TWI691160B - Controller and control method of DC brushless motor - Google Patents
Controller and control method of DC brushless motor Download PDFInfo
- Publication number
- TWI691160B TWI691160B TW107144992A TW107144992A TWI691160B TW I691160 B TWI691160 B TW I691160B TW 107144992 A TW107144992 A TW 107144992A TW 107144992 A TW107144992 A TW 107144992A TW I691160 B TWI691160 B TW I691160B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- node
- phase
- commutation
- brushless
- Prior art date
Links
Images
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
一種直流無刷馬達之控制器及其控制方法,控制器連接在一換相電路,換相電路包括有三分壓器及三比較器,各分壓器包括有串聯的一第一電阻及一第二電阻,各第一電阻連接直流無刷馬達之三相線圈的對應端電壓;各比較器包含有一正輸入端及一負輸入端,且各比較器的正輸入端連接至對應分壓器的第一電阻與第二電阻相連接的一節點上,各比較器的負輸入端則與相鄰的一分壓器的節點連接,控制器包括有:三偏壓電阻,分別連接一偏壓源與各分壓器的節點;一控制電路,檢測各相線圈的反電動勢訊號,並控制電壓源提供一偏移電壓至對應之分壓器的節點上。A controller and control method for a brushless DC motor. The controller is connected to a commutation circuit. The commutation circuit includes three voltage dividers and three comparators. Each voltage divider includes a first resistor and a first resistor connected in series. Two resistors, each first resistor is connected to the corresponding terminal voltage of the three-phase coil of the DC brushless motor; each comparator includes a positive input terminal and a negative input terminal, and the positive input terminal of each comparator is connected to the corresponding voltage divider The first resistor and the second resistor are connected to a node, and the negative input terminal of each comparator is connected to the node of an adjacent voltage divider. The controller includes: three bias resistors, respectively connected to a bias voltage source A node of each voltage divider; a control circuit that detects the back electromotive force signal of each phase coil, and controls the voltage source to provide an offset voltage to the node of the corresponding voltage divider.
Description
本發明係與無刷馬達控制技術有關;特別是指一種直流無刷馬達之控制器與控制方法,可改善使用直流無刷馬達換相電路時相位落後的問題。 The invention relates to the brushless motor control technology; in particular, it refers to a controller and control method of a DC brushless motor, which can improve the problem of phase lag when using a DC brushless motor commutation circuit.
現在應用在無刷馬達之換相電路的無感測驅動技術包括有反電動勢過零點估測法以及端電壓比較估測法等。 The sensorless drive technology currently applied to the commutation circuit of the brushless motor includes the back-EMF zero-crossing estimation method and the terminal voltage comparison estimation method.
其中,反電動勢過零點估測法是藉由測量不導通相之相線圈的端電壓與虛擬中性電壓進行比較,以獲得反電動勢的過零點,惟,預測正確換相點與馬達特性有關,因此,在驅動各類不同參數之馬達時,較不易控制,而有所缺失。 Among them, the back-EMF zero-crossing point estimation method is to obtain the zero-crossing point of the back-EMF by measuring the terminal voltage of the phase coil of the non-conducting phase and the virtual neutral voltage. However, predicting the correct commutation point is related to the characteristics of the motor. Therefore, when driving various types of motors with different parameters, it is more difficult to control and lacks.
另外,端電壓比較估測法是藉由測量三相線圈的端電壓及反電動勢變化進行比較,以取得三相線圈的換相訊號,例如我國專利第I290415號「三相無刷直流馬達之無感測器換相電路及三相換相訊號檢測方法」,即是使用端電壓比較估測法,取得落後反電動勢零交越點30度相位的脈波訊號,作為檢知無刷馬達實際轉動的換相訊號。應用端電壓比較估測法的驅動技術,無須馬達的相關特性參數,因此可廣泛應用於不同驅動參數的各類馬達,然而,前述端電壓比較估測法的換相點反電動勢大都需經過濾波,而容易造成換相時間延遲(落後),而產生突波電流,進而影響電磁兼容性(EMC)與馬達輸出效率。因此,如何改 善應用端電壓比較估測法之馬達控制技術時所產生的相位落後問題,是發明人研究發展的方向之一。 In addition, the terminal voltage comparison estimation method is to obtain the commutation signal of the three-phase coil by measuring the terminal voltage of the three-phase coil and the change of the back electromotive force, for example, China Patent No. I290415 "No Sensor commutation circuit and three-phase commutation signal detection method", that is, using the terminal voltage comparison estimation method to obtain a pulse signal at a phase of 30 degrees behind the zero-crossing point of the back electromotive force as a detection of the actual rotation of the brushless motor Commutation signal. The drive technology using the terminal voltage comparison estimation method does not require the relevant characteristic parameters of the motor, so it can be widely used in various types of motors with different drive parameters. However, the back electromotive force of the commutation point of the foregoing terminal voltage comparison estimation method mostly needs to be filtered. , And it is easy to cause the commutation time delay (lagging), and generate a surge current, which in turn affects electromagnetic compatibility (EMC) and motor output efficiency. Therefore, how to change It is one of the research and development directions of the inventors to make good use of the phase lag problem when applying the motor control technology of the terminal voltage comparison estimation method.
