TWI690483B - Ozone gas generation system and ozone gas generation method - Google Patents

Ozone gas generation system and ozone gas generation method Download PDF

Info

Publication number
TWI690483B
TWI690483B TW108106054A TW108106054A TWI690483B TW I690483 B TWI690483 B TW I690483B TW 108106054 A TW108106054 A TW 108106054A TW 108106054 A TW108106054 A TW 108106054A TW I690483 B TWI690483 B TW I690483B
Authority
TW
Taiwan
Prior art keywords
ozone
discharge
gas
generator
concentration
Prior art date
Application number
TW108106054A
Other languages
Chinese (zh)
Other versions
TW202003372A (en
Inventor
佐藤貴翔
田畑要一郎
Original Assignee
日商東芝三菱電機產業系統股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=68617269&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI690483(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日商東芝三菱電機產業系統股份有限公司 filed Critical 日商東芝三菱電機產業系統股份有限公司
Publication of TW202003372A publication Critical patent/TW202003372A/en
Application granted granted Critical
Publication of TWI690483B publication Critical patent/TWI690483B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

An object of the present invention is to provide an ozone gas generation system capable of outputting high concentration ozone to the outside with the system configuration minimized. The ozone gas generation system (1000) according to the present invention includes an ozone generator (200) having a plurality of discharge cells stacked in multiple stages, and the ozone generator (200) satisfies the condition (1) of “the discharge area so of the discharge surface of each of the plurality of discharge cells is in the range of about 30 cm2 to 160 cm2", the condition (2) of “the source gas flow rate qo of the source gas supplied to the discharge space of each of the plurality of discharge cells is in the range of 0.5 L/min to 2.5 L/min”, and the condition (3) of “the discharge power density J in the discharge space of each of the plurality of discharge cells is in the range of 2.5 W/cm2 to 6 W/cm2”.

Description

臭氧氣體產生系統及臭氧氣體產生方法 Ozone gas generating system and ozone gas generating method

本發明係關於藉由臭氧用電源與利用放電現象之臭氧產生器的組構來輸出高濃度臭氧氣體的臭氧氣體產生系統。特別是關於將放電間隙長d訂在數十μm至數百μm範圍的短間隙,以使用放電的臭氧產生器與臭氧用電源的組合,即可輸出高濃度臭氧氣體或高產生量之臭氧氣體的臭氧氣體產生系統。 The present invention relates to an ozone gas generating system that outputs high-concentration ozone gas through the configuration of an ozone power supply and an ozone generator that utilizes a discharge phenomenon. In particular, the discharge gap length d is set to a short gap in the range of tens of μm to hundreds of μm, and the combination of the ozone generator and the power supply for ozone can be used to output high-concentration ozone gas or high-generation ozone gas Ozone gas generation system.

一般而言,放電式臭氧氣體產生裝置係由:進行臭氧氣體產生用電源之供給的臭氧用電源、與內建有臭氧氣體生成用放電室(臭氧產生室)之臭氧產生器的組合所構成。 In general, a discharge-type ozone gas generating device is composed of a combination of an ozone power supply for supplying an ozone gas generating power supply and an ozone generator having a built-in ozone gas generating discharge chamber (ozone generating chamber).

放電室具有隔著介電質的放電空間,藉由從臭氧用電源對臭氧產生器施加高電壓式臭氧產生用交流電壓,即可在放電室的放電空間內激發介電質障壁放電(無聲放電)。產生介電質障壁放電的放電空間中,構成有:採用添加有臭氧氣體生成用觸媒氣體的氧氣作為原料氣體的放電產生裝置、或者供給不添加觸媒氣體的高純度氧氣作為原料氣體,而在上述介電質障壁放電面塗佈臭氧氣體生成用光觸媒材料的放電產生裝置等兩種裝 置。藉由分別對供給到這兩種放電產生裝置的原料氣體施加放電能量,即可藉由觸媒生成高濃度的臭氧氣體。 The discharge chamber has a discharge space separated by a dielectric substance. By applying a high-voltage type ozone generating AC voltage to the ozone generator from a power supply for ozone, a dielectric barrier discharge (silent discharge) can be excited in the discharge space of the discharge chamber ). The discharge space where the dielectric barrier discharge is generated includes: a discharge generating device using oxygen gas added with a catalyst gas for ozone gas generation as a raw material gas, or supplying high-purity oxygen gas without added catalyst gas as a raw material gas, and Two types of devices, such as a discharge generator for applying a photocatalyst material for ozone gas generation on the discharge surface of the dielectric barrier Set. By separately applying discharge energy to the raw material gases supplied to the two types of discharge generating devices, high-concentration ozone gas can be generated by the catalyst.

將放電室生成的臭氧氣體加以收集,且自臭氧產生器取出預定臭氧濃度的臭氧氣體的構成即為臭氧氣體產生裝置。用於臭氧氣體產生裝置的臭氧產生器有例如專利文獻1所揭露的臭氧產生器。 The ozone gas generated in the discharge chamber is collected, and the ozone gas with a predetermined ozone concentration is taken out from the ozone generator to form an ozone gas generating device. Examples of the ozone generator used in the ozone gas generating apparatus are disclosed in Patent Document 1.

各種先前技術文獻所揭露的臭氧產生器當然是以添加用以生成臭氧氣體的觸媒氣體、或者在放電面塗佈光觸媒材料的臭氧產生器為對象。後述的發明要素中,有關在原料氣體中添加了觸媒氣體的原料氣體或者在放電面塗佈光觸媒材料的臭氧產生器的明確陳述雖已省略,但當然係以施有上述措施的臭氧產生器為前提作說明。 The ozone generators disclosed in various prior art documents are of course aimed at ozone generators which add catalyst gas for generating ozone gas or apply photocatalyst material on the discharge surface. Among the elements of the invention described later, the explicit statement about the ozone generator in which the catalyst gas is added to the source gas or the photocatalyst material is applied to the discharge surface is omitted, but of course it is an ozone generator that applies the above measures Explain as a premise.

再者,臭氧產生器在每單位時間生成的總臭氧生成量Y(g/h),係為和供給到放電室之放電空間的原料氣體之總氣體流量Q(L/min)及投入到臭氧產生器的總放電電力DW(W)相對應的量,其滿足下式(1)的條件。 Furthermore, the total ozone generation amount Y (g/h) generated by the ozone generator per unit time is the total gas flow rate Q (L/min) of the raw material gas supplied to the discharge space of the discharge chamber and the ozone input The amount corresponding to the total discharge power DW(W) of the generator, which satisfies the condition of the following formula (1).

Y=Q‧C...(1) Y=Q‧C...(1)

另外,式(1)中的"C"為在放電室生成的臭氧生成濃度(g/m3)。 In addition, "C" in the formula (1) is the ozone generation concentration (g/m 3 ) generated in the discharge cell.

意即,臭氧產生器生成的總臭氧生成量Y(g/h)係和生成的臭氧生成濃度C(g/m3)與所供給的原料氣體之總氣體流量Q(L/min)之積對應的值。 That is, the total ozone generation amount Y(g/h) generated by the ozone generator is the product of the generated ozone generation concentration C(g/m 3 ) and the total gas flow rate Q(L/min) of the supplied raw material gas The corresponding value.

附帶一提,在放電室生成的臭氧生成濃度C(g/m3)係和每單位時間注入到單位氣體體積V(cm3)的放電電力DW(watt=joule‧sec.)相對應。另外,在臭氧氣體產生器整體中,只有單位氣體體積V(cm3)滿足下式(2)。 Incidentally, the ozone generation concentration C (g/m 3 ) generated in the discharge chamber corresponds to the discharge power DW (watt=joule‧sec.) injected into the unit gas volume V (cm 3 ) per unit time. In addition, in the entire ozone gas generator, only the unit gas volume V (cm 3 ) satisfies the following formula (2).

V(cm3/sec)=1000‧Q/60...(2) V(cm 3 /sec)=1000‧Q/60...(2)

意即,在放電室生成的臭氧生成濃度C(g/m3)係由和注入到臭氧產生室之單位氣體體積V(cm3)的放電能量(joule/cm3)相當的比電力值DW/Q(W‧min/L)來決定。 That is, the ozone generation concentration C (g/m 3 ) generated in the discharge chamber is determined by the specific power value DW corresponding to the discharge energy (joule/cm 3 ) per unit gas volume V (cm 3 ) injected into the ozone generation chamber /Q(W‧min/L) to decide.

因而,臭氧生成濃度C(g/m3)會和比電力值DW/Q(W‧min/L)成比例地增高生成濃度。臭氧生成濃度C(g/m3)係以下式(3)來表示。 Therefore, the ozone generation concentration C (g/m 3 ) will increase the generation concentration in proportion to the specific power value DW/Q (W‧min/L). The ozone generation concentration C (g/m 3 ) is expressed by the following formula (3).

C(g/m3)=A‧DW/Q...(3) C(g/m 3 )=A‧DW/Q...(3)

另外,式(3)中,"A(g/J)"為表示藉放電室提供的每單位放電能量之臭氧生成能力的固有比例常數。屬於固有值的"A(g/J)"係表示可藉由因電子碰撞或放電導致的各種觸媒化學反應而生成臭氧的能力值。若更詳細說明,即"A(g/J)"可說是依存於放電形態、氣體種類、放電面材料、放電間隙長d的固有值。 In addition, in the formula (3), "A(g/J)" is an inherent proportional constant representing the ozone generating capacity per unit discharge energy provided by the discharge chamber. The "A(g/J)" which belongs to the intrinsic value means the ability value that can generate ozone by various catalyst chemical reactions caused by electron collision or discharge. If described in more detail, "A(g/J)" can be said to depend on the inherent value of the discharge form, gas type, discharge surface material, and discharge gap length d.

附帶一提,相對於每單位時間生成的總臭氧生成量Y(g/h),生成式(3)所導出的臭氧生成濃度C的放電室中,滯留在放電空間內的臭氧量Ys(g)係以下式(4)表示。 Incidentally, with respect to the total amount of ozone generated per unit time Y (g/h), the amount of ozone remaining in the discharge space in the discharge chamber that generates the ozone generation concentration C derived from equation (3) Ys (g ) Is represented by the following formula (4).

Ys(g)=C‧d‧S/1000000...(4) Ys(g)=C‧d‧S/1000000...(4)

式(4)中的"d"為放電間隙長(cm),"S"為臭氧產生器的總放電面積(cm2)。滯留在放電室之放電空間內的臭氧量Ys,不僅是可生成臭氧的能力值A或比電力值DW/Q值,也是由屬於放電室構造因子的放電間隙長d、總放電面積S來決定的固定值,若放電室構造決定即無法改變的參數值。 "D" in equation (4) is the discharge gap length (cm), and "S" is the total discharge area (cm 2 ) of the ozone generator. The amount of ozone Ys remaining in the discharge space of the discharge chamber is not only the value A of generating ozone or the specific power value DW/Q value, but also determined by the length d of the discharge gap and the total discharge area S belonging to the structural factor of the discharge chamber The fixed value of the parameter value cannot be changed if the structure of the discharge chamber is determined.

第7圖為顯示以往的臭氧產生裝置中取出臭氧濃度Ct之特性相對於比電力值DW/Q的曲線圖。 FIG. 7 is a graph showing the characteristic of the extracted ozone concentration Ct with respect to the specific power value DW/Q in the conventional ozone generating device.

另外,臭氧產生裝置的取出臭氧量Yt係和取出臭氧濃度Ct與供給的氣體流量Q之積大致對應之值。意即,在可能的範圍內供給最大氣體 流量Q的原料氣體,從第7圖所示的取出臭氧濃度Ct值與比電力值DW/Q值,即可求出臭氧產生裝置的取出臭氧量Yt(=Ct‧Q)的最大值,也可求得所注入的放電電力DW(=比電力值(DW/Q)‧Q)的最大值。 In addition, the extracted ozone amount Yt of the ozone generating device and the product of the extracted ozone concentration Ct and the supplied gas flow rate Q roughly correspond to values. This means that the maximum gas supply is possible The raw material gas of flow rate Q can be obtained from the ozone concentration Ct value and specific power value DW/Q value shown in Figure 7 to obtain the maximum value of the ozone extraction amount Yt (=Ct‧Q) of the ozone generator. The maximum value of the injected discharge power DW (=specific power value (DW/Q)‧Q) can be obtained.

臭氧氣體產生裝置中,會產生依式(3)、式(4)算出的臭氧生成濃度C、臭氧量Ys的臭氧。另一方面,如第7圖所示,利用放電現象的臭氧氣體產生裝置中,取出臭氧濃度Ct相對於臭氧產生器之比電力值DW/Q之特性為特性8000a。特性8000a中,表示取出臭氧濃度Ct之特性相對於低比電力值DW/Q的切線(兩點鏈線)即表示相當於滯留在各放電室的臭氧量Ys的臭氧生成濃度C。 In the ozone gas generating device, the ozone generating concentration C and the ozone amount Ys calculated according to equations (3) and (4) are generated. On the other hand, as shown in FIG. 7, in the ozone gas generating device using the discharge phenomenon, the characteristic of the specific power value DW/Q of the ozone concentration Ct with respect to the ozone generator is characteristic 8000a. In the characteristic 8000a, a tangent (two-dot chain line) showing the characteristic of taking out the ozone concentration Ct with respect to the low specific power value DW/Q means the ozone generation concentration C corresponding to the ozone amount Ys remaining in each discharge cell.

另一方面,高比電力值DW/Q的取出臭氧濃度Ct為從各放電室生成的臭氧生成濃度C(兩點鏈線)扣除各放電室內生成之臭氧的分解濃度Cd而得之值。亦即,取出臭氧濃度Ct係表示從臭氧氣體產生裝置取出的實際臭氧濃度。 On the other hand, the extracted ozone concentration Ct of the high specific power value DW/Q is a value obtained by subtracting the decomposition concentration Cd of ozone generated in each discharge chamber from the ozone generation concentration C (two-dot chain line) generated in each discharge chamber. That is, the extracted ozone concentration Ct represents the actual ozone concentration extracted from the ozone gas generating device.

此處,針對使用高純度氧氣作為原料氣體的臭氧產生器加以探討。這種臭氧產生器中,相對於比電力值DW/Q(W‧min/L)來決定以生成臭氧濃度特性(兩點鏈線)表示之臭氧生成能力的主要原因,可認為是專利文獻2至專利文獻6所示之放電室的放電空間產生的介電質障壁放電(無聲放電)。如各專利文獻所示,因放電空間中的電子碰撞導致的氧原子解離量非常少,以此電子碰撞為原因的臭氧生成能力在生成高濃度臭氧之中不過是極少一部分。 Here, the ozone generator using high-purity oxygen as a raw material gas is considered. In this type of ozone generator, the main reason for determining the ozone generating capacity expressed by the ozone generating characteristic (two-dot chain line) with respect to the specific power value DW/Q (W‧min/L) is considered to be Patent Document 2 Dielectric barrier discharge (silent discharge) generated in the discharge space of the discharge cell shown in Patent Document 6. As shown in each patent document, the amount of dissociation of oxygen atoms due to electron collision in the discharge space is very small, and the ozone generation ability due to electron collision is only a very small part of the generation of high-concentration ozone.

亦即,將總放電電力DW供給到臭氧產生器,並在放電室的放電空間發生介電質障壁放電時,藉由「所供給的原料氣體所含的微量氮氣的觸媒作用」、或者「配設在構成放電室的電極面整面的光觸媒機能」,使氧原子的解離量增多的作用,即可生成高濃度的臭氧氣體。 That is, when the total discharge power DW is supplied to the ozone generator and a dielectric barrier discharge occurs in the discharge space of the discharge chamber, by the "catalyst effect of trace nitrogen contained in the supplied raw material gas", or " The photocatalyst function arranged on the entire surface of the electrode constituting the discharge chamber" can increase the dissociation amount of oxygen atoms to generate high-concentration ozone gas.

依此現象,因微少氮氣量所致的氧原子解離能力或配設在電極面的光觸媒之氧原子解離能力即是發生臭氧氣體的主要原因。 According to this phenomenon, the dissociation ability of oxygen atoms due to a small amount of nitrogen or the dissociation ability of oxygen atoms of the photocatalyst arranged on the electrode surface is the main cause of ozone gas.

關於放電室中生成的臭氧生成濃度C(g/m3),上述的氧原子解離能力越高,式(3)所示的A(g/J)值就越高,放電空間就可生產出越多量的臭氧氣體。 Regarding the ozone generation concentration C (g/m 3 ) generated in the discharge chamber, the higher the above oxygen atom dissociation ability, the higher the A (g/J) value shown in formula (3), and the discharge space can be produced The greater the amount of ozone gas.

此外,在放電室中,藉由注入放電能量(J),雖會生成其臭氧濃度係依從以A(g/J)為參數之式(3)的臭氧氣體,但所生成的臭氧氣體卻會同時在放電室內產生自我分解及因和放電氣體碰撞導致的分解。該放電室內的臭氧氣體自我分解及因和放電氣體碰撞導致分解之臭氧分解量總和係大於取出氛圍中通常的臭氧氣體自我分解量。 In addition, in the discharge chamber, by injecting discharge energy (J), although an ozone gas whose ozone concentration follows equation (3) with A(g/J) as a parameter is generated, the generated ozone gas will At the same time, self-decomposition and decomposition caused by collision with the discharge gas occur in the discharge chamber. The sum of the ozone gas self-decomposition in the discharge chamber and the ozone decomposition amount caused by the collision with the discharge gas is larger than the usual ozone gas self-decomposition amount in the extraction atmosphere.

這種情形意指,在放電空間內,和臭氧生成能力相比,因電子碰撞導致的氧原子解離占了很大比例。意即,這顯示出因放電電漿中的電子、離子、放電氣體的碰撞使所生成的臭氧解離而回復到氧的臭氧氣體分解量、及放電室內高濃度臭氧狀態的臭氧自我分解的臭氧分解量,較通常大氣中的臭氧分解量還大,故放電電漿中的臭氧分解量不能忽視。 This situation means that, in the discharge space, the dissociation of oxygen atoms due to electron collision accounts for a large proportion compared with the ozone generating ability. That is, this shows the amount of ozone gas decomposition that returns to oxygen due to the dissociation of the generated ozone due to the collision of electrons, ions, and discharge gas in the discharge plasma, and the ozone decomposition of ozone in the high concentration ozone state in the discharge chamber. The amount of ozone decomposition is greater than the amount of ozone in the atmosphere, so the amount of ozone decomposition in the discharge plasma cannot be ignored.

因此,各放電室內生成的臭氧氣體的分解濃度Cd也可認為是依存於所投入的總放電電力DW或總氣體流量Q的要素。 Therefore, the decomposition concentration Cd of the ozone gas generated in each discharge chamber can also be considered as an element that depends on the total discharge power DW or the total gas flow rate Q that is input.

第7圖所示的以往的臭氧氣體產生裝置中,若考量到裝置的實用環境,則可推想到原料氣體的總氣體流量Q必須在大約2.4L/min以上的氣體流量區,且冷卻臭氧產生器的冷卻溫度以設在5℃以上的限制條件較為理想。另外,冷卻上述臭氧產生器的冷卻溫度限制條件的上限也可推想到相對於常溫(20℃)設在30℃左右來運轉臭氧氣體產生裝置。 In the conventional ozone gas generating device shown in FIG. 7, if the practical environment of the device is considered, it can be inferred that the total gas flow rate Q of the raw material gas must be in the gas flow rate region of about 2.4 L/min or more, and cooling ozone generation The cooling temperature of the device is ideally set at the restriction condition above 5°C. In addition, it is also conceivable that the upper limit of the cooling temperature limit condition for cooling the ozone generator is set at about 30°C relative to the normal temperature (20°C) to operate the ozone gas generating device.

在上述限制條件下,即使設在高比電力值DW/Q(500W‧min/L附近)來提高取出臭氧濃度Ct,以往的臭氧氣體產生裝置也無法取得超過400g/m3的高濃度臭氧氣體。 Under the above restriction conditions, even if it is set at a high specific power value DW/Q (near 500W‧min/L) to increase the extracted ozone concentration Ct, the conventional ozone gas generating device cannot obtain high-concentration ozone gas exceeding 400g/m 3 .

先前技術文獻Prior technical literature 專利文獻Patent Literature

[專利文獻1]日本專利第3607890號公報 [Patent Document 1] Japanese Patent No. 3607890

[專利文獻2]日本專利第3642572號公報 [Patent Document 2] Japanese Patent No. 3642572

[專利文獻3]日本專利第4953814號公報 [Patent Document 3] Japanese Patent No. 4953814

[專利文獻4]日本專利第5069800號公報 [Patent Document 4] Japanese Patent No. 5069800

[專利文獻5]日本專利第4825314號公報 [Patent Document 5] Japanese Patent No. 4825314

[專利文獻6]日本專利第4932037號公報 [Patent Document 6] Japanese Patent No. 4932037

以往的臭氧氣體產生裝置係由既有的臭氧用電源及既有放電室形狀的臭氧產生器所構成。 The conventional ozone gas generating device is composed of an existing power source for ozone and an existing ozone generator in the shape of a discharge chamber.

以往的臭氧氣體產生裝置中,若以原料氣體的總氣體流量Q在較大的大氣體流量區條件,將總放電電力DW提高,且設定在高比電力值DW/Q(500W‧min/L附近)時,在各放電室中,因相對於生成的臭氧生成濃度C,臭氧氣體產生裝置內的臭氧氣體分解量甚大,所以,會成為取出臭氧濃度Ct無法提高到預定濃度以上的狀態。 In the conventional ozone gas generating device, if the total gas flow rate Q of the raw material gas is in a large large gas flow rate region, the total discharge power DW is increased, and the high specific power value DW/Q (500W‧min/L Nearby), in each discharge chamber, the amount of ozone gas decomposed in the ozone gas generating device is very large with respect to the generated ozone generating concentration C, so that the extracted ozone concentration Ct cannot be increased to a predetermined concentration or more.

因此,以往的臭氧氣體產生裝置中,在取出臭氧濃度Ct上有其界限,可從臭氧氣體產生裝置取出的臭氧濃度係在大氣體流量區,有無法取出更高濃度的臭氧氣體的問題。 Therefore, in the conventional ozone gas generating device, there is a limit to the ozone concentration Ct that can be taken out. The ozone concentration that can be taken out from the ozone gas generating device is in a large gas flow area, and there is a problem that it is impossible to take out a higher concentration of ozone gas.

特別是,具有第7圖所示特性的以往的臭氧氣體產生裝置中,在相對於大氣體流量區之比電力值DW/Q的臭氧濃度特性上,無法取出超過400g/m3的高濃度(區域99a內的濃度)臭氧氣體。 In particular, in the conventional ozone gas generating device having the characteristics shown in FIG. 7, in the ozone concentration characteristic of the specific power value DW/Q with respect to the large gas flow rate region, it is impossible to take out a high concentration exceeding 400 g/m 3 ( Concentration in area 99a) ozone gas.

此外,在放電室方面,即使提高放電投入電力,增加臭氧生成量,臭氧氣體的分解量卻反而變大,有取出的臭氧濃度無法提高的問題。再者,為了提高取出臭氧量Yt而提升放電投入電力,並增高放電電力密度時,也有負載施加電壓增高的問題。更且,設在更高頻率的交流輸出時,會有臭氧用電源無法穩定供給臭氧產生用交流電壓等電源控制上的放電電力密度受到限制的問題。 In addition, in the discharge chamber, even if the power input for the discharge is increased and the amount of ozone generated is increased, the decomposition amount of the ozone gas becomes larger, and there is a problem that the concentration of the extracted ozone cannot be increased. Furthermore, there is also a problem in that the voltage applied to the load increases when the discharge input power is increased in order to increase the ozone extraction amount Yt and the discharge power density is increased. Moreover, when the AC output is set at a higher frequency, there is a problem that the power supply for ozone cannot be stably supplied with an AC voltage for ozone generation, and the discharge power density in power supply control is limited.

為解決上述的問題,本發明之目的即係在提供可將系統構成抑制到最小必要限度,且可將高濃度的臭氧輸出到外部的臭氧氣體產生系統。 In order to solve the above-mentioned problems, an object of the present invention is to provide an ozone gas generation system that can suppress the system configuration to the minimum necessary level and can output high-concentration ozone to the outside.

