TWI690044B - 3d interconnect component for fully molded packages - Google Patents

3d interconnect component for fully molded packages Download PDF

Info

Publication number
TWI690044B
TWI690044B TW105113306A TW105113306A TWI690044B TW I690044 B TWI690044 B TW I690044B TW 105113306 A TW105113306 A TW 105113306A TW 105113306 A TW105113306 A TW 105113306A TW I690044 B TWI690044 B TW I690044B
Authority
TW
Taiwan
Prior art keywords
semiconductor die
substrate
conductive
assembly
temporary carrier
Prior art date
Application number
TW105113306A
Other languages
Chinese (zh)
Other versions
TW201642419A (en
Inventor
斯坎倫克里斯托弗M
Original Assignee
美商戴卡科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商戴卡科技有限公司 filed Critical 美商戴卡科技有限公司
Publication of TW201642419A publication Critical patent/TW201642419A/en
Application granted granted Critical
Publication of TWI690044B publication Critical patent/TWI690044B/en

Links

Images

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

A method of making a semiconductor component package can include providing a substrate comprising conductive traces, soldering a surface mount device (SMD) to the substrate with solder, encapsulating the SMD on the substrate with a first mold compound over and around the SMD to form a component assembly, and mounting the component assembly to a temporary carrier with a first side of the component assembly oriented towards the temporary carrier. The method can further include mounting a semiconductor die comprising a conductive interconnect to the temporary carrier adjacent the component assembly, encapsulating the component assembly and the semiconductor die with a second mold compound to form a reconstituted panel, and exposing the conductive interconnect and the conductive traces at the first side and the second side of the component assembly with respect to the second mold compound.

Description

全模製封裝之3D互連組件 Fully molded 3D interconnect components

本揭露主張2015年4月29日申請之標題為「3D Interconnect Component for Fully Molded Packages」之美國臨時專利第62/154,218號之權益(包括申請日期),該專利之揭露內容以引用方式併入本文中。 This disclosure claims the rights and interests of US Provisional Patent No. 62/154,218 titled "3D Interconnect Component for Fully Molded Packages" filed on April 29, 2015 (including the date of application), the disclosure content of which is incorporated herein by reference in.

本揭露係關於全模製封裝之三維(3D)互連組件或組件總成,包括旋轉可軟焊組件總成。全模製封裝可包含複數個整合式半導體裝置,包括組件總成,該複數個整合式半導體裝置用於穿戴式科技、物聯網(IoT)裝置、或兩者。 This disclosure relates to a three-dimensional (3D) interconnection component or assembly of a fully molded package, including a rotating solderable assembly. A fully molded package may include a plurality of integrated semiconductor devices, including a component assembly, the plurality of integrated semiconductor devices being used for wearable technology, Internet of Things (IoT) devices, or both.

半導體裝置常見於現代電子產品中。半導體裝置具有不同之電組件數量及電組件密度。離散半導體裝置一般含有一種類型電組件,例如,發光二極體(LED)、小信號電晶體、電阻器、電容器、電感器、及功率金屬氧化物半導體場效電晶體(MOSFET)。整合式半導體裝置一般而言含有數百至數百萬個電組件。整合 式半導體裝置之實例包括微控制器、微處理器、電荷耦合裝置(CCD)、太陽能電池、及數位微鏡裝置(DMD)。 Semiconductor devices are common in modern electronic products. Semiconductor devices have different numbers of electrical components and density of electrical components. Discrete semiconductor devices generally contain one type of electrical components, such as light emitting diodes (LEDs), small signal transistors, resistors, capacitors, inductors, and power metal oxide semiconductor field effect transistors (MOSFETs). Integrated semiconductor devices generally contain hundreds to millions of electrical components. Integration Examples of embedded semiconductor devices include microcontrollers, microprocessors, charge-coupled devices (CCD), solar cells, and digital micromirror devices (DMD).

半導體裝置執行各式各樣功能,諸如信號處理、高速計算、傳輸及接收電磁信號、控制電子裝置、將日光轉變成電力、及建立用於電視顯示器之視覺投影。在娛樂、通訊、功率轉換、網路、電腦、及消費性產品領域中可見到半導體裝置。軍事應用、航空、汽車、工業控制器、及辦公室設備中亦可見到半導體裝置。 Semiconductor devices perform a variety of functions, such as signal processing, high-speed calculations, transmitting and receiving electromagnetic signals, controlling electronic devices, converting sunlight into electricity, and establishing visual projections for television displays. Semiconductor devices can be found in the fields of entertainment, communications, power conversion, networking, computers, and consumer products. Semiconductor devices can also be found in military applications, aviation, automobiles, industrial controllers, and office equipment.

半導體裝置利用半導體材料之電性質。半導體材料之原子結構允許藉由施加一電場或基極電流或透過摻雜程序來操縱其導電性。摻雜引入雜質至半導體材料中以操縱及控制半導體裝置之導電性。 Semiconductor devices utilize the electrical properties of semiconductor materials. The atomic structure of the semiconductor material allows its electrical conductivity to be manipulated by applying an electric field or base current or through a doping process. Doping introduces impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor device.

一半導體裝置含有主動及被動電結構。主動結構(包括雙極性及場效電晶體)控制電流之流動。藉由改變摻雜的位準及一電場或基極電流施加的位準,電晶體促進或限制電流之流動。被動結構(包括電阻器、電容器、及電感器)建立執行各式各樣電功能所必須的電壓與電流之間之關係。被動結構及主動結構經電連接以形成電路,其致能半導體裝置執行高速計算及其他實用的功能。 A semiconductor device contains active and passive electrical structures. Active structures (including bipolar and field effect transistors) control the flow of current. By changing the level of doping and the level at which an electric field or base current is applied, the transistor promotes or limits the flow of current. Passive structures (including resistors, capacitors, and inductors) establish the relationship between voltage and current necessary to perform various electrical functions. The passive structure and the active structure are electrically connected to form a circuit, which enables the semiconductor device to perform high-speed computing and other practical functions.

一般使用兩個複雜的製造程序來製造半導體裝置,即,前段製造及後段製造,各者可能涉及數百個步驟。前段製造涉及形成複數個半導體晶粒於一半導體晶圓之表面上。各半導體晶粒一般是相同的且含有藉由 電連接主動組件及被動組件所形成之電路。後段製造涉及自晶圓成品(finished wafer)單切個別半導體晶粒及封裝該晶粒,以提供結構支撐及環境隔離。如本文中所使用,用語「半導體晶粒(semiconductor die)」係指彼字詞之單數形及複數形兩者,並且據此可係指一單一半導體裝置及多個半導體裝置兩者。 Generally, two complicated manufacturing processes are used to manufacture semiconductor devices, namely, front-end manufacturing and back-end manufacturing, each of which may involve hundreds of steps. The front-end manufacturing involves forming a plurality of semiconductor die on the surface of a semiconductor wafer. Each semiconductor die is generally the same and contains The circuit formed by electrically connecting the active component and the passive component. Subsequent manufacturing involves singulation of individual semiconductor die from the finished wafer and packaging of the die to provide structural support and environmental isolation. As used herein, the term "semiconductor die" refers to both the singular and plural forms of the other word, and may accordingly refer to both a single semiconductor device and multiple semiconductor devices.

半導體製造之一個目標係生產較小半導體裝置。較小裝置一般消耗較少電力、具有較高性能、且可被更高效率生產。此外,較小半導體裝置具有較小覆蓋區(footprint),這是較小最終產品所欲的。可藉由前段程序之改良而達成較小半導體晶粒大小,從而得到具有較小的較高密度主動組件及被動組件之半導體晶粒。後段程序可藉由電互連及封裝材料之改良而得到具有較小覆蓋區之半導體裝置封裝。 One goal of semiconductor manufacturing is to produce smaller semiconductor devices. Smaller devices generally consume less power, have higher performance, and can be produced more efficiently. In addition, smaller semiconductor devices have a smaller footprint, which is desirable for smaller end products. The smaller semiconductor die size can be achieved through the improvement of the previous procedure, thereby obtaining semiconductor die with smaller higher density active and passive devices. The second-stage procedure can obtain semiconductor device packages with smaller coverage areas through the improvement of electrical interconnection and packaging materials.

半導體晶粒之後段處理亦可包括許多表面安裝裝置(SMD)、被動組件、或兩者之整合,其等用於連接半導體晶粒或整合式電路至基材表面以及PCB而不使用PCB中之通孔。四面扁平封裝(QFP)使用SMD,SMD包括從封裝之四個側面中之各者延伸之引線,該等引線有時被稱為「鷗翼引線(gull wing lead)」。QFP引線提供介於封裝內之半導體晶粒與安裝有QFP之PCB或基材之間的電輸入/輸出(I/O)互連。其他SMD封裝在無引線之情況下製作且常常係指扁平無引線封裝。扁平無引線封裝之實例係四面扁平無引線封裝 (QFN)及雙面扁平無引線(DFN)封裝。QFN封裝習知包括藉由線接合連接至用於封裝I/O互連之引線架之半導體晶粒。 The post-processing of semiconductor die can also include many surface mount devices (SMD), passive components, or a combination of the two, which are used to connect semiconductor die or integrated circuits to the substrate surface and the PCB without using one of the PCBs Through hole. A quad flat package (QFP) uses an SMD. SMD includes leads extending from each of the four sides of the package. These leads are sometimes referred to as "gull wing leads." The QFP leads provide electrical input/output (I/O) interconnection between the semiconductor die in the package and the PCB or substrate on which the QFP is mounted. Other SMD packages are made without leads and often refer to flat leadless packages. An example of a flat leadless package is a four-sided flat leadless package (QFN) and double-sided flat no-lead (DFN) packages. QFN packaging conventions include semiconductor dies connected to lead frames for packaged I/O interconnects by wire bonding.

被動組件於扇出型晶圓級封裝(FO-WLP)中之整合一般係藉由直接放置被動組件至臨時載帶(carrier tape)上,之後模製或囊封被動組件來進行。在嵌入式晶圓級球柵陣列(eWLB)情況中,半導體晶粒之作用表面以及被動組件可附接至膠帶(tape)且隨後經包覆模製(overmold)或囊封以形成且重構晶圓或板材(panel)。在釋離該膠帶之後,可暴露半導體晶粒及被動組件之端子(terminal)或接觸墊,並可施加重分布層至板材,使得導電跡線可製作接至被動組件的連接。通常,軟焊至基材之SMD被動件(passive)附接於基材內之核心層上以形成基材中嵌入式晶粒之施加。 The integration of passive components in fan-out wafer-level packaging (FO-WLP) is generally performed by directly placing the passive components on a temporary carrier tape and then molding or encapsulating the passive components. In the case of an embedded wafer level ball grid array (eWLB), the active surface of the semiconductor die and the passive components can be attached to a tape and then overmolded or encapsulated to form and reconstruct Wafer or panel. After the tape is released, the semiconductor die and the terminals or contact pads of the passive component can be exposed, and a redistribution layer can be applied to the plate so that the conductive traces can be connected to the passive component. Typically, SMD passives soldered to the substrate are attached to the core layer within the substrate to form the application of embedded die in the substrate.

存在改良半導體製造的機會。因此,在一項態樣中,一種製作一半導體組件封裝之方法可包含:提供一基材,該基材包含導電跡線;利用焊料軟焊複數個表面安裝裝置(SMD)至該基材;利用於該複數個SMD上方並圍繞該複數個SMD之一第一模製化合物囊封該複數個SMD於該基材上;及藉由分開該基材來單切該複數個SMD,以暴露該等導電跡線並形成複數個組件總成,該複數個組件總成包含在該等組件總成之一第一側 面及在該等組件總成之一第二側面之暴露的導電跡線,該等組件總成之該第二側面與該等組件總成之該第一側面相對。該方法可進一步包括:提供一臨時載體;安裝該等組件總成中之至少一者至該臨時載體,其中該至少一組件總成之該第一側面及該等經暴露的導電跡線定向成朝向該臨時載體;安裝包含一導電互連之一半導體晶粒至該臨時載體,該半導體晶粒相鄰於該等組件總成中之該至少一者;在該至少一經單切的組件總成及該半導體晶粒安裝至該臨時載體時,利用一第二模製化合物囊封該等組件總成中之該至少一者及該半導體晶粒,以形成一重構板材;及使該導電互連及該等經暴露的導電跡線相對於該第二模製化合物暴露在該至少一組件總成之該第一側面或該第二側面。該方法可進一步包括:形成一第一重分布層於該第二模製化合物上方,以電連接該導電互連及該等經暴露的導電跡線;及單切該重構板材。 There are opportunities to improve semiconductor manufacturing. Therefore, in one aspect, a method of manufacturing a semiconductor device package may include: providing a substrate including conductive traces; using solder to solder a plurality of surface mount devices (SMD) to the substrate; Encapsulating the plurality of SMDs on the substrate by using a first molding compound above the plurality of SMDs and surrounding one of the plurality of SMDs; and singly cutting the plurality of SMDs by separating the substrate to expose the Equal conductive traces and form a plurality of component assemblies, the plurality of component assemblies is included on the first side of one of the component assemblies Face and exposed conductive traces on the second side of one of the component assemblies, the second side of the component assemblies is opposite the first side of the component assemblies. The method may further include: providing a temporary carrier; installing at least one of the component assemblies to the temporary carrier, wherein the first side of the at least one component assembly and the exposed conductive traces are oriented into Towards the temporary carrier; mounting a semiconductor die including a conductive interconnect to the temporary carrier, the semiconductor die being adjacent to the at least one of the component assemblies; at the at least one single-cut component assembly And when the semiconductor die is mounted to the temporary carrier, a second molding compound is used to encapsulate the at least one of the component assemblies and the semiconductor die to form a reconstructed plate; and to make the conductive mutual The exposed conductive traces are exposed to the first side or the second side of the at least one component assembly with respect to the second molding compound. The method may further include: forming a first redistribution layer over the second molding compound to electrically connect the conductive interconnect and the exposed conductive traces; and singulating the reconstructed sheet.

製作一半導體組件封裝之方法可進一步包含基材,該基材包含一兩層層壓層、一印製電路板(PCB)、或一坯料(blank)模製化合物板材。組件總成可包含被動裝置。半導體晶粒可係一嵌入式半導體晶粒,該嵌入式半導體晶粒包含耦接至該半導體晶粒並相對於該第二模製化合物暴露的導電互連。導電互連可包含銅凸塊、支柱(pillar)、立柱(post)、或厚RDL跡線。耦接經單切的組件總成中之該至少一者至基材的焊 料可含於半導體組件封裝內,且相對於半導體組件封裝不為暴露。 The method for manufacturing a semiconductor device package may further include a substrate including a two-layer laminate layer, a printed circuit board (PCB), or a blank molded compound plate. The assembly may include passive devices. The semiconductor die may be an embedded semiconductor die, the embedded semiconductor die including a conductive interconnect coupled to the semiconductor die and exposed relative to the second molding compound. The conductive interconnect may include copper bumps, pillars, posts, or thick RDL traces. Welding of the at least one of the single-cut component assemblies to the substrate The material may be contained in the semiconductor device package and not exposed relative to the semiconductor device package.

在另一項態樣中,一種製作一半導體組件封裝之方法可包含:提供一基材,該基材包含導電跡線;利用焊料附接一SMD至該基材以形成一組件總成;安裝該組件總成至一臨時載體,其中該組件總成之一第一側面定向成朝向該臨時載體;安裝包含一導電互連之一半導體晶粒至該臨時載體,該半導體晶粒相鄰於該組件總成;在該組件總成及該半導體晶粒安裝至該臨時載體時,利用一模製化合物囊封該組件總成及該半導體晶粒,以形成一重構板材;及使該導電互連及該等導電跡線相對於該模製化合物暴露在該組件總成之該第一側面或該第二側面。 In another aspect, a method of making a semiconductor device package may include: providing a substrate including conductive traces; attaching an SMD to the substrate using solder to form a device assembly; mounting The assembly to a temporary carrier, wherein a first side of the assembly is oriented toward the temporary carrier; a semiconductor die including a conductive interconnect is mounted to the temporary carrier, the semiconductor die is adjacent to the Component assembly; when the component assembly and the semiconductor die are mounted to the temporary carrier, a mold compound is used to encapsulate the component assembly and the semiconductor die to form a reconstructed plate; and the conductive mutual The conductive traces are exposed to the first side or the second side of the assembly relative to the molding compound.

