TWI690719B - 誤差校正系統及其方法 - Google Patents

誤差校正系統及其方法 Download PDF

Info

Publication number
TWI690719B
TWI690719B TW107138909A TW107138909A TWI690719B TW I690719 B TWI690719 B TW I690719B TW 107138909 A TW107138909 A TW 107138909A TW 107138909 A TW107138909 A TW 107138909A TW I690719 B TWI690719 B TW I690719B
Authority
TW
Taiwan
Prior art keywords
error correction
distance
detection device
target areas
signal
Prior art date
Application number
TW107138909A
Other languages
English (en)
Other versions
TW202018327A (zh
Inventor
魏守德
陳韋志
Original Assignee
大陸商光寶電子(廣州)有限公司
光寶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商光寶電子(廣州)有限公司, 光寶科技股份有限公司 filed Critical 大陸商光寶電子(廣州)有限公司
Priority to TW107138909A priority Critical patent/TWI690719B/zh
Application granted granted Critical
Publication of TWI690719B publication Critical patent/TWI690719B/zh
Publication of TW202018327A publication Critical patent/TW202018327A/zh

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一種基於飛行時間測距的誤差校正系統及其方法。誤差校正系統包括L形校正板與距離偵測裝置。L形校正板具有底板與連接的側板,其中底板上具有多個目標區。距離偵測裝置配置於拍攝位置上,包括:調變光發射器、調變光接收器與處理器。調變光發射器用以根據第一信號發射調變光,其中調變光斜向照射到底板。調變光接收器用以接收被這些目標區反射的調變光以產生感測信號。處理器耦接調變光接收器,根據感測信號產生擺動誤差校正曲線。

