TWI689562B - Inverted organic photovoltaic and method of manufacturing the same - Google Patents

Inverted organic photovoltaic and method of manufacturing the same Download PDF

Info

Publication number
TWI689562B
TWI689562B TW107136953A TW107136953A TWI689562B TW I689562 B TWI689562 B TW I689562B TW 107136953 A TW107136953 A TW 107136953A TW 107136953 A TW107136953 A TW 107136953A TW I689562 B TWI689562 B TW I689562B
Authority
TW
Taiwan
Prior art keywords
layer
item
patent application
glucose
zno
Prior art date
Application number
TW107136953A
Other languages
Chinese (zh)
Other versions
TW202016230A (en
Inventor
林柏辰
蘇佑安
陳文章
闕居振
Original Assignee
國立臺灣大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣大學 filed Critical 國立臺灣大學
Priority to TW107136953A priority Critical patent/TWI689562B/en
Application granted granted Critical
Publication of TWI689562B publication Critical patent/TWI689562B/en
Publication of TW202016230A publication Critical patent/TW202016230A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention provides an inverted organic photovoltaic, comprising a conductive substrate, an electron-transporting layer (ETL), an active layer, a hole transport layer, and a counter electrode layer, wherein the ETL comprises a glucose-based biopolymer as a surface modifier. The present invention further provides a method of manufacturing the aforesaid inverted organic photovoltaic. The glucose-based biopolymer are easily accessible and are much more economical as compared to commonly used PFN/PEI-based interfacial materials. More importantly, the present invention enables 9.47% and 6.34% enhancement in PCE for the representative fullerene- and NFA-based BHJ systems (PTB7-Th:PC71BM and PBDB-T:ITIC), respectively, as compared to the control devices comprising an unmodified ETL.

Description

反式有機太陽光電及其製造方法 Trans organic solar photovoltaic and its manufacturing method

本發明係關於一種光電裝置及其製造方法,特別係關於一種應用天然生物材料之光電裝置及其製造方法。 The invention relates to a photoelectric device and a manufacturing method thereof, in particular to a photoelectric device using natural biological materials and a manufacturing method thereof.

至今,光敏(光活化)材料、界面材料及電極材料之各種工程顯然有助於推進有機太陽光電(organic photovoltaics,OPVs)之性能,由於OPV所展現的功率轉換效率(power conversion efficiency,PCE)已超過15%,故OPV顯示出巨大的商業化潛力,因此,最近有些科學家將研究重點轉移到開發具有更佳經濟效益的環保材料及加工方法,以促進綠色能源技術的永續發展。舉例而言,近期綠色溶劑可加工(green-solvent-processable)之OPV引起了廣泛的研究興趣,因為其不僅可以相當大程度地減少裝置製造過程中對環境不利的影響,更提供更具成本效益之製造方法。由於非富勒烯受體基(non-fullerene-based acceptors,NFAs)在非鹵化溶劑中比傳統富勒烯受體基具有更好的溶液加工性,故最近蓬勃發展之NFA似乎促進了OPV之進展。 So far, various projects of photosensitive (photoactive) materials, interface materials, and electrode materials have obviously helped to advance the performance of organic photovoltaics (OPVs). Due to the power conversion efficiency (PCE) exhibited by OPV Over 15%, OPV shows huge commercial potential. Therefore, some scientists have recently shifted their research focus to the development of environmentally friendly materials and processing methods with better economic benefits to promote the sustainable development of green energy technologies. For example, the recent green-solvent-processable OPV has aroused extensive research interest, because it can not only reduce the environmental impact of the device manufacturing process to a considerable extent, but also provide more cost-effective Of manufacturing methods. Since non-fullerene-based acceptors (NFAs) have better solution processability than traditional fullerene acceptors in non-halogenated solvents, the recently booming NFA seems to promote OPV progress.

除光活化層的進步外,本領域亦高度渴望探索具有環境友好製程能力之兼容實用界面材料。目前已證明適當的改性中間層或導入中間 層可以提高裝置中的電荷收集效率及載子選擇性,因為其可以在有機/金屬界面上實現更佳地能階匹配(energy-level alignment),且在某些情況下,由於在相對界面處兼容性改善,使其可以促進塊材異質接面(bulk-heterojunction,BHJ)層更理想的型態。迄今已經開發出各種可溶液加工的界面材料來提高OPV性能,包括過渡金屬氧化物、自組裝層、聚電解質、非共軛有機材料及有機-無機混合材料等,其中由於共軛聚[(9,9-雙(3'-(N,N-二甲胺)丙基)-2,7-芴)-alt-2,7-(9,9-二辛基芴)](PFN)基衍生物及非共軛聚乙烯亞胺(PEI)基類似物具有輕薄及低溫溶液加工性,故為最常使用的材料。例如,黃等人開發一系列水/醇可溶性PFN基聚合物作為可行的中間層,以提高衍生OPV的整體性能。 In addition to the advancement of photoactive layers, the field is also highly eager to explore compatible and practical interface materials with environmentally friendly manufacturing capabilities. At present, it has been proved that the appropriate modified intermediate layer or introduced into the middle The layer can improve the charge collection efficiency and carrier selectivity in the device, because it can achieve better energy-level alignment at the organic/metal interface, and in some cases, due to the opposite interface The improved compatibility makes it possible to promote a more ideal type of bulk-heterojunction (BHJ) layer. So far, various solution-processable interface materials have been developed to improve OPV performance, including transition metal oxides, self-assembled layers, polyelectrolytes, non-conjugated organic materials, and organic-inorganic hybrid materials. Among them, due to conjugated polymerization [(9 ,9-bis(3'-(N,N-dimethylamine)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)](PFN) group derivative And non-conjugated polyethyleneimine (PEI)-based analogues are light, thin, and low temperature solution processable, so they are the most commonly used materials. For example, Huang et al. developed a series of water/alcohol soluble PFN-based polymers as a viable intermediate layer to improve the overall performance of derived OPV.

本發明之主要目的係提供包含葡萄糖基生物聚合物作為中間層之有機太陽光電。葡萄糖通常在植物或動物中儲存為聚合物,其是最豐富及最重要的單醣。如此而言,發展葡萄糖衍生的聚合物於太陽光電裝置的應用變得相當重要。然而,由於常見的葡萄糖基聚合物其固有的結構特徵,使其通常不溶於水或部分溶於水或常見的有機溶劑中。因此,僅藉由簡單的溶液製程(solution-based process)技術以該些聚合物為基礎將其製造成高品質薄膜方面,造成了巨大的挑戰,阻礙了葡萄糖基生物聚合物於光電裝置中的廣泛應用。 The main object of the present invention is to provide an organic solar photovoltaic comprising a glucose-based biopolymer as an intermediate layer. Glucose is usually stored as a polymer in plants or animals, which is the most abundant and important monosaccharide. In this way, the development of glucose-derived polymers in solar photovoltaic devices becomes very important. However, due to the inherent structural characteristics of common glucose-based polymers, they are generally insoluble in water or partially soluble in water or common organic solvents. Therefore, the simple solution-based process technology based on these polymers to manufacture them into high-quality films poses a huge challenge and hinders glucose-based biopolymers in photovoltaic devices. widely used.

本發明之主要目的係提供一種有機太陽光電,其包含易於取得且更為經濟的天然聚合物中間層,更進一步地,相較於習知技術中使用常見葡萄糖基聚合物之聚合物太陽能電池,本發明之聚合物中間層具有更 佳的溶液加工性及成膜能力。 The main object of the present invention is to provide an organic solar photovoltaic, which includes an easily accessible and more economical natural polymer intermediate layer, and furthermore, compared to the conventional technology, a polymer solar cell using a common glucose-based polymer, The polymer intermediate layer of the present invention has more Excellent solution processability and film forming ability.

為達前述目的,本發明提供一種反式有機太陽光電,其包括:一可導電基材、一電子傳遞層(ETL)、一主動層、一電洞傳遞層、及一相對電極層;其中,該電子傳遞層包括一葡萄糖基(glucose-based)生物聚合物作為一表面改性劑。 To achieve the foregoing objective, the present invention provides a trans organic solar photovoltaic, which includes: a conductive substrate, an electron transport layer (ETL), an active layer, a hole transport layer, and a counter electrode layer; wherein, The electron transport layer includes a glucose-based biopolymer as a surface modifier.

於一較佳實施例,該葡萄糖基生物聚合物係溶於一溶劑中,該溶劑包括水、二甲亞碸(DMSO)或其組合。 In a preferred embodiment, the glucose-based biopolymer is dissolved in a solvent, and the solvent includes water, dimethyl sulfoxide (DMSO), or a combination thereof.

於一較佳實施例,該葡萄糖基生物聚合物係選自由甲基纖維素、幾丁聚醣及糊精所組成之群組。 In a preferred embodiment, the glucose-based biopolymer is selected from the group consisting of methyl cellulose, chitosan, and dextrin.

於一較佳實施例,該葡萄糖基生物聚合物之總表面能大於55mN/m。 In a preferred embodiment, the total surface energy of the glucose-based biopolymer is greater than 55 mN/m.

於一較佳實施例,該電子傳遞層係選自由二氧化鈦(TiO2)、氧化鋅(ZnO)、二氧化錫(SnO2)及錫酸鋅(Zn2SnO4)所組成之群組。 In a preferred embodiment, the electron transport layer is selected from the group consisting of titanium dioxide (TiO 2 ), zinc oxide (ZnO), tin dioxide (SnO 2 ), and zinc stannate (Zn 2 SnO 4 ).

於一較佳實施例,該可導電基材包括一可導電材料,該可導電材料係選自由氧化銦(In2O3)、氧化錫(SnO2)、銦-錫複合氧化物(ITO)、摻氟氧化錫(FTO)、氧化鋅(ZnO)、氧化鋅-三氧化二鎵(ZnO-Ga2O3)及氧化鋅-氧化鋁(ZnO-Al2O3)所組成之群組。 In a preferred embodiment, the conductive substrate includes a conductive material selected from indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), indium-tin composite oxide (ITO) , Fluorine-doped tin oxide (FTO), zinc oxide (ZnO), zinc oxide-gallium trioxide (ZnO-Ga 2 O 3 ) and zinc oxide-aluminum oxide (ZnO-Al 2 O 3 ) group.

於一較佳實施例,該主動層係一塊材異質接面(bulk heterojunction,BHJ)層。 In a preferred embodiment, the active layer is a bulk heterojunction (BHJ) layer.

於一較佳實施例,該塊材異質接面層係富勒烯基(fullerene-based)或非富勒烯受體基(non-fullerene acceptor-based,NFA-based)層。 In a preferred embodiment, the bulk heterojunction layer is a fullerene-based or non-fullerene acceptor-based (NFA-based) layer.

於一較佳實施例,該塊材異質接面層包括PTB7-Th:PC71BM混摻物或PBDB-T:ITIC混摻物。 In a preferred embodiment, the bulk heterojunction layer includes PTB7-Th: PC 71 BM blend or PBDB-T: ITIC blend.

於一較佳實施例,該PTB7-Th:PC71BM混摻物的重量比為1:05至1:3。 In a preferred embodiment, the weight ratio of the PTB7-Th:PC 71 BM blend is 1:05 to 1:3.

於一較佳實施例,該PBDB-T:ITIC混摻物的重量比為1:0.5至1:2。 In a preferred embodiment, the weight ratio of the PBDB-T:ITIC blend is 1:0.5 to 1:2.

於一較佳實施例,該電洞傳遞層係選自由2,2',7,7'-4-[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(Spiro-OMeTAD)、聚二氧乙基噻吩:苯乙烯磺酸(PEDOT:PSS)、N,N'-二(3-甲基苯基)-N,N'-二苯基-[1,1'-聯苯基]-4,4'-二胺(TPD)、聚三己基聚噻吩(P3HT)、五氧化二釩(V2O5)、氧化鎳(NiO)、石墨稀(graphene)、硫化鉬(MoS2)、硒化鉬(MoSe2)、聚烷基噻吩(polyalkyl-thiophene)及三氧化鉬(MoO3)所組成之群組。 In a preferred embodiment, the hole transport layer is selected from 2,2',7,7'-4-[N,N-bis(4-methoxyphenyl)amino]-9,9'- Spiro-OMeTAD, polydioxyethylthiophene: styrenesulfonic acid (PEDOT: PSS), N,N'-bis(3-methylphenyl)-N,N'-diphenyl- [1,1'-biphenyl]-4,4'-diamine (TPD), polytrihexyl polythiophene (P3HT), vanadium pentoxide (V 2 O 5 ), nickel oxide (NiO), graphite dilute (graphene), molybdenum sulfide (MoS 2 ), molybdenum selenide (MoSe 2 ), polyalkylthiophene (polyalkyl-thiophene) and molybdenum trioxide (MoO 3 ).

於一較佳實施例,該相對電極層包括一材料,該材料係選自由金、銀、銣、鈀、鎳、鉬、鋁、及其合金所組成之群組。 In a preferred embodiment, the counter electrode layer includes a material selected from the group consisting of gold, silver, rubidium, palladium, nickel, molybdenum, aluminum, and alloys thereof.

本發明另一目的係提供一種製造如前所述之反式有機太陽光電之方法,其包括:a.於一可導電基材上塗佈一電子傳遞層,接著塗佈一葡萄糖基生物聚合物以形成一中間層作為表面改性劑;b.於該中間層上形成一主動層;c.於該主動層上沉積一電洞傳遞層;及d.於該電洞傳遞層上沉積一相對電極層。 Another object of the present invention is to provide a method for manufacturing the above-mentioned trans organic solar photovoltaic, which includes: a. coating an electron transport layer on a conductive substrate, and then coating a glucose-based biopolymer Forming an intermediate layer as a surface modifier; b. forming an active layer on the intermediate layer; c. depositing a hole transfer layer on the active layer; and d. depositing a relative layer on the hole transfer layer Electrode layer.