本發明的臭氧氣體產生系統具備:臭氧產生器,具有隔著介電質配置在一對平板電極的放電室;及臭氧用電源,對前述臭氧產生器賦予臭氧產生用交流電壓,向前述臭氧產生器供給含氧的原料氣體,前述臭氧產生器係在前述放電室的放電空間產生介電質障壁放電,並從供給到前述放電空間的原料氣體生成臭氧氣體,且將該臭氧氣體輸出到外部,前述放電室包含多段層疊的複數個放電室,前述臭氧產生器係以滿足下列條件(1)及條件(2)為特徵。條件(1)及條件(2)係如下述。條件(1):前述複數個放電室之各個放電面的放電面積so係設定在30cm2以上未達160cm2的範圍; 條件(2):供給到前述複數個放電室各者之放電室之原料氣體的原料氣體流量qo係設定在0.5L/min以上未達2.5L/min的範圍。 The ozone gas generating system of the present invention includes: an ozone generator having a discharge chamber disposed on a pair of flat electrodes via a dielectric; and a power supply for ozone, which applies an ozone generating AC voltage to the ozone generator to generate the ozone The device supplies oxygen-containing raw material gas, the ozone generator generates a dielectric barrier discharge in the discharge space of the discharge chamber, generates ozone gas from the raw material gas supplied to the discharge space, and outputs the ozone gas to the outside, The discharge chamber includes multiple discharge chambers stacked in multiple stages. The ozone generator is characterized by satisfying the following conditions (1) and (2). The conditions (1) and (2) are as follows. Condition (1): discharge area of each discharge surface line so the plurality of discharge cells is set in 30cm 2 or more less than 160cm 2 range; Condition (2): the raw material supplied to the discharge by each of the plurality of discharge chambers chambers The raw material gas flow rate qo of the gas is set in the range of 0.5 L/min or more and not up to 2.5 L/min.

本發明的臭氧氣體產生系統係透過藉由滿足條件(1)及條件(2)來縮短各放電室放電空間的氣體滯留時間To,且可將因臭氧氣體和電子、離子、放電氣體的碰撞而產生的臭氧氣體分解量或放電室內生成之臭氧的自我臭氧分解量加以抑制。 The ozone gas generation system of the present invention shortens the gas residence time To in the discharge space of each discharge chamber by satisfying the condition (1) and the condition (2), and can reduce the collision of ozone gas with electrons, ions, and discharge gas. The amount of ozone gas generated or the self-ozonolysis of ozone generated in the discharge chamber is suppressed.

結果,本發明的臭氧氣體產生系統可達到能夠從臭氧產生器取出更高濃度之臭氧氣體的效果。 As a result, the ozone gas generating system of the present invention can achieve the effect of being able to take out a higher concentration of ozone gas from the ozone generator.

本發明之目的、特徵、面向、及優點,藉由以下的詳細說明及附圖即可更為明晰。 The purpose, features, aspects, and advantages of the present invention will be made clearer by the following detailed description and accompanying drawings.

1‧‧‧接地冷卻電極 1‧‧‧Earth cooling electrode

2a、2b‧‧‧介電質電極 2a, 2b ‧‧‧ dielectric electrode

3a、3b‧‧‧高壓電極 3a, 3b‧‧‧High voltage electrode

4a、4b‧‧‧絕緣板 4a, 4b‧‧‧Insulation board

5‧‧‧低壓冷卻板 5‧‧‧ Low-pressure cooling plate

6‧‧‧層疊室壓簧 6‧‧‧Layer compression spring

7‧‧‧層疊壓板 7‧‧‧Layer pressing plate

8‧‧‧層疊室壓桿 8‧‧‧Layer pressure bar

9‧‧‧歧管箱塊 9‧‧‧ Manifold box block

10‧‧‧基台 10‧‧‧Abutment

11‧‧‧產生器蓋 11‧‧‧ Generator cover

13‧‧‧間隔件 13‧‧‧ spacer

15‧‧‧開口部 15‧‧‧Opening

17‧‧‧輸出路徑 17‧‧‧Output path

21AC-DC‧‧‧轉換器電路部 21AC-DC‧‧‧Converter Circuit Department

22‧‧‧反向器電路部 22‧‧‧Inverter circuit

23‧‧‧限流反應器 23‧‧‧Restriction Reactor

24‧‧‧電源控制電路 24‧‧‧Power control circuit

25‧‧‧並聯共振用變壓器 25‧‧‧Parallel resonance transformer

91‧‧‧冷卻水輸出路徑 91‧‧‧ Cooling water output path

92‧‧‧臭氧氣體輸出路徑 92‧‧‧Ozone gas output path

93‧‧‧冷卻水輸入路徑 93‧‧‧ Cooling water input path

100‧‧‧臭氧用電源 100‧‧‧Ozone power supply

200‧‧‧臭氧產生器 200‧‧‧Ozone generator

1000‧‧‧臭氧氣體產生系統 1000‧‧‧Ozone gas generating system

HV‧‧‧高電壓端子 HV‧‧‧High voltage terminal

LV‧‧‧低電壓端子 LV‧‧‧Low voltage terminal

DW(W)‧‧‧總放電電力 DW(W)‧‧‧Total discharge power

GIN‧‧‧原料氣體 G IN ‧‧‧ Raw gas

GOUT‧‧‧輸出臭氧氣體 G OUT ‧‧‧ output ozone gas

第1圖為本發明實施形態的臭氧氣體產生系統的構成說明圖。 FIG. 1 is an explanatory diagram of the configuration of an ozone gas generating system according to an embodiment of the present invention.

第2圖為第1圖所示臭氧產生器之放電室的放電面構造說明圖。 FIG. 2 is an explanatory diagram of the discharge surface structure of the discharge chamber of the ozone generator shown in FIG. 1. FIG.

第3圖為總臭氧分解量Yd之特性相對於A型至C型放電室形狀的各個臭氧產生器氣體滯留時間To之曲線圖。 FIG. 3 is a graph of the characteristics of the total ozone decomposition amount Yd with respect to the gas residence time To of each ozone generator in the shape of A-type to C-type discharge cells.

第4圖為取出臭氧濃度Ct之特性相對於A型至C型放電室形狀的各個臭氧產生器之比電力值DW/Q的曲線圖。 Fig. 4 is a graph showing the characteristic of the ozone concentration Ct with respect to the specific electric power value DW/Q of each ozone generator in the shape of the A-to-C discharge chamber.

第5圖為取出臭氧濃度Ct之特性相對於A型至C型放電室形狀的各個臭氧產生器之原料氣體總氣體流量Q的曲線圖。 Fig. 5 is a graph showing the characteristics of the ozone concentration Ct taken out with respect to the total gas flow rate Q of the raw material gas of each ozone generator in the shape of A-type to C-type discharge cells.

第6圖為施加於A型至C型放電室形狀的各個臭氧產生器之負載峰值電壓Vp的特性相對於臭氧用電源之動作頻率f的曲線圖。 FIG. 6 is a graph of the characteristic of the load peak voltage Vp applied to each ozone generator in the shape of A-type to C-type discharge cells with respect to the operating frequency f of the ozone power supply.

第7圖為以往的臭氧產生裝置中取出臭氧濃度Ct的特性相對於之比電力值DW/Q的曲線圖。 FIG. 7 is a graph showing the characteristic of the extracted ozone concentration Ct with respect to the ratio power value DW/Q in the conventional ozone generator.

<實施形態> <Embodiment>

(原理及概要) (Principle and summary)

第1圖為本發明實施形態之臭氧氣體產生系統的構成說明圖。如該圖所示,本實施形態的臭氧氣體產生系統1000具備:臭氧產生器200,具有隔著介電質配置在一對平板電極(1、3a、3b)的放電室(S1及S2:定義為基本放電室);及臭氧用電源100,對臭氧產生器200賦予臭氧產生用交流電壓。 Fig. 1 is an explanatory diagram of the configuration of an ozone gas generating system according to an embodiment of the present invention. As shown in the figure, the ozone gas generating system 1000 of the present embodiment includes an ozone generator 200 having discharge chambers (S1 and S2: definitions) disposed on a pair of plate electrodes (1, 3a, 3b) via a dielectric substance It is a basic discharge chamber); and a power supply 100 for ozone, and an ozone generating AC voltage is applied to the ozone generator 200.

接著,在臭氧產生器200內的放電室(S1、S2)的放電空間產生介電質障壁放電,從供給到該放電空間的含氧氣之原料氣體產生臭氧氣體,並將臭氧氣體取出到外部。 Next, a dielectric barrier discharge is generated in the discharge space of the discharge chamber (S1, S2) in the ozone generator 200, ozone gas is generated from the raw material gas containing oxygen supplied to the discharge space, and the ozone gas is taken out to the outside.

臭氧氣體產生系統1000中,係構成為:每一單位放電室具有一個放電空間(由一對放電面所形成的空間)及一個臭氧氣體取出口。下文中,有將構成放電空間的一對放電面稱為「一單位放電面」或者「一組放電面」的情形。此外,供給到一單位放電室的放電電力dw(W)、放電面積so(cm2)、原料氣體流量qo(L/min)等,係以小寫字標示作為關於每一單位放電室的臭氧氣體發生的參數記號。 In the ozone gas generating system 1000, each unit discharge chamber has a discharge space (a space formed by a pair of discharge surfaces) and an ozone gas outlet. Hereinafter, there are cases where a pair of discharge surfaces constituting a discharge space is referred to as "a unit discharge surface" or "a group of discharge surfaces". In addition, the discharge power dw (W), discharge area so (cm 2 ), raw material gas flow qo (L/min), etc. supplied to a unit discharge cell are marked with small letters as ozone gas per unit discharge cell The sign of the parameter that occurred.

另一方面,向臭氧產生器200內的複數個放電室整體供給的總放電電力DW(W)、總放電面積S(cm2)、原料氣體的總氣體流量Q(L/min)等,係以大寫字標示作為臭氧產生器200的參數記號。另外,針對因一單位放電室或臭氧產生器的不同,而參數值未變化的記號,原則上以大寫字標示說明。 On the other hand, the total discharge power DW (W), the total discharge area S (cm 2 ), the total gas flow rate Q (L/min) of the raw material gas, etc. supplied to the entire plurality of discharge cells in the ozone generator 200, etc. It is marked with capital letters as the parameter symbol of the ozone generator 200. In addition, for the signs that the parameter value has not changed due to the difference of a unit discharge chamber or ozone generator, in principle, the description is marked with uppercase letters.

為了求取臭氧產生器200的取出臭氧濃度Ct達到最大的條件,而探討在一單位放電室中,有關放電空間之放電形狀的放電面積so、可投入到一單位放電空間(放電面)的放電電力密度J、及流到一單位放電空間的原料氣體流量qo的最佳化條件。 In order to obtain the condition that the ozone concentration Ct of the ozone generator 200 reaches the maximum, the discharge area so of the discharge shape of the discharge space and the discharge that can be put into a unit discharge space (discharge surface) in a unit discharge chamber are discussed. Optimum conditions for the power density J and the flow rate qo of the raw material gas flowing into a unit of discharge space.

附帶一提,臭氧氣體產生系統1000之放電室放電空間的放電間隙長d的範圍適用於數十μm以上至未達數百μm的臭氧產生器。特別是在放電間隙長d為20μm至100μm的範圍中,更可提高其效果。 Incidentally, the range of the discharge gap length d of the discharge space of the discharge chamber of the ozone gas generation system 1000 is suitable for ozone generators of tens of μm or more to less than hundreds of μm. Especially in the range where the discharge gap length d is 20 μm to 100 μm, the effect can be further improved.

在放電面積so(cm2)設定於預定面積範圍內,且設定於適用放電間隙長d之範圍的臭氧產生器中,特別是作為取出更高濃度的臭氧氣體的條件,係將流到一單位放電室內的平均氣體流速vo/d訂在大致未達(1.6/d)cm/s的範圍內。 When the discharge area so (cm 2 ) is set within a predetermined area and is set in an ozone generator suitable for the discharge gap length d, especially as a condition for taking out a higher concentration of ozone gas, it will flow to a unit The average gas flow rate vo/d in the discharge chamber is set within a range of approximately (1.6/d) cm/s.

而且,將供給到一單位放電室(一組放電面)的原料氣體流量qo設在大致未達0.25L/min。因此,即使將臭氧氣體產生系統1000的比電力值dw/qo設定得較高,相對於一單位放電室內的臭氧氣體生成量y(=C‧qo),因臭氧氣體的碰撞導致的臭氧分解與生成的臭氧本身的自我分解合計的總臭氧分解量yd仍可抑制得較低,而可從一單位放電室取出高濃度的臭氧氣體。 Moreover, the flow rate qo of the raw material gas supplied to one unit discharge cell (a group of discharge surfaces) is set to be substantially less than 0.25 L/min. Therefore, even if the specific power value dw/qo of the ozone gas generating system 1000 is set to be high, relative to the ozone gas generation amount y (=C‧qo) of a unit discharge chamber, the ozone decomposition caused by the collision of ozone gas and The total ozone decomposition amount yd of the self-decomposition of the generated ozone itself can be kept low, and a high concentration of ozone gas can be taken out from a unit discharge chamber.

再者,為了使供給到一單位放電室的放電電力密度達到2.5W/cm2至6W/cm2範圍內,藉由設定放電電力dw(W),相對於一單位放電室中的臭氧氣體生成量y(=C‧qo),因臭氧氣體的碰撞導致的臭氧分解與生成的臭氧本身的自我分解的合計總臭氧分解量yd可抑制得較低。結果,能夠以優異效率將從放電室取出臭氧氣體的取出臭氧量yt達到最大限度。 Furthermore, in order to make the discharge power density supplied to a unit discharge cell in the range of 2.5W/cm 2 to 6W/cm 2 , by setting the discharge power dw(W), it is generated relative to the ozone gas in a unit discharge cell The amount y (=C‧qo), the total ozone decomposition amount yd, which is the sum of ozone decomposition due to collision of ozone gas and the self-decomposition of the generated ozone itself, can be kept low. As a result, the extracted ozone amount yt of ozone gas from the discharge chamber can be maximized with excellent efficiency.

再者,臭氧氣體產生系統1000係由分別具有一組放電面(一個放電空間)的放電室S1、S2作n段層疊而構成臭氧產生器200。因而,放電 面(放電空間)為2n個,臭氧氣體產生系統1000可達成:供給2n倍總放電電力DW(=2‧n‧dw)[W]的臭氧用電源100、2n倍總放電面積S(=2‧n‧so)[cm2]、及2n倍原料氣體流量Q(=2‧n‧qo)[L/min]的效果。因此,臭氧氣體產生系統1000可從臭氧產生器獲得高濃度的取出臭氧濃度Ct,並且相對於供給的氣體流量Q,可將臭氧氣體的取出臭氧量Yt提高到最大限度。 In addition, the ozone gas generation system 1000 is composed of discharge chambers S1 and S2 each having a set of discharge surfaces (one discharge space) stacked in n stages to constitute the ozone generator 200. Therefore, the discharge surface (discharge space) is 2n, and the ozone gas generation system 1000 can achieve: an ozone power supply 100 that supplies 2n times the total discharge power DW (=2‧n‧dw) [W], and 2n times the total discharge area S (=2‧n‧so)[cm 2 ], and the effect of 2n times the raw material gas flow rate Q(=2‧n‧qo)[L/min] Therefore, the ozone gas generating system 1000 can obtain a high-concentration extracted ozone concentration Ct from the ozone generator, and can increase the extracted ozone amount Yt of ozone gas to the maximum relative to the supplied gas flow rate Q.

此外,從臭氧用電源100輸出的高頻-高壓臭氧產生用交流電壓的輸出頻率可設在20kHz至50kHz範圍內,和以往的輸出頻率的20kHz以下相比,已有提高。因此,臭氧用電源100可將施加在臭氧產生器200的臭氧產生用交流電壓的尖峰電壓值訂為7kVp以下,並將總放電電力DW供給到臭氧產生器200。 In addition, the output frequency of the high-frequency high-pressure ozone generating AC voltage output from the ozone power supply 100 can be set in the range of 20 kHz to 50 kHz, which has been improved compared to the conventional output frequency of 20 kHz or less. Therefore, the ozone power supply 100 can set the peak voltage value of the ozone generating AC voltage applied to the ozone generator 200 to 7 kVp or less, and supply the total discharge power DW to the ozone generator 200.

再者,藉由將放電室(基本室S1、S2)的放電面構成為俯視呈圓形,並縮小放電面的直徑(外徑),即可使屬於原料氣體通過放電室的放電空間之時間的氣體滯留時間To[ms]縮短。 Furthermore, by configuring the discharge surface of the discharge chamber (basic chambers S1, S2) to be circular in plan view, and reducing the diameter (outer diameter) of the discharge surface, the time for the source gas to pass through the discharge space of the discharge chamber The gas residence time To[ms] is shortened.

更且,藉由將流到放電室的平均氣體流速vo/d抑制在大致未達0.035/d[cm/s],相對於放電室生成之臭氧生成量的氣體供給量也會受到抑制,而確保放電室內的高臭氧生成濃度C,而且,因臭氧氣體的碰撞導致之臭氧分解及生成的臭氧本身的自我分解的合計分解量Yd也能抑制得較低。結果,從臭氧產生器200取出的取出臭氧濃度Ct得以提高。 Moreover, by suppressing the average gas flow rate vo/d flowing into the discharge chamber to less than 0.035/d [cm/s], the gas supply amount relative to the ozone generation amount generated in the discharge chamber is also suppressed, and The high ozone generation concentration C in the discharge chamber is ensured, and the total decomposition amount Yd of ozone decomposition due to collision of ozone gas and self-decomposition of generated ozone itself can also be suppressed to be low. As a result, the ozone concentration Ct taken out from the ozone generator 200 is increased.

再者,藉由發揮作為構成臭氧用電源100之高頻-高壓變壓器功能的並聯共振用變壓器25之內部激磁電感值Lt、及由多段層疊的複數個放電室而構成的臭氧產生器200本身的靜電容量值C0,構成了可將符合並聯共振動作頻率區的高頻施以輸出控制的臭氧用電源100。 Furthermore, the ozone generator 200 itself, which is composed of the internal exciting inductance value Lt of the parallel resonance transformer 25 functioning as a high-frequency-high voltage transformer constituting the ozone power supply 100, and a plurality of discharge chambers stacked in multiple stages The capacitance value C0 constitutes the power supply 100 for ozone that can perform output control of high frequencies in accordance with the frequency range of parallel resonance operation.

結果,臭氧用電源100成為在屬於升壓用變壓器的並聯共振用變壓器25之輸出部形成有並聯共振電路的臭氧用電源,能夠將更穩定的臭氧產生用交流電壓供給到臭氧產生器200。 As a result, the ozone power supply 100 becomes an ozone power supply having a parallel resonance circuit formed on the output portion of the parallel resonance transformer 25 belonging to the step-up transformer, and can supply a more stable ozone generating AC voltage to the ozone generator 200.

(整體構成) (Overall composition)

茲參照第1圖至第6圖說明本發明實施形態之臭氧氣體產生系統的構成及特徵。 The configuration and features of the ozone gas generating system according to the embodiment of the present invention will be described with reference to FIGS. 1 to 6.

第1圖為本發明實施形態之臭氧氣體產生系統1000的構成說明圖。如第1圖所示,本實施形態的臭氧氣體產生系統1000係包含生成臭氧氣體的臭氧產生器200、及對臭氧產生器200賦予總放電電力DW用的臭氧產生用交流電壓的臭氧用電源100作為主要構成部分。 FIG. 1 is an explanatory diagram of the configuration of an ozone gas generating system 1000 according to an embodiment of the present invention. As shown in FIG. 1, the ozone gas generating system 1000 of the present embodiment includes an ozone generator 200 that generates ozone gas, and an ozone power supply 100 that supplies an ozone generating AC voltage for the ozone generator 200 with a total discharge power DW As the main component.

本實施形態之臭氧氣體產生系統1000多和半導體製造裝置或洗淨裝置等其他裝置一起合併設置。特別是要求高純度的臭氧氣體,而且,要求提高處理速度或處理能力再提高的情況。因而,對於取出濃度較既有裝置所得的臭氧濃度更高的臭氧氣體或供給的氣體流量Q,臭氧氣體產生系統1000以取出臭氧量Yt較大的系統較理想。 The ozone gas generating system 1000 of this embodiment is often combined with other devices such as semiconductor manufacturing equipment or cleaning equipment. In particular, high-purity ozone gas is required, and it is required to increase the processing speed or the processing capacity. Therefore, for extracting ozone gas having a higher concentration than that obtained by an existing device or the supplied gas flow rate Q, the ozone gas generating system 1000 is preferably a system for extracting a larger amount of ozone Yt.

2圖為第1圖所示臭氧產生器200中放電室的放電面構造的說明圖。第1圖及第2圖中,臭氧氣體產生系統1000係由:產生臭氧氣體的臭氧產生器200、及對該臭氧產生器200供給總放電電力DW用之臭氧產生用交流電壓的臭氧用電源100所構成。 FIG. 2 is an explanatory diagram of the discharge surface structure of the discharge chamber in the ozone generator 200 shown in FIG. 1. In FIGS. 1 and 2, the ozone gas generating system 1000 is composed of an ozone generator 200 that generates ozone gas, and an ozone power supply 100 that supplies an ozone generating AC voltage for total discharge power DW to the ozone generator 200 Posed.

臭氧用電源100包含AC-DC轉換器電路部21、反向器電路部22、限流反應器23、電源控制電路24、及並聯共振用變壓器25作為主要構成。 The power supply 100 for ozone includes an AC-DC converter circuit section 21, an inverter circuit section 22, a current limiting reactor 23, a power supply control circuit 24, and a parallel resonance transformer 25 as main components.

屬於反向器部的反向器電路部22係接受經由AC-DC轉換器電路部21從商用電源輸入的電力(電壓),將該電壓變換為所需的高頻率 交流所得的高頻交流電壓經由限流反應器23輸出到並聯共振用變壓器25。另外,藉反向器電路部22所得的高頻交流電壓的輸出頻率f係設在20kHz至50kHz範圍內。亦即,臭氧用電源100的動作頻率f係在20kHz至50kHz的範圍內。 The inverter circuit unit 22 belonging to the inverter unit receives power (voltage) input from a commercial power supply via the AC-DC converter circuit unit 21 and converts the voltage to a desired high frequency The high-frequency AC voltage obtained by AC is output to the parallel resonance transformer 25 via the current limiting reactor 23. In addition, the output frequency f of the high-frequency AC voltage obtained by the inverter circuit section 22 is set in the range of 20 kHz to 50 kHz. That is, the operating frequency f of the ozone power supply 100 is in the range of 20 kHz to 50 kHz.

另外,本案說明書中,以「AA至BB」表示的範圍原則上係表示AA以上未達BB。 In addition, in the specification of this case, the range indicated by "AA to BB" means in principle that AA or more does not reach BB.

屬於升壓用變壓器的並聯共振用變壓器25係將上述高頻交流電壓升壓成高電壓而獲得臭氧產生用交流電壓,該臭氧產生用交流電壓則供給到臭氧產生器200的高電壓端子HV及低電壓端子LV間。 The parallel resonance transformer 25 belonging to the step-up transformer boosts the high-frequency AC voltage to a high voltage to obtain an ozone generating AC voltage, and the ozone generating AC voltage is supplied to the high voltage terminal HV of the ozone generator 200 and Between low voltage terminals LV.

藉由臭氧產生用交流電壓,供給到臭氧產生器200的總放電電力DW會受到規限。而且,如後所詳述,並聯共振用變壓器25係執行改善負載功率的措施。 With the AC voltage for ozone generation, the total discharge power DW supplied to the ozone generator 200 is restricted. Furthermore, as described in detail later, the transformer 25 for parallel resonance performs measures to improve the load power.

高電壓端子HV係電性連接於臭氧產生器200內各放電室的高壓電極3a、及3b。 The high-voltage terminal HV is electrically connected to the high-voltage electrodes 3 a and 3 b of each discharge cell in the ozone generator 200.

透過藉電源控制電路24控制AC-DC轉換器電路部21及包含高頻率反向器之反向器電路部22的電流/電壓,可將供給到臭氧產生器200的臭氧產生用交流電壓的電壓值施以控制。 By controlling the current/voltage of the AC-DC converter circuit section 21 and the inverter circuit section 22 including a high-frequency inverter through the power supply control circuit 24, the voltage of the ozone generating AC voltage supplied to the ozone generator 200 can be supplied Value control.

臭氧產生器200係由分別具有基本放電面的複數個基本室S1、S2層疊而構成。一對基本室S1及S2係為基本的構成。該基本構成則由接地冷卻電極1及介電質電極2a、2b、高壓電極3a、3b、及絕緣板4a、4b所構成。 The ozone generator 200 is formed by stacking a plurality of basic chambers S1 and S2 each having a basic discharge surface. The pair of basic chambers S1 and S2 is a basic structure. This basic structure is composed of a grounded cooling electrode 1 and dielectric electrodes 2a, 2b, high-voltage electrodes 3a, 3b, and insulating plates 4a, 4b.

基本室S1係由下方向上方依序包含接地冷卻電極1、介電質電極2a、高壓電極3a、絕緣板4a的層疊構造而構成。 The basic chamber S1 is composed of a stacked structure including a ground cooling electrode 1, a dielectric electrode 2a, a high-voltage electrode 3a, and an insulating plate 4a in this order from above to below.

基本室S2則由上方向下方依序包含接地冷卻電極1、介電質電極2b、高壓電極3b、絕緣板4b的層疊構造而構成。接地冷卻電極1則在基本室S1、S2間共用。 The basic chamber S2 is composed of a stacked structure including a ground cooling electrode 1, a dielectric electrode 2b, a high-voltage electrode 3b, and an insulating plate 4b in this order from above to below. The grounded cooling electrode 1 is shared between the basic chambers S1 and S2.