Description

誤差校正系統及其方法
本發明是有關於一種適於光學量測技術的誤差校正系統及其方法,且特別是有關於一種基於飛行時間測距的誤差校正系統及其方法。
隨著科技的發展,光學三維量測技術已逐漸成熟,其中飛行時間(Time of Flight,TOF)測距是目前一種常見的主動式深度感測技術。TOF測距技術是發出經調變過的調變光(例如紅外光),調變光遇物體後反射,再從被物體反射的調變光的反射時間差或相位差來換算被拍攝物體的距離,以產生深度資訊。
然而,TOF測距技術需考量到多種誤差校正,其中一種誤差來源是由於奇次諧波所帶來的週期性誤差,稱為擺動誤差(wiggling error)。常見的擺動誤差校正方法往往步驟繁瑣,因為擺動誤差會與物體的距離有關,因此量測過程可能需要較大的空間架設誤差校正系統或是針對不同的距離進行多次測量,費時又費力。因此如何提供一種簡便而有效的誤差校正方法也成為目前待解決的問題之一。
本發明提供一種基於飛行時間測距的誤差校正系統及其方法,其有助於降低量測次數以及系統體積,可簡化誤差校正過程。
本發明實施例的一種基於飛行時間測距的誤差校正系統,包括L形校正板與距離偵測裝置。L形校正板具有底板與連接的側板,其中底板上具有多個目標區。距離偵測裝置配置於拍攝位置上,包括:調變光發射器、調變光接收器與處理器。調變光發射器用以根據第一信號發射調變光,其中調變光斜向照射到底板。調變光接收器用以接收被這些目標區反射的調變光以產生感測信號。處理器耦接調變光接收器,根據感測信號產生擺動誤差校正曲線。
本發明實施例的一種基於飛行時間測距的誤差校正方法,適用於誤差校正系統,其中誤差校正系統包括L形校正板與距離偵測裝置,距離偵測裝置配置於拍攝位置,L形校正板包括底板與連接的側板。誤差校正方法包括:獲得L形校正板的底板上的多個目標區至拍攝位置的多個實際距離;通過距離偵測裝置發出調變光斜向照射底板,並且接收被這些目標區反射的調變光以產生感測信號;通過距離偵測裝置根據感測信號計算這些目標區的多個量測距離;以及通過距離偵測裝置比較這些量測距離與這些實際距離以產生擺動誤差校正曲線。
基於上述,本發明實施例的基於飛行時間測距的誤差校正系統與方法,距離偵測裝置發出調變光斜向照射L形校正板的底板並接收被底板上的多個目標區反射的調變光以產生感測信號,距離偵測裝置可以根據感測信號來計算到這些目標區的距離,進而一次性計算距離偵測裝置在這些不同距離上的擺動誤差。因此,本發明的實施例可以在有限的系統空間中一次就能得到對應不同距離的多筆校正資料,可大幅降低量測次數以快速的建立擺動誤差校正曲線。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
圖1是依照本發明的一實施例的一種基於飛行時間測距的誤差校正系統的方塊示意圖。請參照圖1,誤差校正系統10包括距離偵測裝置100與校正平面TA。距離偵測裝置100用以量測到校正平面TA的距離。距離偵測裝置100包括調變光發射器110、調變光接收器120、處理器130、信號處理單元140與記憶體150。
信號處理單元140耦接調變光發射器110與調變光接收器120。信號處理單元140用以提供第一信號MS給調變光發射器110。調變光發射器110根據第一信號MS發出調變光EM。調變光EM會被校正平面TA反射,被反射的調變光REM由調變光接收器120接收。信號處理單元140還會提供控制信號CS至調變光接收器120。調變光接收器120根據控制信號CS與被反射的調變光REM產生感測信號DS。處理器130從調變光接收器120接收感測信號DS,且根據感測信號DS來進行誤差校正或距離量測。
調變光發射器110例如是雷射二極體,調變光EM例如紅外光,但不以此為限。調變光接收器120例如為攝像裝置或一光源感應裝置。
以下將舉實施例詳細說明基於飛行時間測距的誤差校正系統與方法的實施方式。圖2A是依照本發明的一實施例的一種誤差校正系統的架構示意圖,請同時參考圖1及圖2A,誤差校正系統20包括距離偵測裝置100與L形校正板200。
