TWI690631B - Reactive colloidal nanocrystals and nanocrystal composites - Google Patents

Reactive colloidal nanocrystals and nanocrystal composites Download PDF

Info

Publication number
TWI690631B
TWI690631B TW104125369A TW104125369A TWI690631B TW I690631 B TWI690631 B TW I690631B TW 104125369 A TW104125369 A TW 104125369A TW 104125369 A TW104125369 A TW 104125369A TW I690631 B TWI690631 B TW I690631B
Authority
TW
Taiwan
Prior art keywords
nanocrystals
karenzmt
mixture
reactive colloidal
item
Prior art date
Application number
TW104125369A
Other languages
Chinese (zh)
Other versions
TW201612369A (en
Inventor
凱莫 伊麗莎白 托勒斯
法德 薩爾海
喬瑟夫 雷德特 米納爾
馬丁尼斯 阿爾伯特 阿爾瑪莎
貝爾 米爾伊 莫爾勒
凱勒拉斯 佩斯
凱米勒 馬利
Original Assignee
德商漢高股份有限及兩合公司
德商漢高智慧財產控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商漢高股份有限及兩合公司, 德商漢高智慧財產控股公司 filed Critical 德商漢高股份有限及兩合公司
Publication of TW201612369A publication Critical patent/TW201612369A/en
Application granted granted Critical
Publication of TWI690631B publication Critical patent/TWI690631B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • C09K11/623Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/783Organic host/matrix, e.g. lipid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • Y10S977/896Chemical synthesis, e.g. chemical bonding or breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to reactive colloidal nanocrystal comprising a core comprising a metal or a semiconductive compound or a mixture thereof and at least one polythiol ligand, wherein said core is surrounded by at least one polythiol ligand. Reactive colloidal nanocrystals according to the present invention can be prepared with one pot synthesis and are ready to react directly with the polymer matrix and being crosslinked with the polymer matrix to form high quality and stable nanocrystal composites. Furthermore, the present invention relates to nanocrystal composite comprising nanocrystals according to the present invention and a polymer matrix.

Description

反應性膠狀奈米晶體及奈米晶體合成物 Reactive colloidal nanocrystals and nanocrystal composites

本發明係有關於一些反應性膠狀奈米晶體,其包含一包含一金屬或一半導體化合物或其混合物之核心與至少一聚硫醇配位基,其中該核心為至少一聚硫醇配位基所包圍。此外,本發明係有關於一些奈米晶體合成物。依據本發明,一些反應性膠狀奈米晶體能以單鍋合成法(one pot synthesis)製備,並且準備用來直接與該聚合物基材反應,以及與該聚合物基材交聯,以形成一些高品質且穩定之奈米晶體合成物。 The invention relates to some reactive colloidal nanocrystals, which comprise a core comprising a metal or a semiconductor compound or a mixture thereof and at least one polythiol coordination group, wherein the core is at least one polythiol coordination group Surrounded by the base. In addition, the present invention relates to some nanocrystalline compositions. According to the present invention, some reactive colloidal nanocrystals can be prepared by one pot synthesis and are prepared to directly react with the polymer substrate and crosslink with the polymer substrate to form Some high-quality and stable nanocrystalline composites.

將一些奈米晶體(NC)溶液與一聚合物溶液或一交聯調配物進行物理性混合,係一種使用於所屬技術領域中之通常方法,用來獲得NC-聚合物混合材料(hybrid materials)。已知最傳統之奈米晶體(NC)有機穩定配位基係由許多烷基鏈配位基(alkyl chain ligands),例如辛胺(octylamine)或三辛基氧化磷(tri-octylphosphine oxide)所組成。利用此策略,能避免該NC之表面受到化學腐蝕(chemical attacks),例如在聚合反應過程中,通常由一些自由基(radicals)所造成者。然而,光激發光量子產率(PL-QY)經常受一些奈米晶體因一些相分離過程(phase segregation processes)之結團(agglomeration)而減少。此外,因為相同問題,通常該NC含量係約0.1wt.%,以確保在該基材中分散良好。為了達成均勻分散,該NC含量程度成為一重要障礙,因為用來穩定該些粒子之疏水性外部配位基(辛胺(octylamine)或三辛基氧化磷 (tri-octylphosphine oxide)或十八烯酸(oleic acid))通常與很多常見聚合物基材不相容。 Physical mixing of some nanocrystalline (NC) solutions with a polymer solution or a cross-linking formulation is a common method used in the art to obtain NC-polymer hybrid materials . It is known that the most traditional nanocrystalline (NC) organic stable ligands are composed of many alkyl chain ligands, such as octylamine or tri-octylphosphine oxide. composition. With this strategy, the surface of the NC can be protected from chemical attacks, such as those caused by some radicals during the polymerization reaction. However, PL-QY is often reduced by agglomeration of some nanocrystals due to some phase segregation processes. In addition, because of the same problem, the NC content is usually about 0.1 wt.% to ensure good dispersion in the substrate. In order to achieve uniform dispersion, the degree of NC content becomes an important obstacle because the hydrophobic external ligands (octylamine or trioctylphosphine oxide) used to stabilize the particles (tri-octylphosphine oxide) or oleic acid is generally incompatible with many common polymer substrates.

為了讓該些奈米晶體能夠與各種聚合物基材更相容,以及獲得更均勻之分散,可將各種有機配位基與具有更多極性之基團(例如胺類(amines)、羧酸酯類(carboxylates)或硫醇類(thiols))交換。不過,此方法卻導致該奈米晶體表面之缺陷增加,其對許多最終性質(例如:光激發光(PL)與電激發光(EL))有不良影響。 In order to make these nanocrystals more compatible with various polymer substrates and obtain a more uniform dispersion, various organic ligands and groups with more polarities (such as amines, carboxylic acids) Ester (carboxylates) or thiols (thiols) exchange. However, this method leads to an increase in defects on the surface of the nanocrystal, which has an adverse effect on many final properties (eg, photo-excitation light (PL) and electro-excitation light (EL)).

另一種方法係在聚合物存在時,半導體奈米晶體之原位合成法(in-situ synthesis)。基本上,在此方法中,該製備程序被分成二不同步驟。在第一步驟中,將與該些奈米晶體有關之有機金屬前驅物,透過簡單混合,被引入一些聚合物基材中。在第二步驟中,在有(或沒有)一氣體或一硫族化合物溶液存在之情況下,NC前驅物與聚合物之混合物係被曝光於高溫下,因為該無限晶體之成長受該聚合物基材之限制,所以只能獲得一些奈米尺寸之半導體晶體,即具有平均2與4nm間大小之硒化鎘(CdSe)奈米晶體。在此原位合成法中,難以控制奈米晶體之大小與形狀,例如硒化鎘(CdSe)奈米晶體之大小在1至6nm之範圍內,而且該些奈米晶體之光激發光非常低。 Another method is in-situ synthesis of semiconductor nanocrystals in the presence of polymers. Basically, in this method, the preparation procedure is divided into two different steps. In the first step, the organometallic precursors associated with these nanocrystals are introduced into some polymer substrates by simple mixing. In the second step, in the presence (or absence) of a gas or a chalcogenide solution, the mixture of NC precursor and polymer is exposed to high temperature because the growth of the infinite crystal is affected by the polymer Due to the limitation of the substrate, only some nanometer-sized semiconductor crystals, namely cadmium selenide (CdSe) nanocrystals with an average size between 2 and 4 nm, can be obtained. In this in-situ synthesis method, it is difficult to control the size and shape of nanocrystals, for example, the size of cadmium selenide (CdSe) nanocrystals is in the range of 1 to 6 nm, and the light excitation light of these nanocrystals is very low .

然而,另一種方法係在半導體奈米晶體存在時之聚合反應。在此方法中,在半導體奈米晶體存在時,進行各種有機單體之直接聚合,以原位形成一些NC-聚合物混合材料。不過,運用此策略,使得化學腐蝕(例如:在許多聚合反應過程中,由許多自由基所造成)與在該聚合物中,許多奈米晶體之聚集(aggregation)成為在許多混合材料中,與光激發光之消光效應有關之主要原因。 However, another method is polymerization in the presence of semiconductor nanocrystals. In this method, in the presence of semiconductor nanocrystals, various organic monomers are directly polymerized to form some NC-polymer hybrid materials in situ. However, with this strategy, chemical corrosion (eg, caused by many free radicals in many polymerization processes) and the aggregation of many nanocrystals in this polymer become in many mixed materials, and The main reason for the extinction effect of light excitation light.

另一種合成奈米晶體之傳統方式,係使用一些疏水性穩定配位基(hydrophobic stabilizing ligands)來合成。不過,由於配位基與基材間之不相容(例如:極性-溶解性參數、物理-化學交互作用),使得在許多聚合物基材中,奈米晶體之分散很差,這對該所產生材料之各種最後性質,有不良影響。直到目前為止,為了克服此問題,已經有方法以更適合該聚合物基材之配位基來取代該些配位基。以此方式,在該些合成物中,奈米晶體之分散受到增強。 Another traditional way of synthesizing nanocrystals is to use some hydrophobic stabilizing ligands. However, due to the incompatibility between the ligand and the substrate (for example: polarity-solubility parameters, physical-chemical interaction), the dispersion of nanocrystals in many polymer substrates is very poor, which is The various final properties of the materials produced have an adverse effect. Until now, in order to overcome this problem, there have been methods to replace these ligands with ligands more suitable for the polymer substrate. In this way, in these compositions, the dispersion of nanocrystals is enhanced.

因此,仍需要高裝載且分散良好之奈米晶體合成物(NC-合成物),其能顯示出許多穩定與高發光性質。 Therefore, there is still a need for a highly loaded and well-dispersed nanocrystalline composition (NC-synthesis), which can exhibit many stable and highly luminescent properties.

本發明係有關於一反應性膠狀奈米晶體,其包含一包含一金屬或一半導體化合物或其混合物之核心與至少一聚硫醇配位基,其中該核心為至少一聚硫醇配位基所包圍。 The invention relates to a reactive colloidal nanocrystal, which comprises a core comprising a metal or a semiconductor compound or a mixture thereof and at least one polythiol coordination group, wherein the core is at least one polythiol coordination group Surrounded by the base.

此外,本發明係有關於一種製備各種本發明之反應性膠狀奈米晶體之程序。 In addition, the present invention relates to a procedure for preparing various reactive colloidal nanocrystals of the present invention.

本發明亦包含一奈米晶體合成物,其包含一些本發明之反應性膠狀奈米晶體與一聚合物基材,其中該些反應性膠狀奈米晶體係與該聚合物基材共價聯結。 The invention also includes a nanocrystalline composition comprising some reactive colloidal nanocrystals of the invention and a polymer substrate, wherein the reactive colloidal nanocrystal systems are covalent to the polymer substrate coupling.

此外,本發明係有關於一種製備各種本發明之奈米晶體合成物之程序。 In addition, the present invention relates to a procedure for preparing various nanocrystalline compositions of the present invention.

此外,本發明包含一產品,該產品包含一本發明之奈米晶體合成物,其中該產品係選自由一顯示裝置(display device)、一發光裝置 (light emitting device)、一光伏電池(photovoltaic cell)、一光偵測器(photodetector)、一能量轉換裝置(energy converter device)、一雷射(laser)、各種感測器(sensors)、一熱電裝置(thermoelectric device)、各種催化應用(catalytic applications)、各種防偽油墨(security inks)與各種生醫應用(biomedical applications)所組成之群組。 In addition, the present invention includes a product including a nanocrystalline composition of the present invention, wherein the product is selected from a display device (display device), a light-emitting device (light emitting device), a photovoltaic cell (photovoltaic cell), a photodetector (photodetector), an energy converter device (energy converter device), a laser (laser), various sensors (sensors), a thermoelectric The group consisting of devices (thermoelectric device), various catalytic applications, various security inks and various biomedical applications.

最後,本發明包含使用本發明之奈米晶體合成物之用途,當 作一光激發光或電激發光之來源。 Finally, the present invention includes the use of the nanocrystalline composition of the present invention when As a source of light excitation light or electrical excitation light.

圖一說明本發明之反應性膠狀奈米晶體(NC)之結構 Figure 1 illustrates the structure of the reactive colloidal nanocrystals (NC) of the present invention

圖二說明本發明之該NC-合成物之結構 Figure 2 illustrates the structure of the NC-synthesis of the present invention

圖三說明數種商業性奈米晶體與本發明之反應性膠狀奈米晶體,在氮氣(N2)氣氛下,以10℃/min之TGA曲線 Figure 3 illustrates several commercial nanocrystals and the reactive colloidal nanocrystals of the present invention under a nitrogen (N 2 ) atmosphere at a TGA curve of 10°C/min

圖四說明在85℃下實例10之該NC-合成物之標準化QY之演變 Figure 4 illustrates the evolution of the standardized QY of the NC-synthesis of Example 10 at 85°C

圖五說明實例11,在三種不同光子輻射照度(photon irradiances)下,硫化鎘(CdS)-TEMPIC NC-合成物之標準化QY之演變 Figure 5 illustrates Example 11, the evolution of the standardized QY of cadmium sulfide (CdS)-TEMPIC NC-composite under three different photon irradiances

下列段落將更詳細地描述本發明。除了明確地指出不同,所述之每一觀點可與其他任一或一些觀點組合,尤其是,任一被指示為較佳或有利之性質可與其他任一或一些被指示為較佳或有利之性質組合。 The following paragraphs will describe the invention in more detail. In addition to explicitly pointing out differences, each of the stated points can be combined with any other point or points, and in particular, any property indicated as being preferred or advantageous can be combined with any other point or points as being preferred or advantageous The combination of properties.

在本發明之上下文中,所使用之術語應依據下述之定義來解釋,除非上下文指出不同。 In the context of the present invention, the terms used should be interpreted according to the following definitions, unless the context indicates a different one.

例如此處所使用之單數形「一」(a及an)與「該」(the),包含單數與複數之指示對象,除非上下文指出不同。 For example, the singular forms "a" (a and an) and "the" (the) used herein include the singular and plural indicating objects unless the context indicates different.

此處所使用之術語「包含」(comprising)、「包括」(comprises)、「由...組成」(comprised of)係與「包含」(including)、「包括」(includes)與「含有」(containing)、「含」(contains)同義,而且為包含之或無限制之,以及不排除一些額外之、未列舉之構件、元素或方法步驟。 The terms ``comprising'', ``comprises'', ``comprised of'' and ``including'', ``includes'' and ``contains'' as used herein "contains" is synonymous with "contains" and includes or is not limited, and does not exclude some additional, unlisted components, elements or method steps.

各種數值端點之列舉包括該些個別範圍內所納入之所有數字與分數,以及該些列舉之端點。 The enumeration of various numerical endpoints includes all numbers and fractions included in those individual ranges, as well as the endpoints of these enumerations.

此處所提及之所有百分比、部分、比率等係以重量為基礎,除非指示有所不同。 All percentages, parts, ratios, etc. mentioned here are based on weight, unless indicated otherwise.

當一數量、一濃度或其他數值或參數被表示成一範圍、一較佳之範圍或一較佳上限值與一較佳下限值之形式時,應將其理解為藉由將任一上限值或較佳值與任一下限值或較佳值組合而獲得之任何範圍,已經具體地揭露,不論所得之種種範圍是否於上下文中明確提及。 When a quantity, a concentration or other numerical value or parameter is expressed as a range, a preferred range or a preferred upper limit value and a preferred lower limit value, it should be understood as Any range obtained by combining the value or preferred value with any lower limit value or preferred value has been specifically disclosed, regardless of whether the resulting ranges are explicitly mentioned in the context.

在本說明書中所引用之全部文獻,藉此全面地引用而結合。 All documents cited in this specification are hereby incorporated by reference in their entirety.

除非定義不同,在揭露本發明所使用之所有術語包括技術與科學術語,具有本發明所屬技術領域中通常知識者能正常理解之意義。藉著進一步指導之方法,術語之定義包含使本發明之教示有較佳之體會。 Unless the definitions are different, all the terms used in the disclosure of the present invention include technical and scientific terms, and have the meaning that can be normally understood by those of ordinary knowledge in the technical field to which the present invention belongs. By way of further guidance, the definition of terms includes a better understanding of the teachings of the present invention.

本發明係有關於該些反應性膠狀奈米晶體(其係具有反應性)與其製備。此外,本發明係有關於該些NC-合成物與該些NC-合成物之製備,該製備係使用一些反應性膠狀奈米晶體,當作多官能交聯劑(multifunctional crosslinkers)。結果,一些為多官能配位基 所包圍之奈米晶體能直接與該聚合物基材交聯,如此能保留該些奈米晶體之固有性質(例如光激發光或電激發光)。以此方式,能輕易製備一些經良好分散與均勻之NC-合成物,並且接著使用於各種應用。 The present invention relates to these reactive colloidal nanocrystals (which are reactive) and their preparation. In addition, the present invention relates to the preparation of the NC-synthesis and the NC-synthesis. The preparation uses some reactive colloidal nanocrystals as multifunctional crosslinkers. As a result, some are multifunctional ligands The surrounded nanocrystals can be directly cross-linked with the polymer substrate, so that the inherent properties of the nanocrystals (such as photo-excited light or electro-excited light) can be retained. In this way, some well-dispersed and uniform NC-compositions can be easily prepared and then used in various applications.

有關於術語「奈米晶體」,係指一奈米尺度之晶體粒子,其可包含一核/殼結構,而且其中一核心包含一第一材料及一殼包含一第二材料,而且其中,該殼係設置於該核心之一表面之至少一部分上。 With respect to the term "nanocrystal", it refers to a nanometer-sized crystal particle, which may include a core/shell structure, and wherein a core includes a first material and a shell includes a second material, and wherein, the The shell is arranged on at least a part of a surface of the core.

有關於術語「配位基」,係指具有一或多種用來穩定奈米晶體之鏈之各種分子,各種配位基具有至少一鍵結至該奈米晶體之焦點(focal point),與至少一活性位置,其可與外在環境交互作用、與其他活性位置交聯或兩者皆可。 With regard to the term "ligand", it refers to various molecules having one or more chains used to stabilize the nanocrystal, each ligand has at least one focal point bonded to the nanocrystal, and at least An active site, which can interact with the external environment, cross-link with other active sites, or both.

利用此對策,因為有各種聚硫醇配位基、單體與寡聚體之結構多樣性,所以能製備一些具有可調整物理-化學性質之NC-合成物。此外,改變該些反應性膠狀奈米晶體之化學組成,能擴大其應用領域,例如光激發光、電激發光、磁性(magnetism)、熱電(thermoelectrics)或鐵電(ferroelectrics)。 With this countermeasure, because of the structural diversity of various polythiol ligands, monomers and oligomers, it is possible to prepare some NC-synthesis with adjustable physical-chemical properties. In addition, changing the chemical composition of these reactive colloidal nanocrystals can expand their application fields, such as photoexcitation light, electrical excitation light, magnetism, thermoelectrics or ferroelectrics.