於一較佳實施例,該葡萄糖基生物聚合物係選自由甲基纖維素、幾丁聚醣及糊精所組成之群組。 In a preferred embodiment, the glucose-based biopolymer is selected from the group consisting of methyl cellulose, chitosan, and dextrin.

於一較佳實施例,該電子傳遞層係選自由二氧化鈦、氧化鋅、 二氧化錫及錫酸鋅所組成之群組。 In a preferred embodiment, the electron transport layer is selected from titanium dioxide, zinc oxide, A group consisting of tin dioxide and zinc stannate.

於一較佳實施例,該可導電基材包括一可導電材料,該可導電材料係選自由氧化銦、氧化錫、銦-錫複合氧化物、摻氟氧化錫、氧化鋅、氧化鋅-三氧化二鎵及氧化鋅-氧化鋁所組成之群組。 In a preferred embodiment, the conductive substrate includes a conductive material selected from the group consisting of indium oxide, tin oxide, indium-tin composite oxide, fluorine-doped tin oxide, zinc oxide, and zinc oxide-three The group consisting of gallium oxide and zinc oxide-alumina.

於一較佳實施例,該主動層係一塊材異質接面層。 In a preferred embodiment, the active layer is a piece of heterogeneous junction layer.

於一較佳實施例,該塊材異質接面層係富勒烯基或非富勒烯受體基層。 In a preferred embodiment, the bulk heterojunction layer is a fullerene-based or non-fullerene-receptor base layer.

於一較佳實施例,該電洞傳遞層係選自由2,2',7,7'-4-[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、聚二氧乙基噻吩:苯乙烯磺酸、N,N'-二(3-甲基苯基)-N,N'-二苯基-[1,1'-聯苯基]-4,4'-二胺、聚三己基聚噻吩、五氧化二釩、氧化鎳、石墨稀、硫化鉬、硒化鉬、聚烷基噻吩及三氧化鉬所組成之群組。 In a preferred embodiment, the hole transport layer is selected from 2,2',7,7'-4-[N,N-bis(4-methoxyphenyl)amino]-9,9'- Spirobifluorene, polydioxyethylthiophene: styrenesulfonic acid, N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1'-biphenyl] -4,4'-diamine, polytrihexyl polythiophene, vanadium pentoxide, nickel oxide, graphite dilute, molybdenum sulfide, molybdenum selenide, polyalkylthiophene and molybdenum trioxide.

因此,本發明提供一種反式有機太陽光電,其包括葡萄糖基生物聚合物作為電子傳輸層的改性中間層。由於側基及構型修飾,本發明所用之葡萄糖基衍生物在水或二甲亞碸中具有良好的溶解度。更重要的是,與常用之PFN基/PEI基的界面材料相比,該葡萄糖基生物聚合物更易於獲得且更加經濟。具有該葡萄糖基生物聚合物作為表面改性劑之該電子傳輸層膜展現出均勻的型態,這是得益於該葡萄糖基生物聚合物良好的結構平面性及溶液加工性。本發明所用之葡萄糖基生物聚合物揭示了促進於其頂部生長之太陽光電組分聚集的能力,以產生更為理想的BHJ型態。與包含未經修飾ETL之對照裝置相比,本發明可分別對代表性富勒希基(即PTB7-Th:PC71BM)及非富勒希受體基之BHJ系統(即PBDB-T:ITIC)之PCE 增強9.47%及6.34%。 Therefore, the present invention provides a trans organic solar photovoltaic, which includes a glucose-based biopolymer as a modified intermediate layer of an electron transport layer. Due to the modification of side groups and configuration, the glucosyl derivatives used in the present invention have good solubility in water or dimethyl sulfoxide. More importantly, the glucose-based biopolymer is easier to obtain and more economical than the commonly used PFN-based/PEI-based interface materials. The electron transport layer film with the glucose-based biopolymer as a surface modifier exhibits a uniform pattern, which is attributed to the good structural planarity and solution processability of the glucose-based biopolymer. The glucose-based biopolymer used in the present invention reveals the ability to promote the aggregation of photovoltaic components grown on top of it to produce a more ideal BHJ type. Compared with a control device containing unmodified ETL, the present invention can be applied to a representative fullerschiki (ie PTB7-Th: PC 71 BM) and a non-fullerschler acceptor-based BHJ system (ie PBDB-T: ITIC)'s PCE increased by 9.47% and 6.34%.

100‧‧‧反式有機太陽光電 100‧‧‧trans organic solar photovoltaic

10‧‧‧可導電基材 10‧‧‧Conductible substrate

20‧‧‧電子傳遞層 20‧‧‧Electron transfer layer

21‧‧‧表面改性劑 21‧‧‧Surface modifier

30‧‧‧主動層 30‧‧‧Active layer

40‧‧‧電洞傳遞層 40‧‧‧Electron tunnel transmission layer

50‧‧‧相對電極層 50‧‧‧counter electrode layer

圖1係本發明一較佳實施例之立體示意圖。 FIG. 1 is a perspective schematic view of a preferred embodiment of the present invention.

圖2係本發明一較佳實施例中該葡萄糖基生物聚合物的結構構型示意圖。 2 is a schematic view of the structure of the glucose-based biopolymer in a preferred embodiment of the present invention.

圖3係本發明一較佳實施例之裝置光學模擬圖,該裝置之該電子傳遞層分別使用(a)裸氧化鋅、(b)氧化鋅/甲基纖維素、(c)氧化鋅/幾丁聚醣及(d)氧化鋅/糊精;模擬場強度分布|E|2係相對於入射場強度於垂直入射作為波長函數的情況下進行標準化。 FIG. 3 is an optical simulation diagram of a device according to a preferred embodiment of the present invention. The electron transport layer of the device uses (a) bare zinc oxide, (b) zinc oxide/methyl cellulose, and (c) zinc oxide/several Butanan and (d) zinc oxide/dextrin; simulated field intensity distribution |E| 2 is normalized to the incident field intensity at normal incidence as a function of wavelength.

圖4係本發明一較佳實施例之膜透射光譜及其真實相片(插圖),該膜係以該葡萄糖基生物聚合物為基礎,該膜具有10nm之厚度。 FIG. 4 is a transmission spectrum of a film according to a preferred embodiment of the present invention and its real photo (inset). The film is based on the glucose-based biopolymer, and the film has a thickness of 10 nm.

圖5係本發明一較佳實施例於二氧化矽基材上製備之該葡萄糖基生物聚合物/氧化鋅樣品之(a)光電光譜(PES)及(b)紫外線光電光譜(UPS)。 FIG. 5 shows (a) photoelectric spectrum (PES) and (b) ultraviolet photoelectric spectrum (UPS) of the glucose-based biopolymer/zinc oxide sample prepared on a silica substrate according to a preferred embodiment of the present invention.

圖6係本發明一較佳實施例該葡萄糖基生物聚合物/ZnO薄膜之原子力顯微鏡(AFM)影像,其中上方為相圖,下方為形貌圖。 FIG. 6 is an atomic force microscope (AFM) image of the glucose-based biopolymer/ZnO film according to a preferred embodiment of the present invention, wherein the top is a phase diagram, and the bottom is a topography diagram.

圖7係本發明一較佳實施例使用不同葡萄糖基生物聚合物為中間層之富勒烯基反式有機太陽光電之(a)J-V曲線圖、(b)暗電流曲線圖、(c)J ph -V eff 特徵曲線圖及(d)標準化EQE曲線圖。 7 is a preferred embodiment of the present invention using different glucose-based biopolymers as the intermediate layer of fullerene-based trans organic solar photovoltaic (a) JV curve, (b) dark current curve, (c) J ph -V eff characteristic curve and (d) standardized EQE curve.

圖8係本發明一較佳實施例使用ZnO/PFN或ZnO/甲基纖維素為電子傳遞層之非富勒烯受體基反式有機太陽光電之J-V曲線圖。 FIG. 8 is a JV curve diagram of a non-fullerene acceptor-based trans organic solar photovoltaic using ZnO/PFN or ZnO/methyl cellulose as an electron transport layer in a preferred embodiment of the present invention.

圖9係本發明一較佳實施例使用ZnO/PFN或ZnO/甲基纖維素 為電子傳遞層之非富勒烯受體基反式有機太陽光電之(a)暗電流曲線圖及(b)J ph -V eff 特徵曲線圖。 9 is a preferred embodiment of the present invention using ZnO/PFN or ZnO/methyl cellulose as the electron transport layer of non-fullerene acceptor-based trans organic solar photovoltaic (a) dark current curve and (b) J ph -V eff characteristic curve graph.

圖10係本發明一較佳實施例在裸氧化鋅、幾丁聚醣、甲基纖維素及糊精層上生長的PTB7-Th:PC71BM混摻物膜之原子力顯微鏡(AFM)影像,其中上方為相圖,下方為形貌圖。 10 is an atomic force microscope (AFM) image of PTB7-Th: PC 71 BM blend film grown on bare zinc oxide, chitosan, methyl cellulose and dextrin layers according to a preferred embodiment of the present invention. Among them, the top is the phase diagram, and the bottom is the topography.

圖11係本發明一較佳實施例在不同電子傳遞層上生長的該PTB7-Th:PC71BM混摻物之二維GIWAXS(掠入射廣角X光散射Grazing-Incidence Wide-Angle X-ray Scattering)圖。 11 is a two-dimensional GIWAXS (Grazing-Incidence Wide-Angle X-ray Scattering of the PTB7-Th: PC 71 BM blend grown on different electron transport layers according to a preferred embodiment of the present invention )Figure.

圖12係本發明一較佳實施例之PTB7-Th(100)波峰及PC71BM波峰於平面(in-plane)方向上對應之(a)一維線切圖及(b)標準化圖。 FIG. 12 shows (a) a one-dimensional line tangent diagram and (b) normalized diagram corresponding to the PTB7-Th (100) peak and PC 71 BM peak in the in-plane direction of a preferred embodiment of the present invention.

圖13係本發明一較佳實施例之PTB7-Th(100)波峰及PC71BM波峰於非平面(out-of-plane)方向上對應之(a)一維線切圖及(b)標準化圖。 FIG. 13 is the corresponding (a) one-dimensional line tangent and (b) normalization of the PTB7-Th (100) peak and PC 71 BM peak in the out-of-plane direction of a preferred embodiment of the present invention. Figure.

圖14係本發明一較佳實施例之該PTB7-Th:PC71BM混摻物膜的PTB7-Th(100)訊號方位角分布圖,其中左方為平面方向,右方為非平面方向。 FIG. 14 is an azimuth distribution diagram of the PTB7-Th (100) signal of the PTB7-Th:PC 71 BM blend film according to a preferred embodiment of the present invention, where the left side is a planar direction and the right side is a non-planar direction.

圖15係本發明一較佳實施例在ZnO電子傳遞層上生長及在該葡萄糖基生物聚合物上生長的BHJ(此示例為PTB7-Th:PC71BM)型態示意圖。 15 is a schematic diagram of a BHJ (this example is PTB7-Th: PC 71 BM) type grown on a ZnO electron transport layer and grown on the glucose-based biopolymer according to a preferred embodiment of the present invention.

圖16係本發明反式有機太陽光電裝置一較佳實施例之光學模擬,其係於該裝置的PTB7-Th:PC71BM混摻物層中使用經計算分布之激子產生速率。 FIG. 16 is an optical simulation of a preferred embodiment of the trans organic solar photovoltaic device of the present invention, which is based on the calculated distribution of exciton generation rate in the PTB7-Th:PC 71 BM blend layer of the device.

圖17係本發明一較佳實施例之光學建模模擬,其係圖16所述之裝置的電流密度與主動層厚度的光學建模模擬。 FIG. 17 is an optical modeling simulation of a preferred embodiment of the present invention, which is an optical modeling simulation of the current density and active layer thickness of the device described in FIG. 16.

有關本發明之詳細說明及技術內容,現就配合圖式說明如下。再者,本發明中之圖式,為說明方便,其比例未必照實際比例繪製,該等圖式及其比例並非用以限制本發明之範圍,在此先行敘明。 The detailed description and technical content of the present invention will now be described in conjunction with the drawings. Furthermore, the drawings in the present invention are not necessarily drawn according to actual proportions for the convenience of explanation. The drawings and their proportions are not intended to limit the scope of the present invention, and will be described here first.

除非另有定義,本文中所有技術和科學用語與本發明所屬技術領域中具有通常知識者所理解的含義相同。如在本申請中所使用的,以下術語具有如下意涵。 Unless otherwise defined, all technical and scientific terms in this document have the same meaning as understood by those with ordinary knowledge in the technical field to which the present invention belongs. As used in this application, the following terms have the following meanings.

除非另有說明,本文所述之「或」表示「和/或」之意。本文中所稱之「包含或包括」意指不排除一或多個其他組件、步驟、操作和/或元素的存在或添加至所述之組件、步驟、操作和/或元素。「一」意指該物的語法對象為一或一個以上(即,至少為一)。相似地,本文所述之「包含」、「包括」、「含有」、「囊括」、「具有」也可互相代換而不受限制。本文及申請專利範圍所述單數格式之「一」、「一個」、「一種」及「該」包含複數指涉。本文中之用語例如:「一」、「該」、「一或多」、「複數」及「至少為一」可互相代換。 Unless otherwise stated, "or" in this article means "and/or". As referred to herein, "comprising or including" means not excluding the presence or addition of one or more other components, steps, operations, and/or elements. "One" means that the grammatical object of the thing is one or more (ie, at least one). Similarly, the terms "include", "include", "include", "include", and "have" described herein can also be substituted for each other without limitation. The singular forms "one", "one", "one" and "the" mentioned in this article and the scope of the patent application include plural references. Terms in this article such as: "one", "the", "one or more", "plural" and "at least one" can be substituted for each other.

