TWI689369B - Arc welding quality determination system - Google Patents

Arc welding quality determination system Download PDF

Info

Publication number
TWI689369B
TWI689369B TW105126332A TW105126332A TWI689369B TW I689369 B TWI689369 B TW I689369B TW 105126332 A TW105126332 A TW 105126332A TW 105126332 A TW105126332 A TW 105126332A TW I689369 B TWI689369 B TW I689369B
Authority
TW
Taiwan
Prior art keywords
welding
time
value
unit
upper limit
Prior art date
Application number
TW105126332A
Other languages
Chinese (zh)
Other versions
TW201722598A (en
Inventor
中川慎一郎
Original Assignee
日商達誼恆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商達誼恆股份有限公司 filed Critical 日商達誼恆股份有限公司
Publication of TW201722598A publication Critical patent/TW201722598A/en
Application granted granted Critical
Publication of TWI689369B publication Critical patent/TWI689369B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Quality & Reliability (AREA)
  • Arc Welding Control (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

An arc welding quality determination system includes a setting section and a determining section. The setting section sets an upper limit and a lower limit for a first time. The upper limit is derived based on a maximum value. The maximum value is derived from a predetermined population, and corresponds to one of the first time and a plurality of times that include the first time. The lower limit is derived based on a minimum value. The minimum value is derived from the predetermined population, and corresponds to one of the first time and the plurality of times. The determining section determines non-failure of welding on condition that a measurement value obtained upon the welding falls within a range from the upper limit to the lower limit, and determine failure of the welding on condition that the measurement value falls outside the range.

Description

電弧焊接品質判定系統 Arc welding quality judgment system

本發明涉及一種電弧焊接品質判定系統。 The invention relates to an arc welding quality judgment system.

在使用焊接機器人的生產現場,作為阻礙穩定生產的1個主要原因,可以舉出焊接不良。作為焊接不良的1種的焊道形成不足,可能由例如如下所示的原因而發生。例如即使事前設定焊接條件以使對施工的工件形成適當的焊道形狀,亦可能在實際施工時,由於工件的位置偏移而突出長度變動。在此情況下,伴隨突出長度的變動而焊接電流變動,其結果係:有可能發生焊道形成不足。又,例如供電給焊絲的接觸片摩耗,有可能伴隨接觸片的摩耗而發生供電不足。在此情況下,由於供電不足而焊接電流降低,其結果係:有可能發生焊道形成不足。又,例如在送絲裝置內有可能發生焊絲切屑的堵塞。在此情況下,由於送絲不良而發生電弧中斷,其結果係:有可能發生焊道缺口等焊道形成不良。 At the production site where welding robots are used, as one of the main factors hindering stable production, poor welding can be cited. One type of insufficient weld bead formation may be caused by, for example, the following reasons. For example, even if the welding conditions are set in advance so as to form an appropriate bead shape for the workpiece to be constructed, the length of the workpiece may fluctuate due to the positional deviation of the workpiece during actual construction. In this case, the welding current fluctuates along with the fluctuation of the protruding length, and as a result, insufficient formation of the weld bead may occur. In addition, for example, the wear of the contact piece that supplies power to the welding wire may cause a power shortage due to the wear of the contact piece. In this case, the welding current is reduced due to insufficient power supply, and as a result, insufficient weld bead formation may occur. In addition, for example, in the wire feeder, clogging of welding wire chips may occur. In this case, the arc interruption occurs due to poor wire feeding, and as a result, a weld bead formation defect such as a weld bead gap may occur.

因此,以往就開發了減少焊接不良的技術和更正確地檢測出焊接不良的技術。作為更正確地檢測出焊接不良的技術,例如有提出下列專利文獻1。在專利文獻1中,提出了:如果電弧焊接中實際的焊接電流或焊接電壓的移動平均值超出預先設定的範圍,那麽判定為發生了焊接不良的技術。 Therefore, techniques for reducing welding defects and techniques for more accurately detecting welding defects have been developed in the past. As a technique for more accurately detecting welding defects, for example, the following Patent Document 1 is proposed. Patent Document 1 proposes a technique for determining that a welding defect has occurred if the moving average value of the actual welding current or welding voltage during arc welding exceeds a predetermined range.

[先前技術文獻] [Prior Technical Literature]

[專利文獻] [Patent Literature]

[專利文獻1]日本特公平7-2275號公報 [Patent Document 1] Japanese Patent Publication No. 7-2275

但是,在上述專利文獻1所記載的發明中,因為閾值係以穩定時的焊接條件(焊接電流、焊接電壓等)為基準的定值,故在非穩定時的狀態(例如焊接開始時、焊接結束時或刻意變更焊接條件時等)下,存在不能判定焊接不良的問題。 However, in the invention described in the above-mentioned Patent Document 1, since the threshold value is a fixed value based on the welding conditions (welding current, welding voltage, etc.) at the time of stability, the state at the time of instability (for example, welding start, welding At the end or when the welding conditions are deliberately changed, etc.), there is a problem that the welding failure cannot be determined.

因此,期望提供一種即使在穩定時以外的焊接中亦可以判定焊接不良的電弧焊接品質判定系統。 Therefore, it is desirable to provide an arc welding quality determination system that can determine welding defects even in welding other than stable time.

本發明之一種實施方式的第一電弧焊接品質判定系統具備:設定部,將在共通的焊接條件設定下反覆進行焊接時得到的複數個測量值作為母集團時,在母集團中,於每個第一時刻,根據第一時刻或包含第一時刻的複數個時刻之最大值設定第一時刻之上限值,並且根據第一時刻或包含第一時刻的複數個時刻之最小值設定第一時刻之下限值;以及判定部,在上述焊接條件設定下焊接時得到的測量值處於上限值與下限值的範圍內時,判定為沒有焊接不良,而在測量值處於該範圍之外時,判定為有焊接不良。 A first arc welding quality judgment system according to an embodiment of the present invention includes: a setting unit that uses a plurality of measured values obtained when welding is repeatedly performed under common welding condition settings as a parent group. At the first time, the upper limit of the first time is set according to the maximum value of the first time or the plurality of times including the first time, and the first time is set according to the minimum value of the first time or the plurality of times including the first time The lower limit; and the determination section, when the measured value obtained during welding under the above welding condition setting is within the range of the upper limit and the lower limit, it is determined that there is no welding defect, and when the measured value is outside the range , It is determined that there is welding failure.

本發明之一種實施方式的第二電弧焊接品質判定系統具備:設定部,將在共通的焊接條件設定下反覆進行焊接時得到的複數個測量值作為母集團時,在母集團中,於每個第一時刻,根據第一時刻或包含第一時刻的複數個時刻的標準差設定第一時刻之上限值和下限值;以及判 定部,在上述焊接條件設定下焊接時得到的測量值處於上限值與下限值的範圍內時,判定為沒有焊接不良,而在測量值處於該範圍之外時,判定為有焊接不良。 A second arc welding quality judgment system according to an embodiment of the present invention includes: a setting unit that uses a plurality of measured values obtained when welding is repeatedly performed under common welding condition settings as a parent group, in the parent group, for each At the first moment, the upper limit and the lower limit of the first moment are set according to the standard deviation of the first moment or a plurality of moments including the first moment; and The fixed part determines that there is no welding defect when the measured value obtained during welding under the above welding conditions is within the range of the upper limit and the lower limit, and when the measured value is outside the range, it is determined that there is welding defect .

在本發明之一種實施方式的第一和第二電弧焊接品質判定系統中,根據從包含過去的複數個測量值的母集團得到的統計值,設定用於判定焊接不良的閾值。因此,用於判定焊接不良的閾值成為反映焊接安定性的值。 In the first and second arc welding quality judgment systems according to an embodiment of the present invention, a threshold for judging welding failure is set based on statistical values obtained from a parent group including a plurality of measured values in the past. Therefore, the threshold for determining welding failure becomes a value reflecting the stability of welding.

根據本發明之一種實施方式的第一和第二電弧焊接品質判定系統,因為使用於判定焊接不良的閾值成為反映焊接安定性的值,故即使在穩定時以外的焊接中亦能夠判定焊接不良。 According to the first and second arc welding quality determination systems according to an embodiment of the present invention, since the threshold for determining welding failure becomes a value reflecting welding stability, welding failure can be determined even in welding other than stable.

1:焊接機器人系統 1: Welding robot system

10:操縱器 10: Manipulator

11:基礎構件 11: Basic components

12:多關節臂部 12: Multi-joint arm

12A:臂 12A: Arm

13:焊槍 13: Welding torch

14:送絲裝置 14: Wire feeder

15:作業臺 15: Workbench

20:機器人控制裝置 20: Robot control device

21:控制部 21: Control Department

22:伺服控制部 22: Servo control department

22A:控制程式 22A: Control program

22B:作業程式 22B: Operating program

22C‧‧‧電弧焊接品質判定程式 22C‧‧‧Arc welding quality judgment program

22D‧‧‧設定檔案 22D‧‧‧Setting file

22E‧‧‧測量檔案 22E‧‧‧Measurement file

22F‧‧‧閾值檔案 22F‧‧‧threshold file

23‧‧‧通信部 23‧‧‧ Ministry of Communications

30‧‧‧教導裝置 30‧‧‧Teaching device

31‧‧‧控制部 31‧‧‧Control Department

32‧‧‧顯示部 32‧‧‧Display

33‧‧‧輸入部 33‧‧‧ Input

34‧‧‧通信部 34‧‧‧Ministry of Communications

35‧‧‧儲存部 35‧‧‧Storage Department

35A‧‧‧指示程式 35A‧‧‧Instruction program

40‧‧‧焊接機 40‧‧‧Welding machine

41‧‧‧控制部 41‧‧‧Control Department

42‧‧‧通信部 42‧‧‧Communications Department

43‧‧‧焊接控制部 43‧‧‧Welding Control Department

44‧‧‧焊接電源 44‧‧‧Welding power supply

45‧‧‧電流.電壓測量部 45‧‧‧ current Voltage measurement department

46‧‧‧儲存部 46‧‧‧Storage Department

46A‧‧‧控制程式 46A‧‧‧Control program

110‧‧‧母材 110‧‧‧ base material

120‧‧‧焊道 120‧‧‧Weld pass

211‧‧‧解析部 211‧‧‧Analysis Department

212‧‧‧執行部 212‧‧‧ Executive Department

213‧‧‧焊接控制部 213‧‧‧Welding Control Department

214‧‧‧軌道記錄部 214‧‧‧Track Recording Department

215‧‧‧設定部 215‧‧‧ Setting Department

216‧‧‧判定部 216‧‧‧Judgment Department

At‧‧‧起弧時間 At‧‧‧Arc starting time

fp‧‧‧脈衝頻率 fp‧‧‧Pulse frequency

Is‧‧‧焊接電流 Is‧‧‧welding current

L1~L6‧‧‧電纜 L1~L6‧‧‧Cable

Ld‧‧‧送絲負荷 Ld‧‧‧Wire feeding load

Os‧‧‧設定開始指令 Os‧‧‧Set start command

Oh‧‧‧判定開始指令 Oh‧‧‧decision start instruction

Pupper(x)‧‧‧上限值 P upper (x)‧‧‧ Upper limit

Plower(x)‧‧‧下限值 P lower (x)‧‧‧lower limit

Pmax(x)‧‧‧最大值 Pmax(x)‧‧‧Max

Pmin(x)‧‧‧最小值 Pmin(x)‧‧‧Min

P1,PN,Px‧‧‧測量值 P 1 , P N , Px‧‧‧ measured value

tx-1,tx,tx+1‧‧‧時刻 tx-1,tx,tx+1‧‧‧

Vf‧‧‧送絲速度 Vf‧‧‧Wire feeding speed

Vs‧‧‧焊接電壓 Vs‧‧‧welding voltage

Vw‧‧‧焊接速度 Vw‧‧‧ welding speed

WS‧‧‧焊接區間 WS‧‧‧Welding interval

W‧‧‧工件 W‧‧‧Workpiece

△fs‧‧‧採樣頻率 △fs‧‧‧Sampling frequency

△t‧‧‧採樣周期 △t‧‧‧sampling period

△T‧‧‧單位時間 △T‧‧‧ unit time

[圖1]係表示具備本發明之一種實施方式的電弧焊接品質判定系統的焊接機器人系統的概略構造之一例的圖。 FIG. 1 is a diagram showing an example of a schematic structure of a welding robot system provided with an arc welding quality determination system according to an embodiment of the present invention.