有鑑於此,本發明之目的在於提供一種直流無刷馬達之控制器及其控制方法,可有效地改善相位落後問題,以達到相位同步之目的。 In view of this, the object of the present invention is to provide a controller and control method for a DC brushless motor, which can effectively improve the phase lag problem and achieve the purpose of phase synchronization.
緣以達成上述目的,本發明提供一種直流無刷馬達之控制器,用以連接在一換相電路,該換相電路包括有三組分壓器以及三個比較器,各該分壓器包括有串聯的一第一電阻以及一第二電阻,各該第一電阻的一端分別連接該直流無刷馬達之三相線圈的對應端電壓;各該比較器包含有一正輸入端以及一負輸入端,且各該比較器的正輸入端連接至對應之該分壓器的該第一電阻與該第二電阻相連接的一節點上,各該比較器的負輸入端則與相鄰的一該分壓器的該節點連接,該控制器包括有:三偏壓電阻,具有一輸入端以及一輸出端,各該輸入端連接至一電壓源,各該輸出端分別連接於各該分壓器;一控制電路,與該三相線圈電性連接,用以檢測各該相線圈的反電動勢訊號,並依據檢測結果控制該電壓源供應電能,以經由對應的一該偏壓電阻提供一偏移電壓至對應之該分壓器的該節點上。 In order to achieve the above object, the present invention provides a controller for a brushless DC motor, which is connected to a commutation circuit. The commutation circuit includes a three-component voltage divider and three comparators. Each of the voltage dividers includes: A first resistor and a second resistor connected in series, one end of each first resistor is connected to the corresponding terminal voltage of the three-phase coil of the DC brushless motor; each of the comparators includes a positive input terminal and a negative input terminal, And the positive input terminal of each comparator is connected to a node connecting the first resistor and the second resistor of the corresponding voltage divider, and the negative input terminal of each comparator is connected to the adjacent one The node connection of the voltage divider, the controller includes: three bias resistors, having an input terminal and an output terminal, each input terminal is connected to a voltage source, and each output terminal is respectively connected to each voltage divider; A control circuit electrically connected to the three-phase coils for detecting the back electromotive force signal of each phase coil, and controlling the voltage source to supply electric energy according to the detection result, so as to provide an offset voltage through a corresponding one of the bias resistors To the node corresponding to the voltage divider.
緣以達成上述目的,本發明提供一種直流無刷馬達之控制方法,該直流無刷馬達連接一換相電路,該換相電路包括有三組分壓器以及三個比較器,各該分壓器包括有串聯的一第一電阻以及一第二電阻,各該第一電阻的一端分別連接該直流無刷馬達之三相線圈的對應端電壓;各該比較器包含有一正輸入端以及一負輸入端,且各該比較器的 正輸入端連接至對應之該分壓器的該第一電阻與該第二電阻相連接的一節點上,各該比較器的負輸入端則與相鄰的一該分壓器的該節點連接,該控制方法包括有以下步驟:供電予該直流無刷馬達,以使該直流無刷馬達運轉;檢測各該相線圈的反電動勢訊號,並依據檢測結果提供一偏移電壓至對應之該分壓器的該節點上。 In order to achieve the above object, the present invention provides a control method of a DC brushless motor. The DC brushless motor is connected to a commutation circuit. The commutation circuit includes a three-component voltage divider and three comparators, each of the voltage dividers It includes a first resistor and a second resistor connected in series, one end of each first resistor is connected to the corresponding terminal voltage of the three-phase coil of the DC brushless motor; each of the comparators includes a positive input terminal and a negative input And each of the comparator's The positive input terminal is connected to a node connecting the first resistor and the second resistor of the corresponding voltage divider, and the negative input terminal of each comparator is connected to the node of an adjacent one of the voltage divider The control method includes the following steps: supplying power to the DC brushless motor to operate the DC brushless motor; detecting the back electromotive force signal of each phase coil, and providing an offset voltage to the corresponding sub-point according to the detection result On the node of the compressor.
本發明之效果在於,藉由檢測各相線圈的反電動勢訊號,在適當的時機點提供偏移電壓予相應的分壓器之節點上,以有效地補償換相落後或延遲的問題,甚至達到強制提前換相、相位超前控制的效果。 The effect of the present invention is that by detecting the back electromotive force signal of each phase coil, the offset voltage is provided to the node of the corresponding voltage divider at an appropriate timing point, so as to effectively compensate the problem of lagging or delay in commutation, and even achieve The effect of forced early commutation and phase advance control.
