如,n1+n2+m1

Figure 104122910-A0202-12-0039-142
1)。例如,化學式C5可以包括至少一個來自所述第二無機酸例如硝酸的原子基團。 In the chemical formula C5, n 1 is an integer from 0 to 3, n 2 is an integer from 0 to 2, and m 1 is one of integers 0 and 1, wherein the sum of n 1 , n 2 and m 1 is equal to or Greater than 1 (for example, n 1 +n 2 +m 1
Figure 104122910-A0202-12-0039-142
1). For example, the chemical formula C5 may include at least one atomic group from the second inorganic acid such as nitric acid.

在化學式C5中,l1為1至10的一個整數。 In the chemical formula C5, l 1 is an integer of 1 to 10.

在化學式C5中,R33至R35中的每一個為氫。選擇性地,選自R33至R35中的至少一個氫可以被用下面的化學式C6表示的取代基取代。 In the chemical formula C5, each of R 33 to R 35 is hydrogen. Alternatively, at least one hydrogen selected from R 33 to R 35 may be substituted with a substituent represented by the following chemical formula C6.

Figure 104122910-A0202-12-0040-68
Figure 104122910-A0202-12-0040-68

在化學式C6中,R36和R37中的一個可以與化學式C5連接並且其他的可以獨立地選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基和(C6-C30)芳基。例如,當有兩個R36和一個R37時,它們中的一個可以與化學式C5連接,剩餘兩個的每一個可以選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基和(C6-C30)芳基。又例如,當有一個R36且沒有R37時,R36與化學式C5連接。 In the chemical formula C6, one of R 36 and R 37 may be connected to the chemical formula C5 and the other may be independently selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy And (C 6 -C 30 )aryl. For example, when there are two R 36 and one R 37 , one of them may be connected to the chemical formula C5, and each of the remaining two may be selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy and (C 6 -C 30 )aryl. For another example, when there is one R 36 and no R 37 , R 36 is connected to the chemical formula C5.

在化學式C6中,n3為0至3的一個整數,n4為0至2的一個整數,m1為0至1的一個整數,l1為1至10的一個整數。 In the chemical formula C6, n 3 is an integer from 0 to 3, n 4 is an integer from 0 to 2, m 1 is an integer from 0 to 1, and l 1 is an integer from 1 to 10.

在化學式C6中,R33至R35可以為獨立的為氫。R33至R35可以被用化學式C6(稱作第二化學式C6)表示的取代基取代。即,化學式C6的R33至R35中的至少一個可以被用第二化學式C6表示的取代基取代,第二化學式C6中的R33至R35中的至少一個可以被用化學式C6(稱作第三化學式C6)表示的取代基再次取代。 In the chemical formula C6, R 33 to R 35 may independently be hydrogen. R 33 to R 35 may be substituted with a substituent represented by chemical formula C6 (referred to as a second chemical formula C6). That is, at least one of R 33 to R 35 of Chemical Formula C6 may be substituted with a substituent represented by second chemical formula C6, and at least one of R 33 to R 35 of Second Chemical Formula C6 may be substituted by chemical formula C6 (referred to as The substituent represented by the third chemical formula C6) is substituted again.

下面的化學式C5-1至C5-9示例性地表示由上述重複和連續反應生成的矽氧烷無機酸鹽,與化學式C1-1至C1-10類似。在化學式C5-1至C5-9中,R21-1至R21-7、R22-1至R22-3和R23-1至R23-3的定義與R21、R22和R23的定義相同。 The following chemical formulas C5-1 to C5-9 exemplarily represent siloxane inorganic acid salts generated by the above-mentioned repeated and continuous reactions, similar to the chemical formulas C1-1 to C1-10. In the chemical formulas C5-1 to C5-9, the definitions of R 21-1 to R 21-7 , R 22-1 to R 22-3 and R 23-1 to R 23-3 are the same as R 21 , R 22 and R The definition of 23 is the same.

Figure 104122910-A0202-12-0041-69
Figure 104122910-A0202-12-0041-69

Figure 104122910-A0202-12-0041-70
Figure 104122910-A0202-12-0041-70

Figure 104122910-A0202-12-0042-71
Figure 104122910-A0202-12-0042-71

Figure 104122910-A0202-12-0042-72
Figure 104122910-A0202-12-0042-72

Figure 104122910-A0202-12-0042-73
Figure 104122910-A0202-12-0042-73

Figure 104122910-A0202-12-0043-74
Figure 104122910-A0202-12-0043-74

Figure 104122910-A0202-12-0043-75
Figure 104122910-A0202-12-0043-75

Figure 104122910-A0202-12-0043-77
Figure 104122910-A0202-12-0043-77

Figure 104122910-A0202-12-0044-78
Figure 104122910-A0202-12-0044-78

如上所述,實施形態不限於用化學式C5-1至C5-9示例性表示的組合物。 As described above, the embodiments are not limited to the compositions exemplarily represented by the chemical formulas C5-1 to C5-9.

如上所述,根據至少一個實施形態,用化學式C1表示的矽氧烷無機酸鹽可以通過第二無機酸和矽氧烷化合物之間的反應生成。此矽氧烷化合物可以為用化學式A2表示的化合物。由於用化學式A2表示的化合物已經在前面描述過,所以此處省略其詳細描述。 As described above, according to at least one embodiment, the siloxane inorganic acid salt represented by the chemical formula C1 can be generated by the reaction between the second inorganic acid and the siloxane compound. The siloxane compound may be a compound represented by Chemical Formula A2. Since the compound represented by the chemical formula A2 has been described previously, its detailed description is omitted here.

除了使用矽氧烷化合物而不是矽烷化合物之外,由第二無機酸與矽氧烷化合物反應生成矽氧烷無機酸鹽的方法可以與由第二無機酸與矽烷化合物進行反應生成矽烷無機酸鹽的方法基本相同。 In addition to using a siloxane compound instead of a silane compound, the method of generating a silicate inorganic acid salt from the reaction of the second inorganic acid and the siloxane compound can be combined with the reaction of the second inorganic acid and the silane compound to produce the silicate inorganic acid salt The method is basically the same.

根據另一實施形態,蝕刻用組合物可以包含第一無機酸、至少一種矽烷無機酸鹽以及溶劑。所述至少一種矽烷無機酸鹽可以由第二無機酸與第二矽烷化合物反應生成。 According to another embodiment, the etching composition may include a first inorganic acid, at least one silane inorganic acid salt, and a solvent. The at least one silane inorganic acid salt may be generated by reacting a second inorganic acid with a second silane compound.

如上所述,蝕刻組合物可以額外地包含第二矽烷化合物和矽烷無機酸鹽。在使用蝕刻組合物進行蝕刻製程的過程中,此額外第二矽烷化合物可以與第一無機酸反應並生成額外的矽烷無機酸鹽。因此,該額外的第二矽烷化合物還可以提高選擇性去除氮化物層的選擇性,同時使氧化物層的蝕刻速度最小化並且防止嚴重影響裝置性能的顆粒的產生。另外,該額外的第二矽烷化合物可以額外地提供在蝕刻製程中消耗的矽烷無機酸鹽。 As described above, the etching composition may additionally include the second silane compound and the silane inorganic acid salt. During the etching process using the etching composition, this additional second silane compound can react with the first inorganic acid and generate additional silane inorganic acid salt. Therefore, the additional second silane compound can also improve the selectivity of the selective removal of the nitride layer, while minimizing the etching rate of the oxide layer and preventing the generation of particles that seriously affect the performance of the device. In addition, the additional second silane compound can additionally provide the silicate inorganic acid salt consumed in the etching process.

作為第二矽烷化合物,可以使用上面描述的矽烷化合物。較佳地,可以使用用於生成矽烷無機酸鹽的相同矽烷化合物作為第二矽烷化合物。此時,第二矽烷化合物的成分將與矽烷無機酸鹽的成分類似。因此,可以進一步提高添加第二矽烷化合物的作用。另外,允許在沒有純化製程的情況下向蝕刻組合物中添加生成矽烷無機酸鹽的反應液。即,未反應的第二矽烷化合物可以有效地添加至蝕刻組合物中。 As the second silane compound, the silane compound described above can be used. Preferably, the same silane compound used to generate the silane inorganic acid salt can be used as the second silane compound. At this time, the composition of the second silane compound will be similar to the composition of the silane inorganic acid salt. Therefore, the effect of adding the second silane compound can be further improved. In addition, it is permissible to add a reaction liquid that generates a silane inorganic acid salt to the etching composition without a purification process. That is, the unreacted second silane compound can be effectively added to the etching composition.

基於蝕刻組合物的總重量,第二矽烷化合物的含量可以為約0.001至約15wt%,較佳約0.005至約10wt%,更佳約0.01至約5wt%。當第二矽烷化合物的添加量少於約0.001wt%時,由於第二矽烷化合物的含量較小,所以難以控制選擇性。當第二矽烷化合物的添加量高於約15%時,引起結晶或副產物的產生。 Based on the total weight of the etching composition, the content of the second silane compound may be about 0.001 to about 15 wt%, preferably about 0.005 to about 10 wt%, more preferably about 0.01 to about 5 wt%. When the amount of the second silane compound added is less than about 0.001 wt%, it is difficult to control the selectivity because the content of the second silane compound is small. When the addition amount of the second silane compound is higher than about 15%, it causes crystallization or the generation of by-products.

第一無機酸作為蝕刻氮化物層的蝕刻劑添加。因此,第一無機酸可以包括任何能夠蝕刻氮化物層的無機酸。例 如,第一無機酸可以選自硫酸、硝酸、磷酸、矽酸、氫氟酸、硼酸、鹽酸、氯酸以及它們的組合。 The first inorganic acid is added as an etchant for etching the nitride layer. Therefore, the first inorganic acid may include any inorganic acid capable of etching the nitride layer. example For example, the first inorganic acid may be selected from sulfuric acid, nitric acid, phosphoric acid, silicic acid, hydrofluoric acid, boric acid, hydrochloric acid, chloric acid, and combinations thereof.

較佳地,為了得到氮化物層相對於氧化物層的蝕刻選擇性,可以使用磷酸作為第一無機酸。通過向蝕刻組合物中提供氫離子,磷酸可以加速蝕刻。當使用磷酸作為第一無機酸時,蝕刻組合物還可以包括硫酸作為添加劑。硫酸可以提高含有磷酸作為第一無機酸的蝕刻組合物的沸點,從而促進蝕刻氮化物層。 Preferably, in order to obtain the etching selectivity of the nitride layer relative to the oxide layer, phosphoric acid may be used as the first inorganic acid. By supplying hydrogen ions to the etching composition, phosphoric acid can accelerate etching. When phosphoric acid is used as the first inorganic acid, the etching composition may further include sulfuric acid as an additive. Sulfuric acid can increase the boiling point of the etching composition containing phosphoric acid as the first inorganic acid, thereby promoting the etching of the nitride layer.

第一無機酸的含量可以為約70至99wt%,較佳約70至90wt%,更佳約57至約85wt%。當第一無機酸的含量低於約70wt%時,對有效去除氮化物層和顆粒的產生造成困難。當第一無機酸的含量高於約99wt%時,難以得到氮化物層的高選擇性。 The content of the first inorganic acid may be about 70 to 99 wt%, preferably about 70 to 90 wt%, more preferably about 57 to about 85 wt%. When the content of the first inorganic acid is less than about 70 wt%, it is difficult to effectively remove the nitride layer and the generation of particles. When the content of the first inorganic acid is higher than about 99 wt%, it is difficult to obtain a high selectivity of the nitride layer.

如上所述,蝕刻組合物可以包含溶劑。具體地,溶劑可以包括水和去離子水。 As described above, the etching composition may contain a solvent. Specifically, the solvent may include water and deionized water.

蝕刻組合物還可以包含銨類化合物。銨類化合物的含量可以為約0.01至約20wt%。即使蝕刻組合物使用相對較長的時間,蝕刻組合物中包含的銨類化合物可以防止蝕刻速度的降低和選擇性的變動。另外,銨類化合物可以恒定地維持蝕刻速度。 The etching composition may further contain an ammonium compound. The content of the ammonium compound may be about 0.01 to about 20 wt%. Even if the etching composition is used for a relatively long time, the ammonium compound contained in the etching composition can prevent a decrease in etching rate and a change in selectivity. In addition, the ammonium compound can maintain the etching rate constantly.

當銨類化合物的含量低於約0.01wt%時,維持選擇性的有利效果會劣化。當銨類化合物的含量高於約20wt%時,氮化物層和氧化矽層之間的蝕刻速度改變。因此,選擇性會改變。 When the content of the ammonium compound is less than about 0.01 wt%, the advantageous effect of maintaining selectivity deteriorates. When the content of the ammonium compound is higher than about 20 wt%, the etching rate between the nitride layer and the silicon oxide layer changes. Therefore, the selectivity will change.