在圖2A的實施例中,L形校正板200包括底板BB與連接底板BB的側板SB,其中底板BB上有多個目標區P1、P2、P3…PN。底板BB或側板SB可視為圖1中將調變光EM反射的校正平面TA。距離偵測裝置100配置在拍攝位置CP上,調變光發射器110根據第一信號MS發出調變光EM以照射L形校正板200,特別是斜向照射底板BB,例如光線R1照射目標區P1,光線R2照射目標區P2,以此類推。調變光接收器120用以接收被這些目標區P1~PN反射的調變光。處理器130耦接調變光接收器120,從調變光接收器120接收感測信號DS來產生擺動誤差校正曲線。
詳細來說,L形校正板200的底板BB配置X方向上,側板SB配置在Y方向上。底板BB是L形校正板200的長邊,側板SB是短邊,這些目標區P1~PN在X方向上配置在不同位置使得到調變光接收器120的距離不相同。在另一實施例中,L形校正板200的底板BB與側板SB可以不必垂直,兩者之間可以夾一銳角或一鈍角。本發明不限制校正板的形狀與長度。
特別說明的是,目標區P1~PN到調變光接收器120的距離以落在調變光接收器120的準焦範圍內為佳。舉例來說,當調變光接收器120的準焦範圍在30cm(公分)至無窮遠時,調變光接收器120與目標區P1之間的距離大於等於30cm。
距離偵測裝置100的拍攝位置CP是位於底板BB的上方(正Y方向)並且相對於側板SB(遠離側板SB的方向),如此一來,距離偵測裝置100所發出的調變光EM可以同時照射側板SB與底板BB。
圖2B是依照本發明的一實施例的一種底板的示意圖。請搭配圖2B參照圖2A,在圖2B的實施例中,底板BB為吸光面,而目標區P1~PN是預先標示在底板BB的反射區,底板BB上除了目標區P1~PN外的部分都是吸光區域AB。如此一來,只有照射到這些目標區P1~PN的光線R1~RN才會被反射並被調變光接收器120接收。在另一實施例中,底板BB也可以具有棋盤狀或其它圖案,以圖案上的特徵點作為目標區P1~PN,本發明並不限制目標區的實施樣式。
調變光發射器110所發出的調變光EM是根據第一信號MS而產生的調變光。例如,第一信號MS為脈衝信號,第一信號MS上升的邊緣對應調變光EM的觸發時間。信號處理單元140也會同時輸出控制信號CS給調變光接收器120,調變光接收器120根據控制信號CS與被反射的調變光REM來產生感測信號DS。
圖3A是依照本發明的一實施例的一種調變光接收器的電路示意圖,圖3B是依照本發明圖3A的實施例的信號波形示意圖。請繼續參照圖3A與圖3B,調變光接收器120包括光電感應器122、電容CA、電容CB、開關SW1與開關SW2。光電感應器122例如是光電二極體(photodiode)或具有感測被反射的調變光REM功能的其他元件。光電感應器122一端接收共同參考電壓,例如接地GND,另一端耦接開關SW1與開關SW2的其中一端。開關SW1的另一端通過節點NA耦接電容CA且受控於控制信號CS的反相信號CSB。開關SW2的另一端通過節點NB耦接電容CB且受控於控制信號CS。調變光接收器120輸出節點NA上的電壓(或電流)信號VA與節點NB上的電壓(或電流)信號VB作為感測信號DS。在另一實施例中,調變光接收器120也可以選擇輸出電壓信號VA與電壓信號VB的差值作為感測信號DS。
圖3A的實施例僅作為舉例說明,調變光接收器120的電路架構並不限於此。調變光接收器120可以具有多個光電感應器122,或是更多電容或開關。本領域具有通常知識者可依據通常知識與實際需求而做適當調整。
在圖3B的實施例中,當反相控制信號CSB為低準位(例如,邏輯0)時,開關SW1導通,此時控制信號CS會處於高準位(例如,邏輯1),開關SW2不導通。反之,當控制信號CS為低準位(例如,邏輯0)時,開關SW2導通,此時反相控制信號CSB處於高準位(例如,邏輯1),開關SW1不導通。另外,光電感應器122導通的時候就表示光電感應器120接收到被反射的調變光REM。當光電感應器122與開關SW1都導通時,電容CA進行放電(或充電),圖3B中的QA表示電容CA所改變的電荷量,節點NA上的電壓信號VA會相應地改變。當光電感應器122與開關SW2都導通時,電容CB進行放電(或充電),圖3B中的QB表示電容CB所改變的電荷量,節點NB上的電壓信號VB會相應地改變。通過電壓信號VA與電壓信號VB之間的差異,處理器130可以計算出控制信號CS與被反射的調變光REM之間的相位差,此相位差會對應調變光EM的飛行距離。