〔本發明〕 〔this invention〕
10:換相電路 10: commutation circuit
12:分壓器 12: Voltage divider
20:控制器 20: Controller
22:控制電路 22: control circuit
C1,C2,C3:濾波電容 C1, C2, C3: filter capacitor
HC,HB,HA:邏輯訊號 HC, HB, HA: logical signal
M1,M2,M3:端電壓 M1, M2, M3: terminal voltage
N1,N2,N3:節點 N1, N2, N3: Node
N,N4:中性點 N, N4: Neutral point
R1,R3,R5:第一電阻 R1, R3, R5: the first resistance
R2,R4,R6:第二電阻 R2, R4, R6: second resistance
R7,R8,R9:偏壓電阻 R7, R8, R9: bias resistor
R10-R16:電阻 R10-R16: resistance
C4:電容 C4: capacitance
U1A,U1B,U1C:比較器 U1A, U1B, U1C: comparator
VM1,VM2,VM3:反電動勢訊號 VM1, VM2, VM3: Back EMF signal
V1,V2,V3:電壓源 V1, V2, V3: voltage source
圖1為本發明一實施例之控制器、直流無刷馬達之三相線圈以及換相電路的示意圖。 FIG. 1 is a schematic diagram of a controller, a three-phase coil of a brushless DC motor, and a commutation circuit according to an embodiment of the invention.
圖2為上述實施例之控制器與換相電路的電路圖。 2 is a circuit diagram of the controller and the commutation circuit of the above embodiment.
圖3及圖4為反電動勢訊號與邏輯訊號的時序示意圖。 Fig. 3 and Fig. 4 are timing diagrams of back EMF signals and logic signals.
圖5至圖7為線電壓與相電流的波形圖,揭示經補償偏移電壓前後的波形差異。 5 to 7 are waveform diagrams of line voltage and phase current, revealing the difference in waveform before and after the offset voltage is compensated.
圖8及圖9為反電動勢訊號與邏輯訊號的時序示意圖。 8 and 9 are timing diagrams of back-EMF signals and logic signals.
圖10為一電路示意圖,揭示利用中性點平均電壓,提供補償參考電位予控制電路。 FIG. 10 is a schematic circuit diagram showing that the neutral point average voltage is used to provide a compensation reference potential to the control circuit.
為能更清楚地說明本發明,茲舉一實施例並配合圖式詳細說明如後。請參圖1及圖2所示,為本發明一實施例所應用之直流無刷
馬達之三相線圈U,V,W、換相電路10以及控制器20。於本實施例中,所述的三相線圈U,V,W係以Y接法為例,而於其他實施例中,亦可採用△接法的三相線圈。
In order to explain the present invention more clearly, an embodiment will be described in detail with reference to the drawings. Please refer to FIG. 1 and FIG. 2 for a brushless DC applied in an embodiment of the present invention
The three-phase coils U, V, W of the motor, the
所述直流無刷馬達之三相線圈U,V,W的運作相序,通常會藉由驅動器來進行控制,舉例而言,所述的驅動器可以是但不限於使用多個MOSFET或多個IGBT等開關元件實現,而於一實施例中,則可使用六個MOSFET分成三個上臂開關與三個下臂開關,並藉由控制該些上臂開關與下臂開關的導通與斷路,以順序驅動每一相線圈U,V,W,以驅動直流無刷馬達運轉。 The operation phase sequence of the three-phase coils U, V, W of the DC brushless motor is usually controlled by a driver. For example, the driver may be, but not limited to, using multiple MOSFETs or multiple IGBTs Such as switching elements, and in one embodiment, six MOSFETs can be used to divide into three upper arm switches and three lower arm switches, and by controlling the on and off of these upper arm switches and lower arm switches, they are driven in sequence Each phase coil U, V, W is driven by a DC brushless motor.
所述換相電路10基本上包括有三組分壓器12以及三個比較器U1A,U1B,U1C,各該分壓器12包括有相串聯的一第一電阻R1,R3,R5以及一第二電阻R2,R4,R6,各該第一電阻R1,R3,R5的一端分別連接該直流無刷馬達之三相線圈U,V,W的對應端電壓M1,M2,M3,且各該第一電阻R1,R3,R5與各該第二電阻R2,R4,R6相連接處視為一節點N1,N2,N3;各該比較器U1A,U1B,U1C包含有一正輸入端以及一負輸入端,各該比較器U1A,U1B,U1C之正輸入端連接至對應分壓器12之節點N1,N2,N3,負輸入端則與相鄰的一該分壓器12之節點N1,N2,N3連接。更進一步地說,於本實施例中,第一組分壓器的節點N1與第一個比較器U1A的負輸入端以及第二個比較器U1B的正輸入端連接;第二組分壓器的節點N2與第二個比較器U1B的負輸入端以及第三個比較器U1C的正輸入端連接;第三組分壓器的節點N3與第三個比較器U1C的負輸入端以及第一個比較器U1A的正輸入端連接。於一實施例中,所述分壓器12可進一步設置有一濾波電容C1,C2,C3,而可構成RC濾波器。
