TWI690154B - Amplifier circuit and associated compensation circuit - Google Patents

Amplifier circuit and associated compensation circuit Download PDF

Info

Publication number
TWI690154B
TWI690154B TW108113965A TW108113965A TWI690154B TW I690154 B TWI690154 B TW I690154B TW 108113965 A TW108113965 A TW 108113965A TW 108113965 A TW108113965 A TW 108113965A TW I690154 B TWI690154 B TW I690154B
Authority
TW
Taiwan
Prior art keywords
amplifier
stage amplifier
compensation
circuit
compensation circuit
Prior art date
Application number
TW108113965A
Other languages
Chinese (zh)
Other versions
TW201939886A (en
Inventor
溫松翰
陳冠達
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/912,448 external-priority patent/US10469037B2/en
Application filed by 聯發科技股份有限公司 filed Critical 聯發科技股份有限公司
Publication of TW201939886A publication Critical patent/TW201939886A/en
Application granted granted Critical
Publication of TWI690154B publication Critical patent/TWI690154B/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics

Abstract

An amplifier circuit has a multi-stage amplifier, a compensation capacitor, and compensation circuits. The multi-stage amplifier has amplifiers cascaded between an input port and an output port of the multi-stage amplifier. The amplifiers include at least a first-stage amplifier, a second-stage amplifier and a third-stage amplifier. The compensation capacitor is coupled between the output port of the multi-stage amplifier and an output port of the first-stage amplifier. The compensation circuits include a first compensation circuit and a second compensation circuit. The first compensation circuit is coupled to the output port of the first-stage amplifier. The second compensation circuit is coupled to an output port of the second-stage amplifier.

Description

放大器電路及相關的補償電路 Amplifier circuit and related compensation circuit

本發明涉及一種放大器設計,更特別地,涉及一種多級放大器電路(multi-stage amplifier circuit),其具有由補償電路插入的至少一個零點和至少一個極點。 The present invention relates to an amplifier design, and more particularly, to a multi-stage amplifier circuit (multi-stage amplifier circuit) having at least one zero and at least one pole inserted by a compensation circuit.

從單級放大器獲得的性能通常不足以用於多種應用。因此,通過級聯(cascade)一些放大級的多級放大器被用來實現期望的性能。以三級放大器為例,第一級放大器的輸出用作第二級放大器的輸入,而第二級放大器的輸出用作第三級放大器的輸入。為了抑制熱雜訊(thermal noise),採用具有大跨導的第一級放大器。然而,單位增益帶寬(unity-gain bandwidth,UGB)/單位增益頻率(unity-gain frequency,UGF)與第一級放大器的跨導正相關。換句話說,第一級放大器的跨導越大,單位增益頻率越高,以及單位增益帶寬越大。在第一級放大器被配置為具有大跨導的情況下,三級放大器的兩個高頻次極點(non-dominant pole)所處頻率低於單位增益頻率。因此,三級放大器變得不穩定。 The performance obtained from a single-stage amplifier is usually not sufficient for many applications. Therefore, multi-stage amplifiers that cascade some amplification stages are used to achieve the desired performance. Taking a three-stage amplifier as an example, the output of the first-stage amplifier is used as the input of the second-stage amplifier, and the output of the second-stage amplifier is used as the input of the third-stage amplifier. To suppress thermal noise, a first-stage amplifier with large transconductance is used. However, unity-gain bandwidth (UGB)/unity-gain frequency (UGF) is positively related to the transconductance of the first-stage amplifier. In other words, the larger the transconductance of the first-stage amplifier, the higher the unity-gain frequency, and the larger the unity-gain bandwidth. In the case where the first-stage amplifier is configured to have a large transconductance, the two high-frequency non-dominant poles of the third-stage amplifier are located at a frequency lower than the unity gain frequency. Therefore, the three-stage amplifier becomes unstable.

單位增益帶寬/單位增益頻率與米勒電容(Miller capacitance)負相關。為解決穩定性問題,一種解決方案是增大米勒電容,從而降低單位增益頻 率並降低單位增益帶寬以實現穩定性的提高。然而,主極點(dominant pole)也與米勒電容負相關。因此,主極點被轉移至較低的頻率,從而導致帶內增益下降。因此,具有大米勒電容的三級放大器具有差的帶內信號質量。 The unity gain bandwidth/unity gain frequency is inversely related to Miller capacitance. To solve the stability problem, one solution is to increase the Miller capacitance, thereby reducing the unity gain frequency Rate and reduce the unity gain bandwidth to achieve stability improvement. However, the dominant pole is also inversely related to the Miller capacitance. Therefore, the main pole is shifted to a lower frequency, which causes the in-band gain to decrease. Therefore, a three-stage amplifier with large Miller capacitance has poor in-band signal quality.

因此,需要一種新穎的頻率補償設計,以增強多級放大器電路的穩定性而又不會降低多級放大器電路的帶內增益。 Therefore, a novel frequency compensation design is needed to enhance the stability of the multi-stage amplifier circuit without reducing the in-band gain of the multi-stage amplifier circuit.

本發明的目的之一在於提供一種多級放大器電路和相關的補償電路,以解決上述問題。 One of the objects of the present invention is to provide a multi-stage amplifier circuit and related compensation circuit to solve the above problems.

根據本發明的第一方面,提供了一種放大器電路,包括多級放大器、補償電容以及多個補償電路。該多級放大器包括級聯在該多級放大器的輸入端和輸出端之間的多個放大器,該多個放大器至少包括第一級放大器、第二級放大器和第三級放大器。該補償電容耦接在該多級放大器的輸出端和該第一級放大器的輸出端之間。以及,該多個補償電路包括第一補償電路和第二補償電路,第一補償電路耦接於該第一級放大器的輸出端;第二補償電路耦接於該第二級放大器的輸出端。 According to the first aspect of the present invention, there is provided an amplifier circuit including a multi-stage amplifier, a compensation capacitor, and a plurality of compensation circuits. The multi-stage amplifier includes a plurality of amplifiers cascaded between the input end and the output end of the multi-stage amplifier, and the plurality of amplifiers includes at least a first-stage amplifier, a second-stage amplifier, and a third-stage amplifier. The compensation capacitor is coupled between the output of the multi-stage amplifier and the output of the first-stage amplifier. And, the plurality of compensation circuits include a first compensation circuit and a second compensation circuit. The first compensation circuit is coupled to the output terminal of the first-stage amplifier; the second compensation circuit is coupled to the output terminal of the second-stage amplifier.

根據本發明的第二方面,提供了一種補償電路,包括高通濾波器、輔助放大器、電容和電阻。高通濾波器具有輸入端和輸出端;輔助放大器的輸入端耦接於該高通濾波器的輸出端;電容耦接在該高通濾波器的輸入端和該輔助放大器的輸出端之間;以及,電阻耦接在該輔助放大器的輸出端和偏置電壓之間。 According to a second aspect of the present invention, a compensation circuit is provided, including a high-pass filter, an auxiliary amplifier, a capacitor, and a resistor. The high-pass filter has an input and an output; the input of the auxiliary amplifier is coupled to the output of the high-pass filter; a capacitor is coupled between the input of the high-pass filter and the output of the auxiliary amplifier; and, the resistor It is coupled between the output terminal of the auxiliary amplifier and the bias voltage.

在上述技術方案中,所提供的多級放大器電路和補償電路可用來增強多級放大器電路的穩定性而又不會降低多級放大器電路的帶內增益。 In the above technical solution, the provided multi-stage amplifier circuit and compensation circuit can be used to enhance the stability of the multi-stage amplifier circuit without reducing the in-band gain of the multi-stage amplifier circuit.

所屬技術領域中具有通常知識者在閱讀附圖所示優選實施例的下述詳細描述之後,可以毫無疑義地理解本發明的這些目的及其它目的。 Those of ordinary skill in the art can understand these and other objects of the present invention without any doubt after reading the following detailed description of the preferred embodiments shown in the drawings.

100、1000:放大器電路 100, 1000: amplifier circuit

102:三級放大器 102: Three-stage amplifier

112:組合電路 112: Combination circuit

114:第一級放大器 114: first-stage amplifier

116:第二級放大器 116: Second-stage amplifier

118:第三級放大器 118: third stage amplifier

SIN:源信號 S IN : source signal

NIN、P11、P21、P31、P41、P51、P91:輸入端 N IN , P 11 , P 21 , P 31 , P 41 , P 51 , P 91 : input

NOUT、P12、P22、P32、P42、P52、P92:輸出端 N OUT , P 12 , P 22 , P 32 , P 42 , P 52 , P 92 : output

Co1、Co2、Co3:輸出電容 Co1 , Co2 , Co3 : output capacitance

Ro1、Ro2、Ro3:輸出電阻 R o1 , R o2 , R o3 : output resistance

Cd1、Cd2、CB1、CF1、CB2:電容 C d1 , C d2 , C B1 , C F1 , C B2 : capacitance

Rd1、Rd2、RB1、RF1、RB2:電阻 R d1 , R d2 , R B1 , R F1 , R B2 : resistance

104_1:第一補償電路 104_1: the first compensation circuit

104_2:第二補償電路 104_2: Second compensation circuit

CL:負載電容 C L : load capacitance

RL:負載電阻 R L : load resistance

SOUT:輸出信號 S OUT : output signal

Cm1、Cm2、...、Cm(N-2)、Cm(N-1):補償電容 C m1 , C m2 , ..., C m(N-2) , C m(N-1) : compensation capacitor

P1:主極點 P 1 : main pole

P2、P3:次極點 P 2 , P 3 : secondary pole

Pd:被插入的極點 P d : inserted pole

Zd:被插入的零點 Z d : inserted zero point

400、500、600、900:補償電路 400, 500, 600, 900: compensation circuit

402、902:輔助放大器 402, 902: auxiliary amplifier

VIN:補償電路的輸入 V IN : input of the compensation circuit

VB1、VB2、VB3:偏置電壓 V B1 , V B2 , V B3 : bias voltage

502:高通濾波器 502: High-pass filter

第1圖是根據本發明實施例描述的放大器電路的示意圖。 FIG. 1 is a schematic diagram of an amplifier circuit described according to an embodiment of the invention.