製作一半導體組件封裝之方法可進一步包含基材,該基材包含一兩層層壓層、一PCB、或一坯料模製化合物板材。在安裝該組件總成至該臨時載體之前,可利用於該SMD上方並圍繞該SMD的額外模製化合物囊封SMD於基材上。半導體晶粒可係一嵌入式半導體晶粒,該嵌入式半導體晶粒包含耦接至該半導體晶粒並相對於模製化合物暴露的導電互連,其中該導電互連包含銅凸塊、支柱、立柱、或厚RDL跡線。耦接組件總成至基材之焊料可含於組件總成內,且相對於組件總成不為暴露。可藉由從重構板材移除臨時載體並研磨重構板材來使導電互連及導電跡線暴露。第一重分布層可形成於 重構板材上方,以電連接導電互連及導電跡線,且第二重分布層可形成為與第一重分布層相對以電連接經暴露的導電跡線,以形成穿過半導體組件封裝之厚度之電連接。 The method for manufacturing a semiconductor device package may further include a substrate, the substrate including a two-layer laminate layer, a PCB, or a blank molded compound plate. Before mounting the assembly to the temporary carrier, additional molding compound above and around the SMD can be used to encapsulate the SMD on the substrate. The semiconductor die may be an embedded semiconductor die, the embedded semiconductor die includes a conductive interconnect coupled to the semiconductor die and exposed with respect to the molding compound, wherein the conductive interconnect includes copper bumps, pillars, Uprights, or thick RDL traces. The solder coupling the component assembly to the substrate may be contained in the component assembly and not exposed relative to the component assembly. The conductive interconnects and conductive traces can be exposed by removing the temporary carrier from the reconstructed plate and grinding the reconstructed plate. The first redistribution layer may be formed on Reconstruct the top of the board to electrically connect the conductive interconnects and the conductive traces, and the second redistribution layer can be formed opposite the first redistribution layer to electrically connect the exposed conductive traces to form a package through the semiconductor device Electrical connection of thickness.

在另一項態樣中,一種製作一半導體組件封裝之方法可包含:提供一基材,該基材包含導電跡線;利用焊料附接一SMD至該基材;安裝該SMD及該基材至一臨時載體;安裝包含一導電互連之一半導體晶粒,該半導體晶粒相鄰於該SMD;施配模製化合物於該臨時載體上方;及使該導電互連及該等導電跡線相對於該模製化合物暴露。 In another aspect, a method of manufacturing a semiconductor device package may include: providing a substrate including conductive traces; attaching an SMD to the substrate using solder; mounting the SMD and the substrate To a temporary carrier; mounting a semiconductor die including a conductive interconnect that is adjacent to the SMD; applying a molding compound over the temporary carrier; and making the conductive interconnect and the conductive traces Relative to the molding compound is exposed.

製作一半導體組件封裝之方法可進一步包含安裝包含導電互連之半導體晶粒,該半導體晶粒相鄰於臨時載體。包含半導體互連之半導體晶粒可經安裝成相鄰於SMD。模製化合物可經施配以囊封SMD及半導體晶粒,從而形成重構板材。該方法可進一步包含:單切基材以使導電跡線暴露在基材之第一側面暴露;及安裝SMD及基材至臨時載體,其中基材之第一側面及經暴露的導電跡線定向成朝向臨時載體。基材可包含一兩層層壓層、一印製電路板(PCB)、或一坯料模製化合物板材。導電互連可包含銅凸塊、支柱、立柱、或厚RDL跡線。 The method of making a semiconductor device package may further include mounting a semiconductor die including conductive interconnects, the semiconductor die being adjacent to the temporary carrier. The semiconductor die including semiconductor interconnects can be mounted adjacent to the SMD. The molding compound can be dispensed to encapsulate the SMD and semiconductor die to form a reconstituted sheet. The method may further include: single-cutting the substrate to expose the conductive traces to the first side of the substrate; and mounting the SMD and the substrate to the temporary carrier, wherein the first side of the substrate and the exposed conductive traces are oriented Into a temporary carrier. The substrate may include one or two laminate layers, a printed circuit board (PCB), or a blank molded compound board. The conductive interconnect may include copper bumps, pillars, posts, or thick RDL traces.

所屬技術領域中具有通常知識者將可自實施方式與附圖及申請專利範圍清楚瞭解前述及其他態樣、特徵及優點。 Those of ordinary skill in the art will be able to clearly understand the aforementioned and other aspects, features, and advantages from the embodiments, drawings, and patent application scope.

14‧‧‧半導體晶粒/組件 14‧‧‧Semiconductor die/component

18‧‧‧背側/背表面 18‧‧‧back side/back surface

20‧‧‧作用表面 20‧‧‧acting surface

22‧‧‧導電層/接觸墊/接合墊 22‧‧‧conductive layer/contact pad/bonding pad

26‧‧‧絕緣層/鈍化層 26‧‧‧Insulation layer/passivation layer

28‧‧‧導電互連/電互連結構 28‧‧‧conductive interconnection/electrical interconnection structure

30‧‧‧重構板材/板材/重構晶圓/晶圓 30‧‧‧Reconstructed sheet/sheet/reconstructed wafer/wafer

32‧‧‧鋸刃/雷射切割工具 32‧‧‧Saw blade/laser cutting tool

40‧‧‧間隙/鋸道 40‧‧‧Gap/Saw

41‧‧‧黏著劑 41‧‧‧ Adhesive

42‧‧‧囊封物 42‧‧‧Encapsulation

44‧‧‧嵌入式半導體晶粒 44‧‧‧Embedded semiconductor die

50‧‧‧基材/層壓層/印製電路板(PCB)/坯料模製化合物板材/PCB條/引線架 50‧‧‧Substrate/Laminate/Printed Circuit Board (PCB)/Blank Molded Compound Sheet/PCB Strip/Lead Frame

52‧‧‧基材核心/核心材料/核心 52‧‧‧ Base material core/core material/core

54‧‧‧導電跡線 54‧‧‧ conductive trace

56‧‧‧第一表面 56‧‧‧First surface

58‧‧‧焊接墊 58‧‧‧welding pad

60‧‧‧第二表面 60‧‧‧Second surface

62‧‧‧絕緣層/鈍化層 62‧‧‧Insulation layer/passivation layer

64‧‧‧絕緣層/鈍化層 64‧‧‧Insulation layer/passivation layer

68‧‧‧開口 68‧‧‧ opening

70‧‧‧SMD/被動組件/主動組件/SMD技術/被動件 70‧‧‧SMD/Passive components/Active components/SMD technology/Passive parts

72‧‧‧端子/接觸墊 72‧‧‧terminal/contact pad

74‧‧‧焊料/焊料膏/Sn連接 74‧‧‧ solder/solder paste/Sn connection

78‧‧‧囊封物/第一模製化合物 78‧‧‧Encapsulation/first molding compound

80‧‧‧鋸刃/雷射切割工具 80‧‧‧Saw blade/laser cutting tool

82‧‧‧3D互連組件/組件總成/SMD組件總成/組件/模製被動件/模製組件 82‧‧‧3D interconnection assembly/assembly assembly/SMD assembly assembly/assembly/molded passive part/molded assembly

84‧‧‧導電跡線 84‧‧‧ conductive trace

86‧‧‧第一側面/第一側表面 86‧‧‧First side/first side surface

88‧‧‧第二側面 88‧‧‧Second side

100‧‧‧臨時載體/載體/基材 100‧‧‧Temporary carrier/carrier/substrate

102‧‧‧界面層/膠帶/載帶/載帶材料 102‧‧‧Interface layer/tape/carrier tape/carrier tape material

104‧‧‧鋸道/離距/空間/間隙 104‧‧‧Saw path/distance/space/gap

110‧‧‧第二囊封物/模製化合物 110‧‧‧Second encapsulation/molding compound

112‧‧‧重構板材/晶圓 112‧‧‧reconstructed sheet/wafer

114‧‧‧研磨機 114‧‧‧Grinding machine

116‧‧‧前表面/底部表面 116‧‧‧Front surface/Bottom surface

118‧‧‧背表面/頂部表面/第二表面/側面 118‧‧‧Back surface/Top surface/Second surface/Side

120‧‧‧第一堆積互連結構/堆積互連結構/互連結構/第一堆積互連/重分佈層 120‧‧‧First stacked interconnect structure/Stacked interconnect structure/Interconnect structure/First stacked interconnect/Redistribution layer

122‧‧‧絕緣層/鈍化層/導電層 122‧‧‧Insulation layer/passivation layer/conductive layer

124‧‧‧導電層/重分佈層 124‧‧‧conductive layer/redistribution layer

126‧‧‧絕緣層/鈍化層 126‧‧‧Insulation layer/passivation layer

128‧‧‧凸塊/球/互連結構 128‧‧‧Bump/ball/interconnect structure

130‧‧‧第二堆積互連結構/堆積互連結構/互連結構/第二堆積互連/重分佈層 130‧‧‧Second Stacked Interconnect Structure/Stacked Interconnect Structure/Interconnect Structure/Second Stacked Interconnect Structure/Redistribution Layer

132‧‧‧絕緣層/鈍化層/導電層 132‧‧‧Insulation layer/passivation layer/conductive layer

134‧‧‧導電層/重分佈層 134‧‧‧conductive layer/redistribution layer

136‧‧‧絕緣層/鈍化層 136‧‧‧Insulation layer/passivation layer

138‧‧‧開口 138‧‧‧ opening

139‧‧‧堆疊式封裝(POP)焊接墊/SMD焊接墊 139‧‧‧POP solder pad/SMD solder pad

140‧‧‧鋸刃/雷射切割工具 140‧‧‧Saw blade/laser cutting tool

142‧‧‧半導體組件封裝/半導體封裝/封裝 142‧‧‧Semiconductor package/semiconductor package/package

144‧‧‧底部表面 144‧‧‧Bottom surface

146‧‧‧頂部表面 146‧‧‧Top surface

H‧‧‧高度 H‧‧‧ Height

H1‧‧‧高度 H1‧‧‧ Height

H2‧‧‧高度 H2‧‧‧ Height

Hm‧‧‧高度 Hm‧‧‧Height

Hs‧‧‧高度 Hs‧‧‧Height

L‧‧‧長度 L‧‧‧Length

W‧‧‧寬度 W‧‧‧Width

圖1繪示從重構板材30單切的嵌入式半導體晶粒。 FIG. 1 shows an embedded semiconductor die cut from the reconstructed sheet 30.

圖2A至圖2F繪示組件總成、SMD組件總成、或3D互連組件之形成。 2A to 2F illustrate the formation of a component assembly, an SMD component assembly, or a 3D interconnection component.

圖3A至圖3F繪示包含可軟焊組件總成、SMD組件總成、或3D互連組件之半導體組件封裝之形成。 3A to 3F illustrate the formation of a semiconductor device package including a solderable device assembly, an SMD device assembly, or a 3D interconnection device.

本揭露參照圖式在以下描述中包括一或多項態樣或實施例,其中相似數字代表相同或類似的元件。所屬技術領域中具有通常知識者應理解,描述意圖覆蓋如藉由隨附申請專利範圍所限定的可包括於本揭露之精神及範疇內的替代方案、修改、及等效物,以及如藉由以下揭露及圖式所支持的其等效物。在描述中,闡述許多特定細節,諸如特定組態、組件、及程序等,以提供對本揭露之透徹理解。在其他情況中,為了不混淆本揭露,未描述熟知之程序及製造技術的具體細節。此外, 圖中所示之各種實施例係說明性代表且不必按比例繪製。 The disclosure includes one or more aspects or embodiments in the following description with reference to the drawings, in which similar numbers represent the same or similar elements. Those of ordinary skill in the art should understand that the description is intended to cover alternatives, modifications, and equivalents that can be included within the spirit and scope of the present disclosure as defined by the scope of the accompanying patent application, as well as by The equivalents supported by the following disclosure and drawings. In the description, many specific details are explained, such as specific configurations, components, and procedures, to provide a thorough understanding of the present disclosure. In other cases, in order not to confuse this disclosure, specific details of well-known procedures and manufacturing techniques are not described. In addition, The various embodiments shown in the figures are illustrative representatives and are not necessarily drawn to scale.

本揭露、其態樣及實施方案不受限於本文中所揭示之特定設備、材料類型、或其他系統組件實例或方法。設想與製造及封裝一致的所屬技術領域中已熟知之許多額外組件、製造及裝配過程,用於搭配來自本揭露之具體實施方案使用。據此,例如,雖然揭示具體實施方案,但是此類實施方案及實施之組件可包含如所屬技術領域中已熟知之用於此類系統及實施之組件的任何組件、型號、類型、材料、版本、量、及/或類似者,該等系統及實施之組件與意圖的操作一致。 The disclosure, its aspects, and implementations are not limited to the specific equipment, material types, or other system component examples or methods disclosed herein. It is envisaged that many additional components, manufacturing, and assembly processes that are well known in the art that are consistent with manufacturing and packaging are used in conjunction with specific implementations from the present disclosure. Accordingly, for example, although specific implementations are disclosed, such implementations and implemented components may include any components, models, types, materials, and versions of components used for such systems and implementations as are well known in the art. , Quantity, and/or the like, these systems and implemented components are consistent with the intended operation.

本文使用字詞「例示性(exemplary)」、「實例(example)」或其各種形式意指用作為一實例、案例、或圖解闡釋。本文描述「例示性」或為「實例」之任何態樣或設計非必然視為較佳或優點優於其他態樣或設計。另外,實例僅為了清楚及理解之目的而提供並且非意欲以任何方式限制或限定所揭示之標的物或本揭露之相關部分。應當理解,可呈現不同範疇之眾多額外或替代實例,但出於簡潔的目的加以省略。 This text uses the words "exemplary", "example" or its various forms to mean an example, case, or illustration. Any form or design described herein as "exemplary" or as an "instance" is not necessarily considered to be better or superior to other forms or designs. In addition, the examples are provided for the purpose of clarity and understanding only and are not intended to limit or limit the disclosed subject matter or related parts of the disclosure in any way. It should be understood that numerous additional or alternative examples of different categories may be presented, but are omitted for brevity.

在以下實例、實施例及實施方案參考實例的情況下,所屬技術領域中具有通常知識者應瞭解,其他製造裝置及實例可與所提供之裝置及實例互混或取代所提供之裝置及實例。在上文描述參考特定實施例之處,應顯而易見,可進行數個修改而不會脫離其精神,並且 顯而易見,這些實施例及實施方案亦可應用於其他技術。據此,所揭示之標的物意圖含括所有此類變更、修改及變化,彼等皆落入本揭露之精神及範疇以及所屬技術領域中具有通常知識者之知識內。 Where the following examples, embodiments, and implementations refer to examples, those of ordinary skill in the art should understand that other manufacturing devices and examples can be intermixed with or replace the devices and examples provided. Where the above description refers to specific embodiments, it should be apparent that several modifications can be made without departing from its spirit, and Obviously, these examples and implementations can also be applied to other technologies. Accordingly, the disclosed subject matter is intended to include all such changes, modifications, and changes, all of which fall within the spirit and scope of this disclosure and the knowledge of those with ordinary knowledge in the technical field to which they belong.

大致上而言,使用兩個複雜的製造程序製造半導體裝置:前段製造及後段製造。前段製造涉及形成複數個晶粒於一半導體晶圓之表面上。該晶圓上之各晶粒含有經電連接以形成功能電路之主動電組件及被動電組件。主動電組件(諸如電晶體及二極體)具有控制電流之流動的能力。被動電組件(諸如電容器、電感器、電阻器及變壓器)建立執行電路功能所必須的電壓與電流之間之關係。 Generally speaking, two complicated manufacturing procedures are used to manufacture semiconductor devices: front-end manufacturing and back-end manufacturing. The front-end manufacturing involves forming a plurality of grains on the surface of a semiconductor wafer. Each die on the wafer contains active electrical components and passive electrical components that are electrically connected to form a functional circuit. Active electrical components (such as transistors and diodes) have the ability to control the flow of current. Passive electrical components (such as capacitors, inductors, resistors, and transformers) establish the relationship between voltage and current necessary to perform circuit functions.

藉由一系列程序步驟形成被動組件及主動組件於半導體晶圓之表面上方,包括摻雜、沉積、光學微影、蝕刻、及平坦化。摻雜藉由諸如離子佈植(ion implantation)或熱擴散之技術而引入雜質至半導體材料中。摻雜程序修改主動裝置中的半導體材料之導電性,將半導體材料轉變成絕緣體、導體,或回應於一電場或基極電流而動態變更半導體材料導電性。電晶體含有經配置成所必要的不同類型及摻雜程度之區域,以在施加電場或基極電流時致能電晶體促進或限制電流之流動。 A series of process steps are used to form the passive component and the active component above the surface of the semiconductor wafer, including doping, deposition, optical lithography, etching, and planarization. Doping introduces impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion. The doping procedure modifies the conductivity of the semiconductor material in the active device, transforms the semiconductor material into an insulator, a conductor, or dynamically changes the conductivity of the semiconductor material in response to an electric field or base current. Transistors contain regions configured to the different types and doping levels necessary to enable the transistor to promote or limit the flow of current when an electric field or base current is applied.

主動組件及被動組件係由具有不同電性質之材料之層所形成。可藉由各式各樣沉積技術來形成層, 部分依沉積之材料之類型而決定沉積技術。例如,薄膜沉積可涉及化學氣相沉積(CVD)、物理氣相沉積(PVD)、電解電鍍、及無電解電鍍程序。大致上而言,各層被圖案化以形成主動組件部分、被動組件部分、或介於組件之間之電連接部分。 Active components and passive components are formed by layers of materials with different electrical properties. Layers can be formed by various deposition techniques, The deposition technique is partly determined by the type of material deposited. For example, thin film deposition may involve chemical vapor deposition (CVD), physical vapor deposition (PVD), electrolytic plating, and electroless plating procedures. In general, the layers are patterned to form active component parts, passive component parts, or electrical connection parts between the components.