[圖2]係表示圖1的焊接機器人系統的學習模式的功能塊之一例的圖。 [Fig. 2] Fig. 2 is a diagram showing an example of functional blocks of the learning mode of the welding robot system of Fig. 1.

[圖3]係表示圖1的機器人控制裝置的概略構造之一例的圖。 [Fig. 3] A diagram showing an example of a schematic structure of the robot control device of Fig. 1.

[圖4A]係表示使用圖1的焊接機器人系統的電弧焊接的狀況之一例的立體圖。 [Fig. 4A] Fig. 4A is a perspective view showing an example of the state of arc welding using the welding robot system of Fig. 1.

[圖4B]係表示將圖4A的焊接區間區分為複數個軌道時,各個軌道m、單位時間△T和設定開始指令各自的關係之一例的圖。 4B is a diagram showing an example of the relationship between each track m, unit time ΔT, and setting start command when the welding section of FIG. 4A is divided into a plurality of tracks.

[圖5]係表示閾值的設定方法之一例的圖。 [Fig. 5] A diagram showing an example of a method of setting a threshold.

[圖6]係表示閾值的設定方法之一例的圖。 6 is a diagram showing an example of a method of setting a threshold.

[圖7]係表示閾值的設定方法之一例的圖。 7 is a diagram showing an example of a method of setting a threshold.

[圖8]係表示閾值的設定方法之一例的圖。 [Fig. 8] A diagram showing an example of a method of setting a threshold.

[圖9]係表示圖1的教導裝置的概略構造之一例的圖。 [Fig. 9] A diagram showing an example of a schematic structure of the teaching device of Fig. 1.

[圖10]係表示圖1的焊接機的概略構造之一例的圖。 [Fig. 10] A diagram showing an example of a schematic structure of the welding machine of Fig. 1.

[圖11]係表示圖1的焊接機器人系統的異常判定模式的功能塊之一例的圖。 [Fig. 11] Fig. 11 is a diagram showing an example of function blocks in the abnormality determination mode of the welding robot system of Fig. 1.

[圖12]係表示圖11的教導裝置的顯示面的圖形顯示之一例的圖。 FIG. 12 is a diagram showing an example of graphic display on the display surface of the teaching device of FIG. 11.

以下,參照圖式對本發明之一種實施方式進行詳細的說明。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

[構造] [structure]

圖1表示具備本發明之一種實施方式的電弧焊接品質判定系統的焊接機器人系統1的概略構造之一例。圖2表示圖1的焊接機器人系統1的學習模式的功能塊之一例。焊接機器人系統1具備:學習模式和異常判定模式2個模式。 FIG. 1 shows an example of a schematic structure of a welding robot system 1 provided with an arc welding quality determination system according to an embodiment of the present invention. FIG. 2 shows an example of functional blocks in the learning mode of the welding robot system 1 of FIG. 1. The welding robot system 1 has two modes: a learning mode and an abnormality determination mode.

焊接機器人系統1最初在學習模式中,在相同設定條件下進行複數次(N次)電弧焊接掌握電弧的特徵。焊接機器人系統1之後從學習模式轉換至異常判定模式,在與學習模式時相同的設定條件下進行電弧焊接,藉由將在學習模式中得到的電弧特徵與在異常判定模式中得到的電弧特徵進行對比,來判定形成的焊道的狀態。再者,設定條件係指形成焊道時的設定條件。 The welding robot system 1 initially performs a plurality of arc welding (N times) under the same setting conditions in the learning mode to grasp the characteristics of the arc. The welding robot system 1 then switches from the learning mode to the abnormality determination mode, and performs arc welding under the same setting conditions as in the learning mode, by performing the arc characteristic obtained in the learning mode and the arc characteristic obtained in the abnormality determination mode In contrast, to determine the state of the weld bead formed. Furthermore, the setting conditions refer to the setting conditions when forming the weld bead.

亦即,“學習模式”係指:藉由在與在異常判定模式下形成焊道時的設定條件相同的設定條件下複數次實施電弧焊接,來制作判定在 異常判定模式下形成的焊道的狀態時的既定的判定基準的模式。又,“異常判定模式”係指:使用在學習模式中取得的既定的判定基準,來判定在異常判定模式下形成的焊道的狀態的模式。在下文中,最初以與學習模式相關的構造為中心進行說明,之後針對與異常判定模式相關的構造進行說明。 That is, the "learning mode" means: by performing arc welding multiple times under the same setting conditions as the setting conditions when forming the weld bead in the abnormality determination mode, the determination is made In the abnormality determination mode, the state of the predetermined determination criterion in the state of the weld bead formed. In addition, the “abnormality determination mode” refers to a mode for determining the state of the weld bead formed in the abnormality determination mode using predetermined determination criteria acquired in the learning mode. In the following, the structure related to the learning mode will be described first, and then the structure related to the abnormality determination mode will be described.

[學習模式的構造] [Structure of Learning Mode]

焊接機器人系統1藉由程式控制的多關節機器人對工件W進行電弧焊接。焊接機器人系統1具備:操縱器10、機器人控制裝置20、教導裝置30和焊接機40。由機器人控制裝置20、教導裝置30和焊接機40構成的系統相當於本發明的“電弧焊接品質判定系統”之一具體例。再者,機器人控制裝置20與教導裝置30可以相互一體構成,亦可以如圖1所示相互分開構成。 The welding robot system 1 performs arc welding on the workpiece W by a multi-joint robot controlled by a program. The welding robot system 1 includes a manipulator 10, a robot control device 20, a teaching device 30, and a welding machine 40. The system composed of the robot control device 20, the teaching device 30, and the welding machine 40 corresponds to a specific example of the "arc welding quality judgment system" of the present invention. Furthermore, the robot control device 20 and the teaching device 30 may be integrally formed with each other, or may be separately formed as shown in FIG. 1.

焊接機器人系統1例如具備將機器人控制裝置20和各種裝置互相連接的電纜L1~L6。電纜L1係用於機器人控制裝置20與操縱器10之間的通信的通信電纜,連接於機器人控制裝置20和操縱器10。電纜L2係用於機器人控制裝置20與教導裝置30之間的通信的通信電纜,連接於機器人控制裝置20和教導裝置30。電纜L3係用於機器人控制裝置20與焊接機40之間的通信的通信電纜,連接於機器人控制裝置20和焊接機40。電纜L4係用於焊接機40與後述送絲裝置14之間的通信的通信電纜,連接於焊接機40和送絲裝置14。電纜L5、L6係用於對後述焊絲16與工件W之間供應高電壓的焊接電壓Vs的電力電纜。電纜L5連接於焊接機40和後述作業臺15,電纜L6連接於焊接機40和後述焊槍13。 The welding robot system 1 includes, for example, cables L1 to L6 that connect the robot control device 20 and various devices to each other. The cable L1 is a communication cable used for communication between the robot controller 20 and the manipulator 10, and is connected to the robot controller 20 and the manipulator 10. The cable L2 is a communication cable used for communication between the robot control device 20 and the teaching device 30, and is connected to the robot control device 20 and the teaching device 30. The cable L3 is a communication cable used for communication between the robot controller 20 and the welding machine 40, and is connected to the robot controller 20 and the welding machine 40. The cable L4 is a communication cable used for communication between the welding machine 40 and the wire feeder 14 described later, and is connected to the welding machine 40 and the wire feeder 14. The cables L5 and L6 are power cables for supplying a high-voltage welding voltage Vs between the welding wire 16 and the workpiece W described later. The cable L5 is connected to the welding machine 40 and the workbench 15 described later, and the cable L6 is connected to the welding machine 40 and the welding gun 13 described later.

(操縱器10) (Manipulator 10)

操縱器10藉由由機器人控制裝置20、教導裝置30和焊接機40的控制,來對工件W進行電弧焊接。操縱器10具有:固定在地板等上的基礎構件11、設置在基礎構件11上的多關節臂部12、連接在多關節臂部12前端的焊槍13、固定在多關節臂部12等上的送絲裝置14、和作業臺15。 The manipulator 10 performs arc welding on the workpiece W by the control of the robot control device 20, the teaching device 30, and the welding machine 40. The manipulator 10 includes a base member 11 fixed on the floor or the like, a multi-joint arm 12 provided on the base member 11, a welding gun 13 connected to the front end of the multi-joint arm 12, a multi-joint arm 12 fixed on the The wire feeder 14 and the workbench 15.

多關節臂部12例如具有:複數根臂12A、和將2根臂12A彼此以可以旋轉的方式連接的1個或複數個關節軸(未圖示)。多關節臂部12進一步具有例如:在每根臂12A上設置1個且驅動對應之臂12A的複數個驅動馬達(未圖示)、連接於各個驅動馬達且檢測各根臂12A的現在位置的編碼器(未圖示)。各個驅動馬達由透過電纜L1從機器人控制裝置20輸入的控制訊號驅動。藉由如此驅動各個驅動馬達,各根臂12A位移,結果係焊槍13往上下前後左右移動。編碼器將檢測出的各根臂12A的現在位置(以下稱為“位置資訊”。)透過電纜L1向機器人控制裝置20輸出。 The multi-joint arm portion 12 includes, for example, plural arms 12A, and one or plural joint shafts (not shown) that rotatably connect the two arms 12A to each other. The multi-joint arm portion 12 further includes, for example, one drive motor (not shown) provided on each arm 12A and driving the corresponding arm 12A, connected to each drive motor, and detecting the current position of each arm 12A Encoder (not shown). Each drive motor is driven by a control signal input from the robot control device 20 through the cable L1. By driving each driving motor in this way, each arm 12A is displaced, and as a result, the welding gun 13 moves up, down, left, and right. The encoder outputs the detected current position of each arm 12A (hereinafter referred to as “position information”) to the robot control device 20 through the cable L1.

多關節臂部12的一端(前端)連接於焊槍13,多關節臂部12的另一端連接於基礎構件11。在焊槍13的前端,露出有作為焊料的焊絲16。焊槍13藉由使焊絲16的前端與工件W之間產生電弧,並且用該電弧的熱使焊絲16和工件W熔融,來對工件W進行電弧焊接。焊槍13具有電氣連接於電纜L4的接觸片(未圖示)。接觸片以將從電纜L4供給的焊接電壓Vs供應給焊絲16的方式構成。 One end (front end) of the multi-joint arm 12 is connected to the welding gun 13, and the other end of the multi-joint arm 12 is connected to the base member 11. At the tip of the soldering gun 13, a solder wire 16 as solder is exposed. The welding gun 13 generates an arc between the tip of the welding wire 16 and the workpiece W, and melts the welding wire 16 and the workpiece W by the heat of the arc to perform arc welding on the workpiece W. The welding gun 13 has a contact piece (not shown) electrically connected to the cable L4. The contact piece is configured to supply the welding voltage Vs supplied from the cable L4 to the welding wire 16.