本發明提供一種反應性膠狀奈米晶體,其包含一包含一金屬或一半導體化合物或其混合物之核心與至少一聚硫醇配位基,其中該核心係為至少一聚硫醇配位基所包圍。 The invention provides a reactive colloidal nanocrystal comprising a core comprising a metal or a semiconductor compound or a mixture thereof and at least one polythiol ligand, wherein the core is at least one polythiol ligand Surrounded by.

此外,本發明提供一種奈米晶體合成物,其包含一些本發明之反應性膠狀奈米晶體與一聚合物基材,其中該些反應性膠 狀奈米晶體係與該聚合物基材共價聯結。 In addition, the present invention provides a nanocrystal composition comprising some reactive colloidal nanocrystals of the present invention and a polymer substrate, wherein the reactive gums The nanocrystalline system is covalently linked to the polymer substrate.

有關於一些反應性膠狀奈米晶體一詞,係指溶液成長、奈米尺寸之無機粒子,其係由一配位基層所穩定,該配位基在其主鏈中,含有至少一官能基團,其能較佳地與該聚合物材料反應,形成一合成物結構。 The term "reactive colloidal nanocrystals" refers to solution-grown, nano-sized inorganic particles that are stabilized by a ligand layer that contains at least one functional group in its main chain Group, which can better react with the polymer material to form a composite structure.

本發明不需要在該些奈米晶體中進行配位基交換(ligand exchange),來獲得與該聚合物基材之良好相容性(compatibility)。由於本發明之該反應性膠狀奈米晶體之官能性(functionality),使其係與該聚合物基材化學交聯,而在該材料中產生一良好且均勻之分散。 The present invention does not require ligand exchange in the nanocrystals to obtain good compatibility with the polymer substrate. Due to the functionality of the reactive colloidal nanocrystal of the present invention, it is chemically cross-linked with the polymer substrate, and a good and uniform dispersion is produced in the material.

本發明所述之各種奈米晶體,不進行配位基交換程序,該程序已經在先前技術中廣為使用。因此,只有在合成過程中所存在之原始配位基,才能附著至該些奈米晶體。相較之下,那些進行配位基交換程序之奈米晶體,具有至少二種配位基:在合成過程中附著之配位基與在該配位基交換程序中被加入之配位基。研究顯示,進行配位基交換程序後,該原始配位基之一部分,依然附著於該奈米晶體表面,實例見耐托等人(Knittel et.al.)之論文(Knittel,F.et al.On the Characterization of the Surface Chemistry of Quantum Dots.Nano Lett.13,5075-5078(2013))。 The various nanocrystals described in the present invention do not undergo a ligand exchange procedure, which has been widely used in the prior art. Therefore, only the original ligands present in the synthesis process can be attached to these nanocrystals. In contrast, nanocrystals that undergo a ligand exchange procedure have at least two kinds of ligands: the ligand attached during the synthesis process and the ligand added during the ligand exchange procedure. Studies have shown that after the ligand exchange procedure, part of the original ligand is still attached to the surface of the nanocrystal. For examples, see the paper by Knittel et al. (Knittel, F. et al .On the Characterization of the Surface Chemistry of Quantum Dots. Nano Lett. 13, 5075-5078 (2013)).

以下將詳述本發明之該反應性膠狀奈米晶體之每一基本成分與該奈米晶體合成物。 Hereinafter, each basic component of the reactive colloidal nanocrystal of the present invention and the nanocrystal composition will be described in detail.

反應性膠狀奈米晶體 Reactive colloidal nanocrystals

本發明提供一種反應性膠狀奈米晶體,其包含一包含一金屬或一半導體化合物或其混合物之核心與至少一聚硫醇配位基,其中該核心為至少一聚硫醇配位基所包圍。 The invention provides a reactive colloidal nanocrystal comprising a core comprising a metal or a semiconductor compound or a mixture thereof and at least one polythiol ligand, wherein the core is composed of at least one polythiol ligand Surrounded.

包含一金屬或一半導體化合物之核心 Core containing a metal or a semiconductor compound

依據本發明,該反應性膠狀奈米晶體之核心包含各種金屬或半導體化合物或其混合物。一金屬或一半導體化合物係由選自週期表之一族或多種不同族之元素所組成。 According to the present invention, the core of the reactive colloidal nanocrystal contains various metal or semiconductor compounds or mixtures thereof. A metal or a semiconductor compound is composed of elements selected from one or more groups of the periodic table.

較佳地,該金屬或該半導體化合物係一選自第IV族之一或多種元素;選自第II與VI族之一或多種元素;選自第III與V族之一或多種元素;選自第IV與VI族之一或多種元素;選自第I與III與VI族之一或多種元素或其組合之組合,較佳地,該金屬或半導體化合物係一選自第I與III與VI族之一或多種元素之組合,而且更佳地,該金屬或半導體化合物係一鋅(Zn)、銦(In)、銅(Cu)、硫(S)與硒(Se)之一或多種元素之組合。 Preferably, the metal or the semiconductor compound is one or more elements selected from Group IV; one or more elements selected from Group II and VI; one or more elements selected from Group III and V; One or more elements from Groups IV and VI; one or more elements selected from Groups I and III and VI or combinations of combinations thereof, preferably, the metal or semiconductor compound is selected from Groups I and III and A combination of one or more elements of group VI, and more preferably, the metal or semiconductor compound is one or more of zinc (Zn), indium (In), copper (Cu), sulfur (S), and selenium (Se) The combination of elements.

可選擇地,該包含該金屬或該半導體化合物之核心,可進一步包含一摻雜物(dopant)。使用於本發明之摻雜物,其合適之各種實例為選自由錳(Mn)、銀(Ag)、鋅(Zn)、銪(Eu)、硫(S)、磷(P)、銅(Cu)、鈰(Ce)、鋱(Tb)、金(Au)、鉛(Pb)、銻(Sb)、錫(Sn)、鉈(Tl)與其混合物所組成之群組。 Alternatively, the core including the metal or the semiconductor compound may further include a dopant. The suitable examples of the dopant used in the present invention are selected from the group consisting of manganese (Mn), silver (Ag), zinc (Zn), europium (Eu), sulfur (S), phosphorus (P), and copper (Cu ), cerium (Ce), tungsten (Tb), gold (Au), lead (Pb), antimony (Sb), tin (Sn), thallium (Tl) and their mixtures.

在另一較佳實施例中,該包含一金屬或一半導體化合物之核心係包含銅之核心,其與選自第I族與/或第II族與/或第III族與/或第IV族與/或第V族與/或第VI族之一或多種化合物組合。 In another preferred embodiment, the core comprising a metal or a semiconductor compound is a core comprising copper, which is selected from Group I and/or Group II and/or Group III and/or Group IV Combined with one or more compounds of Group V and/or Group VI.

在另一較佳之實施例中,包含銅之核心係選自由硫化銦銅(CuInS)、硫硒化銦銅(CuInSeS)、硫硒化銦鋅銅(CuZnInSeS)、硫化銦鋅銅(CuZnInS)、銅:硫化銦鋅(Cu:ZnInS)、硫化銦銅/硫化鋅(CuInS/ZnS)、銅:硫化銦鋅/硫化鋅(Cu:ZnInS/ZnS)、硫硒化銦銅/硫化鋅(CuInSeS/ZnS)所組成之群組,較佳地,選自由硫化銦銅/硫化鋅(CuInS/ZnS)、硫硒化銦銅/硫化鋅(CuInSeS/ZnS)、銅:硫化銦鋅/硫化鋅(Cu:ZnInS/ZnS)所組成之群組。 In another preferred embodiment, the core including copper is selected from indium copper sulfide (CuInS), indium copper sulfide selenide (CuInSeS), indium zinc sulfide selenide copper (CuZnInSeS), indium zinc sulfide copper (CuZnInS), Copper: indium zinc sulfide (Cu: ZnInS), indium copper sulfide/zinc sulfide (CuInS/ZnS), copper: indium zinc sulfide/zinc sulfide (Cu: ZnInS/ZnS), indium copper sulfide selenide/zinc sulfide (CuInSeS/ ZnS), preferably selected from the group consisting of indium copper sulfide/zinc sulfide (CuInS/ZnS), indium copper sulfide selenide/zinc sulfide (CuInSeS/ZnS), copper: indium zinc sulfide/zinc sulfide (Cu : ZnInS/ZnS).

依據本發明,該些奈米晶體之核心具有一僅包含該核心或包含該核心與包圍該核心之一或多層殼之結構,每一層殼可具有包含一或多層之結構,意指每一層殼可具有單層或多層之結構。每一層可具有一單一組成或一合金或濃度梯度。 According to the present invention, the cores of the nanocrystals have a structure including only the core or the core and one or more shells surrounding the core. Each shell may have a structure including one or more layers, meaning each shell It can have single-layer or multi-layer structure. Each layer can have a single composition or an alloy or concentration gradient.

在一實施例中,依據本發明,該奈米晶體之核心具有一包含一核心與至少一單層或多層殼之結構。然而,在另一實施例中,依據本發明,該奈米晶體之核心具有一包含一核心與至少二單層與/或多層殼之結構。 In one embodiment, according to the present invention, the core of the nanocrystal has a structure including a core and at least a single-layer or multi-layer shell. However, in another embodiment, according to the present invention, the core of the nanocrystal has a structure including a core and at least two single-layer and/or multi-layer shells.

在一實施例中,依據本發明,該奈米晶體之核心具有包含一核心之結構,該核心包含銅與至少一單層或多層殼。然而,在另一實施例中,依據本發明,該奈米晶體之核心具有包含一核心之結構,該核心包含銅與至少二單層與/或多層殼。 In one embodiment, according to the present invention, the core of the nanocrystal has a structure including a core, the core includes copper and at least one single-layer or multi-layer shell. However, in another embodiment, according to the present invention, the core of the nanocrystal has a structure including a core, the core including copper and at least two single-layer and/or multi-layer shells.

較佳地,依據本發明,該些反應性膠狀奈米晶體之核心之尺寸係小於100nm,較佳地,小於50nm,更佳地,小於10nm,不過,較佳地,該核心係大於1nm。 Preferably, according to the invention, the core size of the reactive colloidal nanocrystals is less than 100 nm, preferably, less than 50 nm, and more preferably, less than 10 nm, but, preferably, the core is more than 1 nm .

較佳地,依據本發明,該反應性膠狀奈米晶體之核心形狀係球狀、棒狀或三角形。 Preferably, according to the present invention, the core shape of the reactive colloidal nanocrystal is spherical, rod or triangle.

聚硫醇配位基 Polythiol ligand

依據本發明,一種反應性膠狀奈米晶體包含至少一聚硫醇配位基。 According to the present invention, a reactive colloidal nanocrystal contains at least one polythiol ligand.

有關聚硫醇一詞,此處係指分子結構中具有多種硫醇基之配位基。此外,本發明中所使用之該些聚硫醇,具有多種功能(用來當作前驅物(precursor)、溶劑與安定劑(stabilizer)),因此可被視為各種多功能聚硫醇。換言之,使用於本發明之該些聚硫醇配位基,被用來當作各種多功能試劑。 With regard to the term polythiol, this refers to a ligand with multiple thiol groups in the molecular structure. In addition, the polythiols used in the present invention have multiple functions (used as precursors, solvents, and stabilizers), and thus can be regarded as various multifunctional polythiols. In other words, the polythiol ligands used in the present invention are used as various multifunctional reagents.

一種適合使用於本發明之聚硫醇配位基,其具有從2至20之官能性(functionality),較佳地,從2至10,而且更佳地,從2至8,意指該聚硫醇配位基在結構中具有從2至20個硫醇基團,較佳地,從2至10個,而且更佳地,從2至8個。 A polythiol ligand suitable for use in the present invention has a functionality of from 2 to 20, preferably from 2 to 10, and more preferably from 2 to 8, meaning the poly The thiol ligand has from 2 to 20 thiol groups in the structure, preferably, from 2 to 10, and more preferably, from 2 to 8.

依據本發明,一種反應性膠狀奈米晶體具有一結構,其中該核心為至少一聚硫醇配位基所包圍。圖一說明一般程度之此結構。 According to the present invention, a reactive colloidal nanocrystal has a structure in which the core is surrounded by at least one polythiol ligand. Figure 1 illustrates this structure in general.

使用於本發明中之合適聚硫醇配位基係選自由各種一級硫醇、二級硫醇與其混合物所組成之群組,較佳地,聚硫醇配位基係選自由三乙二醇二硫醇(triglycol dithiol)、1,8-辛烷二硫醇(1,8-octanedithiol)、季戊四醇 四(3-丁酸氫硫酯)(pentaerythritol tetrakis(3-mercaptobutylate))、季戊四醇 四-3-丙酸氫硫酯(pentaerythritol tetra-3-mercaptopropionate)、三羥甲基丙烷三(3-丙酸氫硫酯)(trimethylolpropane tri(3-mercaptopropionate))、參[2-(3-氫硫基丙醯基氧基)乙基]異三聚氰酸酯(tris[2-(3-mercaptopropionyloxy)ethyl]isocyanurate)、雙季戊四醇六 (3-丙酸氫硫酯)(dipentaerythritol hexakis(3-mercaptopropionate))、經乙氧基化-三羥甲基丙烷 三-3-丙酸氫硫酯(ethoxilated-trimethylolpropan tri-3-mercaptopropionate)、氫硫基功能之甲基烷基矽氧聚合物(mercapto functional methylalkyl silicone polymer)及其混合物所組成之群組,較佳地,選自由經四官能化之季戊四醇 四(3-丁酸氫硫酯)(pentaerythritol tetrakis(3-mercaptobutylate))、季戊四醇 四-3-丙酸氫硫酯(pentaerythritol tetra-3-mercaptopropionate)、參[2-(3-氫硫基丙醯基氧基)乙基]異三聚氰酸酯(tris[2-(3-mercaptopropionyloxy)ethyl]isocyanurate)及其混合物所組成之群組。 Suitable polythiol ligands used in the present invention are selected from the group consisting of various primary thiols, secondary thiols and mixtures thereof. Preferably, the polythiol ligands are selected from triethylene glycol Triglycol dithiol (1,8-octanedithiol), pentaerythritol tetrakis (3-mercaptobutylate), pentaerythritol tetra-3 -Pentaerythritol tetra-3-mercaptopropionate, trimethylolpropane tri(3-mercaptopropionate), ginseng (2-(3-hydrothio) Propyloxy)ethyl]isocyanurate (tris[2-(3-mercaptopropionyloxy)ethyl]isocyanurate), dipentaerythritol hexa (3-pentaerythritol hexakis (3-mercaptopropionate)), ethoxylated-trimethylolpropan tri-3-mercaptopropionate, Mercapto functional methylalkyl silicone polymer (mercapto functional methylalkyl silicone polymer) and mixtures thereof, preferably selected from tetrafunctionalized pentaerythritol tetrakis(3-butyrate thiosulfate) )(pentaerythritol tetrakis(3-mercaptobutylate)), pentaerythritol tetra-3-mercaptopropionate, ginseng[2-(3-hydrothiopropylpropionyloxy)ethyl]iso Tris[2-(3-mercaptopropionyloxy)ethyl]isocyanurate and its mixture.

例如,用於本發明中,修瓦但可(Showa Denko)之KarenzMTTM PE1、傑尼斯聚合物公司(Genesee Polymers Corporation)之GP-7200、艾斯西有機化學公司(SC ORGANIC CHEMICAL CO.)之PEMP與布魯諾洛克(BRUNO BOCK)之THIOCURE® TEMPIC為商業上可取得之聚硫醇配位基。 For example, used in the present invention, KarenzMTTM PE1 of Showa Denko, GP-7200 of Genesee Polymers Corporation, and PEMP of SC ORGANIC CHEMICAL CO. THIOCURE® TEMPIC with BRUNO BOCK is a commercially available polythiol ligand.

較佳地,依據本發明,許多反應性膠狀奈米晶體具有粒徑(例如最大粒徑)範圍從1nm至100nm,較佳地,從1nm至50nm,而且更佳地從1nm至10nm。 Preferably, according to the present invention, many reactive colloidal nanocrystals have a particle size (eg, maximum particle size) ranging from 1 nm to 100 nm, preferably, from 1 nm to 50 nm, and more preferably from 1 nm to 10 nm.

依據本發明,許多反應性膠狀奈米晶體包含有機材料與無機材料,其比率在2:1與75:1之間,較佳地,依據本發明,反應性膠狀奈米晶體,可包含以該反應性膠狀奈米晶體之總重為基準,重量從1%至99%之無機材料,較佳地,依據本發明,反應性膠狀奈米晶體,可包含以該反應性膠狀奈米晶體之總重為基準,重量從1%至99%之有機材料。 According to the present invention, many reactive colloidal nanocrystals include organic materials and inorganic materials in a ratio between 2:1 and 75:1. Preferably, according to the present invention, the reactive colloidal nanocrystals may include Based on the total weight of the reactive colloidal nanocrystals, the weight ranges from 1% to 99% of inorganic materials. Preferably, according to the present invention, the reactive colloidal nanocrystals may include the reactive colloidal nanocrystals. The total weight of nanocrystals is based on organic materials with a weight ranging from 1% to 99%.

各種奈米晶體合成物 Various nanocrystal composites

依據本發明,一種奈米晶體合成物(NC-合成物)(NC-composite)包含一些本發明之反應性膠狀奈米晶體與一聚合物基材,其中該些反應性膠狀奈米晶體係與該聚合物基材共價聯結。 According to the present invention, a NC-composite (NC-composite) comprises some reactive colloidal nanocrystals of the present invention and a polymer substrate, wherein the reactive colloidal nanocrystals The system is covalently linked to the polymer substrate.

各種適合之反應性膠狀奈米晶體與其組成已討論如前。 Various suitable reactive colloidal nanocrystals and their composition have been discussed as before.