而且,基本室S1的上方及基本室S2的下方設有低壓冷卻板5。由這種結構的一對基本室S1、S2所組成的基本構成層疊有多段。另外,一單位的基本室具有分別形成放電空間的一對放電面。亦即,由基本室S1及S2所組成的基本構成層疊六段時,一單位的基本室就層疊了12個。 Furthermore, a low-pressure cooling plate 5 is provided above the basic chamber S1 and below the basic chamber S2. The basic structure composed of a pair of basic chambers S1 and S2 having such a structure is stacked in multiple stages. In addition, a basic cell of one unit has a pair of discharge surfaces respectively forming discharge spaces. That is, when the basic structure composed of the basic chambers S1 and S2 is stacked in six stages, 12 basic chambers per unit are stacked.

有關基本室S1及S2的詳細構造容後述。預定數量的基本構成(基本室S1及S2)係朝第1圖的上下方向層疊在基台10上,而成為臭氧產生器200的主要部分。 The detailed structure of the basic rooms S1 and S2 will be described later. A predetermined number of basic configurations (basic chambers S1 and S2) are stacked on the base 10 in the up-down direction of FIG. 1 and become the main part of the ozone generator 200.

層疊的複數個基本室係將疊設在最上部之基本室(基本室S1)上的層疊壓板7、及貫通層疊壓板7與各基本室的層疊室壓桿8,藉由層疊室壓簧6以預定的壓緊力緊固在基台10。 The plurality of stacked basic chambers is composed of a stacking pressure plate 7 stacked on the uppermost basic chamber (basic chamber S1), and a stacking chamber pressure rod 8 penetrating the stacking pressure plate 7 and each basic chamber. The base 10 is fastened with a predetermined pressing force.

複數個基本室整體係以產生器蓋11加以覆蓋。產生器蓋11係藉由將其一面去除而呈大致箱狀,並用蓋緊螺栓(未圖示)將設在開口周緣部的法蘭鎖固在基台10。產生器蓋11的開口周緣部與基台10之間夾設有O型環(未圖示),使產生器蓋11與基台10形成的內部空間形成密閉構造。 The plurality of basic chambers are entirely covered with a generator cover 11. The generator cover 11 is substantially box-shaped by removing one side thereof, and the flange provided at the periphery of the opening is locked to the base 10 with a cover bolt (not shown). An O-ring (not shown) is interposed between the opening peripheral portion of the generator cover 11 and the base 10 to form a closed structure in the internal space formed by the generator cover 11 and the base 10.

基台10在其內部空間設有供給高純度氧氣等原料氣體的原料氣體入口31。從原料氣體入口31供給的原料氣體GIN係充滿在產生器蓋11內的內部空間,並進入複數個放電室的放電空間的間隙。 The base 10 is provided with a raw material gas inlet 31 for supplying raw material gas such as high-purity oxygen gas in its internal space. The raw material gas G IN supplied from the raw material gas inlet 31 fills the internal space in the generator cover 11 and enters the gap of the discharge spaces of the plurality of discharge cells.

基台10設有供冷卻水進出的冷卻水出入口(未圖示),該冷卻水係用於將放電空間生成的臭氧氣體從臭氧產生器200經由歧管箱塊9送出到外部的臭氧氣體出口32與放電室施以冷卻。 The base 10 is provided with a cooling water inlet and outlet (not shown) for cooling water to enter and exit. The cooling water is used to send the ozone gas generated in the discharge space from the ozone generator 200 to the outside ozone gas outlet through the manifold box 9 32 and apply cooling to the discharge chamber.

意即,臭氧氣體出口32為設在基台10之臭氧氣體通路的端部開口,冷卻水出入口則連通到設在基台10內的冷卻水通路(圖示省略)。另外,設在基台10內的冷卻水通路與臭氧氣體通路係形成為互相獨立的通路。 That is, the ozone gas outlet 32 is an end opening of the ozone gas passage provided in the base 10, and the cooling water inlet and outlet communicate with the cooling water passage provided in the base 10 (not shown). In addition, the cooling water passage and the ozone gas passage provided in the base 10 are formed as independent passages.

在這種構成的臭氧氣體產生系統1000中,為了將取出臭氧量Yt更為提高,而將相對於投入到臭氧產生器200內複數個放電室之放電面(總放電面積S)的放電電力DW之比的放電電力密度J(=DW/S)加以規限。再者,為了設定成可提高取出臭氧濃度Ct的條件,而將一單位基本室的放電面徑縮小,俾規限供給到一單位放電室(基本室S1或者S2)的平均氣體流速vo/d。透過這樣的縮小,可將一放電室(基本室)的臭氧分解量yd抑制得較低,而得以取出高濃度臭氧氣體。而且,藉由使供給氣體分散在複數個分別具有基本室S1、S2的放電室所形成的多段層疊室構造(n(≧2)),即得以供給原料氣體流量qo之2n倍原料氣體的總氣體流量Q(=2‧n‧qo)。 In the ozone gas generating system 1000 having such a configuration, in order to further increase the amount of extracted ozone Yt, the discharge power DW relative to the discharge surface (total discharge area S) of a plurality of discharge cells input into the ozone generator 200 is increased. The ratio of discharge power density J (=DW/S) is restricted. In addition, in order to set the conditions to increase the ozone concentration Ct, the discharge surface diameter of a unit basic cell is reduced to limit the average gas flow rate vo/d supplied to a unit discharge cell (basic cell S1 or S2) . Through such reduction, the ozone decomposition amount yd of a discharge chamber (basic chamber) can be suppressed low, and high-concentration ozone gas can be taken out. Moreover, by dispersing the supply gas in a plurality of multi-layer stacking chamber structures (n(≧2)) formed by a plurality of discharge chambers each having basic chambers S1 and S2, the total amount of raw gas supplied 2n times the flow rate qo of the raw material gas can be supplied Gas flow rate Q (=2‧n‧qo).

此外,令可投入到臭氧產生器200內各放電室的放電電力密度J(=DW/S)上升時,若供給所期望的總放電電力DW,負載施加電壓Vd會增高。基於將該負載施加電壓Vd抑制得較低,並供給所期望的總放電電力DW,以確保取出臭氧量Yt達最大限的目的,臭氧用電源100的輸出頻率係提高到20至50kHz。另外,負載施加電壓Vd係表示自臭氧用電源100輸出的臭氧產生用交流電壓的實效值。 In addition, when the discharge power density J (=DW/S) that can be put into each discharge chamber in the ozone generator 200 is increased, if the desired total discharge power DW is supplied, the load applied voltage Vd increases. The output frequency of the power supply for ozone 100 is increased to 20 to 50 kHz for the purpose of suppressing the load applied voltage Vd to be low and supplying the desired total discharge power DW to ensure the maximum amount of ozone to be extracted Yt. In addition, the load applied voltage Vd represents the effective value of the ozone generating AC voltage output from the ozone power supply 100.

再者,在臭氧用電源100內,藉由並聯共振用變壓器25的內部激磁電感值Lt及包含多段層疊的複數個放電室而構成的臭氧產生器200本身的靜電容量值C0,可將能夠並聯共振的輸出頻率的高頻交流電壓從反向器電路部22輸出。 In addition, in the ozone power supply 100, the internal magnetizing inductance value Lt of the parallel resonance transformer 25 and the electrostatic capacity value C0 of the ozone generator 200, which is composed of a plurality of discharge chambers stacked in multiple stages, can be connected in parallel. The high-frequency AC voltage of the resonant output frequency is output from the inverter circuit unit 22.

具體而言,臭氧用電源100係將動作頻率f設定在滿足下式(5)的並聯共振頻率fc的附近。 Specifically, the power supply 100 for ozone sets the operating frequency f in the vicinity of the parallel resonance frequency fc that satisfies the following equation (5).

fc=1/(2π‧(Lt‧C0)0.5)...(5) fc=1/(2π‧(Lt‧C0) 0.5 )...(5)

結果,臭氧用電源100即成為在並聯共振用變壓器25之輸出側形成有並聯共振電路的臭氧用電源,可將更穩定的臭氧產生用交流電壓供給到臭氧產生器200。 As a result, the ozone power supply 100 becomes an ozone power supply in which a parallel resonance circuit is formed on the output side of the parallel resonance transformer 25, and a more stable ozone generating AC voltage can be supplied to the ozone generator 200.

如第1圖及第2圖所示,從俯視觀之,和接地冷卻電極1的周邊端部局部重複地具有朝複數個放電室(S1、S2)之層疊方向延伸的歧管箱塊9。 As shown in FIG. 1 and FIG. 2, when viewed from above, the peripheral end portion of the ground cooling electrode 1 partially has a manifold block 9 extending in the stacking direction of a plurality of discharge cells (S1, S2).

接地冷卻電極1具有俯視呈圓形的上表面及下表面作為放電面。亦即,接地冷卻電極1的上表面為基本室S1的放電面,接地冷卻電極1的下表面為基本室S2的放電面。亦即,基本室S1係以接地冷卻電極1的上表面及介電質電極2a的下表面作為一對放電面,而在一對放電面間形成放電空間。同樣的,基本室S2則以接地冷卻電極1的下表面與介電質電極2b的上表面作為一對放電面,而在一對放電面間形成放電空間。該兩個放電空間設有用以將所產生的臭氧氣體取出的開口部15。此外,為了將基本放電室S1及S2的兩面冷卻,接地冷卻電極1的內部具有冷卻水路徑(未圖示)。 The ground cooling electrode 1 has an upper surface and a lower surface that are circular in plan view as discharge surfaces. That is, the upper surface of the ground cooling electrode 1 is the discharge surface of the basic chamber S1, and the lower surface of the ground cooling electrode 1 is the discharge surface of the basic chamber S2. That is, the basic chamber S1 uses the upper surface of the grounded cooling electrode 1 and the lower surface of the dielectric electrode 2a as a pair of discharge surfaces, and a discharge space is formed between the pair of discharge surfaces. Similarly, the basic chamber S2 uses the lower surface of the grounded cooling electrode 1 and the upper surface of the dielectric electrode 2b as a pair of discharge surfaces, and a discharge space is formed between the pair of discharge surfaces. The two discharge spaces are provided with openings 15 for taking out generated ozone gas. In addition, in order to cool both surfaces of the basic discharge cells S1 and S2, the ground cooling electrode 1 has a cooling water path (not shown) inside.

開口部15係經由設在接地冷卻電極1內部的輸出路徑17連通到歧管箱塊9的臭氧氣體輸出路徑92。另一方面,設在歧管箱塊9的冷卻水輸出路徑91及冷卻水輸入路徑93則和設在接地冷卻電極1內部的上述冷卻水路徑連接。 The opening 15 communicates with the ozone gas output path 92 of the manifold box block 9 via the output path 17 provided inside the grounded cooling electrode 1. On the other hand, the cooling water output path 91 and the cooling water input path 93 provided in the manifold block 9 are connected to the cooling water path provided inside the grounded cooling electrode 1.

依此方式,冷卻臭氧產生器200之複數個放電室的冷卻機構的構成係包含:設在基台10的冷卻水路徑、設在歧管箱塊9的冷卻水輸出路徑91及冷卻水輸入路徑93、及設在接地冷卻電極1的冷卻水路徑。 In this way, the cooling mechanism for cooling the plurality of discharge chambers of the ozone generator 200 includes: a cooling water path provided on the base 10, a cooling water output path 91 and a cooling water input path provided on the manifold block 9 93, and the cooling water path provided in the ground cooling electrode 1.

而且,分別在接地冷卻電極1的上表面及下表面上設有複數個用以構成放電間隙長d(mm)的放電間隔件13,且使介電質電極2a及2b以及高壓電極3a及3b隔著複數個放電間隔件13重疊。結果,可在接地冷卻電極1、高壓電極3a(介電質電極2a)間、及接地冷卻電極1、高壓電極3b(介電質電極2b)間分別形成放電間隙長d的放電空間。 Furthermore, a plurality of discharge spacers 13 for forming a discharge gap length d (mm) are provided on the upper and lower surfaces of the grounded cooling electrode 1, respectively, and the dielectric electrodes 2a and 2b and the high-voltage electrodes 3a and 3b A plurality of discharge spacers 13 overlap. As a result, a discharge space having a discharge gap length d can be formed between the ground cooling electrode 1 and the high-voltage electrode 3a (dielectric electrode 2a) and between the ground cooling electrode 1 and the high-voltage electrode 3b (dielectric electrode 2b).

此外,作為一種臭氧生成法,接地冷卻電極1的上表面及下表面係作成塗佈有用以生成臭氧的光觸媒材料(未圖示)的臭氧產生器構成。 In addition, as an ozone generation method, the upper surface and the lower surface of the grounded cooling electrode 1 are made of an ozone generator coated with a photocatalyst material (not shown) for generating ozone.

原料氣體GIN係從接地冷卻電極1的外周部供給。此時,分散成複數放電室之個數n的原料氣體流量qo(Q/n)會供給到各放電室。然後,藉由在接地冷卻電極1與高壓電極3a、3b之間施加臭氧產生用交流電壓,即可在各放電室的放電面整面形成介電質障壁放電。因而,在放電空間內,藉由介電質障壁放電的光能量及光觸媒的活性化,使供給到放電空間的原料氣體中所含氧氣的氧原子解離受到促發。 The raw material gas G IN is supplied from the outer periphery of the ground cooling electrode 1. At this time, the raw material gas flow rate qo(Q/n) dispersed into the number n of the plurality of discharge cells is supplied to each discharge cell. Then, by applying an alternating voltage for ozone generation between the grounded cooling electrode 1 and the high-voltage electrodes 3a and 3b, a dielectric barrier discharge can be formed over the entire discharge surface of each discharge cell. Therefore, in the discharge space, the activation of the light energy of the dielectric barrier discharge and the activation of the photocatalyst cause the dissociation of oxygen atoms of the oxygen contained in the raw material gas supplied to the discharge space.

結果,臭氧產生器200可促進屬於介電質障壁放電的特徵之在間歇放電的休止期間所生成氧原子與氧氣的三體碰撞化學反應,而在各放電室的放電空間,發揮高效率的臭氧生成能力。意即,臭氧產生器200可生成濃度和複數個放電室之總放電面積S及比電力值DW/Q成比例的臭氧氣體。 As a result, the ozone generator 200 can promote the three-body collision chemical reaction between oxygen atoms and oxygen generated during the pause of intermittent discharge, which is a characteristic of dielectric barrier discharge, and exerts highly efficient ozone in the discharge space of each discharge chamber Generating ability. That is, the ozone generator 200 can generate ozone gas whose concentration is proportional to the total discharge area S of the plurality of discharge cells and the specific power value DW/Q.

由於原料氣體GIN係從接地冷卻電極1的外周供給,故在各放電室的放電空間生成的臭氧氣體會循沿氣體之流動而進入接地冷卻電極1中央部的開口部15,再經由設在接地冷卻電極1內作為臭氧通路的輸出路徑17取出作為輸出臭氧氣體GOUTSince the raw material gas G IN is supplied from the outer periphery of the ground cooling electrode 1, the ozone gas generated in the discharge space of each discharge cell will follow the flow of the gas and enter the opening 15 at the center of the ground cooling electrode 1, and then pass through The output path 17 as an ozone passage in the grounded cooling electrode 1 is taken out as the output ozone gas G OUT .

在臭氧產生器200內,藉各放電室生成的臭氧氣體會被匯集,經由歧管箱塊9的臭氧氣體輸出路徑92,最後,預定濃度的臭氧氣體則從臭氧氣體出口32取出送到外部。 In the ozone generator 200, the ozone gas generated by each discharge chamber is collected, passes through the ozone gas output path 92 of the manifold box block 9, and finally, the ozone gas of a predetermined concentration is taken out from the ozone gas outlet 32 to the outside.

最後從臭氧產生器200取出的取出臭氧量Yt即為從一單位放電室的各個放電空間所生成的臭氧氣體生成量y,扣除因各放電空間的放電中碰撞導致的臭氧分解量、與放電室中臭氧的自我分解量之合計臭氧分解量yd後的取出臭氧量yt之總和。 Finally, the extracted ozone amount Yt taken out from the ozone generator 200 is the ozone gas generation amount y generated from each discharge space of a unit discharge chamber, deducting the ozone decomposition amount caused by the collision in the discharge of each discharge space, and the discharge chamber The total ozone self-decomposition amount of ozone is the total ozone decomposition amount yd and the total ozone removal amount yt.

第2圖中的各放電室在每單位時間生成的臭氧生成量y(g/h),係和供給到放電空間的原料氣體流量qo(L/min)及投入到各放電室的放電電力dw(W)對應,且藉由塗佈在放電面的光觸媒功能之作用,以下式(6)表示。 The amount of ozone generated per unit time y (g/h) generated by each discharge cell in the second diagram is related to the flow rate of raw material gas qo (L/min) supplied to the discharge space and the discharge power dw input to each discharge cell (W) Corresponds, and is represented by the following formula (6) by the photocatalyst function applied to the discharge surface.

y=qo‧C...(6) y=qo‧C...(6)

式(6)中,"C"為以一單位放電室每單位時間生成的臭氧生成量y與放電空間中的原料氣體流量qo算出的臭氧濃度(g/m3)。 In equation (6), "C" is the ozone concentration (g/m 3 ) calculated from the ozone generation amount y generated per unit time of the discharge cell and the raw material gas flow rate qo in the discharge space.

亦即,屬於一單位放電室所形成的放電空間體積的一個放電空間體積dv(cm3)係以下式(7)表示。 That is, one discharge space volume dv (cm 3 ) belonging to the discharge space volume formed by one unit discharge cell is expressed by the following formula (7).

dv(cm3)=d‧so...(7) dv(cm 3 )=d‧so...(7)

因而,在一個放電空間生成之後滯留於放電空間的臭氧量ys(g)係為和所生成的臭氧生成濃度C(g/m3)與式(7)所算出的放電空間體積dv(cm3)之積對應的臭氧生成量y。 Therefore, the amount of ozone ys(g) remaining in the discharge space after the generation of one discharge space is the discharge space volume dv(cm 3 calculated by the generated ozone generation concentration C(g/m 3 ) and equation (7) ) Product corresponds to the amount of ozone generated y.

另外,式(7)中,"d"為放電間隙長(cm),"so"為一單位放電室之放電面的放電面積(cm2),這些參數"d","so"為規限放電室構造的固定值。 In addition, in formula (7), "d" is the discharge gap length (cm), "so" is the discharge area (cm 2 ) of the discharge surface of a unit discharge cell, these parameters "d", "so" are the limits The fixed value of the discharge cell structure.

在放電室生成的臭氧生成濃度C(g/m3)係和每單位時間注入到單位氣體體積dv(cm3)的放電電力dw對應。另外,單位氣體體積dv可針對一單位放電室再度揭示於下式(8)(和式(2)相同)。 The ozone generation concentration C (g/m 3 ) generated in the discharge cell corresponds to the discharge power dw injected into the unit gas volume dv (cm 3 ) per unit time. In addition, the unit gas volume dv can be disclosed to the following formula (8) (same as formula (2)) for a unit discharge cell again.

dv(cm3/sec)=1000‧Q/(n‧60)...(8) dv(cm 3 /sec)=1000‧Q/(n‧60)...(8)

意即,在一單位放電室生成的臭氧生成濃度C(g/m3)係由和注入到單位氣體體積dv的放電能量(joule/cm3)相當的比電力值dw/qo(W‧min/L)來決定,如下式(9)所示,在放電空間滯留的臭氧量ys(g)係和比電力值dw/qo(W‧min/L)成比例地增高。 In other words, the ozone generation concentration C (g/m 3 ) generated in a unit discharge chamber is determined by the specific power value dw/qo (W‧min corresponding to the discharge energy (joule/cm 3 ) injected into the unit gas volume dv /L), as shown in the following equation (9), the amount of ozone remaining in the discharge space ys(g) increases proportionally to the specific power value dw/qo(W‧min/L).

ys(g)=C‧d‧s/1000000...(9) ys(g)=C‧d‧s/1000000...(9)

此處,一單位放電室的比電力值雖以dw/qo表示,但多段層疊的情況中,(n倍)的整體比電力值DW/Q亦以相同的比值表示,故下文中均以比電力值DW/Q表示。 Here, although the specific power value of a unit discharge cell is expressed by dw/qo, in the case of multi-layer stacking, the (n times) overall specific power value DW/Q is also expressed by the same ratio. Power value DW/Q said.

但,實際放電的臭氧氣體產生裝置中,如第7圖所示,取出臭氧濃度Ct不會和比電力值DW/Q成比例增加,相對於比電力值DW/Q的取出臭氧濃度Ct的特性為特性8000a。 However, in the actual discharged ozone gas generating device, as shown in FIG. 7, the extracted ozone concentration Ct does not increase in proportion to the specific power value DW/Q, and the characteristic of the extracted ozone concentration Ct relative to the specific power value DW/Q It is characteristic 8000a.

特性8000a中,低比電力值DW/Q的取出臭氧濃度Ct特性的切線(兩點鏈線)係被定義為放電室(臭氧產生室)生成的臭氧生成濃度C(g/m3)之特性。 In characteristic 8000a, the tangent (two-point chain line) of the extracted ozone concentration Ct characteristic of the low specific power value DW/Q is defined as the characteristic of the ozone generation concentration C (g/m 3 ) generated in the discharge chamber (ozone generation chamber) .

另一方面,如第7圖的特性8000a所示,在高比電力值DW/Q區域的取出臭氧濃度Ct可判斷為從各放電室所生成的臭氧生成濃度C扣除各放電室內生成之臭氧的分解濃度Cd後的值。 On the other hand, as shown by characteristic 8000a in FIG. 7, the extracted ozone concentration Ct in the high specific power value DW/Q area can be determined as the ozone generated in each discharge chamber subtracted from the ozone generation concentration C generated in each discharge chamber The value after decomposing the concentration Cd.

如第7圖所示,在原料氣體流量Q為大致3.0L/min以上的大流量區中,臭氧產生器中相對於之比電力值DW/Q的取出臭氧濃度Ct之特 性8000a係以預定的濃度值呈飽和狀態。因此,即使增加總放電電力DW且提高比電力值DW/Q,取出臭氧濃度Ct也無法增高。 As shown in FIG. 7, in the large flow rate region where the raw material gas flow rate Q is approximately 3.0 L/min or more, the characteristic of the ozone concentration Ct taken out relative to the specific power value DW/Q in the ozone generator Sex 8000a is saturated with a predetermined concentration value. Therefore, even if the total discharge power DW is increased and the specific power value DW/Q is increased, the extracted ozone concentration Ct cannot be increased.

即使將比電力值DW/Q提高,取出臭氧濃度Ct也不會從預定濃度值變高,反而顯示出降低的傾向,其原因在於放電室產生的電子、離子、放電氣體會和放電空間中生成的臭氧發生碰撞而使臭氧氣體分解,而且放電室內滯留的臭氧本身的自我分解甚大。 Even if the specific power value DW/Q is increased, the extracted ozone concentration Ct does not increase from the predetermined concentration value, but shows a tendency to decrease because the electrons, ions, and discharge gas generated in the discharge chamber are generated in the discharge space. Ozone collides and decomposes the ozone gas, and the ozone detained in the discharge chamber itself decomposes greatly.

意即,在放電空間生成的臭氧氣體在通過放電中的電子空間之際,因和電子、離子、放電氣體等碰撞而分解的分解量與臭氧本身自我分解的自我分解量加總的分解量甚大,會使取出臭氧濃度Ct降低。 That is to say, when the ozone gas generated in the discharge space passes through the electron space in the discharge, the decomposition amount due to collision with electrons, ions, discharge gas, etc. and the self-decomposition amount of ozone self-decomposition are very large. , Will reduce the ozone concentration Ct.

放電室內臭氧分解的總臭氧分解量Yd(=2‧n‧yd)係依存於放電空間中發生的電子量ne、放電氣體ng的分子量、平均氣體流速vo/d、氣體滯留時間To及氣體溫度Tg,其可以下式(10)來表示。另外,"yd"係意指一單位放電室的臭氧分解量。 The total ozone decomposition amount Yd (=2‧n‧yd) of ozone decomposition in the discharge chamber depends on the amount of electrons ne generated in the discharge space, the molecular weight of the discharge gas ng, the average gas flow rate vo/d, the gas residence time To and the gas temperature Tg, which can be expressed by the following formula (10). In addition, "yd" means the amount of ozone decomposition per unit discharge chamber.

Yd=B(ne、ng、vo/d、To、Tg、C)...(10) Yd=B(ne, ng, vo/d, To, Tg, C)...(10)

如式(10)所示,總臭氧分解量Yd係以B(...)的函數來求得。 As shown in equation (10), the total ozone decomposition amount Yd is obtained as a function of B(...).

因而,若能對應比電力值DW/Q將複數個放電室內臭氧氣體分解的總臭氧分解量Yd減低,取出臭氧濃度Ct即可提高。 Therefore, if the total ozone decomposition amount Yd of ozone gas decomposition in a plurality of discharge chambers can be reduced corresponding to the specific power value DW/Q, the ozone concentration Ct can be increased.