特別說明的是,在圖3B的實施例中,第一信號MS與控制信號CS同步,但信號處理單元140還可以讓第一信號MS與控制信號CS之間不同步。也就是說,可以使控制信號CS與第一信號MS之間具有參考相位。信號處理單元140會依據不同的參考相位將第一信號MS或控制信號CS的相位延遲或提前,使得第一信號MS與控制信號CS具有相位差。多個參考相位例如分別為45度、90度、135度、180度、225度、270度、315度與360度。在此,這些參考相位的間隔相等(但不限制),而這些參考相位會對應不同的飛行距離。本發明不限制參考相位的數目、大小或間距。舉例來說,信號處理單元140可以使控制信號CS的相位相較於第一信號MS的相位延遲或提前45度、90度、135度、180度、225度、270度、315度或360度。信號處理單元140也可以使第一信號MS的相位相較於控制信號CS的相位延遲或提前45度、90度、135度、180度、225度、270度、315度或360度。換句話說,信號處理單元140使第一信號MS與控制信號CS之間具有相位差,其中,相位差為多個參考相位的其中之一。
特別說明的是,由於第一信號MS與控制信號CS之間具有等於多個參考相位的其中之一的相位差,處理器130根據感測信號DS所計算出來的相位差,除了包括調變光EM在空間中行進跟通過平面而反射所產生的調變光REM之間的相位差外,還包括第一信號MS與控制信號CS之間的參考相位。誤差校正系統20通過在第一信號MS與控制信號CS之間加入參考相位的方式可在不增加系統空間的條件下等效增加調變光EM(或調變光REM)的飛行距離,實現縮小誤差校正系統體積的效果。
圖4是依照本發明的一實施例的一種參考相位與等效飛行距離的關係示意圖。舉例來說,在圖4的實施例中,這些參考相位為45度、90度、135度、180度、225度、270度、315度與360度。
當調變光EM的調變頻率是75M Hz時,表示一個週期內調變光EM的飛行距離是200cm(公分)。參考相位會對應不同的飛行距離。因此,每當第一信號MS與控制信號CS之間的相位差改變45度等效於飛行距離改變25cm(200cm除以8,飛行間距D為25cm)。例如,當第一信號MS與控制信號CS之間的相位差為90度等效於飛行距離增加50cm。以此類推,藉由第一信號MS與控制信號CS之間的相位差來等效增加調變光EM(或調變光REM)的飛行距離。
處理器130根據感測信號DS計算這些目標區P1~PN的多個量測距離,並比較這些量測距離與實際距離以產生擺動誤差校正曲線,其中實際距離是由一已校正距離偵測裝置(未顯示)所量測的這些目標區P1~PN到拍攝位置CP的距離。已校正距離偵測裝置是指已經經過誤差校正後的距離偵測裝置。
請搭配圖2A參照圖4,以拍攝位置CP與目標區P1的距離是20cm為例,當第一信號MS相較於控制信號CS被延遲45度(等效於增加飛行間距D(25cm)),相當於拍攝位置CP與目標區P1的距離增加25cm,參考圖4的點MP1所示。當第一信號MS相較於控制信號CS被延遲90度,相當於拍攝位置CP與目標區P1相距70cm(20cm加50cm),參考圖4的點MP2,以此類推到圖4的點MP3~MP8,其中點MP3~8分別表示距離為95、120、145、170、195、220cm。
值得一提的是這些目標區P1~PN的配置位置以使拍攝位置CP與目標區P1~PN的距離能平分飛行間距D為佳,進而讓誤差校正資料較均勻分布。因為通過改變第一信號MS與控制信號CS之間的相位差以達到等效增加飛行距離的功效,所以能在較短的系統長度內得到較長的飛行距離的誤差校正。如此一來,L形校正板200的底板BB的長度可以不需要長達200cm,實現縮小誤差校正系統體積的效果。