第2圖是根據本發明實施例描述的所提出的頻率補償(單位增益帶寬控制)方案的構思的示意圖。 FIG. 2 is a schematic diagram of the concept of the proposed frequency compensation (unit gain bandwidth control) scheme according to an embodiment of the present invention.

第3圖是根據本發明實施例描述的第1圖所示的放大器電路的詳細的頻率響應曲線的示意圖。 FIG. 3 is a schematic diagram of a detailed frequency response curve of the amplifier circuit shown in FIG. 1 according to an embodiment of the present invention.

第4圖是根據本發明實施例描述的第一補償電路設計的示意圖。 FIG. 4 is a schematic diagram of a first compensation circuit design according to an embodiment of the present invention.

第5圖是根據本發明實施例描述的第二補償電路設計的示意圖。 FIG. 5 is a schematic diagram of a second compensation circuit design according to an embodiment of the present invention.

第6圖描述了具有位於由輔助放大器和電容形成的迴路之外部的高通濾波器的補償電路的示意圖。 Figure 6 depicts a schematic diagram of a compensation circuit with a high-pass filter located outside the loop formed by the auxiliary amplifier and the capacitor.

第7圖描述了具有位於由輔助放大器和電容形成的迴路中的高通濾波器的補償電路的示意圖。 Fig. 7 depicts a schematic diagram of a compensation circuit with a high-pass filter located in a loop formed by an auxiliary amplifier and a capacitor.

第8圖是根據本發明實施例描述的第5圖或第7圖所示的補償電路的電路圖。 FIG. 8 is a circuit diagram of the compensation circuit shown in FIG. 5 or FIG. 7 according to an embodiment of the present invention.

第9圖是根據本發明實施例描述的第三補償電路設計的示意圖。 FIG. 9 is a schematic diagram of a third compensation circuit design according to an embodiment of the present invention.

第10圖是根據本發明實施例描述的另一放大器電路的示意圖。 FIG. 10 is a schematic diagram of another amplifier circuit described according to an embodiment of the present invention.

在下面的詳細描述中,為了說明的目的,闡述了許多具體細節,以便所屬技術領域中具有通常知識者能夠更透徹地理解本發明實施例。然而,顯而易見的是,可以在沒有這些具體細節的情況下實施一 個或複數個實施例,不同的實施例可根據需求相結合,而並不應當僅限於附圖所列舉的實施例。 In the following detailed description, for the purpose of illustration, many specific details are set forth so that those with ordinary knowledge in the technical field can more thoroughly understand the embodiments of the present invention. However, it is obvious that one can implement a without these specific details One or more embodiments, different embodiments can be combined according to requirements, and should not be limited to the embodiments listed in the drawings.

以下描述為本發明實施的較佳實施例。以下實施例僅用來例舉闡釋本發明的技術特徵,並非用來限制本發明的範疇。在通篇說明書及申請專利範圍當中使用了某些詞彙來指稱特定的組件。所屬技術領域中具有通常知識者應可理解,製造商可能會用不同的名詞來稱呼同樣的組件。本說明書及申請專利範圍並不以名稱的差異來作為區別組件的方式,而係以組件在功能上的差異來作為區別的基準。本發明的範圍應當參考後附的申請專利範圍來確定。在以下描述和申請專利範圍當中所提及的術語“包含”和“包括”為開放式用語,故應解釋成“包含,但不限定於...”的意思。此外,術語“耦接”意指間接或直接的電氣連接。因此,若文中描述一個裝置耦接至另一裝置,則代表該裝置可直接電氣連接於該另一裝置,或者透過其它裝置或連接手段間接地電氣連接至該另一裝置。 The following description is a preferred embodiment of the present invention. The following embodiments are only used to illustrate the technical features of the present invention, and are not intended to limit the scope of the present invention. Certain words are used throughout the specification and patent application to refer to specific components. Those of ordinary skill in the art should understand that manufacturers may use different terms to refer to the same components. This specification and the scope of patent application do not use differences in names as a way to distinguish components, but rather differences in functions of components as a basis for differentiation. The scope of the present invention should be determined with reference to the appended patent application scope. The terms "comprising" and "including" mentioned in the following description and patent application are open-ended terms, so they should be interpreted as meaning "including, but not limited to...". Furthermore, the term "coupled" means an indirect or direct electrical connection. Therefore, if it is described that one device is coupled to another device, it means that the device may be directly electrically connected to the other device, or indirectly electrically connected to the other device through other devices or connection means.

文中所用術語“基本”或“大致”係指在可接受的範圍內,所屬技術領域中具有通常知識者能夠解決所要解決的技術問題,基本達到所要達到的技術效果。舉例而言,“大致等於”係指在不影響結果正確性時,所屬技術領域中具有通常知識者能夠接受的與“完全等於”有一定誤差的方式。 As used herein, the term "basic" or "approximately" means that within the acceptable range, those with ordinary knowledge in the technical field can solve the technical problem to be solved and basically achieve the desired technical effect. For example, "substantially equal" refers to a method that can be accepted by a person with ordinary knowledge in the technical field and has a certain error from "completely equal" without affecting the correctness of the result.

第1圖是根據本發明實施例描述的放大器電路的示意圖。作為一種示例而非限制意義,放大器電路100可用於音頻應用中。如第1圖所示,放大器電路100為多級放大器電路,包括多級放大器(例如,三級放大器102)、多個補償電路(例如,第一補償電路104_1和第二補償電路104_2),以及,多個補償電容(例如,Cm1和Cm2)。補償電容Cm1和Cm2中的每一個用於米勒補償。因此,利用補償電容Cm1和Cm2來實現嵌套的米勒補償(nested Miller compensation,NMC) 方案。然而,這僅僅是為了說明的目的,並不意味著限制本發明。在本發明的一些實施例中,補償電容Cm2可以是可選的。例如,關於所提出的頻率補償(單位增益帶寬控制)方案,可以根據實際設計考慮,省略補償電容Cm2FIG. 1 is a schematic diagram of an amplifier circuit described according to an embodiment of the present invention. As an example and not limiting sense, the amplifier circuit 100 can be used in audio applications. As shown in FIG. 1, the amplifier circuit 100 is a multi-stage amplifier circuit, including a multi-stage amplifier (for example, a three-stage amplifier 102), a plurality of compensation circuits (for example, a first compensation circuit 104_1 and a second compensation circuit 104_2), and , Multiple compensation capacitors (for example, C m1 and C m2 ). Each of the compensation capacitors C m1 and C m2 is used for Miller compensation. Therefore, the compensation capacitors C m1 and C m2 are used to implement a nested Miller compensation (NMC) scheme. However, this is for illustrative purposes only and is not meant to limit the invention. In some embodiments of the present invention, the compensation capacitor C m2 may be optional. For example, regarding the proposed frequency compensation (unity gain bandwidth control) scheme, the compensation capacitor C m2 can be omitted according to actual design considerations.