可使用光學微影將層圖案化,微影涉及沉積光敏材料(例如,光阻)於待圖案化之層上方。使用光將一圖案自一光罩轉移至光阻。在一實施例中,使用溶劑移除光阻圖案之經受光之部分,而暴露待圖案化之下方層之部分。在另一實施例中,使用溶劑移除光阻圖案之未經受光之部分(負光阻),而暴露待圖案化之下方層之部分。移除光阻之其餘部分,留下一經圖案化之層。替代地,一些類型材料係藉由使用諸如無電解及電解電鍍之技術直接沉積該材料於藉由一先前沉積/蝕刻程序所形成之區或空隙中而圖案化。 Optical lithography can be used to pattern the layer, which involves depositing a photosensitive material (eg, photoresist) over the layer to be patterned. Use light to transfer a pattern from a photomask to a photoresist. In one embodiment, a solvent is used to remove the portion of the photoresist pattern that is exposed to light, and the portion of the underlying layer to be patterned is exposed. In another embodiment, a solvent is used to remove the unreceived portion of the photoresist pattern (negative photoresist), and expose the portion of the underlying layer to be patterned. Remove the rest of the photoresist, leaving a patterned layer. Alternatively, some types of materials are patterned by directly depositing the material in areas or voids formed by a previous deposition/etching process by using techniques such as electroless and electrolytic plating.

圖案化係移除半導體晶圓表面上之頂部層之部分的基本操作。可使用光學微影、光罩、遮罩、氧化物或金屬移除、攝影及模板印刷、以及顯微蝕刻(microlithography)來移除半導體晶圓之部分。光學微影包括:形成一圖案於比例光罩(reticle)或一光罩中;及轉移該圖案至半導體晶圓之表面層。光學微影以一兩步驟式程序形成主動及被動組件之水平尺寸於半導體晶圓之表面上。第一步驟係,將比例光罩或光罩之圖案轉移至光阻層上。光阻係在受曝光時經歷結構及性質 變更之一光敏材料。變更光阻之結構及性質之程序作為負型作用光阻或正型作用光阻發生。第二步驟係,將光阻層轉移至晶圓表面中。轉移發生在蝕刻移除半導體晶圓之頂部層之未被光阻覆蓋的部分時。光阻之化學使得該光阻實質上維持完好,並且在移除半導體晶圓之頂部層之未被光阻覆蓋之部分的同時,抵抗被化學蝕刻溶液移除。可根據使用的特定光阻及所欲結果,修改形成、曝光及移除光阻之程序,以及修改移除半導體晶圓之一部分的程序。 Patterning is the basic operation of removing the part of the top layer on the surface of the semiconductor wafer. Optical lithography, photomasks, masks, oxide or metal removal, photography and stencil printing, and microlithography can be used to remove portions of semiconductor wafers. Optical lithography includes: forming a pattern in a proportional reticle or a reticle; and transferring the pattern to the surface layer of the semiconductor wafer. Optical lithography uses a two-step process to form the horizontal dimensions of active and passive components on the surface of a semiconductor wafer. The first step is to transfer the pattern of the proportional mask or mask to the photoresist layer. Photoresist system undergoes structure and properties when exposed to light Change one of the photosensitive materials. The procedure for changing the structure and properties of the photoresist occurs as a negative-acting photoresist or a positive-acting photoresist. The second step is to transfer the photoresist layer to the wafer surface. The transfer occurs when etching to remove the portion of the top layer of the semiconductor wafer that is not covered by the photoresist. The chemistry of the photoresist keeps the photoresist substantially intact and resists removal by the chemical etching solution while removing the portion of the top layer of the semiconductor wafer that is not covered by the photoresist. Depending on the specific photoresist used and the desired result, the process of forming, exposing, and removing the photoresist, as well as the process of removing part of the semiconductor wafer, can be modified.

在負型作用光阻中,光阻被曝光,並且在名為聚合之程序自可溶狀況變更至不可溶狀況。在聚合中,使未聚合材料曝光或暴露於能量源,且聚合物形成交聯材料,該交聯材料係抗蝕劑。在大多數負光阻中,聚合物係聚異戊二烯。用化學溶劑或顯影劑移除可溶部分(即,未被曝光之部分),而在光阻層中留下對應於比例光罩上之不透明圖案的孔洞。圖案存在於不透明區域中的光罩稱為清場光罩(clear-field mask)。 In a negative-acting photoresist, the photoresist is exposed and changes from a soluble state to an insoluble state in a process called polymerization. During polymerization, the unpolymerized material is exposed or exposed to an energy source, and the polymer forms a cross-linked material, which is a resist. In most negative photoresists, the polymer is polyisoprene. A chemical solvent or developer is used to remove the soluble portion (ie, the unexposed portion), leaving holes in the photoresist layer corresponding to the opaque pattern on the proportional mask. A mask whose pattern exists in an opaque area is called a clear-field mask.

在正型作用光阻中,光阻被曝光且在名為光溶解化(photosolubilization)之程序中自相對非可溶狀況變更至更可溶狀況。在光溶解化中,相對不可溶光阻被曝光於適當的光能量並且轉換成一較可溶狀態。在顯影程序中,可藉由溶劑移除光阻之經光溶解化部分。基本正光阻聚合物係酚-甲醛(phenol-formaldehyde)聚合物,亦稱為酚-甲醛酚 醛樹脂。用化學溶劑或顯影劑移除可溶部分(即,被曝光之部分),而在光阻層中留下對應於比例光罩上之透明圖案的孔洞。圖案存在於透明區域中的光罩稱為暗場光罩(dark-field mask)。 In a positive-acting photoresist, the photoresist is exposed and changes from a relatively insoluble state to a more soluble state in a process called photosolubilization. In photolysis, the relatively insoluble photoresist is exposed to appropriate light energy and converted into a more soluble state. In the development process, the photo-dissolved portion of the photoresist can be removed by a solvent. Basic positive photoresist polymer is phenol-formaldehyde polymer, also known as phenol-formaldehyde phenol Aldehyde resin. The soluble portion (ie, the exposed portion) is removed with a chemical solvent or developer, leaving holes in the photoresist layer corresponding to the transparent patterns on the proportional mask. A mask in which a pattern exists in a transparent area is called a dark-field mask.

在移除半導體晶圓之未被光阻覆蓋之頂部部分之後,移除光阻之其餘部分,而留下一經圖案化之層。替代地,一些類型材料係藉由使用諸如無電解及電解電鍍之技術直接沉積該材料於藉由一先前沉積/蝕刻程序所形成之區或空隙中而圖案化。 After removing the top part of the semiconductor wafer that is not covered by the photoresist, the remaining part of the photoresist is removed, leaving a patterned layer. Alternatively, some types of materials are patterned by directly depositing the material in areas or voids formed by a previous deposition/etching process by using techniques such as electroless and electrolytic plating.

沉積材料之一薄膜於一現有圖案上方會增大下方圖案且建立一非均勻平表面。均勻平表面可對於生產較小且更緻密聚集(packed)之主動組件及被動組件來說是有益的或需要的。可使用平坦化以自晶圓之表面移除材料且生產均勻平表面。平坦化涉及用拋光墊拋光晶圓之表面。在拋光期間將研磨材料及腐蝕性化學品添加至晶圓之表面。替代地,在不使用腐蝕性化學品之情況下,將機械研磨用於平坦化。在一些實施例中,純機械研磨藉由使用帶式研磨機(belt grinding machine)、標準晶圓背面研磨器(backgrinder)、或其他類似的機器而達成。組合之研磨機械作用及化學腐蝕作用移除任何不規則形貌,導致均勻平表面。 Depositing a thin film of material above an existing pattern will increase the underlying pattern and create a non-uniform flat surface. A uniform flat surface may be beneficial or required for the production of smaller and more densely packed active and passive components. Planarization can be used to remove material from the surface of the wafer and produce a uniform flat surface. Flattening involves polishing the surface of the wafer with a polishing pad. Abrasive materials and corrosive chemicals are added to the surface of the wafer during polishing. Instead, mechanical grinding is used for planarization without using corrosive chemicals. In some embodiments, purely mechanical grinding is achieved by using a belt grinding machine, a standard wafer backgrinder, or other similar machines. The combined grinding mechanical action and chemical corrosion action remove any irregularities, resulting in a uniform flat surface.

後段製造係指將晶圓成品切割或單切成個別半導體晶粒並接著封裝半導體晶粒以用於結構支撐及環境隔離。為了單切半導體晶粒,沿稱為鋸道(saw street)或劃線(scribe)的晶圓之非功能區域切割晶圓。使用雷射切割工具或鋸刃單切晶圓。在單切之後,個別半導體晶粒被安裝至封裝基材,封裝基材包括用於與其他系統組件互連之接針或接觸墊。接著,形成於半導體晶粒上方的接觸墊連接至在封裝內之接觸墊。可用焊料凸塊、柱形凸塊、導電膏、重分布層、或線接合製作電連接。囊封物或其他模製材料沉積於封裝上方,以提供實體支撐及電隔離。接著,將封裝成品插入於電系統中,並且使半導體裝置之功能可供其他系統組件取用。 Back-end manufacturing refers to cutting or singulating the finished wafer into individual semiconductor die and then packaging the semiconductor die for structural support and environmental isolation. In order to single-cut the semiconductor die, along the saw (saw street) or scribe the non-functional area of the wafer to cut the wafer. Use laser cutting tools or saw blades to cut wafers. After singulation, individual semiconductor dies are mounted to the packaging substrate, which includes contacts or contact pads for interconnection with other system components. Next, the contact pads formed above the semiconductor die are connected to the contact pads in the package. Solder bumps, stud bumps, conductive paste, redistribution layers, or wire bonding can be used to make electrical connections. An encapsulant or other molding material is deposited over the package to provide physical support and electrical isolation. Next, the packaged product is inserted into the electrical system, and the functions of the semiconductor device are made available to other system components.

電系統可係獨立系統,該獨立系統使用半導體裝置執行一或多個電功能。替代地,電系統可係較大系統之子組件。例如,電系統可係蜂巢式無線電話之部分、個人數位助理(PDA)之部分、數位視訊攝影機(DVC)之部分、或其他電子通訊裝置之部分。替代地,電系統可係圖形卡、網路介面卡、或可插入至電腦中之其他信號處理卡。半導體封裝可包括微處理器、記憶體、特殊應用積體電路(ASIC)、邏輯電路、類比電路、RF電路、離散裝置、或其他半導體晶粒或電組件。小型化及重量減輕可對於欲被市場所接受之產品而言係有益的或必需的。為達成較高密度,必須減小半導體裝置之間之距離。 The electrical system may be an independent system that uses semiconductor devices to perform one or more electrical functions. Alternatively, the electrical system may be a sub-component of a larger system. For example, the electrical system may be part of a cellular radiotelephone, part of a personal digital assistant (PDA), part of a digital video camera (DVC), or part of other electronic communication devices. Alternatively, the electrical system may be a graphics card, a network interface card, or other signal processing card that can be inserted into the computer. The semiconductor package may include a microprocessor, memory, special application integrated circuit (ASIC), logic circuit, analog circuit, RF circuit, discrete device, or other semiconductor die or electrical component. Miniaturization and weight reduction may be beneficial or necessary for products to be accepted by the market. To achieve higher density, the distance between semiconductor devices must be reduced.

藉由組合一或多個半導體封裝於單一基材上方,製造商可將預製作組件併入至電子裝置及系統中。因為半導體封裝包括複雜的功能性,所以電子裝置可使 用較便宜的組件及效率化製造程序(streamlined manufacturing process)來製造。所得裝置不太可能發生故障且製造成本更低,使得消費者的花費更低。 By combining one or more semiconductor packages on a single substrate, manufacturers can incorporate pre-fabricated components into electronic devices and systems. Because semiconductor packages include complex functionality, electronic devices can Manufactured with cheaper components and streamlined manufacturing processes. The resulting device is less likely to fail and the manufacturing cost is lower, making consumers less expensive.

但是,當組合一或多個半導體封裝於單一基材上方時,形成RDL層於具有焊料或鍍錫(Sn)終端之標準可軟焊被動組件上方可係不實用的,因為焊料或Sn可在後續處理期間熔化,造成電故障。因此,使用其他替代方案以減少故障,諸如使用較昂貴的具有裸Cu終端之組件而非使用Sn或可軟焊組件,從而藉由減少故障來減少成本。在焊料或Sn軟焊的情況下使用標準可軟焊被動組件的另一個替代方案包括放置SMD被動件至基材核心層,以於基材中形成嵌入式晶粒、裝置、或組件,這允許使用可軟焊被動組件,同時減少在後續處理期間熔化焊料及Sn之風險,以及導致的故障。然而,放置SMD被動件於基材中會增加封裝之厚度,且會需要大得多的預製基材面積,從而增加大小及成本,此兩者均係非所欲的。 However, when combining one or more semiconductor packages on a single substrate, it is not practical to form an RDL layer over a standard solderable passive component with solder or tin (Sn) terminals, because the solder or Sn can be Melt during subsequent processing, causing electrical failure. Therefore, other alternatives are used to reduce failures, such as using more expensive components with bare Cu terminals instead of Sn or solderable components, thereby reducing costs by reducing failures. An alternative to using standard solderable passive components in the case of solder or Sn soldering includes placing SMD passives on the substrate core layer to form embedded die, devices, or components in the substrate, which allows Use solderable passive components while reducing the risk of melting solder and Sn during subsequent processing, and the resulting failures. However, placing SMD passives in the substrate will increase the thickness of the package, and will require a much larger prefabricated substrate area, thereby increasing size and cost, both of which are undesirable.

圖1展示複數個半導體晶粒14之截面圖,該複數個半導體晶粒14係根據如上文所概述之前段製造方法及過程所形成且包括於重構板材、板材、重構晶圓、或晶圓30內。更特定言之,半導體晶粒14可由半導體晶圓或原生晶圓(native wafer)形成,或形成為半導體晶圓或原生晶圓之一部分,該半導體晶圓或原生晶圓具有用於結構支撐之一基底基材材料,諸如但不限於矽、 鍺、砷化鎵、磷化銦、或碳化矽。複數個半導體晶粒或組件14可形成於原生晶圓上並可藉由如上文所述之一非作用的晶粒間晶圓區或鋸道分開。鋸道提供將半導體晶圓單切成個別半導體晶粒14之切割區,該個別半導體晶粒14用於包括於重構板材或晶圓30中,該重構板材或晶圓30亦可包括嵌入式晶粒板材。 FIG. 1 shows a cross-sectional view of a plurality of semiconductor dies 14 formed according to the previous manufacturing methods and processes as outlined above and included in a reconstructed plate, sheet, reconstructed wafer, or crystal Within 30. More specifically, the semiconductor die 14 may be formed by a semiconductor wafer or a native wafer, or as a part of a semiconductor wafer or a native wafer, which has a structure support A base substrate material, such as but not limited to silicon, Germanium, gallium arsenide, indium phosphide, or silicon carbide. A plurality of semiconductor dies or components 14 can be formed on the native wafer and can be separated by one of the non-active inter-die wafer regions or saw streets as described above. The sawing path provides a singulation area for singulation of the semiconductor wafer into individual semiconductor dies 14 for inclusion in the reconstructed sheet or wafer 30, which may also include embedding Type grain plate.

各半導體晶粒14具有一背側或背表面18及一作用表面20,作用表面20與背側18相對。作用表面20含有類比電路或數位電路,類比電路或數位電路實施為形成在晶粒內之主動裝置、被動裝置、導電層及介電層,並且根據晶粒之電設計及功能而電互連。例如,電路可包括形成在作用表面20內之一或多個電晶體、二極體及其他電路元件,以實施類比電路或數位電路,諸如DSP、ASIC、記憶體或其他信號處理電路。半導體晶粒14亦可含有用於RF信號處理之IPD,諸如電感器、電容器、及電阻器。 Each semiconductor die 14 has a back side or back surface 18 and an active surface 20, the active surface 20 being opposite the back side 18. The active surface 20 contains an analog circuit or a digital circuit. The analog circuit or digital circuit is implemented as an active device, a passive device, a conductive layer, and a dielectric layer formed in the die, and is electrically interconnected according to the electrical design and function of the die. For example, the circuit may include one or more transistors, diodes, and other circuit elements formed within the active surface 20 to implement analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuits. The semiconductor die 14 may also contain IPDs for RF signal processing, such as inductors, capacitors, and resistors.

使用PVD、CVD、電解電鍍、無電解電鍍製程、或其他合適的金屬沉積程序,形成一導電層22於作用表面20上方。導電層22可係鋁(Al)、銅(Cu)、Sn、鎳(Ni)、金(Au)、銀(Ag)、或其他合適的導電材料之一或多個層。導電層22操作為經電耦合或電連接至作用表面20上之電路的接觸墊或接合墊。導電層22可經形成為經並排設置離半導體晶粒14之邊緣達一第一距離之接觸墊,如圖1中所示。替代地,導電層22可經形成為 在多列中偏移之接觸墊,使得一第一列接觸墊經設置成距晶粒之邊緣達一第一距離,而與該第一列交替的一第二列接觸墊經設置成距晶粒之邊緣達一第二距離。 A PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process is used to form a conductive layer 22 above the active surface 20. The conductive layer 22 may be one or more layers of aluminum (Al), copper (Cu), Sn, nickel (Ni), gold (Au), silver (Ag), or other suitable conductive materials. The conductive layer 22 operates as a contact pad or bonding pad that is electrically coupled or electrically connected to the circuit on the active surface 20. The conductive layer 22 may be formed as contact pads arranged side by side at a first distance from the edge of the semiconductor die 14 as shown in FIG. 1. Alternatively, the conductive layer 22 may be formed as The contact pads offset in multiple rows such that a first row of contact pads is arranged at a first distance from the edge of the die, and a second row of contact pads alternating with the first row is arranged at a distance from the crystal The edge of the grain reaches a second distance.