複數個放電室內臭氧分解的總臭氧分解量Yd雖為複數個放電空間中的臭氧氣體分解量,但如第7圖所示可知,在總氣體流量Q為大致3.0L/min以上的大流量區中,係以為了生成臭氧氣體而投入的總放電電力DW與氣體流量Q之比(比電力值DW/Q)作單義決定。 The total ozone decomposition amount Yd of the ozone decomposition in the plurality of discharge chambers is the amount of ozone gas decomposition in the plurality of discharge spaces, but as shown in FIG. 7, in the large flow rate region where the total gas flow rate Q is approximately 3.0 L/min or more In this case, the ratio of the total discharge power DW input to generate ozone gas and the gas flow rate Q (specific power value DW/Q) is determined univocally.

由此情形可知,依存於比電力值DW/Q的總臭氧分解量Yd具有由臭氧產生器本身的構造條件來決定的固有特性。意即,若從臭氧產生 器的構造或臭氧電源的輸出條件重新審視,則依存於比電力值DW/Q的總臭氧分解量Yd也可減低,而且取出臭氧量Yt能夠增高。本案即是著眼於此點的發明。 From this situation, it can be seen that the total ozone decomposition amount Yd depending on the specific power value DW/Q has an inherent characteristic determined by the structural conditions of the ozone generator itself. This means that if generated from ozone If the structure of the device or the output condition of the ozone power supply is reexamined, the total ozone decomposition amount Yd depending on the specific power value DW/Q can also be reduced, and the extracted ozone amount Yt can be increased. This case is an invention focusing on this point.

在第2圖所示的接地冷卻電極1的一個放電面之剖面中,注意其放電室中生成的臭氧氣體的臭氧分解量。 In the cross section of one discharge surface of the grounded cooling electrode 1 shown in FIG. 2, pay attention to the ozone decomposition amount of the ozone gas generated in the discharge chamber.

以原料氣體流量Q(原料氣體流量)供給原料氣體時,會分散供給成分別流到2n個一單位放電室(基本室S1或S2)的原料氣體流量qo(=Q/(2‧n)),並思考投入每一單位放電室的放電電力dw(=DW/(2‧n))的情況。 When the raw material gas is supplied at the raw material gas flow rate Q (the raw material gas flow rate), the raw material gas flow rate qo (=Q/(2‧n)) that is supplied to each of the 2n one-unit discharge cells (basic chambers S1 or S2) is dispersed and supplied. , And consider the situation of the discharge power dw (=DW/(2‧n)) put into each unit discharge chamber

在此情況中,一個放電空間生成的臭氧氣體的臭氧生成量y[=Y/(2‧n)](g/h)係為藉由原料氣體流經放電空間所生成的量。而且,一單位放電室的臭氧生成量y,係和兩個要素密切相關,該兩個要素包括屬於通過放電空間之時間的氣體滯留時間To、及流到以一組放電面的單位周長l(cm)為基準的放電室的氣體剖面sav(=l‧d)的平均氣體流速vo/d(cm/s)(=qo‧0.001/(60‧sav))。該兩個要素為以放電室形狀決定的固有值。另外,所稱單位周長l(cm)係表示形成一個放電空間的一對放電面中,沿著屬於一個放電面之代表放電面之外周周長(cm)。意即,一個放電面的平均面積sav(=so/2)的放電徑周長(cm)即為單位周長l(cm)。 In this case, the ozone generation amount y[=Y/(2‧n)] (g/h) of the ozone gas generated in one discharge space is the amount generated by flowing the raw material gas through the discharge space. Moreover, the amount of ozone generated by a unit of discharge chamber y is closely related to two elements, including the gas residence time To belonging to the time passing through the discharge space, and the unit perimeter l flowing to a group of discharge surfaces (cm) is the average gas flow rate vo/d(cm/s) (=qo‧0.001/(60‧sav)) of the gas profile sav (=l‧d) of the discharge chamber. These two elements are inherent values determined by the shape of the discharge cell. In addition, the unit perimeter 1 (cm) refers to the perimeter (cm) along the outer side of the representative discharge surface belonging to one discharge surface among a pair of discharge surfaces forming one discharge space. That is to say, the perimeter (cm) of the discharge diameter of the average area sav (=so/2) of a discharge surface is the unit perimeter l (cm).

氣體滯留時間To係和放電空間的電子、離子、放電氣體與放電面生成的臭氧氣體碰撞導致的臭氧分解量、及放電空間內滯留的臭氧本身的自我臭氧分解量的雙方密切關連。此外,以單位周長l(cm)為基準的平均氣體流速vo/d(cm/s)則和一單位放電室內生成的臭氧生成能力有密切關係,相對於臭氧生成能力,氣體的平均氣體流速vo/d越大,總氣體流量Q也越大,取出的臭氧濃度就越低。 The gas residence time To is closely related to both the amount of ozone decomposition caused by the collision of electrons, ions, discharge gas and ozone gas generated on the discharge surface of the discharge space, and the self-ozonolysis amount of ozone remaining in the discharge space. In addition, the average gas flow rate vo/d (cm/s) based on the unit perimeter l (cm) is closely related to the ozone generation capacity generated in a unit discharge chamber. Compared with the ozone generation capacity, the average gas flow rate of the gas The greater the vo/d, the greater the total gas flow Q, and the lower the ozone concentration taken out.

因而,氣體滯留時間To及氣體溫度Tg即為因通過放電空間中臭氧氣體的碰撞導致的分解量及臭氧本身的自我分解量增高的要素,且為助長放電室內臭氧分解量增高的主因。而且,相較於放電空間內的臭氧生成能力,平均氣體流速vo/d(cm/s)增大時,取出的臭氧濃度Ct會降低。 Therefore, the gas residence time To and the gas temperature Tg are factors that increase the amount of decomposition due to the collision of ozone gas in the discharge space and the self-decomposition amount of ozone itself, and are the main factors contributing to the increase in the amount of ozone decomposition in the discharge chamber. Furthermore, when the average gas flow rate vo/d (cm/s) is increased compared to the ozone generation capacity in the discharge space, the ozone concentration Ct taken out will decrease.

意即,一個放電空間中,在以可投入的放電電力密度J(=wd/so)以介電質障壁放電能量生成的臭氧氣體的臭氧產生量y[=Y/(2‧n)](g/h)之中,關於滯留於放電空間內的臭氧量ys(g),在將該臭氧量ys以高濃度取出臭氧時,放電空間中因氣體的氣體滯留時間To導致的臭氧分解量yd之影響無法忽視。 That is to say, in a discharge space, the ozone generation amount y[=Y/(2‧n)] of ozone gas generated by the discharge energy density J(=wd/so) with dielectric barrier discharge energy g/h), regarding the ozone amount ys(g) remaining in the discharge space, when the ozone amount ys is taken out of ozone at a high concentration, the ozone decomposition amount yd in the discharge space due to the gas residence time To of the gas The impact cannot be ignored.

具體而言,由於氣體滯留時間To越大,臭氧分解時間越長,與放電氣體的碰撞導致的分解量與滯留的臭氧本身的自我分解量之總計的臭氧分解量yd就越大。 Specifically, the greater the gas residence time To, the longer the ozone decomposition time, and the greater the ozone decomposition amount yd, which is the sum of the decomposition amount due to the collision with the discharge gas and the self-decomposition amount of the retained ozone itself.

而且,相較於放電空間中臭氧的生成能力,平均氣體流速vo/d(cm/s)增大時,取出臭氧濃度Ct會降低。 Furthermore, when the average gas flow rate vo/d (cm/s) is increased compared to the ozone generating capacity in the discharge space, the extracted ozone concentration Ct will decrease.

再者,放電電力密度J增加時,雖氣體溫度Tg有升高的傾向,但如將放電面整面冷卻,而有將放電熱能量充分去除的冷卻能力的話,臭氧分解量yd不會隨著可投入的放電電力密度J增加後的放電室形狀增加,而是可以某種程度的冷卻能力加以抑制。 Furthermore, when the discharge power density J increases, although the gas temperature Tg tends to increase, if the entire discharge surface is cooled and there is cooling capacity to sufficiently remove the discharge heat energy, the ozone decomposition amount yd will not After the discharge power density J that can be input increases, the shape of the discharge chamber increases, but it can be suppressed by a certain degree of cooling capacity.

關於因氣體溫度Tg導致的臭氧分解,係和放電電極面的冷卻能力相關,可透過形成充分的冷卻能力來抑制氣體溫度Tg的溫度上升。關於氣體溫度Tg之溫度上升的抑制,因係屬於臭氧產生器設計上的必要問題,此處,有關因氣體溫度Tg導致的臭氧分解量增加不予考量。 The ozone decomposition due to the gas temperature Tg is related to the cooling capacity of the discharge electrode surface, and it is possible to suppress the temperature rise of the gas temperature Tg by forming a sufficient cooling capacity. Regarding the suppression of the temperature rise of the gas temperature Tg, it is a necessary issue in the design of the ozone generator. Here, the increase in the amount of ozone decomposition caused by the gas temperature Tg is not considered.

接著,在流通一般3.0L/min以上的大流量原料氣體的情況中,就放電空間中的氣體滯留時間To、流經以單位周長l(cm)為基準的放電 空間的平均氣體流速vo/d、及適於放電電力密度J的放電室形狀加以思考。氣體滯留時間To係如下式(11)所示。 Next, when a large flow rate of raw material gas of generally 3.0 L/min or more is circulated, the gas residence time To in the discharge space flows through the discharge based on the unit circumference l (cm) Consider the average gas flow rate vo/d in the space and the shape of the discharge chamber suitable for the discharge power density J. The gas residence time To is represented by the following formula (11).

To(ms)=(d‧so)/qo...(11) To(ms)=(d‧so)/qo...(11)

另外,式(11)中,"d"為放電間隙長(mm),"so"為一單位放電室中放電面的放電面積(cm2),"qo"為每一個放電空間的原料氣體流量(L/min)。 In addition, in formula (11), "d" is the discharge gap length (mm), "so" is the discharge area (cm 2 ) of the discharge surface in a unit discharge chamber, and "qo" is the raw material gas flow rate in each discharge space (L/min).

另一方面,"S"係表示臭氧產生器200內的總放電面積(cm2),"Q"表示供給到臭氧產生器200內的原料氣體的總氣體流量(L/min),"n"表示第1圖所示之臭氧產生器200的層疊放電室(基本室S1及S2的組合)的片數(個),放電面數為2‧n。 On the other hand, "S" means the total discharge area (cm 2 ) in the ozone generator 200, "Q" means the total gas flow rate (L/min) of the raw material gas supplied into the ozone generator 200, "n" It shows the number (number) of stacked discharge chambers (combination of basic chambers S1 and S2) of the ozone generator 200 shown in FIG. 1, and the number of discharge surfaces is 2‧n.

再者,流到以單位周長l(cm)為基準之放電面的平均氣體流速vo/d(cm/s)係依存於放電室的形狀。例如,圓板狀放電室的情況中,流到以單位周長l(cm)為基準之放電室的氣體剖面sav,若以流入放電面積so相當於1/2的放電徑中每單位間隙長的平均氣體流速vo來定義時,係以下式(12)來表示。 Furthermore, the average gas flow rate vo/d (cm/s) to the discharge surface based on the unit perimeter l (cm) depends on the shape of the discharge cell. For example, in the case of a disc-shaped discharge cell, the gas profile sav flowing into the discharge cell based on the unit perimeter l (cm), if the inflow discharge area so corresponds to 1/2 of the discharge diameter per unit gap length When the average gas flow rate vo is defined, it is expressed by the following formula (12).

vo(cm/s)=qo/(2π‧(so/2π)0.5)=f(so)‧{1/To}...(12) vo(cm/s)=qo/(2π‧(so/2π) 0.5 )=f(so)‧{1/To}...(12)

另外,每單位間隙長的平均氣體流速vo係為依存於函數f(so)與放電空間中氣體滯留時間To之倒數值。 In addition, the average gas flow rate vo per unit gap length is a reciprocal value that depends on the function f(so) and the gas residence time To in the discharge space.

此外,可投入一個放電空間的放電電力密度J(W/cm2)係以下式(13)來表示。 In addition, the discharge power density J (W/cm 2 ) that can be put into one discharge space is expressed by the following formula (13).

J(W/cm2)=DW/S=dw/so...(13) J(W/cm 2 )=DW/S=dw/so...(13)

另外,式(13)中,"DW"為總放電電力。 In addition, in equation (13), "DW" is the total discharge power.

放電空間中,臭氧分解量yd會單純地成比例增加的要素為氣體滯留時間To。為了使氣體滯留時間To縮短,若將一單位放電室之放電面的放電面積so縮小,並投入相同放電電力dw[=DW/(2‧n)]的話,就可依式(11)所示的氣體滯留時間To的縮短程度,將臭氧分解量yd降低。 In the discharge space, the element whose ozone decomposition amount yd simply increases proportionally is the gas residence time To. In order to shorten the gas residence time To, if the discharge area so of the discharge surface of a unit discharge cell is reduced, and the same discharge power dw[=DW/(2‧n)] is input, it can be expressed as formula (11) The degree of shortening the gas residence time To decreases the ozone decomposition amount yd.

然而,一單位放電室的放電面積so縮小時,如式(12)所示,流經以單位周長l(cm)為基準的放電面的平均氣體流速vo/d(cm/s)會變大。因此,即使在供給到放電面內的原料氣體流量qo較低的條件下,也可將臭氧取出濃度Ct提高。 However, when the discharge area so of a unit discharge cell is reduced, as shown in equation (12), the average gas flow rate vo/d (cm/s) flowing through the discharge surface based on the unit perimeter l (cm) will change Big. Therefore, even under the condition that the flow rate qo of the raw material gas supplied into the discharge surface is low, the ozone extraction concentration Ct can be increased.

本案發明人發現:如將一單位放電室的放電面積so縮小,在供給到放電空間的原料氣體流量qo較低的條件下,將放電空間的氣體滯留時間To縮短的條件設定甚為重要。亦即,本案發明人瞭解:藉由上述條件設定,可將包含因生成臭氧的碰撞導致的臭氧分解及滯留的臭氧本身的自我分解的分解所需時間縮短,結果,能使放電空間中的臭氧分解量yd減少。 The inventor of the present application found that, if the discharge area so of a unit discharge cell is reduced, it is important to set the conditions for shortening the gas residence time To in the discharge space under the condition that the flow rate qo of the raw material gas supplied to the discharge space is low. That is, the inventors of the present invention understood that by setting the above conditions, it is possible to shorten the time required for the decomposition including ozone decomposition due to collision of ozone generation and the self-decomposition of retained ozone itself, and as a result, the ozone in the discharge space can be made The decomposition amount yd decreases.

因而,為了能取出高濃度臭氧,較佳為將平均氣體流速vo/d設定在最佳條件,使氣體滯留時間To縮短。意即,要將放電空間生成的臭氧取出時的臭氧分解量yd減低,就必須縮小一單位放電室的放電面積so。 Therefore, in order to be able to take out high-concentration ozone, it is preferable to set the average gas flow rate vo/d to an optimal condition to shorten the gas residence time To. That is to say, in order to reduce the ozone decomposition amount yd when the ozone generated in the discharge space is taken out, it is necessary to reduce the discharge area so of one unit discharge chamber.

接著,作為縮短氣體滯留時間To的方法,可考量減小放電室的放電面直徑,使放電電力密度J達到理想範圍內,並設定投入到藉縮小直徑的放電面形成的放電空間的放電電力dw的方法。若依據該方法,一個放電空間的臭氧分解量yd即可減低,結果,可以更高濃度從一個放電空間取出預定量的臭氧氣體。 Next, as a method of shortening the gas residence time To, it is possible to consider reducing the diameter of the discharge surface of the discharge chamber so that the discharge power density J is within an ideal range, and set the discharge power dw to be input into the discharge space formed by the discharge surface having a reduced diameter Methods. According to this method, the ozone decomposition amount yd of one discharge space can be reduced, and as a result, a predetermined amount of ozone gas can be taken out of one discharge space at a higher concentration.

意即,作為取出高濃度臭氧氣體的手段,本案發明人將包含:從一個放電空間取出高濃度臭氧氣體的臭氧室構造(放電面的放電面積 so)、為了規限放電電力密度J的設定而投入到一個放電空間的放電電力dw、及用以使平均氣體流速vo/d訂在規制範圍內的原料氣體流量qo等各種要因的條件範圍進行適當設定甚為重要。 That is to say, as a means of taking out high-concentration ozone gas, the inventor of the present invention will include: so), to limit the setting of the discharge power density J, the discharge power dw put into one discharge space, and the raw gas flow qo to make the average gas flow rate vo/d within the regulation range Appropriate setting is very important.

再者,作為維持關於上述一個放電空間的條件且提高取出高濃度臭氧氣體之氣體流量的方法,將具有基本室S1及S2的放電室作多段(n倍)層疊的方式很受期待。若將放電室層疊n段,即可構成放電電力DW(=2‧n‧dw)及總氣體流量Q(=2‧n‧qo)獲得提高的臭氧氣體產生系統。結果,可在較大的氣體流量區取出高濃度臭氧氣體。 In addition, as a method for increasing the gas flow rate at which the high-concentration ozone gas is taken out while maintaining the conditions regarding the above-mentioned one discharge space, a method of stacking the discharge chambers having the basic chambers S1 and S2 in multiple stages (n times) is expected. If the discharge chambers are stacked in n sections, an ozone gas generation system with an increased discharge power DW (=2‧n‧dw) and total gas flow Q (=2‧n‧qo) can be formed. As a result, high-concentration ozone gas can be taken out in a larger gas flow area.

另外,上述構成的臭氧氣體系統中,藉由將總放電電力DW(=2‧n‧dw)及總氣體流量Q在可能範圍內設定到最大,即能將取出臭氧量Yt(=Ct‧Q)提高到最大限度。 In addition, in the ozone gas system configured as described above, by setting the total discharge power DW (=2‧n‧dw) and the total gas flow rate Q to the maximum possible range, the extracted ozone amount Yt(=Ct‧Q ) Increase to the maximum.

如上所述,為了能取出高濃度臭氧,在減少臭氧分解量yd的手段上,由於可將放電空間的氣體滯留時間To縮短,故將一組放電面的放電面積so縮小到規限值範圍內的臭氧氣體產生系統很理想。 As described above, in order to be able to take out high-concentration ozone, the means for reducing the ozone decomposition amount yd can shorten the gas residence time To in the discharge space, so the discharge area so of a group of discharge surfaces is reduced to within the range of the regulatory limit The ozone gas generation system is ideal.

此外,由於可將取出臭氧量Yt提高,故將總放電電力DW及放電電力密度J在規限值範圍內施以最佳化的臭氧氣體產生系統很理想。 In addition, since the extracted ozone amount Yt can be increased, it is ideal to apply an optimized ozone gas generating system within the limits of the total discharge power DW and discharge power density J.

其次,作為可取出高濃度臭氧的臭氧氣體產生系統,雖有氣體流量為低流量或將臭氧產生器冷卻到更低溫的手段,但僅限於必須是要求低流量臭氧氣體的領域。而且,將臭氧產生器冷卻到更低溫的手段,會使臭氧氣體產生系統的附帶設備變大,臭氧氣體產生系統本身也較以往的裝置高價又大型化。 Secondly, as an ozone gas generating system that can take out high-concentration ozone, although there are means for lowering the gas flow rate or cooling the ozone generator to a lower temperature, it is limited to areas where low-flow ozone gas is required. In addition, the means for cooling the ozone generator to a lower temperature will increase the auxiliary equipment of the ozone gas generation system, and the ozone gas generation system itself will be more expensive and larger than the conventional device.

從上述事實可考量:將取出高濃度臭氧的臭氧氣體產生系統的限制條件設為總氣體流量Q的氣體流量範圍在大約3.0L/min以上的大流量型氣體流量,且將冷卻臭氧產生器200的冷卻溫度設在5℃以上的條件。 在此條件下,就必須實現例如可取出作為一實施例的400g/m3以上高濃度臭氧,且可取出已提高取出臭氧量Yt的臭氧氣體產生系統1000。在此情況下,不只要確保臭氧產生器200的總放電面積S,取得可將供給到放電空間的放電電力密度J及總放電電力DW在可能範圍內設定到最大的穩定性臭氧用電源100也甚重要。 It can be considered from the above facts: the limitation condition of the ozone gas generating system that takes out high-concentration ozone is a large flow type gas flow rate with a total gas flow rate Q of a gas flow rate range of about 3.0 L/min or more, and the ozone generator 200 is cooled The cooling temperature is set under the condition of 5 ℃ or more. Under this condition, it is necessary to realize, for example, an ozone gas generation system 1000 that can take out high-concentration ozone of 400 g/m 3 or more as an example, and can take out an increased amount of extracted ozone Yt. In this case, it is not only necessary to secure the total discharge area S of the ozone generator 200, but to obtain the stable ozone power supply 100 that can set the discharge power density J and the total discharge power DW supplied to the discharge space to the maximum possible range. Very important.

為了獲致高濃度且預定量的臭氧氣體,臭氧用電源100必須對臭氧產生器200投入總放電電力DW且提高臭氧產生器200的放電電力密度J。在此情況下,臭氧用電源100的臭氧產生用交流電壓輸出頻率若是以往的輸出頻率的未達20kHz,就會產生對臭氧產生器200施加的負載電壓升高,臭氧用電源100及臭氧產生器200本身的耐受電壓必須強化等問題。 In order to obtain a high concentration and a predetermined amount of ozone gas, the ozone power supply 100 must input the total discharge power DW to the ozone generator 200 and increase the discharge power density J of the ozone generator 200. In this case, if the output voltage of the ozone generating AC voltage of the power supply 100 for ozone is less than 20 kHz of the conventional output frequency, the load voltage applied to the ozone generator 200 will increase, and the power supply 100 for ozone and the ozone generator The 200 withstand voltage must be strengthened and other issues.

因此,作為賦予峰值電壓7kVp(5.0kVrms)以下的負載施加電壓Vd的臭氧用電源100,較佳為輸出頻率f為20kHz至50kHz(20kHz以上未達50kHz)的高頻式臭氧產生用交流電壓的臭氧用電源。再者,採用輸出頻率f超過30kHz的臭氧用電源時,電源本身發出的雜訊會急劇增加,附設於臭氧氣體產生系統的量測儀器或外部機器的誤動作會增大。更且,為了將臭氧產生器和負載維持在共振頻率附近,響應輸出頻率f之負載變動的頻率控制就不可或缺,使臭氧用電源要輸出穩定電力非常困難。因此,臭氧用電源100的輸出頻率f以限制在20kHz至未達30kHz更佳。 Therefore, as the power supply 100 for ozone that applies a load applied voltage Vd with a peak voltage of 7 kVp (5.0 kVrms) or less, a high-frequency type ozone generating AC voltage with an output frequency f of 20 kHz to 50 kHz (20 kHz or more but less than 50 kHz) is preferable Power supply for ozone. In addition, when an ozone power supply with an output frequency f exceeding 30 kHz is used, the noise emitted by the power supply itself will increase sharply, and the malfunction of the measuring instrument or external device attached to the ozone gas generating system will increase. Furthermore, in order to maintain the ozone generator and the load near the resonance frequency, frequency control in response to load fluctuations at the output frequency f is indispensable, and it is very difficult for the ozone power supply to output stable power. Therefore, the output frequency f of the ozone power supply 100 is preferably limited to 20 kHz to less than 30 kHz.

賦予20kHz至50kHz高頻率負載施加電壓Vd的臭氧用電源可考量以下2種電源。 The following two power sources can be considered for the power supply for ozone that applies a voltage Vd of 20 kHz to 50 kHz high frequency load application.

第1電源:臭氧用電源之反向器部與臭氧產生器之間設有串聯共振電路的電源;第2電源:臭氧用電源之反向器部與臭氧產生器之間設有高頻-高壓變壓器的電源。 The first power supply: a power supply with a series resonance circuit between the inverter portion of the ozone power supply and the ozone generator; the second power supply: a high frequency-high voltage between the inverter portion of the ozone power supply and the ozone generator Transformer power supply.

第1電源中,必須取消臭氧用電源輸出側變壓器,且在反向器部與臭氧產生器之間設置高共振Q值(例如,Q值為10以上)的串聯共振電路,且升壓到負載施加電壓Vd。第1電源中,有不用高頻-高壓變壓器的優點,臭氧用電源本身可精簡化。 In the first power supply, it is necessary to cancel the transformer on the output side of the power supply for ozone, and to provide a series resonance circuit with a high resonance Q value (for example, a Q value of 10 or more) between the inverter section and the ozone generator, and boost it to the load The voltage Vd is applied. The first power supply has the advantage of eliminating the need for high-frequency and high-voltage transformers, and the power supply for ozone can be simplified.

但是,第1電源要在含跨反向器部、串聯共振電路與臭氧產生器等3個主要構成部的電路間產生共振,會因共振的負載電流的反饋電流返回到反向器部,使反向器部的功率損失變得非常大。 However, the first power supply must resonate between the three main components including the inverter, the series resonance circuit, and the ozone generator. The feedback current due to the resonated load current returns to the inverter, causing The power loss of the inverter part becomes very large.