請參照「圖1」,其所示係本發明一較佳實施例之立體示意圖。 Please refer to "Figure 1", which shows a schematic perspective view of a preferred embodiment of the present invention.

本發明係一種反式有機太陽光電(反式OPV)100,其包括:一可導電基材10、一電子傳遞層(ETL)20、一主動層30、一電洞傳遞層40、及一相對電極層50;其中,該電子傳遞層20包括一葡萄糖基生物聚合物作為一表面改性劑21。更進一步地,本發明亦關於一種製造如前所述之反式 有機太陽光電100之方法,其包括:a.於一可導電基材10上塗佈一電子傳遞層20,接著塗佈一葡萄糖基生物聚合物以形成一中間層作為表面改性劑21;b.於該中間層上形成一主動層30;c.於該主動層30上沉積一電洞傳遞層40;及d.於該電洞傳遞層40上沉積一相對電極層50。 The present invention is a trans organic solar photovoltaic (trans OPV) 100, which includes: a conductive substrate 10, an electron transport layer (ETL) 20, an active layer 30, a hole transport layer 40, and a relative Electrode layer 50; wherein, the electron transport layer 20 includes a glucose-based biopolymer as a surface modifier 21. Furthermore, the present invention also relates to a trans-form as described above A method of organic solar photovoltaic 100, which includes: a. coating an electron transport layer 20 on a conductive substrate 10, and then coating a glucose-based biopolymer to form an intermediate layer as a surface modifier 21; b Forming an active layer 30 on the intermediate layer; c. depositing a hole transfer layer 40 on the active layer 30; and d. depositing a counter electrode layer 50 on the hole transfer layer 40.

本文所述之「可導電基材10」係指一基材具有導電之效果,較佳可使用一導電性材料與一基材結合。於一較佳實施態樣中,該導電性材料包括透明可導電的氧化物,其中該導電性材料係選自由導電性聚合物、氧化銦(In2O3)、氧化錫(SnO2)、銦-錫複合氧化物(ITO)、摻氟氧化錫(FTO)、氧化鋅、ZnO-Ga2O3及ZnO-Al2O3所組成之群組;然而,本發明不限於此等。於一較佳實施態樣中,該基材可選自各種透明或半透明物質,例如但不限於:玻璃或聚合物等。於一較佳實施態樣中,該可導電基材10係作為該反式有機太陽光電100之底電極。 As used herein, "conductible substrate 10" refers to a substrate that has the effect of conducting electricity. Preferably, a conductive material can be used in combination with a substrate. In a preferred embodiment, the conductive material includes a transparent conductive oxide, wherein the conductive material is selected from a conductive polymer, indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), Indium-tin composite oxide (ITO), fluorine-doped tin oxide (FTO), zinc oxide, ZnO-Ga 2 O 3 and ZnO-Al 2 O 3 ; however, the present invention is not limited to these. In a preferred embodiment, the substrate can be selected from various transparent or translucent materials, such as but not limited to: glass or polymer. In a preferred embodiment, the conductive substrate 10 serves as the bottom electrode of the trans organic solar photovoltaic 100.

本文所述之「電子傳遞層(Electron transport layer,ETL)20」係指具有高電子移動性之層,具體而言,該電子傳遞層20可於該反式有機太陽光電100中,將一主動層30分離之電子傳遞至一電極。於一較佳實施態樣中,該電子傳遞層20包括一金屬氧化材料,例如但不限於:二氧化鈦(TiO2)、氧化鋅(ZnO)、二氧化錫(SnO2)及錫酸鋅(Zn2SnO4)等。較佳地,該電子傳遞層20進一步包括一表面改性劑21(亦稱為界面材料),且該表面改性劑21包括一葡萄糖基生物聚合物。 The "electron transport layer (ETL) 20" mentioned herein refers to a layer with high electron mobility. Specifically, the electron transport layer 20 can be an active element in the trans organic solar photovoltaic 100. The electrons separated by layer 30 are transferred to an electrode. In a preferred embodiment, the electron transport layer 20 includes a metal oxide material, such as but not limited to: titanium dioxide (TiO 2 ), zinc oxide (ZnO), tin dioxide (SnO 2 ), and zinc stannate (Zn 2 SnO 4 ) etc. Preferably, the electron transport layer 20 further includes a surface modifier 21 (also called interface material), and the surface modifier 21 includes a glucose-based biopolymer.

本文所述之「葡萄糖基生物聚合物(glucose-based biopolymer)」係指一種聚合物,其包括一組碳水化合物,該碳水化合物係由六個碳原子及一端帶有醛基所組成,並且被歸類為醛己醣形式的環狀半縮醛。一般而言,葡萄糖 具有同分異構重覆單元,稱為「α型」及「β型」。區分「α-」及「β-」構型的主要特徵如圖2所示,其中,「α-」表示連接在C-1上的羥基和在C-5上的-CH2OH基位於環平面的相對側(即,反式排列,trans),而「β-」表示連接在C-1上的羥基和在C-5上的-CH2OH基位於環平面的同一側(即,順式排列,cis)。常見的葡萄糖基聚合物包含纖維素、澱粉及幾丁質,由於其固有的結構特徵,其通常不溶於水或部分溶於水或常見的有機溶劑中。於一較佳實施態樣中,本發明中包含之葡萄糖基生物聚合物係選自由甲基纖維素、幾丁聚醣及糊精所組成之群組。於一較佳實施態樣中,該葡萄糖基生物聚合物係溶於一溶劑中,該溶劑包括水、二甲亞碸(DMSO)或其組合。於一更佳實施態樣中,該葡萄糖基生物聚合物之總表面能大於55mN/m,例如但不限於:55.1mN/m、55.5mN/m、56mN/m、56.5mN/m、57mN/m、57.5mN/m、58mN/m、58.5mN/m、59mN/m、59.5mN/m、60mN/m、60.5mN/m、61mN/m、61.5mN/m、62mN/m、62.5mN/m、63mN/m、63.5mN/m、64mN/m、64.5mN/m、65mN/m、65.5mN/m、66mN/m、66.5mN/m、67mN/m、67.5mN/m、68mN/m、68.5mN/m、69mN/m、69.5mN/m、70mN/m、70.5mN/m、71mN/m、71.5mN/m、72mN/m、72.5mN/m、73mN/m、73.5mN/m、74mN/m、74.5mN/m、75mN/m、75.5mN/m、76mN/m、76.5mN/m、77mN/m、77.5mN/m、78mN/m、78.5mN/m、79mN/m、79.5mN/m、80mN/m、80.5mN/m、81mN/m、81.5mN/m、82mN/m、82.5mN/m、83mN/m、83.5mN/m、84mN/m、84.5mN/m、85mN/m、85.5mN/m、86mN/m、86.5mN/m、87mN/m、87.5mN/m、88mN/m、88.5mN/m、89mN/m、89.5mN/m或90mN/m。需注意的是,該等葡萄糖基生物聚合 物不僅環保,且由於其等在環境中豐富的可用性,故相較於其他常用於OPV的中間層更加經濟。甲基纖維素可由纖維素製成,前述纖維素可輕易從植物萃取;幾丁聚醣可從甲殼類動物(如:蟹或蝦)的外骨骼萃取;糊精係澱粉的水解產物,前述澱粉主要儲存於穀物中。因此,該等葡萄糖基生物聚合物的製造成本非常低,例如以世界知名的西格瑪奧德里奇公司(sigma-aldrich)作為比較,幾丁聚醣(Aldrich公司產品編號448869)、甲基纖維素(Sigma公司產品編號M7140)及糊精(Sigma公司產品編號D2131)的價格分別為$USD 65.5/50g、$USD 47.25/100g及$USD 42.25/500g;常用的聚合物中間層如:含胺基聚芴類共軛高分子PFN(polyfluorene,Aldrich公司產品編號900954-DOF)價格為$USD>1,000/g、聚乙烯亞胺類PEI(Aldrich公司產品編號408727)價格為$USD 79.50/100ml及PEIE(polyethylenimine ethoxylated,Aldrich公司產品編號306185)價格為$USD 98/100g;該等葡萄糖基生物聚合物的價格比常用的聚合物中間層更為便宜。 As used herein, "glucose-based biopolymer" refers to a polymer that includes a group of carbohydrates. The carbohydrate is composed of six carbon atoms and has an aldehyde group at one end. It is classified as cyclic hemiacetal in the form of aldehyde hexose. In general, glucose has isomeric repeating units, called "α-type" and "β-type". The main features distinguishing the "α-" and "β-" configurations are shown in Figure 2, where "α-" indicates that the hydroxyl group attached to C-1 and the -CH 2 OH group on C-5 are located in the ring The opposite side of the plane (ie, trans arrangement, trans ), and "β-" indicates that the hydroxyl group attached to C-1 and the -CH 2 OH group on C-5 are on the same side of the ring plane (ie, cis Arrangement, cis ). Common glucose-based polymers include cellulose, starch, and chitin. Due to their inherent structural characteristics, they are generally insoluble in water or partially soluble in water or common organic solvents. In a preferred embodiment, the glucose-based biopolymer included in the present invention is selected from the group consisting of methyl cellulose, chitosan, and dextrin. In a preferred embodiment, the glucose-based biopolymer is dissolved in a solvent, and the solvent includes water, dimethyl sulfoxide (DMSO), or a combination thereof. In a more preferred embodiment, the total surface energy of the glucose-based biopolymer is greater than 55mN/m, such as but not limited to: 55.1mN/m, 55.5mN/m, 56mN/m, 56.5mN/m, 57mN/ m, 57.5mN/m, 58mN/m, 58.5mN/m, 59mN/m, 59.5mN/m, 60mN/m, 60.5mN/m, 61mN/m, 61.5mN/m, 62mN/m, 62.5mN/ m, 63mN/m, 63.5mN/m, 64mN/m, 64.5mN/m, 65mN/m, 65.5mN/m, 66mN/m, 66.5mN/m, 67mN/m, 67.5mN/m, 68mN/m , 68.5mN/m, 69mN/m, 69.5mN/m, 70mN/m, 70.5mN/m, 71mN/m, 71.5mN/m, 72mN/m, 72.5mN/m, 73mN/m, 73.5mN/m , 74mN/m, 74.5mN/m, 75mN/m, 75.5mN/m, 76mN/m, 76.5mN/m, 77mN/m, 77.5mN/m, 78mN/m, 78.5mN/m, 79mN/m, 79.5mN/m, 80mN/m, 80.5mN/m, 81mN/m, 81.5mN/m, 82mN/m, 82.5mN/m, 83mN/m, 83.5mN/m, 84mN/m, 84.5mN/m, 85mN/m, 85.5mN/m, 86mN/m, 86.5mN/m, 87mN/m, 87.5mN/m, 88mN/m, 88.5mN/m, 89mN/m, 89.5mN/m or 90mN/m. It should be noted that these glucose-based biopolymers are not only environmentally friendly, but because of their rich availability in the environment, they are more economical than other intermediate layers commonly used in OPVs. Methyl cellulose can be made from cellulose, the aforementioned cellulose can be easily extracted from plants; chitosan can be extracted from the exoskeleton of crustaceans (such as crabs or shrimps); hydrolysate of dextrin starch, the aforementioned starch Mainly stored in cereals. Therefore, the manufacturing cost of these glucose-based biopolymers is very low. For example, using the world-renowned Sigma-Aldrich company (sigma-aldrich) as a comparison, chitosan (Aldrich company product number 448869), methyl cellulose ( Sigma's product number M7140) and dextrin (Sigma's product number D2131) are respectively $USD 65.5/50g, $USD 47.25/100g and $USD 42.25/500g; commonly used polymer intermediate layers such as: The price of fluorene conjugated polymer PFN (polyfluorene, Aldrich product number 900954-DOF) is $USD>1,000/g, the price of polyethyleneimine PEI (Aldrich company product number 408727) is $USD 79.50/100ml and PEIE ( Polyethylenimine ethoxylated, Aldrich product number 306185) is priced at $USD 98/100g; the price of these glucose-based biopolymers is cheaper than that of commonly used polymer interlayers.