The
透過上述的換相電路10的設計,各該比較器U1A,U1B,U1C可取得三相線圈中兩兩相鄰相線圈經分壓後的反電動勢訊號VM1,VM2,VM3,並經過比較器U1A,U1B,U1C比較運算,以估得對應之換相邏輯訊號,例如:請配合圖2、圖3以及下表一所示,於一實施例中,可透過控制上臂開關Q1,Q3,Q5與下臂開關Q2,Q4,Q6的導通與斷路狀態切換,以控制三相線圈U,V,W的激磁時機與換相順序;而各相線圈的反電動勢訊號VM1,VM2,VM3經過比較器U1A,U1B,U1C比較運算後,可得到落後反電動勢零交越30度電氣角的邏輯訊號HC,HB,HA,各邏輯訊號HC,HB,HA之間的相位差為60度,由於該邏輯訊號HC,HB,HA與使用霍爾感測器所感測的換相訊號同樣落後30度相位差,因此,便可據以作為換相訊號,並可區分為六個導通相序角度區間,分別是0度至60度、60度至120度、120度至180度、180度至240度、240度至300度、300度至360度,各相序分別對應一個霍爾狀態S1~S6。
Through the design of the above-mentioned
惟,於實際情況下,於取樣反電動勢訊號時,通常伴隨雜訊,而容易造成換相訊號的誤判,而反電動勢經過分壓器、比較器等元件之後,以及比較器等元件運算時間等影響,將造成換相時間延遲、落後,造成預估之換相訊號與實際換相需求點有時間上的落差,以至於換相時,將容易產生突波電流,除了可能造成馬達運轉時抖動、馬達輸出效率低下之外,也會影響電磁兼容性。 However, in the actual situation, when sampling the back-EMF signal, it is usually accompanied by noise, which is likely to cause misjudgment of the commutation signal. After the back-EMF passes through the voltage divider, the comparator and other components, and the calculation time of the comparator and other components, etc. The impact will cause the commutation time to be delayed and lagging, resulting in a time difference between the estimated commutation signal and the actual commutation demand point, so that during commutation, a surge current will easily occur, except for the possibility of causing jitter when the motor is running In addition to the low output efficiency of the motor, it will also affect the electromagnetic compatibility.
是以,請復參圖2所示,本發明提供的控制器20包括有三個偏壓電阻R7,R8,R9以及一控制電路22,各偏壓電阻R7,R8,R9分別具有一輸入端以及一輸出端,各該輸入端連接至一電壓源V1,V2,V3,各該輸出端連接至各該分壓器12的節點N1,N2,N3上。該控制電路22與三相線圈U,V,W電性連接,該控制電路22可檢測各該相線圈U,V,W的反電動勢訊號,並根據檢測結果控制電壓源V1,V2,V3供應電能,以經由對應的偏壓電阻R7,R8,R9提供偏移電壓(offset Voltage)至對應分壓器12的節點N1,N2,N3上。
Therefore, please refer to FIG. 2 again, the
應用有上述控制器的直流無刷馬達之控制方法在於,首先先供電予直流無刷馬達,以使該直流無刷馬達運轉產生反電動勢訊號。例如,於一實施例中,可以先對其中一相線圈激磁,之後再依序激磁下一相線圈,以達成無刷馬達啟動運轉程序。而後,控制電路22係檢測各該相線圈的反電動勢訊號,便可據此判斷出該些相線圈U,V,W的換相次序(順序),藉此,控制電路22便可偵測或預測馬達運轉時之相序的控制邏輯順序,以及依據檢測結果提供偏移電壓至對應分壓器12的節點N1,N2,N3,以提供偏移電壓至節點N1,N2,N3上,以改變節點N1,N2,N3上的反電動勢訊號VM1,VM2,VM3,以使得比較器U1A,U1B,U1C可以
提前比較反電動勢訊號VM1,VM2,VM3,以提早輸出換相邏輯訊號,而可達到強制提前換相、相位不落後、甚至相位超前控制的功效。
The control method of the DC brushless motor to which the above controller is applied is that the DC brushless motor is firstly supplied with power so that the DC brushless motor operates to generate a counter electromotive force signal. For example, in one embodiment, one of the phase coils can be excited first, and then the next phase coil can be sequentially excited to achieve the brushless motor start-up operation procedure. Then, the
舉例而言,請配合圖2至圖4所示,於一實施例中,控制電路22可偵測或預測馬達運轉時之相序的控制邏輯順序。並於上一相序完成馬達運轉邏輯順序控制後,即適時提供一正值的偏移電壓予下一相序之相線圈所對應的該分壓器的該節點,例如在區間120°~240°中,在完成上一相序60°至120°邏輯訊號控制後,此時控制電路22將適時控制電壓源V2輸出電能,以經由偏移電阻R8輸出一正值的偏移電壓至相線圈V所對應的分壓器12的節點N2,藉此,請參照圖4所示,對應節點N2的反電動勢訊號VM2在區間120°至240°之間將上升一預定值。藉此,於區間120°至180°,在比較器U1B比較節點N1之反電動勢訊號VM1與節點N2之反電動勢訊號VM2時,可使邏輯訊號HC提前轉換,達提前換相效果。另於區間180°至240°在比較器U1C比較節點N2之反電動勢訊號VM2與節點N3之反電動勢訊號VM3時,可使邏輯訊號HB提前轉換,達提前換相效果。