依據本發明,一種NC-合成物包含一聚合物基材,其係由選自由丙烯酸酯類(acrylates)、甲基丙烯酸酯類(methacrylates)、聚酯丙烯酸酯類(polyester acrylates)、聚氨基甲酸酯丙烯酸酯類(polyurethane acrylates)、丙烯醯胺類(acrylamides)、甲基丙烯醯胺類(methacrylamides)、馬來醯亞胺類(maleimides)、雙馬來醯亞胺類(bismaleimides)、含單體與/或寡聚體之烯類(alkene containing monomers and/or oligomers)、含單體與/或寡聚體之炔類(alkyne containing monomers and/or oligomers)、含單體與/或寡聚體之乙烯醚類(vinylether containing monomers and/or oligomers)、含單體與/或寡聚體之環氧樹脂(epoxy containing monomers and/or oligomers)、含單體與/或寡聚體之環氧丙烷(oxetane containing monomers and/or oligomers)、含單體與/或寡聚體之氮丙啶(aziridine containing monomers and/or oligomers)、異氰酸酯類(isocyanates)、異硫氰酸酯類(isothiocyanates)與其混合物所組成群組之單體與/或寡聚體所形成,較佳地,該聚合物基材係由選自由丙烯酸酯類(acrylates)、聚酯丙烯酸酯類(polyester acrylates)、聚氨基甲酸酯丙烯酸酯類(polyurethane acrylates)與含單體與/或寡聚體之環氧樹脂(epoxy containing monomers and/or oligomers)與其混合物所組成群 組之單體(monomers)或/寡聚體(oligomers)所形成。 According to the present invention, an NC-composite includes a polymer substrate selected from the group consisting of acrylates, methacrylates, polyester acrylates, and polyurethane Ester acrylates (polyurethane acrylates), acrylic amides (acrylamides), methacrylamides (methacrylamides), maleimides (maleimides), bismaleimides (bismaleimides), containing Monomers and/or oligomers (alkene containing monomers and/or oligomers), monomers and/or oligomers (alkyne containing monomers and/or oligomers), monomers and/or oligomers Vinylether containing monomers and/or oligomers, epoxy containing monomers and/or oligomers, monomer and/or oligomer rings Oxypropane (oxetane containing monomers and/or oligomers), aziridine containing monomers and/or oligomers, isocyanates, isothiocyanates It is formed by the monomers and/or oligomers formed from the group formed with the mixture. Preferably, the polymer substrate is selected from the group consisting of acrylates, polyester acrylates, and polyamino Groups consisting of polyurethane acrylates and epoxy containing monomers and/or oligomers and their mixtures Group of monomers (monomers) or / oligomers (oligomers) formed.

例如,可用於本發明中,史達特莫(Sartomer)之SR238與CN117、海克旋(Hexion)之Epikote 828、優必依(UBE)之OXTP與紐系爾(NuSil)之PLY1-7500為商業上可獲得之各種單體與/或寡聚體。 For example, in the present invention, SR238 and CN117 of Sartomer, Epikote 828 of Hexion, OXTP of UBE and PLY1-7500 of NuSil are Various commercially available monomers and/or oligomers.

依據本發明,一種NC-合成物包含該合成物重量從0.01%至99.99%之反應性膠狀奈米晶體,較佳地,從10%至50%,而且更佳地,從20%至40%。 According to the present invention, an NC-composite comprises reactive colloidal nanocrystals with a weight of the composition of from 0.01% to 99.99%, preferably from 10% to 50%, and more preferably from 20% to 40 %.

依據本發明,一種NC-合成物包含該合成物重量從0.01至99.99%之聚合物基材,較佳地,從50%至90%,而且更佳地,從60%至80%。 According to the invention, an NC-composite comprises a polymer substrate with a weight of the composite of from 0.01 to 99.99%, preferably from 50% to 90%, and more preferably from 60% to 80%.

依據本發明,奈米晶體合成物在室溫下係固體。 According to the present invention, the nanocrystalline composition is solid at room temperature.

依據本發明,一種NC-合成物具有一些反應性膠狀奈米晶體,其係共價交聯至該聚合物基材中。圖二說明本發明之該NC-合成物之結構。以此結構,藉由該些反應性膠狀奈米晶體與該些單體/樹脂間之交聯反應,使聚集(aggregation)免於發生。奈米晶體為固體且為該網狀結構不可缺少之部分,此結構能維持該些反應性膠狀奈米晶體之光學性質。此外,由於該些反應性膠狀奈米晶體與該些單體/樹脂之高相容性,使得此結構能容許高裝載量(loadings)之達成。在該合成物之結構中,一些反應性膠狀奈米晶體係做為各種交聯劑。除了以上所述之外,該結構提供高熱安定性(thermal stability)與溼度穩定性(moisture stability)。該些反應性膠狀奈米晶體之化學結合(chemical incorporation)提供其更好之保護,以對抗氧化與/或其它降解程序(degradation processes)。 According to the invention, an NC-composite has some reactive colloidal nanocrystals which are covalently crosslinked into the polymer substrate. Figure 2 illustrates the structure of the NC-synthesis of the present invention. With this structure, the crosslinking reaction between the reactive colloidal nanocrystals and the monomers/resins prevents aggregation from occurring. Nanocrystals are solid and are an indispensable part of the network structure. This structure can maintain the optical properties of the reactive colloidal nanocrystals. In addition, due to the high compatibility of the reactive colloidal nanocrystals with the monomers/resins, this structure can allow high loadings to be achieved. In the structure of the composition, some reactive colloidal nanocrystal systems are used as various crosslinking agents. In addition to the above, this structure provides high thermal stability and moisture stability. The chemical incorporation of these reactive colloidal nanocrystals provides better protection against oxidation and/or other degradation processes.

該些反應性膠狀奈米晶體之光學性質被保留在本發明之該些NC-合成物中。依據本發明,該些NC-合成物之穩定性受到改善,已經發現,至少在一個月之期間中,在特殊條件(在80℃與80%相對濕度下,進行30天加速老化的研究,而且該些NC-合成物很穩定,並且監測光學性質,以確定其穩定性)下,該些NC-合成物相當穩定。在室溫、正常大氣壓下,也評估一些NC-合成物之穩定性。一些本發明之NC-合成物至少6個月很穩定。 The optical properties of the reactive colloidal nanocrystals are retained in the NC-synthesis of the present invention. According to the present invention, the stability of these NC-composites has been improved. It has been found that at least for a period of one month, under special conditions (at 80°C and 80% relative humidity, a 30-day accelerated aging study was conducted, and The NC-composites are very stable, and the optical properties are monitored to determine their stability). The NC-composites are quite stable. At room temperature and normal atmospheric pressure, the stability of some NC-composites was also evaluated. Some NC-composites of the present invention are stable for at least 6 months.

本發明亦有關於使用各種多官能試劑、單鍋合成法,來製備該些反應性膠狀奈米晶體。此多官能試劑係用來當作前驅物、溶劑、配位基安定劑(ligand stabilizer)與交聯劑。使用於本發明中,合適之多官能試劑已如上所述。結果,形成各種以多官能配位基包圍之反應性膠狀奈米晶體,其能與該能保留各種固有性質(例如:該些奈米晶體之光激發光(PL)或電激發光(EL))之聚合物基材直接交聯。 The invention also relates to the preparation of these reactive colloidal nanocrystals by using various multifunctional reagents and a single-pot synthesis method. This multifunctional reagent is used as a precursor, solvent, ligand stabilizer and cross-linking agent. For use in the present invention, suitable multifunctional reagents have been described above. As a result, a variety of reactive colloidal nanocrystals surrounded by multifunctional ligands are formed, which can retain various inherent properties (for example, the light excitation light (PL) or electroluminescence light (EL) of these nanocrystals )) The polymer substrate is directly cross-linked.

依據本發明,該些反應性膠狀奈米晶體能以數種將全部成分混合在一起之方式製備。 According to the invention, these reactive colloidal nanocrystals can be prepared in several ways by mixing all the ingredients together.

在一較佳實施例中,該些反應性膠狀奈米晶體之製備,其包含下列步驟:(1)混合至少一金屬或半導體化合物或其混合物與至少一聚硫醇配位基,以形成一反應性膠狀奈米晶體。 In a preferred embodiment, the preparation of the reactive colloidal nanocrystals includes the following steps: (1) mixing at least one metal or semiconductor compound or mixture thereof with at least one polythiol ligand to form A reactive colloidal nanocrystal.

在另一較佳實施例中,該些反應性膠狀奈米晶體之製備,其包含下列步驟:(1)混合具有選自第V族與/或第VI族之一或多種元素之至少一金屬或半導體化合物或其混合物與至少一聚硫醇配位基,以形成一反應性膠狀奈米晶體,較佳地,該金屬係選自由銅(Cu)、銀(Ag)、鋅(Zn)與銦(In)所組成之群組,以及選自由硒(Se)與 硫(S)所組成之群組之元素。 In another preferred embodiment, the preparation of the reactive colloidal nanocrystals includes the following steps: (1) mixing at least one element having one or more elements selected from Group V and/or Group VI A metal or semiconductor compound or mixture thereof and at least one polythiol ligand to form a reactive colloidal nanocrystal. Preferably, the metal is selected from copper (Cu), silver (Ag), zinc (Zn) ) And indium (In), and selected from the group consisting of selenium (Se) and Elements of the group consisting of sulfur (S).

在一較佳實施例中,一種製備本發明之反應性膠狀奈米晶體之程序,其包含下列步驟:(1)將銅與選自第I族與/或第II族與/或第III族與/或第IV族與/或第V族與/或第VI族之一或多種元素及至少一聚硫醇配位基混合,以形成一反應性膠狀奈米晶體,較佳地,該元素係選自由銦(In)、硒(Se)、硫(S)與鋅(Zn)所組成之群組。 In a preferred embodiment, a process for preparing the reactive colloidal nanocrystals of the present invention includes the following steps: (1) Copper is selected from Group I and/or Group II and/or Group III One or more elements of group and/or group IV and/or group V and/or group VI and at least one polythiol ligand are mixed to form a reactive colloidal nanocrystal, preferably, The element is selected from the group consisting of indium (In), selenium (Se), sulfur (S) and zinc (Zn).

本發明亦聚焦於各種奈米晶體合成物之製備,其使用本發明之各種反應性膠狀奈米晶體(其能反應而做為交聯劑)。以此方式,能輕易製備各種經良好分散、均勻且穩定之NC-合成物,因此使用於各種應用。此外,使用本發明之製備程序,在逐漸增加反應性膠狀奈米晶體之裝載量(loading)時,能增強該些NC-合成物之光學表現(optical performance)(PL-QY)。此外,本發明容許使用非常高反應性膠狀奈米晶體之裝載量,例如50wt.%與該聚合物基材共價鍵結。 The present invention also focuses on the preparation of various nanocrystal compositions, which use the various reactive colloidal nanocrystals of the present invention (which can react as crosslinking agents). In this way, it is possible to easily prepare various well-dispersed, uniform and stable NC-synthesis, and therefore used in various applications. In addition, the preparation process of the present invention can enhance the optical performance (PL-QY) of the NC-synthesis when gradually increasing the loading of reactive colloidal nanocrystals. In addition, the present invention allows the use of very high loadings of colloidal nanocrystals, for example 50 wt.% covalently bonded to the polymer substrate.

依據本發明,該些奈米晶體合成物能以數種將全部成分混合在一起之方式製備。 According to the invention, these nanocrystalline compositions can be prepared in several ways by mixing all the ingredients together.

在一實施例中,本發明之該些奈米晶體合成物之製備,其包含下列步驟:(1)加入本發明之反應性膠狀奈米晶體;(2)加入單體與/或寡聚體以形成該聚合物基材,並且混合;(3)以UV光與/或電子束與/或溫度固化。 In one embodiment, the preparation of the nanocrystal compositions of the present invention includes the following steps: (1) adding the reactive colloidal nanocrystals of the present invention; (2) adding monomers and/or oligomers To form the polymer substrate and mix; (3) curing with UV light and/or electron beam and/or temperature.

依據本發明,該些NC-合成物能以單鍋反應(one-pot reaction)製備,意指在該些反應性膠狀奈米晶體從其起始材料合成之後,在同一鍋中,該NC-合成物能在後續的反應中製備。 According to the present invention, the NC-compositions can be prepared in a one-pot reaction, meaning that after the reactive colloidal nanocrystals are synthesized from their starting materials, in the same pot, the NC -The composition can be prepared in a subsequent reaction.

在直接將該些疏水性奈米晶體嵌入該聚合物基材之情況中,本發明之製備程序包含一步驟,而非兩步驟或三步驟(當包含一配位基交換程序時)。 In the case of directly embedding the hydrophobic nanocrystals in the polymer substrate, the preparation procedure of the present invention includes one step instead of two or three steps (when a ligand exchange procedure is included).

依據本發明,該製備程序不包含任何額外之溶劑,且較佳地,不包含許多重金屬之使用。 According to the present invention, the preparation procedure does not include any additional solvents, and preferably does not include the use of many heavy metals.

依據本發明,只藉由改變該些反應性膠狀奈米晶體之核心之化學組成,可將該些NC-合成物應用於很大範圍中。 According to the present invention, by changing the chemical composition of the core of the reactive colloidal nanocrystals, the NC-synthesis can be applied to a wide range.

例如,硫化銦銅(CuInS)之反應性膠狀奈米晶體適用於各種顯示器之應用;硫化鉛(PbS)適用於各種太陽能電池;硫化錫鋅銅(CuZnSnS)適用於各種太陽能電池;硫化銻鐵銅(CuFeSbS)適用於各種熱電之應用,以及硫硒化鐵(FeSeS)適用於各種磁之應用。 For example, indium copper sulfide (CuInS) reactive colloidal nanocrystals are suitable for various display applications; lead sulfide (PbS) is suitable for various solar cells; tin zinc copper sulfide (CuZnSnS) is suitable for various solar cells; iron antimony sulfide Copper (CuFeSbS) is suitable for various thermoelectric applications, and iron sulfide selenide (FeSeS) is suitable for various magnetic applications.

本發明也包含一產品,其包含一本發明之奈米晶體合成物,該產品可選自由一顯示裝置(display device)、一發光裝置(light emitting device)、一光伏電池(photovoltaic cell)、一光偵測器(photodetector)、一能量轉換裝置(energy converter device)、一雷射(laser)、一感測器(sensor)、一熱電裝置(thermoelectric device)、一防偽油墨(security ink)與於催化或生醫應用(例如標定,成像)所組成之群組。在一些較佳之實施例中,許多產品係選自由顯示器(display)、照明裝置(lighting)與各種太陽能電池(solar cells)所組成之群組。 The invention also includes a product comprising a nanocrystal composition of the invention, which can be selected from a display device, a light emitting device, a photovoltaic cell, a A photodetector, an energy converter device, a laser, a sensor, a thermoelectric device, a security ink and a Catalytic or biomedical applications (eg calibration, imaging). In some preferred embodiments, many products are selected from the group consisting of display, lighting, and various solar cells.

本發明亦有關於本發明之奈米晶體合成物之用途,其係做為一光激發光或電激發光之來源。 The present invention also relates to the use of the nanocrystal composition of the present invention as a source of light excitation light or electrical excitation light.

各種實例 Various examples

實例1 Example 1

在一環氧樹脂-丙烯酸酯基材中之硫硒化銦銅(CuInSeS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis(3-mercaptobutylate),KarenzMTTM PE1)奈米晶體 Indium copper sulfide selenide (CuInSeS)-Pentaerythritol tetrakis (3-mercaptobutylate), KarenzMT TM PE1 nanocrystals in an epoxy resin-acrylate substrate

將0.65g硫硒化銦銅-KarenzMTTM PE1(CuInSeS-KarenzMTTM PE1)(26wt.%)、0.65g KarenzMTTM PE1(26wt.%)、0.35g雙酚A(bisphenol A)之二縮水甘油醚(diglycidylether)(14wt.%)、0.85g1,6-己二醇二丙烯酸酯(1,6-hexanediol diacrylate)(SR238)(34wt.%)、0.0025g三乙胺(triethylamine,Et3N)(0.1phr)與0.025g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(1phr)於調理攪拌機(conditioning mixer)中,以2000rpm混合2分鐘。接著,使用1ml塑膠滴管將該混合物注入鐵氟龍鑄模(Teflon mold)(10x2x25mm),並且藉曝光於強度70mW.cm2(UV-A劑量)之UV輻射30秒,來加以光固化。最後,該樣品在120℃下進行後固化(post-cured)45分鐘。可得一淡紅色發光半導體NC-合成物,PL-QY:23.4%。 0.65g indium copper sulfide selenide-KarenzMT TM PE1 (CuInSeS-KarenzMT TM PE1) (26wt.%), 0.65g KarenzMT TM PE1 (26wt.%), 0.35g bisphenol A (bisphenol A) diglycidyl ether (diglycidylether) (14wt.%), 0.85g 1,6-hexanediol diacrylate (1,6-hexanediol diacrylate) (SR238) (34wt.%), 0.0025g triethylamine (triethylamine, Et 3 N) ( 0.1phr) and 0.025g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) (1phr) Mix in a conditioning mixer at 2000 rpm for 2 minutes. Next, use a 1ml plastic dropper to inject the mixture into a Teflon mold (Teflon mold) (10x2x25mm), and by exposure to an intensity of 70mW. UV radiation of cm 2 (UV-A dose) for 30 seconds to be photo-cured. Finally, the sample was post-cured at 120°C for 45 minutes. A light red light-emitting semiconductor NC-composite is available, PL-QY: 23.4%.

各種官能化奈米晶體合成: Synthesis of various functionalized nanocrystals:

將1.5g碘化銅(CuI)、7.5g三醋酸銦(In(OAc)3)與3ml硒化二苯基膦(DPPSe)儲備溶液溶於30g KarenzMTTM PE1中,將該混合物在200℃下加熱5分鐘,並且接著將其冷卻至室溫(約25℃)。可得一些淡紅色反應性膠狀半導體奈米晶體(CuInSeS-KarenzMTTM PE1)。 Dissolve 1.5g of copper iodide (CuI), 7.5g of indium triacetate (In(OAc) 3 ) and 3ml of diphenylphosphine selenide (DPPSe) stock solution in 30g KarenzMT TM PE1, and the mixture at 200°C Heat for 5 minutes, and then cool to room temperature (about 25°C). Some light red reactive colloidal semiconductor nanocrystals (CuInSeS-KarenzMT PE1) are available.