三級放大器102具有三個放大器,包括第一級放大器114、第二級放大器116和第三級放大器118,這三個放大器級聯在三級放大器102的輸入端NIN和輸出端NOUT之間。例如,第一級放大器114用作三級放大器102的輸入級,而第三級放大器118用作三級放大器102的輸出級。另外,組合電路(combining circuit)112用於通過組合在輸入端NIN處接收到的源信號SIN和從輸出端NOUT處產生的輸出信號SOUT獲得的反饋信號來生成饋送到第一級放大器114的輸入端P11的輸入信號。第一級放大器114的跨導用Gm1表示,第二級放大器116的跨導用Gm2表示,第三級放大器118的跨導用Gm3表示。需要說明的是,為了通過補償電容Cm1和Cm2獲得負反饋迴路(negative feedback loops),本實施例中的第二級放大器116和第三級放大器118的增益分別為正的(positive)和負的(negative),本發明對第一級放大器114的增益符號不做限制,例如,第一級放大器114的增益可以是負的。此外,第一級放大器114的輸出電阻和輸出電容分別用Ro1和Co1表示;第二級放大器116的輸出電阻和輸出電容分別用Ro2和Co2表示;以及,第三級放大器118的輸出電阻和輸出電容分別用Ro3和Co3表示。放大器電路100驅動的負載可以等效為負載電容CL和負載電阻RL,但本發明實施例對此不作任何限制。 The three-stage amplifier 102 has three amplifiers, including a first-stage amplifier 114, a second-stage amplifier 116, and a third-stage amplifier 118, which are cascaded between the input terminal N IN and the output terminal N OUT of the third-stage amplifier 102 between. For example, the first-stage amplifier 114 serves as the input stage of the three-stage amplifier 102, and the third-stage amplifier 118 serves as the output stage of the three-stage amplifier 102. In addition, a combining circuit (combining circuit) 112 is used to generate and feed the first stage by combining the source signal S IN received at the input terminal N IN and the feedback signal obtained from the output signal S OUT generated at the output terminal N OUT P input of the amplifier 114 is an input signal 11. The transconductance of the first-stage amplifier 114 is denoted by G m1 , the transconductance of the second-stage amplifier 116 is denoted by G m2 , and the transconductance of the third-stage amplifier 118 is denoted by G m3 . It should be noted that, in order to obtain negative feedback loops (negative feedback loops) through the compensation capacitors C m1 and C m2, the gains of the second-stage amplifier 116 and the third-stage amplifier 118 in this embodiment are positive and positive, respectively. Negative, the present invention does not limit the gain sign of the first-stage amplifier 114. For example, the gain of the first-stage amplifier 114 may be negative. In addition, the output resistance and output capacitance of the first-stage amplifier 114 are denoted by R o1 and C o1 respectively; the output resistance and output capacitance of the second-stage amplifier 116 are denoted by R o2 and C o2 , respectively; The output resistance and output capacitance are denoted by R o3 and C o3 respectively. The load driven by the amplifier circuit 100 may be equivalent to the load capacitance C L and the load resistance R L , but the embodiment of the present invention does not make any limitation on this.

補償電容Cm1耦接在三級放大器102的輸出端NOUT(其也耦接於第三級放大器118的輸出端P32)和第一級放大器114的輸出端P12(其也耦接於第二級放大器116的輸入端P21)之間。可選的補償電容Cm2耦接在三級放大器102的輸出端NOUT(其也耦接於第三級放大器118的輸出端P32)和第二級放大器116的輸出端P22(其也耦接於第三級放大器118的輸入端P31)之間。 The compensation capacitor C m1 is coupled to the output terminal N OUT of the third-stage amplifier 102 (which is also coupled to the output terminal P 32 of the third-stage amplifier 118) and the output terminal P 12 of the first-stage amplifier 114 (which is also coupled to Between the input terminals P 21 ) of the second-stage amplifier 116. The optional compensation capacitor C m2 is coupled to the output N OUT of the third-stage amplifier 102 (which is also coupled to the output P 32 of the third-stage amplifier 118) and the output P 22 of the second-stage amplifier 116 (which is also It is coupled between the input terminals P 31 ) of the third-stage amplifier 118.

在此實施例中,第一補償電路104_1耦接於第一級放大器114的輸出 端P12,以及,第二補償電路104_2耦接於第二級放大器116的輸出端P22。舉例來說,第一補償電路104_1和/或第二補償電路104_2可以使用阻尼因子控制(damping-factor-control,DFC)電路來實現。因此,第一補償電路104_1可以等效為電容Cd1和串聯的電阻Rd1,和/或,第二補償電路104_2可以等效為電容Cd2和串聯的電阻Rd2。對於低頻信號,電容Cd2是開路的(open-circuited),從而將電阻Rd2與三級放大器102斷開。對於高頻信號,電容Cd2是短路的(short-circuited),從而將電阻Rd2連通到三級放大器102以降低第二級放大器的增益。在本發明實施例中,刻意將電阻Rd1的電阻值設置得很小,由於電阻Rd1的電阻值非常小,因此,第一補償電路104_1將電容Cd1的電容呈現給用於低頻信號或高頻信號的三級放大器102。在一些實施例中,電阻Rd2的電阻值大於電阻Rd1的電阻值。 In this embodiment, the first compensation circuit 104_1 is coupled to the output terminal P 12 of the first-stage amplifier 114, and the second compensation circuit 104_2 is coupled to the output terminal P 22 of the second-stage amplifier 116. For example, the first compensation circuit 104_1 and/or the second compensation circuit 104_2 may be implemented using a damping-factor-control (DFC) circuit. Therefore, the first compensation circuit 104_1 may be equivalent to the capacitor C d1 and the series resistance R d1 , and/or the second compensation circuit 104_2 may be equivalent to the capacitor C d2 and the series resistance R d2 . For low-frequency signals, the capacitor C d2 is open-circuited, thereby disconnecting the resistor R d2 from the tertiary amplifier 102. For high-frequency signals, the capacitor C d2 is short-circuited, thereby connecting the resistor R d2 to the third-stage amplifier 102 to reduce the gain of the second-stage amplifier. In the embodiment of the present invention, the resistance value of the resistor R d1 is deliberately set to be very small. Since the resistance value of the resistor R d1 is very small, the first compensation circuit 104_1 presents the capacitance of the capacitor C d1 to low-frequency signals or Three-stage amplifier 102 for high-frequency signals. In some embodiments, the resistance value of the resistance R d2 is larger than the resistance value of the resistor R d1.

所提出的放大器電路100的關鍵特徵是使用多個補償電路來實現頻率補償(例如,單位增益帶寬控制)。與傳統的阻尼因子控制頻率補償不同的是,第一補償電路104_1和第二補償電路104_2被設置為插入至少一個零點和至少一個極點,其中,在所插入的每個零點和極點處,放大器電路100的開環增益大於1(即,0dB)。也就是說,當源信號SIN的頻率等於被插入的零點或極點的頻率時,放大器電路100的開環增益大於0dB。 The key feature of the proposed amplifier circuit 100 is the use of multiple compensation circuits to achieve frequency compensation (eg, unity gain bandwidth control). Unlike the conventional damping factor control frequency compensation, the first compensation circuit 104_1 and the second compensation circuit 104_2 are set to insert at least one zero point and at least one pole point, wherein, at each inserted zero point and pole point, the amplifier circuit The open-loop gain of 100 is greater than 1 (ie, 0dB). That is, when the frequency of the source signal S IN is equal to the frequency of the inserted zero or pole, the open-loop gain of the amplifier circuit 100 is greater than 0 dB.

在下文中,電容的符號也可以表示電容的電容值,以及,電阻的符號也可以表示電阻的電阻值。例如,補償電容Cm2可以被認為具有電容值Cm2;以及,電阻Rd1可以被認為具有電阻值Rd1In the following, the symbol of the capacitor may also represent the capacitance value of the capacitor, and the symbol of the resistance may also represent the resistance value of the resistor. For example, the compensation capacitance C m2 may be regarded as having a capacitance value C m2 ; and, the resistance R d1 may be regarded as having a resistance value R d1 .

第2圖是根據本發明實施例描述的所提出的頻率補償(單位增益帶寬控制)方案的構思的示意圖。在第1圖所示的放大器電路100被修改為省略第一補償電路104_1和第二補償電路104_2的情形中,被修改後的放大器電路不具有所提出的頻率補償(單位增益帶寬控制),以及,該被修改後的放大器電路具有如第2圖所示的頻率響應曲線Fold,其中,每個極點用十字符號(cross symbol) 表示。在第1圖所示的放大器電路100的另一情形中,放大器電路100具有用於根據本發明提出的頻率補償(單位增益帶寬控制)插入一個零點Zd和一個極點Pd的第一補償電路104_1和第二補償電路104_2,以及,第1圖所示的放大器電路100具有如第2圖所示的頻率響應曲線Fnew,其中,每個極點由十字符號表示,以及,每個零點由圓形符號(circle symbol)表示。放大器電路的開環傳遞函數由H(s)表示。因此,放大器電路的開環增益可以表示為|H(s)|。 FIG. 2 is a schematic diagram of the concept of the proposed frequency compensation (unit gain bandwidth control) scheme according to an embodiment of the present invention. In the case where the amplifier circuit 100 shown in FIG. 1 is modified to omit the first compensation circuit 104_1 and the second compensation circuit 104_2, the modified amplifier circuit does not have the proposed frequency compensation (unity gain bandwidth control), and The modified amplifier circuit has a frequency response curve F old as shown in FIG. 2, where each pole is represented by a cross symbol. In another case of the amplifier circuit 100 shown in FIG. 1, the amplifier circuit 100 has a first compensation circuit for inserting a zero point Z d and a pole P d for frequency compensation (unity gain bandwidth control) according to the present invention 104_1 and the second compensation circuit 104_2, and the amplifier circuit 100 shown in FIG. 1 has a frequency response curve F new as shown in FIG. 2, where each pole is represented by a cross symbol, and each zero point is represented by a circle Circle symbol (circle symbol) said. The open-loop transfer function of the amplifier circuit is represented by H(s). Therefore, the open-loop gain of the amplifier circuit can be expressed as | H ( s )|.