圖1亦展示保形施加於作用表面20上方及導電層22上方之可選的絕緣層或鈍化層26。絕緣層26可包括一或多個層,其等使用PVD、CVD、網板印刷、旋塗、噴塗、燒結、熱氧化、或其他合適的程序施加。絕緣層26可含有但不限於二氧化矽(SiO2)、氮化矽(Si3N4)、氮氧化矽(SiON)、五氧化鉭(Ta2O5)、氧化鋁(Al2O3)、聚合物、聚醯亞胺、苯環丁烯(BCB)、聚苯并唑(PBO)、或具有類似的絕緣及結構性質之其他材料之一或多個層。替代地,在不使用任何PBO層之情況下封裝半導體晶粒14,並且絕緣層26可由不同材料形成或被徹底省略。在另一實施例中,絕緣層26包括一鈍化層,該鈍化層形成於作用表面20上方而不設置於導電層22上方。當絕緣層26存在且形成於導電層22上方時,形成完全穿過絕緣層26之開口以暴露導電層22之至少一部分,從而實現後續機械且電互連。替代地,當絕緣層26被省略時,導電層22暴露,從而在不形成開口之情況下實現後續電互連。 FIG. 1 also shows an optional insulating layer or passivation layer 26 conformally applied over the active surface 20 and over the conductive layer 22. The insulating layer 26 may include one or more layers, which are applied using PVD, CVD, screen printing, spin coating, spray coating, sintering, thermal oxidation, or other suitable procedures. The insulating layer 26 may include, but is not limited to, silicon dioxide (SiO2), silicon nitride (Si3N4), silicon oxynitride (SiON), tantalum pentoxide (Ta2O5), aluminum oxide (Al2O3), polymer, polyimide, One or more layers of benzocyclobutene (BCB), polybenzoxazole (PBO), or other materials with similar insulating and structural properties. Alternatively, the semiconductor die 14 is packaged without using any PBO layer, and the insulating layer 26 may be formed of different materials or omitted altogether. In another embodiment, the insulating layer 26 includes a passivation layer that is formed above the active surface 20 but not above the conductive layer 22. When the insulating layer 26 exists and is formed over the conductive layer 22, an opening is formed completely through the insulating layer 26 to expose at least a portion of the conductive layer 22, thereby achieving subsequent mechanical and electrical interconnection. Alternatively, when the insulating layer 26 is omitted, the conductive layer 22 is exposed, thereby achieving subsequent electrical interconnection without forming an opening.

圖1亦展示導電互連或電互連結構28,導電互連或電互連結構28可形成為由銅或其他合適的導電材料所形成的管柱、支柱、立柱、厚RDLS、凸塊、或柱形物,其等設置於導電層22上方並耦接或連接至導電 層22。可使用圖案化及金屬沉積程序(諸如印刷、PVD、CVD、濺鍍、電解電鍍、無電解電鍍、金屬蒸鍍、金屬濺鍍、或其他合適的金屬沉積程序),直接形成導電互連28於導電層22上。導電互連28可係Al、Cu、Sn、Ni、Au、Ag、鈀(Pd)、或其他合適的導電材料之一或多個層並且可包括一或多個UBM層。在一些實施例中,可藉由沉積一光阻層於半導體晶粒14及導電層22上方來形成導電互連28。可藉由蝕刻顯影程序來暴露並移除光阻層之一部分,並且導電互連28可使用選擇電鍍程序以銅支柱之形式形成於光阻之移除部分中及導電層22上方。可移除光阻層,留下導電互連28,這提供後續機械且電互連及相對於作用表面20的一墊高部(standoff)。導電互連28可包括在10至100微米(μm)之範圍內之一高度H1或在20至50μm之範圍內之一高度、或約35μm之一高度。 FIG. 1 also shows a conductive interconnection or electrical interconnection structure 28. The conductive interconnection or electrical interconnection structure 28 may be formed as a tube, pillar, post, thick RDLS, bump, formed of copper or other suitable conductive material. Or a columnar object, which is provided above the conductive layer 22 and is coupled or connected to the conductive Layer 22. Patterning and metal deposition procedures (such as printing, PVD, CVD, sputtering, electrolytic plating, electroless plating, metal evaporation, metal sputtering, or other suitable metal deposition procedures) can be used to directly form conductive interconnects 28 On the conductive layer 22. The conductive interconnect 28 may be one or more layers of Al, Cu, Sn, Ni, Au, Ag, palladium (Pd), or other suitable conductive materials and may include one or more UBM layers. In some embodiments, the conductive interconnect 28 can be formed by depositing a photoresist layer over the semiconductor die 14 and the conductive layer 22. A portion of the photoresist layer can be exposed and removed by an etching and development process, and the conductive interconnect 28 can be formed in the removed portion of the photoresist and above the conductive layer 22 in the form of copper pillars using a selective plating process. The photoresist layer can be removed, leaving conductive interconnect 28, which provides subsequent mechanical and electrical interconnection and a standoff relative to active surface 20. The conductive interconnect 28 may include a height H1 in the range of 10 to 100 micrometers (μm) or a height in the range of 20 to 50 μm, or a height of about 35 μm.

可使用膏印刷、壓縮模製、轉移模製、液體囊封物模製、層壓、真空層壓、旋塗、或其他合適的施用器,將囊封物42沉積成圍繞複數個半導體晶粒14。囊封物42可係聚合物複合材料,諸如含填料之環氧樹脂、含填料之環氧丙烯酸酯、或含適當填料之聚合物。半導體晶粒14可一起嵌入於囊封物42中,囊封物42可係非導電性並在環境上保護半導體晶粒14免於外部元素及污染物的侵害。 Paste printing, compression molding, transfer molding, liquid encapsulation molding, lamination, vacuum lamination, spin coating, or other suitable applicator may be used to deposit the encapsulation 42 around a plurality of semiconductor die 14. The encapsulant 42 may be a polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with suitable filler. The semiconductor die 14 may be embedded in the encapsulant 42 together. The encapsulant 42 may be non-conductive and environmentally protect the semiconductor die 14 from external elements and contaminants.

半導體晶粒14之定向可係面向上,其中作用表面20定向成遠離安裝有半導體晶粒14之載體,或替代地可安裝成面向下,其中作用表面20定向成朝向安裝有半導體晶粒14之載體。因此,黏著劑41可包括於半導體晶粒14之背表面18上方或從半導體晶粒14之背表面18上方省略,其取決於囊封半導體晶粒14及形成板材30所使用的程序,板材30包含全模製於囊封物42之核心中或於環氧樹脂核心內之半導體晶粒14。 The orientation of the semiconductor die 14 may be upward, where the active surface 20 is oriented away from the carrier on which the semiconductor die 14 is mounted, or alternatively may be installed downward, where the active surface 20 is oriented toward the surface where the semiconductor die 14 is mounted Carrier. Therefore, the adhesive 41 may be included above or omitted from the back surface 18 of the semiconductor die 14 depending on the procedure used to encapsulate the semiconductor die 14 and form the plate 30, the plate 30 Contains semiconductor die 14 that are fully molded in the core of the encapsulant 42 or in the epoxy core.

板材30可以可選地經歷固化程序以固化囊封物42。囊封物42之表面可實質上與黏著劑41共面。替代地,囊封物42可實質上與背側18共面,藉由移除載體及界面層而使該囊封物暴露。板材30可包括任何形狀及大小的覆蓋區或外觀尺寸(form factor),包括圓形、矩形、或方形,諸如類似於包括具有300毫米(mm)徑之圓形覆蓋區之300mm半導體晶圓之外觀尺寸的外觀尺寸。亦可形成任何其他所欲的大小。 The sheet 30 may optionally undergo a curing procedure to cure the encapsulant 42. The surface of the encapsulant 42 may be substantially coplanar with the adhesive 41. Alternatively, the encapsulant 42 may be substantially coplanar with the back side 18, which is exposed by removing the carrier and the interface layer. The sheet material 30 may include a coverage area or form factor of any shape and size, including a circle, a rectangle, or a square, such as similar to a 300 mm semiconductor wafer including a circular coverage area having a diameter of 300 millimeters (mm) The appearance size of the appearance size. It can also be formed in any other desired size.

板材30可利用研磨機經歷可選的研磨操作以平坦化表面並減小板材30之厚度。亦可使用化學蝕刻以移除並平坦化板材30中囊封物42之一部分。因此,導電互連28之一表面可關於囊封物42在板材30之一邊緣或周邊暴露,以在半導體晶粒14與後續形成的重分布層或互連結構之間提供電連接。可使用一鋸刃或雷射切割工具32穿過間隙或鋸道40將板材30單切成個別嵌入式半導體晶粒44。嵌入式半導體晶粒44可隨後用作後續形 成的半導體組件封裝之一部分,如下文更詳細地討論。然而,嵌入式半導體晶粒44亦可在施加導電互連28之後以及在嵌入式半導體晶粒44從板材30單切或裝配至圖3C中所示的重構板材112中之前係全部可測試的。 The sheet 30 may undergo an optional grinding operation using a grinder to flatten the surface and reduce the thickness of the sheet 30. Chemical etching can also be used to remove and planarize a portion of the encapsulant 42 in the sheet 30. Therefore, one surface of the conductive interconnect 28 may be exposed at one edge or perimeter of the plate 30 with respect to the encapsulant 42 to provide an electrical connection between the semiconductor die 14 and the subsequently formed redistribution layer or interconnect structure. A saw blade or laser cutting tool 32 may be used to cut the sheet 30 into individual embedded semiconductor dies 44 through the gap or saw 40. The embedded semiconductor die 44 can then be used as a subsequent shape Part of the packaged semiconductor component, as discussed in more detail below. However, the embedded semiconductor die 44 may also be fully testable after the conductive interconnect 28 is applied and before the embedded semiconductor die 44 is singulated or assembled from the sheet 30 into the reconstructed sheet 112 shown in FIG. 3C .

在一些情況下,嵌入式半導體晶粒44可如2015年4月29日申請之標題為「Die Up Fully Molded Fan-out Wafer Level Packaging」的美國專利申請案第13/632,062號(現為USP 8,535,978)中所述形成,該案之揭露內容之全文以引用方式併入本文。 In some cases, the embedded semiconductor die 44 may be as US Patent Application No. 13/632,062 (now USP 8,535,978) entitled "Die Up Fully Molded Fan-out Wafer Level Packaging" filed on April 29, 2015 ), the entire disclosure content of the case is incorporated by reference.

圖2A展示基材、層壓層、印製電路板(PCB)、或坯料模製化合物板材50之截面輪廓圖。基材50可包含:導電跡線54,導電跡線54形成於基材核心或核心材料52之一第一表面56上方;及焊接墊(land pad)58,焊接墊58形成於基材核心或核心材料52之一第二表面60上方,第二表面60與第一表面56相對。當基材50形成為坯料模製化合物板材時,核心材料52可包含與囊封物42、囊封物或第一模製化合物78、或第二囊封物或模製化合物110相同、類似、或功能上等效的材料或材料性質。 2A shows a cross-sectional profile of a substrate, laminate, printed circuit board (PCB), or blank molded compound sheet 50. FIG. The substrate 50 may include: conductive traces 54 formed on the first surface 56 of the substrate core or core material 52; and land pads 58 formed on the substrate core or One of the core materials 52 is above the second surface 60 and the second surface 60 is opposite to the first surface 56. When the base material 50 is formed as a blank molded compound sheet, the core material 52 may include the same, similar, or similar to the encapsulant 42, encapsulant or first molding compound 78, or second encapsulant or molding compound 110, Or functionally equivalent materials or material properties.

導電跡線54及焊接墊58可經圖案化並沉積於基材50之基材核心52上方。在一些情況下,導電跡線54可於兩者上形成為一或多個重分布層(RDL)或RDL圖案,其等可形成於僅第一表面56、僅第二表面60、或 第一表面56及第二表面60兩者上或上方。類似地,焊接墊58可形成於僅第一表面56、僅第二表面60、或第一表面56及第二表面60兩者上或上方。 The conductive trace 54 and the bonding pad 58 may be patterned and deposited over the substrate core 52 of the substrate 50. In some cases, the conductive traces 54 may be formed as one or more redistribution layer (RDL) or RDL patterns on the two, which may be formed on only the first surface 56, only the second surface 60, or On or above both the first surface 56 and the second surface 60. Similarly, the solder pad 58 may be formed on or above only the first surface 56, only the second surface 60, or both the first surface 56 and the second surface 60.

導電跡線54、焊接墊58、或兩者可係Al、Cu、Sn、Ni、Au、Ag、Ti/Cu、TiW/Cu、或偶合劑/Cu或其他合適的導電材料之一或多個層。可使用PVD、CVD、電解電鍍、無電解電鍍、或其他合適的程序形成導電跡線54、焊接墊58、或兩者。在一實施例中,導電跡線54、焊接墊58、或兩者可包含一Ti障壁層、一Cu種層、及形成於Ti障壁層及Cu種層上方之Cu層,且可提供與後續安裝至基材或層壓層50之組件的電互連。在一些情況下,基材或層壓層50可係購買的或呈預成形或預製作項獲得,且兩層層壓基材50可包含130微米(μm)或約130μm(諸如在30至200μm範圍內)的一核心52。 Conductive trace 54, solder pad 58, or both may be one or more of Al, Cu, Sn, Ni, Au, Ag, Ti/Cu, TiW/Cu, or coupling agent/Cu or other suitable conductive materials Floor. PVD, CVD, electrolytic plating, electroless plating, or other suitable procedures may be used to form conductive traces 54, solder pads 58, or both. In one embodiment, the conductive trace 54, the bonding pad 58, or both may include a Ti barrier layer, a Cu seed layer, and a Cu layer formed above the Ti barrier layer and the Cu seed layer, and may be provided and subsequent Electrical interconnection of components mounted to the substrate or laminate layer 50. In some cases, the substrate or laminate layer 50 may be purchased or obtained as a preformed or prefabricated item, and the two-layer laminate substrate 50 may include 130 microns (μm) or about 130 μm (such as between 30 and 200 μm Within a range) of a core 52.

絕緣層或鈍化層62可設置於導電跡線54及第一表面56上方。類似地,絕緣層或鈍化層64可設置於焊接墊58及第二表面60上方。絕緣層62及64可係藉由PVD、CVD、網板印刷、旋塗、噴塗、層壓、燒結、或熱氧化形成的SiO2、Si3N4、SiON、Ta2O5、Al2O3、聚醯亞胺、BCB、PBO、環氧樹脂、阻焊材料、或具有類似的絕緣及結構性質之其他材料之一或多個層。在一些情況下,絕緣層或鈍化層62及64可包括於預成形或預製作基材或層壓層50中。絕緣層64中之開口 68可形成於焊接墊58之部分上方,以促進與表面安裝裝置(SMD)(如圖2B中所示之SMD 70)上之一或多個端子或接觸墊72之後續電互連。 The insulating layer or passivation layer 62 may be disposed above the conductive trace 54 and the first surface 56. Similarly, an insulating layer or passivation layer 64 may be disposed above the bonding pad 58 and the second surface 60. The insulating layers 62 and 64 can be SiO2, Si3N4, SiON, Ta2O5, Al2O3, polyimide, BCB, PBO formed by PVD, CVD, screen printing, spin coating, spray coating, lamination, sintering, or thermal oxidation , One or more layers of epoxy resin, solder resist material, or other materials with similar insulation and structural properties. In some cases, insulating layers or passivation layers 62 and 64 may be included in the preformed or prefabricated substrate or laminate layer 50. Opening in insulating layer 64 68 may be formed over a portion of the solder pad 58 to facilitate subsequent electrical interconnection with one or more terminals or contact pads 72 on a surface mount device (SMD) (such as the SMD 70 shown in FIG. 2B).