本文所述之「主動層」係指使用於該反式有機太陽光電100中用以吸收光能的有機材料。於一較佳實施態樣中,本發明中包含的該主動層係一塊材異質接面(bulk heterojunction,BHJ)層。於一較佳實施態樣中,本發明中包含的該主動層係一BHJ層,且該BHJ層係富勒烯基(fullerene-based)或非富勒烯受體基(non-fullerene acceptor-based,NFA-based)層,其中,該BHJ層可以係一混摻物或非混摻物,前述混摻物例如但不限於:二元混摻物或三元混摻物。該富勒烯基BHJ之混摻物包括PTB7-Th:PC71BM、P3HT:PCPDTBT:PC61BM或 PTB7-Th:p-DTS(FBTTH2)2:PC71BM;及該非富勒烯受體基BHJ之混摻物包括PBDB-T:FDICTF、PBDB-T:DICTF或PBDB-T:ITIC;然而,本發明不限於此等。於一較佳實施態樣中,本發明之該主動層包括PTB7-Th:PC71BM混摻物作為富勒烯基BHJ層,且該PTB7-Th:PC71BM混摻物的重量比為1:05至1:3,例如:1:05、1:0.6、1:0.7、1:0.8、1:0.9、1:1、1:1.1、1:1.2、1:1.3、1:1.4、1:1.5、1:1.6、1:1.7、1:1.8、1:1.9、1:2、1:2.1、1:2.2、1:2.3、1:2.4、1:2.5、1:2.6、1:2.7、1:2.8、1:2.9或1:3。於一較佳實施態樣,本發明之該主動層包括PBDB-T:ITIC混摻物作為非富勒烯受體基BHJ層,且該PBDB-T:ITIC混摻物的重量比為1:0.5至1:2,例如:1:05、1:0.6、1:0.7、1:0.8、1:0.9、1:1、1:1.1、1:1.2、1:1.3、1:1.4、1:1.5、1:1.6、1:1.7、1:1.8、1:1.9或1:2。於一較佳實施態樣中,本發明中包含的該主動層可進一步包括一添加物,例如但不限於:烷烴硫醇(1,8-二碘辛烷,1,8-diiodooctane,DIO)或1-氯萘(1-Chloronaphthalene,1-CN)。 The “active layer” described herein refers to an organic material used in the trans organic solar photovoltaic 100 to absorb light energy. In a preferred embodiment, the active layer included in the present invention is a bulk heterojunction (BHJ) layer. In a preferred embodiment, the active layer included in the present invention is a BHJ layer, and the BHJ layer is a fullerene-based or non-fullerene acceptor group. based, NFA-based) layer, wherein the BHJ layer may be a blend or a non-blend, and the aforementioned blend is, for example but not limited to, a binary blend or a ternary blend. The fullerene-based BHJ blend includes PTB7-Th: PC 71 BM, P3HT: PCPDTBT: PC 61 BM or PTB7-Th: p -DTS(FBTTH 2 ) 2 : PC 71 BM; and the non-fullerene acceptor The blend of body-based BHJ includes PBDB-T: FDICTF, PBDB-T: DICTF, or PBDB-T: ITIC; however, the present invention is not limited to these. In a preferred embodiment, the active layer of the present invention includes a PTB7-Th:PC 71 BM blend as a fullerene BHJ layer, and the weight ratio of the PTB7-Th:PC 71 BM blend is 1:05 to 1:3, for example: 1:05, 1:0.6, 1:0.7, 1:0.8, 1:0.9, 1:1, 1:1.1, 1:1.2, 1:1.3, 1:1.4, 1:1.5, 1:1.6, 1:1.7, 1:1.8, 1:1.9, 1:2, 1:2.1, 1:2.2, 1:2.3, 1:2.4, 1:2.5, 1:2.6, 1: 2.7, 1:2.8, 1:2.9 or 1:3. In a preferred embodiment, the active layer of the present invention includes a PBDB-T:ITIC blend as a non-fullerene acceptor-based BHJ layer, and the weight ratio of the PBDB-T:ITIC blend is 1: 0.5 to 1:2, for example: 1:05, 1:0.6, 1:0.7, 1:0.8, 1:0.9, 1:1, 1:1.1, 1:1.2, 1:1.3, 1:1.4, 1: 1.5, 1:1.6, 1:1.7, 1:1.8, 1:1.9 or 1:2. In a preferred embodiment, the active layer included in the present invention may further include an additive, such as but not limited to: alkane thiol (1,8-diiodooctane, 1,8-diiodooctane, DIO) Or 1-chloronaphthalene (1-Chloronaphthalene, 1-CN).

本文所述之「電洞傳遞層(Hole transport layer,HTL)40」係指在太陽能電池中具備高電洞移動率且與該相對電極層50之界面能障低而容易注入電洞之積層。於一較佳實施態樣中,該電洞傳遞層40包括一材料,其係選自由2,2',7,7'-4-[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(Spiro-OMeTAD)、聚二氧乙基噻吩:苯乙烯磺酸(PEDOT:PSS)、N,N'-二(3-甲基苯基)-N,N'-二苯基-[1,1'-聯苯基]-4,4'-二胺(TPD)、聚三己基聚噻吩(P3HT)、五氧化二釩(V2O5)、氧化鎳(NiO)、石墨稀(graphene)、硫化鉬(MoS)、硫化硒(MoSe)、聚烷基噻吩(polyalkyl-thiophene)、三氧化鉬(MoO3)所組成之群組。 The "hole transport layer (HTL) 40" described herein refers to a layer that has a high hole mobility in a solar cell and has a low energy barrier at the interface with the opposing electrode layer 50, which is easy to inject into holes. In a preferred embodiment, the hole transfer layer 40 comprises a material selected from 2,2',7,7'-4-[N,N-bis(4-methoxyphenyl) Amino]-9,9'-spiro-fluorene (Spiro-OMeTAD), polydioxyethylthiophene: styrenesulfonic acid (PEDOT: PSS), N,N'-bis(3-methylphenyl)-N ,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (TPD), polytrihexyl polythiophene (P3HT), vanadium pentoxide (V 2 O 5 ), A group consisting of nickel oxide (NiO), graphene, molybdenum sulfide (MoS), selenium sulfide (MoSe), polyalkyl-thiophene, and molybdenum trioxide (MoO 3 ).

本文所述之「相對電極層(Counter electrode layer)50」係指一電極層通常為高導電分子。於一較佳實施態樣中,該相對電極層50包括一材料,其係選自由鉑、銅、鋁、銦、釕、銠、銥、鋨、金、銀、銣、鈀、鎳、鉬、碳、導電高分子及其組合物及合金所組成的群組。於一較佳實施態樣中,該相對電極層50包括一材料,其係選自由金、銀、銣、鈀、鎳、鉬、鋁及其合金所組成之群組。 The "counter electrode layer (Counter electrode layer) 50" mentioned herein means that an electrode layer is usually a highly conductive molecule. In a preferred embodiment, the counter electrode layer 50 includes a material selected from platinum, copper, aluminum, indium, ruthenium, rhodium, iridium, osmium, gold, silver, rubidium, palladium, nickel, molybdenum, A group consisting of carbon, conductive polymers and their compositions and alloys. In a preferred embodiment, the counter electrode layer 50 includes a material selected from the group consisting of gold, silver, rubidium, palladium, nickel, molybdenum, aluminum, and alloys thereof.

本文所述之「塗佈/塗附」係指在一物體上附著單層或多層的均勻薄膜。於一較佳實施態樣中,本發明之反式有機太陽光電100是應用超薄塗佈技術,其中,該塗佈方式例如但不限於:旋轉塗佈(Spin coating)、狹縫塗佈(Slit coating)、旋轉-狹縫複合式塗佈(Spin plus slit coating)等。 As used herein, "coating/coating" refers to the attachment of a single or multiple uniform films on an object. In a preferred embodiment, the trans organic solar photoelectric device 100 of the present invention uses ultra-thin coating technology, where the coating method is, for example but not limited to, spin coating, slot coating ( Slit coating), spin plus slit coating (Spin plus slit coating), etc.

本文所述之「沉積」係指利用在物質表面上沉積一材料以製造一薄膜之技術。於一較佳實施態樣中,本發明之反式有機太陽光電100是利用電沉積法或化學沉積法;然而,本發明沉積之方法不限於此等。 "Deposition" as used herein refers to the technique of depositing a material on the surface of a substance to make a thin film. In a preferred embodiment, the trans organic solar photovoltaic device 100 of the present invention uses an electrodeposition method or a chemical deposition method; however, the deposition method of the present invention is not limited to these.

下文中,將進一步以詳細說明及實施態樣描述本發明,然而,應理解這些實施態樣僅用於幫助可更加容易理解本發明,而非用以限制本發明之範圍。 Hereinafter, the present invention will be further described with detailed descriptions and implementations. However, it should be understood that these implementations are only used to help understand the present invention more easily, not to limit the scope of the present invention.

[實施例] [Example]

A.方法 A. Method

(1)材料 (1) Material

聚合物施體「PTB7-Th」及「PBDB-T」係購自加拿大商1-Material,無需進一步純化即可使用。幾丁聚醣(Aldrich公司產品編號448869)、甲基纖維素(Sigma公司產品編號M7140)及糊精(Sigma公司產品 編號D2131)係購自Sigma-Aldrich公司,無需進一步純化即可使用。 The polymer donors "PTB7-Th" and "PBDB-T" were purchased from Canadian supplier 1-Material and can be used without further purification. Chitosan (Aldrich product number 448869), methyl cellulose (Sigma company product number M7140) and dextrin (Sigma product No. D2131) was purchased from Sigma-Aldrich, and can be used without further purification.

(2)反式有機太陽光電裝置之製造 (2) Manufacture of trans organic solar photovoltaic devices

該可導電基材之製備:首先利用洗滌劑洗滌ITO玻璃基材,接著以去離子水、丙酮及異丙醇分別清洗15分鐘。然後該ITO玻璃基材(簡稱ITO基材)以氮氣乾燥後進行電漿處理10分鐘。 Preparation of the conductive substrate: firstly, the ITO glass substrate is washed with detergent, and then washed with deionized water, acetone and isopropanol for 15 minutes respectively. Then, the ITO glass substrate (referred to as ITO substrate for short) was dried with nitrogen and then subjected to plasma treatment for 10 minutes.

該電子傳遞層之製備:將0.1g醋酸鋅溶於1mL之2-甲氧基乙醇和28μL之乙醇胺中,以製備ZnO前驅物。將前述ZnO前驅物溶液旋轉塗佈於該ITO玻璃基材上,並在200℃下於空氣中退火30分鐘,以形成ZnO電子傳遞層,得到ITO玻璃基材/ETL(或稱ZnO ETL)。 Preparation of the electron transport layer: 0.1 g of zinc acetate was dissolved in 1 mL of 2-methoxyethanol and 28 μL of ethanolamine to prepare a ZnO precursor. The ZnO precursor solution was spin-coated on the ITO glass substrate, and annealed in air at 200°C for 30 minutes to form a ZnO electron transport layer to obtain an ITO glass substrate/ETL (or ZnO ETL).

該電子傳遞層之表面改性:如上所述,在光電裝置中應用葡萄糖基生物聚合物的主要障礙是其較差的溶液加工性。為克服此問題,本文實施例合理地選擇幾丁聚醣、甲基纖維素及糊精作為較佳的實施態樣。幾丁聚醣、甲基纖維素及糊精之前驅物溶液的配製係分別將0.1g/mL之幾丁聚醣、甲基纖維素及糊精與少量醋酸、水及二甲亞碸(DMSO)一起溶於水中。將前述幾丁聚醣、甲基纖維素及糊精前驅物溶液在空氣中旋轉塗佈於該ZnO電子傳遞層上,接著在130℃下於空氣中退火15分鐘,惟糊精係在150℃下於空氣中退火10分鐘。注意,實施例中所用的天然聚合物(即幾丁聚醣、甲基纖維素及糊精)具有高於250℃的分解溫度。因此,該電子傳遞層藉由幾丁聚醣、甲基纖維素或糊精進行表面改性,並形成ETL/葡萄糖基生物聚合物層,亦即「ZnO/幾丁聚醣」、「ZnO/甲基纖維素」或「ZnO/糊精」。於本實施例中,將未經過表面改性之ETL設為ETL之比較例,亦即比較例中的「裸ETL」或稱為「裸ZnO」。 Surface modification of the electron transport layer: As mentioned above, the main obstacle to the application of glucose-based biopolymers in photovoltaic devices is their poor solution processability. In order to overcome this problem, the examples herein reasonably select chitosan, methyl cellulose and dextrin as the preferred implementations. Chitosan, methyl cellulose and dextrin precursor solutions are prepared by combining 0.1 g/mL chitosan, methyl cellulose and dextrin with a small amount of acetic acid, water and dimethyl sulfoxide (DMSO) ) Dissolve together in water. The chitosan, methyl cellulose and dextrin precursor solution was spin-coated on the ZnO electron transport layer in air, and then annealed in air at 130°C for 15 minutes, but the dextrin system was at 150°C Anneal in air for 10 minutes. Note that the natural polymers used in the examples (ie chitosan, methyl cellulose and dextrin) have a decomposition temperature higher than 250°C. Therefore, the electron transport layer is surface-modified by chitosan, methyl cellulose or dextrin, and forms an ETL/glucose-based biopolymer layer, namely "ZnO/chitosan", "ZnO/ "Methyl cellulose" or "ZnO/dextrin". In this embodiment, the ETL that has not undergone surface modification is referred to as a comparative example of ETL, that is, "bare ETL" or "bare ZnO" in the comparative example.

該主動層之製備:使用代表性的富勒烯基(含有PTB7-Th:PC71BM混摻物)BHJ系統及非富勒烯受體基(含有PBDB-T:ITIC混摻物)BHJ系統作為實施例之光活化系統。將0.5mg/mL之PFN溶解於含有2vol%醋酸之甲醇中,以配製PFN前驅物溶液,並在充氮氣的手套箱中將其旋轉塗佈於前述製備之經表面改性或非經表面改性之ETL上。該PTB7-Th:PC71BM混摻物(重量比1:1.5)前驅物溶液配製於添加有DIO之氯苯(chlorobenzene,CB)中(CB/DIO=97/3,v/v),該PBDB-T:ITIC混摻物(重量比1:1)前驅物溶液配製於添加有DIO之氯苯中(CB/DIO=99.5/0.5,v/v)。將所有這些前驅物溶液在充氮氣的手套箱中於60℃下劇烈攪拌8小時。旋轉塗佈於該ELT層上的BHJ層厚度係80-90nm。對該非富勒烯受體基BHJ系統,將旋轉塗佈的膜置於充氮氣的手套箱中90℃下進一步退火10分鐘。 Preparation of the active layer: using the representative fullerene group (containing PTB7-Th: PC 71 BM blend) BHJ system and non-fullerene acceptor group (containing PBDB-T: ITIC blend) BHJ system As an example of the light activation system. Dissolve 0.5 mg/mL PFN in methanol containing 2 vol% acetic acid to prepare a PFN precursor solution, and spin coat it on the surface-prepared or non-surface-prepared surface prepared in a nitrogen-filled glove box On the ETL of sex. The PTB7-Th: PC 71 BM blend (weight ratio 1:1.5) precursor solution was prepared in chlorobenzene (CB) with DIO added (CB/DIO=97/3, v/v), the PBDB-T: ITIC blend (weight ratio 1:1) precursor solution was prepared in chlorobenzene with added DIO (CB/DIO=99.5/0.5, v/v). All these precursor solutions were vigorously stirred in a nitrogen-filled glove box at 60°C for 8 hours. The thickness of the BHJ layer spin-coated on the ELT layer is 80-90 nm. For this non-fullerene acceptor-based BHJ system, the spin-coated film was placed in a nitrogen-filled glove box and further annealed at 90°C for 10 minutes.