關於放大器電路100被修改為省略第一補償電路104_1和第二補償電路104_2的情形,被修改後的三級放大器電路具有三個極點,包括一個低頻主極點P1和兩個高頻次極點P2和P3。單位增益帶寬/單位增益頻率是利用第一級放大器114的跨導Gm1除以補償電容Cm2的電容值確定的。因此,單位增益帶寬UGBold等於Gm1/Cm2。如上所述,為了抑制熱雜訊,可以採用具有大跨導的第一級放大器。但是,第一級放大器的跨導越大,單位增益頻率越高,且相關的單位增益帶寬越大。如第2圖中的頻率響應曲線Fold所示,兩個高頻次極點P2和P3的頻率均低於單位增益頻率。換句話說,在每個高頻次極點P2和P3處,被修改後的不具有所提出的頻率補償(單位增益帶寬控制)的三級放大器電路的開環增益均大於1(即,0dB)。因此,被修改後的不具有所提出的頻率補償(單位增益帶寬控制)的三級放大器電路變得不穩定。 Regarding the case where the amplifier circuit 100 is modified to omit the first compensation circuit 104_1 and the second compensation circuit 104_2, the modified three-stage amplifier circuit has three poles, including a low-frequency main pole P 1 and two high-frequency secondary poles P 2 and P 3 . The unity gain bandwidth/unity gain frequency is determined by dividing the transconductance Gm1 of the first-stage amplifier 114 by the capacitance value of the compensation capacitor Cm2 . Therefore, the unity gain bandwidth UGB old is equal to G m1 /C m2 . As mentioned above, in order to suppress thermal noise, a first-stage amplifier with a large transconductance can be used. However, the larger the transconductance of the first-stage amplifier, the higher the unity-gain frequency, and the larger the unity-gain bandwidth. As shown in the frequency response curve F old in FIG. 2, the frequencies of the two high-frequency secondary poles P 2 and P 3 are lower than the unity gain frequency. In other words, at each high-frequency secondary pole P 2 and P 3 , the modified open-loop gain of the three-stage amplifier circuit without the proposed frequency compensation (unity gain bandwidth control) is greater than 1 (ie, 0dB). Therefore, the modified three-stage amplifier circuit without the proposed frequency compensation (unity gain bandwidth control) becomes unstable.

根據所提出的頻率補償(單位增益帶寬控制)方案,第一補償電路104_1和第二補償電路104_2被添加以插入一個零點(例如,中頻零點)Zd和一個次極點(例如,中頻次極點)Pd。如第2圖所示,次極點Pd的頻率小於零點Zd的頻率。通過這種方式,單位增益帶寬被收縮因子k收縮(shrunk),其中,k=Zd/Pd,Zd表示被插入的零點的頻率,以及,Pd表示被插入的極點的頻率。具體而言,單位增益帶寬UGBnew等於Gm1/(k*Cm2)。如上所述,為了抑制熱雜訊,可以採用具有大跨導的第一級放大器,從而使得單位增益帶寬增加。然而,由於次極點Pd 和零點Zd的插入,在第一級放大器114的跨導Gm1較大以抑制熱雜訊的條件下的單位增益帶寬UGBnew可以被精確地控制。更具體地說,可以適當地控制被插入的零點Zd的頻率與被插入的次極點Pd的頻率的比率(即收縮因子k)來調整單位增益帶寬UGBnew,由此確保放大器電路100滿足穩定性標準。 According to the proposed frequency compensation (unity gain bandwidth control) scheme, the first compensation circuit 104_1 and the second compensation circuit 104_2 are added to insert a zero point (eg, intermediate frequency zero point) Z d and a secondary pole (eg, intermediate frequency secondary pole point) )P d . As shown in FIG. 2, the frequency of the secondary pole P d is less than the frequency of the zero point Z d . In this way, the unity gain bandwidth is shrunk by a shrinkage factor k, where k=Z d /P d , Z d represents the frequency of the zero point being inserted, and P d represents the frequency of the pole being inserted. Specifically, the unity gain bandwidth UGB new is equal to G m1 /(k*C m2 ). As mentioned above, in order to suppress thermal noise, a first-stage amplifier with a large transconductance can be used, thereby increasing the unity gain bandwidth. However, due to the insertion of the secondary pole P d and the zero point Z d , the unity gain bandwidth UGB new under the condition that the transconductance G m1 of the first-stage amplifier 114 is large to suppress thermal noise can be accurately controlled. More specifically, the ratio of the frequency of the inserted zero point Z d to the frequency of the inserted secondary pole P d (that is, the shrinkage factor k) can be appropriately adjusted to adjust the unity gain bandwidth UGB new , thereby ensuring that the amplifier circuit 100 meets Stability standards.

如第2圖中的頻率響應曲線Fnew所示,兩個高頻次極點P2’和P3’都在高於單位增益頻率的頻率處。換句話說,在每個高頻次極點P2’和P3’處,具有所提出的頻率補償(單位增益帶寬控制)的放大器電路100的開環增益小於1(即,0dB)。通過這種方式,具有所提出的頻率補償(單位增益帶寬控制)的放大器電路100由於第一補償電路104_1和第二補償電路104_2插入的零點Zd和次極點Pd而在閉環操作中是無條件(unconditionally)穩定的。 As shown in the frequency response curve F new in FIG. 2, the two high-frequency secondary poles P 2 ′ and P 3 ′ are at frequencies higher than the unity gain frequency. In other words, at each high-frequency secondary pole P 2 ′ and P 3 ′, the open-loop gain of the amplifier circuit 100 with the proposed frequency compensation (unity gain bandwidth control) is less than 1 (ie, 0 dB). In this way, the amplifier circuit 100 with the proposed frequency compensation (unity gain bandwidth control) is unconditional in closed-loop operation due to the zero point Z d and the secondary pole P d inserted by the first compensation circuit 104_1 and the second compensation circuit 104_2 (unconditionally) stable.

單位增益帶寬/單位增益頻率與連接在放大器電路100的輸出端NOUT和第一級放大器114的輸出端P12之間的補償電容Cm1的電容值負相關。另外,低頻主極點P1’也與連接在放大器電路100的輸出端NOUT和第一級放大器114的輸出端P12之間的補償電容Cm1的電容值負相關。由於單位增益帶寬可以被零點Zd和次極點Pd控制的收縮因子k充分收縮,因此,在不增大補償電容Cm1的電容值的情況下能夠確保放大器電路100的穩定性。換句話說,主極點P1’的頻率保持不變(與P1類似),從而避免因將主極點P1’轉移至較低的頻率而導致的帶內增益降低,即不會降低帶內增益。 The unity gain bandwidth/unity gain frequency is inversely related to the capacitance value of the compensation capacitor C m1 connected between the output terminal N OUT of the amplifier circuit 100 and the output terminal P 12 of the first-stage amplifier 114. In addition, the low-frequency main pole P 1 ′ is also negatively related to the capacitance value of the compensation capacitor C m1 connected between the output terminal N OUT of the amplifier circuit 100 and the output terminal P 12 of the first-stage amplifier 114. Since the unity gain bandwidth can be sufficiently contracted by the contraction factor k controlled by the zero point Z d and the secondary pole P d , the stability of the amplifier circuit 100 can be ensured without increasing the capacitance value of the compensation capacitor C m1 . In other words, the frequency of the main pole P 1 ′ remains the same (similar to P 1 ), thereby avoiding the reduction in in-band gain caused by shifting the main pole P 1 ′ to a lower frequency, that is, it does not reduce the in-band Gain.

簡而言之,具有所提出的頻率補償(單位增益帶寬控制)的放大器電路100(通過插入零點Zd和次極點Pd實現的)可以是無條件穩定的,且不降低帶內增益。 In short, the amplifier circuit 100 (implemented by inserting the zero point Z d and the secondary pole P d ) with the proposed frequency compensation (unity gain bandwidth control) can be unconditionally stable without reducing the in-band gain.

請結合第3圖參照第1圖。第3圖是根據本發明實施例描述的第1圖所示的放大器電路100的詳細的頻率響應曲線的示意圖。前面提及的主極點P1’在第3圖中用P1,LHP表示,前面提及的次極點Pd在第3圖中用P2,LHP表示,以及,前面提 及的零點Zd在第3圖中用Z1,LHP表示。從第3圖中可以看出,被插入的零點Z1,LHP主要由第二補償電路104_2(例如,電容Cd2的電容值和電阻Rd2的電阻值)控制,以及,被插入的次極點P2,LHP是至少由第一補償電路104_1和第二補償電路104_2(例如,電容Cd1的電容值、電容Cd2的電容值和電阻Rd2的電阻值)控制。收縮因子k(k=Zd/Pd)可用以下等式來表達。 Please refer to Figure 1 in conjunction with Figure 3. FIG. 3 is a schematic diagram of a detailed frequency response curve of the amplifier circuit 100 shown in FIG. 1 according to an embodiment of the present invention. The aforementioned primary pole P 1 ′ is represented by P 1, LHP in the third diagram, the aforementioned secondary pole P d is represented by P 2, LHP in the third diagram, and the aforementioned zero point Z d In Fig. 3 , it is represented by Z 1, LHP . It can be seen from FIG. 3 that the inserted zero point Z 1, LHP is mainly controlled by the second compensation circuit 104_2 (for example, the capacitance value of the capacitor C d2 and the resistance value of the resistor R d2 ), and the inserted secondary pole P2 , LHP is controlled by at least the first compensation circuit 104_1 and the second compensation circuit 104_2 (for example, the capacitance value of the capacitor C d1 , the capacitance value of the capacitor C d2 , and the resistance value of the resistor R d2 ). The contraction factor k (k=Z d /P d ) can be expressed by the following equation.