實例2 Example 2

在一丙烯酸酯基材中之硫硒化銦銅/硫化鋅(CuInSeS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis(3-mercaptobutylate),KarenzMTTM PE1)奈米晶體 Indium sulfide selenide copper/zinc sulfide (CuInSeS/ZnS)-Pentaerythritol tetrakis (3-mercaptobutylate), KarenzMT TM PE1 nanocrystals in an acrylate substrate

將1.25g硫硒化銦銅/硫化鋅-KarenzMTTM PE1(CuInSeS/ZnS-KarenzMTTM PE1)(50wt.%)、1.25g環氧寡聚體丙烯酸酯(epoxy oligomer acrylate)(CN117)(50wt.%)與0.05g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用1ml塑膠滴管將該混合物注入鐵氟龍鑄模(10x2x25mm),並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。之後,將該樣品在120℃下進行後固化(post-cured)45分鐘。可得一淡紅色發光半導體NC-合成物,PL-QY:22.4%。 1.25g indium copper sulfide selenide/zinc sulfide-KarenzMT TM PE1 (CuInSeS/ZnS-KarenzMT TM PE1) (50wt.%) and 1.25g epoxy oligomer acrylate (CN117) (50wt. %) and 0.05g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr) in Mix in a blender at 2000 rpm for 2 minutes. Next, use a 1ml plastic dropper to inject the mixture into a Teflon mold (10x2x25mm), and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Thereafter, the sample was post-cured at 120°C for 45 minutes. A light red light-emitting semiconductor NC-composite is available, PL-QY: 22.4%.

各種官能化奈米晶體合成: Synthesis of various functionalized nanocrystals:

將1.5g碘化銅(CuI)、7.5g三醋酸銦(In(OAc)3)與3ml硒化二苯基膦(DPPSe)儲備溶液溶於30g KarenzMTTM PE1中,將該混合物在200℃下加熱5分鐘,並且接著將其冷卻至室溫。將此溶液1ml溶於4ml KarenzMTTM PE1中,並且在200℃下加熱。將0.25g硬脂酸鋅(ZnSt2)與0.4ml(三正辛基膦)硫醚(TOPS)儲備溶液之混合物溶於5.0g KarenzMTTM PE1中,用15分鐘,將該混合物注入該核心溶液中。可得一些淡紅色反應性膠狀半導體奈米晶體(CuInSeS/ZnS-KarenzMTTM PE1)。 Dissolve 1.5g of copper iodide (CuI), 7.5g of indium triacetate (In(OAc) 3 ) and 3ml of diphenylphosphine selenide (DPPSe) stock solution in 30g KarenzMT TM PE1, and the mixture at 200°C Heat for 5 minutes, and then cool to room temperature. 1 ml of this solution was dissolved in 4 ml KarenzMT PE1 and heated at 200°C. A mixture of 0.25g zinc stearate (ZnSt 2 ) and 0.4ml (tri-n-octylphosphine) sulfide (TOPS) stock solution was dissolved in 5.0g KarenzMT TM PE1, and the mixture was poured into the core solution over 15 minutes in. Some light red reactive colloidal semiconductor nanocrystals (CuInSeS/ZnS-KarenzMT TM PE1) are available.

實例3 Example 3

在一乙烯碳矽氧烷(Vinylcarbosiloxane)基材中之硫化銦銅/硫化鋅/硫化鋅-季戊四醇 四(3-丁酸氫硫酯)(KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide/zinc sulfide-pentaerythritol tetrakis(3-butyric acid thioester) (KarenzMT TM PE1) nanocrystals in a vinylylcarbosiloxane substrate

將0.5g硫化銦銅/硫化鋅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS/ZnS-KarenzMTTM PE1)(20wt.%)、2g乙烯碳矽氧烷樹脂 (vinylcarbosiloxane resin)(80wt.%)與0.05g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2500rpm混合6分鐘。接著,使用1ml塑膠滴管將該混合物注入鐵氟龍鑄模(10x2x25mm),並且藉曝光於強度120mW.cm2(UV-A劑量)UV輻射60秒,來加以光固化。最後,將該樣品在120℃下進行後固化(post-cured)45分鐘。可得一淡紅色發光半導體NC-合成物。 0.5g indium copper sulfide/zinc sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS/ZnS-KarenzMT TM PE1) (20wt.%), 2g vinylcarbosiloxane resin (80wt.%) and 0.05g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr) in a conditioning mixer And mix at 2500 rpm for 6 minutes. Next, use a 1ml plastic dropper to inject the mixture into a Teflon mold (10x2x25mm), and by exposure to an intensity of 120mW. cm 2 (UV-A dose) UV radiation for 60 seconds to be photo-cured. Finally, the sample was post-cured at 120°C for 45 minutes. A light red light-emitting semiconductor NC-composite is available.

各種官能化奈米晶體合成: Synthesis of various functionalized nanocrystals:

將0.24g碘化銅(CuI)、1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱10分鐘。將1.7g二水二醋酸鋅(Zn(OAc)2.2H2O)在25ml KarenzMTTM PE1中之混合物加到該核心溶液,而且該混合物在230℃下加熱45分鐘,接著將1.7g硬脂酸鋅(ZnSt2)在25ml KarenzMTTM PE1中之混合物加到該核/殼溶液,並且在230℃下加熱45分鐘,容許該混合物冷卻至室溫(RT)。將25g此NC混合物與25ml KarenzMTTM PE1混合,接著以4000rpm離心10分鐘。傾析後可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT PE1, and the mixture was heated at 230° C. for 10 minutes. The two 1.7g zinc acetate dihydrate (Zn (OAc) 2 .2H 2 O) was added to the core in a mixture of PE1 in 25ml KarenzMT TM, and the mixture was heated at 230 ℃ 45 minutes, and then 1.7g stearyl A mixture of zinc acid (ZnSt 2 ) in 25 ml KarenzMT PE1 was added to the core/shell solution and heated at 230° C. for 45 minutes, allowing the mixture to cool to room temperature (RT). 25 g of this NC mixture was mixed with 25 ml KarenzMT PE1, followed by centrifugation at 4000 rpm for 10 minutes. After decantation, some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS/ZnS-KarenzMT TM PE1) can be obtained.

實例4 Example 4

在一丙烯酸酯基材中之銅摻雜硫化銦鋅/硫化鋅/硫化鋅(Cu doped ZnInS/ZnS/ZnS)奈米晶體-參[2-(3-氫硫基丙醯基氧基)乙基]異三聚氰酸酯(tris[2-(3-mercaptopropionyloxy)ethyl]iso-cyanurate)(TEMPIC)奈米晶體 Copper-doped indium zinc sulfide/zinc sulfide/zinc sulfide (Cu doped ZnInS/ZnS/ZnS) nanocrystals in a acrylate substrate-ginseng [2-(3-hydrosulfanylpropionyloxy)ethyl Base]isocyanurate (tris[2-(3-mercaptopropionyloxy)ethyl]iso-cyanurate)(TEMPIC) nanocrystals

將0.30g銅:硫化銦鋅/硫化鋅/硫化鋅-TEMPIC(12wt.%)、0.95g TEMPIC(38wt.%)、1.25g環氧寡聚體丙烯酸酯(epoxy oligomer acrylate)(CN117)(50wt.%)與0.05g 2-羥基-2-甲基-1-苯基-丙-1- 酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用1ml塑膠滴管將該混合物注入鐵氟龍鑄模(10x2x25mm),並且藉曝光於強度70mW.cm2(UV-A劑量)之UV輻射90秒,來加以光固化。之後,將該樣品在120℃下進行後固化(post-cured)45分鐘。可得一淡綠色發光半導體NC-合成物,PL-QY:58.5%。 0.30g copper: indium zinc sulfide/zinc sulfide/zinc sulfide-TEMPIC (12wt.%), 0.95g TEMPIC (38wt.%), 1.25g epoxy oligomer acrylate (CN117) (50117 .%) with 0.05g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (Darocur 1173) (2phr) In a conditioning blender, mix at 2000 rpm for 2 minutes. Next, use a 1ml plastic dropper to inject the mixture into a Teflon mold (10x2x25mm), and by exposure to an intensity of 70mW. UV radiation of cm 2 (UV-A dose) for 90 seconds to be photo-cured. Thereafter, the sample was post-cured at 120°C for 45 minutes. A light green light-emitting semiconductor NC-composite is available, PL-QY: 58.5%.

各種官能化奈米晶體合成: Synthesis of various functionalized nanocrystals:

將0.01g碘化銅、0.3g二水二醋酸鋅(Zn(OAc)2.2H2O)、0.2g三醋酸銦(In(OAc)3)溶於10mlTEMPIC中,將該混合物在220℃下加熱10分鐘。將0.6g二水二醋酸鋅(Zn(OAc)2.2H2O)在5mlTEMPIC中之混合物加到該核心溶液,並且在240℃下,將該混合物加熱60分鐘。然後將0.6g硬脂酸鋅(ZnSt2)在5ml KarenzMTTM PE1中之混合物加到該核/殼溶液,並且在240℃下加熱30分鐘,可得淡綠色反應性膠狀半導體奈米晶體(Cu:ZnInS/ZnS/ZnS-TEMPIC)。 The 0.01g of copper iodide, 0.3 g of zinc acetate dihydrate two (Zn (OAc) 2 .2H 2 O), 0.2g three indium acetate (In (OAc) 3) was dissolved 10mlTEMPIC the mixture at 220 ℃ Heat for 10 minutes. The two 0.6g zinc acetate dihydrate (Zn (OAc) 2 .2H 2 O) in the 5mlTEMPIC of the core solution was added to the mixture, and heating the mixture at 240 deg.] C for 60 minutes. Then a mixture of 0.6 g of zinc stearate (ZnSt 2 ) in 5 ml KarenzMT TM PE1 was added to the core/shell solution and heated at 240° C. for 30 minutes to obtain a light green reactive colloidal semiconductor nanocrystal ( Cu: ZnInS/ZnS/ZnS-TEMPIC).

實例5 Example 5

在一環氧丙烷/酸酐基材中之硫硒化銦銅(CuInSeS)-季戊四醇 四(3-丁酸氫硫酯)(pentaerythritol tetrakis(3-mercaptobutylate),KarenzMTTM PE1)奈米晶體 Indium copper sulfide selenide (CuInSeS)-pentaerythritol tetrakis (3-mercaptobutylate), KarenzMT TM PE1 nanocrystals in a propylene oxide/anhydride substrate

藉由添加所需數量之1,2,4-苯三羧酸酐(1,2,4-benzenetricarboxylic anhydride,TMAn)(即1.3g,34wt.%)與0.8g KarenzMTTM-PE1-經官能化硫硒化銦銅(CuInSeS)奈米晶體(即20wt.%相對於TMAn/OXTP之數量),在一鋁杯中配製一混合物。然後將該混合物置於170℃,直到該酸酐完全溶入該些硫醇-奈米晶體中。在另一鋁杯中,置入1,4-苯二羧酸(1,4-benzenedicarboxylic acid)、雙((3-乙基-3-環 氧丙基)甲基)(bis((3-ethyl-3-oxetanyl)methyl),OXTP)(即2.5g,66wt.%)。由於其熔點係約30℃,因此在170℃,其立即變成液體。將OXTP加在該些TMAn/硫醇-奈米晶體混合物上,並且將該最後調配物(formulation)混合,接著在相同的溫度下固化4小時。可得一淡紅色發光半導體NC-合成物。 By adding the required amount of 1,2,4-benzenetricarboxylic anhydride (1,2,4-benzenetricarboxylic anhydride, TMAn) (ie 1.3g, 34wt.%) and 0.8g KarenzMT TM- PE1-functionalized sulfur A mixture of indium copper selenide (CuInSeS) nanocrystals (that is, 20 wt.% relative to the amount of TMAn/OXTP) was prepared in an aluminum cup. The mixture was then placed at 170°C until the anhydride completely dissolved in the thiol-nano crystals. In another aluminum cup, put 1,4-benzenedicarboxylic acid (1,4-benzenedicarboxylic acid), bis((3-ethyl-3-epoxypropyl)methyl)(bis((3- ethyl-3-oxetanyl)methyl), OXTP) (ie 2.5g, 66wt.%). Since its melting point is about 30°C, at 170°C, it immediately becomes a liquid. OXTP was added to these TMAn/thiol-nano crystal mixtures, and the final formulation was mixed, followed by curing at the same temperature for 4 hours. A light red light-emitting semiconductor NC-composite is available.

各種官能化奈米晶體合成: Synthesis of various functionalized nanocrystals:

將1.5g碘化銅(CuI)、7.5g三醋酸銦(In(OAc)3)與3ml硒化二苯基膦(DPPSe)儲備溶液溶於30g KarenzMTTM PE1中,將該混合物加熱至200℃、5分鐘,並且接著將其冷卻至室溫(約25℃)。可得一些淡紅色反應性膠狀半導體奈米晶體(CuInSeS-KarenzMTTM PE1)。 Dissolve 1.5 g of copper iodide (CuI), 7.5 g of indium triacetate (In(OAc) 3 ) and 3 ml of diphenylphosphonium selenide (DPPSe) stock solution in 30 g of KarenzMT TM PE1, and heat the mixture to 200°C , 5 minutes, and then cooled to room temperature (about 25°C). Some light red reactive colloidal semiconductor nanocrystals (CuInSeS-KarenzMT PE1) are available.

實例6 Example 6

在一矽氧樹脂基材中之硫化銦銅/硫化鋅/硫化鋅(CuInS/ZnS/ZnS)奈米晶體-氫硫基功能矽氧流體(Mercapto functional silicone fluid,GP-7200)奈米晶體 Indium copper sulfide/zinc sulfide/zinc sulfide (CuInS/ZnS/ZnS) nanocrystals in a silicone resin substrate-Mercapto functional silicone fluid (GP-7200) nanocrystals

將2g硫化銦銅/硫化鋅/硫化鋅-GP7200(CuInS/ZnS/ZnS-GP7200)(40wt.%)、1g經硫醇官能化二甲基矽氧共聚合物(吉納西聚合物公司之GP-367,20wt.%)、1g乙烯碳矽氧烷樹脂(20wt.%)、1g經乙烯基末端化聚二甲基矽氧樹脂(紐系爾(NuSil)之PLY1-7500,20wt.%)與0.1g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以3000rpm混合2分鐘。接著,使用1ml塑膠滴管將該混合物注入鐵氟龍鑄模(10x2x25mm),並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射30秒,來加以光固化。之後,將該樣品在120℃下進行後固化(post-cured)45分鐘。可得一橘色發光半導體NC-合成物。 2g indium copper sulfide/zinc sulfide/zinc sulfide-GP7200 (CuInS/ZnS/ZnS-GP7200) (40wt.%), 1g thiol-functionalized dimethylsilicone co-polymer (GP of Genesis Polymer Company) -367, 20wt.%), 1g ethylene-carbon silicone resin (20wt.%), 1g vinyl-terminated polydimethylsiloxane resin (PLY1-7500 from NuSil, 20wt.%) With 0.1g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr) in a conditioning mixer In, mix at 3000 rpm for 2 minutes. Next, use a 1ml plastic dropper to inject the mixture into a Teflon mold (10x2x25mm), and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 30 seconds to be photo-cured. Thereafter, the sample was post-cured at 120°C for 45 minutes. An orange light-emitting semiconductor NC-composite is available.

各種官能化奈米晶體合成: Synthesis of various functionalized nanocrystals:

將0.24g碘化銅(CuI)、1.46g三醋酸銦(In(OAc)3)溶於50mlGP-7200(吉納西聚合物公司之氫硫基功能甲基烷基矽氧聚合物)中,將該混合物加熱直到230℃,10分鐘。將1.7g二水二醋酸鋅(Zn(OAc)2.2H2O)在25mlGP-7200中之混合物加到該核心溶液,並且在230℃下,將該混合物加熱45分鐘。接著將1.7g硬脂酸鋅(ZnSt2)在25mlGP-7200中之混合物加到該核/殼溶液,並且在230℃下加熱45分鐘。容許該混合物冷卻至室溫(RT),將此NC混合物25g與25mlGP-7200混合,接著以4000rpm離心10分鐘,傾析後,可得一些橘色反應性膠狀半導體奈米晶體(CuInS/ZnS/ZnS-GP7200)。 Dissolve 0.24g of copper iodide (CuI) and 1.46g of indium triacetate (In(OAc) 3 ) in 50ml GP-7200 (Genesix polymer company hydrogen sulfide functional methyl alkyl siloxane polymer), The mixture was heated up to 230°C for 10 minutes. The two 1.7g zinc acetate dihydrate (Zn (OAc) 2 .2H 2 O) was added to the solution in the core mixture of 25mlGP-7200, and was heated at 230 deg.] C the mixture for 45 minutes. Next, a mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml of GP-7200 was added to the core/shell solution, and heated at 230° C. for 45 minutes. Allow the mixture to cool to room temperature (RT), mix 25g of this NC mixture with 25ml GP-7200, and then centrifuge at 4000 rpm for 10 minutes. After decantation, some orange reactive colloidal semiconductor nanocrystals (CuInS/ZnS /ZnS-GP7200).

實例7 Example 7

利用先前技術中已揭露和使用之方法與本發明之製備方法製備各種NC-合成物間之比較研究,評估該NC濃度對各種NC-合成物之光學表現之影響。 Using the methods disclosed and used in the prior art and the preparation method of the present invention to prepare various NC-composites, a comparative study was conducted to evaluate the effect of the NC concentration on the optical performance of various NC-composites.

以各種硒化鎘/硫化鎘奈米棒(CdSe/CdS nanorods)進入一經交聯丙烯酸酯或三醋酸纖維素基材為基礎之各種NC-合成物之製備,已公開於貝爾斯登J.Nanotechnol.2010,1,94-100(Belstein J.Nanotechnol.2010,1,94-100)。此方法已經用來製備各種比較NC實例。使用丙烯酸酯基材,在光學表現方面,可觀察到最佳結果。在表1中,可觀察到NC濃度對光激發光量子產率(PL-QY)之影響。 The preparation of various NC-synthesis based on various cadmium selenide/cadmium sulfide nanorods (CdSe/CdS nanorods) into a cross-linked acrylate or cellulose triacetate substrate has been disclosed in Bear Stearns J. Nanotechnol .2010,1,94-100 (Belstein J. Nanotechnol. 2010,1,94-100). This method has been used to prepare various comparative NC examples. Using acrylic substrates, the best results can be observed in terms of optical performance. In Table 1, the effect of NC concentration on photo-excited photon yield (PL-QY) can be observed.

Figure 104125369-A0101-12-0022-1
Figure 104125369-A0101-12-0023-2
a:在室溫(R.T.)下,使用濱松(Hamamatsu)絕對PL量子產率測量系統C9920-02來測量PL-QY,以及使用395nm之激發波長。
Figure 104125369-A0101-12-0022-1
Figure 104125369-A0101-12-0023-2
a: At room temperature (RT), Hamamatsu absolute PL quantum yield measurement system C9920-02 was used to measure PL-QY, and an excitation wavelength of 395 nm was used.