該電洞傳遞層及該相對電極層之製備:在高度真空(<10-6Torr)環境下,分別以8-nm及100-nm厚度熱沉積MoO3及Ag,以完成頂部電極,設備的有效面積為10mm2Preparation of the hole transfer layer and the opposite electrode layer: under high vacuum (<10 -6 Torr) environment, thermal deposition of MoO 3 and Ag with 8-nm and 100-nm thickness, respectively, to complete the top electrode, equipment The effective area is 10 mm 2 .

最後,製成裝置構成為ITO玻璃基材/ZnO/葡萄糖基生物聚合物/BHJ/MoO3/Ag之該反式有機太陽光電,其各層對應之厚度分別為110nm、30nm、10nm、80nm、8nm及100nm。 Finally, the device is made of ITO glass substrate/ZnO/glucose-based biopolymer/BHJ/MoO 3 /Ag of the trans organic solar photovoltaic, and the corresponding thickness of each layer is 110nm, 30nm, 10nm, 80nm, 8nm And 100nm.

(3)光電特性 (3) Photoelectric characteristics

藉由Newport LCS-100模擬器在AM 1.5G照度(100mW/cm2)下量測該反式有機太陽光電之電流-電壓(J-V)特性,並使用電腦控制的Keithley 2400電源量測單元儀器(source measurement unit,SMU)進行記 錄。 The current-voltage ( JV ) characteristics of the trans-organic solar photoelectric cell were measured by the Newport LCS-100 simulator under AM 1.5G illumination (100mW/cm 2 ), and the computer-controlled Keithley 2400 power supply measurement unit instrument ( source measurement unit, SMU) for recording.

使用具有KG-5濾光器的矽光電二極體感測器校正照明強度。在照明期間(QE-R,光焱科技股份有限公司)使用氙氣燈之單色光記錄外部量子效率(EQE),並使用300nm至800nm標準單晶矽太陽光電電池以校正各波長之光強度。 A silicon photodiode sensor with a KG-5 filter is used to correct the illumination intensity. During the illumination period (QE-R, Guangyan Technology Co., Ltd.), the external quantum efficiency (EQE) was recorded using the monochromatic light of the xenon lamp, and the standard single crystal silicon solar photovoltaic cells of 300nm to 800nm were used to correct the light intensity of each wavelength.

(4)型態特徵 (4) Type characteristics

為進行表面能分析,進一步量測接觸角。使用具有Nanoscope三維控制器(數位儀器)之多功能原子力顯微鏡(AFM)系統以輕敲模式獲得AFM影像。矽懸臂(PPP-SEIHR探針,Nanosensor公司)的彈簧常數為15N/m,共振頻率為130kHz。 For surface energy analysis, the contact angle was further measured. AFM images were acquired in a tap mode using a multifunctional atomic force microscope (AFM) system with a Nanoscope three-dimensional controller (digital instrument). The silicon cantilever (PPP-SEIHR probe, Nanosensor) has a spring constant of 15N/m and a resonance frequency of 130kHz.

於臺灣國家同步輻射研究中心(National Synchrotron Radiation Research Center,NSRRC)進行掠入射廣角X光散射(Grazing-Incidence Wide-Angle X-ray Scattering,GIWAXS)之數據量測,其光束BL17A1具有波長1.321Å。 Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS) data measurement was performed at the National Synchrotron Radiation Research Center (NSRRC) in Taiwan. The beam BL17A1 has a wavelength of 1.321Å.

藉由大氣光電子能譜儀(atmospheric photoelectron spectroscopy,PES,理研計器公司AC2)及紫外光光電子能譜儀(ultraviolet photoelectron spectrometer,UPS)量測製備於SiO2基材上經表面改性ETL(即,ZnO/葡萄糖基生物聚合物)或未經表面改性ETL(即,裸ZnO)之功能函數(WF)。前述UPS量測係使用Thermo VG-Scientific廠牌無窗He發射光源,其提供的He(I)發射係21.2eV。使用20eV的通過能量,且光電子的引出角設為90°。 By atmospheric photoelectron spectrometer (atmospheric photoelectron spectroscopy, PES, RIKEN AC2) and ultraviolet photoelectron spectrometer (ultraviolet photoelectron spectrometer, UPS) measurement prepared on SiO 2 substrate surface-modified ETL (ie, ZnO/glucose-based biopolymer) or the function function (WF) of the surface-unmodified ETL (ie, bare ZnO). The aforementioned UPS measurement system uses a Thermo VG-Scientific brand windowless He emission light source, which provides a He(I) emission system of 21.2 eV. A passing energy of 20 eV was used, and the extraction angle of the photoelectrons was set to 90°.

(5)光學建模 (5) Optical modeling

使用傳遞矩陣法(transfer matrix formalism,TMF)進行光學模擬。以橢圓偏振技術(ellipsometry)量測各材料的折射波長複合指數(n=h+ic(1))。基於各層之該折射複合指數的虛部(c)及實部(n),可計算在各層光吸收、反射、透射的分率。對於有機太陽光電,光學模型係基於該裝置構成為ITO玻璃基材/ZnO/葡萄糖基生物聚合物/BHJ/MoO3/Ag,其各層對應之厚度分別為110nm、30nm、10nm、80nm、8nm及100nm。 Transfer matrix formalism (TMF) is used for optical simulation. The refraction wavelength composite index ( n = h + i c (1)) of each material was measured by ellipsometry. Based on the imaginary part ( c ) and real part ( n ) of the refractive index of each layer, the fractions of light absorption, reflection, and transmission in each layer can be calculated. For organic solar photovoltaics, the optical model is based on the device composed of ITO glass substrate/ZnO/glucose-based biopolymer/BHJ/MoO 3 /Ag, and the corresponding thickness of each layer is 110nm, 30nm, 10nm, 80nm, 8nm and 100nm.

以100%內部量子效率(IQE)及AM1.5強度光譜(ASTM G173-03)之假設計算電場分布,並遵循Petterson於1999年公佈之「有機薄膜太陽光電裝置之光電流作用光譜建膜」報告中的模型。此外,以100%內部量子效率及AM1.5強度光譜(ASTM G173-03)之假設計算電流密度,結果如圖3所示。將測量到的EQE光譜除以完成的裝置中BHJ層的模擬吸收光譜以獲得內部量子效率。 Calculate the electric field distribution based on the assumption of 100% internal quantum efficiency (IQE) and AM1.5 intensity spectrum (ASTM G173-03), and follow Petterson's report "Photofilm Construction of Organic Thin Film Solar Photovoltaic Devices in 1999". In the model. In addition, the current density was calculated on the assumption of 100% internal quantum efficiency and AM1.5 intensity spectrum (ASTM G173-03). The results are shown in Fig. 3. The measured EQE spectrum was divided by the simulated absorption spectrum of the BHJ layer in the completed device to obtain internal quantum efficiency.

B.結果 B. Results

(1)該葡萄糖基生物聚合物膜之特性 (1) Characteristics of the glucose-based biopolymer membrane

幾丁聚醣(A)、甲基纖維素(B)及糊精(C)之結構式如下,由β型葡萄糖組成的幾丁聚醣(A)及甲基纖維素(B)其在葡萄糖單體上具有胺基及甲基官能基團,使幾丁聚醣(A)及甲基纖維素(B)與原始纖維素相比具有更好的溶液加工性。甲基纖維素(B)對水有很好的相溶性,而幾丁聚醣(A)也可在少量醋酸的幫助下溶於水中。另一方面,在葡萄糖單體上具有典型羥基官能基團的糊精(C),其係由α型醣苷鍵組成,在DMSO中顯示出優於原始纖維素的溶解性。 The structural formulas of chitosan (A), methyl cellulose (B) and dextrin (C) are as follows. Chitosan (A) and methyl cellulose (B) composed of β-glucose The monomer has amine groups and methyl functional groups, so that chitosan (A) and methyl cellulose (B) have better solution processability than the original cellulose. Methyl cellulose (B) has good compatibility with water, and chitosan (A) can also be dissolved in water with the help of a small amount of acetic acid. On the other hand, dextrin (C), which has a typical hydroxyl functional group on the glucose monomer, is composed of α-type glycosidic bonds and shows better solubility than virgin cellulose in DMSO.

Figure 107136953-A0202-12-0018-1
Figure 107136953-A0202-12-0018-1

Figure 107136953-A0202-12-0018-2
Figure 107136953-A0202-12-0018-2

Figure 107136953-A0202-12-0018-3
Figure 107136953-A0202-12-0018-3

由於本質上良好的結構平面性及溶液加工性,幾丁聚醣、甲基纖維素及糊精顯示出良好的成膜能力及高光學透明度(如圖4所示),此般特性展現出在OPV應用的良好潛力。因此,考量幾丁聚醣、甲基纖維素及糊精的絕緣性質,本實施例旨在將幾丁聚醣、甲基纖維素及糊精作為反式有機太陽光電中電子傳遞層(ZnO)的表面改性劑,因為ZnO表面已被確定具有缺陷且與有機太陽光電中成分的相容性較差,故可能不利於形成理想的BHJ型態。本實施例應用之該等葡萄糖基生物聚合物具有不同的官能基團,此特性可能誘導界面偶極子的形成以影響ZnO的功能函數,因此首先藉由光電子光譜檢驗ZnO/葡萄糖基生物聚合物的總功能函數。結果如圖5所示,觀察到功能函數的變化可忽略不計,表示其等在介導金屬氧化物的功能函數中扮演次要作用。 Due to the inherently good structural planarity and solution processability, chitosan, methyl cellulose and dextrin show good film-forming ability and high optical transparency (as shown in Fig. 4). Good potential for OPV applications. Therefore, considering the insulating properties of chitosan, methyl cellulose and dextrin, this embodiment aims to use chitosan, methyl cellulose and dextrin as the electron transport layer (ZnO) in trans organic solar photovoltaic The surface modifier of ZnO has been determined to have defects and poor compatibility with the components in organic solar photovoltaics, so it may not be conducive to the formation of the ideal BHJ type. The glucose-based biopolymers used in this example have different functional groups. This feature may induce the formation of interfacial dipoles to affect the function function of ZnO. Therefore, first, the photoelectron spectroscopy was used to examine the properties of ZnO/glucose-based biopolymers. Total function. The results are shown in Fig. 5, and the observed changes in the functional function are negligible, indicating that their function plays a secondary role in mediating the functional function of the metal oxide.

經表面改性ETL(即,ZnO/葡萄糖基生物聚合物)賦予表面能及型態上的特色。經表面改性ETL在其頂部生長之該主動層(即,該BHJ層)的發展中起了重要作用。使用接觸角測角術結合Wu模型量測經表面改性ETL的總表面能(γtotal),前述Wu模型是參照由Bulliard X.等人於2010年公開之「藉由表面能控制以增進聚合物太陽能電池效能」,使用蒸餾水和甘 油作為接觸角(θ)量測的探測液體。基本上,該總表面能(γtotal)等於分散能量(γdispersive)及極性能量(γpolar)之和。實施例樣品的對應數據整理如表1。如上所述,ZnO/幾丁聚醣膜(64.77mN m-1)及ZnO/甲基纖維素膜(59.41mN m-1)均產生比裸ZnO(55.23mN m-1)更高的總表面能,其係因為ZnO/幾丁聚醣膜及ZnO/甲基纖維素膜具有更高的疏水性質。值得注意的是,由於界面處的相容性提高,故較高的總表面能表示更易於黏附到所接觸的有機材料上。ZnO/糊精膜的總表面能(55.18mN m-1)與裸ZnO相當,其係因為糊精中主要構成的羥基官能基團。 Surface-modified ETL (ie, ZnO/glucose-based biopolymer) imparts surface energy and morphological characteristics. The surface-modified ETL plays an important role in the development of the active layer (ie, the BHJ layer) grown on top of it. The total surface energy ( γtotal ) of the surface-modified ETL was measured using contact angle goniometry in combination with the Wu model. The aforementioned Wu model refers to the publication “By Surface Energy Control to Improve Polymerization” published by Bulliard X. et al. in 2010 Solar cell performance", using distilled water and glycerin as the detection liquid for contact angle (θ) measurement. Basically, the total surface energy ( γtotal ) is equal to the sum of dispersing energy ( γdispersive ) and polar energy ( γpolar ). The corresponding data of the samples of the examples are summarized in Table 1. As mentioned above, both ZnO/chitosan film (64.77mN m -1 ) and ZnO/methylcellulose film (59.41mN m -1 ) produce higher total surface than bare ZnO (55.23mN m -1 ) Yes, it is because ZnO/chitosan membrane and ZnO/methyl cellulose membrane have higher hydrophobic properties. It is worth noting that due to the increased compatibility at the interface, a higher total surface energy indicates easier adhesion to the organic material in contact. The total surface energy (55.18mN m -1 ) of the ZnO/dextrin film is comparable to bare ZnO, which is due to the hydroxyl functional groups mainly composed in dextrin.