送絲裝置14將焊絲16供應給焊槍13。送絲裝置14例如具有:以保持且可以傳送焊絲16的方式構成的一對輥(未圖示)、和旋轉驅動一方的輥的馬達(未圖示)。一對輥構成為:夾持焊絲16,並且用由上述 馬達的旋轉驅動產生的摩擦力將焊絲16從焊絲盤(未圖示)拉出。上述馬達例如由附帶編碼器的伺服馬達構成。上述馬達由透過電纜L4從焊接機40輸入的控制訊號驅動。上述馬達例如構成為:將從上述編碼器反饋的脈衝透過電纜L4向焊接機40輸出。該脈衝可以適用於焊絲16的傳送速度(送絲速度Vf)的算出。再者,上述馬達亦可以生成作為上述脈衝的替代的某種訊號輸出。送絲裝置14例如進一步具備:測量流過上述馬達的驅動電流的電流計(未圖示)。由該電流計測量的驅動電流可以適用於焊絲16的傳送負荷(送絲負荷Ld)的算出。 The wire feeder 14 supplies the welding wire 16 to the welding gun 13. The wire feeder 14 includes, for example, a pair of rollers (not shown) configured to hold and transfer the welding wire 16 and a motor (not shown) that rotationally drives one of the rollers. A pair of rollers are configured to hold the welding wire 16 and use the above The frictional force generated by the rotational drive of the motor pulls the welding wire 16 out of the wire reel (not shown). The above-mentioned motor is composed of, for example, a servo motor with an encoder. The motor is driven by a control signal input from the welding machine 40 through the cable L4. The motor is configured, for example, to output the pulse fed back from the encoder to the welding machine 40 through the cable L4. This pulse can be applied to the calculation of the transmission speed (wire feed speed Vf) of the welding wire 16. Furthermore, the motor can also generate some kind of signal output instead of the pulse. The wire feeder 14 further includes, for example, an ammeter (not shown) that measures the drive current flowing through the motor. The drive current measured by this ammeter can be applied to the calculation of the transmission load (wire feed load Ld) of the welding wire 16.

作業臺15固定在地板等上,作為設置工件W的臺座使用。作業臺15亦可以係用於維持對工件W的最適焊槍姿勢的定位器。在作業臺15係上述定位器的情況下,藉由機器人控制裝置20驅動控制定位器的軸。作業臺15構成為:透過電纜L5連接於焊接機40,將設置在作業臺15上的工件W與電纜L5互相電氣連接。 The work table 15 is fixed to a floor or the like, and is used as a pedestal on which the work W is installed. The work table 15 may also be a positioner for maintaining an optimal welding gun posture to the workpiece W. When the workbench 15 is the above-mentioned positioner, the robot controller 20 drives and controls the axis of the positioner. The working table 15 is configured to be connected to the welding machine 40 via a cable L5, and electrically connect the work W provided on the working table 15 and the cable L5 to each other.

(機器人控制裝置20) (Robot control device 20)

圖3表示機器人控制裝置20的概略構造之一例。機器人控制裝置20按照來自教導裝置30的指示控制多關節臂部12和焊接機40。機器人控制裝置20進一步判定藉由使焊絲16的前端與工件W之間發生電弧而形成的焊道的品質。機器人控制裝置20具有:控制部21、伺服控制部22、通信部23和儲存部24。以下,按照儲存部24、伺服控制部22、通信部23、控制部21的順序進行說明。控制部21相當於本發明的“設定部”、“判定部”之一具體例。 FIG. 3 shows an example of a schematic structure of the robot control device 20. The robot control device 20 controls the multi-joint arm 12 and the welding machine 40 in accordance with instructions from the teaching device 30. The robot control device 20 further determines the quality of the weld bead formed by generating an arc between the tip of the welding wire 16 and the workpiece W. The robot control device 20 includes a control unit 21, a servo control unit 22, a communication unit 23, and a storage unit 24. Hereinafter, the storage unit 24, the servo control unit 22, the communication unit 23, and the control unit 21 will be described in this order. The control unit 21 corresponds to a specific example of the “setting unit” and the “determination unit” of the present invention.

儲存部24可以儲存各種程式、各種資料檔案。儲存部24儲 存有控制多關節臂部12的動作的控制程式22A。控制程式22A例如保存於ROM(read only memory)中。儲存部24進一步儲存有:教示操縱器10的焊接作業的步驟的1個或複數個作業程式22B、判定焊道的品質的電弧焊接品質判定程式22C和記述有各種設定值的設定檔案22D。1個或複數個作業程式22B、電弧焊接品質判定程式22C和設定檔案22D例如保存於硬碟中。設定檔案22D例如記述有焊接電流Is、焊接電壓Vs、送絲速度Vf和焊接速度Vw各自的設定值。關於電弧焊接品質判定程式22C,在後面詳述。記載在1個或複數個作業程式22B中的焊接作業的步驟、和記述在設定檔案22D上的各種設定值相當於本發明的“焊接條件”之一具體例。 The storage unit 24 can store various programs and various data files. Storage 24 There is a control program 22A for controlling the operation of the multi-joint arm 12. The control program 22A is stored in a ROM (read only memory), for example. The storage unit 24 further stores one or more operation programs 22B that teach the steps of the welding operation of the manipulator 10, an arc welding quality determination program 22C that determines the quality of the weld bead, and a setting file 22D in which various settings are written. One or a plurality of operation programs 22B, an arc welding quality judgment program 22C and a setting file 22D are stored in the hard disk, for example. The setting file 22D describes, for example, respective setting values of the welding current Is, the welding voltage Vs, the wire feed speed Vf, and the welding speed Vw. The arc welding quality judgment program 22C will be described in detail later. The steps of the welding operation described in one or a plurality of operation programs 22B, and various setting values described in the setting file 22D correspond to a specific example of the “welding conditions” of the present invention.

儲存部24可以進一步儲存藉由執行電弧焊接品質判定程式22C而生成的各種資料。作為包含那樣的資料的檔案,例如可以列舉測量檔案22E和閾值檔案22F。在測量檔案22E中,記述有各種物理量的測量值。在此,測量值雖然可以係瞬時值,但是鑒於閾值設定的容易度,是移動平均值較理想。各種物理量例如包含焊接電流Is、焊接電壓Vs、送絲速度Vf、焊接速度Vw和短路頻率fs。再者,短路頻率fs係在焊接中的每1秒中、焊絲16與工件W短路的次數。在測量檔案22E中,記述有藉由用採樣頻率△fs測量而獲得的各種物理量的測量值。在閾值檔案22F中,例如記述由後述的設定部215生成之上限值Pupper(x)和下限值Plower(x)。這些檔案例如保存於RAM(Random Access Memory)中。關於上限值Pupper(x)和下限值Plower(x),在後面詳述。 The storage section 24 may further store various data generated by executing the arc welding quality judgment program 22C. As a file containing such data, for example, a measurement file 22E and a threshold file 22F can be cited. In the measurement file 22E, the measured values of various physical quantities are described. Here, although the measured value may be an instantaneous value, in view of the ease of setting the threshold, the moving average value is preferable. Various physical quantities include, for example, welding current Is, welding voltage Vs, wire feed speed Vf, welding speed Vw, and short-circuit frequency fs. In addition, the short-circuit frequency fs is the number of short-circuits between the welding wire 16 and the workpiece W per second during welding. In the measurement file 22E, there are described measurement values of various physical quantities obtained by measurement with the sampling frequency Δfs. In the threshold file 22F, for example, an upper limit value P upper (x) and a lower limit value P lower (x) generated by a setting unit 215 described later are described. These files are stored in RAM (Random Access Memory), for example. The upper limit P upper (x) and the lower limit P lower (x) will be described in detail later.

伺服控制部22控制操縱器10的各個驅動馬達。伺服控制部22根據記載在作業程式22B中的移動命令、和來自操縱器10的編碼器的位 置資訊,控制操縱器10的各個驅動馬達。移動命令可包含例如移動開始命令、移動停止命令、作業路徑(指示點)和焊槍姿勢等。又,伺服控制部22根據來自操縱器10的編碼器的位置資訊,導出(測量)焊槍13前端的位置資訊Pf、焊接速度Vw。伺服控制部22將位置資訊Pf、焊接速度Vw輸出至控制部21。 The servo control unit 22 controls each drive motor of the manipulator 10. The servo control unit 22 controls the position of the encoder from the manipulator 10 based on the movement command described in the operation program 22B Set the information to control each drive motor of the manipulator 10. The movement command may include, for example, a movement start command, a movement stop command, a work path (indicating point), a welding gun posture, and the like. Furthermore, the servo control unit 22 derives (measures) the position information Pf of the tip of the welding gun 13 and the welding speed Vw based on the position information of the encoder from the manipulator 10. The servo control unit 22 outputs the position information Pf and the welding speed Vw to the control unit 21.

通信部23透過電纜L2與教導裝置30進行通信、透過電纜L3與焊接機40進行通信。通信部23接收來自教導裝置30的作業指令,並向控制部21輸出。作業指令例如可以包含作業者所選擇的作業程式22B的號碼。 The communication unit 23 communicates with the teaching device 30 via the cable L2 and communicates with the welding machine 40 via the cable L3. The communication unit 23 receives the work instruction from the teaching device 30 and outputs it to the control unit 21. The operation command may include, for example, the number of the operation program 22B selected by the operator.

通信部23將來自控制部21的焊接命令發送給焊接機40。在焊接命令中,可包含例如電弧焊接的開始命令、電弧焊接的結束命令、焊接電流Is的設定值、焊接電壓Vs的設定值,送絲的開始命令、送絲的停止命令和送絲速度Vf的設定值等。通信部23接收來自焊接機40的監控資訊(例如各種測量值或通知資訊),並儲存在儲存部24的測量檔案22E中。通信部23進一步根據需要將來自焊接機40的通知資訊輸出至控制部21。在各種測量值中,例如包含焊接電流Is、焊接電壓Vs、送絲速度Vf和短路頻率fs各自的測量值。通知資訊例如可包含電弧發生通知等。 The communication unit 23 transmits the welding command from the control unit 21 to the welding machine 40. The welding command may include, for example, a start command of arc welding, an end command of arc welding, a set value of welding current Is, a set value of welding voltage Vs, a start command of wire feed, a stop command of wire feed, and a wire feed speed Vf Set value, etc. The communication unit 23 receives the monitoring information (such as various measured values or notification information) from the welding machine 40 and stores it in the measurement file 22E of the storage unit 24. The communication unit 23 further outputs notification information from the welding machine 40 to the control unit 21 as necessary. The various measured values include, for example, the measured values of the welding current Is, the welding voltage Vs, the wire feed speed Vf, and the short-circuit frequency fs. The notification information may include, for example, an arc occurrence notification.

控制部21具有:根據從教導裝置30輸入的作業指令,讀出作業程式22B、電弧焊接品質判定程式22C,並分析其內容的解析部211(參照圖2)。解析部211根據在解析部211分析的結果,生成對應於這些程式所記載的指示的命令通知。控制部21具有:根據在解析部211生成的命令通知的內容,輸出移動命令、焊接命令的執行部212(參照圖2)。 The control unit 21 includes an analysis unit 211 (refer to FIG. 2) that reads the operation program 22B and the arc welding quality judgment program 22C based on the operation command input from the teaching device 30 and analyzes the content. The analysis unit 211 generates command notifications corresponding to the instructions described in these programs based on the results of the analysis by the analysis unit 211. The control unit 21 includes an execution unit 212 (see FIG. 2) that outputs a movement command and a welding command based on the content of the command notification generated by the analysis unit 211.