Figure 108113965-A0305-02-0011-22
,其中,Gm3
Figure 108113965-A0305-02-0011-23
1/RL,Rd2=Gd2
Figure 108113965-A0305-02-0011-22
, Where G m3
Figure 108113965-A0305-02-0011-23
1/R L , R d2 =G d2

因此,收縮因子k取決於電容Cd1的電容值、補償電容Cm1的電容值、電阻Rd2的電阻值以及第二級放大器116的跨導Gm2。收縮因子k可以被設置成大於1的值(即k>1)以增加穩定性,並且可由電容Cd1的電容值、補償電容Cm1的電容值、電阻Rd2的電阻值以及第二級放大器116的跨導Gm2精確地控制。在此實施例中,收縮因子k應當被控制以提供足夠的帶內相位裕度(phase margin,PM),使得放大器電路100在閉環操作中無條件地穩定。例如,收縮因子k可以被設置為小於10的值(即,k<10),以使得帶內PM大於35度。然而,這僅僅是為了說明的目的,並不意味著限制本發明。 Therefore, the shrinkage factor k depends on the capacitance value of the capacitor C d1 , the capacitance value of the compensation capacitor C m1 , the resistance value of the resistor R d2 , and the transconductance G m2 of the second-stage amplifier 116. The shrinkage factor k can be set to a value greater than 1 (ie, k>1) to increase stability, and can be determined by the capacitance value of the capacitor C d1 , the compensation capacitance C m1 , the resistance R d2 , and the second-stage amplifier The transconductance G m2 of 116 is precisely controlled. In this embodiment, the contraction factor k should be controlled to provide sufficient in-band phase margin (PM) so that the amplifier circuit 100 is unconditionally stable in closed-loop operation. For example, the contraction factor k may be set to a value less than 10 (ie, k<10) so that the in-band PM is greater than 35 degrees. However, this is for illustrative purposes only and is not meant to limit the invention.

如第3圖所示,其中一個高頻次極點P3,LHP取決於補償電容Cm2的電容值和電阻Rd2的電阻值,而另一個零點(例如,高頻零點)Z2,LHP取決於電容Cd1的電容值和電阻Rd1的電阻值。通過適當地設置補償電容Cm2的電容值、電阻Rd2的電阻值、電容Cd1的電容值和電阻Rd1的電阻值,可以控制高頻次極點P3,LHP和高 頻零點Z2,LHP處於相同的頻率,也就是說,高頻次極點P3,LHP被高頻零點Z2,LHP消除(cancelled)。 As shown in Figure 3, one of the high frequency secondary poles P 3,LHP depends on the capacitance value of the compensation capacitor C m2 and the resistance value of the resistor R d2 , and the other zero point (for example, high frequency zero point) Z 2,LHP depends on The capacitance value of the capacitor C d1 and the resistance value of the resistor R d1 . By appropriately setting the capacitance value of the compensation capacitor C m2, the resistance value of the resistor R d2, the capacitance and resistance values of the resistance R d1 capacitor C d1 can be controlled high frequency pole P 3, LHP zero frequency, and Z 2, The LHPs are at the same frequency, that is, the high frequency sub-pole P 3, LHP is cancelled by the high frequency zero point Z 2, LHP .

第4圖是根據本發明實施例描述的第一補償電路設計的示意圖。補償電路400包括具有跨導Gmd1的輔助放大器(auxiliary amplifier)402、電容CB1和電阻RB1。在本實施例中,輔助放大器402的增益是負的。輔助放大器402的輸入端P41耦接於補償電路400的輸入VIN。電容CB1耦接在輔助放大器402的輸入端P41和輸出端P42之間。電阻RB1耦接在輔助放大器402的輸出端P42和偏置電壓VB1(例如,地電壓)之間。由於補償電路400的輸入VIN耦接於輔助放大器402的輸入端P41(例如,輔助放大器402中的輸入電晶體的閘極),所以補償電路400具有高輸入阻抗的特性。關於第1圖所示的放大器電路100,低雜訊的第一級放大器114的輸出(即,第二級放大器116的輸入)上需要高阻抗。因此,第一補償電路104_1可以使用第4圖所示的補償電路400來實現,其中,補償電路400的輸入VIN耦接於第一級放大器114的輸出端P12FIG. 4 is a schematic diagram of a first compensation circuit design according to an embodiment of the present invention. The compensation circuit 400 includes an auxiliary amplifier 402 having a transconductance Gmd1 , a capacitor C B1 and a resistor R B1 . In this embodiment, the gain of the auxiliary amplifier 402 is negative. The input terminal P 41 of the auxiliary amplifier 402 is coupled to the input V IN of the compensation circuit 400. The capacitor C B1 is coupled between the input terminal P 41 and the output terminal P 42 of the auxiliary amplifier 402. The resistor R B1 is coupled between the output terminal P 42 of the auxiliary amplifier 402 and the bias voltage V B1 (eg, ground voltage). Since the input V IN of the compensation circuit 400 is coupled to the input terminal P 41 of the auxiliary amplifier 402 (for example, the gate of the input transistor in the auxiliary amplifier 402 ), the compensation circuit 400 has a characteristic of high input impedance. Regarding the amplifier circuit 100 shown in FIG. 1, the output of the low-noise first-stage amplifier 114 (that is, the input of the second-stage amplifier 116) requires high impedance. Therefore, the first compensation circuit 104_1 may be implemented using the compensation circuit 400 shown in FIG. 4, wherein the input V IN of the compensation circuit 400 is coupled to the output terminal P 12 of the first-stage amplifier 114.

補償電路400使用電容倍增(capacitance multiplication)技術。因此,補償電路400可以被認為具有等於Gmd1*CB1*RB1的電容值。另外,補償電路400可以被認為具有等於

Figure 108113965-A0305-02-0012-2
的電阻值。當使用第4圖所示的補償電路400來實現第一補償電路104_1時,Cd1=Gmd1*CB1*RB1以及
Figure 108113965-A0305-02-0012-3
。輔助放大器402的跨導Gmd1可以設定為較大值以使電容Cd1具有大的電容值。然而,當補償電路400的輸入VIN處的小擺幅帶內信號被具有大跨導Gmd1的輔助放大器402放大時,可能導致放大器飽和(saturation)。結果是,當補償電路400的輸入VIN處的帶內信號擺幅超過具有大跨導Gmd1的輔助放大器402的小信號範圍時,補償電路400將無法執行第一補償電路104_1所需的電容倍增功能。為了增加具有大跨導Gmd1的輔助放大器402的補償電路400的帶內信號範圍,本發明提出了另一種補償電路設計,其中, 高通濾波器(high-pass filter,HPF)被添加到第4圖所示的補償電路400中。應當說明的是,本發明實施例中的電阻(例如,RB1、RF1等)並不局限於傳統意義上的多晶矽電阻(poly resistor),而可以是由主動元件和/或被動元件實現的能夠用於提供等效阻抗值或等效電阻的任意元件,例如,用於實現電阻功能的二極管接法電晶體(diode-connected transistor)、電流源(current source)、阱電阻(nell resistor)、主動電阻(active resistor)、被動電阻(passive resistor)等等。 The compensation circuit 400 uses capacitance multiplication technology. Therefore, the compensation circuit 400 can be considered to have a capacitance value equal to G md1 *C B1 *R B1 . In addition, the compensation circuit 400 may be considered to have
Figure 108113965-A0305-02-0012-2
Resistance value. When the compensation circuit 400 shown in FIG. 4 is used to implement the first compensation circuit 104_1, C d1 =G md1 *C B1 *R B1 and
Figure 108113965-A0305-02-0012-3
. The transconductance G md1 of the auxiliary amplifier 402 can be set to a large value so that the capacitance C d1 has a large capacitance value. However, when the small swing in-band signal at the input V IN of the compensation circuit 400 is amplified by the auxiliary amplifier 402 having a large transconductance G md1 , it may cause amplifier saturation. As a result, when the in-band signal swing at the input V IN of the compensation circuit 400 exceeds the small signal range of the auxiliary amplifier 402 with a large transconductance G md1 , the compensation circuit 400 will not be able to perform the capacitance required by the first compensation circuit 104_1 Multiplier function. In order to increase the in-band signal range of the compensation circuit 400 of the auxiliary amplifier 402 with a large transconductance Gmd1 , the present invention proposes another compensation circuit design in which a high-pass filter (HPF) is added to the fourth In the compensation circuit 400 shown in the figure. It should be noted that the resistors (for example, R B1 , R F1, etc.) in the embodiments of the present invention are not limited to poly resistors in the traditional sense, but can be implemented by active components and/or passive components Any element that can be used to provide an equivalent impedance value or equivalent resistance, for example, a diode-connected transistor for implementing a resistance function, a current source (current source), a well resistor (nell resistor), Active resistor (active resistor), passive resistor (passive resistor), etc.