記憶體150耦接處理器130,用以儲存這些目標區P1~PN至拍攝位置CP的實際距離。記憶體150例如是任意型式的固定式或可移動式隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟或其它類似裝置、積體電路及其組合。記憶體150還記錄可由處理器130執行的多個指令,而處理器130可執行該些指令以完成上述的各種功能。
詳細而言,處理器130可以根據感測信號DS計算一相位差(或時間差)(例如,比較電壓信號VA與電壓信號VB的差異),以進一步計算量測距離,並且更進一步地將量測距離與實際距離比較以獲得多個第一誤差校正資料。例如,第一誤差校正資料是這些目標區P1~PN的量測距離與實際距離的誤差值。在本實施例中,距離偵測裝置100的使用一個參考相位的量測操作可以一次獲得代表不同遠近的多個目標區P1~PN的第一誤差校正資料。這些目標區P1~PN在所拍攝影像上的像素座標會不同,因此需額外考量到像素偏移誤差(phase offset)。特別說明的是,像素偏移誤差僅與成像平面上的位置有關,而與距離無關。
調變光接收器120會進行一預校正量測以建立查找表LT,查找表LT儲存在記憶體150中並且紀錄調變光接收器120所拍攝影像中的各像素座標與對應的像素偏移值。處理器130會從查找表LT獲得對應這些目標區P1~PN的像素偏移值以計算擺動誤差校正曲線。處理器130可以根據這些目標區P1~PN的像素偏移值以及第一誤差校正資料來計算擺動誤差校正曲線。
在另一實施例中,誤差校正系統20中的底板BB上也可以不需要另外設置目標區圖案,如圖2B的圓形反射區,而是由處理器130選擇像素座標來決定目標區。
在一實施例中,記憶體130的查找表除了儲存距離偵測裝置100的像素偏移值外,還另外儲存已校正距離偵測裝置的像素偏移值。記憶體130還儲存已校正距離偵測裝置跟距離偵測裝置100的相機參數。處理器130會根據相機參數、已校正距離偵測裝置的像素偏移值與距離偵測裝置100的像素偏移值進行座標轉換以決定要使用的目標區的座標。因此,距離偵測裝置100在拍攝底板BB或側板SB後,處理器130可以選擇使用拍攝影像中的哪幾個像素座標座作為目標區,並計算拍攝位置CP到目標區的距離。
圖5是依照本發明的另一實施例的一種誤差校正系統的架構示意圖。誤差校正系統40與圖2A的誤差校正系統20的實施方式相近,主要差別在於誤差校正系統40的L形校正板400還多一個吸光隔板DB。吸光隔板DB配置在底板BB與側板BS之間,用以吸收被這些目標區P1~PN第一次反射的調變光。通過設置吸光隔板DB可以降低因為被多次反射的調變光EM而產生的影響。
圖6是依照本發明的又一實施例的一種誤差校正系統的架構示意圖。誤差校正系統50與圖2A的誤差校正系統20的實施方式相近,主要差別在於L形校正板500的底板BB包括多個三角形元件T1、T2、T3…TN,目標區P1~PN分別位在這些三角形元件T1~TN的斜面上。三角形元件T1~TN的斜面相對於底板BB的延伸方向(X方向)具有傾斜角並且隨著目標區P1~PN的配置位置而具有不同的角度。三角形元件T1~TN的斜面用以降低調變光RM的入射角度。例如三角形元件T1可以讓光線R1呈現正向入射目標區P1的狀態,三角形元件T2可以讓光線R2呈現正向入射目標區P2的狀態,以此類推。
圖7是依照本發明的再一實施例的一種誤差校正系統的架構示意圖。圖7的實施例可適用於上述的實施例。誤差校正系統60的距離偵測裝置100所發出的調變光EM具有視野範圍FV(Field of View, FOV)。這些目標區P1~PN相對於調變光接收器120的最遠距離以及最短距離落在調變光接收器120的視野範圍內。側板SB也落在視野範圍內,也就是說調變光EM還照射到側板SB。調變光接收器120可以接收被側板SB反射的調變光。處理器130根據被側板SB反射的調變光產生驗證距離,並進一步與側板實際距離比較以驗證距離偵測裝置100的精確度。上述的側板實際距離是由已校正距離偵測裝置所量測的距離。對於如何量測到側板SB的距離,以及側板SB上的目標區的實施方式可參考上述實施例的說明,本領域具有通常知識者可從上述說明獲致足夠的教示與建議,在此不再加以贅述。