再者,第1電源由於會升壓共振到負載施加電壓Vd,使負載施加電壓Vd因微妙的負載條件變動而改變,即使控制反向器部的動作頻率,也難以對臭氧產生器投入穩定的負載施加電壓Vd。而且,由於動作頻率經常可變,有電源雜訊變大等問題。 Furthermore, since the first power supply will boost resonance to the load applied voltage Vd, the load applied voltage Vd changes due to subtle load condition fluctuations, and even if the operating frequency of the inverter section is controlled, it is difficult to put a stable Load applied voltage Vd. Moreover, because the operating frequency is often variable, there is a problem that the power supply noise becomes larger.

由於有以上的問題,在實用上,高頻率臭氧用電源輸出的放電電力DW只適用在未達1.5kW的臭氧氣體產生系統。此外,搭載複數個屬於第1電源的小型臭氧用電源會招致臭氧產生器構成的複雜化或控制的複雜化,又因而產生臭氧用電源內的控制損失或零件數增加等問題。 Due to the above problems, in practice, the discharge power DW output from the high-frequency ozone power supply is only applicable to ozone gas generating systems that do not reach 1.5 kW. In addition, the installation of a plurality of small ozone power sources belonging to the first power source causes the complexity of the ozone generator or the complexity of the control, and thus causes problems such as loss of control in the power source for ozone and an increase in the number of parts.

因此,在將原料氣體的總氣體流量Q(原料氣體流量)的氣體流量範圍設於大致3.0L/min以上,冷卻上述臭氧產生器的冷卻溫度訂在5℃以上的條件下,對以取出400g/m3以上高濃度臭氧氣體為目的的本實施形態臭氧氣體產生系統不適合。理由在於本實施形態的臭氧氣體產生系統必須滿足比電力值DW/Q為600W‧min/L以上的總放電電力DW之故。 Therefore, when the gas flow rate range of the total gas flow rate Q (source gas flow rate) of the raw material gas is set to approximately 3.0 L/min or more, and the cooling temperature for cooling the ozone generator is set at 5° C. or more, 400 g is taken out. The ozone gas generating system of this embodiment for the purpose of high-concentration ozone gas of /m 3 or more is not suitable. The reason is that the ozone gas generating system of the present embodiment must satisfy the total discharge power DW with a specific power value DW/Q of 600 W‧min/L or more.

第2電源中,藉由在反向器部(反向器電路部22)與臭氧產生器之間設置高頻-高壓變壓器(並聯共振用變壓器25),可以依高頻-高壓變壓器1次側繞線數與2次側繞線數的匝數比決定的固定值來提升電壓。再者,變壓器的2次側以後,藉由設置和負載的並聯共振電路,可將供給到負載的 輸出頻率與負載施加電壓Vd設在大致一定值,再將總放電電力DW供給到臭氧產生器200。 In the second power supply, by providing a high frequency-high voltage transformer (parallel resonance transformer 25) between the inverter part (inverter circuit part 22) and the ozone generator, the primary side of the high frequency-high voltage transformer can be used A fixed value determined by the turns ratio of the number of windings to the number of secondary windings increases the voltage. Furthermore, after the secondary side of the transformer, by providing a parallel resonance circuit with the load, the The output frequency and the load applied voltage Vd are set at approximately constant values, and then the total discharge power DW is supplied to the ozone generator 200.

結果,共振的負載電流不會成為反饋電流返回到反向器部,反向器部的功率損失較小,不會受和負載共振程度的影響,負載施加電壓Vd可保持固定,而對負載供給穩定的總放電電力DW。 As a result, the resonant load current will not return to the inverter part as a feedback current, the power loss of the inverter part is small, and will not be affected by the degree of resonance with the load, the load applied voltage Vd can be kept fixed, and the load is supplied to the load Stable total discharge power DW.

因此,第2電源中,高頻率的臭氧用電源輸出的放電電力DW可訂在1.8kW以上,第2電源有可將穩定的輸出投入到臭氧產生器的優點。 Therefore, in the second power supply, the discharge power DW output from the high-frequency ozone power supply can be set to 1.8 kW or more, and the second power supply has an advantage that a stable output can be input to the ozone generator.

本實施形態的臭氧用電源100可使上述第2電源的要件獲得滿足。從而,可由臭氧用電源100與臭氧產生器200組合構成臭氧氣體產生系統1000。 The power supply 100 for ozone of this embodiment can satisfy the requirements of the above second power supply. Therefore, the ozone gas generating system 1000 can be constituted by a combination of the ozone power supply 100 and the ozone generator 200.

因此,本實施形態的臭氧氣體產生系統1000可在原料氣體的總氣體流量Q之氣體流量範圍設在大致3.0L/min以上,且冷卻臭氧產生器200的冷卻溫度設在5℃以上的條件下,取出400g/m3以上的高濃度臭氧。更且,臭氧氣體產生系統1000能夠成為高濃度臭氧氣體的取出流量可大流量化,且臭氧產生器的冷卻能力也可達到和以往同等層級的臭氧氣體產生系統。 Therefore, the ozone gas generating system 1000 of the present embodiment can set the gas flow rate range of the total gas flow rate Q of the raw material gas to approximately 3.0 L/min or more, and the cooling temperature of the cooling ozone generator 200 to be set to 5° C. or more. , remove 400g / m 3 or more high-concentration ozone. Moreover, the ozone gas generation system 1000 can be a high-concentration ozone gas extraction flow rate that can be increased, and the cooling capacity of the ozone generator can also reach an ozone gas generation system of the same level as in the past.

再者,為了形成並聯共振用變壓器25本身之內部電感與負載(臭氧產生器200)之靜電容量的共振頻率,而設定了反向器電路部22的動作頻率。因此,不須在並聯共振用變壓器25的輸出側新設共振用反應器,而有並聯共振用變壓器25之2次側以後的共振電路也可以並聯共振用變壓器25共用的優點。 In addition, in order to form the resonance frequency of the internal inductance of the parallel resonance transformer 25 itself and the electrostatic capacity of the load (ozone generator 200), the operating frequency of the inverter circuit section 22 is set. Therefore, it is not necessary to newly install a resonance reactor on the output side of the parallel resonance transformer 25, and there is an advantage that the resonance circuit after the secondary side of the parallel resonance transformer 25 can be shared by the parallel resonance transformer 25.

以上係就原料氣體以較大的總氣體流量Q來取出高濃度臭氧氣體的臭氧產生器手段,將產生器內的一單位放電室的放電空間設定在 最佳範圍的重要性加以說明。以下參照第1圖針對本實施形態之臭氧氣體產生系統1000作詳細說明。 The above is an ozone generator means for extracting high-concentration ozone gas from the raw material gas at a large total gas flow rate Q, setting the discharge space of a unit discharge chamber in the generator at The importance of the optimal range is explained. The ozone gas generating system 1000 of this embodiment will be described in detail below with reference to FIG.

將從臭氧用電源100投入的總放電電力DW設在固定的5.0kW,臭氧產生器200具有基本室S1、S2的放電室段數n設為6(可形成共計12個放電空間),放電間隙長d設在可滿足數十至數百μm條件的固定長,並準備以下3種臭氧產生器。 The total discharge power DW input from the ozone power supply 100 is set at a fixed 5.0 kW, the number n of discharge chamber segments of the ozone generator 200 having the basic chambers S1 and S2 is set to 6 (a total of 12 discharge spaces can be formed), and the discharge gap The length d is set at a fixed length that can satisfy the conditions of tens to hundreds of μm, and the following three types of ozone generators are prepared.

A型放電室形狀的產生器...總放電面積S為2500cm2 Type A discharge chamber shape generator...total discharge area S is 2500cm 2

B型放電室形狀的產生器...總放電面積S為1250cm2 Type B discharge chamber shaped generator...total discharge area S is 1250cm 2

C型放電室形狀的產生器...總放電面積S為625cm2 Generator with C-shaped discharge cell shape...total discharge area S is 625cm 2

然後,分別用A型放電室形狀的產生器至C型放電室形狀的產生器求得取出的臭氧濃度。 Then, the ozone concentration to be taken out was obtained from the generators of the A-type discharge cell shape to the generators of the C-type discharge cell shape, respectively.

A型放電室形狀的產生器中,係設定一塊放電面積so為約209cm2,放電徑(放電面的直徑)為約

Figure 108106054-A0202-12-0029-10
170(mm),可投入的放電電力密度J為2W/cm2。 In the generator of type A discharge cell, a discharge area so is set to about 209 cm 2 , and the discharge diameter (diameter of the discharge surface) is about
Figure 108106054-A0202-12-0029-10
170 (mm), the discharge power density J that can be input is 2 W/cm 2 .

B型放電室形狀的產生器中,係設定一塊放電面積so為約104cm2,放電徑為約

Figure 108106054-A0202-12-0029-11
115(mm),可投入的放電電力密度J為4W/cm2。 In the generator of the B-type discharge cell shape, a discharge area so is set to about 104 cm 2 and the discharge diameter is about
Figure 108106054-A0202-12-0029-11
115 (mm), the discharge power density J that can be input is 4 W/cm 2 .

C型放電室形狀的產生器中,則設定一塊放電面積so為約52cm2,放電徑為約

Figure 108106054-A0202-12-0029-12
81(mm),可投入的放電電力密度J為8W/cm2。 In the generator of the C-shaped discharge chamber, a discharge area so is set to about 52 cm 2 , and the discharge diameter is about
Figure 108106054-A0202-12-0029-12
81 (mm), the discharge power density J that can be input is 8 W/cm 2 .

另外,冷卻臭氧產生器的冷卻水溫係設定在固定的5℃。 In addition, the cooling water temperature for cooling the ozone generator is set at a fixed 5°C.

如第2圖所示,藉由將一組放電面的放電徑設成較小,一個放電空間的氣體滯留時間To相對於可投入一單位放電室(基本室S1或S2)的放電電力密度J的增大比例,在A型放電室形狀的產生器為1倍,在B型放電室形狀的產生器為1/2,在C型放電室形狀的產生器為1/4。 As shown in Fig. 2, by setting the discharge diameter of a set of discharge surfaces to be smaller, the gas residence time To of one discharge space is relative to the discharge power density J that can be put into one unit discharge chamber (basic chamber S1 or S2) The increase rate is doubled for generators in the shape of A-type discharge cells, 1/2 for generators in the shape of B-type discharge cells, and 1/4 for generators in the shape of C-type discharge cells.

藉由將放電室個數n設為6(放電面個數12(放電空間個數12)),一單位放電室的平均氣體流速vo/d,在A型放電室形狀的產生器為1/12,在B型放電室形狀的產生器為1/6,在C型放電室形狀的產生器為1/3。因而,相對於放電電力密度J的增大比例,一個放電空間的流速在各型產生器中,平均氣體流速vo/d只能以對應放電室個數n(放電面個數12)之1/12的比例增大。 By setting the number n of discharge cells to 6 (the number of discharge surfaces is 12 (the number of discharge spaces is 12)), the average gas flow rate vo/d of a unit discharge cell is 1/ in the shape of the generator of type A discharge cell 12. The generator in the shape of the B-type discharge chamber is 1/6, and the generator in the shape of the C-type discharge chamber is 1/3. Therefore, with respect to the increasing ratio of the discharge power density J, the flow velocity of one discharge space in each type of generator, the average gas flow velocity vo/d can only be 1/n of the corresponding number n of discharge cells (the number of discharge surfaces 12) The proportion of 12 increases.

結果,可解釋為臭氧產生器200內生成的臭氧氣體通過放電空間時的總臭氧分解量Yd在放電徑較小的放電室會減小。有關高濃度臭氧氣體取出效果相對於一單位放電室的形狀及放電室層疊的詳細容後述。 As a result, it can be explained that the total ozone decomposition amount Yd when the ozone gas generated in the ozone generator 200 passes through the discharge space is reduced in the discharge chamber where the discharge diameter is small. The details of the high-concentration ozone gas extraction effect with respect to the shape of a unit discharge cell and the discharge cell stacking will be described later.

第3圖為本實施形態的臭氧產生器200在A型放電室形狀的產生器、B型放電室形狀的產生器、C型放電室形狀的產生器的情況中,總臭氧分解量Yd相對於原料氣體流到各個放電面時的放電空間氣體滯留時間To之特性曲線圖。 FIG. 3 shows the ozone generator 200 of the present embodiment in the case of a generator of A-type discharge chamber shape, a generator of B-type discharge chamber shape, and a generator of C-type discharge chamber shape, the total ozone decomposition amount Yd is relative to Characteristic curve of the gas retention time To in the discharge space when the raw material gas flows to each discharge surface.

第3圖中,A型放電室形狀的產生器之總臭氧分解量Yd的特性為5000a、B型放電室形狀的產生器之總臭氧分解量Yd的特性為5000b、C型放電室形狀的產生器之總臭氧分解量Yd的特性為5000c。 In Figure 3, the characteristics of the total ozone decomposition amount Yd of the A-type discharge chamber shape generator is 5000a, and the characteristics of the total ozone decomposition amount Yd of the B-type discharge chamber shape generator is 5000b, and the generation of the C-type discharge chamber shape The characteristic of the total ozone decomposition amount Yd of the device is 5000c.

此外,以虛線表示的特性5000s1,特性5000s1係表示探究放電電力密度J設定之交界值所得的上下限。 In addition, the characteristic 5000s1 indicated by the dotted line indicates the upper and lower limits obtained by exploring the boundary value set by the discharge power density J.

特性5000s1係為A型放電室形狀的產生器與B型放電室形狀的產生器之間的放電電力密度J相當於2.5W/cm2設定的交界特性。 The characteristic 5000s1 is the boundary characteristic between the discharge power density J of the generator of the A-type discharge cell shape and the generator of the B-type discharge cell shape, which corresponds to 2.5 W/cm 2 .

特性5000s2則為B型放電室形狀的產生器與C型放電室形狀的產生器之間的放電電力密度J相當於6.0W/cm2設定的交界特性。 The characteristic 5000s2 is the boundary characteristic of the discharge power density J between the generator of the B-type discharge chamber shape and the generator of the C-type discharge chamber shape equivalent to 6.0 W/cm 2 .

茲將第3圖所示的特性5000a、5000b、及5000c加以比較。如第3圖所示,若將放電徑縮小,在氣體滯留時間To為50ms以下的範圍中, 總臭氧分解量Yd會和氣體滯留時間To對應而以一定的比例升高。另一方面,在氣體滯留時間To為50ms以上的範圍中,已實驗性確認放電徑越小,則總臭氧分解量Yd越少。 The characteristics 5000a, 5000b, and 5000c shown in Fig. 3 are compared. As shown in Figure 3, if the discharge diameter is reduced, the gas residence time To is within the range of 50 ms or less, The total ozone decomposition amount Yd will increase by a certain proportion corresponding to the gas residence time To. On the other hand, in the range where the gas residence time To is 50 ms or more, it has been experimentally confirmed that the smaller the discharge diameter, the smaller the total ozone decomposition amount Yd.

意即,放電面的放電徑若設在較小條件設定,放電空間的臭氧分解量yd會減少,且意味著從臭氧產生器200取出的臭氧量Yt會依其減少程度而增加。在這點上,C型放電室形狀的產生器最優異。 That is, if the discharge diameter of the discharge surface is set to a smaller condition, the amount of ozone decomposition yd in the discharge space will decrease, and it means that the amount of ozone Yt taken out from the ozone generator 200 will increase according to the degree of reduction. In this regard, the C-shaped discharge cell shape generator is the most excellent.

一點鏈線所示的區域99a係相當於高濃度的臭氧氣體在取出範圍的總臭氧分解量Yd,其內容將說明於後。如第3圖所示,在放電空間的氣體滯留時間To為20ms至80ms的範圍中,區域99a的總臭氧分解量Yd已抑制到約400g/h至900g/h,相較於特性5000a的總臭氧分解量Yd,已充分降低,故可期望取出高濃度的臭氧氣體。 The region 99a indicated by the chain line corresponds to the total ozone decomposition amount Yd of the high concentration ozone gas in the extraction range, and the content thereof will be described later. As shown in FIG. 3, in the range of the gas residence time To of the discharge space from 20 ms to 80 ms, the total ozone decomposition amount Yd of the region 99a has been suppressed to about 400 g/h to 900 g/h, compared to the total of the characteristic 5000a The ozone decomposition amount Yd has been sufficiently reduced, so it can be expected to take out a high concentration of ozone gas.

第4圖為和A型放電室形狀的產生器、B型放電室形狀的產生器及C型放電室形狀的產生器各自的比電力值DW/Q相對的取出臭氧濃度Ct的特性曲線圖。 Fig. 4 is a characteristic curve of the extracted ozone concentration Ct against the specific power values DW/Q of the generators of the A-type discharge cell shape, the B-type discharge cell shape, and the C-type discharge cell shape.

第4圖中揭示了A型放電室形狀的產生器的臭氧取出濃度Ct之特性4000a、B型放電室形狀的產生器的臭氧取出濃度Ct之特性4000b、C型放電室形狀的產生器的臭氧取出濃度Ct之特性4000c。 Figure 4 shows the characteristic 4000a of the ozone extraction concentration Ct of the generator of the A-type discharge chamber, the characteristic 4000b of the ozone extraction concentration Ct of the generator of the B-type discharge chamber, and the ozone of the generator of the C-shaped discharge chamber shape Take out the characteristic 4000c of concentration Ct.

此外,虛線所示的特性4000s1、特性4000s2則和第3圖同樣,係顯示經探究可將放電電力密度J在可能範圍內設定到最大的放電室形狀之邊界值後所得的上下限。 In addition, the characteristics 4000s1 and 4000s2 shown by the dotted lines are the same as those in Fig. 3, and show the upper and lower limits obtained after the discharge power density J can be set to the maximum boundary value of the shape of the discharge chamber within the possible range.

特性4000s1係顯示獲得取出臭氧濃度Ct為400g/m3的放電電力密度J之放電室形狀下限邊界的特性結果,其放電電力密度J為可設定到約2.5W/cm2的放電室形狀。 The characteristic 4000s1 shows the characteristic result of the lower limit of the shape of the discharge cell in which the discharge power density J at which the ozone concentration Ct is 400 g/m 3 is obtained. The discharge power density J is a discharge cell shape that can be set to about 2.5 W/cm 2 .

特性4000s2則顯示獲得取出臭氧濃Ct為400g/m3的放電電力密度J之放電室形狀上限邊界的特性結果,其放電電力密度J為可設定到約6.0W/cm2的放電室形狀。 The characteristic 4000s2 shows the characteristic result of obtaining the upper limit boundary of the discharge cell shape for the discharge power density J at which the ozone concentration Ct is 400 g/m 3 , and the discharge power density J is the shape of the discharge cell that can be set to about 6.0 W/cm 2 .

取出臭氧濃度Ct的特性雖係顯示反應比電力值DW/Q的放電空間的臭氧生成濃度,在可投入臭氧產生器的放電電力密度J不同的放電室形狀之情況中,取出臭氧濃度Ct的特性也不同。 Although the characteristic of the extracted ozone concentration Ct is the ozone generation concentration of the discharge space showing the reaction specific power value DW/Q, the characteristic of the extracted ozone concentration Ct in the case of a discharge chamber shape with a different discharge power density J that can be put into the ozone generator Also different.

然而,具有各特性(4000a、4000b、4000c)的A型至C型的臭氧產生器中,從相對於和臭氧生成濃度相當的第4圖比電力值DW/Q的特性(兩點鏈線的切線特性)之傾斜度來看,越是放電面的放電徑較小而可提高放電電力密度J的放電室形狀,呈現出越小的結果。意即,顯示出設成可提高放電電力密度J的放電室形狀,其放電空間的臭氧生成能力較小。 However, in the ozone generators of type A to type C with various characteristics (4000a, 4000b, 4000c), the characteristics of the specific power value DW/Q from the fourth graph corresponding to the ozone generation concentration (two-point chain line) From the perspective of the inclination of the tangent characteristic), the smaller the discharge diameter of the discharge surface is, the smaller the discharge cell shape that can increase the discharge power density J is. In other words, it is shown that the shape of the discharge chamber that can increase the discharge power density J has a small ozone generation capacity in the discharge space.

第4圖所示的特性4000a、4000b、及4000c係顯示從臭氧生成濃度特性扣除臭氧氣體之分解量的結果。臭氧氣體的分解量係在臭氧氣體通過放電空間之際,因臭氧氣體和放電中的電子ne、離子n+或放電氣體ng碰撞所致的臭氧分解量與放電中滯留的臭氧本身之自我分解量的總和。 The characteristics 4000a, 4000b, and 4000c shown in Fig. 4 show the results of subtracting the decomposition amount of ozone gas from the ozone generation concentration characteristics. The decomposition amount of ozone gas is the amount of ozone decomposition caused by the collision of ozone gas with electrons ne, ions n + or discharge gas ng in the discharge and the self-decomposition amount of ozone remaining in the discharge Sum.

臭氧生成濃度特性為屬於和比電力值DW/Q相對之特性的切線特性,其在A型放電室形狀的產生器最大,而放電室徑越小,可投入的放電電力密度J越大者,其臭氧生成濃度特性顯示出越低的傾向。 The ozone generation concentration characteristic is a tangent characteristic that belongs to the characteristic relative to the specific power value DW/Q. It has the largest generator in the shape of the A-type discharge chamber, and the smaller the discharge chamber diameter, the greater the discharge power density J that can be input. The ozone generation concentration characteristic shows a lower tendency.

意即,臭氧生成能力為和放電電力密度J成反比的結果。因放電空間中氮氣的觸媒作用或放電面的光觸媒作用所生的臭氧生成能力,越是提高放電電力密度J的放電室形狀,越顯示出降低的傾向。 This means that the ozone generating capacity is inversely proportional to the discharge power density J. Ozone generating capacity due to the catalytic action of nitrogen in the discharge space or the photocatalyst action of the discharge surface shows a tendency to decrease as the shape of the discharge chamber increases the discharge power density J.

但,如第3圖所示,將放電徑改變的放電室作多段層疊的臭氧產生器中,若將放電徑縮小時,放電空間的氣體滯留時間To可以縮短,生成的臭氧的分解量可以減少。其理由在,臭氧氣體的分解係發生在放電 空間內臭氧氣體與電子或放電氣體碰撞的分解及滯留在放電室內的期間。因此,生成的臭氧本身的自我分解及因碰撞導致之分解的總分解量,可藉由縮短氣體滯留時間To而單純的減小。 However, as shown in FIG. 3, in the ozone generator in which the discharge chamber with the changed discharge diameter is stacked in multiple stages, when the discharge diameter is reduced, the gas residence time To in the discharge space can be shortened, and the amount of ozone generated can be reduced. . The reason is that the decomposition system of ozone gas occurs in the discharge The period when ozone gas collides with electrons or discharge gas in the space and stays in the discharge chamber. Therefore, the self-decomposition of the generated ozone itself and the total decomposition amount due to collision can be simply reduced by shortening the gas residence time To.

基於上述重要因素,A型放電室形狀的產生器、B型放電室形狀的產生器及C型放電室形狀的產生器的取出臭氧濃度Ct之特性會有不同,而在第4圖所示的區域99a內,可在B型放電室形狀的產生器取出400g/m3以上的高濃度臭氧。 Based on the above important factors, the characteristics of the ozone concentration Ct of the generator of the A-type discharge cell shape, the generator of the B-type discharge cell shape, and the generator of the C-type discharge cell shape will be different, as shown in Figure 4 In the region 99a, a high-concentration ozone of 400 g/m 3 or more can be taken out in the generator of the B-type discharge cell shape.

意即,A型放電室形狀的產生器中,臭氧生成量雖高,但由於氣體滯留時間To較長,故屬於因碰撞導致之分解與臭氧本身自我分解之總和的臭氧分解量較大,結果,顯示出最多只能取出未達400g/m3濃度的臭氧氣體。 That is to say, in the generator of the A-shaped discharge chamber, the amount of ozone generated is high, but due to the long gas residence time To, the amount of ozone decomposition is the sum of the decomposition due to collision and the self-decomposition of ozone itself. As a result , Showing that only ozone gas with a concentration of less than 400g/m 3 can be taken out.

B型放電室形狀的產生器中,臭氧生成量雖較A型放電室形狀的產生器低,但因氣體滯留時間To縮短,故屬於因碰撞導致之分解與臭氧本身自我分解之總和的臭氧分解量較小。因而,結果,B型產生器得以在比電力值DW/Q為600W‧min/L以上的範圍取出400g/m3以上的高濃度臭氧。 In the generator of the shape of the B-type discharge chamber, the amount of ozone generated is lower than that of the generator of the shape of the A-type discharge chamber, but because the gas residence time To is shortened, it belongs to the ozone decomposition which is the sum of the decomposition due to collision and the self-decomposition of ozone itself The amount is smaller. Therefore, as a result, the B-type generator was able to take out high-concentration ozone of 400 g/m 3 or more in the range of the specific power value DW/Q of 600 W‧min/L or more.