控制部21具有:將在執行部212生成的焊接命令,藉由通信部23輸出至焊接機40的焊接控制部213(參照圖2)。焊接控制部213例如如果在執行部212生成焊接命令,那麽生成開始焊槍13前端的軌道記錄的通知(軌道記錄開始通知)。又,焊接控制部213例如根據焊槍13前端的移動距離△dist(=焊接距離Wp),生成結束焊槍13前端的軌道記錄的通知(軌道記錄結束通知)。移動距離△dist由後述的軌道記錄部214(參照圖2)導出。 The control unit 21 has a welding command generated by the execution unit 212 and is output to the welding control unit 213 of the welding machine 40 via the communication unit 23 (see FIG. 2 ). For example, if the welding control unit 213 generates a welding command in the execution unit 212, it generates a notification to start track recording at the tip of the welding gun 13 (track recording start notification). In addition, the welding control unit 213 generates, for example, a notification of ending track recording at the tip of the welding gun 13 (notification of track recording) based on the movement distance Δdist (=welding distance Wp) of the tip of the welding gun 13. The moving distance Δdist is derived from the track recording unit 214 (see FIG. 2) described later.

控制部21具有:按照來自焊接控制部213的軌道記錄開始通知,開始焊槍13前端的軌道記錄的軌道記錄部214(參照圖2)。軌道記錄部214於每個單位時間△T記錄焊接區間WS的焊槍13前端的位置資訊Pf,並且算出每個單位時間△T的焊槍13前端的移動距離△dist進行記錄。移動距離△dist例如藉由取得最新的位置資訊Pf與單位時間△T前的位置資訊Pf之差異量而獲得。再者,軌道記錄部214亦可以藉由“焊接速度Vw×起弧時間At”,來導出移動距離△dist(=焊接距離Wp)。起弧時間At相當於接收到電弧發生通知以後的時間。 The control unit 21 includes a track recording unit 214 (see FIG. 2) that starts track recording at the tip of the welding gun 13 in accordance with the track recording start notification from the welding control unit 213. The trajectory recording unit 214 records the position information Pf of the tip of the welding gun 13 in the welding interval WS per unit time ΔT, and calculates and records the movement distance Δdist of the tip of the welding gun 13 per unit time ΔT. The moving distance Δdist is obtained, for example, by obtaining the difference between the latest position information Pf and the position information Pf before the unit time ΔT. In addition, the track recording unit 214 may derive the moving distance Δdist (=welding distance Wp) by “welding speed Vw×arc start time At”. The arc starting time At corresponds to the time after receiving the notification of the occurrence of the arc.

在此,針對焊接區間WS、單位時間△T和軌道m進行說明。圖4A表示使用焊接機器人系統1的電弧焊接的狀況之一例。圖4B表示將焊接區間WS區分為複數個(M個)軌道m(1

Figure 105126332-A0305-02-0013-4
m
Figure 105126332-A0305-02-0013-5
M)時,各個軌道m與單位時間△T的關係之一例。在圖4A中,表示:作為工件W,2片母材110以互相正交的方式,2張母材110的端部彼此互相接觸。在圖4A中,例示有所謂邊角焊的狀況。再者,焊接機器人系統1的用途不限定於邊角焊,可以用於其他方式的焊接。 Here, the welding section WS, the unit time ΔT, and the track m will be described. FIG. 4A shows an example of the state of arc welding using the welding robot system 1. Fig. 4B shows that the welding interval WS is divided into plural (M) tracks m(1
Figure 105126332-A0305-02-0013-4
m
Figure 105126332-A0305-02-0013-5
M), an example of the relationship between each track m and unit time ΔT. FIG. 4A shows that as the workpiece W, the two base materials 110 are orthogonal to each other, and the ends of the two base materials 110 are in contact with each other. In FIG. 4A, the situation of so-called fillet welding is exemplified. Furthermore, the use of the welding robot system 1 is not limited to fillet welding, and can be used for welding in other ways.

焊接區間WS表示從電弧焊接開始至電弧焊接結束的焊接線的區間。焊道120形成在焊接區間WS的全部或一部分。焊接區間WS被分割為M個軌道m,焊槍13的前端在各個軌道m上移動所需要的時間為單位時間△T。軌道記錄部214在從焊接控制部213接收到第N次軌道記錄結束通知後,輸出設定開始指令Os。再者,圖4B中的採樣周期△t係採樣頻率△fs的倒數。 The welding section WS represents the section of the welding line from the start of arc welding to the end of arc welding. The weld bead 120 is formed in all or part of the welding interval WS. The welding section WS is divided into M tracks m, and the time required for the tip of the welding gun 13 to move on each track m is the unit time ΔT. After receiving the N-th track recording end notification from the welding control unit 213, the track recording unit 214 outputs a setting start instruction Os. Furthermore, the sampling period Δt in FIG. 4B is the reciprocal of the sampling frequency Δfs.

控制部21具有:按照設定開始指令Os進行設定的設定部215(參照圖2)。設定部215相當於本發明的“設定部”之一具體例。設定部215在接受設定開始指令Os後,從儲存部24的測量檔案22E取得特定物理量的複數個(N個)測量值P1~PN作為母集團。特定物理量例如為由用戶預先設定的物理量,例如係焊接電流Is、焊接電壓Vs、送絲速度Vf、焊接速度Vw和短路頻率fs中之至少1個。 The control unit 21 includes a setting unit 215 (refer to FIG. 2) for setting according to the setting start command Os. The setting unit 215 corresponds to a specific example of the “setting unit” of the present invention. After receiving the setting start instruction Os, the setting unit 215 obtains a plurality of (N) measured values P 1 to P N of the specific physical quantity from the measurement file 22E of the storage unit 24 as the parent group. The specific physical quantity is, for example, a physical quantity preset by the user, and is, for example, at least one of welding current Is, welding voltage Vs, wire feed speed Vf, welding speed Vw, and short-circuit frequency fs.

控制部21亦可以檢測包含於取得的各個測量值P1~PN中的、離焊接開始位置或焊接開始時最近的測量值Px(i)(開始時測量值)。在此情況下,控制部21亦可以以按每個測量值P1~PN所檢測出的開始時測量值的時刻作為起點,設定以採樣周期△t規定的時刻tx之上限值Pupper(x)和下限值Plower(x)。控制部21亦可以例如根據保存於儲存部24的測量檔案22E中的焊接開始位置或焊接開始時刻,檢測包含於取得的各個測量值P1~PN中的、離焊接開始位置或焊接開始時最近的測量值Px(i)(開始時測量值)。控制部21亦可以例如根據取得的各個測量值P1~PN的時間變化的特徵,檢測包含於取得的各個測量值P1~PN中的、離焊接開始位置或焊接開始時最近的測量值Px(i)(開始時測量值)。 The control unit 21 may detect the measured value Px(i) (measured value at the start) which is the closest to the welding start position or the welding start included in the acquired measured values P 1 to P N. In this case, the control unit 21 may set the upper limit value P upper of the time tx specified by the sampling period Δt using the time of the start measurement value detected for each measurement value P 1 to P N as a starting point (x) and P lower (x). The control unit 21 may also detect, from the welding start position or the welding start time stored in the measurement file 22E stored in the storage unit 24, the welding start position or the welding start time included in each acquired measurement value P 1 to P N , for example. The most recent measured value Px(i) (measured value at the beginning). The control unit 21 may, for example, detect the measurement closest to the welding start position or the welding start included in the acquired measurement values P 1 to P N based on the characteristics of the time change of the acquired measurement values P 1 to P N Value Px(i) (measured value at the beginning).

設定部215在將從儲存部24的測量檔案22E取得的特定物理量的N個測量值P1~PN(1

Figure 105126332-A0305-02-0015-6
i
Figure 105126332-A0305-02-0015-7
N)作為母集團時,在該母集團中,於每個以採樣周期△t規定的時刻tx(1
Figure 105126332-A0305-02-0015-8
x
Figure 105126332-A0305-02-0015-9
X),根據時刻tx的N個測量值Px(1)~Px(N)之最大值Pmax(x),設定時刻tx之上限值Pupper(x)。設定部215如圖5所示,使用式(1)設定Pupper(x)。在式(1)中,Pupper(x)用時刻tx的N個測量值Px(1)~Px(N)之最大值Pmax(x)加上常數K(K
Figure 105126332-A0305-02-0015-10
0)的值表示。 The setting unit 215 sets N measurement values P 1 to P N (1 of the specific physical quantity obtained from the measurement file 22E of the storage unit 24 (1
Figure 105126332-A0305-02-0015-6
i
Figure 105126332-A0305-02-0015-7
N) as the parent group, in the parent group, at each time tx(1
Figure 105126332-A0305-02-0015-8
x
Figure 105126332-A0305-02-0015-9
X), based on the N measured values Px(1)~Px(N) maximum value Pmax(x) at time tx, set the upper limit P upper (x) at time tx. As shown in FIG. 5, the setting unit 215 sets P upper (x) using equation (1). In equation (1), P upper (x) uses the maximum value Pmax(x) of N measured values Px(1)~Px(N) at time tx plus a constant K(K
Figure 105126332-A0305-02-0015-10
The value 0) indicates.

再者,設定部215例如亦可以使用下式設定Pupper(x)。在下式中,Pupper(x)用時刻tx的N個測量值Px(1)~Px(N)之最大值Pmax(x)加上常數K、和表示各個時刻tx的N個測量值Px(1)~Px(N)的平均值μx的函數中之平均值μx的微分△μx的絕對值(|△μx|)的L倍的值表示。 In addition, the setting unit 215 may set P upper (x) using, for example, the following formula. In the following formula, P upper (x) uses the maximum value Pmax(x) of the N measured values Px(1)~Px(N) at the time tx plus a constant K, and the N measured values Px(t) representing each time tx 1) A value of L times the absolute value (|△μx|) of the differential value of the average value μx in the function of the average value μx of Px(N) μx.

Pupper(x)=Pmax(x)+K+L|△μx| P upper (x)=Pmax(x)+K+L|△μx|

△μx=(μx-μx-1)/(tx-tx-1) △μx=(μx-μx-1)/(tx-tx-1)

設定部215進一步在上述母集團中,於每個時刻tx,根據時刻tx的N個測量值Px(1)~Px(N)之最小值Pmin(x),設定時刻tx之下限值Plower(x)。設定部215如圖5所示,使用式(2)設定Plower(x)。在式(2)中,Plower(x)用時刻tx的N個測量值Px(1)~Px(N)之最小值Pmin(x)減去常數K(K

Figure 105126332-A0305-02-0015-11
0)的值表示。 The setting unit 215 further sets the lower limit P lower at the time tx based on the N measured values Px(1) to Px(N) minimum values Pmin(x) at the time tx in the above parent group (x). As shown in FIG. 5, the setting unit 215 sets P lower (x) using equation (2). In equation (2), P lower (x) uses the minimum value Pmin(x) of the N measured values Px(1)~Px(N) at time tx minus the constant K(K
Figure 105126332-A0305-02-0015-11
The value 0) indicates.

再者,設定部215例如亦可以使用下式設定Plower(x)。在下式中,Plower(x)用時刻tx的N個測量值Px(1)~Px(N)之最小值Pmin(x)減去常數K和L|△μx|的值表示。 In addition, the setting unit 215 may also set P lower (x) using the following formula, for example. In the following formula, P lower (x) is represented by the value of the minimum value Pmin(x) of the N measured values Px(1)~Px(N) at time tx minus the constants K and L|△μx|.