For example, please refer to FIGS. 2 to 4. In one embodiment, the
另外,當在區間240°~360°中,在完成上一相序180°至240°邏輯訊號控制後,此時控制電路22適時將控制電壓源V1輸出電能,以經由偏移電阻R7輸出一正值的偏移電壓至相線圈U所對應的分壓器12的節點N1,藉此,請參照圖4所示,對應節點N1的反電動勢訊號VM1在區間240°至360°之間將上升一預定值。藉此,於區間240°至300°在比較器U1A比較節點N3之反電動勢訊號VM3與節點N1之反電動勢訊號VM1時,可使邏輯訊號HA提前轉換,達提前換相效果。而於區間300°至360°在比較器U1B比較節點N1之反電動勢訊號VM1與節點N2之反電動勢訊號VM2時,可使邏輯訊號HC提前轉換,達提前換相效果。
In addition, when the logic signal control of the previous phase sequence 180° to 240° is completed in the interval 240°~360°, the
另外,當在區間0°~60°中,在完成上一相序300°至360°邏輯訊號控制後,此時控制電路22將適時控制電壓源V3輸出電能,以經由偏移電阻R9輸出一正值的偏移電壓至相線圈V所對應的分壓器12的節點N3,藉此,請參照圖4所示,對應節點N3的反電動勢訊號VM3在區間0°至120°之間將上升一預定值。藉此,於區間0°至60°在比較器U1C比較節點N3之反電動勢訊號VM3與節點N2之反電動勢訊號VM2時,可使邏輯訊號HB提前轉換,達提前換相效果。另於區間60°至120°在比較器U1A比較節點N3之反電動勢訊號VM3與節點N1之反電動勢訊號VM1時,可使邏輯訊號HA提前轉換,達提前換相效果。
In addition, when the logic signal control of the last phase sequence 300° to 360° is completed in the interval of 0° to 60°, the
如此一來,圖4所得出的邏輯訊號HC,HB,HA將會超前圖3所示的邏輯訊號HC,HB,HA,例如相位提前至圖4垂直虛線與箭頭所指處,而可達到改善相位落後問題與提前換相的功效。 In this way, the logical signals HC, HB, HA obtained in FIG. 4 will lead the logical signals HC, HB, HA shown in FIG. 3, for example, the phase is advanced to the point indicated by the vertical dotted line and arrow in FIG. 4, and the improvement can be achieved Phase lag problem and the effect of early commutation.
此外,所提供之偏移電壓的數值,係可由控制電路22依據所測得之反電動勢訊號的下降斜率、電壓值大小、相電流值大小或馬達轉速高低,進行控制。例如,若要進行相位超前控制,則可提高所提供之偏移電壓數值。
In addition, the value of the provided offset voltage can be controlled by the
另外,於一實施例中,控制電路22在判斷要提供哪一節點N1,N2,N3偏移電壓的方式也可以是:當測得其中一相線圈的反電動勢訊號上升至一預定閥值時,提供一正值的偏移電壓予下一相序之相線圈所對應的該分壓器的該節點。舉例而言,請配合圖3及圖4所示,當在區間60°~120°中,當測得反電動勢訊號VM3上升至預定閥值時或超過預定閥值時,則提供一正值的偏移電壓給下一相序之相線圈V所對應之分壓器12之節點N2,以使節點N2的反電動勢訊號VM2準位上升。當在區間180°~240°中,當測得反電動勢訊號VM2上升至預定閥值時或超過預
定閥值時,則提供一正值的偏移電壓給下一相序之相線圈U所對應之分壓器12之節點N1,以使節點N1的反電動勢訊號VM1準位上升;當在區間300°~360°中,當測得反電動勢訊號VM1上升至預定閥值時或超過預定閥值時,則提供一正值的偏移電壓給下一相序之相線圈W所對應之分壓器12之節點N3,以使節點N3的反電動勢訊號VM3準位上升。如此一來,亦可達到改善相位落後問題或是提前換相的功效。
In addition, in one embodiment, the way for the
另外一提的是,前述補償偏移電壓的區間長度並不以120度為限,於一實施例中,控制電路22可偵測或預測馬達運轉時之相序的控制邏輯順序,並可藉此預測下一換相點的發生時間或位置,並於接近換相點時或是接近換相點的一短區間內,例如但不限於2度、5度、10度、15度之內,或其他區間,再提供一偏移電壓予對應之分壓器的節點,並於換相完成後,再移除該偏移電壓。舉例而言,可以在接近換相點時,提供一脈波(脈衝)形式之正值的偏移電壓,以使對應的邏輯訊號提前轉換,而達到提前換相的效果。
It is also mentioned that the length of the aforementioned offset voltage compensation interval is not limited to 120 degrees. In one embodiment, the