圖2B展示使用焊料或焊料膏74將SMD 70之端子72表面安裝至基材或層壓層50。SMD 70可具有一所欲的大小且包含被動組件、主動組件、可軟焊被動件(諸如電阻器或電容器)、其他半導體晶粒、IC、晶圓級晶片尺度封裝(WLCSP)及其他組件。SMD 70之大小可根據JDEC標準,利用公制代碼或英制代碼定大小,其中公制代碼以數十毫米給出SMD組件之長度及寬度,且英制代碼以數百吋給出SMD組件之長度及寬度,除了一些例外。在一些情況下,可使用0201 SMD封裝大小,其包含約0.25mm×0.125mm(或.0098 in×0.0049 in)之尺寸。在其他情況下,0201封裝之尺寸可包含0.6mm×0.3mm(或0.024 in×0.012 in)之尺寸。無論如何,在某些情況下,SMD之大小可選擇成與最終封裝之總體組態及設計一致,如下文更詳細地描述。 2B shows the surface mounting of the terminal 72 of the SMD 70 to the substrate or laminate layer 50 using solder or solder paste 74. The SMD 70 may have a desired size and include passive components, active components, solderable passive components (such as resistors or capacitors), other semiconductor dies, ICs, wafer-level chip scale packages (WLCSP), and other components. The size of SMD 70 can be sized according to JDEC standard using metric codes or imperial codes, where metric codes give the length and width of SMD components in tens of millimeters, and imperial codes give the length and width of SMD components in hundreds of inches, With some exceptions. In some cases, a 0201 SMD package size may be used, which includes dimensions of about 0.25 mm x 0.125 mm (or .0098 in x 0.0049 in). In other cases, the size of the 0201 package may include a size of 0.6 mm × 0.3 mm (or 0.024 in × 0.012 in). In any case, in some cases, the size of the SMD can be selected to be consistent with the overall configuration and design of the final package, as described in more detail below.

可將焊料74放置於焊接墊58上以促進SMD 70與基材50之間的電連通。焊料74可包含Al、Sn、Ni、Au、Ag、Pb、Bi、Cu、焊料、及其等之組合連同一可選的助焊劑溶液。例如,焊料74可係共熔(eutectic)Sn/Pb、高鉛焊料、或無鉛焊料。可使用蒸鍍、電解電鍍、無電解電鍍、球滴(ball drop)、或網板印刷程序 沉積焊料74於基材50上方及焊接墊58上。在一些實施例中,焊料74係Sn焊料膏,其使用網板印刷沉積於基材50上方及焊接墊58上。在SMD 70耦接至具有焊料74之基材50之後,焊料74可經歷回焊程序或經回焊以改良SMD 70與焊接墊58之間的電接觸。在回焊之後,基材50及SMD 70可以可選地經歷水性清潔、自動化光學檢查(AOI)、及電漿清潔中之一或多者。 The solder 74 may be placed on the solder pad 58 to promote electrical communication between the SMD 70 and the substrate 50. The solder 74 may include Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof in combination with an optional flux solution. For example, the solder 74 may be eutectic Sn/Pb, high-lead solder, or lead-free solder. Evaporation, electrolytic plating, electroless plating, ball drop, or screen printing procedures can be used Solder 74 is deposited over the substrate 50 and on the solder pad 58. In some embodiments, the solder 74 is Sn solder paste, which is deposited on the substrate 50 and the solder pad 58 using screen printing. After the SMD 70 is coupled to the substrate 50 with the solder 74, the solder 74 may undergo a reflow process or be reflowed to improve the electrical contact between the SMD 70 and the solder pad 58. After reflow, the substrate 50 and SMD 70 may optionally undergo one or more of aqueous cleaning, automated optical inspection (AOI), and plasma cleaning.

圖2C展示,可使用膏印刷、壓縮模製、轉移模製、液體囊封物模製、層壓、真空層壓、旋塗、或其他合適的施用器,將第一囊封物或模製化合物78可選地沉積成圍繞該複數個SMD 70。囊封物78可係聚合物複合材料,諸如含填料之環氧樹脂、含填料之環氧丙烯酸酯、或含適當填料之聚合物。在一些情況下,囊封物78可相同於或類似於形成嵌入式半導體晶粒44中所用之囊封物42。SMD 70可一起嵌入於基材50上於囊封物78中,囊封物78可係非導電性並在環境上保護SMD 70免於外部元素及污染物的侵害。在模製或囊封之後,模製基材50及SMD 70可經歷後模製清潔(PMC)及測試,以鑑別並標記模製基材內之任何壞的、瑕疵的或不工作的SMD 70。儘管囊封物或第一模製化合物78經展示形成或設置成圍繞SMD 70以促進或使得更容易安裝最終組件總成82至臨時載體100,如圖3A中所示,但是囊封物或第一模製化合物78可係可選的並可被徹底省略。在一些實施例中,在囊封物或第一模製化合物78係 完全可選的情況下,可在不存在囊封物或第一模製化合物78的情況下進行安裝最終組件總成82至臨時載體100。 Figure 2C shows that the first encapsulation or molding can be performed using paste printing, compression molding, transfer molding, liquid encapsulation molding, lamination, vacuum lamination, spin coating, or other suitable applicator Compound 78 is optionally deposited to surround the plurality of SMD 70. The encapsulant 78 may be a polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with suitable filler. In some cases, encapsulant 78 may be the same as or similar to encapsulant 42 used in forming embedded semiconductor die 44. The SMD 70 may be embedded in the encapsulant 78 on the substrate 50 together. The encapsulant 78 may be non-conductive and environmentally protect the SMD 70 from external elements and contaminants. After molding or encapsulation, the molded substrate 50 and SMD 70 can undergo post-mold cleaning (PMC) and testing to identify and mark any bad, defective, or non-working SMD 70 in the molded substrate . Although the encapsulation or first molding compound 78 is shown formed or arranged to surround the SMD 70 to facilitate or make it easier to install the final assembly assembly 82 to the temporary carrier 100, as shown in FIG. 3A, the encapsulation or first A molding compound 78 may be optional and may be omitted altogether. In some embodiments, in the encapsulate or the first molding compound 78 series In a completely optional case, the installation of the final assembly assembly 82 to the temporary carrier 100 may be performed without the encapsulant or the first molding compound 78.

如圖2D中所示,可隨後使用一鋸刃或雷射切割工具80於SMD 70之間將模製基材50單切成個別組件總成、SMD組件總成、或包含囊封物78之模蓋之3D互連組件82。模製基材50之單切可分開基材50以暴露導電跡線54並形成複數個組件總成或SMD組件總成82。組件總成82可包含經暴露的導電跡線84,包含導電跡線54、焊接墊58、或兩者。經暴露的導電跡線84可在僅組件總成82之第一側面86、僅組件總成82之第二側面88、或第一側面86及第二側面88兩者暴露,其中第一側面86可與第二側面88相對。對於安裝組件總成82而言,第一側面86及第二側面88可係平的、平坦的、或實質上如此。組件總成82可包含在0.4至0.8mm、0.5至0.7mm之範圍內、或約0.6mm(諸如0.62mm)之一高度H。高度H可係模製化合物高度Hm及基材高度Hs之總和。模製化合物高度Hm可在0.1至0.3mm之範圍內、或係約0.2mm,諸如0.22mm。模製化合物高度Hs可在0.2至0.6mm之範圍內、或係約0.4mm。組件總成82亦可具有在0.9至1.3mm、1.0至1.2mm之範圍內、或約1.1mm之長度L。 As shown in FIG. 2D, the molded substrate 50 can then be singulated into individual component assemblies, SMD component assemblies, or containing encapsulants 78 using a saw blade or laser cutting tool 80 between the SMD 70 The 3D interconnecting assembly 82 of the mold cover. The single cut of the molded substrate 50 can separate the substrate 50 to expose the conductive traces 54 and form a plurality of component assemblies or SMD component assemblies 82. Component assembly 82 may include exposed conductive traces 84, including conductive traces 54, solder pads 58, or both. The exposed conductive trace 84 may be exposed on only the first side 86 of the component assembly 82, only the second side 88 of the component assembly 82, or both the first side 86 and the second side 88, wherein the first side 86 It may be opposite to the second side 88. For the mounting assembly 82, the first side 86 and the second side 88 may be flat, flat, or substantially the same. The component assembly 82 may include a height H in the range of 0.4 to 0.8 mm, 0.5 to 0.7 mm, or about 0.6 mm (such as 0.62 mm). The height H may be the sum of the height Hm of the molding compound and the height Hs of the substrate. The height of the molding compound Hm may be in the range of 0.1 to 0.3 mm, or be about 0.2 mm, such as 0.22 mm. The height Hs of the molding compound may be in the range of 0.2 to 0.6 mm, or about 0.4 mm. The component assembly 82 may also have a length L in the range of 0.9 to 1.3 mm, 1.0 to 1.2 mm, or about 1.1 mm.

圖2E展示組件總成82之截面輪廓圖,該圖繪示組件總成82之寬度W,且展示組件總成82的方向,該 方向垂直於或正交於圖2D中所示視圖的方向。組件總成82之寬度W可在0.2至0.6mm、0.3至0.5mm之範圍內、或係約0.4mm,諸如0.43mm。儘管組件總成82之長度L、寬度W、及高度H之例示性測量係關於0201 SMD 70給出,但是亦可使用不同大小的SMD,從而將導致組件總成82之長度L、寬度W、及高度H之大小之對應差異。圖2E之視圖亦展示在組件總成82之第一側面86及組件總成82之第二側面88的經暴露的導電跡線84,其等可用於後續電連接及封裝整合,如關於圖3A至圖3F所討論。 2E shows a cross-sectional profile view of the component assembly 82, the figure shows the width W of the component assembly 82, and shows the direction of the component assembly 82, the The direction is perpendicular or orthogonal to the direction of the view shown in FIG. 2D. The width W of the assembly 82 may be in the range of 0.2 to 0.6 mm, 0.3 to 0.5 mm, or about 0.4 mm, such as 0.43 mm. Although exemplary measurements of the length L, width W, and height H of the assembly 82 are given for 0201 SMD 70, SMDs of different sizes can also be used, which will result in the length L, width W, and And the corresponding difference in height H. The view of FIG. 2E also shows the exposed conductive traces 84 on the first side 86 of the component assembly 82 and the second side 88 of the component assembly 82, which can be used for subsequent electrical connection and packaging integration, as described with respect to FIG. 3A As discussed in Figure 3F.

圖2F展示組件總成82之透視圖,其中在組件總成之第一側面86之經暴露的導電跡線84係可見的。圖2F亦展示組件總成82之長度L、寬度W、及高度H之相對定位及定向。 2F shows a perspective view of the component assembly 82, where the exposed conductive traces 84 on the first side 86 of the component assembly are visible. FIG. 2F also shows the relative positioning and orientation of the length L, width W, and height H of the assembly 82.

圖3A展示臨時載體或基材100,載體或基材100含有臨時基底材料或犧牲性基底材料,諸如矽、聚合物、不銹鋼、或用於結構支撐之其他合適的低成本剛性材料。一可選的界面層或雙面膠帶102可形成於臨時載體100上方,作為臨時黏接膜或蝕刻停止層。在一實施例中,載體100可係包含一開放中心部分的一環形膜架,其於膠帶102的周邊支撐膠帶。 3A shows a temporary carrier or substrate 100 that contains a temporary base material or sacrificial base material, such as silicon, polymer, stainless steel, or other suitable low-cost rigid materials for structural support. An optional interface layer or double-sided tape 102 may be formed over the temporary carrier 100 as a temporary adhesive film or etch stop layer. In one embodiment, the carrier 100 may include an annular membrane frame with an open central portion, which supports the tape around the tape 102.

一或多個(諸如複數個)組件總成82可安裝至臨時載體100及界面層102,其中組件總成82之第一側面86及經暴露的導電跡線84定向成朝向臨時載體 100,並且導電跡線54呈垂直定向。相應地,組件總成82之第二側面88及經暴露的導電跡線84之相對端可定向成遠離臨時載體100、或面向上,實現在最終半導體組件封裝內的後續垂直互連。因此,組件總成82可自保持於未單切基材50上的水平位置垂直,或相對於該水平位置旋轉90度。因此,導電跡線54可採取當安裝於臨時載體100上時之一垂直定向,而非當安裝於未單切基材50之部分上時所保持的水平定向,其中組件總成82之兩個側面包含經暴露的導電跡線84、經暴露的焊接墊58、或兩者。 One or more (such as plural) component assemblies 82 can be mounted to the temporary carrier 100 and the interface layer 102, wherein the first side 86 of the component assembly 82 and the exposed conductive traces 84 are oriented toward the temporary carrier 100, and the conductive trace 54 is oriented vertically. Accordingly, the second side 88 of the component assembly 82 and the opposite ends of the exposed conductive traces 84 can be oriented away from the temporary carrier 100, or facing upwards, enabling subsequent vertical interconnection within the final semiconductor component package. Therefore, the assembly assembly 82 can be vertical from a horizontal position held on the uncut substrate 50, or rotated 90 degrees relative to the horizontal position. Therefore, the conductive trace 54 may adopt one of the vertical orientations when installed on the temporary carrier 100, rather than the horizontal orientation that is maintained when installed on the portion of the substrate 50 that is not singulated, two of the component assemblies 82 The sides include exposed conductive traces 84, exposed solder pads 58, or both.

圖3B展示圖1之嵌入式半導體晶粒44面向上安裝至臨時載體100及界面層102,其中背側18定向成朝向臨時載體100,且作用表面20定向成遠離臨時載體100。半導體晶粒14可使用一取放操作或其他合適的操作放置於臨時載體100上方。如圖1中所示,黏著劑41可以可選地設置於半導體晶粒14之背側18與臨時載體100之間。黏著劑41(當存在時)可係熱環氧樹脂、環氧樹脂、B階段環氧樹脂膜、含可選的丙烯酸聚合物之紫外線(UV)B階段膜、或其他合適的材料。在一實施例中,可在半導體晶粒14安裝於臨時載體100上方之前設置黏著劑41於背側18上方。替代地,黏著劑41可在將嵌入式半導體晶粒44安裝至臨時載體100之前設置於臨時載體100上方。在其他實施例中,嵌入式半導體晶 粒41可在不使用黏著劑41的情況下直接安裝至界面層或支撐膠帶102或臨時載體100。 FIG. 3B shows that the embedded semiconductor die 44 of FIG. 1 is mounted face up to the temporary carrier 100 and the interface layer 102 with the back side 18 oriented toward the temporary carrier 100 and the active surface 20 oriented away from the temporary carrier 100. The semiconductor die 14 may be placed above the temporary carrier 100 using a pick-and-place operation or other suitable operations. As shown in FIG. 1, the adhesive 41 may be optionally disposed between the back side 18 of the semiconductor die 14 and the temporary carrier 100. The adhesive 41 (when present) may be a thermal epoxy resin, an epoxy resin, a B-stage epoxy resin film, an ultraviolet (UV) B-stage film containing an optional acrylic polymer, or other suitable materials. In one embodiment, an adhesive 41 may be placed above the back side 18 before the semiconductor die 14 is mounted above the temporary carrier 100. Alternatively, the adhesive 41 may be disposed above the temporary carrier 100 before mounting the embedded semiconductor die 44 to the temporary carrier 100. In other embodiments, the embedded semiconductor crystal The pellet 41 can be directly mounted to the interface layer or the support tape 102 or the temporary carrier 100 without using the adhesive 41.

各嵌入式半導體晶粒44可安裝至臨時載體100,各嵌入式半導體晶粒44相鄰於或橫向接觸對應組件總成82。當安裝於臨時載體100上方時可藉由空間或間隙104使成對的嵌入式半導體晶粒44及組件總成82分開,以提供後續形成的半導體組件封裝之鋸道或離距104。在一些情況下,空間104之一部分可用於後續形成的扇出型互連結構。儘管圖3A及圖3B展示組件總成82在嵌入式半導體晶粒44之前安裝至臨時載體100,但是在其他情況下,嵌入式半導體晶粒44可在組件總成82之前首先安裝至臨時載體100。在安裝嵌入式半導體晶粒44及組件總成82至臨時載體100過程中,組件總成82亦可安裝、耦接、或附接至嵌入式半導體晶粒44。為了安裝,組件總成82亦可被翻轉,諸如其中其等之第一側面86定向成朝向臨時載體100,使得導電跡線54垂直定向,而非水平定向,從而使得導電跡線54可提供穿過最終半導體組件封裝142、於重構板材112或半導體組件封裝142之前表面116與背表面118之間完全延伸的垂直互連。在另一情況下,可水平安裝組件總成及SMD 70,或在相對於圖3B中所示者旋轉90度的情況下安裝組件總成及SMD 70,使得導電跡線54與臨時載體100平行或實質上平行,諸如在0至10度、0至5度、或0至1度內。 Each embedded semiconductor die 44 may be mounted to the temporary carrier 100, and each embedded semiconductor die 44 is adjacent to or laterally contacts the corresponding component assembly 82. When installed above the temporary carrier 100, the pair of embedded semiconductor die 44 and the component assembly 82 can be separated by a space or gap 104 to provide a saw path or distance 104 for a semiconductor component package to be formed later. In some cases, a portion of the space 104 may be used for a fan-out interconnect structure formed later. Although FIGS. 3A and 3B show that the component assembly 82 is mounted to the temporary carrier 100 before the embedded semiconductor die 44, in other cases, the embedded semiconductor die 44 may be first mounted to the temporary carrier 100 before the component assembly 82 . During the installation of the embedded semiconductor die 44 and the component assembly 82 to the temporary carrier 100, the component assembly 82 may also be installed, coupled, or attached to the embedded semiconductor die 44. For installation, the component assembly 82 can also be flipped, such that the first side 86 thereof is oriented toward the temporary carrier 100 so that the conductive traces 54 are oriented vertically instead of horizontally, so that the conductive traces 54 can provide through Through the final semiconductor component package 142, a vertical interconnection extending completely between the front surface 116 and the back surface 118 of the reconstructed sheet 112 or the semiconductor component package 142. In another case, the component assembly and SMD 70 may be installed horizontally, or the component assembly and SMD 70 may be installed rotated 90 degrees relative to the one shown in FIG. 3B so that the conductive trace 54 is parallel to the temporary carrier 100 Or substantially parallel, such as within 0 to 10 degrees, 0 to 5 degrees, or 0 to 1 degree.