Plower(x)=Pmin(x)-K-L|△μx| P lower (x)=Pmin(x)-KL|△μx|

設定部215亦可以在上述母集團中,於每個時刻tx,根據時刻tx的N個測量值Px(1)~Px(N)的標準差σx,設定時刻tx之上限值Pupper(x)。設定部215亦可以如圖6所示,使用式(3)設定上限值Pupper(x)。具體而言,設定部215亦可以在上述母集團中,於每個時刻tx,將時刻tx的N個測量值Px(1)~Px(N)的平均值μx加上時刻tx的N個測量值Px(1)~Px(N)的標準差σx的K倍(K

Figure 105126332-A0305-02-0016-13
1)的值設定為時刻tx之上限值Pupper(x)。 The setting unit 215 may set the upper limit P upper (x at the time tx based on the standard deviation σx of the N measured values Px(1) to Px(N) at the time tx in the parent group at each time tx ). As shown in FIG. 6, the setting unit 215 may set the upper limit value P upper (x) using equation (3). Specifically, the setting unit 215 may add the average value μx of the N measurement values Px(1) to Px(N) at the time tx to the N measurements at the time tx in the parent group at each time tx Value Px(1)~K times the standard deviation σx of Px(N) (K
Figure 105126332-A0305-02-0016-13
The value of 1) is set to the upper limit P upper (x) at time tx.

設定部215亦可以進一步在上述母集團中,於每個時刻tx,根據時刻tx的N個測量值Px(1)~Px(N)的標準差σx,設定時刻tx之下限值Plower(x)。設定部215亦可以如圖6所示,使用式(4)設定下限值Plower(x)。具體而言,設定部215亦可以在上述母集團中,於每個時刻tx,將時刻tx的N個測量值Px(1)~Px(N)的平均值μx減去時刻tx的N個測量值Px(1)~Px(N)的標準差σx的K倍(K

Figure 105126332-A0305-02-0016-14
1)的值設定為時刻tx之下限值Plower(x)。 The setting unit 215 may further set the lower limit value P lower ( t lower (p lower () at the time tx based on the standard deviation σx of the N measured values Px(1) to Px(N) at the time tx at each time tx x). As shown in FIG. 6, the setting unit 215 may set the lower limit value P lower (x) using equation (4). Specifically, the setting unit 215 may subtract the N measurements at the time tx from the average μx of the N measured values Px(1) to Px(N) at the time tx in the above parent group at each time tx Value Px(1)~K times the standard deviation σx of Px(N) (K
Figure 105126332-A0305-02-0016-14
The value of 1) is set to the lower limit P lower (x) at time tx.

設定部215亦可以在上述母集團中,於每個時刻tx,根據包含時刻tx的複數個時刻的NY個(Y

Figure 105126332-A0305-02-0016-15
2)測量值Pz(1)~Pz(NY)之最大值Pmax(x),設定時刻tx之上限值Pupper(x)。此時,設定部215亦可以在上述母集團中,於每個時刻tx,根據包含時刻tx及其前後的時刻tx-1、tx+1的3個以上的時刻的NY個(Y
Figure 105126332-A0305-02-0016-16
3)測量值Pz(1)~Pz(NY)之最大值Pmax(x),設定時刻tx之上限值Pupper(x)。設定部215亦可以如圖7所示,使用式(5)設定Pupper(x)。在式(5)中,Pupper(x)用時刻tx-1、tx、tx+1的3N 個測量值Pz(1)~Pz(3N)之最大值Pmax(x)加上常數K(K
Figure 105126332-A0305-02-0017-17
0)的值表示。3N個測量值Pz(1)~Pz(3N)係N個測量值Px-1(1)~Px-1(N)、N個測量值Px(1)~Px(N)和N個測量值Px+1(1)~Px+1(N)。 The setting unit 215 may, in the above parent group, at each time tx, based on a plurality of NY (Y
Figure 105126332-A0305-02-0016-15
2) The maximum value Pmax(x) of the measured value Pz(1)~Pz(NY) and the upper limit P upper (x) of the set time tx. At this time, the setting unit 215 may, in the above parent group, at each time tx, according to NY (Y of three or more times including the time tx and the time tx-1 and tx+1 before and after it)
Figure 105126332-A0305-02-0016-16
3) The maximum value Pmax(x) of the measured value Pz(1)~Pz(NY) and the upper limit P upper (x) of the set time tx. As shown in FIG. 7, the setting unit 215 may set P upper (x) using equation (5). In equation (5), P upper (x) uses the maximum value Pmax(x) of 3N measured values Pz(1)~Pz(3N) at times tx-1, tx, tx+1 plus the constant K(K
Figure 105126332-A0305-02-0017-17
The value 0) indicates. 3N measured values Pz(1)~Pz(3N) are N measured values Px-1(1)~Px-1(N), N measured values Px(1)~Px(N) and N measured values Px+1(1)~Px+1(N).

設定部215亦可以進一步在上述母集團中,於每個時刻tx,根據包含時刻tx的複數個時刻的NY個(Y

Figure 105126332-A0305-02-0017-18
2)測量值Pz(1)~Pz(NY)之最小值Pmin(x),設定時刻tx之下限值Plower(x)。此時,設定部215亦可以在上述母集團中,於每個時刻tx,根據包含時刻tx及其前後的時刻tx-1、tx+1的3個以上的時刻的NY個(Y
Figure 105126332-A0305-02-0017-19
3)測量值Pz(1)~Pz(NY)之最小值Pmin(x),設定時刻tx之下限值Plower(x)。設定部215亦可以如圖7所示,使用式(6)設定Plower(x)。在式(6)中,Plower(x)用時刻tx-1、tx、tx+1的3N個測量值Pz(1)~Pz(3N)之最小值Pmin(x)減去常數K(K
Figure 105126332-A0305-02-0017-20
0)的值表示。 The setting unit 215 may further, in each of the above parent groups, at each time tx, based on a plurality of NY (Y
Figure 105126332-A0305-02-0017-18
2) The minimum value Pmin(x) of the measured value Pz(1)~Pz(NY) and the lower limit P lower (x) at the set time tx. At this time, the setting unit 215 may, in the above parent group, at each time tx, according to NY (Y of three or more times including the time tx and the time tx-1 and tx+1 before and after it)
Figure 105126332-A0305-02-0017-19
3) The minimum value Pmin(x) of the measured value Pz(1)~Pz(NY) and the lower limit P lower (x) at the set time tx. As shown in FIG. 7, the setting unit 215 may set P lower (x) using equation (6). In equation (6), P lower (x) subtracts the constant K(K
Figure 105126332-A0305-02-0017-20
The value 0) indicates.

設定部215亦可以在上述母集團中,於每個時刻tx,根據包含時刻tx的複數個時刻的NY個(Y

Figure 105126332-A0305-02-0017-21
2)測量值Pz(1)~Pz(NY)的標準差σx,設定時刻tx之上限值Pupper(x)。此時,設定部215亦可以在上述母集團中,於每個時刻tx,根據包含時刻tx及其前後的時刻tx-1、tx+1的3個以上的時刻的NY個(Y
Figure 105126332-A0305-02-0017-22
3)測量值Pz(1)~Pz(NY)之最大值Pmax(x),設定時刻tx之上限值Pupper(x)。設定部215亦可以如圖8所示,使用式(7)設定上限值Pupper(x)。在式(7)中,Pupper(x)用時刻tx的N個測量值Px(1)~Px(N)的平均值μx加上時刻tx-1、tx、tx+1的3N個測量值Pz(1)~Pz(NY)的標準差σx的K倍(K
Figure 105126332-A0305-02-0017-23
1)的值表示。 The setting unit 215 may, in the above parent group, at each time tx, based on a plurality of NY (Y
Figure 105126332-A0305-02-0017-21
2) The standard deviation σx of the measured values Pz(1)~Pz(NY), the upper limit P upper (x) at the set time tx. At this time, the setting unit 215 may, in the above parent group, at each time tx, according to NY (Y of three or more times including the time tx and the time tx-1 and tx+1 before and after it)
Figure 105126332-A0305-02-0017-22
3) The maximum value Pmax(x) of the measured value Pz(1)~Pz(NY) and the upper limit P upper (x) of the set time tx. As shown in FIG. 8, the setting unit 215 may set the upper limit value P upper (x) using equation (7). In equation (7), P upper (x) uses the N measured values at the time tx Px(1)~Px(N) average μx plus 3N measured values at the time tx-1, tx, tx+1 Pz(1)~K times the standard deviation σx of Pz(NY) (K
Figure 105126332-A0305-02-0017-23
1) The value indicated.

設定部215亦可以進一步在上述母集團中,於每個時刻tx, 根據包含時刻tx的複數個時刻的NY個(Y

Figure 105126332-A0305-02-0018-25
2)測量值Pz(1)~Pz(NY)的標準差σx,設定時刻tx之下限值Plower(x)。此時,設定部215亦可以在上述母集團中,於每個時刻tx,根據包含時刻tx及其前後的時刻tx-1、tx+1的3個以上的時刻的NY個(Y
Figure 105126332-A0305-02-0018-26
3)測量值Pz(1)~Pz(NY)的標準差σx,設定時刻tx之下限值Plower(x)。設定部215亦可以如圖8所示,使用式(8)設定下限值Plower(x)。在式(8)中,Plower(x)用時刻tx的N個測量值Px(1)~Px(N)的平均值μx減去時刻tx-1、tx、tx+1的3N個測量值Pz(1)~Pz(NY)的標準差σx的K倍(K
Figure 105126332-A0305-02-0018-27
1)的值表示。 The setting unit 215 may further, in the above parent group, at each time tx, based on NY (Y
Figure 105126332-A0305-02-0018-25
2) The standard deviation σx of the measured values Pz(1)~Pz(NY) sets the lower limit P lower (x) at the time tx. At this time, the setting unit 215 may, in the above parent group, at each time tx, according to NY (Y of three or more times including the time tx and the time tx-1 and tx+1 before and after it)
Figure 105126332-A0305-02-0018-26
3) The standard deviation σx of the measured values Pz(1)~Pz(NY) sets the lower limit P lower (x) at the time tx. As shown in FIG. 8, the setting unit 215 may set the lower limit value P lower (x) using equation (8). In equation (8), P lower (x) uses the average value of N measured values at time tx Px(1)~Px(N) μx minus 3N measured values at time tx-1, tx, tx+1 Pz(1)~K times the standard deviation σx of Pz(NY) (K
Figure 105126332-A0305-02-0018-27
1) The value indicated.

設定部215將以如上所述的方式導出之上限值Pupper(x)和下限值Plower(x)儲存在儲存部24的閾值檔案22F中。此後,設定部215按照設定開始指令Os結束閾值分析的執行。 The setting unit 215 stores the upper limit value P upper (x) and the lower limit value P lower (x) derived in the manner described above in the threshold file 22F of the storage unit 24. Thereafter, the setting unit 215 ends the execution of the threshold value analysis in accordance with the setting start instruction Os.

(教導裝置30) (Teaching device 30)

圖9表示教導裝置30的概略構造之一例。教導裝置30中是作業者指示操縱器10的動作的裝置。教導裝置30例如具有:控制部31、顯示部32、輸入部33、通信部34和儲存部35。 FIG. 9 shows an example of a schematic structure of the teaching device 30. The teaching device 30 is a device in which the operator instructs the operation of the manipulator 10. The teaching device 30 includes, for example, a control unit 31, a display unit 32, an input unit 33, a communication unit 34, and a storage unit 35.