Figure 107136953-A0202-12-0019-4
Figure 107136953-A0202-12-0019-4

考量製備的薄膜表面紋理對於其表面能的影響,使用輕拍式原子力顯微鏡(AFM)研究本實施例樣品的型態。圖6所示為本發明之ZnO/葡萄糖基生物聚合物膜的AFM形貌圖及相圖。如圖所示,本發明之ZnO/葡萄糖基生物聚合物膜非常均勻,其中並未明確觀察到嚴重的相分離。裸ZnO、ZnO/幾丁聚醣、ZnO/甲基纖維素及ZnO/糊精的估計均方根(RMS)表面粗糙度分別為1.23、1.62、0.72及1.00nm。包含甲基纖維素之膜產生具有最佳均勻性之最平滑表面,表現出其優異的成膜能力。 Considering the effect of the surface texture of the prepared film on its surface energy, a tapping atomic force microscope (AFM) was used to study the shape of the sample of this example. FIG. 6 shows the AFM morphology and phase diagram of the ZnO/glucose-based biopolymer membrane of the present invention. As shown in the figure, the ZnO/glucose-based biopolymer membrane of the present invention is very uniform, in which severe phase separation is not clearly observed. The estimated root mean square (RMS) surface roughness of bare ZnO, ZnO/chitosan, ZnO/methyl cellulose, and ZnO/dextrin were 1.23, 1.62, 0.72, and 1.00 nm, respectively. Films containing methyl cellulose produce the smoothest surface with the best uniformity, exhibiting its excellent film-forming ability.

如上所述,葡萄糖具有同分異構的重複單元。糊精之葡萄糖單體係藉由α型連接聚合而成,甲基纖維素係藉由β型連接聚合而成。由於位阻及氫鍵,α型葡萄糖基生物聚合物通常具有捲曲的主鏈且像彈簧般盤 繞。相反地,β型葡萄糖基生物聚合物的骨架較直,故相較於α型葡萄糖基生物聚合物,β型葡萄糖基生物聚合物有利於提供更擴展的結構。此外,β型葡萄糖基生物聚合物其更佳的線性可允許相鄰鏈上的OH基之間形成大量的氫鍵,以產生密集的堆砌圖案而形成如纖維般連續的層狀結構。因此,相較於具有螺旋彈簧結構之α型葡萄糖基生物聚合物(如:本實施例之糊精),具有層狀結構之β型葡萄糖基生物聚合物(如:本實施例之甲基纖維素)更為偏好產生更平滑的膜表面。幾丁聚醣雖屬於β型葡萄糖基生物聚合物,然而,其在本實施例所用之葡萄糖基生物聚合物中展現出最大的表面粗糙度,這是由於除前述構型因素外,胺基團在所得之鏈堆砌圖案中亦起了關鍵作用。 As mentioned above, glucose has isomeric repeating units. The glucose system of dextrin is polymerized by α-type connection, and methyl cellulose is polymerized by β-type connection. Due to steric hindrance and hydrogen bonding, alpha-glucose-based biopolymers usually have a coiled backbone and spring-like disks Around. Conversely, the β-glucose-based biopolymer has a straighter skeleton, so compared to the α-glucose-based biopolymer, the β-glucose-based biopolymer is beneficial to provide a more extended structure. In addition, the better linearity of β-type glucose-based biopolymers can allow a large number of hydrogen bonds to be formed between OH groups on adjacent chains to produce dense stacked patterns to form a continuous layered structure like fibers. Therefore, compared with the α-type glucose-based biopolymer having a coil spring structure (eg, dextrin in this embodiment), the β-type glucose-based biopolymer having a layered structure (eg, methyl fiber in this embodiment) Element) prefers to produce a smoother membrane surface. Although chitosan belongs to β-type glucose-based biopolymer, however, it exhibits the largest surface roughness among the glucose-based biopolymers used in this example, which is due to the amine group in addition to the aforementioned configuration factors It also played a key role in the resulting chain stacking pattern.

(2)該反式有機太陽光電之性能 (2) Performance of the trans organic solar photovoltaic

接著檢驗該反式有機太陽光電中作為ZnO表面改性劑之葡萄糖基生物聚合物的功效,其中先使用代表性之PTB7-Th:PC71BM混摻物之BHJ層作光活化體系。在AM 1.5G照度下所量測之J-V曲線如圖7所示,相關太陽光電參數如:開路電壓(V oc )、短路電流(J sc )及填充因子(FF)整理於表2。為方便起見,本實施例中使用裸ZnO ETL之裝置以ZnO裝置表示,使用葡萄糖基生物聚合物中間層之裝置以其個別對應之幾丁聚醣裝置、甲基纖維素裝置或糊精裝置表示。值得注意的是,對於PTB7-Th:PC71BM混摻物之BHJ層,以PFN改性之ZnO裝置(即,採用裸ZnO ETL之比較例)並未顯示出明顯改善的性能,這可能是因為PFN在非極性溶劑中有部分的溶解性。 Next, the efficacy of the glucose-based biopolymer as a ZnO surface modifier in the trans-organic solar photovoltaic was examined, in which the BHJ layer of the representative PTB7-Th: PC 71 BM blend was first used as the light activation system. The measured JV curve under AM 1.5G illuminance is shown in Fig. 7, and the relevant solar photoelectric parameters such as: open circuit voltage ( V oc ), short circuit current ( J sc ) and fill factor ( FF ) are summarized in Table 2. For convenience, the device using bare ZnO ETL in this embodiment is represented by a ZnO device, and the device using a glucose-based biopolymer interlayer is corresponding to its chitosan device, methyl cellulose device or dextrin device. Said. It is worth noting that for the BHJ layer of the PTB7-Th: PC 71 BM blend, the ZnO device modified with PFN (ie, a comparative example using bare ZnO ETL) did not show significantly improved performance, which may be Because PFN has partial solubility in non-polar solvents.

Figure 107136953-A0202-12-0020-5
Figure 107136953-A0202-12-0020-5
Figure 107136953-A0202-12-0021-6
Figure 107136953-A0202-12-0021-6

本實施例中所用之該些ZnO表面改性劑以不同方式影響其反式有機太陽光電的性能。展現出最佳效能的為甲基纖維素裝置,其PCE為9.25%、V oc 為0.794V、J sc 為17.08mA/cm2FF為68.2,而比較例ZnO裝置(即裸ZnO)產生的性能為PCE:8.45%、V oc :0.793V、J sc :16.67mA/cm2FF:63.9。 The ZnO surface modifiers used in this example affect the performance of their trans organic solar photovoltaic in different ways. The methylcellulose device exhibited the best performance with a PCE of 9.25%, V oc of 0.794V, J sc of 17.08 mA/cm 2 and FF of 68.2, while the comparative example ZnO device (ie bare ZnO) produced performance PCE: 8.45%, V oc: 0.793V, J sc: 16.67mA / cm 2 and FF: 63.9.

此般PCE變化差異顯示該些葡萄糖基生物聚合物之結構-性能關係,因為該些葡萄糖基生物聚合物具有不同的膜型態及不同的官能側基效應。然而,如前所述,塗覆該些葡萄糖基生物聚合物後,ZnO功能函數並未改變。因此,推測包括中間層及BHJ層之膜品質及膜型態對於性能結果具有關鍵影響。如前揭結果,具有最平滑膜表面之甲基纖維素膜使包含其之反式太陽光電裝置展現出最高的PCE。如圖7(b)所示,於所有實施例裝置中,該幾丁聚醣裝置具有最大的暗電流,表示該幾丁聚醣裝置中發生相對更多的電荷重組。然而需注意的是,此般較大的暗電流表示在裝置 中可以形成導電聚合物或界面摻雜。 The difference in PCE changes generally shows the structure-performance relationship of these glucose-based biopolymers, because these glucose-based biopolymers have different membrane types and different functional side group effects. However, as mentioned above, after coating these glucose-based biopolymers, the ZnO function function has not changed. Therefore, it is speculated that the film quality and film type including the intermediate layer and the BHJ layer have a key influence on the performance results. As previously disclosed, the methylcellulose film with the smoothest film surface allows the trans-photovoltaic device containing it to exhibit the highest PCE. As shown in FIG. 7(b), in all the device examples, the chitosan device has the largest dark current, indicating that relatively more charge recombination occurs in the chitosan device. However, it should be noted that such a large dark current indicates that the device Conductive polymers or interfacial doping can be formed.

為了更進一步探測本實施例之裝置中電荷重組的行為,將光電流密度(J ph )作為本實施例之裝置有效電壓(V eff )的函數繪製於圖7(c)中。前述J ph 是由J ph =J L -J D 計算而得,其中J L J D 分別表示在AM 1.5G照度及黑暗下量測之電流密度,V eff 定義為V eff =V 0 -V bias ,其中V 0 係當J ph 為0時之電壓,V bias 係應用偏壓。一般而言,J ph 會於高偏壓區接近飽和值(J sat ),表示完全解離電荷的狀態且被高內部電場掃除。因此,J ph,SC /J ph,sat 比率表示在短路條件下激子解離機率的乘積,而J ph,max /J ph,sat 比率表示在最大功率輸出條件下電荷收集機率的乘積。因此,在短路條件和最大功率輸出條件之間外部偏壓下的J ph /J sat 比率可被評估為電荷解離和收集機率的組合乘積。在V eff 相同為0.1eV的情況下,前述ZnO裝置、幾丁聚醣裝置、甲基纖維素及糊精裝置之機率分別為0.63、0.57、0.70及0.66。該甲基纖維素及該糊精裝置較高的值表示有更佳的電荷解離及收集機率。 In order to further detect the behavior of charge recombination in the device of this embodiment, the photocurrent density ( J ph ) is plotted in FIG. 7(c) as a function of the effective voltage ( V eff ) of the device of this embodiment. The aforementioned J ph is calculated from J ph = J L - J D , where J L and J D represent the current density measured under AM 1.5G illumination and darkness, respectively, and V eff is defined as V eff = V 0 - V bias , where V 0 is the voltage when J ph is 0, and V bias is the bias applied. Generally speaking, J ph will approach saturation value ( J sat ) in the high bias region, indicating the state of completely dissociating the charge and being swept away by the high internal electric field. Therefore, J ph,SC /J ph,sat ratio represents the product of exciton dissociation probability under short-circuit condition, and J ph,max /J ph,sat ratio represents the product of charge collection probability under maximum power output condition. Therefore, the J ph /J sat ratio under external bias between the short-circuit condition and the maximum power output condition can be evaluated as the combined product of charge dissociation and collection probability. When V eff is the same as 0.1 eV, the probabilities of the aforementioned ZnO device, chitosan device, methyl cellulose and dextrin device are 0.63, 0.57, 0.70 and 0.66, respectively. Higher values of the methyl cellulose and the dextrin device indicate better charge dissociation and collection probability.

如前所述,此般性能的改善亦與BHJ層型態的變化有關,因為BHJ層型態的提升可促進前述裝置中的光激子解離。此現象也可藉由前述裝置其各自對應的經標準化EQE光譜反映。如圖7(d)所示,所有實施例之裝置在300~800nm處皆顯示出良好的光反應,但甲基纖維素裝置及糊精裝置在~410nm及~700nm處皆呈現出較強的反應。 As mentioned above, the improvement in performance is also related to the change of the BHJ layer type, because the improvement of the BHJ layer type can promote the dissociation of the photoexcitons in the aforementioned device. This phenomenon can also be reflected by the corresponding standardized EQE spectra of the aforementioned devices. As shown in FIG. 7(d), the devices of all the examples showed good photoreactions at 300~800nm, but the methylcellulose devices and dextrin devices showed stronger at ~410nm and ~700nm. reaction.

為進一步驗證本發明對不同種類BHJ系統的適用性,在代表性非富勒烯受體基PBDB-T:ITIC混摻物系統中,進一步採用本實施例中表現最佳的經甲基纖維素表面改性之ZnO ETL。結果如圖8及表2所示,該甲基纖維素裝置展現出卓越的PCE為9.89%,其V oc 為0.873V、J sc 為16.93 mA/cm2FF為66.9,優於比較例的性能(即ZnO/PFN裝置,PCE:9.30%;V oc :0.866V;J sc :16.84mA/cm2FF:63.8)。此結果清楚表示經甲基纖維素改性之ZnO ETL一般適用於不同種類的BHJ體系。然而,與PTB7-Th:PC71BM混摻物之BHJ系統略有不同,甲基纖維素中間層可藉由更佳地介導ZnO/BHJ界面處的界面電子性質以改善包含其之裝置的性能,如圖9所示。 In order to further verify the applicability of the present invention to different types of BHJ systems, in the representative non-fullerene receptor group PBDB-T: ITIC blend system, the best performing methylcellulose in this example was further used Surface modified ZnO ETL. The results are shown in Fig. 8 and Table 2. The methylcellulose device showed excellent PCE of 9.89%, V oc of 0.873V, J sc of 16.93 mA/cm 2 and FF of 66.9, better than the comparative example Performance (ie ZnO/PFN device, PCE: 9.30%; V oc : 0.866V; J sc : 16.84 mA/cm 2 ; FF : 63.8). This result clearly shows that ZnO ETL modified with methyl cellulose is generally suitable for different types of BHJ systems. However, unlike the BHJ system of PTB7-Th: PC 71 BM blends, the methyl cellulose intermediate layer can improve the performance of devices containing it by better mediating the interface electronic properties at the ZnO/BHJ interface Performance, as shown in Figure 9.