第5圖是根據本發明實施例描述的另一補償電路設計的示意圖。補償電路400和500之間的主要區別在於補償電路500具有包括在其中的高通濾波器(HPF)502,其中,高通濾波器(HPF)502的輸入端P51耦接於補償電路500的輸入VIN,以及,高通濾波器(HPF)502的輸出端P52耦接於輔助放大器402的輸入端P41。具有較大擺幅的帶內信號被高通濾波器(HPF)502衰減到落入具有大跨導Gmd1的輔助放大器402的小信號範圍內。因此,當補償電路400的輸入VIN處的大擺幅帶內信號被具有大跨導Gmd1的輔助放大器402放大時,不會導致放大器飽和。由於高通濾波器(HPF)502的使用,補償電路500的帶內信號範圍可以是大/寬的。另外,補償電路500具有高輸入阻抗,這是因為補償電路500的輸入VIN通過高通濾波器(HPF)502耦接於輔助放大器402的輸入端P41。關於第1圖所示的放大器電路100,低雜訊的第一級放大器114的輸出(即,第二級放大器116的輸入)上需要高阻抗。因此,第一補償電路104_1可以使用第5圖所示的補償電路500來實現,其中,補償電路500的輸入VIN耦接於第一級放大器114的輸出端P12FIG. 5 is a schematic diagram of another compensation circuit design according to an embodiment of the present invention. The main difference between the compensation circuits 400 and 500 is that the compensation circuit 500 has a high-pass filter (HPF) 502 included therein, wherein the input terminal P 51 of the high-pass filter (HPF) 502 is coupled to the input V of the compensation circuit 500 IN , and the output terminal P 52 of the high-pass filter (HPF) 502 is coupled to the input terminal P 41 of the auxiliary amplifier 402. The in-band signal with a larger swing is attenuated by a high-pass filter (HPF) 502 to fall within the small signal range of the auxiliary amplifier 402 with a large transconductance Gmd1 . Therefore, when the large swing in-band signal at the input V IN of the compensation circuit 400 is amplified by the auxiliary amplifier 402 having a large transconductance G md1 , it will not cause the amplifier to saturate. Due to the use of a high-pass filter (HPF) 502, the in-band signal range of the compensation circuit 500 may be large/wide. In addition, the compensation circuit 500 has a high input impedance because the input V IN of the compensation circuit 500 is coupled to the input terminal P 41 of the auxiliary amplifier 402 through a high-pass filter (HPF) 502. Regarding the amplifier circuit 100 shown in FIG. 1, the output of the low-noise first-stage amplifier 114 (that is, the input of the second-stage amplifier 116) requires high impedance. Therefore, the first compensation circuit 104_1 can be implemented using the compensation circuit 500 shown in FIG. 5, wherein the input V IN of the compensation circuit 500 is coupled to the output terminal P 12 of the first-stage amplifier 114.

應該注意的是,為了實現期望的阻尼操作,補償電路500需要使高通濾波器(HPF)502位於由輔助放大器402和電容CB1形成的迴路(loop)中。請結合第7圖參考第6圖。第6圖描述了具有位於由輔助放大器和電容形成的迴路之外部的高通濾波器(HPF)的補償電路的示意圖。第7圖描述了具有位於由輔助 放大器和電容形成的迴路中的高通濾波器(HPF)的補償電路的示意圖。如第6圖所示,補償電路600具有高通濾波器(HPF)502,其中,高通濾波器(HPF)502位於由輔助放大器402和電容CB1形成的迴路的外部。看向輔助放大器402的電容值Cd1A為Gmd1*RB1*CB1,以及,看向輔助放大器402的電阻值Rd1A

Figure 108113965-A0305-02-0014-5
。高通濾波器(HPF)502可使用電阻RF1和電容CF1來實現,電阻RF1的一端耦接於偏置電壓VB3,另一端通過電容CF1耦接於補償電路600的輸入VIN。由於高通濾波器(HPF)502位於由輔助放大器402和電容CB1形成的迴路的外部,因此,看向高通濾波器(HPF)502的電容值Cd1為Cd1A∥CF1(即
Figure 108113965-A0305-02-0014-6
),而看向高通濾波器 (HPF)502的電阻值Rd1為Rd1A∥RF1(即
Figure 108113965-A0305-02-0014-8
)。然而,原本預期會看到Cd1A,但由於Cd1A//CF1後的電容由CF1(CF1<<Cd1A)主導,因此由於負載效應,電容倍增會操作失敗。 It should be noted that in order to achieve the desired damping operation, the compensation circuit 500 needs to place the high-pass filter (HPF) 502 in a loop formed by the auxiliary amplifier 402 and the capacitor C B1 . Please refer to Figure 6 in conjunction with Figure 7. Figure 6 depicts a schematic diagram of a compensation circuit with a high-pass filter (HPF) located outside the loop formed by the auxiliary amplifier and the capacitor. Figure 7 depicts a schematic diagram of a compensation circuit with a high-pass filter (HPF) located in a loop formed by an auxiliary amplifier and a capacitor. As shown in FIG. 6, the compensation circuit 600 has a high-pass filter (HPF) 502 which is located outside the loop formed by the auxiliary amplifier 402 and the capacitor C B1 . The capacitance value C d1A of the auxiliary amplifier 402 is G md1 *R B1 *C B1 , and the resistance value R d1A of the auxiliary amplifier 402 is
Figure 108113965-A0305-02-0014-5
. The high-pass filter (HPF) 502 can be implemented using a resistor R F1 and a capacitor C F1 . One end of the resistor R F1 is coupled to the bias voltage V B3 , and the other end is coupled to the input V IN of the compensation circuit 600 through the capacitor C F1 . Since the high-pass filter (HPF) 502 is located outside the loop formed by the auxiliary amplifier 402 and the capacitor C B1 , the capacitance value C d1 of the high-pass filter (HPF) 502 is C d1A ∥C F1 (ie
Figure 108113965-A0305-02-0014-6
), and the resistance value of the high-pass filter (HPF) 502 R d1 is R d1A ∥R F1 (ie
Figure 108113965-A0305-02-0014-8
). However, it was originally expected to see Cd1A, but since the capacitance after Cd1A//CF1 is dominated by CF1 (CF1<<Cd1A), the capacitance multiplication will fail due to load effects.

如第7圖所示,補償電路500具有位於由輔助放大器402和電容CB1形成的迴路中的高通濾波器(HPF)502。如上所述,高通濾波器(HPF)502可以使用電阻RF1和電容CF1來實現。由於高通濾波器(HPF)502位於由輔助放大器402和電容CB1形成的迴路中,因此,看向高通濾波器(HPF)502的電容值Cd1為Gmd1(HPF)*RB1*CB1,並且看向高通濾波器(HPF)502的電阻值Rd1

Figure 108113965-A0305-02-0014-9
。 對於低頻信號,等效電容Gmd1(HPF)*RB1*CB1和等效電阻
Figure 108113965-A0305-02-0014-10
都是開路的。對於高頻信號,補償電路500呈現被放大的電容Gmd1(HPF)*RB1*CB1來控制單位增益帶寬。沒有負載效應影響電容倍增操作。 As shown in FIG. 7, the compensation circuit 500 has a high-pass filter (HPF) 502 located in a loop formed by the auxiliary amplifier 402 and the capacitor C B1 . As described above, the high-pass filter (HPF) 502 can be implemented using the resistor R F1 and the capacitor C F1 . Since the high-pass filter (HPF) 502 is located in the loop formed by the auxiliary amplifier 402 and the capacitor C B1 , the capacitance value C d1 of the high-pass filter (HPF) 502 is G md1 (HPF)*R B1 *C B1 , And looking at the resistance value R d1 of the high-pass filter (HPF) 502 as
Figure 108113965-A0305-02-0014-9
. For low-frequency signals, the equivalent capacitance G md1 (HPF)*R B1 *C B1 and equivalent resistance
Figure 108113965-A0305-02-0014-10
It's all open. For high-frequency signals, the compensation circuit 500 presents the amplified capacitance G md1 (HPF)*R B1 *C B1 to control the unity gain bandwidth. There is no load effect that affects the capacitance multiplication operation.