銨類化合物可以選自氫氧化銨、氯化銨、乙酸銨、磷酸銨、過二硫酸銨、硫酸銨、氫氟酸銨鹽以及它們的組合中。然而,銨類化合物不限於此。例如,銨類化合物可以包括含有銨離子的化合物。例如,銨類化合物可以包括NH4和HCl。 The ammonium compound may be selected from ammonium hydroxide, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium peroxodisulfate, ammonium sulfate, ammonium hydrofluorate, and combinations thereof. However, ammonium compounds are not limited to this. For example, the ammonium compound may include a compound containing ammonium ions. For example, the ammonium compound may include NH4 and HCl.

蝕刻組合物還可以包含氟類化合物。氟類化合物的含量可以為約0.01至約1wt%。當氟類化合物的含量低於約0.01wt%時,會降低氮化物層的蝕刻速度。因此,難以去除氮化物層。當氟類化合物的含量高於約1wt%時,氮化物層的蝕刻速度會顯著提高。然而,氧化物層會被意外地蝕刻。 The etching composition may further contain a fluorine-based compound. The content of the fluorine-based compound may be about 0.01 to about 1 wt%. When the content of the fluorine-based compound is less than about 0.01% by weight, the etching rate of the nitride layer is reduced. Therefore, it is difficult to remove the nitride layer. When the content of the fluorine-based compound is higher than about 1 wt%, the etching rate of the nitride layer will be significantly increased. However, the oxide layer can be accidentally etched.

氟類化合物可以選自氟化氫、氟化銨、氟化氫銨以及它們的組合。較佳地,因為氟化氫銨可以在蝕刻組合物使用相對長時間的情況下提高維持的選擇性,所以可以使用氟化氫銨。 The fluorine compound may be selected from hydrogen fluoride, ammonium fluoride, ammonium hydrogen fluoride, and combinations thereof. Preferably, ammonium bifluoride may be used because it can improve the selectivity of maintenance when the etching composition is used for a relatively long time.

另外,為了提高其蝕刻性能,本實施形態的蝕刻組合物還可以包含本領域通常使用的添加劑。本實施形態中可以使用的添加劑的例子包括表面活性劑、螯合劑、防腐蝕劑等。 In addition, in order to improve the etching performance, the etching composition of the present embodiment may further contain additives commonly used in the art. Examples of additives that can be used in the present embodiment include surfactants, chelating agents, corrosion inhibitors, and the like.

本實施形態的包含矽烷無機酸鹽的蝕刻組合物表現出氮化物層相對於氧化物層的顯著高的蝕刻選擇性,因此可以用於蝕刻氮化物層的製程中。 The etching composition containing a silane inorganic acid salt of the present embodiment exhibits a remarkably high etching selectivity of the nitride layer relative to the oxide layer, so it can be used in the process of etching the nitride layer.

因此,在使用本實施形態的蝕刻組合物的氮化物膜蝕刻製程中,通過使氮化物膜的蝕刻速度最小化,可以容易 地控制EFH。另外,在使用所述蝕刻組合物選擇性地蝕刻並去除氮化物膜的製程中,可以避免由氧化物的膜的破壞或氧化物膜的蝕刻引起的電性性能的劣化,並且不產生顆粒,這會改善裝置性能。 Therefore, in the nitride film etching process using the etching composition of the present embodiment, by minimizing the etching rate of the nitride film, it is possible to easily Control EFH. In addition, in the process of selectively etching and removing the nitride film using the etching composition, it is possible to avoid deterioration of electrical properties caused by destruction of the oxide film or etching of the oxide film, and no particles are generated, This will improve device performance.

根據實施形態的另一方面,可以提供半導體裝置的製備方法,該製備方法包括使用本實施形態的蝕刻組合物進行蝕刻製程。 According to another aspect of the embodiment, a method for manufacturing a semiconductor device may be provided, the method including an etching process using the etching composition of the embodiment.

在一個示例性實施形態中,這個蝕刻製程可以包括蝕刻氮化物層。具體地,蝕刻製程可以包括相對於氧化物膜選擇性蝕刻氮化物膜。 In an exemplary embodiment, this etching process may include etching a nitride layer. Specifically, the etching process may include selectively etching the nitride film with respect to the oxide film.

氮化物層可以包括SiN膜、SiON膜等。 The nitride layer may include a SiN film, a SiON film, and the like.

另外,氧化物膜可以為選自氧化矽膜中的至少一種膜,例如,SOD(電介質旋塗)膜、HDP(高密度電漿)膜、熱氧化物膜、BPSG(硼磷酸矽酸鹽玻璃)膜、PSG(磷矽酸鹽玻璃)膜、BSG(硼矽酸鹽玻璃)膜、PSZ(聚矽氮烷)膜、FSG(氟化矽酸鹽玻璃)膜、LPTEOS(低壓原矽酸四乙酯)膜、PETEOS(電漿強化原矽酸四乙酯)膜、HTO(高溫氧化物)膜、MTO(中溫氧化物)膜、USG(未摻雜矽酸鹽玻璃)膜、SOG(玻璃旋塗)膜、APL(高級平坦層)膜、ALD(原子層沉積)膜、電漿強化氧化物膜、O3-TEOS(O3-原矽酸四乙酯)膜以及它們的組合。 In addition, the oxide film may be at least one film selected from silicon oxide films, for example, SOD (dielectric spin coating) film, HDP (high density plasma) film, thermal oxide film, BPSG (borophosphosilicate glass) ) Film, PSG (phosphosilicate glass) film, BSG (borosilicate glass) film, PSZ (polysilazane) film, FSG (fluorinated silicate glass) film, LPTEOS (low pressure orthosilicate four) Ethyl) film, PETEOS (plasma-reinforced tetraethyl orthosilicate) film, HTO (high temperature oxide) film, MTO (medium temperature oxide) film, USG (undoped silicate glass) film, SOG ( Glass spin coating) film, APL (Advanced Flat Layer) film, ALD (Atomic Layer Deposition) film, plasma enhanced oxide film, O3-TEOS (O3-tetraethyl orthosilicate) film, and combinations thereof.

使用本實施形態的蝕刻組合物的蝕刻製程可以通過本領域已知的濕式蝕刻方法進行,例如,浸漬法或噴霧法。 The etching process using the etching composition of this embodiment can be performed by a wet etching method known in the art, for example, a dipping method or a spray method.

蝕刻製程可以在約50℃和約300℃之間並且較佳約 100℃與約200℃之間的溫度範圍內進行。鑒於其他製程和其他因素,蝕刻製程的溫度可以適當變化。 The etching process may be between about 50°C and about 300°C and preferably about The temperature range is between 100°C and about 200°C. In view of other processes and other factors, the temperature of the etching process can be appropriately changed.

在包括使用本實施形態的蝕刻組合物進行蝕刻製程的半導體裝置的製備方法中,可以由氮化物膜和氧化物膜交替堆積或一起存在的結構選擇性地蝕刻氮化物膜。另外,可以避免在常規蝕刻製程中存在的顆粒產生之問題,從而保證製程穩定性和可靠性。 In the method of manufacturing a semiconductor device including an etching process using the etching composition of the present embodiment, the nitride film can be selectively etched from a structure in which nitride films and oxide films are alternately stacked or exist together. In addition, the problem of particles generated in the conventional etching process can be avoided, thereby ensuring the stability and reliability of the process.

因此,這個方法可以有效地用於相對於氧化物膜需要將氮化物膜選擇性地進行蝕刻的各種半導體製備製程中。 Therefore, this method can be effectively used in various semiconductor manufacturing processes in which the nitride film needs to be selectively etched relative to the oxide film.

圖2A至圖2C為示出根據至少一個實施形態的快閃記憶體裝置的裝置隔離製程的橫剖面圖。此處,裝置隔離製程可以包括使用根據本實施形態的蝕刻組合物(例如,高選擇性蝕刻組合物)的蝕刻製程。 2A to 2C are cross-sectional views illustrating a device isolation process of a flash memory device according to at least one embodiment. Here, the device isolation process may include an etching process using the etching composition (for example, a highly selective etching composition) according to this embodiment.

參照圖2A,在至少一個實施形態中,在基底20上可以形成隧道氧化物層21、多晶矽層22、緩衝氧化物層23和/或氮化物墊層24。例如,在一些實施形態中,在基底20上可以依次形成隧道氧化物層21、多晶矽層22、緩衝氧化物層23和/或氮化物墊層24。 2A, in at least one embodiment, a tunnel oxide layer 21, a polysilicon layer 22, a buffer oxide layer 23, and/or a nitride pad layer 24 may be formed on the substrate 20. For example, in some embodiments, a tunnel oxide layer 21, a polysilicon layer 22, a buffer oxide layer 23, and/or a nitride pad layer 24 may be sequentially formed on the substrate 20.

可以通過微影和蝕刻製程選擇性地蝕刻氮化物墊層24、緩衝氧化物層23、多晶矽層22和/或隧道氧化物層21以暴露基底20的裝置隔離區域。然後,可以使用氮化物墊層24作為遮罩選擇性地蝕刻基底20的暴露區域以在基底20的表面上形成至少一個具有預定深度的溝槽25。 The nitride pad layer 24, the buffer oxide layer 23, the polysilicon layer 22, and/or the tunnel oxide layer 21 may be selectively etched through the lithography and etching processes to expose the device isolation region of the substrate 20. Then, the nitride pad layer 24 may be used as a mask to selectively etch the exposed regions of the substrate 20 to form at least one trench 25 having a predetermined depth on the surface of the substrate 20.

參照圖2B,可以在基底20的整個表面上形成氧化物 層26,目的是間隙填充至少一個溝槽25。例如,可以通過化學氣相沉積(CVD)形成氧化物層26。 2B, an oxide may be formed on the entire surface of the substrate 20 The purpose of the layer 26 is to fill at least one trench 25 with a gap. For example, the oxide layer 26 may be formed by chemical vapor deposition (CVD).

可以使用氮化物墊層24作為拋光停止層在氧化物層26上進行化學機械拋光(CMP)製程。然後,可以使用乾式蝕刻進行清潔製程。 A chemical mechanical polishing (CMP) process may be performed on the oxide layer 26 using the nitride pad layer 24 as a polishing stop layer. Then, dry etching can be used for the cleaning process.

參照圖2C,可以使用根據本實施形態的蝕刻組合物通過濕式蝕刻製程選擇性地去除氮化物墊層24,然後可以通過清潔製程去除緩衝氧化物層23,從而在場區域內形成裝置隔離層26A。 2C, the etching composition according to the present embodiment may be used to selectively remove the nitride pad layer 24 through a wet etching process, and then the buffer oxide layer 23 may be removed through a cleaning process to form a device isolation layer in the field region 26A.

如圖2C所示,在至少一個實施形態中,可以使用氮化物層相對於氧化物層具有高蝕刻選擇性的高選擇性蝕刻組合物。當使用高選擇性蝕刻組合物時,可以在充足的時間內選擇性地去除氮化物層,同時填充在STI圖案中的氧化物層的蝕刻最小化。此時,可以充分進行選擇性去除氮化物層。因此,在使用高選擇性蝕刻組合物的本實施形態中,可以容易地控制有效場氧化物高度(EFH)。另外,在使用高選擇性蝕刻組合物中的本實施形態中,可以防止由對氧化層的損壞以及氧化物層的蝕刻引起的電性特徵劣化和顆粒的產生,從而改善裝置特徵。 As shown in FIG. 2C, in at least one embodiment, a highly selective etching composition having a high etching selectivity for the nitride layer relative to the oxide layer can be used. When a highly selective etching composition is used, the nitride layer can be selectively removed in sufficient time, while the etching of the oxide layer filled in the STI pattern is minimized. At this time, the selective removal of the nitride layer can be sufficiently performed. Therefore, in this embodiment using a highly selective etching composition, the effective field oxide height (EFH) can be easily controlled. In addition, in the present embodiment using a highly selective etching composition, it is possible to prevent deterioration of electrical characteristics and generation of particles caused by damage to the oxide layer and etching of the oxide layer, thereby improving device characteristics.

如上所述,根據本實施形態的高選擇性蝕刻組合物可以用於快閃記憶體裝置的裝置隔離製程。例如,根據本實施形態的高選擇性蝕刻組合物可以用於DRAM(動能隨機存取記憶體)裝置的裝置隔離製程。 As described above, the highly selective etching composition according to the present embodiment can be used in the device isolation process of flash memory devices. For example, the highly selective etching composition according to the present embodiment can be used in the device isolation process of DRAM (kinetic energy random access memory) devices.