(3)BHJ活性層之型態 (3) Type of BHJ active layer

如上所述,於使用PTB7-Th:PC71BM混摻物之BHJ系統的情況下,較強的PCE可追朔到由葡萄糖基生物聚合物中間層所誘導促進的BHJ型態。首先利用AFM研究實施例中該些混摻物的型態。圖10所示為分別在比較例(即,裸ZnO ETL)及實施例(即,經葡萄糖基生物聚合物表面改性之ETL)上生長的該PTB7-Th:PC71BM混摻物膜之相及形貌AFM影像圖。如圖所示,所有的示例樣品都顯示出互穿型網狀活性層,但具有不同的表面紋理及粗糙度。於裸ZnO ETL膜、幾丁聚醣ETL膜、甲基纖維素ETL膜及糊精ETL膜上生長的BHJ層之表面粗糙度RMS分別為1.34、1.28、1.30及1.31nm。此般細微變化可能源於獨特的奈米級相分離性。 As described above, in the case of the BHJ system using the PTB7-Th:PC 71 BM blend, the stronger PCE can be traced back to the BHJ pattern induced by the glucose-based biopolymer intermediate layer. First, AFM was used to study the types of the blends in the examples. FIG. 10 shows the PTB7-Th: PC 71 BM blend film grown on Comparative Example (ie, bare ZnO ETL) and Example (ie, ETL modified with glucose-based biopolymer surface), respectively AFM image with similar appearance. As shown in the figure, all the sample samples show interpenetrating network active layers, but have different surface textures and roughness. The surface roughness RMS of the BHJ layer grown on the bare ZnO ETL film, chitosan ETL film, methyl cellulose ETL film and dextrin ETL film were 1.34, 1.28, 1.30 and 1.31 nm, respectively. Such subtle changes may result from the unique nano-scale phase separation.

為進一步探討實施例和比較例中BHJ膜相關分子堆砌特徵和堆疊取向,使用GIWAXS探測BHJ膜的型態特徵。圖11所示為實施例和比較例之二維GIWAXS圖,其中在平面(in-plane)及非平面(out-of-plane)方向上皆觀察到對應於PTB7-Th層狀堆積的明顯(100)波峰,而在屬於PC71BM聚集體之q=~1.3Å-1處觀察到一環狀訊號。值得注意的是,使用該葡萄糖基生物聚合物中間層之實施例其堆砌圖案並未追蹤到明顯變化。 In order to further explore the molecular stacking characteristics and stacking orientation of the BHJ film in the examples and comparative examples, GIWAXS was used to detect the morphological characteristics of the BHJ film. FIG. 11 is a two-dimensional GIWAXS diagram of an example and a comparative example, in which both the in-plane and out-of-plane directions are observed to correspond to the PTB7-Th layered accumulation ( 100) Peak, and a ring signal was observed at q = ~1.3Å -1 belonging to the aggregate of PC 71 BM. It is worth noting that the stacking pattern of the embodiment using the glucose-based biopolymer intermediate layer did not track significant changes.

進一步分析從前述二維圖所提取之一維剖面、PTB7-Th及PC71BM之半峰全幅值(FWHM)及其等對應之極點圖。圖12及13顯示在不同ETL上生長之PTB7-Th:PC71BM混摻物的詳細結晶性質,其相關的結晶參數歸納於表3(平面方向)及表4(非平面方向)。如圖12所示,當峰值q y =1.33Å-1為PC71BM時,q y =0.30Å-1之繞射峰被指定為PTB7-Th(100)訊號,該PTB7-Th(100)訊號係與層狀堆砌間隔36.1Å相關。PTB7-Th及PC71BM之半峰全幅值分析如圖12及圖13,PTB7-Th之方位角極點圖(azimuthal-angle pole plot)如圖14。可以清楚的觀察到,使用經葡萄糖基生物聚合物表面改性ZnO ETL(即,ZnO/幾丁聚醣、ZnO/甲基纖維素或ZnO/糊精)之實施例裝置中,其BHJ膜的微晶大小及堆砌取向皆有所增強。表示實施例中使用之該些葡萄糖基生物聚合物可促進BHJ型態,這是由於如前所述之改進界面相容性及粗糙度所達成的結果,如圖15。注意,有鑒於PC71BM及PTB7-Th分別在300-400nm短波長區及700-800nm長波長區有強烈的光捕獲,因此,可以將所觀察到於~410nm及~700nm波峰處增加的光反應(如圖7(d))歸因於其等分別增強了結晶及堆砌取向,此般增強之結晶度有利於光激子產生及隨後的電荷解離/傳輸。 Further analyze the half-peak full amplitude (FWHM) of the one-dimensional profile, PTB7-Th and PC 71 BM extracted from the aforementioned two-dimensional map and their corresponding corresponding pole maps. Figures 12 and 13 show the detailed crystalline properties of PTB7-Th:PC 71 BM blends grown on different ETLs. The relevant crystallization parameters are summarized in Table 3 (planar direction) and Table 4 (non-planar direction). As shown in Figure 12, when the peak value q y =1.33Å -1 is PC 71 BM, the diffraction peak of q y =0.30Å -1 is designated as the PTB7-Th(100) signal, and the PTB7-Th(100) The signal is related to the layered stacking interval of 36.1Å. PTB7-Th and PC 71 BM's half-peak full amplitude analysis is shown in Figure 12 and Figure 13, and PTB7-Th's azimuthal-angle pole plot (azimuthal-angle pole plot) is shown in Figure 14. It can be clearly observed that the BHJ membrane of the BHJ membrane in the embodiment device using the ZnO ETL modified with glucose-based biopolymer surface (ie, ZnO/chitosan, ZnO/methyl cellulose, or ZnO/dextrin) The crystallite size and stacking orientation have been enhanced. It is shown that the glucose-based biopolymers used in the examples can promote the BHJ pattern, which is the result of improving the interface compatibility and roughness as described above, as shown in FIG. 15. Note that given that PC 71 BM and PTB7-Th have strong light capture in the short-wavelength region of 300-400nm and the long-wavelength region of 700-800nm, respectively, the increased light observed at the peaks of ~410nm and ~700nm can be observed The reaction (as shown in Fig. 7(d)) is attributed to their enhanced crystallization and stacking orientation, respectively. This enhanced crystallinity is conducive to the generation of photoexcitons and subsequent dissociation/transportation of charges.

Figure 107136953-A0202-12-0024-7
Figure 107136953-A0202-12-0024-7

Figure 107136953-A0202-12-0025-8
Figure 107136953-A0202-12-0025-8

(4)該反式有機太陽光電內部之光場 (4) The light field inside the trans organic solar photovoltaic

為進一步釐清除型態外的其他因素,其對於使用該葡萄糖基生物聚合物中間層之實施例裝置中所觀察到改善J sc 之貢獻,進行了基於PTB7-Th:PC71BM混摻物之BHJ系統進行光學建模模擬,如圖16及3所示,前述裝置中的模擬場強度(|E|2)是如圖中所示的實施例裝置下的波長函數。結果顯示,含有葡萄糖基生物聚合物中間層之實施例裝置於該主動層內部長波長區(>700nm)展現出增強的場強度,其可以說是證明了在長波長處觀察到的略微增強之EQE。此般增強對於提高該主動層的總生成速率有直接幫助(如圖16),證實在該甲基纖維素裝置中觀察到比該ZnO裝置更高的J sc In order to further clarify other factors outside the pattern, its contribution to the improvement of J sc observed in the example device using the glucose-based biopolymer intermediate layer, based on PTB7-Th: PC 71 BM blend The BHJ system performs optical modeling simulation. As shown in FIGS. 16 and 3, the simulated field strength (|E| 2 ) in the foregoing device is a wavelength function under the device of the embodiment shown in the figure. The results show that the example device containing an intermediate layer of glucose-based biopolymer exhibits an enhanced field strength in the long wavelength region (>700 nm) inside the active layer, which can be said to prove the slight enhancement observed at the long wavelength EQE. Such enhancement is directly helpful to increase the total generation rate of the active layer (as shown in FIG. 16), confirming that a higher J sc is observed in the methyl cellulose device than in the ZnO device.

如圖17所示,因BHJ厚度減小所導致的電流密度降低可以在包含該葡萄糖基生物聚合物中間層之實施例裝置中緩和。藉由將電流密度曲線移動至更薄的主動層區,可以在使用該些葡萄糖基生物聚合物中間層的協助下實現高性能半透明OPV。 As shown in FIG. 17, the decrease in current density due to the decrease in the thickness of BHJ can be alleviated in the embodiment device including the glucose-based biopolymer intermediate layer. By moving the current density curve to a thinner active layer area, high-performance translucent OPV can be achieved with the help of using these glucose-based biopolymer intermediate layers.

綜上所述,本發明提供一種反式有機太陽光電,其包括葡萄糖基生物聚合物作為電子傳輸層的改性中間層。由於側基及構型修飾,本發明所用之葡萄糖基衍生物在水或二甲亞碸中具有良好的溶解度。更重要 的是,與常用之PFN基/PEI基的界面材料相比,該葡萄糖基生物聚合物更易於獲取且更加經濟。具有該葡萄糖基生物聚合物作為表面改性劑之該電子傳輸層膜展現出均勻的型態,這是得益於該葡萄糖基生物聚合物良好的結構平面性及溶液加工性。本發明所用之葡萄糖基生物聚合物揭示了促進於其頂部生長之太陽光電組分聚集的能力,以產生更為理想的BHJ型態。與包含未經修飾ETL之對照裝置相比,本發明可分別對代表性富勒希基(即PTB7-Th:PC71BM)及非富勒希受體基之BHJ系統(即PBDB-T:ITIC)之PCE增強9.47%及6.34%。 In summary, the present invention provides a trans organic solar photovoltaic, which includes a glucose-based biopolymer as a modified intermediate layer of the electron transport layer. Due to the modification of side groups and configuration, the glucosyl derivatives used in the present invention have good solubility in water or dimethyl sulfoxide. More importantly, the glucose-based biopolymer is easier to obtain and more economical than the commonly used PFN-based/PEI-based interface materials. The electron transport layer film with the glucose-based biopolymer as a surface modifier exhibits a uniform pattern, which is attributed to the good structural planarity and solution processability of the glucose-based biopolymer. The glucose-based biopolymer used in the present invention reveals the ability to promote the aggregation of photovoltaic components grown on top of it to produce a more ideal BHJ type. Compared with a control device containing unmodified ETL, the present invention can be applied to representative fullerhyl groups (ie PTB7-Th: PC 71 BM) and non-fullerhyl acceptor group-based BHJ systems (ie PBDB-T: ITIC) increased PCE by 9.47% and 6.34%.

以上已將本發明做一詳細說明,惟以上所述者,僅惟本發明之一較佳實施例而已,當不能以此限定本發明實施之範圍,即凡依本發明申請專利範圍所作之均等變化與修飾,皆應仍屬本發明之專利涵蓋範圍內。 The present invention has been described in detail above, but the above mentioned is only one of the preferred embodiments of the present invention, which cannot be used to limit the scope of implementation of the present invention, that is, any equivalent made according to the patent application scope of the present invention Changes and modifications should still fall within the scope of the patent of the present invention.

100‧‧‧反式有機太陽光電 100‧‧‧trans organic solar photovoltaic

10‧‧‧可導電基材 10‧‧‧Conductible substrate

20‧‧‧電子傳遞層 20‧‧‧Electron transfer layer

21‧‧‧表面改性劑 21‧‧‧Surface modifier

30‧‧‧主動層 30‧‧‧Active layer

40‧‧‧電洞傳遞層 40‧‧‧Electron tunnel transmission layer

50‧‧‧相對電極層 50‧‧‧counter electrode layer

Claims (20)