第8圖是根據本發明實施例描述的第5圖或第7圖所示的補償電路500的電路圖。如第8圖所示,電容CB1的一端和電容CF1的一端都耦接於輸入VIN,電容CF1的另一端耦接於輔助放大器402的輸入電晶體的閘極,以及,電容CB1的另一端耦接於輔助放大器402的輸出電晶體的漏極。因此,高通濾波器(HPF)502 位於由電容CB1和輔助放大器402形成的迴路中,從而避免了負載效應。應該注意的是,第8圖所示的輔助放大器402的電路設計僅用於說明目的,並不意味著限制本發明。也就是說,在本發明的一些實施例中,輔助放大器402可以使用不同於第8圖所示的電路設計來實現。 FIG. 8 is a circuit diagram of the compensation circuit 500 shown in FIG. 5 or FIG. 7 according to an embodiment of the present invention. As shown in FIG. 8, one end of the capacitor C B1 and one end of the capacitor C F1 are coupled to the input V IN , and the other end of the capacitor C F1 is coupled to the gate of the input transistor of the auxiliary amplifier 402 and the capacitor C The other end of B1 is coupled to the drain of the output transistor of the auxiliary amplifier 402. Therefore, the high-pass filter (HPF) 502 is located in the loop formed by the capacitor C B1 and the auxiliary amplifier 402, thereby avoiding the load effect. It should be noted that the circuit design of the auxiliary amplifier 402 shown in FIG. 8 is for illustrative purposes only, and is not meant to limit the present invention. That is, in some embodiments of the present invention, the auxiliary amplifier 402 may be implemented using a circuit design different from that shown in FIG. 8.

第9圖是根據本發明實施例描述的又一補償電路設計的示意圖。補償電路900包括具有跨導Gmd2的輔助放大器902、電容CB2和電阻RB2。在本實施例中,輔助放大器902的增益是負的。輔助放大器902的輸出端P92耦接於補償電路900的輸入VIN。電容CB2耦接在輔助放大器902的輸入端P91和輸出端P92之間。電阻RB2耦接在輔助放大器902的輸入端P91和偏置電壓VB2(例如,地電壓)之間。補償電路900可以適用於補償電路900的輸入VIN處的大擺幅信號。關於第1圖所示的放大器電路100,第二級放大器116(其也是第三級放大器118的輸入)的輸出可具有用於AB類操作的大擺幅。因此,第二補償電路104_2可以使用第9圖所示的補償電路900來實現,其中,補償電路900的輸入VIN耦接於第二級放大器116的輸出端P22。然而,這僅用於說明目的,並不意味著限制本發明。在本發明的一些實施例中,第二補償電路104_2可以使用補償電路400/500來實現,使得第二級放大器116的輸出(其也是第三級放大器118的輸入)可以受益於補償電路400/500提供的高阻抗。這些替代設計均落入本發明的範圍內。 FIG. 9 is a schematic diagram of yet another compensation circuit design according to an embodiment of the present invention. The compensation circuit 900 includes a transconductance G md2 auxiliary amplifier 902, a capacitor C B2 and resistor R B2. In this embodiment, the gain of the auxiliary amplifier 902 is negative. The output terminal P 92 of the auxiliary amplifier 902 is coupled to the input V IN of the compensation circuit 900. The capacitor C B2 is coupled between the input terminal P 91 and the output terminal P 92 of the auxiliary amplifier 902. The resistor R B2 is coupled between the input terminal P 91 of the auxiliary amplifier 902 and the bias voltage V B2 (eg, ground voltage). The compensation circuit 900 can be applied to a large swing signal at the input V IN of the compensation circuit 900. Regarding the amplifier circuit 100 shown in FIG. 1, the output of the second-stage amplifier 116 (which is also the input of the third-stage amplifier 118) may have a large swing for class AB operation. Therefore, the second compensation circuit 104_2 may be implemented using the compensation circuit 900 shown in FIG. 9, where the input V IN of the compensation circuit 900 is coupled to the output terminal P 22 of the second-stage amplifier 116. However, this is for illustrative purposes only and is not meant to limit the invention. In some embodiments of the present invention, the second compensation circuit 104_2 may be implemented using the compensation circuit 400/500 so that the output of the second stage amplifier 116 (which is also the input of the third stage amplifier 118) may benefit from the compensation circuit 400/ 500 provides high impedance. These alternative designs all fall within the scope of the present invention.

放大器電路100中使用的多級放大器是三級放大器。然而,相同的頻率響應(單位增益帶寬控制)方案可以擴展並應用於具有多於三個放大器級的多級放大器。第10圖是根據本發明實施例描述的另一放大器電路的示意圖。作為示例而非限制,放大器電路1000可用於音頻應用中。如第10圖所示,放大器電路1000是多級放大器電路,包括由放大器AMP1-AMPN、(N-1)個補償電路CMP1-CMPN-1和(N-1)個補償電容Cm1-Cm(N-1)組成的N級放大器,其中,N是大於3的正整數(即,N>3)。補償電容Cm1-Cm(N-1)的每一個用於米勒補償。然而, 關於所提出的頻率補償(單位增益帶寬控制)方案,補償電容Cm2-Cm(N-1)是可選的。換句話說,在本發明的一些實施例中,根據實際設計考慮可以省略補償電容Cm2-Cm(N-1)。補償電路CMP1可以使用補償電路400/500來實現。根據實際的設計考慮,補償電路CMP2-CMPN-1的每一個可以使用補償電路400、500和900中的其中一個來實現。根據所提出的頻率響應(單位增益帶寬控制)方案,至少一個零點和至少一個極點被補償電路CMP1-CMPN-1插入。通過這種方式,本發明所提出的放大器電路能夠具有增強的穩定性而沒有降低帶內增益。 The multi-stage amplifier used in the amplifier circuit 100 is a three-stage amplifier. However, the same frequency response (unity gain bandwidth control) scheme can be extended and applied to multi-stage amplifiers with more than three amplifier stages. FIG. 10 is a schematic diagram of another amplifier circuit described according to an embodiment of the present invention. By way of example, and not limitation, amplifier circuit 1000 can be used in audio applications. As shown in FIG. 10, the amplifier circuit 1000 is a multi-stage amplifier circuit, including an amplifier AMP 1 -AMP N , (N-1) compensation circuits CMP 1 -CMP N-1 and (N-1) compensation capacitors C An N-level amplifier composed of m1- C m(N-1) , where N is a positive integer greater than 3 (ie, N>3). Each of the compensation capacitors C m1 -C m(N-1) is used for Miller compensation. However, regarding the proposed frequency compensation (unity gain bandwidth control) scheme, the compensation capacitors C m2 -C m(N-1) are optional. In other words, in some embodiments of the present invention, the compensation capacitances C m2 -C m(N-1) may be omitted according to actual design considerations. The compensation circuit CMP 1 can be implemented using the compensation circuit 400/500. According to actual design considerations, each of the compensation circuits CMP 2 -CMP N-1 may be implemented using one of the compensation circuits 400, 500, and 900. According to the proposed frequency response (unity gain bandwidth control) scheme, at least one zero point and at least one pole point are inserted by the compensation circuits CMP 1 -CMP N-1 . In this way, the amplifier circuit proposed by the present invention can have enhanced stability without reducing in-band gain.

雖然已經對本發明實施例及其優點進行了詳細說明,但應當理解的係,在不脫離本發明的精神以及申請專利範圍所定義的範圍內,可以對本發明進行各種改變、替換和變更,例如,可以通過結合不同實施例的若干部分來得出新的實施例。所描述的實施例在所有方面僅用於說明的目的而並非用於限制本發明。本發明的保護範圍當視所附的申請專利範圍所界定者為準。所屬技術領域中具有通常知識者皆在不脫離本發明之精神以及範圍內做些許更動與潤飾。 Although the embodiments and advantages of the present invention have been described in detail, it should be understood that various changes, substitutions, and alterations can be made to the present invention without departing from the spirit of the present invention and the scope defined by the scope of the patent application, for example, New embodiments can be derived by combining parts of different embodiments. The described embodiments are used in all respects for illustrative purposes only and not to limit the invention. The scope of protection of the present invention shall be subject to the scope defined by the attached patent application. Those with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the present invention.

100:放大器電路 100: amplifier circuit

102:三級放大器 102: Three-stage amplifier

112:組合電路 112: Combination circuit

114:第一級放大器 114: first-stage amplifier

116:第二級放大器 116: Second-stage amplifier

118:第三級放大器 118: third stage amplifier

SIN:源信號 S IN : source signal

NIN、P11、P21、P31:輸入端 N IN , P 11 , P 21 , P 31 : input terminal

NOUT、P12、P22、P32:輸出端 N OUT , P 12 , P 22 , P 32 : output

Co1、Co2、Co3:輸出電容 Co1 , Co2 , Co3 : output capacitance

Ro1、Ro2、Ro3:輸出電阻 R o1 , R o2 , R o3 : output resistance

Cd1、Cd2:電容 C d1 , C d2 : capacitance

Rd1、Rd2:電阻 R d1 , R d2 : resistance

104_1:第一補償電路 104_1: the first compensation circuit

104_2:第二補償電路 104_2: Second compensation circuit

CL:負載電容 C L : load capacitance

RL:負載電阻 R L : load resistance

SOUT:輸出信號 S OUT : output signal

Cm1、Cm2:補償電容 C m1 , C m2 : compensation capacitor

Claims (7)