圖3A至3F為示出根據至少一個實施形態形成快閃記 憶體裝置隧道的製程的橫剖面圖。此處,隧道形成製程可以包括使用根據本實施形態的蝕刻組合物(例如,高選擇性蝕刻組合物)的蝕刻製程。 3A to 3F are diagrams showing the formation of flash memory according to at least one embodiment A cross-sectional view of the manufacturing process of the memory device tunnel. Here, the tunnel formation process may include an etching process using the etching composition (for example, a highly selective etching composition) according to the present embodiment.

參照圖3A,在至少一個實施形態中,可以在基底30上形成管閘電極層31。此時,形成管通道的氮化物層32可以掩埋在管閘電極層31內。此處,管閘電極層31包括第一導電層31A和/或第二導電層31B。例如,第一導電層31A和第二導電層31B中的至少一層可以包括摻雜雜質的多晶矽。 Referring to FIG. 3A, in at least one embodiment, a tube gate electrode layer 31 may be formed on the substrate 30. At this time, the nitride layer 32 forming the tube channel may be buried in the tube gate electrode layer 31. Here, the tube gate electrode layer 31 includes a first conductive layer 31A and/or a second conductive layer 31B. For example, at least one of the first conductive layer 31A and the second conductive layer 31B may include polysilicon doped with impurities.

更具體地,在基底30上形成第一導電層31A,並且在第一導電層31A上沉積氮化物層並且圖案化來形成用於形成至少一個管通道的氮化物層32。接下來,在通過氮化物層32暴露的第一導電層31A上形成第二導電層31B。第一導電層31A和/或第二導電層31B形成管閘電極層31。 More specifically, a first conductive layer 31A is formed on the substrate 30, and a nitride layer is deposited and patterned on the first conductive layer 31A to form a nitride layer 32 for forming at least one tube channel. Next, a second conductive layer 31B is formed on the first conductive layer 31A exposed through the nitride layer 32. The first conductive layer 31A and/or the second conductive layer 31B form the tube gate electrode layer 31.

為了形成複數個垂直堆疊的儲存單元,至少一個第一層間絕緣層33和至少一個第一閘電極層34可以如圖3A所示交替堆疊。下文中,為了敘述方便,至少一個第一層間絕緣層33和至少一個第一閘電極層34的交替堆疊結構將稱作“單元閘結構(CGS)”。 In order to form a plurality of vertically stacked memory cells, at least one first interlayer insulating layer 33 and at least one first gate electrode layer 34 may be alternately stacked as shown in FIG. 3A. Hereinafter, for convenience of description, the alternating stack structure of at least one first interlayer insulating layer 33 and at least one first gate electrode layer 34 will be referred to as a “cell gate structure (CGS)”.

此處,至少一個第一層間絕緣層33可以通過複數個層達到隔離儲存單元的作用。例如,在至少一個實施形態中,至少一個第一層間絕緣層33可以包含氧化物層,並且至少一個第一閘電極層34可以包含摻雜雜質的多晶矽。如圖3A所示,顯示至少一個第一層間絕緣層33和/或至少一 個第一閘電極層34包括六層,但是不限於此。 Here, at least one first interlayer insulating layer 33 can achieve the function of isolating the storage unit through a plurality of layers. For example, in at least one embodiment, at least one first interlayer insulating layer 33 may include an oxide layer, and at least one first gate electrode layer 34 may include polysilicon doped with impurities. As shown in FIG. 3A, at least one first interlayer insulating layer 33 and/or at least one The first gate electrode layer 34 includes six layers, but is not limited thereto.

可以選擇性地蝕刻單元閘結構(CGS)來形成至少一個暴露氮化物層32的孔。例如,可以選擇性地蝕刻單元閘結構(CGS)來形成一對暴露氮化物層32的第一孔H1和第二孔H2。此處,所述第一孔H1和第二孔H2可以為形成儲存單元的隧道的區域。 The cell gate structure (CGS) may be selectively etched to form at least one hole exposing the nitride layer 32. For example, the cell gate structure (CGS) may be selectively etched to form a pair of first holes H1 and second holes H2 exposing the nitride layer 32. Here, the first hole H1 and the second hole H2 may be regions of a tunnel forming a storage unit.

參照圖3B,可以形成掩埋在第一孔H1和第二孔H2中的至少一個氮化物層。此時,當至少一個第一閘電極層34通過第一孔H1和第二孔H2暴露時,至少一個氮化物層35可以達到防止在溝槽形成過程(在後面的圖3C中描述)中發生損壞的作用。 Referring to FIG. 3B, at least one nitride layer buried in the first hole H1 and the second hole H2 may be formed. At this time, when at least one first gate electrode layer 34 is exposed through the first hole H1 and the second hole H2, at least one nitride layer 35 can be prevented from occurring in the trench formation process (described later in FIG. 3C) Damaged effect.

參照圖3C,為了將至少一個第一閘電極層34分隔為與每個第一孔H1和第二孔H2對應的部分,可以通過在一對第一孔H1和第二孔H2之間選擇性地蝕刻單元閘結構(CGS)形成溝槽“S”。 Referring to FIG. 3C, in order to divide the at least one first gate electrode layer 34 into a portion corresponding to each of the first hole H1 and the second hole H2, it is possible to select between a pair of the first hole H1 and the second hole H2 The cell gate structure (CGS) is etched to form a trench "S".

參照圖3D,可以形成掩埋在溝槽“S”中的犧牲層36。 Referring to FIG. 3D, a sacrificial layer 36 buried in the trench "S" may be formed.

參照圖3E,在至少一個實施形態中,為了形成選擇電晶體,可以在經歷上述過程(例如,與圖3A至圖3D有關的描述的過程)後的結構(例如,在圖3D中顯示的結構)上依次形成的至少一個第二層間絕緣層37和至少一個第二閘電極層38。例如,如圖3E所示,可以依次形成第二層間絕緣層37、第二閘電極層38,以及另一第二層間絕緣層37。下文中,為了便於描述,至少一個第二層間絕緣層37和至少一個第二閘電極層38的堆疊結構將會稱作“選擇 閘結構(SGS)”。 Referring to FIG. 3E, in at least one embodiment, in order to form a selective transistor, a structure (for example, the structure shown in FIG. 3D may be obtained after undergoing the above process (for example, the process described in relation to FIGS. 3A to 3D) ) At least one second interlayer insulating layer 37 and at least one second gate electrode layer 38 formed in this order. For example, as shown in FIG. 3E, a second interlayer insulating layer 37, a second gate electrode layer 38, and another second interlayer insulating layer 37 may be sequentially formed. Hereinafter, for convenience of description, the stacked structure of at least one second interlayer insulating layer 37 and at least one second gate electrode layer 38 will be referred to as “select Gate Structure (SGS)".

例如,在至少一個實施形態中,所述至少一個第二層間絕緣層37可以包含氧化物層,但是不限於此。所述至少一個第二閘電極層38可以包含摻雜雜質的多晶矽,但是不限於此。 For example, in at least one embodiment, the at least one second interlayer insulating layer 37 may include an oxide layer, but it is not limited thereto. The at least one second gate electrode layer 38 may include polysilicon doped with impurities, but is not limited thereto.

可以選擇性蝕刻所述選擇閘結構(SGS)來形成至少一個使掩埋在一對第一孔H1和第二孔H2中的氮化物層35暴露的孔。例如,可以選擇性地蝕刻選擇閘結構(SGS)來形成使掩埋在一對第一孔H1和第二孔H2中氮化物層35暴露的第三孔H3和第四孔H4。此處,第三孔H3和第四孔H4可以為形成選擇電晶體隧道的區域。 The selective gate structure (SGS) may be selectively etched to form at least one hole exposing the nitride layer 35 buried in the pair of first holes H1 and second holes H2. For example, a selective gate structure (SGS) may be selectively etched to form a third hole H3 and a fourth hole H4 that expose the nitride layer 35 buried in the pair of first holes H1 and second holes H2. Here, the third hole H3 and the fourth hole H4 may be regions where the selective transistor tunnel is formed.

參照圖3F,使用根據本實施形態的蝕刻組合物通過濕式蝕刻製程可以選擇性地去除(i)通過第三孔H3和第四孔H4暴露的氮化物層35和(ii)設置在氮化物層35下面的氮化物層32。 Referring to FIG. 3F, the nitride layer 35 exposed through the third hole H3 and the fourth hole H4 and (ii) provided on the nitride can be selectively removed through the wet etching process using the etching composition according to the present embodiment The nitride layer 32 below the layer 35.

當根據本實施形態進行形成快閃記憶體的隧道過程(包括蝕刻製程)時,可以形成至少一個用於形成儲存單元的隧道層的隧道孔(例如,一對隧道孔H5和H6)。另外,在隧道孔H5和H6的下面可以形成至少一個管隧道孔(例如,H7),因此隧道孔H5和H6可以互相連接。在根據本實施形態形成快閃記憶體的隧道的過程(包括蝕刻製程)中,使用高選擇性蝕刻組合物在不損耗氧化物層的情況下可以有充足的時間選擇性地去除氮化物層,因此在沒有型面損失的情況下可以精確地形成管隧道。此時,可以徹底 進行氮化物層的此選擇性去除。另外,在根據本實施形態形成快閃記憶體的通道的過程(包括蝕刻製程)中,可以防止諸如顆粒產生等典型問題,因此可以保證製程的穩定性和可靠性。 When a tunneling process (including an etching process) for forming a flash memory is performed according to this embodiment, at least one tunnel hole (for example, a pair of tunnel holes H5 and H6) for forming a tunnel layer of a memory cell may be formed. In addition, at least one pipe tunnel hole (for example, H7) may be formed under the tunnel holes H5 and H6, so the tunnel holes H5 and H6 may be connected to each other. In the process (including the etching process) of forming the flash memory tunnel according to the present embodiment, using a highly selective etching composition can allow sufficient time to selectively remove the nitride layer without loss of the oxide layer, Therefore, tube tunnels can be formed accurately without loss of profile. At this time, you can thoroughly This selective removal of the nitride layer is carried out. In addition, in the process of forming the channel of the flash memory according to the present embodiment (including the etching process), typical problems such as the generation of particles can be prevented, so the stability and reliability of the process can be ensured.

然後,可以進行諸如形成浮閘極的製程和形成控制閘的製程的後續製程,從而形成快閃記憶體裝置。 Then, subsequent processes such as a process of forming a floating gate electrode and a process of forming a control gate may be performed, thereby forming a flash memory device.

圖4A和圖4B是根據至少一個實施形態說明形成相變儲存裝置的二極體的製程的橫剖面圖。此處,二極體形成製程可以包括使用根據本實施形態的蝕刻組合物(例如,高選擇性蝕刻組合物)的蝕刻製程。 4A and 4B are cross-sectional views illustrating a process of forming a diode of a phase change memory device according to at least one embodiment. Here, the diode forming process may include an etching process using the etching composition (for example, a highly selective etching composition) according to this embodiment.

參照圖4A,在至少一個實施形態中,絕緣結構可以設置在基底40上。此處,絕緣結構可以包括使導電區域41暴露的孔。例如,導電區域41可以為n+雜質區域,但是不限於此。 Referring to FIG. 4A, in at least one embodiment, an insulating structure may be provided on the substrate 40. Here, the insulating structure may include a hole exposing the conductive region 41. For example, the conductive region 41 may be an n+ impurity region, but it is not limited thereto.

可以形成多晶矽層42,目的是填充孔區域,接下來離子注入雜質,從而形成二極體。 A polysilicon layer 42 may be formed for the purpose of filling the hole area, and then ion implantation of impurities to form a diode.

可以在多晶矽層42上形成矽化鈦層43。例如,可以通過形成鈦層以及對形成的鈦層進行熱處理使其與多晶矽層42反應來形成矽化鈦層43。 A titanium silicide layer 43 may be formed on the polysilicon layer 42. For example, the titanium silicide layer 43 can be formed by forming a titanium layer and heat-treating the formed titanium layer to react with the polycrystalline silicon layer 42.

可以在矽化鈦層43上依次形成氮化鈦層44和氮化物層45。例如,可以在矽化鈦層43上形成氮化鈦層44,然後在氮化鈦層44上形成氮化物層45。 A titanium nitride layer 44 and a nitride layer 45 may be sequentially formed on the titanium silicide layer 43. For example, a titanium nitride layer 44 may be formed on the titanium silicide layer 43, and then a nitride layer 45 may be formed on the titanium nitride layer 44.

可以在二極體之間的隔離空間內形成氧化物層46,該隔離空間通過使用硬質遮罩的乾式蝕刻製程形成。然後, 可以進行化學機械拋光(CMP)製程形成互相隔離的底電極的基本結構。 The oxide layer 46 may be formed in an isolation space between diodes, which is formed by a dry etching process using a hard mask. then, A chemical mechanical polishing (CMP) process can be performed to form the basic structure of the bottom electrodes isolated from each other.