一種反式有機太陽光電(photovoltaic),其包括:一可導電基材、一電子傳遞層、一主動層、一電洞傳遞層、及一相對電極層;其中,該電子傳遞層包括一葡萄糖基(glucose-based)生物聚合物作為一表面改性劑。 A trans-organic photovoltaic (photovoltaic) comprising: a conductive substrate, an electron transport layer, an active layer, a hole transport layer, and a counter electrode layer; wherein the electron transport layer includes a glucose group (glucose-based) biopolymer as a surface modifier. 如申請專利範圍第1項所述之反式有機太陽光電,其中,該葡萄糖基生物聚合物係溶於一溶劑中,該溶劑包括水、二甲亞碸(DMSO)或其組合。 The trans organic solar photovoltaic as described in item 1 of the patent application scope, wherein the glucose-based biopolymer is dissolved in a solvent, and the solvent includes water, dimethyl sulfoxide (DMSO) or a combination thereof. 如申請專利範圍第1項所述之反式有機太陽光電,其中,該葡萄糖基生物聚合物係選自由甲基纖維素、幾丁聚醣及糊精所組成之群組。 The trans organic solar photovoltaic as described in item 1 of the patent application scope, wherein the glucose-based biopolymer is selected from the group consisting of methyl cellulose, chitosan, and dextrin. 如申請專利範圍第2項所述之反式有機太陽光電,其中,該葡萄糖基生物聚合物之總表面能大於55mN/m。 The trans organic solar photovoltaic as described in item 2 of the patent application scope, wherein the total surface energy of the glucose-based biopolymer is greater than 55 mN/m. 如申請專利範圍第2項所述之反式有機太陽光電,其中,該電子傳遞層係選自由二氧化鈦(TiO2)、氧化鋅(ZnO)、二氧化錫(SnO2)及錫酸鋅(Zn2SnO4)所組成之群組。 The trans organic solar photovoltaic as described in item 2 of the patent application scope, wherein the electron transport layer is selected from titanium dioxide (TiO 2 ), zinc oxide (ZnO), tin dioxide (SnO 2 ) and zinc stannate (Zn 2 SnO 4 ). 如申請專利範圍第2項所述之反式有機太陽光電,其中,該可導電基材包括一可導電材料,該可導電材料係選自由氧化銦(In2O3)、氧化錫(SnO2)、銦-錫複合氧化物(ITO)、摻氟氧化錫(FTO)、氧化鋅(ZnO)、氧化鋅-三氧化二鎵(ZnO-Ga2O3)及氧化鋅-氧化鋁(ZnO-Al2O3)所組成之群組。 The trans organic solar photovoltaic as described in item 2 of the patent application scope, wherein the conductive substrate comprises a conductive material selected from the group consisting of indium oxide (In 2 O 3 ) and tin oxide (SnO 2 ), indium-tin composite oxide (ITO), fluorine-doped tin oxide (FTO), zinc oxide (ZnO), zinc oxide-gallium oxide (ZnO-Ga 2 O 3 ) and zinc oxide-alumina (ZnO- Al 2 O 3 ). 如申請專利範圍第1項所述之反式有機太陽光電,其中,該主動層係一塊材異質接面(bulk heterojunction)層。 The trans organic solar photovoltaic as described in item 1 of the scope of the patent application, wherein the active layer is a bulk heterojunction layer. 如申請專利範圍第7項所述之反式有機太陽光電,其中,該塊材異質接面層係富勒烯基(fullerene-based)或非富勒烯受體基(non-fullerene acceptor-based)層。 The trans organic solar photovoltaic as described in item 7 of the patent application scope, wherein the bulk heterojunction layer is fullerene-based or non-fullerene acceptor-based )Floor. 如申請專利範圍第8項所述之反式有機太陽光電,其中,該塊材異質接面層包括PTB7-Th:PC71BM混摻物或PBDB-T:ITIC混摻物。 The trans organic solar photovoltaic as described in item 8 of the patent application scope, wherein the bulk heterojunction layer comprises PTB7-Th: PC 71 BM blend or PBDB-T: ITIC blend. 如申請專利範圍第9項所述之反式有機太陽光電,其中,該PTB7-Th:PC71BM混摻物的重量比為1:05至1:3。 The trans organic solar photovoltaic as described in item 9 of the patent application scope, wherein the weight ratio of the PTB7-Th:PC 71 BM blend is 1:05 to 1:3. 如申請專利範圍第9項所述之反式有機太陽光電,其中,該PBDB-T:ITIC混摻物的重量比為1:0.5至1:2。 The trans organic solar photovoltaic as described in item 9 of the patent application scope, wherein the weight ratio of the PBDB-T:ITIC blend is 1:0.5 to 1:2. 如申請專利範圍第2項所述之反式有機太陽光電,其中,該電洞傳遞層係選自由2,2',7,7'-4-[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(Spiro-OMeTAD)、聚二氧乙基噻吩:苯乙烯磺酸(PEDOT:PSS)、N,N'-二(3-甲基苯基)-N,N'-二苯基-[1,1'-聯苯基]-4,4'-二胺(TPD)、聚三己基聚噻吩(P3HT)、五氧化二釩(V2O5)、氧化鎳(NiO)、石墨稀(graphene)、硫化鉬(MoS2)、硒化鉬(MoSe2)、聚烷基噻吩(polyalkyl-thiophene)及三氧化鉬(MoO3)所組成之群組。 The trans organic solar photovoltaic as described in item 2 of the patent application scope, wherein the hole transfer layer is selected from 2,2',7,7'-4-[N,N-bis(4-methoxy Phenyl)amino]-9,9'-spiro-fluorene (Spiro-OMeTAD), polydioxyethylthiophene: styrenesulfonic acid (PEDOT: PSS), N,N'-bis(3-methylphenyl )-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (TPD), polytrihexyl polythiophene (P3HT), vanadium pentoxide (V 2 O 5 ), composed of nickel oxide (NiO), graphene, molybdenum sulfide (MoS 2 ), molybdenum selenide (MoSe 2 ), polyalkyl-thiophene and molybdenum trioxide (MoO 3 ) Group. 如申請專利範圍第2項所述之反式有機太陽光電,其中,該相對電極層包括一材料,該材料係選自由金、銀、銣、鈀、鎳、鉬、鋁、及其合金所組成之群組。 The trans organic solar photovoltaic as described in item 2 of the patent application scope, wherein the counter electrode layer includes a material selected from the group consisting of gold, silver, rubidium, palladium, nickel, molybdenum, aluminum, and alloys thereof Group. 一種製造如申請專利範圍第1項所述之反式有機太陽光電之方法,其包括: a.於一可導電基材上塗佈一電子傳遞層,接著塗佈一葡萄糖基生物聚合物以形成一中間層作為表面改性劑;b.於該中間層上形成一主動層;c.於該主動層上沉積一電洞傳遞層;及d.於該電洞傳遞層上沉積一相對電極層。 A method for manufacturing a trans organic solar photovoltaic device as described in item 1 of the scope of patent application, which includes: a. coating an electron transport layer on a conductive substrate, and then coating a glucose-based biopolymer to form an intermediate layer as a surface modifier; b. forming an active layer on the intermediate layer; c. Depositing a hole transfer layer on the active layer; and d. depositing a counter electrode layer on the hole transfer layer. 如申請專利範圍第14項所述之方法,其中,該葡萄糖基生物聚合物係選自由甲基纖維素、幾丁聚醣及糊精所組成之群組。 The method according to item 14 of the patent application scope, wherein the glucose-based biopolymer is selected from the group consisting of methyl cellulose, chitosan, and dextrin. 如申請專利範圍第14項所述之方法,其中,該電子傳遞層係選自由二氧化鈦(TiO2)、氧化鋅(ZnO)、二氧化錫(SnO2)及錫酸鋅(Zn2SnO4)所組成之群組。 The method as described in item 14 of the patent application range, wherein the electron transport layer is selected from titanium dioxide (TiO 2 ), zinc oxide (ZnO), tin dioxide (SnO 2 ) and zinc stannate (Zn 2 SnO 4 ) The group formed. 如申請專利範圍第14項所述之方法,其中,該可導電基材包括一可導電材料,該可導電材料係選自由氧化銦(In2O3)、氧化錫(SnO2)、銦-錫複合氧化物(ITO)、摻氟氧化錫(FTO)、氧化鋅(ZnO)、氧化鋅-三氧化二鎵(ZnO-Ga2O3)及氧化鋅-氧化鋁(ZnO-Al2O3)所組成之群組。 The method according to item 14 of the patent application scope, wherein the conductive substrate comprises a conductive material selected from the group consisting of indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), indium- Tin composite oxide (ITO), fluorine-doped tin oxide (FTO), zinc oxide (ZnO), zinc oxide-gallium oxide (ZnO-Ga 2 O 3 ) and zinc oxide-alumina (ZnO-Al 2 O 3 ) Group. 如申請專利範圍第14項所述之方法,其中,該主動層係一塊材異質接面(bulk heterojunction)層。 The method as described in item 14 of the patent application range, wherein the active layer is a bulk heterojunction layer. 如申請專利範圍第18項所述之方法,其中,該塊材異質接面層係富勒烯基(fullerene-based)或非富勒烯受體基(non-fullerene acceptor-based)層。 The method as described in item 18 of the patent application range, wherein the block heterojunction layer is a fullerene-based or non-fullerene acceptor-based layer. 如申請專利範圍第14項所述之方法,其中,該電洞傳遞層係選自由2,2',7,7'-4-[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(Spiro-OMeTAD)、聚二氧乙基噻吩:苯乙烯磺酸(PEDOT:PSS)、N,N'- 二(3-甲基苯基)-N,N'-二苯基-[1,1'-聯苯基]-4,4'-二胺(TPD)、聚三己基聚噻吩(P3HT)、五氧化二釩(V2O5)、氧化鎳(NiO)、石墨稀(graphene)、硫化鉬(MoS2)、硒化鉬(MoSe2)、聚烷基噻吩(polyalkyl-thiophene)及三氧化鉬(MoO3)所組成之群組。 The method as described in item 14 of the patent application scope, wherein the hole transfer layer is selected from 2,2',7,7'-4-[N,N-bis(4-methoxyphenyl)amino ]-9,9'-spiro-fluorene (Spiro-OMeTAD), polydioxyethylthiophene: styrenesulfonic acid (PEDOT: PSS), N,N'-bis(3-methylphenyl)-N, N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (TPD), polytrihexyl polythiophene (P3HT), vanadium pentoxide (V 2 O 5 ), oxidation A group consisting of nickel (NiO), graphene, molybdenum sulfide (MoS 2 ), molybdenum selenide (MoSe 2 ), polyalkyl-thiophene and molybdenum trioxide (MoO 3 ).
TW107136953A 2018-10-19 2018-10-19 Inverted organic photovoltaic and method of manufacturing the same TWI689562B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107136953A TWI689562B (en) 2018-10-19 2018-10-19 Inverted organic photovoltaic and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107136953A TWI689562B (en) 2018-10-19 2018-10-19 Inverted organic photovoltaic and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TWI689562B true TWI689562B (en) 2020-04-01
TW202016230A TW202016230A (en) 2020-05-01

Family

ID=71134252

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107136953A TWI689562B (en) 2018-10-19 2018-10-19 Inverted organic photovoltaic and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI689562B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI829288B (en) * 2021-08-24 2024-01-11 日商杰富意鋼鐵股份有限公司 Laminate, organic thin-film solar cell, method for producing laminate, and method for producing organic thin-film solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070207565A1 (en) * 2001-10-05 2007-09-06 Cabot Corporation Processes for forming photovoltaic features
CN102186643A (en) * 2008-08-21 2011-09-14 因诺瓦动力学股份有限公司 Enhanced surfaces, coatings, and related methods
TW201222911A (en) * 2010-11-26 2012-06-01 Ind Tech Res Inst Inverted organic photovoltaic device
CN103003972A (en) * 2010-07-30 2013-03-27 巴斯夫欧洲公司 Amphiphilic protein in printed electronics
CN104782230A (en) * 2012-11-16 2015-07-15 柯尼卡美能达株式会社 Translucent electrode, and electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070207565A1 (en) * 2001-10-05 2007-09-06 Cabot Corporation Processes for forming photovoltaic features
CN102186643A (en) * 2008-08-21 2011-09-14 因诺瓦动力学股份有限公司 Enhanced surfaces, coatings, and related methods
CN103003972A (en) * 2010-07-30 2013-03-27 巴斯夫欧洲公司 Amphiphilic protein in printed electronics
TW201222911A (en) * 2010-11-26 2012-06-01 Ind Tech Res Inst Inverted organic photovoltaic device
CN104782230A (en) * 2012-11-16 2015-07-15 柯尼卡美能达株式会社 Translucent electrode, and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI829288B (en) * 2021-08-24 2024-01-11 日商杰富意鋼鐵股份有限公司 Laminate, organic thin-film solar cell, method for producing laminate, and method for producing organic thin-film solar cell

Also Published As

Publication number Publication date
TW202016230A (en) 2020-05-01

Similar Documents

Publication Publication Date Title
Li et al. Flexible and semitransparent organic solar cells
Brus et al. Solution‐processed semitransparent organic photovoltaics: From molecular design to device performance
Kim et al. Photovoltaic technologies for flexible solar cells: beyond silicon
Kim et al. Silver nanowire embedded in P3HT: PCBM for high-efficiency hybrid photovoltaic device applications
Luo et al. Recent advances in organic photovoltaics: device structure and optical engineering optimization on the nanoscale
Cai et al. Polymer solar cells: recent development and possible routes for improvement in the performance
Chandrasekaran et al. Hybrid solar cell based on blending of organic and inorganic materials—An overview
Lin et al. Molecular engineering of side chain architecture of conjugated polymers enhances performance of photovoltaics by tuning ternary blend structures
Sun et al. Bulk heterojunction solar cells with NiO hole transporting layer based on AZO anode
Jia et al. Highly efficient and air stable inverted polymer solar cells using LiF-modified ITO cathode and MoO3/AgAl alloy anode
KR101571528B1 (en) Perovskite solar cell improving photoelectric conversion efficiency and the manufacturing method thereof
Li et al. Flexible semitransparent perovskite solar cells with gradient energy levels enable efficient tandems with Cu (In, Ga) Se2
JP6024776B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
Khandelwal et al. Semitransparent organic solar cells: from molecular design to structure–performance relationships
US20110139252A1 (en) Inverted organic solar cell and method for manufacturing the same
Wang et al. Improved performance of polymer solar cells by thermal evaporation of AgAl alloy nanostructures into the hole-transport layer
JP5699524B2 (en) Organic photoelectric conversion element and solar cell
Chen et al. High performance thermal-treatment-free tandem polymer solar cells with high fill factors
Farooq et al. Thin-film tandem organic solar cells with improved efficiency
Radu et al. On the physical and photo-electrical properties of organic photovoltaic cells based on 1, 10-Phenanthroline and 5, 10, 15, 20-Tetra (4-pyridyl)-21H, 23H-porphine non-fullerene thin films
Wang et al. Enhanced Power Conversion Efficiency of P3HT: PC 71 BM Bulk Heterojunction Polymer Solar Cells by Doping a High-Mobility Small Organic Molecule
Kumar et al. Recent progress in bifacial perovskite solar cells
TWI689562B (en) Inverted organic photovoltaic and method of manufacturing the same
Yu et al. Copper oxide hole transport materials for heterojunction solar cell applications
Li et al. Controllable spatial configuration on cathode interface for enhanced photovoltaic performance and device stability