許多已經在使用之鎘系奈米晶體,以其高發光特性與高毒性而著名。這些奈米晶體係以疏水性配位基包圍,故該些奈米晶體被當做添加劑嵌入該聚合物基材中。在該些奈米晶體與該聚合物基材間,沒有任何化學反應。由表1可知,增加奈米晶體之百分率,會降低PL-QY。這個特性之解釋係由於該些被放射光子被其他奈米晶體再吸收的緣故,而造成PL消光效應(quenching)。 Many cadmium-based nanocrystals already in use are known for their high luminescence properties and high toxicity. These nanocrystal systems are surrounded by hydrophobic ligands, so the nanocrystals are embedded in the polymer substrate as additives. There is no chemical reaction between the nanocrystals and the polymer substrate. It can be seen from Table 1 that increasing the percentage of nanocrystals will decrease PL-QY. The explanation for this characteristic is due to the fact that the emitted photons are reabsorbed by other nanocrystals, which causes PL quenching.

申請人重新建造一相似系統,來確認此特性。在此例中,商業性、經疏水性覆蓋之硒化鎘/硫化鋅(CdSe/ZnS)奈米晶體被引進一經光交聯聚酯丙烯酸酯基材。如在前述之系統中一般,該些奈米晶體並非共價聯結至該聚合物基材。藉由增加該NC裝載量,所得該PL-QY資料,如表2中所示。在此例中,低奈米晶體百分率顯示出很低之輻射,其無法為實驗中所使用之儀器所偵測。僅有最高濃度之材料才能夠測量,不過,該PL-QY非常低(即0.4%)。考量以鎘(Cd)為基礎之該些奈米晶體,在液體中之該初始PL-QY相當高(例如30%)。不過,一旦該些奈米晶體被引進該合成物,會幾乎喪失該些奈米晶體之發光性質。此外,由於該些疏水性奈米晶體與該些丙烯酸酯系單體間之不相容,該裝載量不能被增加高於0.05wt.%。 The applicant rebuilt a similar system to confirm this feature. In this example, commercially available, hydrophobically coated cadmium selenide/zinc sulfide (CdSe/ZnS) nanocrystals were introduced into a photo-crosslinked polyester acrylate substrate. As in the aforementioned system, the nanocrystals are not covalently bonded to the polymer substrate. By increasing the NC load, the PL-QY data is obtained as shown in Table 2. In this example, the low nanocrystal percentage shows very low radiation, which cannot be detected by the instruments used in the experiment. Only the highest concentration material can be measured, however, the PL-QY is very low (ie 0.4%). Considering the nanocrystals based on cadmium (Cd), the initial PL-QY in the liquid is quite high (for example, 30%). However, once the nanocrystals are introduced into the composition, the luminescent properties of the nanocrystals will be almost lost. In addition, due to the incompatibility between the hydrophobic nanocrystals and the acrylate-based monomers, the loading cannot be increased above 0.05 wt.%.

表2:一些聚酯丙烯酸酯系合成物之PL-QY(其使用以疏

Figure 104125369-A0101-12-0024-3
a:PL-QY之測量係在室溫下,以佳兵-永(Jobin-Yvon)堀場(Horiba)Fluorolog 3量測,其配備一積分球(integrating sphere),並且使用460nm之激發波長。 Table 2: PL-QY of some polyester acrylate-based compounds
Figure 104125369-A0101-12-0024-3
a: The measurement of PL-QY is at room temperature, measured with the Jobin-Yvon Horiba Fluorolog 3, which is equipped with an integrating sphere and uses an excitation wavelength of 460 nm.

依據本發明,使用該單鍋合成法來製備各種無鎘(Cd-free)反應性膠狀奈米晶體,該特性係完全不同。可觀察到增加該奈米晶體百分率,可增加該PL-QY(見表3)。在37.5wt.%可達成最大值。以前從未觀察到此趨勢,而且有幾個因素可以加以解釋:該NC-配位基與該用來交聯之單體之優良相容性;在該經交聯基材裡,該些奈米晶體之化學結合(chemical incorporation)與在該合成物裡,該些奈米晶體之優良分散。 According to the present invention, the single-pot synthesis method is used to prepare various cadmium-free (Cd-free) reactive colloidal nanocrystals, which have completely different characteristics. It can be observed that increasing the percentage of nanocrystals can increase the PL-QY (see Table 3). The maximum value can be reached at 37.5wt.%. This trend has never been observed before, and several factors can be explained: the excellent compatibility of the NC-ligand with the monomer used for crosslinking; in the crosslinked substrate, the The chemical incorporation of rice crystals and the excellent dispersion of the nanocrystals in the composition.

Figure 104125369-A0101-12-0024-4
a:PL-QY之測量係在室溫(R.T.)下,使用濱松(Hamamatsu)絕對PL量子產率測量系統C9920-02,以及使用460nm作為激發波長。
Figure 104125369-A0101-12-0024-4
a: The measurement of PL-QY is at room temperature (RT), using Hamamatsu absolute PL quantum yield measurement system C9920-02, and using 460 nm as the excitation wavelength.

實例8 Example 8

比較一些奈米晶體(各種商業性奈米晶體對各種本發明之反應性膠狀奈米晶體)之與TGA有關之熱安定性資料。 Compare the thermal stability data of some nanocrystals (various commercial nanocrystals to various reactive colloidal nanocrystals of the present invention) related to TGA.

圖三說明商業性奈米晶體與本發明之反應性膠狀奈米晶體在氮氣(N2)氣氛下、以10℃/min之TGA曲線。由圖三可看出,本發明之該些銅系反應性膠狀奈米晶體顯示出最高熱安定性,其起始降解溫度高於200℃。相較之下,該些商業性銅系奈米晶體之熱安定性略低(即188℃),然而,其表現依然優於該些商業性鎘系奈米晶體(其表現出最低降解起始溫度,低於100℃)。 Figure 3 illustrates the TGA curve of a commercial nanocrystal and the reactive colloidal nanocrystal of the present invention under a nitrogen (N 2 ) atmosphere at 10°C/min. It can be seen from FIG. 3 that the copper-based reactive colloidal nanocrystals of the present invention show the highest thermal stability, and their initial degradation temperature is higher than 200°C. In comparison, the thermal stability of these commercial copper-based nanocrystals is slightly lower (ie, 188°C), however, their performance is still better than that of these commercial cadmium-based nanocrystals (which exhibit the lowest degradation initiation) Temperature, below 100°C).

Figure 104125369-A0101-12-0025-5
a:在失重2wt.%時擷取溫度
Figure 104125369-A0101-12-0025-5
a: Retrieve the temperature when the weight loss is 2wt.%

硒化鎘/硫化鋅奈米晶體(以CAN GmbH之商品名稱:CANdots系列A(CANdots Series A)),以及EMFUTURE之硫化銦銅鋅/硫化鋅(ZnCuInS/ZnS)奈米晶體。 Cadmium selenide/zinc sulfide nanocrystals (under CAN GmbH’s trade name: CANdots Series A) and EMFUTURE indium copper zinc sulfide/zinc sulfide (ZnCuInS/ZnS) nanocrystals.

實例9 Example 9

關於傳統NC-合成物對本發明之NC-合成物之HTA資料 HTA data on traditional NC-synthesis to the NC-synthesis of the present invention

對使用該傳統技術(即被動奈米晶體嵌入)與本發明之技術(即直接奈米晶體交聯)所製備之各種NC-合成物進行溼-熱加速老化。實驗條件為80℃與80%相對溼度。研究進行4周,沒有間斷。 Wet-heat accelerated aging of various NC-composites prepared using this traditional technique (ie passive nanocrystal embedding) and the technique of the present invention (ie direct nanocrystal crosslinking). The experimental conditions were 80°C and 80% relative humidity. The study was conducted for 4 weeks without interruption.

在加速老化期間,追蹤某些變數,第一,監測該光激發光量子產率(即PL-QY)(見表5)

Figure 104125369-A0101-12-0026-6
During accelerated aging, track certain variables. First, monitor the quantum yield of the light excitation light (ie PL-QY) (see Table 5)
Figure 104125369-A0101-12-0026-6

比較兩技術,在HT老化之後,可能觀察到該光學特性不同。在由直接奈米晶體交聯所製備之該些NC-合成物之例子中,在PL-QY(即老化前後)之差異係非負數,這些結果指明這些材料之高穩定性,其曾曝光在高溫與高溼條件下。恰恰相反地,那些由被動嵌入所製備之材料似乎深受兩變數所影響,因為在老化程序之後,所測得之PL-QY遠低於其起始值。 Comparing the two technologies, after HT aging, it may be observed that the optical characteristics are different. In the case of these NC-composites prepared by direct nanocrystal crosslinking, the difference between PL-QY (ie before and after aging) is non-negative, these results indicate the high stability of these materials, which was exposed to Under high temperature and high humidity conditions. On the contrary, those materials prepared by passive embedding seem to be deeply affected by two variables, because after the aging process, the measured PL-QY is much lower than its initial value.

結論是,與使用傳統技術所製備之材料與各種NC-合成物相比,本發明之該材料與合成程序所得各種NC-合成物具有較高溼-熱安定性。 The conclusion is that the various NC-compositions obtained by the materials and synthesis procedures of the present invention have higher moisture-heat stability than the materials prepared using conventional techniques and various NC-compositions.

實例10 Example 10

該些反應性NC合成物之熱安定性(Thermal stability)與先前技術之非反應性NC合成物之情況比較 The thermal stability of these reactive NC compositions is compared with the situation of non-reactive NC compositions of the prior art

使用於實例10之該些奈米晶體之合成與該些NC-合成物之調配物將描述如下。全部合成程序與測試係在大氣條件下完成,而且沒有對該些NC-合成物施加額外保護,除非具體指明。 The synthesis of the nanocrystals used in Example 10 and the formulation of the NC-synthesis will be described as follows. All synthetic procedures and test systems were completed under atmospheric conditions, and no additional protection was applied to these NC-compositions unless specifically indicated.

實例10a Example 10a

在一丙烯酸酯基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丙酸氫硫酯)(pentaerythriol tetrakis(3-mercaptopropionate),PEMP)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-pentaerythriol tetrakis (3-mercaptopropionate) (PEMP) nanocrystals in an acrylate substrate

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50mlPEMP中,將該混合物在230℃下加熱10分鐘。將在25mlPEMP中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-PEMP)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of PEMP, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml of PEMP was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature. Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-PEMP) are available.

NC-合成物在一丙烯酸酯基材中之合成 Synthesis of NC-composite in an acrylic substrate

將0.5g硫化銦銅/硫化鋅-PEMP(CuInS/ZnS-PEMP)(25wt.%)、0.5gPEMP(25wt.%)、0.9g史塔特莫(Sartomer)之CN2025(45wt.%)、0.1g三甘醇二甲基丙烯酸酯(triethylene glycol dimethacryalte)(5wt.%)與0.05g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW/cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一淡紅色發光半導體NC-合成物。 0.5g indium copper sulfide/zinc sulfide-PEMP (CuInS/ZnS-PEMP) (25wt.%), 0.5g PEMP (25wt.%), 0.9g Sartomer CN2025 (45wt.%), 0.1 g triethylene glycol dimethacryalte (5wt.%) and 0.05g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl- 1-phenyl-propan-1-one, Darocur 1173) (2phr) mixed in a conditioning mixer at 2000 rpm for 2 minutes. Next, the mixture was poured into an aluminum cup using a 3ml plastic dropper, and photocured by exposure to UV radiation at an intensity of 120mW/cm 2 (UV-A dose) for 60 seconds. Next, the sample was post-cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available.

實例10b Example 10b

在一丙烯酸酯基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(pentaerythritol tetrakis(3-mercaptobutylate))(KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-pentaerythritol tetrakis (3-mercaptobutylate) (KarenzMT TM PE1) nanocrystals in an acrylate substrate

將0.24g碘化銅(CuI)、1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM PE1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT PE1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT PE1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature. Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TM PE1) are available.

在一丙烯酸酯基材中,NC-合成物之合成: Synthesis of NC-synthesis in an acrylate substrate:

將0.5g硫化銦銅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS-KarenzMTTM PE1)(25wt.%)、0.5g KarenzMTTM PE1(25wt.%)、0.9g史塔特莫(Sartomer)之CN2025(45wt.%)、0.1g三甘醇二甲基丙烯酸酯(triethylene glycol dimethacryalte)(5wt.%)與0.05g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於120mW/cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一淡紅色發光半導體NC-合成物。 0.5g of indium copper sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS-KarenzMT TM PE1) (25wt.%), 0.5g KarenzMT TM PE1 (25wt.%), 0.9g CN2025 of Sartomer (45wt.%), 0.1g triethylene glycol dimethacryalte (5wt.%) and 0.05g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2 -hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr), mixed in a conditioning mixer at 2000 rpm for 2 minutes. Next, the mixture was poured into an aluminum cup using a 3ml plastic dropper, and photocured by UV radiation exposed to 120mW/cm 2 (UV-A dose) for 60 seconds. Next, the sample was post-cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available.

實例10c Example 10c

在一丙烯酸酯基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-參[2-(氫硫基丙醯基氧基)乙基]異三聚氰酸酯(tris[2-(mercaptopropionyloxy)ethyl]isocyanurate,TEMPIC)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-ginseng[2-(hydrothiopropyl propyloxy) ethyl] isocyanurate (tris[2-(mercaptopropionyloxy )ethyl]isocyanurate, TEMPIC) nanocrystal

將0.24g碘化銅(CuI)、1.46g三醋酸銦(In(OAc)3)溶於 50ml TEMPIC中,將該混合物在230℃下加熱10分鐘。將在25ml TEMPIC中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-TEMPIC)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of TEMPIC, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml of TEMPIC was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature. Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-TEMPIC) are available.

在一丙烯酸酯基材中,NC-合成物之合成: Synthesis of NC-synthesis in an acrylate substrate:

將0.5g硫化銦銅/硫化鋅-TEMPIC(CuInS/ZnS-TEMPIC)(25wt.%)、0.5g TEMPIC(25wt.%)、0.9g史塔特莫(Sartomer)之CN2025(45wt.%)、0.1g三甘醇二甲基丙烯酸酯(triethylene glycol dimethacryalte)(5wt.%)與0.05g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於120mW/cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一淡紅色發光半導體NC-合成物。 0.5g indium copper sulfide/zinc sulfide-TEMPIC (CuInS/ZnS-TEMPIC) (25wt.%), 0.5g TEMPIC (25wt.%), 0.9g Sartomer CN2025 (45wt.%), 0.1g triethylene glycol dimethacryalte (5wt.%) and 0.05g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl -1-phenyl-propan-1-one, Darocur 1173) (2phr) was mixed in a conditioning mixer at 2000 rpm for 2 minutes. Next, the mixture was poured into an aluminum cup using a 3ml plastic dropper, and photocured by UV radiation exposed to 120mW/cm 2 (UV-A dose) for 60 seconds. Next, the sample was post-cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available.

實例10d Example 10d

在一丙烯酸酯基材中之硫化鎘(CdS)-參[2-(氫硫基丙醯基氧基)乙基]異三聚氰酸酯(tris[2-(mercaptopropionyloxy)ethyl]isocyanurate,TEMPIC)奈米晶體 Cadmium sulfide (CdS)-ginseng[2-(hydrothiothiopropyloxy)ethyl]isocyanurate (tris[2-(mercaptopropionyloxy)ethyl]isocyanurate, TEMPIC in an acrylate substrate ) Nanocrystal

將0.1g氧化鎘(CdO)加到5gTEMPIC,將該混合物在250℃下加熱30分鐘,讓該混合物冷卻至室溫。可得反應性膠狀奈米晶體(CdS-TEMPIC),沒有殼長在這些奈米晶體上。 0.1 g of cadmium oxide (CdO) was added to 5 g of TEMPIC, the mixture was heated at 250° C. for 30 minutes, and the mixture was allowed to cool to room temperature. Reactive colloidal nanocrystals (CdS-TEMPIC) are available, and no shell grows on these nanocrystals.

在一丙烯酸酯基材中,NC-合成物之合成: Synthesis of NC-synthesis in an acrylate substrate:

將1.0g硫化鎘-TEMPIC(CdS-TEMPIC)(50wt.%)、0.9g史塔特莫(Sartomer)之CN2025(45wt.%)、0.1g三甘醇二甲基丙烯酸酯 (triethylene glycol dimethacryalte)(5wt.%)與0.05g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於120mW/cm2(UV-A劑量)之UV輻射60秒,來加以光固化。之後,該樣品在90℃下進行後固化(post-cured)2小時。可得一發光半導體NC-合成物。 1.0g cadmium sulfide-TEMPIC (CdS-TEMPIC) (50wt.%), 0.9g Sartomer's CN2025 (45wt.%), 0.1g triethylene glycol dimethacryalte (5wt.%) and 0.05g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) ( 2phr) Mix in a conditioning mixer at 2000 rpm for 2 minutes. Next, the mixture was poured into an aluminum cup using a 3ml plastic dropper, and photocured by UV radiation exposed to 120mW/cm 2 (UV-A dose) for 60 seconds. After that, the sample was post-cured at 90°C for 2 hours. A light-emitting semiconductor NC-composite is available.

實例10e Example 10e

在一丙烯酸酯基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-1-十二烷硫醇(1-dodecanethiol,DDT)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-1-dodecanethiol (DDT) nanocrystals in an acrylate substrate

將0.24g碘化銅(CuI)、1.46g三醋酸銦(In(OAc)3)溶於50ml DDT中,將該混合物在230℃下加熱10分鐘。將在25ml DDT中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫。可得一些橘色反應性膠狀半導體奈米晶體(CuInS/ZnS-DDT)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of DDT, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml of DDT was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature. Some orange reactive colloidal semiconductor nanocrystals (CuInS/ZnS-DDT) are available.

在一丙烯酸酯基材中,NC-合成物之合成: Synthesis of NC-synthesis in an acrylate substrate:

將0.2g硫化銦銅/硫化鋅-DDT(CuInS/ZnS-DDT)(10wt.%)、0.8g KarenzMTTM PE1(40wt.%)、0.9g史塔特莫(Sartomer)之CN2025(45wt.%)、0.1g三甘醇二甲基丙烯酸酯(triethylene glycol dimethacryalte)(5wt.%)與0.05g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW/cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一橘色發光半導體NC-合成物。 0.2g indium copper sulfide/zinc sulfide-DDT (CuInS/ZnS-DDT) (10wt.%), 0.8g KarenzMT TM PE1 (40wt.%), 0.9g Sartomer CN2025 (45wt.%) ), 0.1g triethylene glycol dimethacryalte (5wt.%) and 0.05g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2 -methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr), mixed in a conditioning mixer at 2000 rpm for 2 minutes. Next, the mixture was poured into an aluminum cup using a 3ml plastic dropper, and photocured by exposure to UV radiation at an intensity of 120mW/cm 2 (UV-A dose) for 60 seconds. Next, the sample was post-cured at 90°C for 2 hours. An orange light-emitting semiconductor NC-composite is available.