參照圖4B,可以通過在經過圖4A相關描述的上述製程產生的結構上進行濕式蝕刻製程選擇性地去除氮化物層45。此處,可以使用根據本實施形態的蝕刻組合物(例如,高選擇性蝕刻組合物)進行濕式蝕刻製程。在至少一個實施形態中,可以使用高選擇性蝕刻組合物來去除氮化物層。此時,在不損壞氧化物層的情況下可以有充足的時間選擇性地去除氮化物層。可以徹底進行氮化物層的此選擇性去除。另外,在使用高選擇性蝕刻組合物的本實施形態中,可以防止由氧化物層的損壞或氧化物層的蝕刻引起的電性性能劣化和顆粒的產生,從而改善電性特徵。在去除氮化物層45之後剩餘的空間內可以沉積鈦,從而形成底電極。 Referring to FIG. 4B, the nitride layer 45 can be selectively removed by performing a wet etching process on the structure generated through the above-described process described in relation to FIG. 4A. Here, the wet etching process may be performed using the etching composition according to the present embodiment (for example, a highly selective etching composition). In at least one embodiment, a highly selective etching composition can be used to remove the nitride layer. At this time, the nitride layer can be selectively removed with sufficient time without damaging the oxide layer. This selective removal of the nitride layer can be carried out thoroughly. In addition, in the present embodiment using a highly selective etching composition, it is possible to prevent deterioration of electrical properties and generation of particles caused by damage to the oxide layer or etching of the oxide layer, thereby improving electrical characteristics. Titanium may be deposited in the remaining space after removing the nitride layer 45, thereby forming a bottom electrode.

如上所述,使用根據本實施形態的高選擇性蝕刻組合物的蝕刻製程可以用於各種半導體裝置製備方法。例如,根據本實施形態的此蝕刻製程可以用於需要選擇性去除氮化物層的製程。更具體地,根據本實施形態的此蝕刻製程可以用於從氮化物層和氧化物層交替堆疊或共存的結構中需要選擇性蝕刻氮化物層的製程中。 As described above, the etching process using the highly selective etching composition according to this embodiment can be used for various semiconductor device manufacturing methods. For example, the etching process according to the present embodiment can be used in a process that requires selective removal of the nitride layer. More specifically, the etching process according to the present embodiment can be used in a process that requires selective etching of a nitride layer from a structure in which nitride layers and oxide layers are alternately stacked or coexist.

下文中,將參照實施例和對比例更詳細地描述本發明的實施形態。然而,應該理解,這些實施例是出於示例性目的而且並不旨在限制本發明的實施形態的範圍。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples and comparative examples. However, it should be understood that these embodiments are for exemplary purposes and are not intended to limit the scope of the embodiments of the present invention.

[第一實施形態A:製備蝕刻組合物] [First Embodiment A: Preparation of etching composition]

在第一實施形態A中,可以通過以如下面的表1A所 示的預定重量比混合至少一種矽烷無機酸鹽和磷酸來生成蝕刻組合物。作為第一無機酸,使用85%的水溶液。 In the first embodiment A, it can be determined by the following table 1A The predetermined weight ratio shown is a mixture of at least one silane inorganic acid salt and phosphoric acid to produce an etching composition. As the first inorganic acid, an 85% aqueous solution was used.

Figure 104122910-A0202-12-0056-79
Figure 104122910-A0202-12-0056-79

1)1st IA:第一無機酸 1) 1st IA: the first inorganic acid

2)2nd IA:第二無機酸 2) 2nd IA: second inorganic acid

3)PA:磷酸 3) PA: phosphoric acid

圖5為示出根據第一實施形態A生成的矽烷無機酸鹽的核磁共振(NMR)資料的圖像。 5 is an image showing nuclear magnetic resonance (NMR) data of the silane inorganic acid salt generated according to the first embodiment A. FIG.

參照圖5,該圖像示出根據至少一個實施形態的蝕刻組合物中的至少一種矽烷無機酸鹽。即,用R1為甲基且R2至R4為氯的化學式A1表示的化合物與磷酸(例如,第 二無機酸)反應。因此,可以產生至少一種矽烷無機酸鹽。即,圖5的圖像包括在約11.1364ppm處和約11.4053處的寬峰,它們不同於表示單一化合物的尖峰。因此,此寬峰表明蝕刻組合物包括複數個具有不同化學式的矽烷無機酸鹽。 Referring to FIG. 5, the image shows at least one silane inorganic acid salt in the etching composition according to at least one embodiment. That is, the compound represented by the chemical formula A1 in which R 1 is a methyl group and R 2 to R 4 is chlorine reacts with phosphoric acid (for example, a second inorganic acid). Therefore, at least one silicate inorganic acid salt can be produced. That is, the image of FIG. 5 includes broad peaks at about 11.1364 ppm and about 11.4053, which are different from the sharp peaks representing a single compound. Therefore, this broad peak indicates that the etching composition includes a plurality of silane inorganic acid salts having different chemical formulas.

[實驗實施例A1:測量蝕刻組合物的選擇性] [Experimental Example A1: Measuring the selectivity of the etching composition]

使用本實施形態的蝕刻組合物,在157℃的製程溫度下進行氮化物層和氧化物層的蝕刻。使用膜厚度測量系統的橢圓儀(NANO VIEW,SEMG-1000)測量氮化物層和氧化物層的蝕刻速度和選擇性。測量結果示在下面的表A2中。通過蝕刻每層約300秒並測量蝕刻之前每層的厚度與蝕刻之後每層的層厚度之間的差值來確定蝕刻速度。因此,通過用厚度差除以蝕刻時間(分鐘)得到蝕刻速度。蝕刻選擇性表示為氮化物層的蝕刻速度與氧化物層的蝕刻速度的比率。 Using the etching composition of this embodiment, the nitride layer and the oxide layer are etched at a process temperature of 157°C. The ellipsometer (NANO VIEW, SEMG-1000) of the film thickness measurement system was used to measure the etching rate and selectivity of the nitride layer and the oxide layer. The measurement results are shown in Table A2 below. The etching rate is determined by etching each layer for about 300 seconds and measuring the difference between the thickness of each layer before etching and the layer thickness of each layer after etching. Therefore, the etching rate is obtained by dividing the thickness difference by the etching time (minutes). The etching selectivity is expressed as the ratio of the etching rate of the nitride layer to the etching rate of the oxide layer.

Figure 104122910-A0202-12-0057-80
Figure 104122910-A0202-12-0057-80
Figure 104122910-A0202-12-0058-81
Figure 104122910-A0202-12-0058-81

1)ThO:熱氧化物層 1) ThO: thermal oxide layer

2)LP-TEOS:低壓原矽酸四乙酯層 2) LP-TEOS: low-pressure tetraethyl orthosilicate layer

3)BPSG:硼磷酸鹽矽酸鹽玻璃層 3) BPSG: Borophosphate silicate glass layer

[對比例A1至A3:製備蝕刻組合物] [Comparative Examples A1 to A3: Preparation of etching composition]

在對比例A1中,在製程溫度為157℃下,使用磷酸進行蝕刻。以與上面的實施例相同的方式測量蝕刻速度和蝕刻選擇性。在對比例2中,使用在130℃的低溫下混合的0.05%氫氟酸和磷酸的混合物進行蝕刻。在對比例A3中,在157℃的製程溫度下使用與對比例A2相同的混合物進行蝕刻。在對比例A2和A3中,以與上面的實施例相同的方式測量蝕刻速度和選擇性。在對比例A1至A3中使用的磷酸為磷酸的85%水溶液。對比例A1至A3的測量結果示在下面的表A3中。 In Comparative Example A1, phosphoric acid was used for etching at a process temperature of 157°C. The etching speed and etching selectivity were measured in the same manner as the above embodiment. In Comparative Example 2, a mixture of 0.05% hydrofluoric acid and phosphoric acid mixed at a low temperature of 130° C. was used for etching. In Comparative Example A3, the same mixture as Comparative Example A2 was used for etching at a process temperature of 157°C. In Comparative Examples A2 and A3, the etching speed and selectivity were measured in the same manner as in the above examples. The phosphoric acid used in Comparative Examples A1 to A3 was an 85% aqueous solution of phosphoric acid. The measurement results of Comparative Examples A1 to A3 are shown in Table A3 below.

Figure 104122910-A0202-12-0058-82
Figure 104122910-A0202-12-0058-82
Figure 104122910-A0202-12-0059-83
Figure 104122910-A0202-12-0059-83

由表2和表3可以看出,與對比例A1至A3的蝕刻選擇性相比,蝕刻組合物顯示氮化物層相對於氧化物層的明顯高的蝕刻選擇性。因此,當使用本實施形態的高選擇性蝕刻組合物時,可以通過控制氧化物層的蝕刻速度容易地控制EEH,並且可以防止對氧化物層的損壞。另外,可以防止問題性的顆粒產生,因此保證蝕刻製程的穩定性和可靠性。 As can be seen from Tables 2 and 3, the etching composition shows a significantly higher etching selectivity of the nitride layer relative to the oxide layer compared to the etching selectivities of Comparative Examples A1 to A3. Therefore, when the highly selective etching composition of the present embodiment is used, the EEH can be easily controlled by controlling the etching rate of the oxide layer, and damage to the oxide layer can be prevented. In addition, the generation of problematic particles can be prevented, thus ensuring the stability and reliability of the etching process.

[實驗實施例A2:測量隨時間的變動] [Experimental Example A2: Measurement of changes over time]

將在實施例A1和A2中生成的蝕刻組合物與磷酸混合。在混合後立即(0小時)和在混合後8小時時,使用每種混合物進行氮化物層和氧化物層的蝕刻。測量氮化物層和氧化物層蝕刻速度和選擇性。在對比例4中(基礎PA),以與上面的實施例相同的方式使用磷酸評價氮化物層與氧化物層的蝕刻速度和選擇性。 The etching composition produced in Examples A1 and A2 was mixed with phosphoric acid. Immediately after mixing (0 hours) and at 8 hours after mixing, the nitride layer and the oxide layer were etched using each mixture. The nitride layer and oxide layer etching rate and selectivity were measured. In Comparative Example 4 (Basic PA), phosphoric acid was used to evaluate the etching rate and selectivity of the nitride layer and the oxide layer in the same manner as in the above example.

在160℃的製程溫度下進行評價。通過蝕刻每層約300秒並測量蝕刻之前每層的厚度與蝕刻之後每層的層厚度之間的差值來確定蝕刻速度。因此,通過用厚度差除以蝕刻時間(分鐘)得到蝕刻速度。蝕刻選擇性表示為氮化物膜的蝕刻速度與PSZ膜的蝕刻速度的比率。評價結果示在下面的表A4中。 The evaluation was performed at a process temperature of 160°C. The etching rate is determined by etching each layer for about 300 seconds and measuring the difference between the thickness of each layer before etching and the layer thickness of each layer after etching. Therefore, the etching rate is obtained by dividing the thickness difference by the etching time (minutes). The etching selectivity is expressed as the ratio of the etching rate of the nitride film to the etching rate of the PSZ film. The evaluation results are shown in Table A4 below.

Figure 104122910-A0202-12-0059-84
Figure 104122910-A0202-12-0059-84
Figure 104122910-A0202-12-0060-85
Figure 104122910-A0202-12-0060-85

1)PSZ:聚矽氮烷層 1) PSZ: polysilazane layer

由表A4中可以看出,與包含磷酸的常規蝕刻組合物相比,本實施形態的蝕刻組合物表現非常高的氮化物層蝕刻選擇性。因此,當使用本實施形態的高選擇性的蝕刻組合物去除氮化物層時,可以選擇性地蝕刻氮化物層,同時可以防止氧化物層的損害或氧化物層的蝕刻引起的電性性能的劣化或防止顆粒的產生,這會改善裝置性能。 As can be seen from Table A4, the etching composition of the present embodiment exhibits a very high nitride layer etching selectivity compared to the conventional etching composition containing phosphoric acid. Therefore, when the nitride layer is removed using the highly selective etching composition of the present embodiment, the nitride layer can be etched selectively, and at the same time, damage to the oxide layer or electrical properties caused by etching of the oxide layer can be prevented Deterioration or prevention of particle generation will improve device performance.

[第二實施形態B:製備蝕刻組合物] [Second Embodiment B: Preparation of etching composition]

根據第二實施形態B,通過以下面的表B1中顯示的重量比混合矽烷無機酸鹽與磷酸來製備蝕刻組合物。作為第一無機酸,使用85%的水溶液。 According to the second embodiment B, the etching composition is prepared by mixing the silane inorganic acid salt and phosphoric acid in the weight ratio shown in Table B1 below. As the first inorganic acid, an 85% aqueous solution was used.