圖3C展示利用一第二囊封物或模製化合物110囊封複數個組件總成82及嵌入式半導體晶粒44或半導體晶粒14,第二囊封物或模製化合物110形成為圍繞組件總成82、嵌入式半導體晶粒44或半導體晶粒14,並且形成於空間104內,同時經單切的組件總成82、嵌入式半導體晶粒44、及半導體晶粒14安裝至臨時載體100以形成一重構板材或晶圓112。第二囊封物110可與第一囊封物78、囊封物42、或兩者類似或相同,並且可使用膏印刷、壓縮模製、轉移模製、液體囊封物模製、層壓、真空層壓、旋塗、或其他合適的施用器沉積。第二囊封物110可係聚合物複合材料,諸如含填料之環氧樹脂、含填料之環氧丙烯酸酯、或含適當的填料之聚合物,其可係非導電性並在環境上保護嵌入式半導體晶粒44及組件總成82免於外部元素及污染物的侵害。在一些情況下,重構板材或晶圓112亦可於基材內包括至少一導孔或垂直互連,該至少一導孔或垂直互連於重構板材112之底部表面116與頂部表面118之間延伸,並且可暴露在重構板材112之底部表面116及頂部表面118。 FIG. 3C shows that a second encapsulant or molding compound 110 is used to encapsulate a plurality of component assemblies 82 and embedded semiconductor die 44 or semiconductor die 14. The second encapsulant or molding compound 110 is formed to surround the device The assembly 82, the embedded semiconductor die 44 or the semiconductor die 14, and formed in the space 104, while the single-cut component assembly 82, the embedded semiconductor die 44, and the semiconductor die 14 are mounted to the temporary carrier 100 To form a reconstructed sheet or wafer 112. The second encapsulate 110 may be similar to or the same as the first encapsulate 78, encapsulate 42, or both, and may use paste printing, compression molding, transfer molding, liquid encapsulation molding, lamination , Vacuum lamination, spin coating, or other suitable applicator deposition. The second encapsulant 110 may be a polymer composite material, such as an epoxy resin with filler, an epoxy acrylate with filler, or a polymer with suitable filler, which may be non-conductive and environmentally friendly to embed The semiconductor die 44 and the assembly 82 are protected from external elements and contaminants. In some cases, the reconstructed plate or wafer 112 may also include at least one via hole or vertical interconnection in the substrate, the at least one via hole or vertical interconnection between the bottom surface 116 and the top surface 118 of the reconstructed plate 112 It extends between and can be exposed on the bottom surface 116 and the top surface 118 of the reconstructed sheet 112.

重構板材112可經歷使用研磨機114之一研磨操作,以平坦化重構板材112之前表面116並減小重構板材112之厚度。亦可使用化學蝕刻以移除並平坦化重構板材112之一部分。研磨操作可使嵌入式半導體晶粒44之導電互連28暴露以及使經暴露的導電跡線84相 對於第二囊封物110暴露在組件總成82之第一側面86。重構板材112亦可經歷使用研磨機114之一研磨操作,以平坦化重構板材112之背表面118並減小重構板材112之厚度。研磨操作亦可使經暴露的導電跡線84相對於第二囊封物110暴露在組件總成82之第二側面88。 The reconstructed board 112 may undergo a grinding operation using one of the grinders 114 to flatten the front surface 116 of the reconstructed board 112 and reduce the thickness of the reconstructed board 112. Chemical etching can also be used to remove and planarize a portion of the reconstructed sheet 112. The grinding operation may expose the conductive interconnects 28 of the embedded semiconductor die 44 and expose the exposed conductive traces 84 The second encapsulant 110 is exposed on the first side 86 of the assembly 82. The reconstructed plate 112 may also undergo a grinding operation using one of the grinders 114 to flatten the back surface 118 of the reconstructed plate 112 and reduce the thickness of the reconstructed plate 112. The grinding operation may also expose the exposed conductive trace 84 to the second side 88 of the assembly 82 relative to the second encapsulant 110.

圖3D展示一第一堆積(build-up)互連結構120形成於重構板材112之前表面116上方。堆積互連結構120可包含任何所欲數目的導電層及絕緣層,其取決於最終裝置或半導體組件封裝142之組態、設計、及路由需要。關於圖3D展示並描述堆積互連結構120之非限制性實例。堆積互連結構120可包含一導電層或重分布層(RDL)124,導電層或重分布層124經圖案化並沉積於嵌入式半導體晶粒44(包括導電互連28)及組件總成82(包括焊接墊58及經暴露的導電跡線84)上方。在一些情況下,導電層124可直接形成於重構板材112之前表面116上,或接觸重構板材112之前表面116。在其他情況下,一中間絕緣層或鈍化層122可形成於導電層124及前表面116上或設置於導電層124與前表面116之間。當中間絕緣層或鈍化層122存在時,絕緣層122可係藉由PVD、CVD、網板印刷、旋塗、噴塗、燒結、或熱氧化形成的SiO2、Si3N4、SiON、Ta2O5、Al2O3、聚醯亞胺、BCB、PBO、或具有類似的絕緣及結構性質之其他材料之一或多個層。 FIG. 3D shows that a first build-up interconnect structure 120 is formed above the front surface 116 of the reconstructed sheet 112. The stacked interconnect structure 120 may include any desired number of conductive layers and insulating layers, depending on the configuration, design, and routing needs of the final device or semiconductor device package 142. A non-limiting example of stacked interconnect structure 120 is shown and described with respect to FIG. 3D. The stacked interconnect structure 120 may include a conductive layer or redistribution layer (RDL) 124 that is patterned and deposited on the embedded semiconductor die 44 (including the conductive interconnect 28) and the device assembly 82 (Including solder pads 58 and exposed conductive traces 84) above. In some cases, the conductive layer 124 may be directly formed on or contact the front surface 116 of the reconstructed plate 112. In other cases, an intermediate insulating layer or passivation layer 122 may be formed on the conductive layer 124 and the front surface 116 or disposed between the conductive layer 124 and the front surface 116. When the intermediate insulating layer or the passivation layer 122 is present, the insulating layer 122 may be SiO2, Si3N4, SiON, Ta2O5, Al2O3, polyacrylic acid formed by PVD, CVD, screen printing, spin coating, spray coating, sintering, or thermal oxidation. One or more layers of imine, BCB, PBO, or other materials with similar insulating and structural properties.

導電層124可係Al、Cu、Sn、Ni、Au、Ag、Ti/Cu、TiW/Cu、或偶合劑/Cu或其他合適的導電材料之一或多個層。可使用PVD、CVD、電解電鍍、無電解電鍍、或其他合適的程序形成導電層124。在一實施例中,導電層124係一RDL,其包含一TiW種層、一Cu種層、及形成於TiW種層及Cu種層上方之Cu層。為了在完成的半導體組件封裝內的點之中傳送電信號,導電層124可在導電互連28、焊接墊58、經暴露的導電跡線84、及完成的半導體組件封裝142內之其他特徵之間提供電互連。 The conductive layer 124 may be one or more layers of Al, Cu, Sn, Ni, Au, Ag, Ti/Cu, TiW/Cu, or coupling agent/Cu or other suitable conductive materials. The conductive layer 124 may be formed using PVD, CVD, electrolytic plating, electroless plating, or other suitable procedures. In one embodiment, the conductive layer 124 is an RDL, which includes a TiW seed layer, a Cu seed layer, and a Cu layer formed above the TiW seed layer and the Cu seed layer. In order to transmit electrical signals among points within the completed semiconductor device package, conductive layer 124 may be among conductive interconnects 28, bonding pads 58, exposed conductive traces 84, and other features within completed semiconductor device package 142 Provide electrical interconnection.

當諸如為了形成重構板材112在放置及囊封於臨時載體100上期間而使嵌入式半導體晶粒44及組件總成82之位置自正常位置變動時,嵌入式半導體晶粒44及組件總成82之真實或實際位置會未充分對準堆積互連結構120或導電層124之標稱設計,以提供給定所欲路由密度及節距公差的封裝互連所欲的可靠性。當嵌入式半導體晶粒44及組件總成82之位置變動小時,可不需調整導電層124之位置以適當地對準導電層124與嵌入式半導體晶粒44及組件總成82。然而,當嵌入式半導體晶粒44及組件總成82於重構板材112內之位置的變化為使得標稱位置無法提供適當的與導電層122的對準及對於導電層122的暴露時,可藉由Adaptive PatterningTM或單元特定圖案化(下文中,「單元特定圖案化(unit specific patterning)」)如2013年5 月9日申請之美國專利申請案第13/891,006號中更詳細所述進行堆積互連結構120位置之調整,該案之揭露內容以引用方式併入本文。因此,互連結構120及導電層124之位置、對準、或位置及對準可藉由x-y移動、藉由角θ之旋轉、藉由兩者、或藉由相對於其等之標稱位置或相對於重構板材112上之參考點或基準點來調整,從而保持嵌入式半導體晶粒44與模組封裝輪廓之間以及組件總成82與模組封裝輪廓之間的恆定對準。 When the positions of the embedded semiconductor die 44 and the assembly assembly 82 change from their normal positions, such as during the placement and encapsulation on the temporary carrier 100 to form the reconstructed sheet 112, the embedded semiconductor die 44 and the assembly assembly The actual or actual position of 82 may not be sufficiently aligned with the nominal design of the stacked interconnect structure 120 or the conductive layer 124 to provide the desired reliability of package interconnects given the desired routing density and pitch tolerance. When the position of the embedded semiconductor die 44 and the device assembly 82 is small, there is no need to adjust the position of the conductive layer 124 to properly align the conductive layer 124 with the embedded semiconductor die 44 and the device assembly 82. However, when the position of the embedded semiconductor die 44 and the component assembly 82 within the reconstructed sheet 112 changes so that the nominal position cannot provide proper alignment with and exposure to the conductive layer 122, it may be By Adaptive Patterning TM or unit specific patterning (hereinafter, “unit specific patterning”) as described in more detail in US Patent Application No. 13/891,006 filed on May 9, 2013 The adjustment of the position of the stacked interconnect structure 120, the disclosure content of the case is incorporated herein by reference. Therefore, the position, alignment, or position and alignment of the interconnect structure 120 and the conductive layer 124 can be moved by xy, by rotation by the angle θ, by both, or by nominal positions relative to them, etc. Or it is adjusted relative to the reference point or reference point on the reconstructed plate 112, so as to maintain a constant alignment between the embedded semiconductor die 44 and the module package outline and between the component assembly 82 and the module package outline.

圖3D進一步展示絕緣層或鈍化層126保形施加於導電層124及絕緣層122(若存在)上方並接觸導電層124及絕緣層122。絕緣層126可係使用PVD、CVD、網板印刷、旋塗、噴塗、燒結、熱氧化、或其他合適的程序施加的SiO2、Si3N4、SiON、Ta2O5、Al2O3、聚醯亞胺、BCB、PBO、乾膜抗蝕層、或具有類似的絕緣及結構性質之其他材料之一或多個層。絕緣層126可經圖案化,並且可藉由蝕刻、雷射鑽孔、機械鑽孔、或其他合適的程序移除絕緣層126之一部分,以形成完全穿過絕緣層126之開口以暴露導電層124。絕緣層126中之開口可用於接收凸塊、球、或互連結構128。 FIG. 3D further shows that the insulating layer or passivation layer 126 is conformally applied over the conductive layer 124 and the insulating layer 122 (if present) and contacts the conductive layer 124 and the insulating layer 122. The insulating layer 126 may be SiO2, Si3N4, SiON, Ta2O5, Al2O3, polyimide, BCB, PBO, applied using PVD, CVD, screen printing, spin coating, spraying, sintering, thermal oxidation, or other suitable procedures. One or more layers of dry film resist, or other materials with similar insulating and structural properties. The insulating layer 126 may be patterned, and a portion of the insulating layer 126 may be removed by etching, laser drilling, mechanical drilling, or other suitable procedures to form an opening completely through the insulating layer 126 to expose the conductive layer 124. The opening in the insulating layer 126 may be used to receive bumps, balls, or interconnect structures 128.

可藉由使用蒸鍍、電解電鍍、無電解電鍍、球滴、或網板印刷程序沉積導電凸塊材料於導電層124之部分(其等可形成為凸塊下金屬化(UBM)墊)上方來形成凸塊128。凸塊材料可係Al、Sn、Ni、Au、Ag、 Pb、Bi、Cu、焊料、及其等之組合連同一可選的助焊劑溶液。例如、凸塊材料可係共熔Sn/Pb、高鉛焊料、或無鉛焊料。可使用一合適的附接或接合程序,將凸塊材料接合至導電層124。在一實施例中,可藉由將凸塊材料加熱至高於其熔點來使凸塊材料回焊,以形成凸塊128。在一些應用中,凸塊128被第二次回焊以改良至導電層124之電接觸。凸塊128亦可被壓縮接合或熱壓接合至導電層124。凸塊128表示可形成於導電層124上方的一種類型互連結構。凸塊128亦可包含柱形凸塊、微凸塊、或其他電互連。 The conductive bump material can be deposited on the portion of the conductive layer 124 (which can be formed as an under bump metallization (UBM) pad) by using evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process To form bumps 128. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and their combinations can be combined with an optional flux solution. For example, the bump material may be eutectic Sn/Pb, high-lead solder, or lead-free solder. A suitable attachment or bonding procedure may be used to bond the bump material to the conductive layer 124. In one embodiment, the bump material may be reflowed by heating the bump material above its melting point to form the bump 128. In some applications, the bump 128 is reflowed a second time to improve the electrical contact to the conductive layer 124. The bump 128 may also be compression bonded or thermocompression bonded to the conductive layer 124. The bump 128 represents a type of interconnect structure that can be formed over the conductive layer 124. The bump 128 may also include pillar bumps, micro bumps, or other electrical interconnects.

圖3E展示重構板材112,其中第一堆積互連結構120形成於重構板材112上,且從臨時載體100移除重構板材112,在此之後臨時載體可以可選地經歷一研磨操作(該研磨操作與圖3C之研磨操作類似,但係在背表面118而不是在前表面116)以平坦化背表面118,以減少重構板材112之厚度,並且使經暴露的導電跡線84相對於第二囊封物110或背表面118暴露在組件總成82之第二側面88。因此,在各種實施例中,經暴露的導電跡線84(如導電跡線54及焊接墊58)可暴露在僅第一側面86、僅暴露在第二側面88,或可暴露在第一側面86及第二側面88兩者。在一些情況下,經暴露的導電跡線84相對於第二囊封物110暴露,然而在其他情況下,經暴露的導電跡線84相對於第一側面86、第二側面88、或兩者暴露。 3E shows a reconstructed sheet 112, in which a first stacked interconnect structure 120 is formed on the reconstructed sheet 112, and the reconstructed sheet 112 is removed from the temporary carrier 100, after which the temporary carrier may optionally undergo a grinding operation ( This polishing operation is similar to the polishing operation of FIG. 3C, but it is on the back surface 118 instead of the front surface 116) to planarize the back surface 118 to reduce the thickness of the reconstructed sheet 112 and to expose the exposed conductive traces 84 The second encapsulant 110 or the back surface 118 is exposed to the second side 88 of the assembly 82. Thus, in various embodiments, the exposed conductive traces 84 (such as conductive traces 54 and solder pads 58) may be exposed on only the first side 86, only on the second side 88, or may be exposed on the first side Both 86 and the second side 88. In some cases, the exposed conductive trace 84 is exposed relative to the second encapsulant 110, while in other cases, the exposed conductive trace 84 is relative to the first side 86, the second side 88, or both Exposed.

在經暴露的導電跡線84暴露在組件總成82之第二側面88的情況下,第二堆積互連結構130可形成於重構板材112之背表面118上方。堆積互連結構130可包含任何所欲數目的導電層及絕緣層,其取決於最終裝置或半導體組件封裝142之組態、設計、及路由需要。關於圖3E展示並描述堆積互連結構130之非限制性實例。堆積互連結構130可包含一導電層或重分布層(RDL)134,導電層或重分布層134經圖案化並沉積於嵌入式半導體晶粒44上方及組件總成82(包括焊接墊58及經暴露的導電跡線84)上方。在一些情況下,導電層134可直接形成於重構板材112之背表面118上或接觸重構板材112之背表面118。在其他情況下,一中間絕緣層或鈍化層132可形成於導電層134及背表面118上或設置於導電層134與背表面118之間。當中間絕緣層或鈍化層132存在時,絕緣層132可係藉由PVD、CVD、網板印刷、旋塗、噴塗、燒結、或熱氧化形成的SiO2、Si3N4、SiON、Ta2O5、Al2O3、聚醯亞胺、BCB、PBO、或具有類似的絕緣及結構性質之其他材料之一或多個層。 With the exposed conductive trace 84 exposed to the second side 88 of the assembly 82, the second stacked interconnect structure 130 may be formed over the back surface 118 of the reconstructed sheet 112. The stacked interconnect structure 130 may include any desired number of conductive layers and insulating layers, depending on the configuration, design, and routing needs of the final device or semiconductor device package 142. A non-limiting example of stacked interconnect structure 130 is shown and described with respect to FIG. 3E. The stacked interconnect structure 130 may include a conductive layer or redistribution layer (RDL) 134 that is patterned and deposited over the embedded semiconductor die 44 and the device assembly 82 (including the bonding pad 58 and Above exposed conductive trace 84). In some cases, the conductive layer 134 may be directly formed on or contact the back surface 118 of the reconstructed plate 112. In other cases, an intermediate insulating layer or passivation layer 132 may be formed on the conductive layer 134 and the back surface 118 or disposed between the conductive layer 134 and the back surface 118. When the intermediate insulating layer or the passivation layer 132 is present, the insulating layer 132 may be SiO2, Si3N4, SiON, Ta2O5, Al2O3, polyacrylic formed by PVD, CVD, screen printing, spin coating, spray coating, sintering, or thermal oxidation One or more layers of imine, BCB, PBO, or other materials with similar insulating and structural properties.