另外,於一實施例中,所述控制器之控制電路可根據預先設定的程式依照一預定順序分別經由各偏壓電阻輸出偏移電壓,例如依據偏壓電阻R7→偏壓電阻R8→偏壓電阻R9的順序依序輸出偏移電壓。而於使用此種控制器時,使用者須按照該些相線圈的換相順序將偏壓電阻的輸出端連接至對應的分壓器的節點上,例如,當預設程式是按照偏壓電阻R7→偏壓電阻R8→偏壓電阻R9的順序依序輸出偏移電壓時,而所應用的直流無刷馬達的三相線圈的換相順序是相線圈U→相線圈V→相線圈W時,則使用者須先將偏壓電阻R7的輸出端連接至相線圈U所對應之分壓器的節點N1,將偏壓電阻R8的輸出端連接至相線圈V所對應之分壓器的節點N2,將偏壓電阻R9的輸出端連接至相線圈W所對應之分 壓器的節點N3。如此一來,該控制器便可按照該預定順序提供偏移電壓給各相線圈所對應的分壓器。 In addition, in an embodiment, the control circuit of the controller can output the offset voltage through each bias resistor according to a predetermined sequence according to a predetermined sequence, for example, according to the bias resistor R7→bias resistor R8→bias The order of the resistor R9 sequentially outputs the offset voltage. When using such a controller, the user must connect the output terminal of the bias resistor to the node of the corresponding voltage divider according to the commutation sequence of the phase coils. For example, when the preset program is based on the bias resistor When the order of R7→bias resistor R8→bias resistor R9 outputs the offset voltage in sequence, and the commutation sequence of the three-phase coil of the applied DC brushless motor is phase coil U→phase coil V→phase coil W , The user must first connect the output of the bias resistor R7 to the node N1 of the voltage divider corresponding to the phase coil U, and connect the output of the bias resistor R8 to the node of the voltage divider corresponding to the phase coil V N2, connect the output end of the bias resistor R9 to the corresponding part of the phase coil W Node N3 of the compressor. In this way, the controller can provide the offset voltage to the voltage divider corresponding to each phase coil according to the predetermined sequence.
透過上述控制器與控制方法的設計,藉由檢測各相線圈的反電動勢訊號,並在適當時機點提供偏移電壓予相應的分壓器之節點上,能夠有效地補償換相落後或延遲的問題,或是達到強制提前換相、相位超前控制的效果。請配合圖5至圖7所示,為線電壓與相電流在不同時基(timebase)的波形圖,於假想線L左側為進行補償偏移電壓前的線電壓與相電流波形,於假想線L右側為進行補償偏移電壓後的線電壓與相電流波形。由圖式可以看出,在補償偏移電壓之後,線電壓的波形明顯變得平均對稱,而相電流的突波也獲得有效下降。 Through the design of the above controller and control method, by detecting the back electromotive force signal of each phase coil, and providing the offset voltage to the corresponding voltage divider node at the appropriate time point, it can effectively compensate the lag or delay of commutation Problems, or to achieve the effect of forced early commutation, phase advance control. Please refer to Figures 5 to 7 for waveforms of line voltage and phase current at different timebases. On the left side of imaginary line L is the waveform of line voltage and phase current before offset voltage compensation. On the imaginary line The right side of L is the line voltage and phase current waveform after offset voltage compensation. It can be seen from the figure that after the offset voltage is compensated, the waveform of the line voltage becomes obviously symmetrical, and the surge of the phase current also effectively decreases.
另外,於一實施例中,控制電路22在判斷要提供哪一節點N1,N2,N3偏移電壓的方式也可以是:當控制電路22測得其中一相線圈之反電動勢訊號開始上升時,提供一負值的偏移電壓至上一相序之相線圈所對應的該分壓器的該節點。例如,請配合圖8至圖9所示,當在區間60°~180°中,在完成上一相序0°~60°邏輯訊號控制之後,或者當偵測或預測得反電動勢訊號VM3開始上升時或者上升至預定閥值時,控制電路22可適時地控制電壓源V1提供一負值的偏移電壓給上一相序之相線圈U所對應之分壓器12之節點N1,以使節點N1的反電動勢訊號VM1準位下降,藉此,於區間60°~120°在比較器U1A比較節點N3之反電動勢訊號VM3與節點N1之反電動勢訊號VM1時,可使邏輯訊號HA提前轉換,達到提前換相的效果。另於區間120°~180°在比較器U1B比較節點N1之反電動勢訊號VM1與節點N2之反電動勢訊號VM3時,可使邏輯訊號HC提前轉換,達到提前換相的效果。
In addition, in one embodiment, the way for the