Figure 104122910-A0202-12-0060-86
Figure 104122910-A0202-12-0060-86
Figure 104122910-A0202-12-0061-87
Figure 104122910-A0202-12-0061-87

1)1st IA:第一無機酸 1) 1st IA: the first inorganic acid

2)2nd IA:第二無機酸 2) 2nd IA: second inorganic acid

3)PT:製程溫度 3) PT: process temperature

[實驗實施例B1:測量蝕刻組合物的選擇性] [Experimental Example B1: Measuring the selectivity of the etching composition]

使用第二實施形態B1的蝕刻組合物,在157℃的製程溫度下進行氮化物層和氧化物層的蝕刻。使用膜厚度測量系統的橢圓儀(NANO VIEW,SEMG-1000)測量氮化物層和氧化物層的蝕刻速度和選擇性。測量結果示在下面的表B2中。通過蝕刻每層約300秒並測量蝕刻之前每層的厚度與蝕刻之後每層的層厚度之間的差值來確定蝕刻速度。因此,通過用厚度差除以蝕刻時間(分鐘)得到蝕刻速度。蝕刻選擇性表示為氮化物層的蝕刻速度與氧化物層的蝕刻速度的比率。 Using the etching composition of the second embodiment B1, the nitride layer and the oxide layer are etched at a process temperature of 157°C. The ellipsometer (NANO VIEW, SEMG-1000) of the film thickness measurement system was used to measure the etching rate and selectivity of the nitride layer and the oxide layer. The measurement results are shown in Table B2 below. The etching rate is determined by etching each layer for about 300 seconds and measuring the difference between the thickness of each layer before etching and the layer thickness of each layer after etching. Therefore, the etching rate is obtained by dividing the thickness difference by the etching time (minutes). The etching selectivity is expressed as the ratio of the etching rate of the nitride layer to the etching rate of the oxide layer.

Figure 104122910-A0202-12-0061-89
Figure 104122910-A0202-12-0061-89
Figure 104122910-A0202-12-0062-90
Figure 104122910-A0202-12-0062-90

1)ThO:熱氧化物層 1) ThO: thermal oxide layer

2)LP-TEOS:低壓原矽酸四乙酯層 2) LP-TEOS: low-pressure tetraethyl orthosilicate layer

3)BPSG:硼磷酸鹽矽酸鹽玻璃層 3) BPSG: Borophosphate silicate glass layer

[對比例B1至B3:製備蝕刻組合物] [Comparative Examples B1 to B3: Preparation of etching composition]

在對比例B1中,在製程溫度為157℃下,使用磷酸進行蝕刻。以與上面的實施例相同的方式測量蝕刻速度和蝕刻選擇性。在對比例B2中,使用在130℃的低溫下混合的0.05%氫氟酸和磷酸的混合物進行蝕刻。以與上面的實施例相同的方式測量蝕刻速度和蝕刻選擇性。在對比例B3中,在157℃的製程溫度下使用與對比例B2相同的混合物進行蝕刻。以與上面的實施例相同的方式測量蝕刻速度和選擇性。在對比例B1至B3中使用的磷酸為磷酸的85%水溶液。對比例B1至B3的測量結果示在下面的表B3中。 In Comparative Example B1, phosphoric acid was used for etching at a process temperature of 157°C. The etching speed and etching selectivity were measured in the same manner as the above embodiment. In Comparative Example B2, a mixture of 0.05% hydrofluoric acid and phosphoric acid mixed at a low temperature of 130° C. was used for etching. The etching speed and etching selectivity were measured in the same manner as the above embodiment. In Comparative Example B3, the same mixture as Comparative Example B2 was used for etching at a process temperature of 157°C. The etching speed and selectivity were measured in the same manner as the above embodiment. The phosphoric acid used in Comparative Examples B1 to B3 was an 85% aqueous solution of phosphoric acid. The measurement results of Comparative Examples B1 to B3 are shown in Table B3 below.

Figure 104122910-A0202-12-0062-91
Figure 104122910-A0202-12-0062-91
Figure 104122910-A0202-12-0063-93
Figure 104122910-A0202-12-0063-93

由表B2和表B3可以看出,與對比例B1至B3的蝕刻選擇性相比,蝕刻組合物顯示氮化物層相對於氧化物層的明顯高的蝕刻選擇性。因此,當使用本實施形態的高選擇性蝕刻組合物時,可以通過控制氧化物層的蝕刻速度容易控制EEH,並且可以防止對氧化物層的損壞。另外,可以防止問題性的顆粒產生,因此保證蝕刻製程的穩定性和可靠性。 As can be seen from Table B2 and Table B3, the etching composition shows a significantly higher etching selectivity of the nitride layer relative to the oxide layer compared to the etching selectivities of Comparative Examples B1 to B3. Therefore, when the highly selective etching composition of the present embodiment is used, EEH can be easily controlled by controlling the etching rate of the oxide layer, and damage to the oxide layer can be prevented. In addition, the generation of problematic particles can be prevented, thus ensuring the stability and reliability of the etching process.

[第三實施形態C:製備蝕刻組合物] [Third Embodiment C: Preparation of etching composition]

根據第三實施形態C,通過以下面的表C1中顯示的重量比混合矽烷無機酸鹽與磷酸來製備蝕刻組合物。作為第一無機酸,使用85%的水溶液。 According to the third embodiment C, the etching composition is prepared by mixing the silane inorganic acid salt and phosphoric acid in the weight ratio shown in Table C1 below. As the first inorganic acid, an 85% aqueous solution was used.

Figure 104122910-A0202-12-0063-94
Figure 104122910-A0202-12-0063-94
Figure 104122910-A0202-12-0064-95
Figure 104122910-A0202-12-0064-95

1st IA:第一無機酸 1st IA: the first inorganic acid

2nd IA:第二無機酸 2nd IA: second inorganic acid

PT:製程溫度 PT: process temperature

[實驗實施例C1:測量製備的蝕刻組合物的選擇性] [Experimental Example C1: measuring the selectivity of the prepared etching composition]

使用第三實施形態C1的蝕刻組合物,在157℃的製程溫度下進行氮化物層和氧化物層的蝕刻。使用膜厚度測量系統的橢圓儀(NANO VIEW,SEMG-1000)測量氮化物層和氧化物層的蝕刻速度和選擇性。測量結果示在下面的表B2中。通過蝕刻每層約300秒並測量蝕刻之前每層的厚度與蝕刻之後每層的層厚度之間的差值來確定蝕刻速度。因此,通過用厚度差除以蝕刻時間(分鐘)得到蝕刻速度。蝕刻選擇性表示為氮化物層的蝕刻速度與氧化物層的蝕刻速度的比率。 Using the etching composition of the third embodiment C1, the nitride layer and the oxide layer are etched at a process temperature of 157°C. The ellipsometer (NANO VIEW, SEMG-1000) of the film thickness measurement system was used to measure the etching rate and selectivity of the nitride layer and the oxide layer. The measurement results are shown in Table B2 below. The etching rate is determined by etching each layer for about 300 seconds and measuring the difference between the thickness of each layer before etching and the layer thickness of each layer after etching. Therefore, the etching rate is obtained by dividing the thickness difference by the etching time (minutes). The etching selectivity is expressed as the ratio of the etching rate of the nitride layer to the etching rate of the oxide layer.

Figure 104122910-A0202-12-0064-97
Figure 104122910-A0202-12-0064-97
Figure 104122910-A0202-12-0065-140
Figure 104122910-A0202-12-0065-140

1)ThO:熱氧化物層 1) ThO: thermal oxide layer

2)LP-TEOS:低壓原矽酸四酯層 2) LP-TEOS: low-pressure orthosilicate layer

3)BPSG:硼磷酸鹽矽酸鹽玻璃層 3) BPSG: Borophosphate silicate glass layer

[對比例C1至C3:製備蝕刻組合物] [Comparative Examples C1 to C3: Preparation of etching composition]

在對比例C1中,在製程溫度為157℃下,使用磷酸進行蝕刻。以與上面的實施例相同的方式測量蝕刻速度和蝕刻選擇性。在對比例C2中,使用在130℃的低溫下混合的0.05%氫氟酸和磷酸的混合物進行蝕刻。以與上面的實施例相同的方式測量蝕刻速度和蝕刻選擇性。在對比例C3中,在157℃的製程溫度下使用與對比例C2相同的混合物進行蝕刻。以與上面的實施例相同的方式測量蝕刻速度和蝕刻選擇性。在對比例C1至C3中使用的磷酸為磷酸的85%水溶液。對比例C1至C3的測量結果示在下面的表C3中。 In Comparative Example C1, phosphoric acid was used for etching at a process temperature of 157°C. The etching speed and etching selectivity were measured in the same manner as the above embodiment. In Comparative Example C2, a mixture of 0.05% hydrofluoric acid and phosphoric acid mixed at a low temperature of 130° C. was used for etching. The etching speed and etching selectivity were measured in the same manner as the above embodiment. In Comparative Example C3, the same mixture as Comparative Example C2 was used for etching at a process temperature of 157°C. The etching speed and etching selectivity were measured in the same manner as the above embodiment. The phosphoric acid used in Comparative Examples C1 to C3 was an 85% aqueous solution of phosphoric acid. The measurement results of Comparative Examples C1 to C3 are shown in Table C3 below.

Figure 104122910-A0202-12-0065-99
Figure 104122910-A0202-12-0065-99
Figure 104122910-A0202-12-0066-100
Figure 104122910-A0202-12-0066-100

由表C2和表C3可以看出,與對比例C1至C3的蝕刻選擇性相比,蝕刻組合物顯示氮化物層相對於氧化物層的明顯高的蝕刻選擇性。因此,當使用本實施形態的高選擇性蝕刻組合物時,可以通過控制氧化物層的蝕刻速度容易控制EEH,並且可以防止對氧化物層的損壞。另外,可以防止問題性的顆粒產生,因此保證蝕刻製程的穩定性和可靠性。 As can be seen from Table C2 and Table C3, the etching composition shows a significantly higher etching selectivity of the nitride layer relative to the oxide layer compared to the etching selectivities of Comparative Examples C1 to C3. Therefore, when the highly selective etching composition of the present embodiment is used, EEH can be easily controlled by controlling the etching rate of the oxide layer, and damage to the oxide layer can be prevented. In addition, the generation of problematic particles can be prevented, thus ensuring the stability and reliability of the etching process.

[實驗實施例C2:測量隨時間的變化] [Experimental Example C2: Measurement of change with time]

使用在實施例C1中生成的蝕刻組合物,在與磷酸混合後立即(0小時)和與磷酸混合後8小時時,對氮化物層和氧化物層進行蝕刻。測量氮化物層和氧化物層蝕刻速度和選擇性。在對比例C4中,以與上面的實施例相同的方式使用磷酸評價氮化物層與氧化物層的蝕刻速度和選擇性。 Using the etching composition produced in Example C1, the nitride layer and the oxide layer were etched immediately (0 hours) after mixing with phosphoric acid and 8 hours after mixing with phosphoric acid. The nitride layer and oxide layer etching rate and selectivity were measured. In Comparative Example C4, phosphoric acid was used to evaluate the etching rate and selectivity of the nitride layer and the oxide layer in the same manner as in the above example.

在160℃的製程溫度下進行評價。通過蝕刻每層約300秒並測量蝕刻之前每層的厚度與蝕刻之後每層的層厚度之間的差值來確定蝕刻速度。因此,通過用厚度差除以蝕刻時間(分鐘)得到蝕刻速度。蝕刻選擇性表示為氮化物膜的蝕刻速度與PSZ膜的蝕刻速度的比率。評價結果示在下面的表C4中。 The evaluation was performed at a process temperature of 160°C. The etching rate is determined by etching each layer for about 300 seconds and measuring the difference between the thickness of each layer before etching and the layer thickness of each layer after etching. Therefore, the etching rate is obtained by dividing the thickness difference by the etching time (minutes). The etching selectivity is expressed as the ratio of the etching rate of the nitride film to the etching rate of the PSZ film. The evaluation results are shown in Table C4 below.

Figure 104122910-A0202-12-0066-102
Figure 104122910-A0202-12-0066-102
Figure 104122910-A0202-12-0067-103
Figure 104122910-A0202-12-0067-103

1)PSZ:聚矽氮烷層 1) PSZ: polysilazane layer

由表C4中可以看出,與包含磷酸的常規蝕刻組合物相比,實施例C1的蝕刻組合物表現非常高的氮化物層蝕刻選擇性。因此,當使用本實施形態的高選擇性的蝕刻組合物去除氮化物層時,可以選擇性地蝕刻氮化物層,同時可以防止由對氧化物層的損害引起的電性性能的劣化或氧化物層的蝕刻,這會改善裝置性能。 As can be seen from Table C4, the etching composition of Example C1 exhibits a very high nitride layer etching selectivity compared to the conventional etching composition containing phosphoric acid. Therefore, when the nitride layer is removed using the highly selective etching composition of this embodiment, the nitride layer can be etched selectively, and at the same time, the deterioration of the electrical properties or the oxide caused by the damage to the oxide layer can be prevented The etching of the layer will improve the device performance.