值得一提的是,本實施例的誤差校正系統60可以同時具有誤差校正以及驗證兩種功能。在計算出距離偵測裝置100的擺動誤差校正曲線後,距離偵測裝置100還可以進一步進行驗證動作,以確定距離偵測裝置100校正後的精確度。
圖8是依照本發明的一實施例的一種誤差校正方法的流程圖。圖8的誤差校正方法可適用於上述圖1至圖7的實施例。以下搭配圖2A元件說明誤差校正方法的流程。
在步驟S710中,獲得L形校正板200的底板BB上的多個目標區P1~PN至拍攝位置CP的多個實際距離。具體來說,可以通過一台已校正距離偵測裝置來獲得實際距離,已校正距離偵測裝置是指已經經過誤差校正後的距離偵測裝置。也可以透過其它方式來獲得實際距離,本發明不限制如何獲得實際距離的手段。這些實際距離會被儲存在距離偵測裝置的記憶體中。
在步驟S720中,由距離偵測裝置100發出調變光EM斜向照射L形校正板200(例如底板BB),並且接收被這些目標區P1~PN反射的調變光以根據控制信號CS產生感測信號DS。接著,在步驟S730中,由距離偵測裝置100根據感測信號DS計算這些目標區P1~PN的多個量測距離,在步驟S740中,比較這些量測距離與這些實際距離以產生擺動誤差校正曲線,其中這些量測距離是指這些目標區P1~PN至拍攝位置CP的距離。
本實施例的誤差校正方法的相關元件特徵以及具體實施方式,可從上述圖1~7實施例的說明獲致足夠的教示、建議以及實施說明,因此不再贅述。在另一實施例中,獲得實際距離與量測距離的順序可以交換,本發明並不限制。
綜上所述,本發明實施例的基於飛行時間測距的誤差校正系統與方法通過調變光斜向入射L形校正板的底板上的多個目標區,並根據感測信號DS產生擺動誤差校正參數,其中感測信號DS可以反應包括多個參考相位的飛行距離。藉由在同一個底板上設置多個對應不同距離的目標區來得到更多的誤差校正資料。因此,本發明的實施例的誤差校正系統與方法可以降低量測次數並且降低變動架構配置關係的機會,以快速方便地建立擺動誤差校正曲線。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
10、20、40、50、60:誤差校正系統
100:距離偵測裝置
110:調變光發射器
120:調變光接收器
122:光電感應器
130:處理器
140:信號處理單元
150:記憶體
200、400、500:L形校正板
AB:吸光區域
BB:底板
CA、CB:電容
CS:控制信號
CSB:反相控制信號
DS:感測信號
CP:拍攝位置
D:飛行間距
DB:吸光隔板
EM:調變光
FV:視野範圍
LT:查找表
MP1~MP8:點
MS:第一信號
NA、NB:節點
P1、P2、P3、PN:目標區
QA、QB:電荷量
REM:被反射的調變光
R1、R2、R3、RN:光線
SW1、SW2:開關
SB:側板
S710~S740:誤差校正方法的步驟
TA:校正平面
T1、T2、T3、TN:三角形元件
VA、VB:電壓信號
X、Y、Z:方向
圖1是依照本發明的一實施例的一種基於飛行時間測距的誤差校正系統的方塊示意圖。 圖2A是依照本發明的一實施例的一種誤差校正系統的架構示意圖。 圖2B是依照本發明的一實施例的一種底板的示意圖。 圖3A是依照本發明的一實施例的一種調變光接收器的電路示意圖。 圖3B是依照本發明圖3A的實施例的信號波形示意圖。 圖4是依照本發明的一實施例的一種參考相位與等效飛行距離的關係示意圖。 圖5是依照本發明的另一實施例的一種誤差校正系統的架構示意圖。 圖6是依照本發明的又一實施例的一種誤差校正系統的架構示意圖。 圖7是依照本發明的再一實施例的一種誤差校正系統的架構示意圖。 圖8是依照本發明的一實施例的一種誤差校正方法的流程圖。
20:誤差校正系統
100:距離偵測裝置
200:L形校正板
BB:底板
CP:拍攝位置
R1、R2、R3、RN:光線
P1、P2、P3、PN:目標區
SB:側板
X、Y、Z:方向