顯示部32顯示根據動畫訊號之動畫。顯示部32具備:具有顯示動畫的顯示面的顯示面板、根據動畫訊號驅動顯示面板的驅動部。輸入部33接受來自作業者的指示。輸入部33例如具有複數個鍵,對應於各個鍵的操作生成輸入訊號,向控制部31輸出。通信部34透過電纜L2與機器人控制裝置20進行通信。通信部34將來自控制部31的作業指令發送至機器人控制裝置20。儲存部35儲存可以在各種模式中進行種種表示、作業指示的指示程式35A。指示程式35A例如保存於ROM中。 The display unit 32 displays animation based on the animation signal. The display unit 32 includes a display panel having a display surface that displays animation, and a drive unit that drives the display panel based on the animation signal. The input unit 33 accepts instructions from the operator. The input unit 33 has, for example, a plurality of keys, and generates an input signal corresponding to the operation of each key, and outputs it to the control unit 31. The communication unit 34 communicates with the robot control device 20 via the cable L2. The communication unit 34 transmits the work instruction from the control unit 31 to the robot control device 20. The storage unit 35 stores an instruction program 35A that can perform various indications and operation instructions in various modes. The instruction program 35A is stored in the ROM, for example.

控制部31生成動畫訊號向顯示部32輸出,並且根據需要生成作業指令向通信部34輸出。控制部31按照讀出的指示程式35A生成動畫訊號、或根據需要生成作業指令。例如在從輸入部33輸入的輸入訊號為實施加工作業的播放模式的選擇訊號的情況下,控制部31按照指示程式35A,生成用於顯示儲存在儲存部24的1個或複數個作業程式22B的一覽表的動畫訊號。進而言之,例如在選擇播放模式的情況下,播放的1個作業程式22B被選擇時,控制部31按照指示程式35A,生成包含播放的作業程式22B的號碼等的作業指令。更進而言之,例如在選擇播放模式的情況下,學習模式或異常判定模式被選擇時,控制部31按照指示程式35A,生成包含學習模式或異常判定模式的啟動指令的作業指令。 The control unit 31 generates an animation signal and outputs it to the display unit 32, and generates a work instruction as necessary and outputs it to the communication unit 34. The control unit 31 generates an animation signal according to the read instruction program 35A, or generates a work command as necessary. For example, when the input signal input from the input unit 33 is the selection signal of the playback mode in which the processing operation is performed, the control unit 31 generates one or more operation programs 22B for displaying stored in the storage unit 24 according to the instruction program 35A The animated signal of the list. In addition, for example, when the playback mode is selected, when one operation program 22B to be played is selected, the control unit 31 generates an operation command including the number of the operation program 22B to be played according to the instruction program 35A. Furthermore, for example, when the playback mode is selected, when the learning mode or the abnormality determination mode is selected, the control unit 31 generates an operation command including a start command for the learning mode or the abnormality determination mode according to the instruction program 35A.

(焊接機40) (Welding machine 40)

圖10表示焊接機40的概略構造之一例。焊接機40根據由機器人控制裝置20的控制,藉由精密控制焊接電流Is、焊接電壓Vs和送絲速度Vf等,使焊絲16的前端與工件W之間產生電弧。焊接機40具有:控制部41、通信部42、焊接控制部43、焊接電源44、電流.電壓測量部45和儲存部46。 FIG. 10 shows an example of a schematic structure of the welding machine 40. The welding machine 40 generates an arc between the tip of the welding wire 16 and the workpiece W by precisely controlling the welding current Is, the welding voltage Vs, the wire feed speed Vf, and the like according to the control by the robot control device 20. Welding machine 40 has: a control unit 41, a communication unit 42, a welding control unit 43, a welding power supply 44, current. The voltage measurement unit 45 and the storage unit 46.

儲存部46儲存有控制焊接控制部43和焊接電源44的動作的控制程式46A。控制程式46A例如保存於ROM中。控制部41控制焊接機40的各個部分,並且按照讀出的控制程式46A,控制焊接控制部43和焊接電源44的動作。控制部41將從電流.電壓測量部45取得的監控資訊(例如:各種測量值或電弧發生通知等通知資訊)向通信部42輸出。通信部42接收來自機器人控制裝置20的焊接指令向控制部41輸出。通信部42將來自控制部41的監控資訊(例如:各種測量值或通知資訊)向機器人控制裝 置20輸出。 The storage unit 46 stores a control program 46A that controls the operations of the welding control unit 43 and the welding power source 44. The control program 46A is stored in the ROM, for example. The control unit 41 controls each part of the welding machine 40, and controls the operations of the welding control unit 43 and the welding power source 44 in accordance with the read control program 46A. The control unit 41 will follow the current. The monitoring information acquired by the voltage measurement unit 45 (for example, notification information such as various measured values or notification of arc occurrence) is output to the communication unit 42. The communication unit 42 receives the welding command from the robot control device 20 and outputs it to the control unit 41. The communication unit 42 sends monitoring information (for example, various measured values or notification information) from the control unit 41 to the robot control device. Set 20 output.

焊接控制部43按照根據控制程式46A、和來自機器人控制裝置20的焊接命令的來自控制部41的指示,控制送絲裝置14的動作。來自機器人控制裝置20的焊接命令例如可以包含送絲的開始命令、送絲的停止命令和送絲速度Vf的設定值等。又,焊接控制部43根據從送絲裝置14的馬達輸出的脈衝(或代替上述脈衝的某種訊號),測量送絲速度Vf。焊接控制部43根據從送絲裝置14的電流計輸出的驅動電流的測量值,測量送絲負荷Ld。焊接控制部43將送絲速度Vf和送絲負荷Ld的測量值向控制部41輸出。 The welding control unit 43 controls the operation of the wire feeder 14 in accordance with an instruction from the control unit 41 based on the control program 46A and the welding command from the robot control device 20. The welding command from the robot control device 20 may include, for example, a wire feed start command, a wire feed stop command, and a wire feed speed Vf setting value. In addition, the welding control unit 43 measures the wire feed speed Vf based on the pulse output from the motor of the wire feed device 14 (or some kind of signal instead of the above-mentioned pulse). The welding control unit 43 measures the wire feed load Ld based on the measurement value of the drive current output from the ammeter of the wire feed device 14. The welding control unit 43 outputs the measured values of the wire feed speed Vf and the wire feed load Ld to the control unit 41.

焊接電源44例如具有數位反向器電路,藉由反向器控制電路,對從外部輸入的商用電源(例如三相200V)以快速應答的方式進行精密的焊接電流波形控制。亦即,焊接電源44透過電纜L5、L6向焊槍13與工件W之間供應高電壓的焊接電壓Vs。焊接電源44按照控制程式46A、來自機器人控制裝置20的焊接命令,控制焊接電流Is和焊接電壓Vs。來自機器人控制裝置20的焊接命令例如可以包含電弧焊接的開始命令、電弧焊接的結束命令、焊接電流Is的設定值和焊接電壓Vs的設定值等。 The welding power supply 44 has, for example, a digital inverter circuit. The inverter control circuit performs precise welding current waveform control on a commercial power supply (eg, three-phase 200V) input from the outside in a fast response manner. That is, the welding power source 44 supplies a high-voltage welding voltage Vs between the welding torch 13 and the workpiece W through the cables L5 and L6. The welding power source 44 controls the welding current Is and the welding voltage Vs in accordance with the control program 46A and the welding command from the robot control device 20. The welding command from the robot control device 20 may include, for example, an arc welding start command, an arc welding end command, a setting value of the welding current Is, a setting value of the welding voltage Vs, and the like.

電流.電壓測量部45測量流經焊槍13與工件W之間的焊接電流Is、焊槍13與工件W之間的焊接電壓Vs。電流.電壓測量部45按照控制程式46A、來自機器人控制裝置20的焊接命令,以採樣頻率△fs測量焊接電流Is、焊接電壓Vs和短路頻率fs,並且將焊接電流Is、焊接電壓Vs和短路頻率fs各自的測量值(各種測量值)向控制部41輸出。電流.電壓測量部45根據需要,測量焊接中的每1秒的脈衝數(脈衝頻率fp),向控制 部41輸出。電流.電壓測量部45進一步從焊接電流Is和焊接電壓Vs的測量值判定電弧發生的有無。電流.電壓測量部45在發生電弧的情況下,生成電弧發生通知,向控制部41輸出。 Current. The voltage measuring section 45 measures the welding current Is flowing between the welding torch 13 and the workpiece W, and the welding voltage Vs between the welding torch 13 and the workpiece W. Current. The voltage measuring section 45 measures the welding current Is, the welding voltage Vs and the short-circuit frequency fs at the sampling frequency Δfs according to the control program 46A and the welding command from the robot control device 20, and separates the welding current Is, the welding voltage Vs and the short-circuit frequency fs The measured values (various measured values) are output to the control unit 41. Current. The voltage measuring section 45 measures the number of pulses per second (pulse frequency fp) during welding as required, and controls Section 41 output. Current. The voltage measuring unit 45 further determines the presence or absence of arcing from the measured values of the welding current Is and the welding voltage Vs. Current. When an arc occurs, the voltage measurement unit 45 generates an arc occurrence notification and outputs it to the control unit 41.

[學習模式的動作步驟] [Operation steps of learning mode]

其次,針對學習模式的動作步驟進行說明。在下文中,在針對實施履歷累積進行說明之後,針對閾值生成進行說明。 Next, the operation steps of the learning mode will be described. In the following, after the accumulation of the implementation history is described, the threshold generation will be described.

(實施履歷累積) (Accumulation of implementation history)

首先,針對學習模式的實施履歷累積進行說明。在教導裝置30中,例如用戶選擇播放模式,然後進一步選擇學習模式。於是,教導裝置30的控制部31按照指示程式35A,生成包含學習模式的啟動指令的作業指令,向機器人控制裝置20輸出。如果從教導裝置30輸入包含學習模式的啟動指令的作業指令,那麼機器人控制裝置20的控制部21就讀出作業程式22B和電弧焊接品質判定程式22C。控制部21根據從作業程式22B和電弧焊接品質判定程式22C讀出的內容、和從儲存部24的設定檔案22D讀出的各種設定值,生成對應於這些程式所記載的指示的命令通知。控制部21根據生成的命令通知的內容,輸出移動命令、焊接命令。 First, the accumulation of the implementation history of the learning mode will be described. In the teaching device 30, for example, the user selects the playback mode, and then further selects the learning mode. Then, the control unit 31 of the teaching device 30 generates a work command including the start command of the learning mode according to the instruction program 35A, and outputs it to the robot control device 20. When the operation command including the start command of the learning mode is input from the teaching device 30, the control unit 21 of the robot control device 20 reads out the operation program 22B and the arc welding quality judgment program 22C. The control unit 21 generates command notifications corresponding to the instructions written in these programs based on the contents read from the work program 22B and the arc welding quality judgment program 22C and the various setting values read from the setting file 22D of the storage unit 24. The control unit 21 outputs a movement command and a welding command based on the content of the generated command notification.