[第四實施形態D:製備蝕刻組合物] [Fourth Embodiment D: Preparation of Etching Composition]

根據第四實施形態D,通過以下面的表D1中顯示的重量比混合矽烷無機酸鹽與磷酸來製備蝕刻組合物。作為磷酸,使用85%的水溶液。 According to the fourth embodiment D, the etching composition is prepared by mixing the silane inorganic acid salt and phosphoric acid in the weight ratio shown in Table D1 below. As phosphoric acid, an 85% aqueous solution was used.

Figure 104122910-A0202-12-0067-104
Figure 104122910-A0202-12-0067-104
Figure 104122910-A0202-12-0068-105
Figure 104122910-A0202-12-0068-105

[實驗實施例D1:測量製備的蝕刻組合物的選擇性] [Experimental Example D1: measuring the selectivity of the prepared etching composition]

使用第四實施形態製備的蝕刻組合物,在157℃的製程溫度下進行氮化物層和氧化物層的蝕刻。使用膜厚度測量系統的橢圓儀(NANO VIEW,SEMG-1000)測量氮化物層和氧化物層的蝕刻速度和選擇性。測量結果示在下面的表D2中。通過蝕刻每層約300秒並測量蝕刻之前每層的厚度與蝕刻之後每層的層厚度之間的差值來確定蝕刻速度。因此,通過用厚度差除以蝕刻時間(分鐘)得到蝕刻速度。蝕刻選擇性表示為氮化物層的蝕刻速度與氧化物層的蝕刻速度的比率。 Using the etching composition prepared in the fourth embodiment, the nitride layer and the oxide layer are etched at a process temperature of 157°C. The ellipsometer (NANO VIEW, SEMG-1000) of the film thickness measurement system was used to measure the etching rate and selectivity of the nitride layer and the oxide layer. The measurement results are shown in Table D2 below. The etching rate is determined by etching each layer for about 300 seconds and measuring the difference between the thickness of each layer before etching and the layer thickness of each layer after etching. Therefore, the etching rate is obtained by dividing the thickness difference by the etching time (minutes). The etching selectivity is expressed as the ratio of the etching rate of the nitride layer to the etching rate of the oxide layer.

Figure 104122910-A0202-12-0068-107
Figure 104122910-A0202-12-0068-107
Figure 104122910-A0202-12-0069-108
Figure 104122910-A0202-12-0069-108

1)ThO:熱氧化物層 1) ThO: thermal oxide layer

2)LP-TEOS:低壓原矽酸四乙酯層 2) LP-TEOS: low-pressure tetraethyl orthosilicate layer

3)BPSG:硼磷酸鹽矽酸鹽玻璃層 3) BPSG: Borophosphate silicate glass layer

[對比例D1至D3:製備蝕刻組合物] [Comparative Examples D1 to D3: Preparation of etching composition]

在對比例D1中,在製程溫度為157℃下,使用磷酸進行蝕刻。以與上面的實施例相同的方式測量蝕刻速度和蝕刻選擇性。在對比例D2中,使用在130℃的低溫下混合的0.05%氫氟酸和磷酸的混合物進行蝕刻。在對比例D3中,在157℃的製程溫度下使用與對比例D2相同的混合物進行蝕刻。在對比例D2和D3中,以與上面的實施例相同的方式測量蝕刻速度和選擇性。在對比例D1至D3中使用的磷酸為磷酸的85%水溶液。對比例D1至D3的測量結果示在下面的表D3中。 In Comparative Example D1, phosphoric acid was used for etching at a process temperature of 157°C. The etching speed and etching selectivity were measured in the same manner as the above embodiment. In Comparative Example D2, a mixture of 0.05% hydrofluoric acid and phosphoric acid mixed at a low temperature of 130° C. was used for etching. In Comparative Example D3, the same mixture as Comparative Example D2 was used for etching at a process temperature of 157°C. In Comparative Examples D2 and D3, the etching speed and selectivity were measured in the same manner as in the above examples. The phosphoric acid used in Comparative Examples D1 to D3 was an 85% aqueous solution of phosphoric acid. The measurement results of Comparative Examples D1 to D3 are shown in Table D3 below.

Figure 104122910-A0202-12-0069-109
Figure 104122910-A0202-12-0069-109

由表D2和表D3可以看出,與對比例A1至A3的蝕刻選擇性相比,蝕刻組合物顯示氮化物層相對於氧化物層的明顯高的蝕刻選擇性。因此,當使用本實施形態的高選擇性蝕刻組合物時,可以通過控制氧化物層的蝕刻速度容易控制EFH,並且可以防止對氧化物層的損壞。另外,可以防止問題性的顆粒產生,因此保證蝕刻製程的穩定性和可靠性。 As can be seen from Table D2 and Table D3, the etching composition shows a significantly higher etching selectivity of the nitride layer relative to the oxide layer compared to the etching selectivities of Comparative Examples A1 to A3. Therefore, when the highly selective etching composition of the present embodiment is used, EFH can be easily controlled by controlling the etching rate of the oxide layer, and damage to the oxide layer can be prevented. In addition, the generation of problematic particles can be prevented, thus ensuring the stability and reliability of the etching process.

此處提及的“一個實施形態”或“實施形態”是指有關實施形態描述的具體特點、結構或特徵能夠包含在本發明的至少一個實施形態中。在說明書的不同地方出現的用語“在一個實施形態中”不一定全部指相同的實施形態,也不一定為相互排除其他實施形態的單獨的或可選的實施形態。同樣的原理適用於術語“實施”。 The "one embodiment" or "embodiment" referred to herein means that specific features, structures, or features described in relation to the embodiment can be included in at least one embodiment of the present invention. The expression "in one embodiment" appearing in different places in the specification does not necessarily refer to the same embodiment, nor does it necessarily mean separate or alternative embodiments that exclude other embodiments from each other. The same principle applies to the term "implementation".

正如在該申請中使用的,此處使用的單詞“示例性”指達到實施例、例子或解釋性的作用。此處描述為“示例性”的任何方面或設計不一定理解為比其他方面或設計較佳地或有優勢的。不如說,單詞“示例性”的使用意在以具體的方式說明概念。 As used in this application, the word "exemplary" as used herein refers to achieving an embodiment, example, or explanatory role. Any aspect or design described herein as "exemplary" is not necessarily understood to be better or advantageous than other aspects or designs. Rather, the use of the word "exemplary" is intended to illustrate the concept in a specific way.

另外,術語“或者”意思是指包含性的“或”而不是排除性的“或”。即,除非特別指定,或者從文章中可以明顯看出,“X使用A或B”意思是指任何自然包含性置換。即,如果X使用A;X使用B;或X使用A和B,那麼在前述任何情況下都滿足“X使用A或B”。另外,該申請和所附申請專利範圍中使用的冠詞“一”和“一”應 該通常理解為指“一以上”,除非特別指定或者從上下文中可以明顯看出是指單數形式。 In addition, the term "or" means an inclusive "or" rather than an exclusive "or". That is, unless otherwise specified, or as is clear from the text, "X uses A or B" means any naturally inclusive substitution. That is, if X uses A; X uses B; or X uses A and B, then "X uses A or B" is satisfied in any of the foregoing cases. In addition, the articles “一” and “一” used in the scope of the patents of the application and the attached applications shall This is generally understood to mean "more than one" unless specified otherwise or it is clear from the context to refer to the singular form.

此外,術語“系統”、“組件”、“模組”、“界面”、“模型”等通常指計算機相關概念,硬體、硬體與軟體的結合、軟體或執行的軟體。例如,組件可以為,但是不限於,運行處理器的過程、處理器、對象、執行擋、執行線程、程式,和/或計算機。通過解釋,在處理器上運行的應用程式和控制器可以為組件。一個以上組件可以位於一個程式內和/或執行線程內並且組件可以位於一個計算機上和/或分佈在兩個以上計算機之間。 In addition, the terms "system", "component", "module", "interface", "model", etc. generally refer to computer-related concepts, hardware, a combination of hardware and software, software or executed software. For example, the component may be, but not limited to, a process, a processor, an object, an execution block, an execution thread, a program, and/or a computer that runs a processor. By way of explanation, applications and controllers running on the processor can be components. More than one component may be located in a program and/or thread of execution and the component may be located on one computer and/or distributed between more than two computers.

本發明可以以方法和實施那些方法的裝置的方式具體化。本發明也可以以程式碼的形式具體化,可具體化在可觸媒體、非觸媒體,例如磁記錄介質、光記錄介質、固態記憶、軟式磁碟片、CD-ROM(唯讀光碟)、硬碟驅動、或任何其他機器可讀的儲存介質中,其中,當程式碼載入並通過機器,例如計算機,執行時,機器變為實施本發明的裝置。本發明也可以以程式碼的形式具體化,例如,是否儲存在儲存介質中、載入和/或通過機器執行、或經過一些傳播介質或載體傳播,例如通過電線或電纜、通過光纖、或通過電磁輻射,其中,當程式碼載入並通過機器執行時,例如計算機,機器變為實施本發明的裝置。當在通用型的處理器上執行時,程式碼片段與處理器結合來提供獨特部件,該獨特部件與特定邏輯電路類似執行。本發明也可以使用本發明的方法和/或裝置產生,以通過介質、電性或 光學傳輸的比特流或其他信號值序列、磁記錄介質中的儲存磁場變化的形式具體化。 The present invention can be embodied in terms of methods and apparatuses for implementing those methods. The present invention can also be embodied in the form of program code, which can be embodied in touchable media and non-touch media, such as magnetic recording media, optical recording media, solid-state memory, floppy disks, CD-ROM (read only disc), In a hard disk drive, or any other machine-readable storage medium, when the program code is loaded and executed by a machine, such as a computer, the machine becomes a device embodying the present invention. The invention can also be embodied in the form of program code, for example, whether it is stored in a storage medium, loaded and/or executed by a machine, or propagated through some propagation medium or carrier, such as through wires or cables, through optical fibers, or through Electromagnetic radiation, where, when the program code is loaded and executed by a machine, such as a computer, the machine becomes a device embodying the present invention. When executed on a general-purpose processor, the code snippets are combined with the processor to provide a unique component that executes similar to a specific logic circuit. The present invention can also be produced using the method and/or device of the present invention to pass the medium, electrical or The form of the optically transmitted bit stream or other signal value sequence and the storage magnetic field change in the magnetic recording medium is embodied.

應該理解,此處提出的示例性方法的步驟不一定需要以描述的順序進行,並且此方法的步驟的順序應該理解為僅是示例性的。同樣地,在與本發明的不同實施形態一致的方法中,這些方法中可以包括額外得步驟,並且某些步驟可以省略或組合。 It should be understood that the steps of the exemplary method proposed herein do not necessarily need to be performed in the order described, and the order of the steps of this method should be understood to be merely exemplary. Similarly, in methods consistent with different embodiments of the present invention, these methods may include additional steps, and some steps may be omitted or combined.

正如此處使用的元件和標準,術語“兼容”指元件與其他元件以通過該標準整體或部分指定的方式相通,並且可以被其他元件識別為充分地能夠以標準指定的方式與其他元件相通。兼容元件不需要內在地以標準指定的方式操作。 As used herein for elements and standards, the term "compatible" means that an element communicates with other elements in a manner specified in whole or in part by the standard, and can be recognized by other elements as being sufficiently capable of communicating with other elements in a manner specified by the standard. Compatible components do not need to be internally operated in the manner specified by the standard.

此處沒有申請專利範圍要素按照35 U.S.C.§ 112,第六段來解釋,除非要素使用用語“是指”或“意指”明確敘述。 The elements of the patent-pending scope are not interpreted in accordance with 35 U.S.C. § 112, paragraph 6, unless the elements are clearly stated in the terms "means" or "means".

雖然此處已經描述了本發明的實施形態,但是應該知道,前述實施形態和優勢只是實施例並且不應該理解為限制本發明或申請專利範圍的範圍。所屬技術領域中具有通常知識者可以設計眾多其他改變和實施形態,這些改變和實施形態落入本申請的精神和原則的範圍內,並且該規定也可以容易地適用於其他類型得裝置,更具體地,在本申請、圖式和所附申請專利範圍的範圍內,可以進行在主題排列組合的元件部分和/或的佈置進行各種變化和改變。除了元件部分和/或佈置中的變化和改進之外,可替代性 使用對所屬技術領域中具有通常知識者也是顯而易見的。 Although the embodiments of the present invention have been described here, it should be understood that the foregoing embodiments and advantages are only examples and should not be construed as limiting the scope of the present invention or patent application. Those with ordinary knowledge in the technical field can design many other changes and implementations, which fall within the scope of the spirit and principles of this application, and the provisions can also be easily applied to other types of devices, more specifically Therefore, within the scope of the present application, drawings, and appended patent applications, various changes and changes can be made in the arrangement and/or arrangement of element parts in the subject arrangement. In addition to changes and improvements in component parts and/or arrangements, alternatives The use is also obvious to those with ordinary knowledge in the technical field to which they belong.