一種放大器電路,所述放大器電路包括多級放大器,該多級放大器包括級聯在該多級放大器的輸入端和輸出端之間的多個放大器;該放大器電路還包括:補償電路,該補償電路包括:高通濾波器,具有輸入端和輸出端;該高通濾波器的輸入端耦接於所述多級放大器中的其中一個放大器的輸出端:輔助放大器,其輸入端耦接於該高通濾波器的輸出端;電容,耦接在該高通濾波器的輸入端和該輔助放大器的輸出端之間;以及電阻,耦接在該輔助放大器的輸出端和偏置電壓之間。 An amplifier circuit includes a multi-stage amplifier including a plurality of amplifiers cascaded between an input end and an output end of the multi-stage amplifier; the amplifier circuit further includes: a compensation circuit, the compensation circuit It includes: a high-pass filter with an input end and an output end; the input end of the high-pass filter is coupled to the output end of one of the multi-stage amplifiers: an auxiliary amplifier, the input end of which is coupled to the high-pass filter The output of the capacitor; the capacitor, coupled between the input of the high-pass filter and the output of the auxiliary amplifier; and the resistor, coupled between the output of the auxiliary amplifier and the bias voltage. 根據申請專利範圍第1項所述之放大器電路,還包括:補償電容,耦接在該多級放大器的輸出端和該多級放大器中第一級放大器的輸出端之間。 The amplifier circuit according to item 1 of the patent application scope further includes: a compensation capacitor coupled between the output terminal of the multi-stage amplifier and the output terminal of the first-stage amplifier in the multi-stage amplifier. 根據申請專利範圍第1項所述之放大器電路,其中,該補償電路是阻尼因子控制電路。 The amplifier circuit according to item 1 of the patent application scope, wherein the compensation circuit is a damping factor control circuit. 根據申請專利範圍第1項所述之放大器電路,其中,該其中一個放大器為該多級放大器中的第二級放大器。 The amplifier circuit according to item 1 of the patent application scope, wherein one of the amplifiers is the second-stage amplifier in the multi-stage amplifier. 根據申請專利範圍第1項所述之放大器電路,其中,該其中一個放大器為該多級放大器中的第一級放大器。 The amplifier circuit according to item 1 of the patent application scope, wherein one of the amplifiers is the first-stage amplifier in the multi-stage amplifier. 根據申請專利範圍第1項所述之放大器電路,其中,所述偏置電壓為地電壓。 The amplifier circuit according to item 1 of the patent application range, wherein the bias voltage is a ground voltage. 根據申請專利範圍第1項所述之放大器電路,其中,該多個放大器至少包括第一級放大器、第二級放大器和第三級放大器。 The amplifier circuit according to item 1 of the patent application scope, wherein the plurality of amplifiers include at least a first-stage amplifier, a second-stage amplifier, and a third-stage amplifier.
TW108113965A 2018-03-05 2018-07-04 Amplifier circuit and associated compensation circuit TWI690154B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/912,448 2018-03-05
US15/912,448 US10469037B2 (en) 2017-04-19 2018-03-05 Multi-stage amplifier circuit with zero and pole inserted by compensation circuits

Publications (2)

Publication Number Publication Date
TW201939886A TW201939886A (en) 2019-10-01
TWI690154B true TWI690154B (en) 2020-04-01

Family

ID=67862249

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108113965A TWI690154B (en) 2018-03-05 2018-07-04 Amplifier circuit and associated compensation circuit
TW107123092A TWI664812B (en) 2018-03-05 2018-07-04 Amplifier circuit and associated compensation circuit

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW107123092A TWI664812B (en) 2018-03-05 2018-07-04 Amplifier circuit and associated compensation circuit

Country Status (2)

Country Link
CN (1) CN110233600B (en)
TW (2) TWI690154B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111130467B (en) * 2020-01-09 2024-03-01 苏州大学 Self-oscillation suppression device and method for power amplification circuit
US20220311131A1 (en) * 2021-03-29 2022-09-29 M2SL Corporation Communication system with portable interface mechanism and method of operation thereof
TWI801922B (en) * 2021-05-25 2023-05-11 香港商科奇芯有限公司 Voltage regulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1784857A (en) * 1925-08-25 1930-12-16 Rca Corp Electron-tube circuits
US6150884A (en) * 1998-05-13 2000-11-21 Texas Instruments Incorporated Multistage amplifier circuit with improved nested transconductance capacitance compensation
EP3021482A1 (en) * 2014-11-17 2016-05-18 MediaTek, Inc Operational amplifier based circuit with compensation circuit block used for stability compensation
US9680420B2 (en) * 2015-09-29 2017-06-13 Silicon Laboratories Inc. Apparatus for compensation of electronic circuitry and associated methods
US20170222610A1 (en) * 2014-07-02 2017-08-03 Texas Instruments Incorporated Multistage amplifier circuit with improved settling time

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208206B1 (en) * 1999-02-11 2001-03-27 The Hong Kong University Of Science And Technology Frequency compensation techniques for low-power multistage amplifiers
DE10031522B9 (en) * 2000-06-28 2007-07-12 Infineon Technologies Ag Frequency-compensated amplifier arrangement and method for operating a frequency-compensated amplifier arrangement
US7495422B2 (en) * 2005-07-22 2009-02-24 Hong Kong University Of Science And Technology Area-efficient capacitor-free low-dropout regulator
KR101278951B1 (en) * 2006-05-24 2013-06-26 페어차일드코리아반도체 주식회사 Mixed type frequency compensating circuit, control circuit, dc-dc converter and method of controlling the same
JP4936128B2 (en) * 2007-06-07 2012-05-23 横河電機株式会社 Loss compensation circuit
US20110234312A1 (en) * 2010-03-24 2011-09-29 Texas Instruments Incorporated Amplifier with improved stability
CN101917169B (en) * 2010-08-05 2013-02-27 复旦大学 High-bandwidth low-power consumption frequency-compensation three-stage operational amplifier
EP2759899A1 (en) * 2013-01-25 2014-07-30 Dialog Semiconductor GmbH Clean startup and power saving in pulsed enabling of LDO
US8963639B2 (en) * 2013-02-19 2015-02-24 University Of Macau Frequency compensation techniques for low-power and small-area multistage amplifiers
CN105099171B (en) * 2014-05-16 2018-10-26 深圳市中兴微电子技术有限公司 A kind of compensation network, switching power circuit and circuit compensation method
US9768740B2 (en) * 2015-02-02 2017-09-19 Skyworks Solutions, Inc. Feedback compensation for multistage amplifiers
CN104734646B (en) * 2015-04-13 2018-11-23 无锡新硅微电子有限公司 Single miller capacitance frequency compensation method applied to multistage amplifier circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1784857A (en) * 1925-08-25 1930-12-16 Rca Corp Electron-tube circuits
US6150884A (en) * 1998-05-13 2000-11-21 Texas Instruments Incorporated Multistage amplifier circuit with improved nested transconductance capacitance compensation
US20170222610A1 (en) * 2014-07-02 2017-08-03 Texas Instruments Incorporated Multistage amplifier circuit with improved settling time
EP3021482A1 (en) * 2014-11-17 2016-05-18 MediaTek, Inc Operational amplifier based circuit with compensation circuit block used for stability compensation
US9680420B2 (en) * 2015-09-29 2017-06-13 Silicon Laboratories Inc. Apparatus for compensation of electronic circuitry and associated methods

Also Published As

Publication number Publication date
TWI664812B (en) 2019-07-01
TW201939886A (en) 2019-10-01
TW201939887A (en) 2019-10-01
CN110233600B (en) 2024-02-20
CN110233600A (en) 2019-09-13

Similar Documents

Publication Publication Date Title
TWI690154B (en) Amplifier circuit and associated compensation circuit
US7453322B2 (en) Transimpedance amplifier using negative impedance compensation
TW201012050A (en) Three-stage frequency-compensated operational amplifier
US7843263B2 (en) Power amplifier with noise shaping function
US7999612B2 (en) Operational amplifier having DC offset cancellation capability
US10171052B2 (en) Operational amplifier and differential amplifying circuit thereof
US7557651B2 (en) Dual transconductance amplifiers and differential amplifiers implemented using such dual transconductance amplifiers
WO2017124575A1 (en) Frequency compensation transconductance amplifier
TW200952327A (en) Frequency compensated operational amplifier
CN104242830B (en) Reconfigurable ultra-wideband low-noise amplifier based on active inductance
GB2439116A (en) Single stage balanced valve amplifier
CN207442795U (en) Suitable for low noise, the high bandwidth trans-impedance amplifier of wide dynamic range
WO2021047475A1 (en) Operational amplifier
CN110649900A (en) High signal-to-noise ratio two-stage operational amplifier
US11196387B2 (en) Amplifier circuit with high-order damping circuit and the high-order damping circuit
US10469037B2 (en) Multi-stage amplifier circuit with zero and pole inserted by compensation circuits
TWI798662B (en) Amplifying circuit
US20200106401A1 (en) Audio amplifier with integrated filter
CN109120234B (en) Novel power amplification circuit
TWI750035B (en) Low dropout regulator
TWI767311B (en) Operational amplifier and signal amplification method
CN109873620B (en) Third-order low-pass filter
TWI637591B (en) Class ab amplifier
TW200845566A (en) Amplifier
WO2020259804A1 (en) Amplifier with a converting circuit with reduced intrinsic time constant