控制部21透過通信部23將生成的焊接命令向焊接機40輸出。焊接命令例如包含焊接開始指令、焊接電流Is、焊接電壓Vs和送絲速度Vf的設定值。如果從機器人控制裝置20輸入焊接命令,那麽焊接機40的控制部41讀出控制程式46A,根據焊接命令,設定焊接電流Is和焊接電壓Vs,並且對送絲裝置14設定送絲速度Vf,籍此開始電弧焊接。此時,電流.電壓測量部45對各種物理量進行採樣,並且將藉由採樣得到的各種物 理量的測量值向控制部41輸出。又,電流.電壓測量部45在偵測電弧發生時,將電弧發生通知向控制部41輸出。控制部41透過通信部42,將從電流.電壓測量部45取得的監控資訊(例如:各種測量值或電弧發生通知等通知資訊)向機器人控制裝置20輸出。控制部41例如在經過了預先設定的時間間隔(例如最小10ms左右)後,算出該期間的各種測量值的移動平均值,並且透過通信部42向機器人控制裝置20輸出。 The control unit 21 outputs the generated welding command to the welding machine 40 through the communication unit 23. The welding command includes, for example, welding start commands, welding current Is, welding voltage Vs, and setting values of the wire feed speed Vf. If a welding command is input from the robot control device 20, the control unit 41 of the welding machine 40 reads out the control program 46A, sets the welding current Is and the welding voltage Vs according to the welding command, and sets the wire feed speed Vf to the wire feed device 14. This starts arc welding. At this time, the current. The voltage measuring section 45 samples various physical quantities and separates various objects obtained by sampling The measured value of the quantity is output to the control unit 41. Also, current. When detecting the occurrence of an arc, the voltage measurement unit 45 outputs an arc occurrence notification to the control unit 41. Control unit 41 through the communication unit 42, will be from the current. The monitoring information acquired by the voltage measurement unit 45 (for example, various measurement values or notification information such as an arc occurrence notification) is output to the robot control device 20. The control unit 41 calculates, for example, a moving average of various measured values during that period after a predetermined time interval (for example, a minimum of about 10 ms) has elapsed, and outputs it to the robot control device 20 through the communication unit 42.

控制部21進一步透過通信部23將生成的移動命令向操縱器10輸出。操縱器10在從機器人控制裝置20輸入移動命令的情況下,根據輸入的移動命令,使各根臂12A位移,結果使焊槍13在上下前後左右移動。此時,控制部21從編碼器取得位置資訊。 The control unit 21 further outputs the generated movement command to the manipulator 10 through the communication unit 23. When the manipulator 10 inputs a movement command from the robot control device 20, each arm 12A is displaced according to the input movement command, and as a result, the welding gun 13 moves up, down, left, and right. At this time, the control unit 21 acquires position information from the encoder.

控制部21將從焊接機40取得的各種測量值保存於儲存部24的測量檔案22E中。此時,控制部21亦可以根據從焊接機40取得的焊接開始指令,導出焊接開始位置或焊接開始時刻並保存於儲存部24的測量檔案22E中。控制部21根據從編碼器取得的位置資訊Pf,導出焊接速度Vw並保存於儲存部24的測量檔案22E中。控制部21根據從編碼器取得的位置資訊Pf,判定焊接區間WS的結束,在焊接區間WS結束的情況下,將識別焊接區間WS的號碼保存於儲存部24的測量檔案22E中。 The control unit 21 stores various measurement values acquired from the welding machine 40 in the measurement file 22E of the storage unit 24. At this time, the control unit 21 may derive the welding start position or the welding start time based on the welding start command acquired from the welding machine 40 and save it in the measurement file 22E of the storage unit 24. The control unit 21 derives the welding speed Vw based on the position information Pf acquired from the encoder and stores it in the measurement file 22E of the storage unit 24. The control unit 21 determines the end of the welding section WS based on the position information Pf acquired from the encoder, and when the welding section WS ends, stores the number identifying the welding section WS in the measurement file 22E of the storage unit 24.

(閾值生成) (Threshold generation)

其次,針對學習模式的閾值生成進行說明。控制部21在偵測焊接區間WS的結束次數達到既定次數(N次)的情況下,從儲存部24的測量檔案22E取得作為母集團的特定物理量的複數個(N個)測量值P1~PN。控制部21在將從儲存部24的測量檔案22E取得的特定物理量的N個測量值P1~PN (1

Figure 105126332-A0305-02-0023-28
i
Figure 105126332-A0305-02-0023-29
N)作為母集團時,在該母集團中,於每個時刻tx(1
Figure 105126332-A0305-02-0023-32
x
Figure 105126332-A0305-02-0023-31
X),根據時刻tx的N個測量值Px(1)~Px(N)之最大值Pmax(x),設定時刻tx之上限值Pupper(x)。控制部21進一步在上述母集團中,於每個時刻tx,根據時刻tx的N個測量值Px(1)~Px(N)之最小值Pmin(x),設定時刻tx之下限值Plower(x)。控制部21例如藉由上述具體方法,設定時刻tx之上限值Pupper(x)和下限值Plower(x)。 Next, the threshold generation of the learning pattern will be described. When detecting that the number of ending times of the welding interval WS reaches a predetermined number of times (N times), the control unit 21 acquires a plurality of (N) measured values P 1 to a specific physical quantity of the parent group from the measurement file 22E of the storage unit 24 P N. The control unit 21 determines the N measured values P 1 to P N (1 of the specific physical quantity obtained from the measurement file 22E of the storage unit 24 (1
Figure 105126332-A0305-02-0023-28
i
Figure 105126332-A0305-02-0023-29
N) as a parent group, in the parent group, at each time tx(1
Figure 105126332-A0305-02-0023-32
x
Figure 105126332-A0305-02-0023-31
X), based on the N measured values Px(1)~Px(N) maximum value Pmax(x) at time tx, set the upper limit P upper (x) at time tx. The control unit 21 further sets the lower limit value P lower at time tx based on the N measured values Px(1) to Px(N) minimum value Pmin(x) at time tx in the above parent group at each time tx (x). The control unit 21 sets the upper limit value P upper (x) and the lower limit value P lower (x) at the time tx by the above-described specific method, for example.

再者,控制部21亦可以在上述母集團中,於每個時刻tx,根據時刻tx的N個測量值Px(1)~Px(N)的標準差σx,設定時刻tx之上限值Pupper(x)。控制部21亦可以進一步在上述母集團中,於每個時刻tx,根據時刻tx的N個測量值Px(1)~Px(N)的標準差σx,設定時刻tx之下限值Plower(x)。此時,控制部21例如亦可以藉由上述具體方法,設定時刻tx之上限值Pupper(x)和下限值Plower(x)。 Furthermore, the control unit 21 may set the upper limit value P of the time tx based on the standard deviation σx of the N measured values Px(1) to Px(N) at the time tx in the parent group at each time tx upper (x). The control unit 21 may further set the lower limit P lower (at the lower limit of the time tx based on the standard deviation σx of the N measured values Px(1) to Px(N) at the time tx in the above parent group at each time tx x). At this time, the control unit 21 may set the upper limit P upper (x) and the lower limit P lower (x) of the time tx by the above-described specific method, for example.

又,控制部21亦可以在上述母集團中,於每個時刻tx,根據包含時刻tx的複數個時刻的NY個(Y

Figure 105126332-A0305-02-0023-33
2)的測量值Pz(1)~Pz(NY)之最大值Pmax(x),設定時刻tx之上限值Pupper(x)。控制部21亦可以進一步在上述母集團中,於每個時刻tx,根據包含時刻tx的複數個時刻的NY個(Y
Figure 105126332-A0305-02-0023-34
2)的測量值Pz(1)~Pz(NY)之最小值Pmin(x),設定時刻tx之下限值Plower(x)。此時,控制部21例如亦可以藉由上述具體方法,設定時刻tx之上限值Pupper(x)和下限值Plower(x)。 In addition, the control unit 21 may, in the above parent group, at each time tx, based on a plurality of NY (Y
Figure 105126332-A0305-02-0023-33
2) The maximum value Pmax(x) of the measured value Pz(1)~Pz(NY) is the upper limit P upper (x) at the set time tx. The control unit 21 may further include, in each of the above parent groups, at each time tx, based on NY (Y
Figure 105126332-A0305-02-0023-34
2) The minimum value Pmin(x) of the measured value Pz(1)~Pz(NY), and the lower limit P lower (x) at the set time tx. At this time, the control unit 21 may set the upper limit P upper (x) and the lower limit P lower (x) of the time tx by the above-described specific method, for example.

又,控制部21亦可以在上述母集團中,於每個時刻tx,根據包含時刻tx的複數個時刻的NY個(Y

Figure 105126332-A0305-02-0023-36
2)的測量值Pz(1)~Pz(NY)的標準差σx,設定時刻tx之上限值Pupper(x)。控制部21亦可以進一步在 上述母集團中,於每個時刻tx,根據包含時刻tx的複數個時刻的NY個(Y
Figure 105126332-A0305-02-0024-37
2)的測量值Pz(1)~Pz(NY)的標準差σx,設定時刻tx之下限值Plower(x)。此時,控制部21例如亦可以藉由上述具體方法,設定時刻tx之上限值Pupper(x)和下限值Plower(x)。 In addition, the control unit 21 may, in the above parent group, at each time tx, based on a plurality of NY (Y
Figure 105126332-A0305-02-0023-36
2) The standard deviation σx of the measured values Pz(1)~Pz(NY) sets the upper limit P upper (x) at the time tx. The control unit 21 may further include, in each of the above parent groups, at each time tx, based on NY (Y
Figure 105126332-A0305-02-0024-37
2) The standard deviation σx of the measured values Pz(1)~Pz(NY) sets the lower limit P lower (x) at the time tx. At this time, the control unit 21 may set the upper limit P upper (x) and the lower limit P lower (x) of the time tx by the above-described specific method, for example.

控制部21將以上述方式導出之上限值Pupper(x)和下限值Plower(x)保存於儲存部24的閾值檔案22F中。如此,執行學習模式。 The control unit 21 stores the upper limit value P upper (x) and the lower limit value P lower (x) derived as described above in the threshold file 22F of the storage unit 24. In this way, the learning mode is executed.

[異常判定模式的構造] [Structure of abnormal judgment mode]

其次,針對異常判定模式的構造進行說明。 Next, the structure of the abnormality determination mode will be described.

圖11表示焊接機器人系統1的異常判定模式的功能塊之一例。焊接機器人系統1在異常判定模式中,具備判定部216來代替學習模式的設定部215。判定部216相當於本發明的“判定部”之一具體例。因此,在下文中,主要說明與學習模式不同的內容,對與學習模式相同的內容,適當加以省略。 FIG. 11 shows an example of function blocks in the abnormality determination mode of the welding robot system 1. In the abnormality determination mode, the welding robot system 1 includes a determination unit 216 instead of the setting unit 215 in the learning mode. The determination unit 216 corresponds to a specific example of the "determination unit" of the present invention. Therefore, in the following, the content different from the learning mode is mainly explained, and the same content as the learning mode is appropriately omitted.

軌道記錄部214在異常判定模式中,如果從焊接控制部213接收到軌道記錄結束通知,那麽輸出判定開始指令Oh。控制部21具有:按照判定開始指令Oh進行異常判定的判定部216(參照圖11)。判定部216相當於本發明的“判定部”之一具體例。判定部216在接受判定開始指令Oh的情況下,當在與學習模式的焊接條件設定同樣的焊接條件設定下焊接時得到的測量值PN+1處於上限值Pupper(x)與下限值Plower(x)的範圍內時,判定為沒有焊接不良;當測量值PN+1處於上述範圍之外時,判定為有焊接不良。 When the track recording unit 214 receives the track recording end notification from the welding control unit 213 in the abnormality determination mode, it outputs a determination start command Oh. The control unit 21 includes a determination unit 216 (see FIG. 11) that performs abnormality determination according to the determination start instruction Oh. The determination unit 216 corresponds to a specific example of the "determination unit" of the present invention. When the determination unit 216 receives the determination start instruction Oh, the measurement value P N+1 obtained when welding under the same welding condition setting as the welding condition setting of the learning mode is at the upper limit P upper (x) and the lower limit When the value P lower (x) is within the range, it is determined that there is no welding defect; when the measured value P N+1 is outside the above range, it is determined that there is welding defect.