20‧‧‧基底 20‧‧‧ base

21‧‧‧隧道氧化物層 21‧‧‧Tunnel oxide layer

22‧‧‧多晶矽層 22‧‧‧polysilicon layer

23‧‧‧緩衝氧化物層 23‧‧‧buffer oxide layer

24‧‧‧氮化物墊層 24‧‧‧Nitride pad

25‧‧‧溝槽 25‧‧‧groove

Claims (18)

一種組合物,包含:第一無機酸;至少一種通過第二無機酸以及矽烷化合物之間的反應生成的矽烷無機酸鹽;以及溶劑;其中,前述第二無機酸為選自硫酸、發煙硫酸、硝酸、磷酸以及它們的組合中的至少一種;前述矽烷化合物為由第一化學式表示的化合物:
Figure 104122910-A0305-02-0077-12
其中,R1至R4中的每一個選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基以及(C6-C30)芳基,並且R1至R4中的至少一個為鹵素以及(C1-C10)烷基中的一種;並且其中,相對於前述組合物的總重量,前述組合物還包含0.01至20wt%的銨類化合物。
A composition comprising: a first inorganic acid; at least one silane inorganic acid salt generated by a reaction between a second inorganic acid and a silane compound; and a solvent; wherein the second inorganic acid is selected from sulfuric acid and fuming sulfuric acid , Nitric acid, phosphoric acid, and at least one of their combinations; the aforementioned silane compound is a compound represented by the first chemical formula:
Figure 104122910-A0305-02-0077-12
Wherein each of R 1 to R 4 is selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy and (C 6 -C 30 )aryl, and R At least one of 1 to R 4 is one of halogen and (C 1 -C 10 ) alkyl; and wherein, with respect to the total weight of the aforementioned composition, the aforementioned composition further contains 0.01 to 20% by weight of an ammonium compound.
如請求項1所記載的組合物,其中,前述組合物包含0.01至15wt%的至少一種矽烷無機酸鹽、70至99wt%的第一無機酸以及餘量的溶劑。 The composition according to claim 1, wherein the aforementioned composition contains 0.01 to 15 wt% of at least one silane inorganic acid salt, 70 to 99 wt% of the first inorganic acid, and the balance of the solvent. 如請求項1所記載的組合物,其中,前述第一無機酸為選自硫酸、硝酸、磷酸、矽酸、氫氟酸、 硼酸、鹽酸、高氯酸以及它們的組合中的至少一種。 The composition according to claim 1, wherein the first inorganic acid is selected from sulfuric acid, nitric acid, phosphoric acid, silicic acid, hydrofluoric acid, At least one of boric acid, hydrochloric acid, perchloric acid, and combinations thereof. 如請求項1所記載的組合物,其中,相對於前述組合物的總重量,前述組合物還包含0.01至1wt%的氟類化合物。 The composition according to claim 1, wherein the composition further contains 0.01 to 1 wt% of a fluorine-based compound relative to the total weight of the composition. 一種組合物,包含:第一無機酸;至少一種通過多磷酸以及矽烷化合物之間的反應生成的矽烷無機酸鹽;以及溶劑;其中,相對於前述組合物的總重量,前述組合物還包含0.01至20wt%的銨類化合物。 A composition comprising: a first inorganic acid; at least one silicate inorganic acid salt produced by a reaction between polyphosphoric acid and a silane compound; and a solvent; wherein the aforementioned composition further comprises 0.01 relative to the total weight of the aforementioned composition Up to 20wt% ammonium compounds. 如請求項5所記載的組合物,其中,前述至少一種矽烷無機酸鹽包括由第二化學式表示的化合物:
Figure 104122910-A0305-02-0078-2
其中,i)R1選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基以及(C6-C30)芳基;ii)n1為1至4的一個整數;iii)m1為1至10的一個整數;iv)R2至R4中的每一個為氫。
The composition according to claim 5, wherein the at least one silane inorganic acid salt includes a compound represented by the second chemical formula:
Figure 104122910-A0305-02-0078-2
Wherein, i) R 1 is selected from hydrogen, halogen, (C 1 -C 10 ) alkyl, (C 1 -C 10 ) alkoxy, and (C 6 -C 30 ) aryl; ii) n 1 is 1 to An integer of 4; iii) m 1 is an integer of 1 to 10; iv) each of R 2 to R 4 is hydrogen.
如請求項6所記載的組合物,其中,在由第二化學式表示的前述至少一種矽烷無機酸鹽中,選自R2至R4中的一個氫原子被由第三化學式表示的取代基取代:
Figure 104122910-A0305-02-0079-3
其中,i)一個R5與第二化學式連接;ii)其他的R5選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基以及(C6-C30)芳基;iii)R2至R4中的每一個為氫或被由第三化學式表示的取代基取代;iv)n2為0至3的一個整數;v)m2為1至10的一個整數。
The composition according to claim 6, wherein in the aforementioned at least one silane inorganic acid salt represented by the second chemical formula, one hydrogen atom selected from R 2 to R 4 is substituted with a substituent represented by the third chemical formula :
Figure 104122910-A0305-02-0079-3
Wherein, i) one R 5 is connected to the second chemical formula; ii) the other R 5 is selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy and (C 6- C 30 ) aryl; iii) each of R 2 to R 4 is hydrogen or substituted by a substituent represented by the third chemical formula; iv) n 2 is an integer of 0 to 3; v) m 2 is 1 to An integer of 10.
一種組合物,包含:第一無機酸;至少一種通過第二無機酸以及矽氧烷化合物之間的反應生成的矽氧烷無機酸鹽;以及溶劑;其中,前述第二無機酸為選自磷酸、焦磷酸、多磷酸以及它們的組合中的一種;其中,前述至少一種矽氧烷無機酸鹽包括由第四化學式表示的化合物:
Figure 104122910-A0305-02-0080-4
其中,i)R1至R2中的每一個選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基以及(C6-C30)芳基;ii)n1為0至3的一個整數;iii)n2為0至2的一個整數;iv)m1為整數0以及1中的一個;v)n1、n2以及m1之和等於或大於1;vii)l1為1至10的一個整數;vii)O1至O3中的每一個為0至10的一個整數;viii)R3至R11中的每一個為氫。
A composition comprising: a first inorganic acid; at least one silicate inorganic acid salt formed by a reaction between a second inorganic acid and a siloxane compound; and a solvent; wherein the second inorganic acid is selected from phosphoric acid , Pyrophosphoric acid, polyphosphoric acid, and combinations thereof; wherein, the aforementioned at least one inorganic acid salt of siloxane includes a compound represented by the fourth chemical formula:
Figure 104122910-A0305-02-0080-4
Wherein, i) each of R 1 to R 2 is selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy, and (C 6 -C 30 )aryl; ii) n 1 is an integer from 0 to 3; iii) n 2 is an integer from 0 to 2; iv) m 1 is one of the integers 0 and 1; v) the sum of n 1 , n 2 and m 1 is equal to Or more than 1; vii) l 1 is an integer of 1 to 10; vii) each of O 1 to O 3 is an integer of 0 to 10; viii) each of R 3 to R 11 is hydrogen.
如請求項8所記載的組合物,其中,在由第四化學式表示的前述至少一種矽氧烷無機酸鹽中,選自R3至R11中的至少一個氫被由第五化學式表示的取代基取代:
Figure 104122910-A0305-02-0081-5
其中,i)R12以及R13中的一個與第四化學式連接;ii)其他的R12以及R13獨立地選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基以及(C6-C30)芳基;iii)R3至R11中的每一個為氫或者被由第五化學式表示的取代基取代;iv)n3為0至3的一個整數;v)n4為0至2的一個整數;vi)m1為0至1的一個整數;vii)l1為1至10的一個整數;viii)O1至O3中的每一個為0至10的一個整數。
The composition according to claim 8, wherein in the aforementioned at least one siloxane mineral acid salt represented by the fourth chemical formula, at least one hydrogen selected from R 3 to R 11 is substituted by the fifth chemical formula Substitution:
Figure 104122910-A0305-02-0081-5
Where i) one of R 12 and R 13 is connected to the fourth chemical formula; ii) the other R 12 and R 13 are independently selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 ) alkoxy and (C 6 -C 30 ) aryl; iii) each of R 3 to R 11 is hydrogen or substituted by a substituent represented by the fifth chemical formula; iv) n 3 is 0 to 3 An integer; v) n 4 is an integer from 0 to 2; vi) m 1 is an integer from 0 to 1; vii) l 1 is an integer from 1 to 10; vii) each of O 1 to O 3 An integer from 0 to 10.
一種組合物,包含:第一無機酸; 至少一種通過第二無機酸以及矽氧烷化合物之間的反應生成的矽氧烷無機酸鹽;以及溶劑;其中,前述第二無機酸為選自硫酸、發煙硫酸以及它們的組合中的一種,其中,相對於前述組合物的總重量,前述組合物還包含0.01至20wt%的銨類化合物。 A composition comprising: a first inorganic acid; At least one siloxane inorganic acid salt generated by a reaction between a second inorganic acid and a siloxane compound; and a solvent; wherein the aforementioned second inorganic acid is one selected from sulfuric acid, fuming sulfuric acid, and combinations thereof , Wherein, relative to the total weight of the aforementioned composition, the aforementioned composition further comprises 0.01 to 20% by weight of an ammonium compound. 如請求項10所記載的組合物,其中,前述至少一種矽氧烷無機酸鹽包括由第六化學式表示的化合物:
Figure 104122910-A0305-02-0082-6
其中,R21以及R22中的每一個獨立地選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基以及(C6-C30)芳基;ii)n1為0至3的一個整數;iii)n2 為0至2的一個整數;iv)m1為整數0以及1中的一個;v)n1、n2以及m1之和等於或大於1;vi)l1為1至10的一個整數;vii)R23至R25中的每一個為氫。
The composition according to claim 10, wherein the aforementioned at least one siloxane inorganic acid salt includes a compound represented by the sixth chemical formula:
Figure 104122910-A0305-02-0082-6
Wherein each of R 21 and R 22 is independently selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy and (C 6 -C 30 )aryl; ii) n 1 is an integer from 0 to 3; iii) n 2 is an integer from 0 to 2; iv) m 1 is one of the integers 0 and 1; v) the sum of n 1 , n 2 and m 1 is equal to Or greater than 1; vi) l 1 is an integer from 1 to 10; vii) each of R 23 to R 25 is hydrogen.
如請求項11所記載的組合物,其中,在前述至少一種矽氧烷無機酸鹽中,選自R23至R25中的至少一個氫原子被由第七化學式表示的取代基取代:
Figure 104122910-A0305-02-0083-7
其中,R26以及R27中的一個與第六化學式連接;ii)其他的R26以及R27獨立地選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基以及(C6-C30)芳基;iii)R23至R25中的每一個為氫或被由第七化學式表示的取代基取代;iv)n3為0至3的一個整數;v)n4為0至2的一個整數;vi)m1為0至1的一個整數; vii)l1為1至10的一個整數。
The composition according to claim 11, wherein in the aforementioned at least one siloxane inorganic acid salt, at least one hydrogen atom selected from R 23 to R 25 is substituted with a substituent represented by the seventh chemical formula:
Figure 104122910-A0305-02-0083-7
Where one of R 26 and R 27 is connected to the sixth chemical formula; ii) the other R 26 and R 27 are independently selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 ) Alkoxy and (C 6 -C 30 ) aryl; iii) each of R 23 to R 25 is hydrogen or substituted by a substituent represented by the seventh chemical formula; iv) n 3 is an integer of 0 to 3 ; V) n 4 is an integer from 0 to 2; vi) m 1 is an integer from 0 to 1; vii) l 1 is an integer from 1 to 10.
一種組合物,包含:第一無機酸;至少一種通過包括硝酸的第二無機酸以及矽氧烷化合物之間誘導的反應生成的矽氧烷無機酸鹽;以及溶劑;其中,相對於前述組合物的總重量,前述組合物還包含0.01至20wt%的銨類化合物。 A composition comprising: a first inorganic acid; at least one siloxane inorganic acid salt generated by a reaction induced between a second inorganic acid including nitric acid and a siloxane compound; and a solvent; wherein, relative to the aforementioned composition The total weight of the aforementioned composition also contains 0.01 to 20% by weight of ammonium compounds. 如請求項13所記載的組合物,其中,前述至少一種矽氧烷無機酸鹽包括由第八化學式表示的化合物:
Figure 104122910-A0305-02-0084-8
其中,i)R31以及R32中的一個獨立地選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基以及 (C6-C30)芳基;ii)n1為0至3的一個整數;iii)n2為0至2的一個整數;iv)m1為整數0以及1中的一個;v)n1、n2以及m1之和等於或大於1;vi)l1為1至10的一個整數;vii)R33至R35中的每一個為氫。
The composition according to claim 13, wherein the aforementioned at least one siloxane inorganic acid salt includes a compound represented by the eighth chemical formula:
Figure 104122910-A0305-02-0084-8
Where i) one of R 31 and R 32 is independently selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 )alkoxy and (C 6 -C 30 )aryl Ii) n 1 is an integer from 0 to 3; iii) n 2 is an integer from 0 to 2; iv) m 1 is one of the integers 0 and 1; v) the sum of n 1 , n 2 and m 1 Equal to or greater than 1; vi) l 1 is an integer from 1 to 10; vii) each of R 33 to R 35 is hydrogen.
如請求項14所記載的組合物,其中,在前述至少一種矽氧烷無機酸鹽中,選自R33至R35中的至少一個氫被由第九化學式表示的取代基取代:
Figure 104122910-A0305-02-0085-9
其中,i)R36以及R37中的一個與第八化學式連接;ii)其他的R36以及R37獨立地選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基以及(C6-C30)芳基;iii)R33至R35中的每一個為氫或被由第九化學式表示的取代基取代;iv)n3為0至3的一個整數;v)n4為0至2的一個整數;vi)m1為0至1的一個整數;vii)l1為1至10的一個整數。
The composition according to claim 14, wherein, in the aforementioned at least one siloxane inorganic acid salt, at least one hydrogen selected from R 33 to R 35 is substituted with a substituent represented by the ninth chemical formula:
Figure 104122910-A0305-02-0085-9
Wherein, i) one of R 36 and R 37 is connected to the eighth chemical formula; ii) the other R 36 and R 37 are independently selected from hydrogen, halogen, (C 1 -C 10 )alkyl, (C 1 -C 10 ) alkoxy and (C 6 -C 30 ) aryl; iii) each of R 33 to R 35 is hydrogen or substituted by a substituent represented by the ninth chemical formula; iv) n 3 is 0 to 3 An integer; v) n 4 is an integer from 0 to 2; vi) m 1 is an integer from 0 to 1; vii) l 1 is an integer from 1 to 10.
一種組合物,包含: 第一無機酸;至少一種通過第二無機酸以及第一矽烷化合物之間誘導的反應生成的矽烷無機酸鹽;第二矽烷化合物;以及溶劑;其中,前述第二無機酸為選自硫酸、發煙硫酸、硝酸、磷酸、焦磷酸、多磷酸以及它們的組合中的一種;其中,前述第一矽烷化合物以及前述第二矽烷化合物為選自由第十化學式表示的化合物、由第十一化學式表示的化合物以及它們的組合中的一種;其中,前述第十化學式為:
Figure 104122910-A0305-02-0086-10
;並且其中,前述第十一化學式為:
Figure 104122910-A0305-02-0086-11
其中,i)R1至R10中的每一個選自氫、鹵素、(C1-C10)烷基、(C1-C10)烷氧基以及(C6-C30)芳基;ii)R1至R4中的至少一個為鹵素以及(C1-C10)烷氧基中的一種;iii)R5至R10中的至少一個為鹵素以 及(C1-C10)烷氧基中的一種;iv)n為1至10的一個整數。
A composition comprising: a first inorganic acid; at least one silane inorganic acid salt generated by a reaction induced between a second inorganic acid and a first silane compound; a second silane compound; and a solvent; wherein, the aforementioned second inorganic acid Is one selected from sulfuric acid, fuming sulfuric acid, nitric acid, phosphoric acid, pyrophosphoric acid, polyphosphoric acid, and combinations thereof; wherein the first silane compound and the second silane compound are selected from the compound represented by the tenth chemical formula, One of the compounds represented by the eleventh chemical formula and their combinations; wherein, the aforementioned tenth chemical formula is:
Figure 104122910-A0305-02-0086-10
; And wherein the aforementioned eleventh chemical formula is:
Figure 104122910-A0305-02-0086-11
Wherein, i) each of R 1 to R 10 is selected from hydrogen, halogen, (C 1 -C 10 ) alkyl, (C 1 -C 10 ) alkoxy, and (C 6 -C 30 ) aryl; ii) at least one of R 1 to R 4 is one of halogen and (C 1 -C 10 ) alkoxy; iii) at least one of R 5 to R 10 is halogen and (C 1 -C 10 ) alkane One of the oxygen groups; iv) n is an integer from 1 to 10.
如請求項16所記載的組合物,其中,前述組合物包含0.01至15wt%的至少一種矽烷無機酸鹽、70至99wt%的第一無機酸、0.001至15wt%的第二矽烷化合物以及餘量的溶劑。 The composition according to claim 16, wherein the aforementioned composition contains 0.01 to 15 wt% of at least one silane inorganic acid salt, 70 to 99 wt% of the first inorganic acid, 0.001 to 15 wt% of the second silane compound, and the balance Of solvent. 一種半導體裝置的製備方法,該製備方法包括使用請求項1所述的組合物進行蝕刻的製程。 A preparation method of a semiconductor device, the preparation method comprising a process of etching using the composition described in claim 1.
TW104122910A 2014-07-17 2015-07-15 Composition for etching TWI691582B (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR1020140090662A KR101539374B1 (en) 2014-07-17 2014-07-17 Composition for etching and manufacturing method of semiconductor device using the same
KR10-2014-0090663 2014-07-17
KR10-2014-0090662 2014-07-17
KR20140090660 2014-07-17
KR1020140090663A KR101539375B1 (en) 2014-07-17 2014-07-17 Composition for etching and manufacturing method of semiconductor device using the same
KR10-2014-0090661 2014-07-17
KR1020140090661A KR101539373B1 (en) 2014-07-17 2014-07-17 Composition for etching and manufacturing method of semiconductor device using the same
KR10-2014-0090660 2014-07-17
KR1020150078400A KR101627181B1 (en) 2014-07-17 2015-06-03 Composition for etching and manufacturing method of semiconductor device using the same
KR10-2015-0078400 2015-06-03