實例10f Example 10f

在一丙烯酸酯基材中之硒化鎘/硫化鋅(CdSe/ZnS)-十六胺(hexadecylamine,HDA)與三辛基氧化磷(trioctylphophine-oxide,TOPO)奈米晶體 CdSe/ZnS-hexadecylamine (HDA) and trioctylphophine-oxide (TOPO) nanocrystals in an acrylate substrate

取得一些奈米晶體:為了加以比較,從CAN Hamburg購買分散於甲苯(toluene)中之CdSe/ZnS-HDA、TOPO奈米晶體 Obtain some nanocrystals: For comparison, purchase CdSe/ZnS-HDA, TOPO nanocrystals dispersed in toluene from CAN Hamburg

在一丙烯酸酯基材中,NC-合成物之合成: Synthesis of NC-synthesis in an acrylate substrate:

將0.002g硒化鎘-HAD、TOPO(CdSe-HAD,TOPO)(0.1wt.%)、1.0g KarenzMTTM PE1(50wt.%)、0.9g史塔特莫(Sartomer)之CN2025(45wt.%)、0.1g三甘醇二甲基丙烯酸酯(triethylene glycol dimethacryalte)(5wt.%)與0.05g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW/cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一淡紅色發光半導體NC-合成物。 0.002g Cadmium Selenide-HAD, TOPO (CdSe-HAD, TOPO) (0.1wt.%), 1.0g KarenzMT TM PE1 (50wt.%), 0.9g Sartomer CN2025 (45wt.%) ), 0.1g triethylene glycol dimethacryalte (5wt.%) and 0.05g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2 -methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr), mixed in a conditioning mixer at 2000 rpm for 2 minutes. Next, the mixture was poured into an aluminum cup using a 3ml plastic dropper, and photocured by exposure to UV radiation at an intensity of 120mW/cm 2 (UV-A dose) for 60 seconds. Next, the sample was post-cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available.

實例10g Example 10g

在一丙烯酸酯基材中之硫硒化鎘/硫化鋅(CdSeS/ZnS)-十八烯酸(oleicacid,OA))奈米晶體 CdSe/ZnS-oleicacid (OA) nanocrystals in an acrylate substrate

取得一些奈米晶體:為了加以比較,從西格瑪 奧德里奇(Sigma Aldrich)購買分散於甲苯之硫硒化鎘/硫化鋅-OA奈米晶體 Obtain some nanocrystals: For comparison, buy cadmium sulfide selenide/zinc sulfide-OA nanocrystals dispersed in toluene from Sigma Aldrich

在一丙烯酸酯基材中,NC-合成物之合成: Synthesis of NC-synthesis in an acrylate substrate:

將0.002g硫硒化鎘/硫化鋅-OA(CdSeS/ZnS-OA)(0.1wt.%)、1.0g KarenzMTTM PE1(50wt.%)、0.9g史塔特莫(Sartomer)之 CN2025(45wt.%)、0.1g三甘醇二甲基丙烯酸酯(triethylene glycol dimethacryalte)(5wt.%)與0.05g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW/cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一淡紅色發光半導體NC-合成物。 0.002g cadmium sulfide selenide/zinc sulfide-OA (CdSeS/ZnS-OA) (0.1wt.%), 1.0g KarenzMT TM PE1 (50wt.%), 0.9g Sartomer CN2025 (45wt .%), 0.1g triethylene glycol dimethacryalte (5wt.%) and 0.05g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy -2-methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr) was mixed in a conditioning mixer at 2000 rpm for 2 minutes. Next, the mixture was poured into an aluminum cup using a 3ml plastic dropper, and photocured by exposure to UV radiation at an intensity of 120mW/cm 2 (UV-A dose) for 60 seconds. Next, the sample was post-cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available.

實例10h Example 10h

在一丙烯酸酯基材中之磷化銦/硫化鋅(InP/ZnS)-油醯胺(oleylamine,OLA)奈米晶體 Indium phosphide/zinc sulfide (InP/ZnS)-oleylamine (OLA) nanocrystals in an acrylate substrate

取得一些奈米晶體:為了加以比較,從西格瑪 奧德里奇(Sigma Aldrich)購買分散於甲苯之磷化銦/硫化鋅-OLA奈米晶體 Get some nanocrystals: For comparison, buy indium phosphide/zinc sulfide-OLA nanocrystals dispersed in toluene from Sigma Aldrich

在一丙烯酸酯基材中,NC-合成物之合成: Synthesis of NC-synthesis in an acrylate substrate:

將0.002g(InP/ZnS-OLA)(0.1wt.%)、1.0g KarenzMTTM PE1(50wt.%)、0.9g史塔特莫(Sartomer)之CN2025(45wt.%)、0.1gr三甘醇二甲基丙烯酸酯(triethylene glycol dimethacryalte)(5wt.%)與0.05g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW/cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一淡紅色發光半導體NC-合成物。 0.002g (InP/ZnS-OLA) (0.1wt.%), 1.0g KarenzMT TM PE1 (50wt.%), 0.9g Sartomer's CN2025 (45wt.%), 0.1gr triethylene glycol Triethylene glycol dimethacryalte (5wt.%) and 0.05g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl-1-phenyl- propan-1-one, Darocur 1173) (2 phr) in a conditioning blender, mixed at 2000 rpm for 2 minutes. Next, the mixture was poured into an aluminum cup using a 3ml plastic dropper, and photocured by exposure to UV radiation at an intensity of 120mW/cm 2 (UV-A dose) for 60 seconds. Next, the sample was post-cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available.

上述之各種NC-合成物係在85℃之盒式爐(box oven)中老化7天。全部奈米晶體被寄宿(hosted)於相同聚合物基材中,已經詳細說明。該些NC-合成物之QY被標準化為其起始QY值,該經標準化QY之演變 係追蹤7天,如圖四中所示。 The above-mentioned various NC-composites were aged in a box oven at 85°C for 7 days. All nanocrystals are hosted in the same polymer substrate, which has been described in detail. The QY of the NC-synthesis is standardized to its initial QY value, and the evolution of the standardized QY The system tracks for 7 days, as shown in Figure 4.

可觀察到,與包含在單官能硫醇配位基中合成之奈米晶體(CuInS/ZnS-DDT)之NC-合成物相比,包含在各種聚硫醇配位基(CuInS/ZnS-PEMP;CuInS/ZnS-TEMPIC;CdS-TEMPIC;CuInS/ZnS-KarenzMT PE1)中所長成之奈米晶體之各種NC-合成物,具有較佳之熱安定性;而與包含在先前技術之非反應性單官能配位基,即各種胺類(InP/ZnS-OLA;CdSeS/ZnS-OA)與羧酸(CdSe/ZnS-HDA,TOPO)之情況中所合成之各種奈米晶體之NC-合成物相比,包含在單官能硫醇配位基(CuInS/ZnS-DDT)中合成之奈米晶體之NC-合成物具有較佳之熱安定性。因此,在聚硫醇配位基中,奈米晶體之合成改善該些NC-合成物之熱安定性。 It can be observed that compared with the NC-composite containing nanocrystals (CuInS/ZnS-DDT) synthesized in monofunctional thiol ligands, it is contained in various polythiol ligands (CuInS/ZnS-PEMP ; CuInS/ZnS-TEMPIC; CdS-TEMPIC; CuInS/ZnS-KarenzMT PE1) various NC-synthesis of nanocrystals grown in CuInS/ZnS-KarenzMT PE1) have better thermal stability; and the non-reactive monomer included in the prior art Functional ligands, that is, NC-synthetic phases of various nanocrystals synthesized in the case of various amines (InP/ZnS-OLA; CdSeS/ZnS-OA) and carboxylic acids (CdSe/ZnS-HDA, TOPO) In contrast, NC-composites containing nanocrystals synthesized in monofunctional thiol ligands (CuInS/ZnS-DDT) have better thermal stability. Therefore, in polythiol ligands, the synthesis of nanocrystals improves the thermal stability of these NC-composites.

實例11 Example 11

以三種不同光子輻射照度值,敘述於實例10d硫化鎘-TEMPIC(CdS-TEMPIC)在一丙烯酸酯基材中之NC-合成物之經標準化QY之演變 With three different photon irradiance values, the standardized QY evolution of the NC-composite in Example 10d Cadmium Sulfide-TEMPIC (CdS-TEMPIC) in an acrylate substrate is described

如實例10d中所述,在丙烯酸酯基材中,該NC-合成物(CdS-TEMPIC)係曝光於三種不同光子輻射照度值,以評估其光子安定性(photon stability)。將三片0.5cm2之該NC-合成物曝光於1、100與500mW/cm2。沒有蓄意之熱施加於該NC-合成物。該些NC-合成物之QY被標準化為其起始QY值,在每一光子輻射照度值下,該經標準化QY之演變如圖五所示。 As described in Example 10d, in an acrylate substrate, the NC-composite (CdS-TEMPIC) was exposed to three different photon irradiance values to evaluate its photon stability. Three pieces of 0.5 cm 2 of this NC-composite were exposed to 1, 100 and 500 mW/cm 2 . No deliberate heat is applied to the NC-composite. The QY of these NC-composites are normalized to their initial QY values. At each photon irradiance value, the evolution of the standardized QY is shown in Figure 5.

在光子曝光至1mW/cm2 7天後,該CdS-TEMPIC NC-合成物之QY係完全被保留,還有,在100mW/cm2輻射照度下6天,該NC-合成物保留超過該起始QY之90%。最後,在將NC合成物曝光至500mW/cm2 7天後,其保留超過該起始QY之80%。 After 7 days of photon exposure to 1mW/cm 2 , the QY system of the CdS-TEMPIC NC-composite was completely retained. Also, the NC-composite was retained for more than 6 days under 100mW/cm 2 irradiance for 6 days. 90% of the initial QY. Finally, after exposing the NC composition to 500 mW/cm 2 for 7 days, it remained more than 80% of the starting QY.

實例12 Example 12

在一丙烯酸酯基材中之磷化銦/硫化鋅(InP/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(pentaerythritol tetrakis(3-mercaptobutylate),KarenzMTTM PE1)奈米晶體 Indium phosphide/zinc sulfide (InP/ZnS)-pentaerythritol tetrakis (3-mercaptobutylate), KarenzMT TM PE1 nanocrystals in an acrylate substrate

將0.25g(InP/ZnS-KarenzMTTM PE1)(25wt.%)、0.25g KarenzMTTM PE1(25wt.%)、0.9g史塔特莫(Sartomer)之CN2025(45wt.%)、0.1g三甘醇二甲基丙烯酸酯(triethylene glycol dimethacryalte)(5wt.%)與0.05g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一淡紅色發光半導體NC-合成物。 Add 0.25g (InP/ZnS-KarenzMT TM PE1) (25wt.%), 0.25g KarenzMT TM PE1 (25wt.%), 0.9g Sartomer CN2025 (45wt.%), 0.1g Sangan Triethylene glycol dimethacryalte (5wt.%) and 0.05g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl-1-phenyl -propan-1-one, Darocur 1173) (2 phr) in a conditioning blender, mixed at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was post-cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.4g氯化銦(InCl3)、0.24g氯化鋅(ZnCl2)溶於8g油醯胺(Oleylamine),將該混合物在220℃下加熱10分種,並且快速將0.5ml參(二甲胺基)膦注入,然後,4分鐘後緩慢注入2.5gr KarenzMTTM PE1。此反應在200℃下攪拌另外15分鐘。可得一些淡紅色反應性膠狀半導體奈米晶體(InP/ZnS-KarenzMTTM PE1)。 0.4 g of indium chloride (InCl 3 ) and 0.24 g of zinc chloride (ZnCl 2 ) were dissolved in 8 g of Oleylamine, the mixture was heated at 220° C. for 10 minutes, and 0.5 ml of ginseng (two Methylamine) phosphine was injected, and then, after 4 minutes, 2.5gr KarenzMT PE1 was slowly injected. The reaction was stirred at 200°C for another 15 minutes. Some light red reactive colloidal semiconductor nanocrystals (InP/ZnS-KarenzMT PE1) are available.

實例13 Example 13

在一丙烯酸酯基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-三羥甲基丙烷參(3-丁酸氫硫酯)(trimethylolpropane tris(3-mercaptobutyrate))(KarenzMTTM TPMB)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-trimethylolpropane tris (3-mercaptobutyrate) (KarenzMT TM TPMB) in an acrylate substrate Rice crystal

將0.25g硫化銦銅/硫化鋅-KarenzMTTM TPMB(CuInS/ZnS-KarenzMTTM TPMB)(25wt.%)、0.25g KarenzMTTM TPMB(25wt.%)、0.9g史塔特莫(Sartomer)之CN2025(45wt.%)、0.1g三甘醇二甲基丙烯酸酯(triethylene glycol dimethacryalte)(5wt.%)與0.05g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一淡紅色發光半導體NC-合成物,QY:33.8%。 0.25g indium copper sulfide/zinc sulfide-KarenzMT TM TPMB (CuInS/ZnS-KarenzMT TM TPMB) (25wt.%), 0.25g KarenzMT TM TPMB (25wt.%), 0.9g Sartomer CN2025 (45wt.%), 0.1g triethylene glycol dimethacryalte (5wt.%) and 0.05g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2 -hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr), mixed in a conditioning mixer at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was post-cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available, QY: 33.8%.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM TPMB,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM TPMB中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM TPMB)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT TPMB, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT TPMB was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TPMB) are available.

實例14 Example 14

在一丙烯酸酯基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-1,3,5-參(3-氫硫基丁基氧乙基)-1,3,5-三嗪-2,4,6-三酮(1,3,5-Tris(3-mercaptobutyloxethyl)-1,3,5-triazine-2,4,6-trione),KarenzMTTM NR1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-1,3,5-ginseng (3-hydrothiobutyloxyethyl)-1,3,5-triazine-2 in an acrylate substrate ,4,6-Trione (1,3,5-Tris(3-mercaptobutyloxethyl)-1,3,5-triazine-2,4,6-trione), KarenzMT TM NR1) nanocrystals

將0.25g硫化銦銅/硫化鋅-KarenzMTTM NR1(CuInS/ZnS-KarenzMTTM NR1)(25wt.%)、0.25g KarenzMTTM NR1(25wt.%)、0.9g史塔特莫(Sartomer)之CN2025(45wt.%)、0.1g三甘醇二甲基丙烯 酸酯(triethylene glycol dimethacryalte)(5wt.%)與0.05g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一淡紅色發光半導體NC-合成物,QY:22.8%。 0.25g of copper indium sulfide / zinc sulfide -KarenzMT TM NR1 (CuInS / ZnS- KarenzMT TM NR1) (25wt.%), 0.25g KarenzMT TM NR1 (25wt.%), 0.9g Shitatemo (Sartomer) of CN2025 (45wt.%), 0.1g triethylene glycol dimethacryalte (5wt.%) and 0.05g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2 -hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr), mixed in a conditioning mixer at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was post-cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available, QY: 22.8%.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM NR1,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM NR1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM NR1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT NR1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT NR1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT NR1) are available.

實例15 Example 15

在一丙烯酸酯基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-1,4-雙(3-氫硫基丁醯基氧基)丁烷(1,4-Bis(3-mercaptobutyryloxy)butane),KarenzMTTM BD1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-1,4-bis(3-hydrothiobutylbutyryloxy)butane (1,4-Bis(3-mercaptobutyryloxy)butane) in an acrylate substrate , KarenzMT TM BD1) nanocrystals

將0.25g硫化銦銅/硫化鋅-KarenzMTTM BD1(CuInS/ZnS-KarenzMTTM BD1)(25wt.%)、0.25g KarenzMTTM BD1(25wt.%)、0.9g史塔特莫(Sartomer)之CN2025(45wt.%)、0.1g三甘醇二甲基丙烯酸酯(triethylene glycol dimethacryalte)(5wt.%)與0.05g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2 (UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一淡紅色發光半導體NC-合成物,QY:44.4%。 0.25g indium copper sulfide/zinc sulfide-KarenzMT TM BD1 (CuInS/ZnS-KarenzMT TM BD1) (25wt.%), 0.25g KarenzMT TM BD1 (25wt.%), 0.9g Sartomer CN2025 (45wt.%), 0.1g triethylene glycol dimethacryalte (5wt.%) and 0.05g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2 -hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr), mixed in a conditioning mixer at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was post-cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available, QY: 44.4%.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM BD1,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM BD1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM BD1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT BD1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT BD1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT BD1) are available.

實例16 Example 16

在一胺丙烯酸酯基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis(3-mercaptobutylate)(KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-pentaerythritol tetrakis (3-mercaptobutylate) (KarenzMT TM PE1) nanocrystals in monoamine acrylate substrate

將0.2g硫化銦銅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS-KarenzMTTM PE1)(10wt.%)、0.8g KarenzMTTM PE1(40wt.%)、1g Genomer 5271(50wt.%)與0.04g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。 0.2g indium copper sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS-KarenzMT TM PE1) (10wt.%), 0.8g KarenzMT TM PE1 (40wt.%), 1g Genomer 5271 (50wt.%) and 0.04g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr) in a conditioning mixer to Mix at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was post-cured at 90°C for 2 hours.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM PE1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT PE1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT PE1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TM PE1) are available.

實例17 Example 17

在一三聚氰胺丙烯酸酯基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis(3-mercaptobutylate),KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-Pentaerythritol tetrakis (3-mercaptobutylate), KarenzMT TM PE1 nanocrystals in a melamine acrylate substrate

將0.2g硫化銦銅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS-KarenzMTTM PE1)(10wt.%)、0.8g of KarenzMTTM PE1(40wt.%)、1g史塔特莫(Sartomer)CN890(50wt.%)與0.04g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一淡紅色發光半導體NC-合成物。 0.2g of indium copper sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS-KarenzMT TM PE1) (10wt.%), 0.8g of KarenzMT TM PE1 (40wt.%), 1g Sartomer CN890 (Sartomer) 50wt.%) and 0.04g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr ) Mix in a conditioning mixer at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was post-cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM PE1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT PE1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT PE1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TM PE1) are available.

實例18 Example 18

在一氨基甲酸乙酯(urethane)丙烯酸酯基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis(3-mercaptobutylate)(KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-pentaerythritol tetrakis(3-mercaptobutylate) (KarenzMT TM PE1) in a urethane acrylate substrate ) Nanocrystal

0.2g硫化銦銅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS-KarenzMTTM PE1)(10wt.%)、0.8g KarenzMTTM PE1(40wt.%)、1g史塔特莫(Sartomer)CN991(50wt.%)與0.04g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一淡紅色發光半導體NC-合成物。 0.2g indium copper sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS-KarenzMT TM PE1) (10wt.%), 0.8g KarenzMT TM PE1 (40wt.%), 1g Sartomer CN991 (50wt. %) and 0.04g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr) in Mix in a blender at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was post-cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM PE1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT PE1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT PE1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TM PE1) are available.