導電層134可係Al、Cu、Sn、Ni、Au、Ag、Ti/Cu、TiW/Cu、或偶合劑/Cu或其他合適的導電材料之一或多個層。可使用PVD、CVD、電解電鍍、無電解電鍍、或其他合適的程序形成導電層134。在一實施例中,導電層134係一RDL或扇出型RDL,其包含 一TiW種層、一Cu種層、及形成於TiW種層及Cu種層上方之Cu層。為了在完成的半導體組件封裝內的點之中傳送電信號,導電層134可提供焊接墊58、經暴露的導電跡線84、及完成的半導體組件封裝142內之其他特徵之間的電互連。 The conductive layer 134 may be one or more layers of Al, Cu, Sn, Ni, Au, Ag, Ti/Cu, TiW/Cu, or coupling agent/Cu or other suitable conductive materials. The conductive layer 134 may be formed using PVD, CVD, electrolytic plating, electroless plating, or other suitable procedures. In one embodiment, the conductive layer 134 is an RDL or fan-out RDL, which includes A TiW seed layer, a Cu seed layer, and a Cu layer formed above the TiW seed layer and the Cu seed layer. In order to transmit electrical signals among points within the completed semiconductor device package, conductive layer 134 may provide electrical interconnection between bonding pads 58, exposed conductive traces 84, and other features within completed semiconductor device package 142 .

當諸如為了形成重構板材112在放置及囊封於臨時載體100上期間而使嵌入式半導體晶粒44及組件總成82之位置自正常位置變動時,嵌入式半導體晶粒44及組件總成82之真實或實際位置會未充分對準堆積互連結構130或導電層134之標稱設計,以提供給定所欲路由密度及節距公差的封裝互連所欲的可靠性。當嵌入式半導體晶粒44及組件總成82之位置變動小時,可不需調整導電層134之位置以適當地對準導電層134與嵌入式半導體晶粒44及組件總成82。然而,當嵌入式半導體晶粒44及組件總成82於重構板材112內之位置的變化為使得標稱位置無法提供適當的與導電層132的對準及對於導電層132的暴露時,可藉由單元特定圖案化進行堆積互連結構130位置之調整。因此,互連結構130及導電層134之位置、對準、或位置及對準可藉由x-y移動、藉由角θ之旋轉、藉由兩者、或藉由相對於其等之標稱位置或相對於重構板材112上之參考點或基準點來調整,從而保持嵌入式半導體晶粒44與模組封裝輪廓之間以及組件總成82與模組封裝輪廓之間的恆定對準。 When the positions of the embedded semiconductor die 44 and the assembly assembly 82 change from their normal positions, such as during the placement and encapsulation on the temporary carrier 100 to form the reconstructed sheet 112, the embedded semiconductor die 44 and the assembly assembly The actual or actual position of 82 may not be sufficiently aligned with the nominal design of the stacked interconnect structure 130 or the conductive layer 134 to provide the desired reliability of package interconnects given the desired routing density and pitch tolerance. When the positions of the embedded semiconductor die 44 and the device assembly 82 are small, there is no need to adjust the position of the conductive layer 134 to properly align the conductive layer 134 with the embedded semiconductor die 44 and the device assembly 82. However, when the position of the embedded semiconductor die 44 and the component assembly 82 within the reconstructed sheet 112 changes so that the nominal position cannot provide proper alignment with and exposure to the conductive layer 132, it may be The position of the stacked interconnect structure 130 is adjusted by cell-specific patterning. Therefore, the position, alignment, or position and alignment of the interconnect structure 130 and the conductive layer 134 can be moved by xy, by rotation of the angle θ, by both, or by nominal positions relative to them, etc. Or it is adjusted relative to the reference point or reference point on the reconstructed plate 112, so as to maintain a constant alignment between the embedded semiconductor die 44 and the module package outline and between the component assembly 82 and the module package outline.

圖3E進一步展示絕緣層或鈍化層136保形施加於導電層134及絕緣層132(若存在)上方並接觸導電層134及絕緣層132。絕緣層136可係使用PVD、CVD、網板印刷、旋塗、噴塗、燒結、熱氧化、或其他合適的程序施加的SiO2、Si3N4、SiON、Ta2O5、Al2O3、聚醯亞胺、BCB、PBO、乾膜抗蝕層、或具有類似的絕緣及結構性質之其他材料之一或多個層。絕緣層136可經圖案化,並且可藉由蝕刻、雷射鑽孔、機械鑽孔、或其他合適的程序移除絕緣層136之一部分,以形成完全穿過絕緣層136之開口138以暴露導電層134。絕緣層136中之開口138可暴露導電層134之部分(其等呈堆疊式封裝(POP)焊接墊或SMD焊接墊139形成於第二堆積互連結構130之頂部路由層上),用於接收凸塊、球、或互連結構128以及其他裝置、封裝、SMD、表面安裝裝置(SMD)、表面安裝組件(例如經封裝的IC、被動組件、連接器、機械零件、EMI屏蔽)、或至基材或其他裝置之安裝。 FIG. 3E further shows that the insulating layer or passivation layer 136 is conformally applied over the conductive layer 134 and the insulating layer 132 (if present) and contacts the conductive layer 134 and the insulating layer 132. The insulating layer 136 may be SiO2, Si3N4, SiON, Ta2O5, Al2O3, polyimide, BCB, PBO, applied using PVD, CVD, screen printing, spin coating, spray coating, sintering, thermal oxidation, or other suitable procedures. One or more layers of dry film resist, or other materials with similar insulating and structural properties. The insulating layer 136 may be patterned, and a portion of the insulating layer 136 may be removed by etching, laser drilling, mechanical drilling, or other suitable procedures to form an opening 138 completely through the insulating layer 136 to expose the conductive Layer 134. The opening 138 in the insulating layer 136 may expose a portion of the conductive layer 134 (which is formed as a POP pad or SMD pad 139 formed on the top routing layer of the second stacked interconnect structure 130) for receiving Bumps, balls, or interconnect structures 128 and other devices, packages, SMDs, surface mount devices (SMD), surface mount components (such as packaged ICs, passive components, connectors, mechanical parts, EMI shielding), or to Installation of substrates or other devices.

在形成第一堆積互連結構120及第二堆積互連結構130之後,重構板材以及第一堆積互連120及第二堆積互連130可使用一鋸刃或雷射切割工具140單切成個別半導體組件封裝142。 After forming the first stacked interconnection structure 120 and the second stacked interconnection structure 130, the reconstructed sheet material and the first stacked interconnection 120 and the second stacked interconnection 130 may be cut into single pieces using a saw blade or a laser cutting tool 140 Individual semiconductor package 142.

圖3F展示圖3E之半導體封裝142之放大圖。如所示,重構板材或晶圓112可包含約0.43mm之一高度H1,並且包括第一堆積互連結構120及第二堆積 互連結構130之高度之總體封裝高度H2可係0.5mm、或約0.5mm,諸如0.3mm至0.7mm。第一堆積互連結構120及第二堆積互連結構130可耦接至貫穿模型的導電跡線54及SMD 70之焊接墊58,並且直接電連通貫穿模具(through mold)的導電跡線54及SMD 70之焊接墊58,從而提供封裝142之底部表面144與封裝142之頂部表面146之間的垂直電互連。在一些情況下,組件總成82可被鋸成略微大於成品高度或厚度H1,使得在頂部及底部研磨步驟中可使垂直貫穿模具的導電跡線54暴露,諸如利用如圖3C中所示之研磨機114在研磨前表面116及在形成第二堆積互連結構130之前研磨背表面118期間,如圖3E中所示。 FIG. 3F shows an enlarged view of the semiconductor package 142 of FIG. 3E. As shown, the reconstructed sheet or wafer 112 may include a height H1 of about 0.43 mm, and includes a first stacked interconnect structure 120 and a second stacked The overall package height H2 of the height of the interconnect structure 130 may be 0.5 mm, or about 0.5 mm, such as 0.3 mm to 0.7 mm. The first stacked interconnect structure 120 and the second stacked interconnect structure 130 may be coupled to the conductive traces 54 of the through-mold and the solder pads 58 of the SMD 70, and directly electrically connect the conductive traces 54 of the through mold and the The solder pads 58 of the SMD 70 provide vertical electrical interconnection between the bottom surface 144 of the package 142 and the top surface 146 of the package 142. In some cases, component assembly 82 may be sawn slightly larger than the height or thickness H1 of the finished product, so that the conductive traces 54 extending vertically through the mold may be exposed during the top and bottom grinding steps, such as using as shown in FIG. 3C The grinder 114 grinds the back surface 118 before grinding the front surface 116 and before forming the second stacked interconnect structure 130, as shown in FIG. 3E.

半導體封裝142之改良的整合及減小的大小,包括具有焊料或Sn連接74之組件總成82的內含,特別適合小型電子系統(諸如智慧型表)及需要減小的外觀尺寸或可能最小外觀尺寸的其他IoT裝置。嵌入可軟焊組件82於3D扇出型晶圓級封裝或半導體組件封裝142之核心內的方法可包括:使用焊料回焊附接被動組件或主動組件70至一基材或PCB條50;包覆模製該條以囊封組件70;切分該條以形成離散模製組件82;及放置至少一模製組件總成82於一臨時載體100上,使得組件總成82內之導電跡線54經垂直定向,並且第一側表面86定向成朝向載體100並附接至載體100。 Improved integration and reduced size of semiconductor packages 142, including the inclusion of component assemblies 82 with solder or Sn connections 74, are particularly suitable for small electronic systems (such as smart watches) and require reduced external dimensions or possibly the smallest The appearance of other IoT devices. The method of embedding the solderable component 82 in the core of the 3D fan-out wafer level package or semiconductor component package 142 may include: using solder reflow to attach the passive component or active component 70 to a substrate or PCB strip 50; Overmolding the strip to encapsulate the assembly 70; cutting the strip to form discrete molded assemblies 82; and placing at least one molded assembly 82 on a temporary carrier 100 so that the conductive traces within the assembly 82 54 is vertically oriented, and the first side surface 86 is oriented toward and attached to the carrier 100.

該方法可進一步包括:放置具有導電互連28或鍍Cu凸塊之至少一半導體晶粒14於臨時載帶102上,半導體晶粒14相鄰於組件總成或模製被動件82;囊封臨時載體100以形成重構板材或晶圓112;研磨重構板材112以暴露半導體晶粒14上之導電互連或Cu凸塊28以及模製組件82內之導電跡線54(導電跡線54中之至少2條電連接至一SMD、被動組件、或主動組件70)而不暴露嵌入於組件總成或模製組件82內之焊料74;及形成一第一堆積互連結構或重分布層120於重構板材112上,以電連接半導體晶粒14上之至少一接觸墊22至SMD或嵌入式被動組件70上之至少一端子72。可選地,第二堆積互連結構或重分布層130可形成於重構板材112之相對的第二表面或側面118,接觸組件總成或離散模製組件82內之導電跡線54中之至少一者,使得產生穿過半導體組件封裝142之高度H1或厚度至半導體晶粒14上之接觸墊或接合墊22的電連接。 The method may further include: placing at least one semiconductor die 14 having conductive interconnects 28 or Cu-plated bumps on the temporary carrier tape 102, the semiconductor die 14 being adjacent to the assembly or molded passive member 82; encapsulation Temporary carrier 100 to form reconstructed sheet or wafer 112; grind reconstructed sheet 112 to expose conductive interconnects or Cu bumps 28 on semiconductor die 14 and conductive traces 54 (conductive traces 54) within mold assembly 82 At least two of them are electrically connected to an SMD, passive component, or active component 70) without exposing the solder 74 embedded in the component assembly or the molded component 82; and forming a first stacked interconnect structure or redistribution layer 120 on the reconstructed plate 112 to electrically connect at least one contact pad 22 on the semiconductor die 14 to at least one terminal 72 on the SMD or embedded passive component 70. Alternatively, a second stacked interconnect structure or redistribution layer 130 may be formed on the opposite second surface or side 118 of the reconstructed sheet 112, contacting one of the conductive traces 54 within the assembly or discrete molding assembly 82 At least one of them makes electrical connection through the height H1 or thickness of the semiconductor device package 142 to the contact pad or bonding pad 22 on the semiconductor die 14.

如圖3F中所示,半導體組件封裝142可包含一或多個半導體晶粒14以及SMD技術70,SMD技術70可包括其他半導體晶粒、IC、被動裝置、晶圓級晶片尺度封裝(WLCSP)及其他組件,SMD技術70安裝至嵌入式半導體晶粒44並包括於半導體組件封裝142內,而不是使SMD 70安裝至習知基材或PCB並從亦安裝至習知基材或PCB之半導體晶粒14或嵌入式半導體晶粒44偏離。 As shown in FIG. 3F, the semiconductor device package 142 may include one or more semiconductor dies 14 and SMD technology 70. The SMD technology 70 may include other semiconductor dies, ICs, passive devices, and wafer-level chip scale packaging (WLCSP) And other components, the SMD technology 70 is mounted to the embedded semiconductor die 44 and is included in the semiconductor device package 142, instead of mounting the SMD 70 to the conventional substrate or PCB and from the semiconductor die 14 to the conventional substrate or PCB The embedded semiconductor die 44 deviates.

因此,半導體組件封裝142可提供許多優點,包括:整合並使用標準的低成本的具有Sn終端的0201被動件;為了易於安裝至界面層或載帶材料102,SMD 70包含一平的第一側表面86;導電跡線54穿過半導體組件封裝142之高度H1用作或操作成3D或垂直互連結構,實現PoP組態;0201被動件整合成在0.5mm主體厚度內;相容於全模製晶圓級扇出型半導體封裝設計(包括Deca M-SeriesTM封裝);及外部組件總成不需要額外內部程序或設備且亦不需要額外循環時間。 Therefore, the semiconductor component package 142 can provide many advantages, including: integrating and using standard low-cost 0201 passive parts with Sn terminals; for easy installation to the interface layer or carrier tape material 102, the SMD 70 includes a flat first side surface 86; the height H1 of the conductive trace 54 passing through the semiconductor component package 142 is used or manipulated into a 3D or vertical interconnection structure to achieve a PoP configuration; 0201 passive parts are integrated within a thickness of 0.5mm; compatible with full molding Wafer-level fan-out semiconductor package design (including Deca M-Series TM package); and external component assembly does not require additional internal procedures or equipment and does not require additional cycle time.

在半導體組件封裝142之一些變化中,組件總成82之長度L可延伸並包括更多SMD或被動件70及更多貫穿模具的導電跡線54。在一些情況下,基材50可形成為多層基材以添加額外貫穿模具的導電跡線54。在其他情況下,SMD或被動件70可安裝於基材50之相對之第一表面56及第二相對表面60或基材核心52上方。當SMD 70安裝於基材50之相對表面上方時,可模製或囊封具有SMD 70之基材50之一或兩個側面。在又其他情況下,小的主動Si半導體晶粒可併入於具有SMD 70之基材50上。此外,在當SMD 70包括於包含一單側(2D)封裝結構之半導體組件封裝142內時的情況下,可在無第二堆積互連結構或RDL 130的情況下形成2D封裝結構,使得組件總成82可在水平定向的情況下安裝至界面層或板材載帶102,並且基材或引線架50 可面向上,使得在板材研磨程序或前研磨程序期間暴露POP或SMD焊接墊139,如圖3C中所示。 In some variations of the semiconductor device package 142, the length L of the device assembly 82 may extend and include more SMD or passive members 70 and more conductive traces 54 through the mold. In some cases, the substrate 50 may be formed as a multilayer substrate to add additional conductive traces 54 through the mold. In other cases, the SMD or passive member 70 may be installed above the opposing first surface 56 and second opposing surface 60 of the substrate 50 or the substrate core 52. When the SMD 70 is installed above the opposite surface of the substrate 50, one or both sides of the substrate 50 with the SMD 70 may be molded or encapsulated. In still other cases, small active Si semiconductor dies can be incorporated on the substrate 50 with the SMD 70. In addition, in the case when the SMD 70 is included in the semiconductor device package 142 including a single-sided (2D) package structure, the 2D package structure may be formed without the second stacked interconnect structure or the RDL 130, so that the device The assembly 82 can be mounted to the interface layer or sheet carrier tape 102 in a horizontal orientation, and the substrate or lead frame 50 It may face upwards so that the POP or SMD solder pad 139 is exposed during the sheet grinding process or the pre-grinding process, as shown in FIG. 3C.