另外,當在區間180°~300°中,在完成上一相序120°~180°邏輯訊號控制之後,或者當測得反電動勢訊號VM2開始上升時或者上升至預定閥值時,控制電路22可適時地控制電壓源V3提供一負值的偏移電壓給上一相序之相線圈V所對應之分壓器12之節點N3,以使節點N3的反電動勢訊號VM3準位下降,藉此,於區間180°~240°在比較器U1C比較節點N2之反電動勢訊號VM2與節點N3之反電動勢訊號VM3時,可使邏輯訊號HB提前轉換,達到提前換相的效果。另於區間240°~300°在比較器U1A比較節點N3之反電動勢訊號VM3與節點N1之反電動勢訊號VM1時,可使邏輯訊號HA提前轉換,達到提前換相的效果。
In addition, when the logic signal control of the last phase sequence 120°~180° is completed in the interval 180°~300°, or when the measured back electromotive force signal VM2 starts to rise or rises to a predetermined threshold, the
另外,當在區間300°~60°中,在完成上一相序240°~300°邏輯訊號控制之後,或者當測得反電動勢訊號VM1開始上升時或上升至預定閥值時,控制電路22可適時地控制電壓源V2提供一負值的偏移電壓給上一相序之相線圈W所對應之分壓器12之節點N2,以使節點N2的反電動勢訊號VM2準位下降,藉此,於區間300°~360°在比較器U1B比較節點N1之反電動勢訊號VM1與節點N2之反電動勢訊號VM2時,可使邏輯訊號HC提前轉換,達到提前換相的效果。另於區間360°~60°在比較器U1C比較節點N3之反電動勢訊號VM3與節點N1之反電動勢訊號VM1時,可使邏輯訊號HB提前轉換,達到提前換相的效果。
In addition, when in the interval 300°~60°, after the completion of the previous phase sequence 240°~300° logic signal control, or when the measured back-EMF signal VM1 starts to rise or rises to a predetermined threshold, the
如此一來,同樣可達到使得邏輯訊號HC,HB,HA的相位提前,而能夠有效地補償換相落後或延遲的問題,或是達到強制提前換相、相位超前控制的效果。 In this way, the phases of the logic signals HC, HB, and HA can be advanced, which can effectively compensate the problem of backward or delayed commutation, or can achieve the effect of forced early commutation and phase advance control.
另外,請配合圖10所示,於一實施例中,所述控制器還包括有一補償電位調整電路,該補償電位調整電路包括有三個並聯的電阻R13,R14,R15,各該電阻R13,R14,R15的一端分別連接三相線圈的各該
端電壓M1,M2,M3,另一端連接至一中性點,例如連接至一虛擬的中性點N4,或者亦可直接連實際的中性點N,該控制電路22連接該中性點N4或N,該控制電路22基於中性點N4(或中性點N)的平均電壓數值對應調整所輸出之偏移電壓的數值大小,如此一來,便可根據無刷馬達的轉速或負載的不同,適應性地調整所要補償的偏移電壓,以獲得較佳的相位超前補償或是相位落後補償效果。
In addition, please refer to FIG. 10, in one embodiment, the controller further includes a compensation potential adjustment circuit, the compensation potential adjustment circuit includes three parallel resistors R13, R14, R15, each of the resistors R13, R14 , One end of R15 is connected to each of the three-phase coil
Terminal voltages M1, M2, M3, the other end is connected to a neutral point, for example to a virtual neutral point N4, or it can also be directly connected to the actual neutral point N, the
另外,於一實施例中,所述控制電路也可以量測端電壓處的反電動勢訊號作為判斷提供多少偏移電壓至哪一個分壓器的節點上。另外,於一實施例中,所述電壓源可以是由控制器提供,或者是由控制器控制一個或多個外部的電壓源輸出電能。以上所述僅為本發明較佳可行實施例而已,舉凡應用本發明說明書及申請專利範圍所為之等效變化,理應包含在本發明之專利範圍內。 In addition, in an embodiment, the control circuit may also measure the back electromotive force signal at the terminal voltage to determine how much offset voltage is provided to the node of which voltage divider. In addition, in an embodiment, the voltage source may be provided by a controller, or the controller controls one or more external voltage sources to output electrical energy. The above is only the preferred and feasible embodiments of the present invention, and any equivalent changes in applying the description of the present invention and the scope of patent application should be included in the patent scope of the present invention.