實例19 Example 19

在一經胺改質聚酯丙烯酸酯基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis(3-mercaptobutylate)(KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-pentaerythritol tetrakis(3-mercaptobutylate)(KarenzMT TM PE1) in an amine-modified polyester acrylate substrate Rice crystal

0.2g硫化銦銅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS-KarenzMTTM PE1)(10wt.%)、0.8g KarenzMTTM PE1(40wt.%)、1g經胺改質聚酯丙烯酸酯寡聚體(50wt.%)與0.04g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml 塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一淡紅色發光半導體NC-合成物。 0.2g indium copper sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS-KarenzMT TM PE1) (10wt.%), 0.8g KarenzMT TM PE1 (40wt.%), 1g amine modified polyester acrylate oligomer (50wt.%) and 0.04g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) ( 2phr) Mix in a conditioning mixer at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was post-cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱,被加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT TM PE1, the mixture was heated at 230° C., was added to the core solution, and the mixture Heat at 230°C for 30 minutes and allow the mixture to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TM PE1) are available.

實例20 Example 20

在一丙烯醯胺/二丙烯酸酯(acrylamide/diacrylate)基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis(3-mercaptobutylate)(KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-Pentaerythritol tetrakis (3-mercaptobutylate) in an acrylamide/diacrylate substrate KarenzMT TM PE1) Nanocrystal

將0.2g硫化銦銅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS-KarenzMTTM PE1)(6.7wt.%)、0.8g KarenzMTTM PE1(26.7wt.%)、1g正(1,1-二甲基-3-側氧丁基)丙烯醯胺(n-(1,1-dimethyl-3-oxobutyl)acrylamide)(33.3wt.%)、1g 1,6-己二醇二丙烯酸酯(1,6 hexanediol diacrylate)(史塔特莫(Sartomer)SR238)(33.3wt.%)與0.04g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一淡紅色發光半導體NC-合成物。 0.2g indium copper sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS-KarenzMT TM PE1) (6.7wt.%), 0.8g KarenzMT TM PE1 (26.7wt.%), 1g positive (1,1-dimethyl 3-Pentoxybutyl)acrylamide (n-(1,1-dimethyl-3-oxobutyl)acrylamide) (33.3wt.%), 1g 1,6-hexanediol diacrylate (1,6 hexanediol diacrylate) (Sartomer SR238) (33.3wt.%) and 0.04g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl- 1-phenyl-propan-1-one, Darocur 1173) (2phr) mixed in a conditioning mixer at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was post-cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM PE1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT PE1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT PE1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TM PE1) are available.

實例21 Example 21

在一雙馬來醯亞胺(bismaleimides)基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis(3-mercaptobutylate)(KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-Pentaerythritol tetrakis(3-mercaptobutylate) (KarenzMT TM PE1) in a pair of bismaleimides substrates ) Nanocrystal

將0.2g硫化銦銅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS-KarenzMTTM PE1)(6.7wt.%)、0.8g KarenzMTTM PE1(26.7wt.%)、1g BMI 1500(33.3wt.%)、1g 1,6-己二醇二丙烯酸酯(1,6 hexanediol diacrylate)(史塔特莫(Sartomer)SR238)(33.3wt%)與0.04g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一帶白色發光半導體NC-合成物。 0.2g indium copper sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS-KarenzMT TM PE1) (6.7wt.%), 0.8g KarenzMT TM PE1 (26.7wt.%), 1g BMI 1500 (33.3wt.%) , 1g 1,6-hexanediol diacrylate (1,6 hexanediol diacrylate) (Sartomer SR238) (33.3wt%) and 0.04g 2-hydroxy-2-methyl-1-phenyl -Prop-1--1-one (2-hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr) was mixed in a conditioning mixer at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was post-cured at 90°C for 2 hours. A white light-emitting semiconductor NC-composite is available.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM PE1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT PE1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT PE1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TM PE1) are available.

實例22 Example 22

在一馬來醯亞胺(maleimide)/二丙烯酸酯基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis(3-mercaptobutylate)(KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-Pentaerythritol tetrakis (3-mercaptobutylate) in a maleimide/diacrylate substrate KarenzMT TM PE1) Nanocrystal

將0.2g硫化銦銅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS-KarenzMTTM PE1)(10wt.%)、0.8g KarenzMTTM PE1(40wt.%)、0.5g b-甲基-馬來醯亞胺(b-methyl-maleimide)(25wt.%)、0.5g 1,6-己二醇二丙烯酸酯(1,6-hexanediol diacrylate)(史塔特莫(Sartomer)SR238)(25wt%)與0.04g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一橘色發光半導體NC-合成物。 0.2g indium copper sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS-KarenzMT TM PE1) (10wt.%), 0.8g KarenzMT TM PE1 (40wt.%), 0.5g b-methyl-maleimide Amine (b-methyl-maleimide) (25wt.%), 0.5g 1,6-hexanediol diacrylate (1,6-hexanediol diacrylate) (Sartomer SR238) (25wt%) and 0.04 g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr) in a conditioning mixer, Mix at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was post-cured at 90°C for 2 hours. An orange light-emitting semiconductor NC-composite is available.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM PE1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT PE1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT PE1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TM PE1) are available.

實例23 Example 23

在一苯乙烯(styrene)/二乙烯苯(divinyl benzene)/二丙烯酸酯基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis(3-mercaptobutylate)(KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-Pentaerythritol tetrakis (Pentaerythritol tetrakis) in a styrene/divinyl benzene/diacrylate substrate 3-mercaptobutylate) (KarenzMT TM PE1) nanocrystal

將0.2g硫化銦銅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS-KarenzMTTM PE1)(6.7wt.%)、0.8g KarenzMTTM PE1(26.7wt.%)、0.5g苯乙烯(16.7 wt.%)、0.5g二乙烯苯-苯乙烯(divinyl benzene-styrene)(16.7wt.%)、1g 1,6-己二醇二丙烯酸酯(1,6-hexanediol diacrylate)(史塔特莫(Sartomer)SR238)(33.3wt%)與0.04g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一帶桃紅色發光半導體NC-合成物。 0.2g indium copper sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS-KarenzMT TM PE1) (6.7wt.%), 0.8g KarenzMT TM PE1 (26.7wt.%), 0.5g styrene (16.7 wt.%) ), 0.5g divinyl benzene-styrene (16.7wt.%), 1g 1,6-hexanediol diacrylate (Sartomer) SR238) (33.3wt%) and 0.04g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173 ) (2phr) in a conditioning blender, mixed at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was post-cured at 90°C for 2 hours. A pinkish light-emitting semiconductor NC-composite is available.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM PE1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT PE1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT PE1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TM PE1) are available.

實例24 Example 24

在一乙烯基三甲氧矽烷(vinyl trimethoxysilane)基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis(3-mercaptobutylate)(KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-pentaerythritol tetrakis (3-mercaptobutylate) (KarenzMT TM PE1) in a vinyl trimethoxysilane substrate ) Nanocrystal

0.2g硫化銦銅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS-KarenzMTTM PE1)(10wt.%)、0.8g KarenzMTTM PE1(40wt.%)、1g乙烯基三甲氧矽烷(vinyl trimethoxysilane)(50wt.%)與0.04g 2-羥基-2- 甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一淡紅色發光半導體NC-合成物。 0.2g indium copper sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS-KarenzMT TM PE1) (10wt.%), 0.8g KarenzMT TM PE1 (40wt.%), 1g vinyl trimethoxysilane (50wt .%) and 0.04g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr) In a conditioning blender, mix at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was post-cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM PE1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT PE1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT PE1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TM PE1) are available.

實例25 Example 25

在一己二酸二乙烯酯(divinyl adipate)基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis(3-mercaptobutylate)(KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-pentaerythritol tetrakis (3-mercaptobutylate) (KarenzMT TM PE1) in divinyl adipate substrate ) Nanocrystal

將0.2g硫化銦銅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS-KarenzMTTM PE1)(10wt.%)、0.8g KarenzMTTM PE1(40wt.%)、1g己二酸二乙烯酯(divinyl adipate)(50wt.%)、與0.04g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一淡紅色發光半導體NC-合成物。 0.2g indium copper sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS-KarenzMT TM PE1) (10wt.%), 0.8g KarenzMT TM PE1 (40wt.%), 1g divinyl adipate (divinyl adipate) (50wt.%), and 0.04g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr) Mix in a conditioning mixer at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was post-cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM PE1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT PE1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT PE1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TM PE1) are available.

實例26 Example 26

在一乙烯醚基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis(3-mercaptobutylate)(KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-pentaerythritol tetrakis (3-mercaptobutylate) (KarenzMT TM PE1) nanocrystals in a vinyl ether substrate

將0.2g硫化銦銅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS-KarenzMTTM PE1)(10wt.%)、0.8g KarenzMTTM PE1(40wt.%)與1g 1,4-環己烷二甲醇乙烯醚(1,4 cyclohexane dimethanol divinyl ether)(50wt.%)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行後固化(post-cured)2小時。可得一淡紅色發光半導體NC-合成物。 0.2g indium copper sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS-KarenzMT TM PE1) (10wt.%), 0.8g KarenzMT TM PE1 (40wt.%) and 1g 1,4-cyclohexane dimethanol ethylene Ether (1,4 cyclohexane dimethanol divinyl ether) (50 wt.%) was mixed in a conditioning mixer at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was post-cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM PE1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT PE1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT PE1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TM PE1) are available.

實例27 Example 27

在一聯苯基環氧丙烷基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis (3-mercaptobutylate)(KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-pentaerythritol tetrakis (3-mercaptobutylate) (KarenzMT TM PE1) nano in a biphenyl epoxypropylene material Crystal

將0.2g硫化銦銅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS-KarenzMTTM PE1)(10wt.%)、0.8g KarenzMTTM PE1(40wt.%)、1g OXBP(50wt.%)、0.04g二芳基錪鎓六氟銻酸鹽(diaryliodonium hexafluoroantimonate)(PC2506)(2phr)、0.014g異丙基噻噸(isopropylthioxanthone)(ITX)(0.7phr)與0.01g三乙胺(triethylamine)(0.5phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在150℃下熱固化4小時。 0.2g indium copper sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS-KarenzMT TM PE1) (10wt.%), 0.8g KarenzMT TM PE1 (40wt.%), 1g OXBP (50wt.%), 0.04g Diaryliodonium hexafluoroantimonate (PC2506) (2phr), 0.014g isopropylthioxanthone (ITX) (0.7phr) and 0.01g triethylamine (0.5phr) In a conditioning blender, mix at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was thermally cured at 150°C for 4 hours.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM PE1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT PE1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT PE1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TM PE1) are available.

實例28 Example 28

在一雙酚A/F(bisphenol A/F)環氧樹脂基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis(3-mercaptobutylate)(KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-pentaerythritol tetrakis (3-mercaptobutylate) in a bisphenol A/F (bisphenol A/F) epoxy resin substrate )(KarenzMT TM PE1) Nanocrystal

0.2g硫化銦銅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS-KarenzMTTM PE1)(10wt.%)、0.8g KarenzMTTM PE1(40wt.%)、1環氧樹脂(epoxy resin)Epikote 232(50wt.%)、0.002g三乙胺 (triethylamine)(0.1phr)與0.02g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(1phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在110℃下進行熱固化5小時。 0.2g indium copper sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS-KarenzMT TM PE1) (10wt.%), 0.8g KarenzMT TM PE1 (40wt.%), 1 epoxy resin Epikote 232 (50wt .%), 0.002g triethylamine (0.1phr) and 0.02g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2-hydroxy-2-methyl-1-phenyl -propan-1-one, Darocur 1173) (1 phr) in a conditioning blender, mixed at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was thermally cured at 110°C for 5 hours.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM PE1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT PE1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT PE1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TM PE1) are available.

實例29 Example 29

在一胺環氧樹脂基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis(3-mercaptobutylate)(KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-pentaerythritol tetrakis (3-mercaptobutylate) (KarenzMT TM PE1) nanocrystals in a monoamine epoxy resin substrate

0.2g硫化銦銅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS-KarenzMTTM PE1)(10wt.%)、0.8g KarenzMTTM PE1(40wt.%)、0.86g聚乙二醇二縮水甘油醚(polyethylene glycol diglycidyl ether)(43wt.%)、0.14g傑弗明(Jeffamine)EDR 176(wt.7%)與0.02g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(1phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在110℃下進行熱固化5小時。 0.2g indium copper sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS-KarenzMT TM PE1) (10wt.%), 0.8g KarenzMT TM PE1 (40wt.%), 0.86g polyethylene glycol diglycidyl ether (polyethylene glycol diglycidyl ether) (43wt.%), 0.14g Jeffamine (Jeffamine) EDR 176 (wt.7%) and 0.02g 2-hydroxy-2-methyl-1-phenyl-propan-1-one (2 -hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) (1phr) in a conditioning mixer, mixed at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was thermally cured at 110°C for 5 hours.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM PE1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT PE1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT PE1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TM PE1) are available.

實例30 Example 30

在一環氧丙烷(oxetane)甲基丙烯酸酯(methacrylate)基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis(3-mercaptobutylate)(KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-Pentaerythritol tetrakis (3-mercaptobutylate) in an oxetane methacrylate substrate (KarenzMT TM PE1) Nanocrystal

0.2g硫化銦銅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS-KarenzMTTM PE1)(10wt.%)、0.8g KarenzMTTM PE1(40wt.%)、1g OXMA(50wt.%)、0.04g二芳基錪鎓六氟銻酸鹽(diaryliodonium hexafluoroantimonate,PC2506)(2phr)、0.014g異丙基噻噸(isopropylthioxanthone,ITX)(0.7phr)與0.04g 2-羥基-2-甲基-1-苯基-丙-1-酮(2-hydroxy-2-methyl-1-phenyl-propan-1-one,Darocur 1173)(2phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在150℃下進行熱固化4小時。 0.2g indium copper sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS-KarenzMT TM PE1) (10wt.%), 0.8g KarenzMT TM PE1 (40wt.%), 1g OXMA (50wt.%), 0.04g diaryl Diaryliodonium hexafluoroantimonate (PC2506) (2phr), 0.014g isopropylthioxanthone (ITX) (0.7phr) and 0.04g 2-hydroxy-2-methyl-1-phenyl -Prop-1--1-one (2-hydroxy-2-methyl-1-phenyl-propan-1-one, Darocur 1173) (2phr) was mixed in a conditioning mixer at 2000 rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was thermally cured at 150°C for 4 hours.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM PE1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且 將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT PE1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT PE1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TM PE1) are available.

實例31 Example 31

在一異氰酸酯(isocyanate)基材中之硫化銦銅/硫化鋅(CuInS/ZnS)-季戊四醇 四(3-丁酸氫硫酯)(Pentaerythritol tetrakis(3-mercaptobutylate)(KarenzMTTM PE1)奈米晶體 Indium copper sulfide/zinc sulfide (CuInS/ZnS)-pentaerythritol tetrakis (3-mercaptobutylate) (KarenzMT TM PE1) nanocrystals in an isocyanate substrate

0.2g硫化銦銅/硫化鋅-KarenzMTTM PE1(CuInS/ZnS-KarenzMTTM PE1)(10wt.%)、0.8g KarenzMTTM PE1(40wt.%)、1g帝斯莫德(Desmodur)N330(50wt.%)與0.002g三乙胺(triethylamine)(0.1phr)於調理攪拌機中,以2000rpm混合2分鐘。接著,使用3ml塑膠滴管將該混合物注入一鋁杯中,並且藉曝光於強度120mW.cm2(UV-A劑量)之UV輻射60秒,來加以光固化。接著,該樣品在90℃下進行熱固化2小時。可得一淡紅色發光半導體NC-合成物。 0.2g indium copper sulfide/zinc sulfide-KarenzMT TM PE1 (CuInS/ZnS-KarenzMT TM PE1) (10wt.%), 0.8g KarenzMT TM PE1 (40wt.%), 1g Desmodur N330 (50wt.%) %) and 0.002g of triethylamine (0.1phr) in a conditioning blender, mixed at 2000rpm for 2 minutes. Next, use a 3ml plastic dropper to inject the mixture into an aluminum cup, and by exposure to an intensity of 120mW. UV radiation of cm 2 (UV-A dose) for 60 seconds to be photo-cured. Next, the sample was thermally cured at 90°C for 2 hours. A light red light-emitting semiconductor NC-composite is available.

經官能化奈米晶體之合成: Synthesis of functionalized nanocrystals:

將0.24g碘化銅(CuI)與1.46g三醋酸銦(In(OAc)3)溶於50ml KarenzMTTM PE1中,將該混合物在230℃下加熱10分鐘。將在25ml KarenzMTTM PE1中之1.7g硬脂酸鋅(ZnSt2)混合物加到該核心溶液,並且將該混合物在230℃下加熱30分鐘,讓該混合物冷卻至室溫(RT)。可得一些紅色反應性膠狀半導體奈米晶體(CuInS/ZnS-KarenzMTTM PE1)。 0.24 g of copper iodide (CuI) and 1.46 g of indium triacetate (In(OAc) 3 ) were dissolved in 50 ml of KarenzMT PE1, and the mixture was heated at 230° C. for 10 minutes. A mixture of 1.7 g of zinc stearate (ZnSt 2 ) in 25 ml KarenzMT PE1 was added to the core solution, and the mixture was heated at 230° C. for 30 minutes, and the mixture was allowed to cool to room temperature (RT). Some red reactive colloidal semiconductor nanocrystals (CuInS/ZnS-KarenzMT TM PE1) are available.