本案發明係在找出像B型放電室形狀的產生器那樣可取出高濃度臭氧的臭氧產生器放電室形狀及動作條件,而本案發明人則已發現滿足以下要件的理想要素。 The present invention is to find the shape and operating conditions of an ozone generator discharge chamber that can take out high-concentration ozone like a B-type discharge chamber shape generator. The inventor of the present invention has found an ideal element that satisfies the following requirements.

供給到臭氧產生器200的原料氣體的總氣體流量Q訂在大約3.0L/min以上時,從臭氧用電源100投入的總放電電力DW必須投入至少1.8kW以上的電力。 When the total gas flow rate Q of the raw material gas supplied to the ozone generator 200 is set to about 3.0 L/min or more, the total discharge power DW input from the ozone power supply 100 must input at least 1.8 kW of power.

再者,C型放電室形狀的產生器中,由於為了投入預定的放電電力DW而提高放電電力密度J,會使由放電空間的臭氧生成能力(兩點鏈 線)決定的臭氧生成量極端降低。因此,藉由縮短氣體滯留時間To,即使屬於碰撞導致之分解與臭氧本身自我分解之總和的臭氧分解量減小,取出臭氧濃度Ct還是較低。 In addition, in the generator of the C-type discharge chamber shape, the discharge power density J is increased in order to input the predetermined discharge power DW, so that the ozone generating capacity from the discharge space (two-point chain) Line) determines that the amount of ozone generated is extremely reduced. Therefore, by shortening the gas residence time To, even if the amount of ozone decomposition which is the sum of the decomposition caused by collision and the self-decomposition of ozone itself is reduced, the ozone concentration Ct taken out is still low.

結果,C型放電室形狀的產生器中,已判知在原料氣體的總氣體流量Q及投入的放電電力DW的條件上,最大也只能取出未達320g/m3的濃度。 As a result, in the generator of the C-type discharge cell shape, it has been determined that the maximum gas flow rate Q of the raw material gas and the input discharge power DW can only be extracted at a concentration of less than 320 g/m 3 .

由此即得到以下的結果:要實現可取出400g/m3以上的高濃度臭氧的臭氧產生器,有其最佳的放電室形狀,而實施形態的臭氧產生器中,就放電室形狀的上限範圍而言,如邊界特性4000s2所示,放電電力密度J以限定在未達約6W/cm2者較理想;就放電電力密度J的下限而言,如邊界特性4000s1所示,放電電力密度J設定在約2.5W/cm2以上者較理想。 Thus, the following result is obtained: an ozone generator capable of taking out high-concentration ozone of 400 g/m 3 or more has an optimal shape of the discharge chamber, and the ozone generator of the embodiment has an upper limit of the shape of the discharge chamber In terms of range, as shown by the boundary characteristic 4000s2, the discharge power density J is preferably limited to less than about 6W/cm 2 ; as for the lower limit of the discharge power density J, as shown by the boundary characteristic 4000s1, the discharge power density J It is preferable to set it at about 2.5 W/cm 2 or more.

第5圖為A型放電室形狀的產生器、B型放電室形狀的產生器及C型放電室形狀的產生器中,取出臭氧濃度Ct之特性相對於各原料氣體之總氣體流量Q的曲線圖。 Fig. 5 is a graph showing the characteristics of the ozone concentration Ct with respect to the total gas flow rate Q of the raw material gases in the generator of the A-type discharge cell shape, the B-type discharge cell shape and the C-type discharge cell shape Figure.

第5圖中,特性3000a係顯示A型放電室形狀的產生器特性,特性3000b為顯示B型放電室形狀的產生器特性,特性3000c則顯示C型放電室形狀的產生器特性。 In FIG. 5, characteristic 3000a shows the generator characteristics of the A-type discharge cell shape, characteristic 3000b shows the generator characteristics of the B-type discharge cell shape, and characteristic 3000c shows the generator characteristics of the C-type discharge cell shape.

屬於特性框的區域99a係表示可獲得取出臭氧濃度為400g/m3以上高濃度臭氧的氣體流量區,在B型放電室形狀的產生器中,已知所供給的原料氣體的總氣體流量Q未達約25L/min,可獲得400g/m3以上的高濃度臭氧氣體。 The area 99a belonging to the characteristic box indicates a gas flow rate area where high concentration ozone with an ozone concentration of 400 g/m 3 or more can be taken out. In the generator of the B-type discharge chamber shape, the total gas flow rate Q of the supplied raw material gas is known Less than about 25L/min, high concentration ozone gas above 400g/m 3 can be obtained.

再者,特性框99b則顯示和以往的臭氧產生器相當的A型放電室形狀的產生器所獲得的臭氧濃度特性3000a相比,可獲得較高濃度臭氧 氣體的氣體流量區,在B型放電室形狀的產生器中,已知所供給的原料氣體的總氣體流量Q未達50L/min可獲得高濃度臭氧氣體。 Furthermore, the characteristic box 99b shows that the ozone concentration characteristic 3000a obtained by the generator of the A-type discharge chamber equivalent to the conventional ozone generator can obtain a higher concentration of ozone In the gas flow rate area of the gas, in the generator of the B-type discharge chamber shape, it is known that the total gas flow rate Q of the supplied raw material gas is less than 50 L/min to obtain a high-concentration ozone gas.

此外,第5圖中,所供給的原料氣體的總氣體流量Q大致未達3.0L/min時,在A型放電室形狀的產生器也可獲得400g/m3以上的高濃度臭氧氣體。但,在此情況中,能取出的總臭氧量則未達100g/h,而需要少量的臭氧量的市場卻很少。而且,由於本臭氧產生器係以能取出大流量的臭氧氣體,且可獲得高濃度臭氧氣體為目的,故獲得低氣體流量的高濃度臭氧氣體的結果係在本案目標之外。 In addition, in FIG. 5, when the total gas flow rate Q of the supplied raw material gas is less than 3.0 L/min, a high-concentration ozone gas of 400 g/m 3 or more can be obtained in the generator of the A-type discharge cell shape. However, in this case, the total amount of ozone that can be taken out is less than 100g/h, and there are few markets that require a small amount of ozone. Moreover, since the present ozone generator aims to take out a large flow of ozone gas and obtain a high concentration of ozone gas, the result of obtaining a low concentration of high concentration ozone gas is beyond the objective of this case.

而且,可考量以A型放電室形狀的產生器中作為特殊的臭氧產生器,將產生器的冷卻溫度設在未達5℃並獲得400g/m3以上的高濃度臭氧氣體。然而,冷卻溫度設在未達5℃的產生器需要提高冷卻能力的附帶設備,缺乏實用上的優點,故本實施形態中,作為臭氧氣體產生系統1000,係將冷卻溫度之適用溫度設定在5℃以上。 Furthermore, it is possible to consider a generator with a shape of A-type discharge chamber as a special ozone generator, setting the cooling temperature of the generator to less than 5°C and obtaining high-concentration ozone gas of 400 g/m 3 or more. However, the generator whose cooling temperature is set to less than 5°C needs additional equipment to improve the cooling capacity, and lacks practical advantages. Therefore, in this embodiment, as the ozone gas generating system 1000, the applicable temperature of the cooling temperature is set to 5 ℃ above.

臭氧產生器200係在各放電室的接地冷卻電極1與高壓電極3a、3b之間施加交流電壓,使注入有含氧氣的原料氣體的放電空間發生放電現象並產生臭氧氣體。 The ozone generator 200 applies an alternating voltage between the grounded cooling electrode 1 and the high-voltage electrodes 3a and 3b in each discharge chamber to cause a discharge phenomenon in the discharge space into which the raw material gas containing oxygen is injected to generate ozone gas.

從第1圖所示的臭氧用電源100的並聯共振用變壓器25經由高壓絕緣套對作為高壓電極3a、3b之給電部的高電壓端子HV施加臭氧產生用交流電壓。總放電電力DW係藉該臭氧產生用交流電壓來規限。 An ozone generating AC voltage is applied to the high voltage terminal HV of the power supply unit of the high voltage electrodes 3a and 3b from the transformer 25 for parallel resonance of the power supply 100 for ozone shown in FIG. The total discharge power DW is regulated by the ozone generating AC voltage.

於是,可在各放電室(基本室S1或基本室S2)的放電空間經由介電質電極2a、2b發生介電質障壁放電。此時,根據總放電電力DW,將可投入各放電室的放電電力密度J(=DW/S)(W/cm2)之電力密度投入放電室。各放電室的放電空間生成的臭氧氣體,則如第2圖所示,從設在放電空間中 央的開口部15經由接地冷卻電極1內的輸出路徑17匯集到歧管箱塊9的臭氧氣體輸出路徑92,並從臭氧產生器200取出。 As a result, a dielectric barrier discharge can occur via the dielectric electrodes 2a and 2b in the discharge space of each discharge cell (the basic cell S1 or the basic cell S2). At this time, based on the total discharge power DW, the power density of the discharge power density J (=DW/S) (W/cm 2 ) that can be put into each discharge cell is put into the discharge cell. The ozone gas generated in the discharge space of each discharge cell is collected from the opening 15 provided in the center of the discharge space to the manifold box block 9 through the output path 17 in the grounded cooling electrode 1 to output the ozone gas Path 92 and take it out of the ozone generator 200.

接地冷卻電極1及低壓冷卻板5的內部設有冷卻用的冷卻空間(未圖示),並藉由使冷卻水經由設在基台10的冷卻水路徑、歧管箱塊9的冷卻水輸出路徑91及冷卻水輸入路徑93,流到接地冷卻電極1及低壓冷卻板5內,將各放電室冷卻。依此方式,包含接地冷卻電極1、低壓冷卻板5、基台10及歧管箱塊9,即構成將放電室冷卻到預定的冷卻溫度的冷卻機構。 The ground cooling electrode 1 and the low-pressure cooling plate 5 are provided with a cooling space (not shown) for cooling, and the cooling water is output through the cooling water path provided in the base 10 and the cooling water of the manifold block 9 by cooling water The path 91 and the cooling water input path 93 flow into the grounded cooling electrode 1 and the low-pressure cooling plate 5 to cool each discharge chamber. In this way, it includes the grounded cooling electrode 1, the low-pressure cooling plate 5, the base 10, and the manifold box block 9, that is, a cooling mechanism that cools the discharge chamber to a predetermined cooling temperature.

以下,針對一單位放電室的一組放電面的形狀加以說明,再進一步說明有關複數個放電室層疊的效果。 Hereinafter, the shape of a group of discharge surfaces of a unit discharge cell will be described, and the effect of stacking a plurality of discharge cells will be further described.

臭氧氣體產生系統1000中,已就從具有基本室S1及S2的放電室多段(六段)層疊的結構(放電面:12面)取出高濃度臭氧氣體的條件作了說明。 In the ozone gas generating system 1000, the conditions for extracting high-concentration ozone gas from the discharge chamber having the basic chambers S1 and S2 in multiple stages (six stages) are stacked (discharge surface: 12 surfaces).

此處,為了使本案發明的適用範圍更為明確,再說明一單位放電室的一個放電空間的高濃度臭氧氣體取出條件。下文係針對原料氣體的總氣體流量Q(原料氣體流量)的氣體流量範圍為大致3.0L/min以上的大流量區中,可取出更高濃度(相當於400g/m3以上)臭氧氣體的放電室層疊效果加以說明。 Here, in order to make the application scope of the invention of the present invention more clear, the high-concentration ozone gas extraction conditions of one discharge space of a unit discharge cell will be described. The following is the discharge of ozone gas with a higher concentration (equivalent to 400g/m 3 or more) in the large flow rate range for the total gas flow rate Q (raw gas flow rate) of the raw material gas in the large flow rate range of approximately 3.0L/min or more The chamber stacking effect will be explained.

為了從層疊的臭氧產生器中相對於第5圖所示的總氣體流量Q的取出臭氧濃度Ct特性,以優異效率取出高濃度的預定量臭氧氣體,較佳為設定成將一組放電面的放電面積so縮小的放電室形狀,使供給到一單位放電室(一組放電面)的原料氣體流量qo滿足大約0.5L/min至大約2.5L/min弱的範圍。 In order to extract the ozone concentration Ct characteristic from the stacked ozone generator with respect to the total gas flow rate Q shown in FIG. 5, a high concentration of a predetermined amount of ozone gas is extracted with excellent efficiency, preferably set to a set of discharge surfaces The shape of the discharge cell with a reduced discharge area so that the flow rate qo of the raw material gas supplied to a unit discharge cell (a group of discharge surfaces) satisfies a weak range of about 0.5 L/min to about 2.5 L/min.

亦即,為了在高氣體流量區取出高濃度臭氧氣體,而採取增加一單位放電室之多段層疊個數n的手段,使一個放電面積so設定在大約 30cm2至大約160cm2甚為重要。再者,原料氣體的總氣體流量Q中,為了獲得高輸出的取出臭氧量Yt,而採用將放電面的放電徑縮小來規限放電面積so的一單位放電室作多段層疊(將個數n增加)的手段,並且較佳為可投入的放電電力密度J設定在約2.5W/cm2至約6.0W/cm2的範圍的臭氧氣體產生系統1000。 That is, in order to remove the high-concentration ozone gas in the region of high gas flow, and a number taken to increase the unit discharge cells are stacked as many sections n means that a discharge area so set to about 30cm 2 to about 160cm 2 is important. In addition, in the total gas flow rate Q of the raw material gas, in order to obtain a high-output extracted ozone amount Yt, a unit discharge chamber in which the discharge diameter of the discharge surface is reduced to limit the discharge area so is stacked in multiple stages (the number n increase) means, and preferably the discharge power density is set into the J ozone gas generating system 1000 in the range of from about 2.5W / cm 2 to about 6.0W / cm 2 in.

接著,從一個放電面積so與放電電力密度J求得放電電力dw(=so‧J),且在供給到放電間隙長d設成數十至數百μm的一個放電空間的原料氣體流量qo為約0.5L/min至約2.5L/min弱範圍中,思考採用B型的放電室形狀的情況。在此情況中,可取出臭氧濃度超過400g/m3的高濃度臭氧,且使取出臭氧流量和多段層疊的個數n成比例地增加。此外,B型的放電室形狀中,較佳為為了可以總氣體流量Q在最大的可能範圍獲得取出臭氧量Yt,而滿足上述條件,且為了在可能的範圍達到最大,而從放電電力密度J決定放電電力dw(=so‧J),並將供給到放電間隙長d設為數十至數百μm之一個放電空間的原料氣體流量qo在可能的範圍中設定到最大。 Next, the discharge power dw (=so‧J) is obtained from one discharge area so and the discharge power density J, and the flow rate qo of the raw material gas supplied to one discharge space whose discharge gap length d is set to tens to hundreds of μm is In the weak range of about 0.5L/min to about 2.5L/min, consider the case of using the shape of the B-type discharge cell. In this case, high-concentration ozone with an ozone concentration exceeding 400 g/m 3 can be taken out, and the flow rate of taken-out ozone is increased in proportion to the number n of the multi-stage stack. In addition, in the shape of the B-type discharge chamber, it is preferable that the above-mentioned condition is satisfied in order to obtain the extracted ozone amount Yt in the maximum possible range of the total gas flow rate Q, and from the discharge power density J in order to achieve the maximum possible range The discharge power dw (=so‧J) is determined, and the flow rate qo of the raw material gas supplied to the discharge space with a discharge length d of tens to hundreds of μm is set to the largest possible range.

作為將一個放電面積so規限在30cm2至160cm2的具體方法,在一個例子中,係將俯視呈圓形的放電室之放電面直徑訂在

Figure 108106054-A0202-12-0037-8
70mm至
Figure 108106054-A0202-12-0037-9
140mm的範圍,俾規限放電面積so,而為了獲致原料氣體的總氣體流量Q提高的臭氧產生器,必須將一單位放電室多段層疊,俾確保臭氧產生器的總放電面積S(=2‧n‧so)。 As the discharge area of a subject in a particular method so 30cm 2 to 160cm 2, in one example, the Department of circular shape in plan view of the discharge chamber of the discharge surface diameter set at
Figure 108106054-A0202-12-0037-8
70mm to
Figure 108106054-A0202-12-0037-9
The range of 140mm limits the discharge area so, in order to obtain an ozone generator with an increased total gas flow rate Q of the raw material gas, a unit of discharge chamber must be stacked in multiple stages to ensure the total discharge area S(=2‧ n‧so).

再者,一組放電面的放電面積so規限在30cm2至160cm2的放電室形狀的產生器中,要將以投入的總放電電力DW為參數的放電電力密度J(=DW/S)規限在較低值,務必將臭氧產生器的總放電面積S擴大,且必須增加一個放電室的層疊個數n(=S/(2‧so))。放電面的層疊個數n增加時, 為了避免臭氧產生器的製作成本等增高,較佳為將可投入一組放電面的放電電力密度J設定在臭氧氣體產生系統1000中最有效條件範圍內的較高值。 Further, the discharge area of the discharge surface so a set of restrictions in the discharge chamber shape generator 30cm 2 to 160cm 2, the investment will be the total discharge power and discharge electric power density DW is the parameter J (= DW / S) When it is limited to a lower value, the total discharge area S of the ozone generator must be enlarged, and the number of stacked layers of a discharge chamber n (=S/(2‧so)) must be increased. When the number n of discharge surfaces is increased, in order to avoid an increase in the production cost of the ozone generator, it is preferable to set the discharge power density J that can be put into a set of discharge surfaces within the range of the most effective conditions in the ozone gas generation system 1000 Higher value.

要構成可取出高濃度臭氧氣體的原料氣體的總氣體流量Q增高到更大氣體流量的臭氧氣體產生系統1000,在放電面積so、放電電力密度J、投入的放電電力dw、及供給到一個放電空間的原料氣體流量qo方面,滿足上述條件的一單位放電室的實現、多段層疊的放電室個數n的增加即不可或缺。 To construct an ozone gas generating system 1000 in which the total gas flow rate Q of the raw material gas capable of taking out high-concentration ozone gas is increased to a larger gas flow rate, the discharge area so, the discharge power density J, the input discharge power dw, and supply to a discharge In terms of the raw material gas flow rate qo of the space, the realization of a unit discharge cell satisfying the above conditions and the increase in the number n of discharge cells stacked in multiple stages are indispensable.

再者,在原料氣體的總氣體流量Q較大的區域中,要構成高輸出的取出臭氧量Yt增高到最大限度的臭氧氣體產生系統1000,必須將放電面積so、放電電力密度J、投入的放電電力dw及供給到一個放電空間的原料氣體流量qo在可能的範圍內設定為最大值,並實現滿足上述條件的一組放電面,且在放電室個數n上作多段層疊。 In addition, in a region where the total gas flow rate Q of the raw material gas is large, in order to constitute the ozone gas generating system 1000 in which the high-output ozone extraction amount Yt is increased to the maximum, the discharge area so, the discharge power density J, and the input The discharge power dw and the flow rate qo of the raw material gas supplied to one discharge space are set to a maximum value within a possible range, and a set of discharge surfaces satisfying the above conditions are realized, and a plurality of stages are stacked on the number n of discharge cells.

意即,臭氧產生器200中,必須要有設置2n個滿足上述條件的一組放電面,且可輸出滿足投入的總放電電力DW(=2‧n‧dw)的臭氧產生用交流電壓的臭氧用電源100。 In other words, in the ozone generator 200, there must be 2n sets of discharge surfaces that meet the above conditions, and can output ozone that meets the total discharge power DW (= 2‧n‧dw) of the ozone generation AC voltage With power supply 100.

結果,臭氧氣體產生系統1000可供給要給予2n個放電空間的原料氣體的總氣體流量Q(=α‧2‧n‧qo)。另外,α值為將一組放電面層疊2n個且使臭氧氣體合流時表示減損率的常數。 As a result, the ozone gas generation system 1000 can supply the total gas flow rate Q (=α‧2‧n‧qo) of the raw material gas to be given to 2n discharge spaces. In addition, the α value is a constant indicating a reduction rate when a set of 2n discharge surfaces are stacked and ozone gas is merged.

其次,就有關用於取出高濃度臭氧氣體之臭氧產生器動作的各項條件加以說明。 Next, the conditions for the operation of the ozone generator for taking out high-concentration ozone gas will be explained.

第6圖為投入相對於臭氧用電源100之動作頻率f的總放電電力DW時,施加在A型放電室形狀的產生器、B型放電室形狀的產生器及C型放電室形狀的產生器的負載峰值電壓Vp之特性曲線圖。 Fig. 6 shows the generator A-shaped generator, B-shaped generator, and C-shaped generator when the total discharge power DW with respect to the operating frequency f of the ozone power supply 100 is applied. The characteristic curve of the load peak voltage Vp.

以下,參照第6圖就臭氧用電源100的動作頻率設在20kHz至50kHz的根據加以說明。 Hereinafter, the basis for setting the operating frequency of the ozone power supply 100 to 20 kHz to 50 kHz will be described with reference to FIG. 6.

第6圖中,特性7000a係表示A型放電室形狀的產生器在放電電力密度J(=DW/S)為2W/cm2條件時的負載峰值電壓Vp之特性。 In FIG. 6, the characteristic 7000a shows the characteristic of the load peak voltage Vp when the discharge power density J (=DW/S) of the generator of the A-type discharge cell shape is 2W/cm 2 .

特性7000b則表示B型放電室形狀的產生器在放電電力密度J為4W/cm2條件時的負載峰值電壓Vp之特性。 The characteristic 7000b shows the characteristic of the load peak voltage Vp when the discharge power density J of the generator of the B-type discharge cell shape is 4W/cm 2 .

此外,特性7000c係表示C型產生器在放電電力密度J為8W/cm2條件時的負載峰值電壓Vp之特性。 In addition, the characteristic 7000c represents the characteristic of the load peak voltage Vp of the C-type generator when the discharge power density J is 8 W/cm 2 .

放電電力密度J為4W/cm2條件時的負載峰值電壓Vp之特性7000b中,已實驗性判知:在B型放電室形狀的產生器中,在區域99a內可取出最高濃度的臭氧氣體。 In the characteristic 7000b of the peak load voltage Vp when the discharge power density J is 4 W/cm 2 , it has been experimentally determined that the highest concentration of ozone gas can be taken out in the region 99a in the generator of the B-type discharge cell shape.

以虛線表示的特性7000s1、特性7000s1為探究本發明範圍之放電電力密度J的放電室形狀邊界值上下限的特性圖。 The characteristic 7000s1 and the characteristic 7000s1 indicated by dotted lines are characteristic diagrams for exploring the upper and lower limits of the discharge cell shape boundary value of the discharge power density J within the scope of the present invention.

特性7000s1係表示放電電力密度J為至少2.5W/cm2的放電室形狀之邊界特性。特性7000s2則為放電電力密度J設定在最大界限6W/cm2的放電室形狀之邊界特性。 The characteristic 7000s1 represents the boundary characteristic of the shape of the discharge cell in which the discharge power density J is at least 2.5 W/cm 2 . The characteristic 7000s2 is the boundary characteristic of the shape of the discharge cell where the discharge power density J is set at a maximum limit of 6 W/cm 2 .

因而,為了從區域99a與特性7000s1、7000s2的關係獲得可在預定的氣體流量Q中取得400g/m3以上的高濃度臭氧氣體,而且可以供給的氣體流量Q取得所期望的取出臭氧量Yt之裝置放電電力密度J(=DW/S),而將達到放電電力密度J的下限設在約2.5W/cm2附近以上,放電電力密度J的上限訂在約6.0W/cm2的條件範圍的理想結果。 Therefore, in order to obtain a high-concentration ozone gas of 400 g/m 3 or more at a predetermined gas flow rate Q from the relationship between the region 99a and the characteristics 7000s1 and 7000s2, and the gas flow rate Q that can be supplied obtains the desired amount of extracted ozone Yt The device discharge power density J (=DW/S), and the lower limit of the discharge power density J is set to about 2.5W/cm 2 or more, and the upper limit of the discharge power density J is set in the condition range of about 6.0W/cm 2 Ideal result.

以下,說明臭氧用電源100之動作頻率f為20kHz至50kHz的電源方式。接著,說明有關在臭氧用電源100中採用屬於高頻率反向器部的 反向器電路部22的情形、及在屬於高頻-高壓變壓器的並聯共振用變壓器25與臭氧產生器200之間實現並聯共振型的情形。 Hereinafter, a power supply method in which the operating frequency f of the ozone power supply 100 is 20 kHz to 50 kHz will be described. Next, a description will be given regarding the use of the high-frequency inverter unit in the ozone power supply 100 In the case of the inverter circuit section 22, and in the case where the parallel resonance type is realized between the transformer 25 for parallel resonance belonging to the high-frequency and high-voltage transformer and the ozone generator 200.

如第6圖所示,動作頻率f降低時,若投入較大的總放電電力DW,使放電電力密度J(=DW/S)提高時,負載峰值電壓Vp會顯示增高的特性。 As shown in Fig. 6, when the operating frequency f is lowered, if a larger total discharge power DW is input and the discharge power density J (=DW/S) is increased, the peak load voltage Vp shows an increased characteristic.