Claims (16)

  1. 一種基於飛行時間測距的誤差校正系統,包括:一L形校正板,包括一底板與連接的一側板,其中該底板上具有多個目標區,其中該些目標區為多個反射區,該底板為一吸光面;以及一距離偵測裝置,配置於一拍攝位置上,包括:一調變光發射器,用以根據一第一信號發射一調變光,其中該調變光斜向照射到該底板;一調變光接收器,用以接收被該些目標區反射的該調變光以產生一感測信號;以及一處理器,耦接該調變光接收器,根據該感測信號產生一擺動誤差校正曲線。
  2. 如申請專利範圍第1項所述的誤差校正系統,其中該距離偵測裝置還包括:一記憶體,耦接該處理器,用以儲存該些目標區至該拍攝位置的實際距離,其中,該處理器根據該感測信號計算該些目標區的多個量測距離,並比較該些量測距離與該些實際距離以產生該擺動誤差校正曲線。
  3. 如申請專利範圍第2項所述的誤差校正系統,其中該調變光接收器為一攝像裝置或一光源感應裝置,其中,該調變光接收器進行一預校正量測以建立一查找表,該查找表儲存在該記憶 體中並且紀錄該調變光接收器所拍攝一影像的像素座標所對應的像素偏移值,其中該處理器從該查找表獲得對應該些目標區的該些像素偏移值以產生該擺動誤差校正曲線。
  4. 如申請專利範圍第3項所述的誤差校正系統,其中該些實際距離是由一已校正距離偵測裝置所量測的該些目標區至該拍攝位置的距離。
  5. 如申請專利範圍第4項所述的誤差校正系統,其中該調變光還照射該側板,該處理器根據被該側板反射的該調變光產生一驗證距離,並進一步與該已校正距離偵測裝置所量測的一側板實際距離比較以驗證該距離偵測裝置的精確度。
  6. 如申請專利範圍第4項所述的誤差校正系統,其中該查找表還包括該已校正距離偵測裝置的多個像素偏移值,該處理器根據該已校正距離偵測裝置的該些像素偏移值與該距離偵測裝置的該些像素偏移值進行座標轉換以決定該些目標區。
  7. 如申請專利範圍第1項所述的誤差校正系統,其中該距離偵測裝置還包括:一信號處理單元,耦接該調變光發射器以提供該第一信號且耦接該調變光接收器以提供一控制信號,該信號處理單元使該第一信號與該控制信號具有一相位差,其中,該相位差為多個參考相位的其中之一,其中該調變光接收器根據該控制信號與被反射的該調變光產生該感測信號。
  8. 如申請專利範圍第1項所述的誤差校正系統,還包括:一吸光隔板,配置在該底板與該側板之間,用以吸收被該些目標區第一次反射的該調變光。
  9. 如申請專利範圍第1項所述的誤差校正系統,其中該底板上包括多個三角形元件,該些目標區分別位在該些三角形元件的斜面上,該些三角形元件的斜面用以降低該調變光的入射角度。
  10. 如申請專利範圍第1項所述的誤差校正系統,其中該調變光接收器或一光源感應裝置為一攝像裝置,該些目標區相對於該調變光接收器的一最遠距離以及一最短距離落在該調變光接收器的視野範圍內。
  11. 一種基於飛行時間測距的誤差校正方法,適用於一誤差校正系統,其中該誤差校正系統包括一L形校正板與一距離偵測裝置,該距離偵測裝置配置於一拍攝位置,該L形校正板包括一底板與連接的一側板,該誤差校正方法包括:獲得該L形校正板的該底板上的多個目標區至該拍攝位置的多個實際距離,其中該些目標區為多個反射區,該底板為一吸光面;通過該距離偵測裝置發出一調變光斜向照射該底板,並且接收被該些目標區反射的該調變光以產生一感測信號;通過該距離偵測裝置根據該感測信號計算該些目標區的多個量測距離;以及通過該距離偵測裝置比較該些量測距離與該些實際距離以產 生一擺動誤差校正曲線。
  12. 如申請專利範圍第11項所述的誤差校正方法,其中產生該擺動誤差校正曲線的步驟包括:對該距離偵測裝置進行一預校正量測以建立一查找表,其中該查找表紀錄該距離偵測裝置所拍攝一影像的像素座標所對應的像素偏移值;以及從該查找表獲得對應該些目標區的該些像素偏移值以產生該擺動誤差校正曲線。
  13. 如申請專利範圍第12項所述的誤差校正方法,還包括:通過一已校正距離偵測裝置量測該側板以產生一側板實際距離;該調變光還照射該側板;以及通過該距離偵測裝置根據被該側板反射的該調變光產生一驗證距離,並進一步與該側板實際距離比較以驗證該距離偵測裝置的精確度。
  14. 如申請專利範圍第12項所述的誤差校正方法,還包括:根據一已校正距離偵測裝置的多個像素偏移值與該距離偵測裝置的該些像素偏移值進行座標轉換以決定該些目標區。
  15. 如申請專利範圍第11項所述的誤差校正方法,還包括:該距離偵測裝置根據一第一信號發出該調變光;以及該第一信號與一控制信號具有一相位差,其中,該相位差為多個參考相位的其中之一, 其中該距離偵測裝置根據該控制信號與被反射的該調變光產生該感測信號。
  16. 如申請專利範圍第11項所述的誤差校正方法,還包括:通過配置在該底板與該側板之間的一吸光隔板吸收被該些目標區第一次反射的該調變光。
TW107138909A 2018-11-02 2018-11-02 誤差校正系統及其方法 TWI690719B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107138909A TWI690719B (zh) 2018-11-02 2018-11-02 誤差校正系統及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107138909A TWI690719B (zh) 2018-11-02 2018-11-02 誤差校正系統及其方法