Claims (21)

一種反應性膠狀奈米晶體,其包含:(a)一包含一金屬或一半導體化合物或其混合物之核心;以及(b)至少一聚硫醇配位基,其中,該核心為至少一聚硫醇配位基所包圍,其中包含金屬或半導體化合物之該核心係選自由硫化銦銅(CuInS)、硫硒化銦銅(CuInSeS)、硫硒化銦鋅銅(CuZnInSeS)、硫化銦鋅銅(CuZnInS)、銅:硫化銦鋅(Cu:ZnInS)、硫化銦銅/硫化鋅(CuInS/ZnS)、銅:硫化銦鋅/硫化鋅(Cu:ZnInS/ZnS)、硫硒化銦銅/硫化鋅(CuInSeS/ZnS)所組成之群組。 A reactive colloidal nanocrystal comprising: (a) a core comprising a metal or a semiconductor compound or a mixture thereof; and (b) at least one polythiol ligand, wherein the core is at least one poly Surrounded by thiol ligands, the core containing metal or semiconductor compound is selected from indium copper sulfide (CuInS), indium copper sulfide selenide (CuInSeS), indium zinc copper sulfide selenide (CuZnInSeS), indium zinc sulfide copper (CuZnInS), copper: indium zinc sulfide (Cu: ZnInS), indium copper sulfide/zinc sulfide (CuInS/ZnS), copper: indium zinc sulfide/zinc sulfide (Cu: ZnInS/ZnS), indium copper sulfide selenide/sulfide A group of zinc (CuInSeS/ZnS). 根據申請專利範圍第1項所述之反應性膠狀奈米晶體,其中該包含一金屬或半導體化合物或其混合物之核心係由選自週期表之一族或多種不同族之組合之元素所組成。 The reactive colloidal nanocrystal according to item 1 of the patent application range, wherein the core comprising a metal or semiconductor compound or a mixture thereof is composed of elements selected from one group or a combination of multiple different groups of the periodic table. 根據申請專利範圍第1項或第2項所述之反應性膠狀奈米晶體,其中該核心包含一核心與至少一單層或多層殼,或其中該核心包含一核心與至少二單層與/或多層殼。 The reactive colloidal nanocrystal according to item 1 or 2 of the patent application scope, wherein the core comprises a core and at least one single-layer or multilayer shell, or wherein the core comprises a core and at least two single-layer and /Or multiple shells. 根據申請專利範圍第1項或第2項所述之反應性膠狀奈米晶體,其中該金屬或半導體化合物係選自第IV族之一或多種元素;選自第II與VI族之一或多種元素;選自第III與V族之一或多種元素;選自第IV與VI族之一或多種元素;選自第I與III與VI族之一或多種元素;或其組合之組合。 The reactive colloidal nanocrystal according to item 1 or 2 of the patent application scope, wherein the metal or semiconductor compound is one or more elements selected from group IV; selected from one of groups II and VI or Multiple elements; one or more elements selected from Groups III and V; one or more elements selected from Groups IV and VI; one or more elements selected from Groups I and III and VI; or combinations of combinations thereof. 根據申請專利範圍第1項或第2項所述之反應性膠狀奈米晶體,其中該聚硫醇配位基具有從2至20之官能性(functionality)。 The reactive colloidal nanocrystal according to item 1 or 2 of the patent application scope, wherein the polythiol ligand has a functionality of from 2 to 20. 根據申請專利範圍第1項或第2項所述之反應性膠狀奈米晶體,其中該聚硫醇配位基具有從2至10之官能性(functionality)。 The reactive colloidal nanocrystal according to Item 1 or Item 2 of the patent application range, wherein the polythiol ligand has a functionality of from 2 to 10. 根據申請專利範圍第1項或第2項所述之反應性膠狀奈米晶體,其中該聚硫醇配位基具有從2至8之官能性(functionality)。 The reactive colloidal nanocrystal according to item 1 or 2 of the patent application scope, wherein the polythiol ligand has a functionality of from 2 to 8. 根據申請專利範圍第1項或第2項所述之反應性膠狀奈米晶體,其中該至少一聚硫醇配位基係選自由數種一級硫醇、數種二級硫醇與其混合物所組成之群組。 The reactive colloidal nanocrystal according to item 1 or item 2 of the patent application scope, wherein the at least one polythiol ligand is selected from the group consisting of several primary thiols, several secondary thiols and mixtures thereof Formed into groups. 根據申請專利範圍第8項所述之反應性膠狀奈米晶體,其中該至少一多官能聚硫醇配位基係選自由季戊四醇 四(3-丁酸氫硫酯)(pentaerythritol tetrakis(3-mercaptobutylate))、季戊四醇 四-3-丙酸氫硫酯(pentaerythritol tetra-3-mercaptopropionate)、三羥甲基丙烷三(3-丙酸氫硫酯)(trimethylolpropane tri(3-mercaptopropionate))、參[2-(3-氫硫基丙醯基氧基)乙基]異三聚氰酸酯(tris[2-(3-mercaptopropionyloxy)ethyl]isocyanurate)、雙季戊四醇六(3-丙酸氫硫酯)(dipentaerythritol hexakis(3-mercaptopropionate))、經乙氧基化-三羥甲基丙烷 三-3-丙酸氫硫酯(ethoxilated-trimethylolpropan tri-3-mercaptopropionate)、氫硫基功能之甲基烷基矽氧聚合物(mercapto functional methylalkyl silicone polymer)與其混合物所組成之群組。 The reactive colloidal nanocrystal according to item 8 of the patent application scope, wherein the at least one multifunctional polythiol ligand is selected from pentaerythritol tetrakis (3- mercaptobutylate)), pentaerythritol tetra-3-mercaptopropionate, trimethylolpropane tri(3-mercaptopropionate), ginseng[ 2-(3-Hydroxythiopropionyloxy)ethyl]isocyanurate (tris[2-(3-mercaptopropionyloxy)ethyl]isocyanurate), dipentaerythritol hexakis(3-propionate thiosulfate) (dipentaerythritol hexakis (3-mercaptopropionate)), ethoxylated-trimethylolpropane tri-3-propionate thioester (ethoxilated-trimethylolpropan tri-3-mercaptopropionate), methylthio functional methyl alkyl Silicone polymer (mercapto functional methylalkyl silicone polymer) and its mixture. 一種製備一根據申請專利範圍第1項至第9項中任一項所述之反應性膠狀奈米晶體之程序,其包含下列步驟:(1)混合至少一金屬或半導體化合物與至少一聚硫醇配位基,以形成一反應性膠狀奈米晶體。 A process for preparing a reactive colloidal nanocrystal according to any one of patent application items 1 to 9, which includes the following steps: (1) mixing at least one metal or semiconductor compound with at least one polymer Thiol ligands to form a reactive colloidal nanocrystal. 一種奈米晶體合成物,其包含; (a)一些根據申請專利範圍第1項至第9項中任一項所述之反應性膠狀奈米晶體,以及(b)一聚合物基材,其中該些反應性膠狀奈米晶體係與該聚合物基材共價聯結。 A nanocrystalline composition, which contains; (a) some reactive colloidal nanocrystals according to any one of claims 1 to 9, and (b) a polymer substrate, wherein the reactive colloidal nanocrystals The system is covalently linked to the polymer substrate. 根據申請專利範圍第11項所述之奈米晶體合成物,其中該聚合物基材係由選自由丙烯酸酯類(acrylates)、甲基丙烯酸酯類(methacrylates)、丙烯醯胺類(acrylamides)、甲基丙烯醯胺類(methacrylamides)、馬來醯亞胺類(maleimides)、雙馬來醯亞胺類(bismaleimides)、含單體與/或寡聚體之烯類(alkene containing monomers and/or oligomers)、含單體與/或寡聚體之炔類(alkyne containing monomers and/or oligomers)、含單體與/或寡聚體之乙烯醚類(vinylether containing monomers and/or oligomers)、含單體與/或寡聚體之環氧樹脂(epoxy containing monomers and/or oligomers)、含單體與/或寡聚體之環氧丙烷(oxatane containing monomers and/or oligomers)、含單體與/或寡聚體之氮丙啶(aziridine containing monomers and/or oligomers)、異氰酸酯類(isocyanates)、異硫氰酸酯類(isothiocyanates)與其混合物所組成之群組之單體與/或寡聚體所形成。 According to the nanocrystalline composition described in item 11 of the patent application range, the polymer substrate is selected from the group consisting of acrylates, methacrylates, acrylamides, Methacrylamides, maleimides, bismaleimides, alkene containing monomers and/or oligomers oligomers), alkyne containing monomers and/or oligomers, vinylether containing monomers and/or oligomers, monomers and/or oligomers Epoxy resin containing monomers and/or oligomers, oxatane containing monomers and/or oligomers, monomer containing and/or oligomers Oligomeric aziridine containing monomers and/or oligomers, isocyanates, isothiocyanates and mixtures of monomers and/or oligomers . 根據申請專利範圍第11項或第12項所述之奈米晶體合成物,其包含該合成物之重量從0.01%至99.99%之反應性膠狀奈米晶體。 The nanocrystal composition according to item 11 or 12 of the patent application scope, which comprises reactive colloidal nanocrystals with a weight of the composition from 0.01% to 99.99%. 根據申請專利範圍第11項或第12項所述之奈米晶體合成物,其包含該合成物之重量從10%至50%之反應性膠狀奈米晶體。 The nanocrystal composition according to item 11 or 12 of the patent application scope, which comprises reactive colloidal nanocrystals having a weight of the composition of from 10% to 50%. 根據申請專利範圍第11項或第12項所述之奈米晶體合成物, 其包含該合成物之重量從20%至40%之反應性膠狀奈米晶體。 According to the nanocrystalline composition described in Item 11 or Item 12 of the patent application scope, It contains reactive colloidal nanocrystals from 20% to 40% by weight of the composition. 根據申請專利範圍第11項或第12項所述之奈米晶體合成物,其包含該合成物之重量從0.01%至99.99%之聚合物基材。 The nanocrystalline composition according to item 11 or 12 of the patent application scope, which comprises a polymer substrate with a weight of the composition from 0.01% to 99.99%. 根據申請專利範圍第11項或第12項所述之奈米晶體合成物,其包含該合成物之重量從50%至90%之聚合物基材。 The nanocrystalline composition according to item 11 or 12 of the patent application scope, which comprises a polymer substrate with a weight of the composition from 50% to 90%. 根據申請專利範圍第11項或第12項所述之奈米晶體合成物,其包含該合成物之重量從60%至80%之聚合物基材。 The nanocrystalline composition according to item 11 or 12 of the patent application scope, which comprises a polymer substrate with a weight of the composition from 60% to 80%. 一種製備根據申請專利範圍第11項至第18項中任一項所述之奈米晶體合成物之程序,其包含下列步驟:(1)添加根據申請專利範圍第1項至第9項中任一項所述之反應性膠狀奈米晶體;(2)添加單體與/或寡聚體以形成該聚合物基材,並且混合;並(3)以UV光與/或電子束與/或溫度固化。 A process for preparing a nanocrystalline composition according to any one of items 11 to 18 of the patent application scope, which includes the following steps: (1) Add any one of the items 1 to 9 according to the patent application scope One item of reactive colloidal nanocrystals; (2) adding monomers and/or oligomers to form the polymer substrate and mixing; and (3) using UV light and/or electron beam and/ Or temperature curing. 一種包含一根據申請專利範圍第11項至第18項中任一項所述之奈米晶體合成物之產品,其中該產品係選自由一顯示裝置(display device)、一發光裝置(light emitting device)、一光伏電池(photovoltaic cell)、一光偵測器(photodetector)、一能量轉換裝置(energy converter device)、一雷射(laser)、一感測器(sensor)、一熱電裝置(thermoelectric device)、一防偽油墨(security ink)與於催化或生醫應用所組成之群組。 A product comprising a nanocrystalline composition according to any one of claims 11 to 18, wherein the product is selected from a display device and a light emitting device ), a photovoltaic cell (photovoltaic cell), a photodetector (photodetector), an energy converter (energy converter device), a laser (laser), a sensor (sensor), a thermoelectric device (thermoelectric device) ), a security ink and a group consisting of catalytic or biomedical applications. 一種根據申請專利範圍第11項至第18項中任一項所述之奈米晶體合成物之用途,其係做為光激發光(photoluminescence)或電激發光(electroluminescence)之來源。 A use of the nanocrystal composition according to any one of items 11 to 18 of the patent application scope as a source of photoluminescence or electroluminescence.
TW104125369A 2014-08-11 2015-08-05 Reactive colloidal nanocrystals and nanocrystal composites TWI690631B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14180543.2 2014-08-11
EP14180543 2014-08-11

Publications (2)

Publication Number Publication Date
TW201612369A TW201612369A (en) 2016-04-01
TWI690631B true TWI690631B (en) 2020-04-11

Family

ID=51300620

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104125369A TWI690631B (en) 2014-08-11 2015-08-05 Reactive colloidal nanocrystals and nanocrystal composites

Country Status (7)

Country Link
US (1) US20170152437A1 (en)
EP (1) EP3189118B1 (en)
JP (1) JP2017533875A (en)
KR (1) KR20170042580A (en)
CN (1) CN106574178B (en)
TW (1) TWI690631B (en)
WO (1) WO2016023821A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019508549A (en) * 2016-02-16 2019-03-28 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Nanocrystalline epoxythiol (meth) acrylate composite and nanocrystalline epoxythiol (methacrylate) composite film
EP3208291A1 (en) * 2016-02-16 2017-08-23 Henkel AG & Co. KGaA Nanocrystal epoxy thiol composite material and nanocrystal epoxy thiol composite film
JP6866659B2 (en) * 2017-01-31 2021-04-28 大日本印刷株式会社 Light wavelength conversion composition, light wavelength conversion particles, light wavelength conversion member, light wavelength conversion sheet, backlight device, and image display device
CN111051469B (en) * 2017-06-05 2024-06-04 昭荣化学工业株式会社 Acid stabilization of quantum dot-resin concentrates and premixes
EP3444317B1 (en) * 2017-08-16 2020-07-08 Suzhou Rainbow Materials Co., Ltd. Epoxy-polythiourethane matrix containing nanocrystals
EP3444316A1 (en) * 2017-08-16 2019-02-20 Henkel AG & Co. KGaA Polythiourethane (meth)acrylate matrix containing nanocrystals
KR20200076770A (en) * 2018-12-19 2020-06-30 삼성디스플레이 주식회사 Compound for light conversion layer, light conversion layer and electronic device including the same
US20220325174A1 (en) * 2019-05-31 2022-10-13 Shoei Chemical Inc. Semiconductor nanoparticle complex
US20220315833A1 (en) * 2019-05-31 2022-10-06 Shoei Chemical Inc. Semiconductor nanoparticle complex composition, dilution composition, semiconductor nanoparticle complex cured membrane, semiconductor nanoparticle complex patterning membrane, display element, and semiconductor nanoparticle complex dispersion liquid
CN112457434B (en) * 2020-09-25 2023-03-31 苏州润邦半导体材料科技有限公司 Nanocrystal composite material and preparation method and application thereof
KR20230074177A (en) 2020-09-28 2023-05-26 나노시스, 인크. Thermally stable polythiol ligands with pendant solubilizing moieties
KR102613011B1 (en) * 2020-12-23 2023-12-13 주식회사 신아티앤씨 Nano-semiconductor particles comprising ligands formed of a compound comprising an ester group and a polythiol group, a self-luminous photosensitive resin composition and a color filter comprising the nano-semiconductor particles, a photo-conversion film and a backlight for a display device unit comprising the nano-semiconductor particles, and method for preparing the compound
CN113861982A (en) * 2021-09-02 2021-12-31 南京贝迪新材料科技股份有限公司 Quantum dot nanostructure, optical conversion film and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116448A (en) * 2008-11-11 2010-05-27 Tokai Kogaku Kk Method for producing fluorescent plastic article
CN103203022A (en) * 2013-04-07 2013-07-17 浙江大学 Compound of nanoparticles and polythiol copolymer and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080231170A1 (en) * 2004-01-26 2008-09-25 Fukudome Masato Wavelength Converter, Light-Emitting Device, Method of Producing Wavelength Converter and Method of Producing Light-Emitting Device
US7857993B2 (en) * 2004-09-14 2010-12-28 Ut-Battelle, Llc Composite scintillators for detection of ionizing radiation
US8030843B2 (en) * 2008-07-14 2011-10-04 Wisys Technology Foundation Quantum dot phosphors for solid-state lighting devices
GB0820101D0 (en) * 2008-11-04 2008-12-10 Nanoco Technologies Ltd Surface functionalised nanoparticles
US20120001217A1 (en) * 2010-07-01 2012-01-05 Samsung Electronics Co., Ltd. Composition for light-emitting particle-polymer composite, light-emitting particle-polymer composite, and device including the light-emitting particle-polymer composite
GB201116517D0 (en) * 2011-09-23 2011-11-09 Nanoco Technologies Ltd Semiconductor nanoparticle based light emitting materials
WO2013057702A1 (en) * 2011-10-20 2013-04-25 Koninklijke Philips Electronics N.V. Light source with quantum dots
JP5790570B2 (en) * 2012-03-29 2015-10-07 コニカミノルタ株式会社 Semiconductor nanoparticle assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116448A (en) * 2008-11-11 2010-05-27 Tokai Kogaku Kk Method for producing fluorescent plastic article
CN103203022A (en) * 2013-04-07 2013-07-17 浙江大学 Compound of nanoparticles and polythiol copolymer and preparation method thereof

Also Published As

Publication number Publication date
EP3189118B1 (en) 2019-12-11
KR20170042580A (en) 2017-04-19
CN106574178B (en) 2020-05-19
CN106574178A (en) 2017-04-19
TW201612369A (en) 2016-04-01
JP2017533875A (en) 2017-11-16
WO2016023821A1 (en) 2016-02-18
EP3189118A1 (en) 2017-07-12
US20170152437A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
TWI690631B (en) Reactive colloidal nanocrystals and nanocrystal composites
JP6537667B2 (en) Surface modified nanoparticles
US11021651B2 (en) Thiolated hydrophilic ligands for improved quantum dot reliability in resin films
CN107922832B (en) Perfluoroether stabilized quantum dots
EP3668916A1 (en) Peg-based ligands with enhanced dispersibility and improved performance
CN106164219A (en) Comprise the composite nanoparticle of thioether ligand
Yoon et al. Fabrication of highly transparent and luminescent quantum dot/polymer nanocomposite for light emitting diode using amphiphilic polymer-modified quantum dots
TWI690630B (en) Clustered nanocrystal networks and nanocrystal composites
CN108291138B (en) Copolymerized stable carrier fluids for nanoparticles
WO2021081380A1 (en) Perovskite nanocrystal compositions
KR102690602B1 (en) Homogeneous anaerobic stable quantum dot concentrate
WO2018208807A1 (en) Silicone copolymers as emulsification additives for quantum dot resin premix
CN114096639A (en) Method for preparing surface-stabilized quantum dots and surface-stabilized quantum dots obtained by the method
Trung et al. Preparation and characterization of silicone resin nanocomposite containing CdSe/ZnS quantum dots
Chou et al. Quantum Dot–Acrylic Acrylate Oligomer Hybrid Films for Stable White Light-Emitting Diodes
Trung et al. Enhanced fluorescence, morphological and thermal properties of CdSe/ZnS quantum dots incorporated in silicone resin
TW201842164A (en) Additive stabilized composite nanoparticles