12:分壓器 12: Voltage divider
22:控制電路 22: control circuit
C1,C2,C3:濾波電容 C1, C2, C3: filter capacitor
HC,HB,HA:邏輯訊號 HC, HB, HA: logical signal
M1,M2,M3:端電壓 M1, M2, M3: terminal voltage
N1,N2,N3:節點 N1, N2, N3: Node
R1,R3,R5:第一電阻 R1, R3, R5: the first resistance
R2,R4,R6:第二電阻 R2, R4, R6: second resistance
R7,R8,R9:偏壓電阻 R7, R8, R9: bias resistor
U1A,U1B,U1C:比較器 U1A, U1B, U1C: comparator
VM1,VM2,VM3:反電動勢訊號 VM1, VM2, VM3: Back EMF signal
V1,V2,V3:電壓源 V1, V2, V3: voltage source
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107144992A TWI691160B (en) | 2018-12-13 | 2018-12-13 | Controller and control method of DC brushless motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107144992A TWI691160B (en) | 2018-12-13 | 2018-12-13 | Controller and control method of DC brushless motor |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI691160B true TWI691160B (en) | 2020-04-11 |
TW202023174A TW202023174A (en) | 2020-06-16 |
Family
ID=71134639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107144992A TWI691160B (en) | 2018-12-13 | 2018-12-13 | Controller and control method of DC brushless motor |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI691160B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11689124B2 (en) * | 2021-01-12 | 2023-06-27 | Snap-On Incorporated | Controlling brushless motor commutation |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7122980B2 (en) * | 2004-10-04 | 2006-10-17 | Matsushita Electric Industrial Co., Ltd. | Motor driving apparatus and motor driving method |
CN102577086A (en) * | 2009-10-08 | 2012-07-11 | 密克罗奇普技术公司 | Variable pulse width modulation for reduced zero-crossing granularity in sensorless brushless direct current motors |
TW201334396A (en) * | 2012-02-10 | 2013-08-16 | Univ Ishou | Sensorless commutation circuit and sensorless driving apparatus for a brushless motor |
WO2013148642A1 (en) * | 2012-03-26 | 2013-10-03 | Hella Corporate Center Usa, Inc. | Filter apparatus and method for brushless dc motors |
WO2016138415A1 (en) * | 2015-02-27 | 2016-09-01 | Microchip Technology Incorporated | Bldc adaptive zero crossing detection |
TW201720047A (en) * | 2015-11-26 | 2017-06-01 | 國立臺北科技大學 | Differential phase detection method of DC brushless motor back electromotive force capable of controlling the excitation timing and sequence of a DC brushless motor to thereby control the speed and torque output |
US9793841B2 (en) * | 2015-04-30 | 2017-10-17 | Semiconductor Components Industries, Llc | Sensor-less circuit and method for detecting a rotor position |
TWM581333U (en) * | 2018-12-13 | 2019-07-21 | 臻禾興業有限公司 | Controller for direct-current brushless motor |
-
2018
- 2018-12-13 TW TW107144992A patent/TWI691160B/en active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7122980B2 (en) * | 2004-10-04 | 2006-10-17 | Matsushita Electric Industrial Co., Ltd. | Motor driving apparatus and motor driving method |
CN102577086A (en) * | 2009-10-08 | 2012-07-11 | 密克罗奇普技术公司 | Variable pulse width modulation for reduced zero-crossing granularity in sensorless brushless direct current motors |
TW201334396A (en) * | 2012-02-10 | 2013-08-16 | Univ Ishou | Sensorless commutation circuit and sensorless driving apparatus for a brushless motor |
WO2013148642A1 (en) * | 2012-03-26 | 2013-10-03 | Hella Corporate Center Usa, Inc. | Filter apparatus and method for brushless dc motors |
WO2016138415A1 (en) * | 2015-02-27 | 2016-09-01 | Microchip Technology Incorporated | Bldc adaptive zero crossing detection |
US9793841B2 (en) * | 2015-04-30 | 2017-10-17 | Semiconductor Components Industries, Llc | Sensor-less circuit and method for detecting a rotor position |
TW201720047A (en) * | 2015-11-26 | 2017-06-01 | 國立臺北科技大學 | Differential phase detection method of DC brushless motor back electromotive force capable of controlling the excitation timing and sequence of a DC brushless motor to thereby control the speed and torque output |
TWM581333U (en) * | 2018-12-13 | 2019-07-21 | 臻禾興業有限公司 | Controller for direct-current brushless motor |
Also Published As
Publication number | Publication date |
---|---|
TW202023174A (en) | 2020-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113661648B (en) | Method for determining the position of a rotor of a brushless permanent magnet machine | |
US20150349673A1 (en) | System and method for induction motor speed estimation using a soft starter system | |
EP2876807B1 (en) | Phase current regulation in BLDC motors | |
JP5668947B2 (en) | Motor drive control device, motor drive control method, and motor using the same | |
CN109600079B (en) | Method of driving a brushless motor, corresponding device, motor | |
TWI571042B (en) | Motor drive device and motor drive method | |
CN106887978B (en) | Motor drive control device | |
TWI691160B (en) | Controller and control method of DC brushless motor | |
JP2014079031A (en) | Motor controller and refrigerator using the same | |
CN203289362U (en) | Control device for brushless motor | |
TWM581333U (en) | Controller for direct-current brushless motor | |
CN106803728B (en) | Zero-crossing detection circuit of direct-current brushless motor | |
KR102555790B1 (en) | How to Control a Brushless Permanent Magnet Motor | |
JP2014110753A (en) | Motor drive control device, motor drive control method, and motor using the same | |
TWI472146B (en) | Synchronous motor drive system | |
JP7058725B2 (en) | Motor control device | |
JP2002084777A (en) | Brushless motor control method and apparatus thereof | |
JP2012191728A (en) | Control device of motor | |
US10622926B1 (en) | Controller of DC brushless motor and control method thereof | |
WO2018141394A1 (en) | Household appliance with brushless dc motor sensorless control scheme | |
JP2001157459A (en) | Inverter device | |
JP6509683B2 (en) | Rotational position detection device and rotational position detection method | |
KR101414818B1 (en) | Method for driving brushless dc motor | |
KR20230142256A (en) | Apparatus for controlling motor, system for controlling motor and method for controlling motor | |
WO2024038351A1 (en) | A method of controlling a brushless permanent-magnet motor |