負載峰值電壓Vp增高時,為了充分確保臭氧產生器200的耐電壓,就必須加大臭氧產生器200。作為臭氧用電源100,負載峰值電壓Vp若未達10kVp,反向器電路部22即可較精簡且穩定。 When the peak load voltage Vp is increased, in order to sufficiently ensure the withstand voltage of the ozone generator 200, the ozone generator 200 must be increased. As the power supply 100 for ozone, if the peak load voltage Vp does not reach 10 kVp, the inverter circuit section 22 can be simplified and stable.

再者,負載峰值電壓Vp若在7kVp以上,為了確保耐電壓,會產生將並聯共振用變壓器25增大、或將臭氧產生器的高壓部與低壓部的空間距離擴大的需要,臭氧產生器本身會大型化。 In addition, if the load peak voltage Vp is 7 kVp or more, in order to ensure the withstand voltage, there will be a need to increase the parallel resonance transformer 25, or to increase the space distance between the high-pressure part and the low-pressure part of the ozone generator, the ozone generator itself Will be large.

更且,也會產生並聯共振用變壓器25的匝數比變大等問題。因此,作為臭氧氣體產生系統1000,較佳為屬於負載施加電壓Vd之負載尖峰的Vp訂在未達7kVp(5.0kVrms),俾供給期望的總放電電力DW。 Furthermore, there is also a problem that the turns ratio of the transformer 25 for parallel resonance becomes large. Therefore, as the ozone gas generating system 1000, it is preferable that Vp belonging to the load peak of the load applied voltage Vd is set to less than 7 kVp (5.0 kVrms) to supply the desired total discharge power DW.

如第6圖所示,限定於負載峰值電壓Vp設在未達7kVp(5.0kVrms)之臭氧用電源100的情形中,可取出400g/m3以上的高濃度臭氧氣體,而且,作為以總氣體流量Q將取出臭氧量Yt設在最大的臭氧氣體產生系統1000,動作頻率f較佳為20kHz以上。 As shown in Fig. 6, when the load peak voltage Vp is set to less than 7 kVp (5.0 kVrms) in the case of the ozone power supply 100, high-concentration ozone gas of 400 g/m 3 or more can be taken out, and the total gas The flow rate Q sets the extracted ozone amount Yt to the maximum ozone gas generation system 1000, and the operating frequency f is preferably 20 kHz or more.

另一方面,動作頻率f升高時,由於臭氧產生器200所產生的臭氧生成能力有降低的傾向,故作為可取出400g/m3以上高濃度臭氧的高濃度臭氧氣體產生裝置,動作頻率f較佳為未達50kHz。 On the other hand, when the operating frequency f increases, the ozone generating capacity generated by the ozone generator 200 tends to decrease. Therefore, as a high-concentration ozone gas generating device that can take out high-concentration ozone of 400 g/m 3 or more, the operating frequency f It is preferably less than 50 kHz.

除此之外,以總氣體流量Q(原料氣體流量)的氣體流量範圍大約3.0L/min以上的氣體流量取出400g/m3以上的高濃度臭氧氣體,而且以總氣體流量Q將取出臭氧量Yt達到最大所需的臭氧氣體產生系統1000,必 需有供給1.8kW以上總放電電力DW的臭氧用電源100。因而,作為可輸出1.8kW以上的並聯共振用變壓器25,若考慮到臭氧用電源的雜訊對策面或輸出電力的穩定供給面,實用上,動作頻率f在20kHz以上未達30kHz特別理想。 In addition, a high-concentration ozone gas of 400 g/m 3 or more is taken out at a gas flow rate of the total gas flow rate Q (raw gas flow rate) of about 3.0 L/min or more, and the ozone amount is taken out at the total gas flow rate Q The ozone gas generating system 1000 required for Yt to reach the maximum must have an ozone power supply 100 that supplies a total discharge power DW of 1.8 kW or more. Therefore, as the transformer 25 for parallel resonance that can output 1.8 kW or more, considering the noise countermeasure surface of the ozone power supply or the stable supply surface of the output power, it is practically preferable that the operating frequency f is not more than 20 kHz to 30 kHz.

以上,如第6圖所示可知,作為以原料氣體的總氣體流量Q(原料氣體流量)的氣體流量範圍在大約3.0L/min以上的氣體流量取出400g/m3以上高濃度臭氧之臭氧氣體產生系統1000,必須滿足以下條件。 As described above, as shown in FIG. 6, as the gas flow rate of the total gas flow rate Q (source gas flow rate) of the raw material gas in the gas flow rate range of about 3.0 L/min or more, the ozone gas of 400 g/m 3 or more high concentration ozone is taken out To produce system 1000, the following conditions must be met.

‧一單位放電室的一個放電面積so設定在大約30cm2至大約160cm2‧A discharge area so of a unit discharge cell is set at about 30cm 2 to about 160cm 2 .

‧從一個放電面積so及放電電力密度J來規限一單位放電室放電空間的放電電力dw(=so‧J)。 ‧The discharge power dw (=so‧J) of a unit discharge space is regulated from a discharge area so and a discharge power density J.

再者,作為將原料氣體的總氣體流量Q在可能的範圍內設定到最大,俾可獲得高輸出的取出臭氧量Yt的臭氧氣體產生系統1000的構成條件,以滿足以下條件為佳。 In addition, as a configuration condition of the ozone gas generation system 1000 that sets the total gas flow rate Q of the raw material gas to the maximum possible range so as to obtain a high output ozone extraction amount Yt, it is preferable to satisfy the following conditions.

‧將放電電力密度J(=DW/S)規限在2.5W/cm2至6W/cm2的設定範圍。 ‧The discharge power density J (=DW/S) is limited to the setting range of 2.5W/cm 2 to 6W/cm 2 .

‧將供給到放電間隙長d設為數十至數百μm的一個放電空間的原料氣體流量qo規限在大約0.5L/min至大約2.5L/min的弱範圍。 ‧The flow rate qo of the raw material gas supplied to a discharge space with a discharge gap length d of tens to hundreds of μm is limited to a weak range of about 0.5 L/min to about 2.5 L/min.

藉由將原料氣體流量qo及一個放電面積so設定在滿足上述條件,即可將一個放電空間的平均氣體流速vo/d設定在最佳速度,並且可縮短放電空間的氣體滯留時間To,俾能取出高濃度臭氧氣體。 By setting the raw material gas flow rate qo and a discharge area so as to satisfy the above conditions, the average gas flow rate vo/d of a discharge space can be set at the optimal speed, and the gas residence time To in the discharge space can be shortened, so that Remove high concentration ozone gas.

更且,較佳為依以下方式構成臭氧產生器。 Furthermore, it is preferable to configure the ozone generator in the following manner.

‧作成以一組放電面取出的臭氧濃度設在高濃度,且由具有基本室S1及S2的放電室多段層疊而成的臭氧產生器。 ‧An ozone generator with a high concentration of ozone taken out by a set of discharge surfaces, and a multi-stage stack of discharge chambers with basic chambers S1 and S2.

再者,臭氧用電源100較佳為滿足以下條件。 Furthermore, the power supply 100 for ozone preferably satisfies the following conditions.

‧臭氧產生用交流電壓的輸出頻率訂在20kHz至未達50kHz的範圍,俾可輸出並控制所期望的總放電電力DW。 ‧The output frequency of the AC voltage for ozone generation is set in the range of 20kHz to less than 50kHz, so that the desired total discharge power DW can be output and controlled.

藉由滿足上述條件來構成臭氧氣體產生系統1000,可達到取出大流量、高濃度臭氧氣體的效果,進而精簡且廉價地構成臭氧氣體產生系統1000。 By configuring the ozone gas generation system 1000 by satisfying the above conditions, the effect of taking out a large flow rate and high concentration of ozone gas can be achieved, and the ozone gas generation system 1000 can be constructed in a simplified and inexpensive manner.

(臭氧氣體產生系統1000的各種條件) (Various conditions of ozone gas generation system 1000)

臭氧氣體產生系統1000係以原料氣體的總氣體流量Q(原料氣體流量)的氣體流量範圍大約3.0L/min以上的大流量,將放電室多段層疊,使取出的臭氧濃度達到高濃度(400g/m3)。 The ozone gas generating system 1000 is a multi-stage stacking of discharge chambers with a large flow rate of the raw gas total gas flow rate Q (raw gas flow rate) gas flow range of about 3.0 L/min or more, so that the ozone concentration taken out reaches a high concentration (400 g/ m 3 ).

臭氧氣體產生系統1000為了取出400g/m3以上的高濃度臭氧氣體,較佳為設置比電力值DW/Q的範圍訂在600以上的臭氧用電源100臭氧用電源。 In order to take out ozone gas of high concentration of 400 g/m 3 or more, the ozone gas generating system 1000 is preferably provided with an ozone power supply 100 and a ozone power supply whose specific power value DW/Q is set to 600 or more.

特別是,藉臭氧用電源100所供給之臭氧產生用交流電壓提供的總放電電力DW範圍較佳為1.8kW至15kW左右。 In particular, the total discharge power DW provided by the ozone generating AC voltage supplied by the ozone power supply 100 is preferably about 1.8 kW to 15 kW.

臭氧用電源100若使放電空間的放電間隙長d加長,氣體滯留時間To會變得非常長,相對於放電空間生成的臭氧生成量之臭氧分解量會變得非常大,而無法取出高濃度的臭氧氣體。 If the power supply 100 for ozone increases the discharge gap length d of the discharge space, the gas residence time To will become very long, and the amount of ozone decomposition relative to the amount of ozone generated in the discharge space will become very large, making it impossible to take out high concentration Ozone gas.

此外,放電間隙長d過短時,而且,通過放電空間的氣體流速會增大,因放電面接近而生成的臭氧氣體與放電面壁的碰撞、或放電空間的氣體碰撞或和產生的電子、離子、放電氣體的碰撞增加,使臭氧分解量變得非常大。依此方式,若放電間隙長d過短時,因無法取出高濃度臭氧氣體,故放電間隙長d較佳為訂在數十至數百μm條件的短間隙長度範圍。特別是,為了取出更高濃度的臭氧氣體,藉由將放電間隙長d設在20μm至100μm的範圍,可達到更佳效果。 In addition, when the discharge gap length d is too short, and the flow velocity of the gas passing through the discharge space increases, the ozone gas generated due to the proximity of the discharge surface collides with the wall of the discharge surface, or the gas collision in the discharge space or the generated electrons, ions 3. The collision of discharge gas increases, which makes the amount of ozone decomposition become very large. In this way, if the discharge gap length d is too short, the high-concentration ozone gas cannot be taken out. Therefore, the discharge gap length d is preferably set within a short gap length range of tens to hundreds of μm. In particular, in order to take out a higher concentration of ozone gas, by setting the discharge gap length d in the range of 20 μm to 100 μm, a better effect can be achieved.

作為原料氣體的總氣體流量Q的範圍,其可獲得400g/m3以上高濃度臭氧氣體的範圍係在3SLM至25SLM左右,而且,相較於以往的裝置,可獲得高濃度的臭氧氣體的範圍較佳為3SLM至50SLM左右的範圍。 As the range of the total gas flow rate Q of the raw material gas, it can obtain 400 g/m 3 or more of high-concentration ozone gas in the range of 3SLM to 25SLM, and, compared with the conventional device, the range of high-concentration ozone gas can be obtained It is preferably in the range of about 3SLM to 50SLM.

(本實施形態的效果) (Effect of this embodiment)

本實施形態的臭氧用電源100的構成具備:臭氧產生器200,具有隔著介電質配置在分別成為放電面的一對平板電極1及高壓電極3a(3b)的基本室S1(S2);及臭氧用電源100,對臭氧產生器200賦予臭氧產生用交流電壓。 The configuration of the power supply 100 for ozone of this embodiment includes: an ozone generator 200, and a basic chamber S1 (S2) having a pair of flat plate electrodes 1 and high-voltage electrodes 3a (3b) respectively arranged as discharge surfaces via a dielectric; And the power supply 100 for ozone is applied to the ozone generator 200 with an alternating voltage for ozone generation.

對臭氧產生器200供給含氧的原料氣體,使臭氧產生器200在藉基本室S1(S2)的放電面形成的放電空間產生介電質障壁放電,從供給到放電空間的原料氣體生成臭氧氣體,且將該臭氧氣體輸出到外部。 Oxygen-containing raw material gas is supplied to the ozone generator 200, so that the ozone generator 200 generates dielectric barrier discharge in the discharge space formed by the discharge surface of the basic chamber S1 (S2), and ozone gas is generated from the raw material gas supplied to the discharge space And output the ozone gas to the outside.

臭氧產生器200係包含多段層疊的複數個放電室(S1、S2)而構成。而且,輸出的臭氧經高濃度化的臭氧產生器200係滿足下列條件(1)及條件(2)。 The ozone generator 200 includes a plurality of discharge cells (S1, S2) stacked in multiple stages. Moreover, the ozone generator 200 whose output ozone has been highly concentrated satisfies the following condition (1) and condition (2).

(1)複數個放電室中,藉各個放電面形成的放電面積so係設定在30cm2至160cm2(30cm2以上未達160cm2)的範圍。 (1) a plurality of discharge cells, so the discharge area of each discharge surface is formed by lines is set in 30cm 2 to 160cm 2 (30cm 2 or more less than 160cm 2) range.

(2)供給到複數個放電室中由各個放電面構成的放電空間之原料氣體的原料氣體流量qo係設定在0.5L/min至2.5L/min(0.5L/min以上未達2.5L/min)的範圍。 (2) The raw material gas flow rate qo of the raw material gas supplied to the discharge spaces formed by the various discharge surfaces in the multiple discharge chambers is set at 0.5L/min to 2.5L/min (0.5L/min or more does not reach 2.5L/min ).

再者,供給到臭氧產生器200的氣體流量Q及放電電力DW在可能的範圍內設定到最大,且為了獲得更高的取出臭氧量Yt,除了上述條件(1)、條件(2)之外,臭氧產生器200尚須滿足下列條件(3)。 Furthermore, the gas flow rate Q and discharge power DW supplied to the ozone generator 200 are set to the maximum possible range, and in order to obtain a higher extracted ozone amount Yt, in addition to the above condition (1) and condition (2) The ozone generator 200 must still meet the following condition (3).

(3)投入到複數個放電室各者之放電空間的放電電力密度J係設定在2.5W/cm2至6W/cm2(2.5W/cm2以上未達6W/cm2)的範圍。 (3) The discharge power density J input to the discharge space of each of the plurality of discharge cells is set in the range of 2.5W/cm 2 to 6W/cm 2 (2.5W/cm 2 or more but less than 6W/cm 2 ).

本實施形態的臭氧氣體產生系統1000係藉由滿足上述的條件(1)至條件(3),而在複數個放電室的各個放電面達到以下的效果。另外,在滿足3個條件時,臭氧產生器的放電間隙長d必須設定在數十至數百μmn的短間隙。以下,詳述此點。 The ozone gas generation system 1000 of the present embodiment achieves the following effects on each discharge surface of a plurality of discharge cells by satisfying the above conditions (1) to (3). In addition, when the three conditions are satisfied, the discharge gap length d of the ozone generator must be set to a short gap of tens to hundreds of μmn. Hereinafter, this point will be described in detail.

放電間隙長為數十至數百μm之短間隙的介電質障壁放電較可實現高電場放電。亦即,短間隙的介電質障壁放電較能形成具有高能量的放電光能量的放電,對激發含觸媒氣體的氣體或塗佈在放電面的光觸媒可有效作用,結果,促進氧氣解離的效果更為提高。因此,在實現滿足條件(1)至條件(3)的臭氧氣體產生系統及臭氧氣體產生方法時,臭氧產生器的放電間隙長較佳為設定在數十至數百μm。 Dielectric barrier discharges with a short gap length of tens to hundreds of μm can achieve high electric field discharge. That is, the short gap dielectric barrier discharge is more capable of forming a discharge with high energy discharge light energy, which can effectively stimulate the gas containing the catalyst gas or the photocatalyst coated on the discharge surface. As a result, the oxygen dissociation is promoted. The effect is even more improved. Therefore, when the ozone gas generating system and the ozone gas generating method satisfying the conditions (1) to (3) are realized, the discharge gap length of the ozone generator is preferably set to tens to hundreds of μm.

臭氧氣體產生系統1000可藉由滿足上述條件(1)及條件(2),使各放電室之放電空間(藉一對放電面形成)的氣體滯留時間To縮短俾抑制總臭氧分解量Yd。 The ozone gas generating system 1000 can shorten the gas residence time To of the discharge space (formed by a pair of discharge surfaces) of each discharge cell by satisfying the above conditions (1) and (2) to suppress the total ozone decomposition amount Yd.

結果,臭氧氣體產生系統1000可使上述條件(1)及條件(2)獲得滿足,且藉由將供給到各放電室之放電面的原料氣體流量qo及放電電力dw在可能的範圍內設定到最大,使取出臭氧量yt提高到最大限度,而獲致高濃度臭氧氣體的取出條件。 As a result, the ozone gas generating system 1000 can satisfy the above conditions (1) and (2), and by setting the flow rate qo of the raw material gas supplied to the discharge surface of each discharge cell and the discharge power dw to the possible range Maximum, so that the amount of ozone to be taken out yt is maximized, and the conditions for taking out high-concentration ozone gas are obtained.

臭氧氣體產生系統1000係藉由進一步滿足條件(3),使從各放電室取出的臭氧的生成量可確保在預定量以上,且得以優異效率取出,使取出臭氧量Yt可更為提高。 The ozone gas generation system 1000 further satisfies the condition (3), so that the amount of ozone generated from each discharge cell can be ensured to be more than a predetermined amount, and can be extracted with excellent efficiency, so that the amount of ozone extracted Yt can be further increased.

結果,臭氧氣體產生系統1000可達到將系統構成抑制到最小必要限度,且有效率地提高高濃度臭氧或取出臭氧量Yt,並輸出到外部的效果。 As a result, the ozone gas generation system 1000 can achieve the effect of suppressing the system configuration to the minimum necessary limit, and efficiently increasing the high-concentration ozone or taking out the amount of ozone Yt and outputting it to the outside.

依此方式,臭氧氣體產生系統1000係藉由除了條件(1)及條件(2)之外,又進一步滿足上述條件(3),使條件(1)至條件(3)獲得滿足,且可將供給到各放電室之放電空間的原料氣體流量qo及放電電力dw在可能的範圍內設定到最大,將取出臭氧量yt提高到最大限度。 In this way, the ozone gas generation system 1000 can satisfy the conditions (1) to (3) by further satisfying the above condition (3) in addition to the condition (1) and the condition (2), and can The flow rate qo of the raw material gas and the discharge power dw supplied to the discharge space of each discharge cell are set to the maximum possible range, and the amount of taken out ozone yt is increased to the maximum.

結果,本實施形態的臭氧氣體產生系統1000可將系統構成抑制到最小必要限度,而達到可將高濃度臭氧氣體或者高產生量的臭氧氣體輸出到外部的效果。 As a result, the ozone gas generation system 1000 of the present embodiment can suppress the system configuration to the minimum necessary level, and achieve the effect of outputting high-concentration ozone gas or high-generation ozone gas to the outside.

更且,本實施形態之臭氧氣體產生系統1000的臭氧產生器200係進一步滿足下列條件(4)。 Furthermore, the ozone generator 200 of the ozone gas generating system 1000 of this embodiment further satisfies the following condition (4).

(4)藉冷卻機構提供的臭氧產生器200之冷卻溫度為5℃以上。 (4) The cooling temperature of the ozone generator 200 provided by the cooling mechanism is above 5°C.

本實施形態之臭氧氣體產生系統1000的臭氧產生器200藉由進一步滿足上述條件(4),消除了將上述冷卻機構所提供的臭氧產生器200的冷卻溫度極端降低的必要性,可謀求冷卻機構的簡化。另外,上述限制條件的上限係相對於常溫(20℃)預設在30℃左右。此外,在重視更高冷卻效果的情況中,較佳為將冷卻溫度設定在水凝結溫度的0℃以上。 By further satisfying the above condition (4), the ozone generator 200 of the ozone gas generating system 1000 of the present embodiment eliminates the necessity of extremely reducing the cooling temperature of the ozone generator 200 provided by the cooling mechanism, and can seek a cooling mechanism Simplification. In addition, the upper limit of the above restriction conditions is preset to about 30°C with respect to normal temperature (20°C). In addition, in a case where a higher cooling effect is emphasized, it is preferable to set the cooling temperature to 0°C or more of the water condensation temperature.

再者,本實施形態之臭氧氣體產生系統1000的臭氧產生器200進一步滿足以下條件(5)及條件(6)。 Furthermore, the ozone generator 200 of the ozone gas generating system 1000 of this embodiment further satisfies the following condition (5) and condition (6).

(5)供給到臭氧產生器200內的複數個放電室整體的總氣體流量Q為3.0L/min以上。 (5) The total gas flow rate Q of the entire plurality of discharge cells supplied into the ozone generator 200 is 3.0 L/min or more.

(6)屬於賦予臭氧產生器200內的複數個放電室整體的總放電電力DW與總氣體流量Q之比值的比電力值DW/Q為600(W.min/L)以上。 (6) The specific power value DW/Q of the ratio of the total discharge power DW to the total gas flow rate Q given to the entire plurality of discharge cells in the ozone generator 200 is 600 (W.min/L) or more.

另外,條件(5)係以取出高濃度的臭氧氣體為目的,條件(6)可達到使輸出的臭氧氣體量提高到最大限的效果,其為達成條件(5)之目的的附帶效應。 In addition, the condition (5) is for the purpose of taking out a high concentration of ozone gas, and the condition (6) can achieve the effect of increasing the amount of ozone gas output to the maximum limit, which is a side effect of achieving the purpose of the condition (5).

臭氧氣體產生系統1000之臭氧用電源100及臭氧產生器200係藉由進一步滿足上述條件(5)及條件(6)來達到以下效果。 The ozone power supply 100 and the ozone generator 200 of the ozone gas generation system 1000 achieve the following effects by further satisfying the above condition (5) and condition (6).

臭氧氣體產生系統1000係藉由滿足上述條件(5),就供給到可取出例如400g/m3以上高濃度臭氧的複數個放電室的原料氣體方面,確保充分大的總氣體流量Q,最終則可獲得高濃度臭氧氣體,且可提高取出臭氧量Yt。 By satisfying the above condition (5), the ozone gas generating system 1000 ensures a sufficiently large total gas flow rate Q to supply raw gas to a plurality of discharge cells that can take out high-concentration ozone of, for example, 400 g/m 3 or more, and finally High concentration ozone gas can be obtained, and the amount of ozone taken out Yt can be increased.

臭氧氣體產生系統1000係藉由滿足上述條件(6),除了條件(5)的效果外,在滿足條件(1)至條件(6)的環境下,達到例如以下的效果。將供給到臭氧產生器200的總氣體流量Q及總放電電力DW在可能的範圍設到最大限度,能夠將取出臭氧量Yt提高到最大限度。 The ozone gas generation system 1000 satisfies the above condition (6), and in addition to the effect of the condition (5), in the environment satisfying the condition (1) to the condition (6), for example, the following effects are achieved. By setting the total gas flow rate Q and the total discharge power DW supplied to the ozone generator 200 to the maximum possible range, it is possible to increase the extracted ozone amount Yt to the maximum.

結果,本實施形態的臭氧氣體產生系統1000可達到將系統構成抑制到最小必要限度,並可將較大容量且高濃度的臭氧氣體輸出到外部的效果。 As a result, the ozone gas generating system 1000 of the present embodiment can achieve the effect of suppressing the system configuration to the minimum necessary level, and can output a larger capacity and high concentration of ozone gas to the outside.

而且,構成臭氧產生器200內之放電室的基本室S1、S2各自的放電面係分別俯視呈圓形,且臭氧產生器200進一步滿足下列條件(7)。 Moreover, the discharge surfaces of the basic chambers S1 and S2 constituting the discharge chamber in the ozone generator 200 are respectively circular in plan view, and the ozone generator 200 further satisfies the following condition (7).

(7)複數個放電室中各放電面的外徑係設定在70mm至140mm(70mm以上未達140mm)的範圍。 (7) The outer diameter of each discharge surface in the plurality of discharge cells is set in the range of 70 mm to 140 mm (70 mm or more but less than 140 mm).

此外,若在臭氧產生器中將具有上述放電面的放電室(基本室S1及S2的組合)排列於n個相同平面上而構成放電室數增加的臭氧氣體產生系統1000變化例,能達到和第1圖所示的基本構成同樣的效果。 In addition, if the discharge chambers (combination of the basic chambers S1 and S2) having the above discharge surfaces are arranged on n same planes in the ozone generator to constitute a variation of the ozone gas generation system 1000 with an increased number of discharge chambers, The basic structure shown in Fig. 1 has the same effect.

臭氧氣體產生系統1000係藉由滿足上述條件(7),使滿足條件(1)的放電面積so更容易實現,且更容易將流入到氣體流入平均剖面為sav的平均氣體流速vo/d設定在適當值。 The ozone gas generation system 1000 makes it easier to realize the discharge area so that satisfies the condition (1) by satisfying the above condition (7), and it is easier to set the average gas flow rate vo/d flowing into the gas into the average cross-section sav at Appropriate value.