Publications (2)

Publication Number Publication Date
TWI690719B true TWI690719B (zh) 2020-04-11
TW202018327A TW202018327A (zh) 2020-05-16

Family

ID=71134342

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107138909A TWI690719B (zh) 2018-11-02 2018-11-02 誤差校正系統及其方法

Country Status (1)

Country Link
TW (1) TWI690719B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200831866A (en) * 2006-10-18 2008-08-01 Matsushita Electric Works Ltd Spatial information detecting device
WO2014201076A1 (en) * 2013-06-14 2014-12-18 Microsoft Corporation Depth map correction using lookup tables
TW201625979A (zh) * 2014-11-12 2016-07-16 海特根微光學公司 用於距離量測及/或多維成像之光電模組
TW201830049A (zh) * 2016-12-07 2018-08-16 美商麥吉克艾公司 包含可調整焦距成像感測器的距離感測器
WO2018185083A2 (de) * 2017-04-04 2018-10-11 pmdtechnologies ag Lichtlaufzeitkamera

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200831866A (en) * 2006-10-18 2008-08-01 Matsushita Electric Works Ltd Spatial information detecting device
WO2014201076A1 (en) * 2013-06-14 2014-12-18 Microsoft Corporation Depth map correction using lookup tables
TW201625979A (zh) * 2014-11-12 2016-07-16 海特根微光學公司 用於距離量測及/或多維成像之光電模組
TW201830049A (zh) * 2016-12-07 2018-08-16 美商麥吉克艾公司 包含可調整焦距成像感測器的距離感測器
WO2018185083A2 (de) * 2017-04-04 2018-10-11 pmdtechnologies ag Lichtlaufzeitkamera

Also Published As

Publication number Publication date
TW202018327A (zh) 2020-05-16

Similar Documents

Publication Publication Date Title
KR102604902B1 (ko) 펄스형 빔들의 희소 어레이를 사용하는 깊이 감지
US20210181317A1 (en) Time-of-flight-based distance measurement system and method
WO2021008209A1 (zh) 深度测量装置及距离测量方法
US11536804B2 (en) Glare mitigation in LIDAR applications
US11675082B2 (en) Method and device for optical distance measurement
EP3308193B1 (en) Time-of-flight (tof) system calibration
US9453743B2 (en) Distance measuring apparatus
CN111045029B (zh) 一种融合的深度测量装置及测量方法
JP2020506400A (ja) レーザパワー較正および補正
US20080007709A1 (en) Method and system for fast calibration of three-dimensional (3D) sensors
WO2022183658A1 (zh) 光斑位置自适应搜索方法、时间飞行测距系统及测距方法
JP7109676B2 (ja) パルス位相シフトを利用した三次元距離測定カメラの非線形距離誤差補正方法
CN111025321A (zh) 一种可变焦的深度测量装置及测量方法
CN110780312A (zh) 一种可调距离测量系统及方法
CN116745646A (zh) 根据飞行时间测量和光斑图案测量的三维图像捕获
US20220364849A1 (en) Multi-sensor depth mapping
JP2020160044A (ja) 測距装置および測距方法
TWI690719B (zh) 誤差校正系統及其方法
JP2020008483A (ja) 撮像装置および撮像装置の制御方法
CN111147142B (zh) 误差校正系统及其方法
JP2021152524A (ja) 距離計測装置及び距離計測方法
JP6693757B2 (ja) 距離画像生成装置および方法
CN111025310A (zh) 误差校正系统及其方法
US20240345222A1 (en) Distance measuring apparatus and light emitting device for distance measurement
US20230048328A1 (en) Distance-measuring apparatus and distance-measuring method