Publications (2)

Publication Number Publication Date
TW201604265A TW201604265A (en) 2016-02-01
TWI691582B true TWI691582B (en) 2020-04-21

Family

ID=55435477

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104122910A TWI691582B (en) 2014-07-17 2015-07-15 Composition for etching

Country Status (3)

Country Link
JP (2) JP6580397B2 (en)
CN (1) CN109913220B (en)
TW (1) TWI691582B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10515820B2 (en) 2016-03-30 2019-12-24 Tokyo Electron Limited Process and apparatus for processing a nitride structure without silica deposition
US10325779B2 (en) 2016-03-30 2019-06-18 Tokyo Electron Limited Colloidal silica growth inhibitor and associated method and system
US10995269B2 (en) * 2016-11-24 2021-05-04 Samsung Electronics Co., Ltd. Etchant composition and method of fabricating integrated circuit device using the same
CN109689838A (en) * 2016-12-26 2019-04-26 秀博瑞殷株式公社 Etching composition and the method for using the etching composition manufacturing semiconductor devices
CN109478509B (en) 2017-03-15 2024-01-12 株式会社东芝 Etching liquid, etching method, and method for manufacturing electronic component
CN109216187B (en) * 2017-07-06 2023-08-29 Oci有限公司 Etching composition, etching method, and method for manufacturing semiconductor device using same
CN111108176B (en) * 2017-09-06 2021-10-08 恩特格里斯公司 Compositions and methods for etching silicon nitride-containing substrates
KR102629574B1 (en) * 2017-11-24 2024-01-26 동우 화인켐 주식회사 Insulation layer etchant composition and method of forming pattern using the same
KR102084164B1 (en) * 2018-03-06 2020-05-27 에스케이씨 주식회사 Composition for semiconductor process and semiconductor process
KR102024758B1 (en) * 2018-05-26 2019-09-25 에스케이이노베이션 주식회사 Etching composition, method for etching insulating layer of semiconductor devices, method for preparing semiconductor devices and silane compound
KR102005963B1 (en) * 2018-05-26 2019-07-31 에스케이이노베이션 주식회사 Composition for etching and silane compound
KR102557642B1 (en) * 2018-10-25 2023-07-20 에스케이이노베이션 주식회사 Additive, method for preparing the same and etching composition comprising the same
KR102633743B1 (en) * 2018-10-26 2024-02-05 에스케이이노베이션 주식회사 Etching composition, method for etching insulating layer of semiconductor devices, method for preparing semiconductor devices and silane compound
CN109563407A (en) 2018-11-13 2019-04-02 长江存储科技有限责任公司 The additive of phosphoric acid etch agent
JP2020170841A (en) * 2019-04-03 2020-10-15 悦盟先進化學股▲分▼有限公司 Cleaning composition for removing etching residue
KR20200137410A (en) 2019-05-30 2020-12-09 에스케이이노베이션 주식회사 Composition for etching, method for etching insulator and method for manufacturing semiconductor device, and novel compounds
KR20210006642A (en) 2019-07-09 2021-01-19 오씨아이 주식회사 Etching solution for silicon nitride layer and method for preparing semiconductor device using the same
KR102675055B1 (en) * 2019-09-18 2024-06-12 오씨아이 주식회사 Etching solution for silicon nitride layer and method for preparing semiconductor device using the same
KR20220073813A (en) 2019-09-30 2022-06-03 버슘머트리얼즈 유에스, 엘엘씨 Etching composition and method for selectively removing silicon nitride during fabrication of semiconductor devices
CN115011350A (en) * 2022-07-05 2022-09-06 上海集成电路材料研究院有限公司 Etching composition, etching method and application
CN115287069B (en) * 2022-07-06 2023-06-09 湖北兴福电子材料股份有限公司 C-free etching solution for inhibiting silicon dioxide etching

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201331343A (en) * 2011-12-16 2013-08-01 Sk Hynix Inc Etching composition and method for fabricating semiconductor device using the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4125551A (en) * 1978-02-13 1978-11-14 General Electric Company Process for producing silylphosphates
JPS61126090A (en) * 1984-11-21 1986-06-13 Rasa Kogyo Kk Production of phosphoric monoester
JP3467411B2 (en) * 1998-08-07 2003-11-17 松下電器産業株式会社 Etching solution, method for producing the same and etching method
JP5003057B2 (en) * 2006-08-21 2012-08-15 東ソー株式会社 Etching composition and etching method
JP5332197B2 (en) * 2007-01-12 2013-11-06 東ソー株式会社 Etching composition and etching method
TW200849371A (en) * 2007-02-28 2008-12-16 Tosoh Corp Etching method and etching composition useful for the method
JP5035913B2 (en) * 2008-09-22 2012-09-26 アプリシアテクノロジー株式会社 Etching solution preparation method, etching method and etching apparatus
JP2010109064A (en) * 2008-10-29 2010-05-13 Tosoh Corp Etching method
JP2012219167A (en) * 2011-04-07 2012-11-12 Jsr Corp Amorphous body
KR101320416B1 (en) * 2011-12-29 2013-10-22 솔브레인 주식회사 A Composition for wet etching , and method of wet etching with the same
KR101380487B1 (en) * 2012-05-09 2014-04-01 오씨아이 주식회사 Etching solution for silicon nitride layer
JP5894897B2 (en) * 2012-09-28 2016-03-30 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
US9012261B2 (en) * 2013-03-13 2015-04-21 Intermolecular, Inc. High productivity combinatorial screening for stable metal oxide TFTs

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201331343A (en) * 2011-12-16 2013-08-01 Sk Hynix Inc Etching composition and method for fabricating semiconductor device using the same

Also Published As

Publication number Publication date
CN109913220B (en) 2022-03-29
JP6580397B2 (en) 2019-09-25
JP2016029717A (en) 2016-03-03
CN109913220A (en) 2019-06-21
JP2020010043A (en) 2020-01-16
TW201604265A (en) 2016-02-01
JP6890637B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
TWI691582B (en) Composition for etching
US11634633B2 (en) Composition for etching
KR102470905B1 (en) Composition for etching and manufacturing method of semiconductor device using the same
CN108291132B (en) Etching composition and method for manufacturing semiconductor device using the same
KR101539375B1 (en) Composition for etching and manufacturing method of semiconductor device using the same
KR102689081B1 (en) Composition for etching and manufacturing method of semiconductor device using the same
KR20230149801A (en) Composition for etching and manufacturing method of semiconductor device using the same