除此之外,臭氧氣體產生系統1000之臭氧用電源100係將輸出頻率f(動作頻率f)設在20kHz至50kHz(20kHz以上未達50kHz)的範圍內,俾將臭氧產生用交流電壓輸出到臭氧產生器200。更實用的臭氧用電源100的輸出頻率f(動作頻率f)較佳為20kHz至30kHz(20kHz以上未達30kHz)範圍。 In addition, the ozone power supply 100 of the ozone gas generating system 1000 sets the output frequency f (operation frequency f) in the range of 20 kHz to 50 kHz (20 kHz or more but less than 50 kHz), so as to output the AC voltage for ozone generation to Ozone generator 200. The output frequency f (operation frequency f) of the more practical ozone power supply 100 is preferably in the range of 20 kHz to 30 kHz (20 kHz or more and less than 30 kHz).

因此,臭氧氣體產生系統1000將施加在臭氧產生器200內之複數個放電室的臭氧產生用交流電壓之尖峰電壓值訂在7kVp以下,可實現臭氧產生器200所期望的放電電力DW。 Therefore, the ozone gas generation system 1000 sets the peak voltage value of the ozone generation alternating voltage applied to the plurality of discharge cells in the ozone generator 200 to 7 kVp or less, and can realize the discharge power DW desired by the ozone generator 200.

再者,臭氧用電源100的並聯共振用變壓器25具有內部激磁電感值Lt,臭氧產生器200內的複數個放電室則具有整體靜電容量值C0。 In addition, the parallel resonance transformer 25 of the ozone power supply 100 has an internal magnetizing inductance value Lt, and a plurality of discharge cells in the ozone generator 200 has an overall capacitance value C0.

此外,臭氧用電源100係將輸出頻率f設定在滿足上述式(4)的並聯共振頻率fc附近。 In addition, the power supply 100 for ozone sets the output frequency f near the parallel resonance frequency fc that satisfies the above equation (4).

臭氧氣體產生系統1000係藉由將輸出頻率f設定在並聯共振頻率fc附近,透過向臭氧產生器200投入總放電電力DW時進行並聯共振,使反向器部(反向器電路部22)的輸出功率得以提高。 The ozone gas generating system 1000 sets the output frequency f to be near the parallel resonance frequency fc, and performs parallel resonance when the total discharge power DW is input to the ozone generator 200 to make the inverter unit (inverter circuit unit 22) The output power can be increased.

亦即,藉由在並聯共振用變壓器25與臭氧產生器200之間投入總放電電力DW時執行並聯共振,可將反向器電路部22的輸出功率提高。 That is, by performing parallel resonance when the total discharge power DW is input between the parallel resonance transformer 25 and the ozone generator 200, the output power of the inverter circuit section 22 can be increased.

結果,臭氧用電源100可將滿足所期望之總放電電力DW的臭氧產生用交流電壓供給到屬於負載側的臭氧產生器。 As a result, the ozone power supply 100 can supply the ozone generating AC voltage satisfying the desired total discharge power DW to the ozone generator belonging to the load side.

另外,所期望的總放電電力DW可考慮1.8kW以上的總放電電力DW。如此一來,可投入到臭氧產生器200內各個放電室的放電電力密度J(=DW/S)可設定在2.5W/cm2至6W/cm2的範圍。 In addition, the desired total discharge power DW may be a total discharge power DW of 1.8 kW or more. Thus, discharge power density can be put into each discharge chamber in the ozone generator 200 J (= DW / S) can be set in the range of 2.5W / cm 2 to 6W / cm 2 in.

結果,臭氧氣體產生系統1000藉由實現高效率的臭氧用電源100,即使為了取出高濃度的臭氧氣體而將供給的總氣體流量Q及總放電電力DW在可能範圍內設定到最大值,也可達到實現整體構成精簡之臭氧氣體產生系統的效果。 As a result, the ozone gas generating system 1000 can realize the high-efficiency ozone power supply 100 even if the total gas flow rate Q and the total discharge power DW supplied are set to the maximum possible value in order to extract ozone gas with a high concentration. Achieve the effect of achieving a simplified ozone gas generation system.

<方法發明的延伸> <Extended method invention>

本實施形態中,係就作為裝置發明的臭氧氣體產生系統1000來說明。然而,也可延伸為使用上述臭氧用電源100及臭氧產生器200的臭氧氣體產生方法作為本案發明的變化例。 In this embodiment, the ozone gas generating system 1000 as the device invention will be described. However, it can also be extended to use the ozone gas generating method of the above-mentioned ozone power supply 100 and ozone generator 200 as a modified example of the present invention.

亦即,可使用具有:隔著介電質(2a、2b)配置在一對平板電極1、3(3a、3b)之放電室的臭氧產生器200、及對臭氧產生器200賦予臭氧產生用交流電壓的臭氧用電源100,開展成為產生高濃度臭氧氣體的臭氧氣體產生方法。 That is, an ozone generator 200 having: a discharge chamber arranged in a pair of plate electrodes 1, 3 (3a, 3b) via a dielectric (2a, 2b) can be used, and the ozone generator 200 can be provided for ozone generation The alternating-current power supply 100 for ozone is developed as an ozone gas generating method that generates high-concentration ozone gas.

屬於本實施形態之變化例的臭氧氣體產生方法係對應上述臭氧氣體產生系統1000的條件(1)及條件(2)執行以下步驟(1)及步驟(2)。 The ozone gas generation method pertaining to a modified example of the present embodiment executes the following steps (1) and step (2) corresponding to the conditions (1) and (2) of the ozone gas generation system 1000 described above.

(1)將前述複數個放電室各者之放電面的放電面積so設定在約30cm2以上未達160cm2之範圍的步驟。 (1) The discharge area of the discharge surface so each of the plurality of discharge cells are set in a step range of less than about 30cm 2 or more of the 160cm 2.

(2)將供給到由前述複數個放電室各者之一對放電面所形成的放電空間的原料氣體之原料氣體流量qo設定在0.5L/min以上未達2.5L/min範圍的步驟。 (2) The step of setting the raw material gas flow rate qo of the raw material gas supplied to the discharge space formed by the discharge surface formed by one of the plurality of discharge cells to a discharge surface of 0.5 L/min or more and not exceeding 2.5 L/min.

再者,為了將供給到臭氧產生器200的氣體流量Q及總放電電力DW在可能的範圍內投入到最大限,以取得最大限的取出臭氧量Yt,除 了上述步驟(1)及步驟(2)外,臭氧氣體產生方法較佳為再執行以下的步驟(3)。 Furthermore, in order to input the gas flow rate Q and the total discharge power DW supplied to the ozone generator 200 to the maximum limit within the possible range, to obtain the maximum extracted ozone amount Yt, except In addition to the above step (1) and step (2), the ozone gas generating method preferably performs the following step (3).

(3)將向前述複數個放電室各者之放電空間投入的放電電力密度J設定在2.5W/cm2至6W/cm2之範圍的步驟。 (3) will be the plurality of discharge cells by a discharge space of each discharge power density of the input J of the set range at step 2.5W / cm 2 to 6W / cm 2 of.

上述臭氧氣體產生方法可藉由執行步驟(1)及步驟(2)而縮短各放電室之放電空間的氣體滯留時間To,俾抑制臭氧氣體分解量。 The above ozone gas generation method can shorten the gas residence time To in the discharge space of each discharge cell by performing the steps (1) and (2), so as to suppress the decomposition amount of ozone gas.

因而,上述臭氧氣體產生方法只要藉由執行步驟(1)及步驟(2),將向各放電室之放電空間供給的原料氣體流量qo及放電電力dw在可能的範圍內設定到最大,即可達到以高濃度取出臭氧氣體的效果。 Therefore, as long as the above-mentioned ozone gas generating method executes steps (1) and (2), the flow rate qo of the raw material gas supplied to the discharge space of each discharge cell and the discharge power dw can be set to the maximum possible range. To achieve the effect of removing ozone gas at a high concentration.

上述臭氧氣體產生方法若藉由進一步執行步驟(3),將向各放電室之放電面供給的氣體流量q及放電電力dw在可能的範圍內設定到最大,則可達到將取出臭氧量yt提高到最大的效果。 If the above ozone gas generation method further performs step (3), the gas flow rate q and the discharge power dw supplied to the discharge surface of each discharge cell are set to the maximum possible range, the amount of ozone taken out yt can be increased To the maximum effect.

結果,屬於本案發明之變化例的臭氧氣體產生方法可達到將高濃度臭氧或高產生量的臭氧氣體向外部輸出的效果。 As a result, the ozone gas generation method belonging to a modified example of the invention of the present invention can achieve the effect of outputting high-concentration ozone or high-generation ozone gas to the outside.

再者,上述臭氧氣體產生方法可對應臭氧氣體產生系統1000的上述條件(4)至條件(7)執行用以使條件(4)至條件(7)獲得滿足的步驟,而達到和臭氧氣體產生系統1000同樣的效果。 Furthermore, the above-mentioned ozone gas generation method may perform the steps for satisfying the conditions (4) to (7) in accordance with the above conditions (4) to (7) of the ozone gas generation system 1000, and achieve ozone gas generation System 1000 has the same effect.

<其他> <other>

本實施形態中,係揭示放電室的放電面形狀構成為俯視呈圓形的臭氧產生器200,但也可用正方形或長方形的平板室構成放電室形狀。在此情況中,也是只要設定在可投入滿足條件(2)的放電電力密度J範圍,且將多段的放電室層疊即可。 In the present embodiment, it is disclosed that the shape of the discharge surface of the discharge cell is the ozone generator 200 having a circular shape in plan view, but a square or rectangular flat cell may be used to configure the shape of the discharge cell. In this case, it is only necessary to set the discharge power density J range that can satisfy the condition (2), and to stack a plurality of discharge cells.

再者,作為放電室,也可將同軸圓筒電極管作成短管,並設定在滿足條件(3)的放電電力密度J的範圍,且由一種極管多數支排列構成。 Furthermore, as the discharge chamber, the coaxial cylindrical electrode tube may be made into a short tube, set in the range of the discharge power density J that satisfies the condition (3), and is composed of one type of multi-branch arrangement.

本實施形態中,係揭示具有屬於臭氧用電源100之高頻-高壓變壓器的並聯共振用變壓器25之內部激磁電感值Lt的構成。該構成以外,也可在並聯共振用變壓器25之輸出部追加並聯共振的共振用反應器而構成臭氧用電源。 In this embodiment, the configuration of the internal magnetizing inductance value Lt of the parallel resonance transformer 25 having the high-frequency and high-voltage transformer belonging to the ozone power supply 100 is disclosed. In addition to this configuration, a parallel resonance resonance reactor may be added to the output portion of the parallel resonance transformer 25 to configure an ozone power supply.

此外,作為臭氧產生器200,係揭示供給氧氣作為原料氣體,且在放電室的放電面塗佈光觸媒的構成。但並非限定於此,也可使用供給含氮的氧氣作為原料氣體的臭氧產生器,以取代臭氧產生器200。 In addition, as the ozone generator 200, it is disclosed that oxygen is supplied as a raw material gas, and a photocatalyst is coated on the discharge surface of the discharge chamber. However, it is not limited to this, and the ozone generator which supplies nitrogen-containing oxygen gas as a raw material gas may be used instead of the ozone generator 200.

本發明雖經詳細說明,惟上述的說明在所有面向上均屬例示性,本發明不應限定於此。未經例示的無數變化例應解釋為在不脫離本案發明的範圍的情況下可自本發明範圍推想而得者。 Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention should not be limited to this. Numerous variations that are not exemplified should be interpreted as being derived from the scope of the present invention without departing from the scope of the present invention.

1‧‧‧接地冷卻電極 1‧‧‧Earth cooling electrode

9‧‧‧岐管箱塊 9‧‧‧Manifold box block

13‧‧‧間隔件 13‧‧‧ spacer

15‧‧‧開口部 15‧‧‧Opening

17‧‧‧輸出路徑 17‧‧‧Output path

91‧‧‧冷卻水輸出路徑 91‧‧‧ Cooling water output path

92‧‧‧臭氧氣體輸出路徑 92‧‧‧Ozone gas output path

93‧‧‧冷卻水輸入路徑 93‧‧‧ Cooling water input path

GIN‧‧‧原料氣體 G IN ‧‧‧ Raw gas

GOUT‧‧‧輸出臭氧氣體 G OUT ‧‧‧ output ozone gas

Claims (9)

一種臭氧氣體產生系統,具備:臭氧產生器(200),具有隔著介電質配置在一對平板電極(1、3)的放電室;及臭氧用電源(100),對前述臭氧產生器賦予產生臭氧用交流電壓,對前述臭氧產生器供給含氧的原料氣體,前述臭氧產生器係在前述放電室的放電空間發生介電質障壁放電,而從供給到前述放電空間的原料氣體生成臭氧氣體,並將該臭氧氣體輸出到外部,前述放電室係包含多段層疊的複數個放電室,前述臭氧產生器係滿足下列條件(1)及條件(2),(1)前述複數個放電室中,各個放電面的放電面積so係設定在30cm2以上未達160cm2的範圍;(2)供給到前述複數個放電室各者之放電空間之原料氣體的原料氣體流量qo係設定在0.5L/min以上未達2.5L/min的範圍。 An ozone gas generating system includes: an ozone generator (200) having a discharge chamber disposed on a pair of flat electrodes (1, 3) through a dielectric; and a power supply (100) for ozone, which is given to the ozone generator Generates an alternating voltage for ozone and supplies oxygen-containing raw material gas to the ozone generator. The ozone generator generates dielectric barrier discharge in the discharge space of the discharge chamber, and generates ozone gas from the raw material gas supplied to the discharge space And output the ozone gas to the outside, the discharge chamber includes a plurality of discharge chambers stacked in multiple stages, the ozone generator meets the following conditions (1) and (2), (1) in the plurality of discharge chambers, so the discharge area of each discharge surface is set based 30cm 2 or more in a range less than 160cm 2; (2) supplied to the raw material gas flow rate qo discharge line by each of the plurality of the gas discharge chamber space set at 0.5L / min The above does not reach the range of 2.5L/min. 如申請專利範圍第1項所述之臭氧氣體產生系統,其中,前述臭氧產生器進一步滿足下列條件(3),(3)前述複數個放電室各者之放電空間的放電電力密度J係設定在2.5W/cm2以上未達6W/cm2的範圍。 The ozone gas generating system as described in item 1 of the patent application scope, wherein the ozone generator further satisfies the following conditions (3), (3) the discharge power density J of the discharge space of each of the plurality of discharge cells is set at Above 2.5W/cm 2 does not reach the range of 6W/cm 2 . 如申請專利範圍第2項所述之臭氧氣體產生系統,其中,前述臭氧產生器進一步包含將前述複數個放電室冷卻到預定之冷卻溫度的冷卻機構;前述臭氧產生器係進一步滿足下列條件(4), (4)前述預定之冷卻溫度係設定在5℃以上。 The ozone gas generating system as described in item 2 of the patent application scope, wherein the ozone generator further includes a cooling mechanism that cools the plurality of discharge chambers to a predetermined cooling temperature; the ozone generator further satisfies the following conditions (4 ), (4) The aforementioned predetermined cooling temperature is set at 5°C or higher. 如申請專利範圍第3項所述之臭氧氣體產生系統,其中,前述臭氧用電源及前述臭氧產生器係以進一步滿足下列條件(5)及條件(6),(5)供給到前述複數個放電室整體的總氣體流量Q為3.0L/min以上;(6)屬於賦予至前述複數個放電室整體的總放電電力DW與前述總氣體流量Q之比的比電力值DW/Q為600(W-min/L)以上,前述總放電電力DW係藉前述臭氧產生用交流電壓來規限。 The ozone gas generation system as described in item 3 of the patent application scope, wherein the ozone power supply and the ozone generator are further provided to satisfy the following conditions (5) and conditions (6), (5) to the plurality of discharges The total gas flow rate Q of the entire chamber is 3.0 L/min or more; (6) The specific power value DW/Q of the ratio of the total discharge power DW given to the entire plurality of discharge chambers to the total gas flow rate Q is 600 (W -min/L), the total discharge power DW is regulated by the AC voltage for ozone generation. 如申請專利範圍第4項所述之臭氧氣體產生系統,其中,前述複數個放電室各者之放電面係俯視呈圓形;前述臭氧產生器係進一步滿足下列條件(7),(7)前述複數個放電室各者之放電面的直徑係設定在70mm以上未達140mm的範圍。 The ozone gas generating system as described in item 4 of the patent application scope, wherein the discharge surface of each of the plurality of discharge cells is circular in plan view; the ozone generator further satisfies the following conditions (7), (7) The diameter of the discharge surface of each of the plurality of discharge cells is set in a range of 70 mm or more but not 140 mm. 如申請專利範圍第1至5項中任一項所述之臭氧氣體產生系統,其中,前述臭氧用電源包含:反向器部(22),將輸出頻率f設定在20kHz以上未達50kHz的範圍,且輸出高頻交流電壓;及升壓用變壓器(25),將前述高頻交流電壓升壓成高電壓而獲得前述臭氧產生用交流電壓。 The ozone gas generating system according to any one of the items 1 to 5 of the patent application scope, wherein the ozone power supply includes an inverter section (22), and the output frequency f is set to a range of 20 kHz or more but less than 50 kHz And output a high-frequency AC voltage; and a step-up transformer (25) to boost the high-frequency AC voltage to a high voltage to obtain the ozone generating AC voltage. 如申請專利範圍第6項所述之臭氧氣體產生系統,其中,前述升壓用變壓器具有內部激磁電感值Lt,前述複數個放電室具有整體的靜電容量值C0,並將前述輸出頻率f設定在滿足下列條件式的並聯共振頻率fc附近,條件式:fc=1/(2π‧(Lt‧C0)0.5)。 An ozone gas generating system as described in item 6 of the patent application range, wherein the step-up transformer has an internal magnetizing inductance value Lt, the plurality of discharge cells have an overall capacitance value C0, and the output frequency f is set at Near the parallel resonance frequency fc that satisfies the following conditional expression, the conditional expression: fc=1/(2π‧(Lt‧C0) 0.5 ). 一種臭氧氣體產生方法,係使用:臭氧產生器(200),具有隔著介電質配置在一對平板電極(1、3)的放電室;及臭氧用電源(100),對前述臭氧產生器賦予臭氧產生用交流電壓,而產生臭氧氣體;對前述臭氧產生器供給含氧的原料氣體,前述臭氧產生器則在前述放電室的放電空間產生介電質障壁放電,而從供給到前述放電空間的原料氣體生成臭氧氣體,並將該臭氧氣體輸出到外部,前述放電室包含多段層疊的複數個放電室,前述臭氧氣體產生方法具備:(1)將前述複數個放電室各者之放電面之放電面積so設定在30cm2以上未達160cm2之範圍的步驟;及(2)將供給到前述複數個放電室各者之放電空間的原料氣體之原料氣體流量qo設定在0.5L/min以上未達2.5L/min之範圍的步驟。 An ozone gas generation method is used: an ozone generator (200) having a discharge chamber disposed on a pair of plate electrodes (1, 3) through a dielectric; and an ozone power supply (100) to the ozone generator An alternating voltage for ozone generation is applied to generate ozone gas; an oxygen-containing raw material gas is supplied to the ozone generator, and the ozone generator generates a dielectric barrier discharge in the discharge space of the discharge chamber and supplies it to the discharge space The raw material gas generates ozone gas and outputs the ozone gas to the outside. The discharge cell includes a plurality of discharge cells stacked in multiple stages. The ozone gas generation method includes: (1) The discharge surface of each of the plurality of discharge cells so the discharge area of 30cm 2 or more is set in step 2 of less than 160cm range; and (2) supplied to the raw material gas flow rate of the material gas by the discharge space of each of the plurality of discharge cells is not set qo 0.5L / min or more Steps up to 2.5L/min. 如申請專利範圍第8項所述之臭氧氣體產生方法,其中,前述臭氧氣體產生方法進一步具備以下的步驟(3),(3)將前述複數個放電室各者之放電空間的放電電力密度J設定在2.5W/cm2以上未達6W/cm2之範圍的步驟。 The ozone gas generating method as described in item 8 of the patent application scope, wherein the ozone gas generating method further includes the following steps (3), (3) the discharge power density J of the discharge space of each of the plurality of discharge cells set at 2.5W / cm 2 or more step ranges 6W / cm 2 of less than.
TW108106054A 2018-05-21 2019-02-22 Ozone gas generation system and ozone gas generation method TWI690483B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
WOPCT/JP2018/019452 2018-05-21
JP2018019452 2018-05-21
WOPCT/JP2018/041914 2018-11-13
PCT/JP2018/041914 WO2019225033A1 (en) 2018-05-21 2018-11-13 Ozone gas generation system and ozone gas generation method

Publications (2)

Publication Number Publication Date
TW202003372A TW202003372A (en) 2020-01-16
TWI690483B true TWI690483B (en) 2020-04-11

Family

ID=68617269

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108106054A TWI690483B (en) 2018-05-21 2019-02-22 Ozone gas generation system and ozone gas generation method
TW108117342A TWI708737B (en) 2018-05-21 2019-05-20 Ozone gas generation system

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108117342A TWI708737B (en) 2018-05-21 2019-05-20 Ozone gas generation system

Country Status (3)

Country Link
JP (2) JP6657485B1 (en)
TW (2) TWI690483B (en)
WO (1) WO2019225033A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113353890A (en) * 2021-04-23 2021-09-07 张全星 Discharge chamber of ozone generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2450204Y (en) * 2000-10-30 2001-09-26 大连海事大学 High concentration ozone producer-IV
TW201408587A (en) * 2012-08-30 2014-03-01 Toshiba Mitsubishi Elec Inc Ozone generation system
TW201720754A (en) * 2015-12-08 2017-06-16 東芝三菱電機產業系統股份有限公司 Ozone generating method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3672252B2 (en) * 2001-11-22 2005-07-20 東芝三菱電機産業システム株式会社 Ozone generator
JP3607905B2 (en) * 2002-10-22 2005-01-05 東芝三菱電機産業システム株式会社 Ozone generator
TW200528390A (en) * 2004-02-25 2005-09-01 Toshiba Mitsubishi Elec Inc Apparatus and method of producing ozone gas
CN1976870B (en) * 2004-09-29 2012-08-29 东芝三菱电机产业系统株式会社 N-phase ozone generator apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2450204Y (en) * 2000-10-30 2001-09-26 大连海事大学 High concentration ozone producer-IV
TW201408587A (en) * 2012-08-30 2014-03-01 Toshiba Mitsubishi Elec Inc Ozone generation system
TW201720754A (en) * 2015-12-08 2017-06-16 東芝三菱電機產業系統股份有限公司 Ozone generating method

Also Published As

Publication number Publication date
TW202003372A (en) 2020-01-16
JPWO2019225033A1 (en) 2020-05-28
JPWO2019225426A1 (en) 2020-12-10
JP6657485B1 (en) 2020-03-04
JP6893755B2 (en) 2021-06-23
TW202003373A (en) 2020-01-16
WO2019225033A1 (en) 2019-11-28
TWI708737B (en) 2020-11-01

Similar Documents

Publication Publication Date Title
US8222822B2 (en) Inductively-coupled plasma device
JP5677344B2 (en) Ozone generator
JP2013527556A (en) Accelerator for charged particles
TWI690483B (en) Ozone gas generation system and ozone gas generation method
JP6616910B2 (en) Gas generator
US20020039546A1 (en) Ozone generator
JP2018035023A (en) Gas reformer
WO2019225426A1 (en) Ozone gas generation system
JP2010272355A (en) Apparatus for generating active particle
JP6104630B2 (en) Power supply for sliding discharge
US20240316494A1 (en) Apparatus and method for electron irradiation scrubbing
Salam et al. Design and implementation of a low cost, high yield dielectric barrier discharge ozone generator based on the single switch resonant converter
Huang et al. A comparative study of ozone generation using pulsed and continuous AC dielectric barrier discharges
US20020048539A1 (en) Ozone generator with water cooled glass dielectric
US11225410B2 (en) Method for controlling an ozone generator
JP6235162B2 (en) Ozone generator
JP2010022975A (en) High-voltage plasma generator
RU2307787C2 (en) Ozonizer
JP7019872B1 (en) Ozone generator
KR101655885B1 (en) Carbon dioxide decompositon apparatus and carbon dioxide decomposition method
WO2023146407A1 (en) Plasma electrode configuration for a high-voltage non-thermal plasma system and a non-thermal plasma-based gas-treatment system comprising such plasma electrode configuration
Wei et al. Dimensional analysis to ozone generation by pulsed streamer discharge in dry air
Petrovic et al. Numerical parameter study on a cylindrical DBD used as a chemical reactor
Deryzemlia et al. Calculation of the generator for induction discharge initiation
RU2016146078A (en) METHOD FOR INCREASING THE EFFICIENCY OF OPERATION OF A PLASMA-HYDROGEN RADIATOR AND A GAS SEPARATION DEVICE FOR WATER DECOMPOSITION