雖然本揭露包括不同形式之數項實施例,但是在圖式及以下撰寫的說明書中呈現具體實施例之細節,且瞭解本揭露視為所揭示之方法及系統的範例及原理,並且非意圖使所揭示之概念之廣泛態樣限於所闡釋之實施例。此外,所屬技術領域中具有通常知識者應瞭解,其他結構、製造裝置及實例可與所提供之裝置及實例互混或取代所提供之裝置及實例。在上文描述參考特定實施例之處,應顯而易見,可進行數個修改而不會脫離其精神,並且顯而易見,這些實施例及實施方案亦可應用於其他技術。據此,所揭示之標的物意圖含括所有此類變更、修改及變化,彼等皆落入本揭露之精神及範疇以及所屬技術領域中具有通常知識者之知識內。因此,顯而易見的是,可在不脫離如隨附申請專利範圍中所闡述之本發明之較寬精神及範疇的情況下對其做出各種修改及改變。據此,應以說明性意義而非限制性意義來看待說明書及圖式。 Although this disclosure includes several embodiments in different forms, the details of specific embodiments are presented in the drawings and the description written below, and understanding the disclosure is regarded as an example and principle of the disclosed method and system, and is not intended to make The broad aspects of the disclosed concepts are limited to the illustrated embodiments. In addition, those of ordinary skill in the art should understand that other structures, manufacturing devices, and examples may be intermixed with or replace the devices and examples provided. Where the above description refers to specific embodiments, it should be apparent that several modifications can be made without departing from the spirit thereof, and it is obvious that these embodiments and implementations can also be applied to other technologies. Accordingly, the disclosed subject matter is intended to include all such changes, modifications, and changes, all of which fall within the spirit and scope of this disclosure and the knowledge of those with ordinary knowledge in the technical field to which they belong. Therefore, it is obvious that various modifications and changes can be made to it without departing from the broader spirit and scope of the invention as set forth in the scope of the accompanying patent application. Accordingly, the description and drawings should be viewed in an illustrative rather than a restrictive sense.

14‧‧‧半導體晶粒/組件 14‧‧‧Semiconductor die/component

18‧‧‧背側/背表面 18‧‧‧back side/back surface

20‧‧‧作用表面 20‧‧‧acting surface

22‧‧‧導電層/接觸墊/接合墊 22‧‧‧conductive layer/contact pad/bonding pad

26‧‧‧絕緣層/鈍化層 26‧‧‧Insulation layer/passivation layer

28‧‧‧導電互連/電互連結構 28‧‧‧conductive interconnection/electrical interconnection structure

30‧‧‧重構板材/板材/重構晶圓/晶圓 30‧‧‧Reconstructed sheet/sheet/reconstructed wafer/wafer

32‧‧‧鋸刃/雷射切割工具 32‧‧‧Saw blade/laser cutting tool

40‧‧‧間隙/鋸道 40‧‧‧Gap/Saw

41‧‧‧黏著劑 41‧‧‧ Adhesive

42‧‧‧囊封物 42‧‧‧Encapsulation

44‧‧‧嵌入式半導體晶粒 44‧‧‧Embedded semiconductor die

Claims (20)

一種製作一半導體組件封裝之方法,其包含:提供一基材,該基材包含導電跡線;利用焊料軟焊複數個表面安裝裝置(SMD)至該基材;利用一第一模製化合物囊封該複數個SMD於該基材上,該第一模製化合物在該複數個SMD上方或圍繞該複數個SMD;藉由分開該基材來單切該複數個SMD,以暴露該等導電跡線並形成複數個組件總成,該複數個組件總成在該等組件總成之一第一側面及該等組件總成之一第二側面包含經暴露的導電跡線,該等組件總成之該第二側面與該等組件總成之該第一側面相對;提供一臨時載體;安裝該等組件總成中之至少一者至該臨時載體,其中該至少一組件總成之該第一側面及該等經暴露的導電跡線定向成朝向該臨時載體;安裝包含一導電互連之一半導體晶粒至該臨時載體,該半導體晶粒相鄰於該等組件總成中之該至少一者;在該至少一經單切的組件總成及該半導體晶粒安裝至該臨時載體時,利用一第二模製化合物囊封該等 組件總成中之該至少一者及該半導體晶粒以形成一重構板材(panel);使該導電互連及該等經暴露的導電跡線相對於該第二模製化合物暴露在該至少一組件總成中之該第一側面或該第二側面;形成一第一重分布層於該第二模製化合物上方,以電連接該導電互連及該等經暴露的導電跡線;及單切該重構板材。 A method of manufacturing a semiconductor device package includes: providing a substrate including conductive traces; using solder to solder a plurality of surface mount devices (SMD) to the substrate; using a first molded compound capsule Sealing the plurality of SMDs on the substrate, the first molding compound is above or around the plurality of SMDs; the plurality of SMDs are singulated by separating the substrate to expose the conductive traces Wires and form a plurality of component assemblies that include exposed conductive traces on one of the first sides of the component assemblies and a second side of the component assemblies, the component assemblies The second side is opposite to the first side of the assembly; providing a temporary carrier; installing at least one of the assembly to the temporary carrier, wherein the first of the at least one assembly The sides and the exposed conductive traces are oriented toward the temporary carrier; mounting a semiconductor die including a conductive interconnect to the temporary carrier, the semiconductor die adjacent to the at least one of the component assemblies When the at least one single-cut component assembly and the semiconductor die are mounted to the temporary carrier, a second molding compound is used to encapsulate the The at least one of the component assemblies and the semiconductor die to form a reconstructed panel; exposing the conductive interconnect and the exposed conductive traces to the at least one with respect to the second molding compound The first side or the second side in a component assembly; forming a first redistribution layer above the second molding compound to electrically connect the conductive interconnect and the exposed conductive traces; and Cut the reconstructed sheet in one piece. 如請求項1之方法,其中該基材包含一兩層層壓層、一印製電路板(PCB)、或一坯料(blank)模製化合物板材。 The method of claim 1, wherein the substrate comprises a two-layer laminate layer, a printed circuit board (PCB), or a blank molded compound board. 如請求項1之方法,其中該等組件總成包含被動裝置。 The method of claim 1, wherein the component assemblies include passive devices. 如請求項1之方法,其中該半導體晶粒係一嵌入式半導體晶粒,該嵌入式半導體晶粒包含耦接至該半導體晶粒並相對於該第二模製化合物暴露之該導電互連。 The method of claim 1, wherein the semiconductor die is an embedded semiconductor die, the embedded semiconductor die including the conductive interconnect coupled to the semiconductor die and exposed relative to the second molding compound. 如請求項1之方法,其中該導電互連包含銅凸塊、支柱(pillar)、立柱(post)、或厚RDL跡線。 The method of claim 1, wherein the conductive interconnect comprises copper bumps, pillars, posts, or thick RDL traces. 如請求項1之方法,其中耦接該等經單切的組件總成中之該至少一者至該基材之該焊料含於該半導體組件封裝內,且相對於該半導體組件封裝不為暴露。 The method of claim 1, wherein the solder coupling the at least one of the singulated device assemblies to the substrate is contained in the semiconductor device package and is not exposed relative to the semiconductor device package . 一種製作一半導體組件封裝之方法,其包含:提供一基材,該基材包含導電跡線;利用焊料附接一表面安裝裝置(SMD)至該基材以形成一組件總成;安裝該組件總成至一臨時載體,其中該組件總成之一第一側面定向成朝向該臨時載體;安裝包含一導電互連之一半導體晶粒至該臨時載體,該半導體晶粒相鄰於該組件總成;在該組件總成及該半導體晶粒安裝至該臨時載體時,利用一模製化合物囊封該組件總成及該半導體晶粒以形成一重構板材;及使該導電互連及該等導電跡線相對於該模製化合物暴露在該組件總成之該第一側面或該第二側面。 A method for manufacturing a semiconductor component package includes: providing a substrate including conductive traces; attaching a surface mount device (SMD) to the substrate using solder to form a component assembly; mounting the component Assembly to a temporary carrier, wherein a first side of the assembly is oriented towards the temporary carrier; a semiconductor die including a conductive interconnect is mounted to the temporary carrier, the semiconductor die is adjacent to the assembly When the component assembly and the semiconductor die are mounted on the temporary carrier, a molding compound is used to encapsulate the component assembly and the semiconductor die to form a reconstructed sheet; and the conductive interconnect and the Equal conductive traces are exposed to the first side or the second side of the assembly relative to the molding compound. 如請求項7之方法,其中該基材包含一兩層層壓層、一印製電路板(PCB)、或一坯料模製化合物板材。 The method of claim 7, wherein the substrate comprises a two-layer laminate, a printed circuit board (PCB), or a blank molded compound board. 如請求項7之方法,其進一步包含在安裝該組件總成至該臨時載體之前,利用額外模製化合物囊封該SMD於該基材上,該額外模製化合物在該SMD上方並圍繞該SMD。 The method of claim 7, further comprising encapsulating the SMD on the substrate with an additional molding compound before mounting the assembly to the temporary carrier, the additional molding compound over and around the SMD . 如請求項7之方法,其中該半導體晶粒係一嵌入式半導體晶粒,其包含耦接至該半導體晶粒並相 對於該模製化合物暴露之該導電互連,其中該導電互連包含銅凸塊、支柱、立柱、或厚RDL跡線。 The method of claim 7, wherein the semiconductor die is an embedded semiconductor die, which includes a phase coupled to the semiconductor die For the conductive interconnect exposed to the molding compound, where the conductive interconnect includes copper bumps, pillars, posts, or thick RDL traces. 如請求項7之方法,其中耦接該組件總成至該基材之該焊料含於該組件總成內,且相對於該組件總成不為暴露。 The method of claim 7, wherein the solder coupling the component assembly to the substrate is contained in the component assembly and is not exposed relative to the component assembly. 如請求項7之方法,其中暴露該導電互連及該等導電跡線進一步包含:從該重構板材移除該臨時載體並研磨該重構板材。 The method of claim 7, wherein exposing the conductive interconnect and the conductive traces further comprises: removing the temporary carrier from the reconstructed sheet and grinding the reconstructed sheet. 如請求項7之方法,其進一步包含:形成一第一重分布層於該重構板材上方,以電連接該導電互連及該等導電跡線;及形成與該第一重分布層相對之一第二重分布層,以電連接該等經暴露的導電跡線以穿過該半導體組件封裝之一厚度形成一電連接。 The method of claim 7, further comprising: forming a first redistribution layer above the reconstructed sheet to electrically connect the conductive interconnects and the conductive traces; and forming the first redistribution layer opposite A second redistribution layer electrically connects the exposed conductive traces to pass through a thickness of the semiconductor device package to form an electrical connection. 一種製作一半導體組件封裝之方法,其包含:提供一基材,該基材包含導電跡線;利用焊料附接一表面安裝裝置(SMD)至該基材;安裝該SMD及該基材至一臨時載體;安裝包含一導電互連之一半導體晶粒,該半導體晶粒相鄰於該SMD;施配模製化合物於該臨時載體上方;及 使該導電互連及該等導電跡線相對於該模製化合物暴露。 A method of manufacturing a semiconductor device package includes: providing a substrate including conductive traces; attaching a surface mount device (SMD) to the substrate using solder; mounting the SMD and the substrate to a A temporary carrier; mounting a semiconductor die including a conductive interconnect, the semiconductor die adjacent to the SMD; applying a molding compound over the temporary carrier; and The conductive interconnect and the conductive traces are exposed relative to the molding compound. 如請求項14之方法,其進一步包含安裝包含該導電互連之該半導體晶粒,該半導體晶粒相鄰於該臨時載體。 The method of claim 14, further comprising mounting the semiconductor die including the conductive interconnect, the semiconductor die adjacent to the temporary carrier. 如請求項14之方法,其進一步包含安裝包含該導電互連之該半導體晶粒,該半導體晶粒相鄰於該SMD。 The method of claim 14, further comprising mounting the semiconductor die including the conductive interconnect, the semiconductor die adjacent to the SMD. 如請求項14之方法,其進一步包含施配模製化合物以囊封該SMD及該半導體晶粒,從而形成一重構板材。 The method of claim 14, further comprising applying a molding compound to encapsulate the SMD and the semiconductor die, thereby forming a reconstructed plate. 如請求項14之方法,其進一步包含:單切該基材以使該等導電跡線暴露在該基材之一第一側面;及安裝該SMD及該基材至該臨時載體,其中該基材之該第一側面及該等經暴露的導電跡線定向成朝向該臨時載體。 The method of claim 14, further comprising: single-cutting the substrate to expose the conductive traces to a first side of the substrate; and mounting the SMD and the substrate to the temporary carrier, wherein the substrate The first side of the material and the exposed conductive traces are oriented toward the temporary carrier. 如請求項14之方法,其中該基材包含一兩層層壓層、一印製電路板(PCB)、或一坯料模製化合物板材。 The method of claim 14, wherein the substrate comprises a two-layer laminate layer, a printed circuit board (PCB), or a blank molded compound board. 如請求項14之方法,其中該導電互連包含銅凸塊、支柱、立柱、或厚RDL跡線。 The method of claim 14, wherein the conductive interconnect comprises copper bumps, pillars, pillars, or thick RDL traces.
TW105113306A 2015-04-29 2016-04-28 3d interconnect component for fully molded packages TWI690044B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562154218P 2015-04-29 2015-04-29
US62/154,218 2015-04-29

Publications (2)

Publication Number Publication Date
TW201642419A TW201642419A (en) 2016-12-01
TWI690044B true TWI690044B (en) 2020-04-01

Family

ID=58055664

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105113306A TWI690044B (en) 2015-04-29 2016-04-28 3d interconnect component for fully molded packages

Country Status (1)

Country Link
TW (1) TWI690044B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6546620B1 (en) * 2000-06-29 2003-04-15 Amkor Technology, Inc. Flip chip integrated circuit and passive chip component package fabrication method
US20140048906A1 (en) * 2012-03-23 2014-02-20 Stats Chippac, Ltd. Semiconductor Device and Method of Forming a Fan-Out PoP Device with PWB Vertical Interconnect Units
US20140159251A1 (en) * 2012-12-11 2014-06-12 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Low Profile Fan-Out Package with Vertical Interconnection Units
US20150108661A1 (en) * 2013-10-17 2015-04-23 Michael B. Vincent Microelectronic packages containing stacked microelectronic devices and methods for the fabrication thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6546620B1 (en) * 2000-06-29 2003-04-15 Amkor Technology, Inc. Flip chip integrated circuit and passive chip component package fabrication method
US20140048906A1 (en) * 2012-03-23 2014-02-20 Stats Chippac, Ltd. Semiconductor Device and Method of Forming a Fan-Out PoP Device with PWB Vertical Interconnect Units
US20140159251A1 (en) * 2012-12-11 2014-06-12 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Low Profile Fan-Out Package with Vertical Interconnection Units
US20150108661A1 (en) * 2013-10-17 2015-04-23 Michael B. Vincent Microelectronic packages containing stacked microelectronic devices and methods for the fabrication thereof

Also Published As

Publication number Publication date
TW201642419A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
CN107078133B (en) Method of preparing 3D interconnect component for all-mold package
US10373902B2 (en) Fully molded miniaturized semiconductor module
TWI716732B (en) Thermally enhanced fully molded fan-out module
KR101957851B1 (en) Semiconductor device and method of adaptive patterning for panelized packaging with dynamic via clipping
US8592992B2 (en) Semiconductor device and method of forming vertical interconnect structure with conductive micro via array for 3-D Fo-WLCSP
US9269622B2 (en) Semiconductor device and method of land grid array packaging with bussing lines
US10418298B2 (en) Semiconductor device and method of forming dual fan-out semiconductor package
TWI602262B (en) Semiconductor device and method of forming conductive vias through interconnect structures and encapsulant of wlcsp
TWI674658B (en) Fully molded miniaturized semiconductor module
US9824923B2 (en) Semiconductor device and method of forming conductive pillar having an expanded base
US10050004B2 (en) Fully molded peripheral package on package device
TW201306210A (en) Semiconductor device and method of forming interconnect structure over seed layer on contact pad of semiconductor die without undercutting seed layer beneath interconnect structure
TW201327744A (en) Semiconductor device and method of forming extended semiconductor device with fan-out interconnect structure to reduce complexity of substrate
US8741764B2 (en) Semiconductor device and method of forming conductive pillars having recesses or protrusions to detect interconnect continuity between semiconductor die and substrate
US9240331B2 (en) Semiconductor device and method of making bumpless flipchip interconnect structures
KR20160132053A (en) Semiconductor device and method comprising thickened redistribution layers
TWI623987B (en) Semiconductor device and method of forming micro-vias partially through insulating material over bump interconnect conductive layer for stress relief
TW201826391A (en) Semiconductor device and method of unit specific progressive alignment
TWI505381B (en) Semiconductor substrate and method of forming conformal solder wet-enhancement layer on bump-on-lead site
TWI690044B (en) 3d interconnect component for fully molded packages