判定部216亦可以在包含於測量值PN+1中的既定數的測量值 Px(N+1)處於上述範圍之外時,判定為有焊接不良。亦即,判定部216亦可以在判定測量值Px(N+1)處於上述範圍之外的次數超過既定數時,判定為有焊接不良。 The determination unit 216 may determine that there is a welding defect when a predetermined number of measurement values Px(N+1) included in the measurement value P N+1 is outside the above range. That is, the determination unit 216 may determine that there is a welding defect when the number of times that the measured value Px(N+1) is outside the above range exceeds a predetermined number.

判定部216亦可以在從判定測量值Px(N+1)處於上述範圍之外時、經過既定時間(閾值超出容許時間)之後,測量值Px(N+1)仍處於上述範圍之外時,判定為有焊接不良。在此,判定部216亦可以從預先設定的距離、焊接速度Vw,導出閾值超出容許時間。 The determination unit 216 may also determine that the measured value Px(N+1) is outside the above-mentioned range after determining that the measured value Px(N+1) is outside the above-mentioned range and after a predetermined time (the threshold exceeds the allowable time), It is judged that there is welding defect. Here, the determination unit 216 may derive the threshold value exceeding the allowable time from the preset distance and the welding speed Vw.

判定部216亦可以在判定為有焊接不良的情況下,對機器人控制裝置20發出指示,使焊接立刻停止。又,判定部216亦可以在判定為有焊接不良的情況下,對機器人控制裝置20發出指示,通知有焊接不良。 The determination unit 216 may issue an instruction to the robot control device 20 to stop welding immediately when it is determined that the welding is defective. In addition, the determination unit 216 may issue an instruction to the robot control device 20 to notify the welding failure when it is determined that the welding is defective.

圖12表示教導裝置30的顯示面的圖形顯示之一例。顯示部32根據用於顯示監控資訊的動畫訊號,如圖12所示,將測量值PN+1與焊接距離Wp的關係、以及上限值Pupper(x)和下限值Plowpr(x)一起用圖形顯示。從圖12可知:電弧焊接開始時之上限值Pupper(x)和下限值Plower(x)的範圍比電弧穩定時之上限值Pupper(x)和下限值Plower(x)的範圍寬廣些。 FIG. 12 shows an example of graphic display on the display surface of the teaching device 30. The display unit 32 compares the relationship between the measured value P N+1 and the welding distance Wp, and the upper limit value P upper (x) and the lower limit value P lowpr (x ) Graphic display together. 12 shows that: over a range above the upper limit P upper (x) and the lower limit value P lower (x) than the arc stability limit P upper (x) and the lower limit value P lower (x arc welding start ) Is wider.

[品質判定] [Quality Judgment]

其次,參照圖11針對焊接機器人系統1的電弧焊接品質判定步驟進行說明。 Next, the arc welding quality determination procedure of the welding robot system 1 will be described with reference to FIG. 11.

首先,機器人控制裝置20(控制部21)對焊接機40輸出焊接命令。於是,焊接機40按照來自控制部21的指示,開始焊接,並且進行焊接電流Is、焊接電壓Vs、送絲速度Vf和短路頻率fs的採樣,將這些測量值向控制部21輸出。控制部21取得來自焊接機40的焊接電流Is、焊接電 壓Vs、送絲速度Vf和短路頻率fs的測量值。 First, the robot controller 20 (control unit 21) outputs a welding command to the welding machine 40. Then, the welding machine 40 starts welding in accordance with an instruction from the control unit 21, samples the welding current Is, the welding voltage Vs, the wire feed speed Vf, and the short-circuit frequency fs, and outputs these measured values to the control unit 21. The control unit 21 acquires the welding current Is and welding power from the welding machine 40 Measured values of pressure Vs, wire feed speed Vf and short-circuit frequency fs.

又,控制部21對伺服控制部22發出移動命令。於是,伺服控制部22按照來自控制部21的指示,控制操縱器10的動作,並且對來自操縱器10的編碼器的位置資訊進行採樣,從藉由採樣得到的位置資訊,導出(測量)焊槍13前端的位置資訊Pf、焊接速度Vw。伺服控制部22將導出的位置資訊Pf、焊接速度Vw向控制部21輸出。控制部21取得來自伺服控制部22的位置資訊Pf、焊接速度Vw的測量值。 In addition, the control unit 21 issues a movement command to the servo control unit 22. Then, the servo control unit 22 controls the operation of the manipulator 10 according to the instruction from the control unit 21, and samples the position information of the encoder from the manipulator 10, and derives (measures) the welding gun from the position information obtained by the sampling 13 Position information Pf at the front end and welding speed Vw. The servo control unit 22 outputs the derived position information Pf and welding speed Vw to the control unit 21. The control unit 21 obtains the measured values of the position information Pf and the welding speed Vw from the servo control unit 22.

其次,控制部21判定從測量開始時(或再計算開始時)到現在的經過期間是否超過移動平均值的算出所需要的期間(算出期間)。算出期間例如至少為10μs左右。控制部21在經過期間超過算出期間的情況下,算出焊接電流Is、焊接電壓Vs、送絲速度Vf、短路頻率fs和焊接速度Vw的移動平均值。 Next, the control unit 21 determines whether the elapsed period from the start of measurement (or the start of recalculation) to the current period exceeds the period required for calculation of the moving average (calculated period). The calculation period is, for example, at least about 10 μs. The control unit 21 calculates the moving average of the welding current Is, the welding voltage Vs, the wire feed speed Vf, the short-circuit frequency fs, and the welding speed Vw when the elapsed period exceeds the calculation period.

其次,控制部21判定算出的移動平均值是否處於上限值Pupper(x)和下限值Plower(x)的範圍內。控制部21在算出的移動平均值處於上述範圍內的情況下,判定為沒有焊接不良。控制部21在算出的移動平均值處於上述範圍之外的情況下,判定為有焊接不良,結束品質判定。 Next, the control unit 21 determines whether the calculated moving average is within the range of the upper limit P upper (x) and the lower limit P lower (x). When the calculated moving average value is within the above range, the control unit 21 determines that there is no welding defect. When the calculated moving average is outside the above range, the control unit 21 determines that there is a welding defect, and ends the quality determination.

再者,控制部21亦可以在判定為有焊接不良的情況下,不結束品質判定(亦即,不停止焊接作業),而一邊使焊接作業進行到最後,一邊繼續品質判定。又,控制部21亦可以在焊接開始的時刻開始判定算出的移動平均值是否處於上述範圍內,亦可以在焊接結束後開始判定算出的移動平均值是否處於上述範圍內。 In addition, the control unit 21 may continue the quality determination while continuing the welding operation to the end without completing the quality determination (that is, without stopping the welding operation) when it is determined that there is a welding defect. In addition, the control unit 21 may start to determine whether the calculated moving average value is within the above range at the start of welding, or may start to determine whether the calculated moving average value is within the above range after welding is completed.

[效果] [effect]

其次,針對焊接機器人系統1的電弧焊接品質判定系統的效果進行說明。 Next, the effect of the arc welding quality determination system of the welding robot system 1 will be described.

以往開發了減少焊接不良的技術、更正確地檢測焊接不良的技術。作為更正確地檢測出焊接不良的技術,例如有提出專利文獻1。在專利文獻1中,提出了:如果電弧焊接中實際的焊接電流或焊接電壓的移動平均值超出預先設定的範圍,那麽判定為發生了焊接不良的技術。但是,在專利文獻1所記載的發明中,因為閾值係以穩定時的焊接條件(焊接電流、焊接電壓等)為基準的定值,故在非穩定時的狀態(例如焊接開始時、焊接結束時或刻意變更焊接條件時等)下,存在不能判定焊接不良的問題。 In the past, technologies for reducing welding defects and technologies for more accurately detecting welding defects have been developed. As a technique for more accurately detecting welding defects, for example, Patent Document 1 is proposed. Patent Document 1 proposes a technique for determining that a welding defect has occurred if the moving average value of the actual welding current or welding voltage during arc welding exceeds a predetermined range. However, in the invention described in Patent Document 1, since the threshold value is a fixed value based on the welding conditions (welding current, welding voltage, etc.) at the time of stability, the state at the time of instability (for example, when welding starts and when welding ends) Time or when the welding conditions are deliberately changed, etc.), there is a problem that the welding failure cannot be determined.

另一方面,在本實施方式中,根據從包含過去的複數個測量值P1~PN的母集團得到的統計值,設定用於判定焊接不良的閾值(上限值Pupper(x)和下限值Plower(x))。藉此,用於判定焊接不良的閾值(上限值Pupper(x)和下限值Plower(x))係從過去進行的穩定的焊接結果的累積求得的值。其結果係:即使在穩定時以外的焊接狀態,亦因為使用在過去同樣的焊接狀態下得到的閾值,故能夠進行焊接不良的判定。 On the other hand, in the present embodiment, according to statistics from the group consisting of a plurality of past measured values P 1 ~ P N of the parent group obtained, poor welding set for determining the threshold value (upper limit value P upper (x) and The lower limit P lower (x)). With this, the thresholds (upper limit value P upper (x) and lower limit value P lower (x)) for determining welding failure are values obtained from the accumulation of stable welding results performed in the past. As a result, even in the welding state other than the stable state, since the threshold value obtained in the same welding state in the past is used, it is possible to determine the welding defect.

本實施方式中,在上述母集團中,於每個時刻tx,根據時刻tx的N個測量值Px(1)~Px(N)之最大值Pmax(x)和最小值Pmin(x),設定時刻tx之上限值Pupper(x)和下限值Plower(x)的情況下,即使在穩定時以外的焊接狀態,亦能夠以少的計算量來進行焊接不良的判定。又,本實施方式中,在上述母集團中,於每個時刻tx,根據包含時刻tx的複數個時刻的NY個(Y

Figure 105126332-A0305-02-0027-38
2)測量值Pz(1)~Pz(NY)之最大值Pmax(x)和最小值Pmin(x),設定時刻tx之上限值Pupper(x)和下限值Plower(x)的情況下, 即使在穩定時以外的焊接狀態,亦能夠以少的計算量來進行精度較高的焊接不良的判定。 In this embodiment, in the above parent group, at each time tx, it is set based on the maximum value Pmax(x) and the minimum value Pmin(x) of the N measured values Px(1) to Px(N) at the time tx In the case of the upper limit value P upper (x) and the lower limit value P lower (x) at the time tx, the welding defect can be determined with a small amount of calculation even in a welding state other than the stable time. In addition, in this embodiment, in the above parent group, at each time tx, based on NY (Y
Figure 105126332-A0305-02-0027-38
2) The maximum value Pmax(x) and minimum value Pmin(x) of the measured value Pz(1)~Pz(NY), the upper limit P upper (x) and the lower limit P lower (x) of the set time tx In this case, even in a welding state other than when it is stable, it is possible to determine welding defects with high accuracy with a small amount of calculation.

本實施方式中,在上述母集團中,於每個時刻tx,根據時刻tx的N個測量值Px(1)~Px(N)的標準差σ x,設定時刻tx之上限值Pupper(x)和下限值Plower(x)的情況下,即使在穩定時以外的焊接狀態,亦能夠進行精度高的焊接不良的判定。又,本實施方式中,在上述母集團中,於每個時刻tx,根據包含時刻tx的複數個時刻的NY個(Y

Figure 105126332-A0202-12-0025-45
2)測量值Pz(1)~Pz(NY)的標準差σ x,設定時刻tx之上限值Pupper(x)和下限值Plower(x)的情況下,即使在穩定時以外的焊接狀態,亦能夠進行精度更高的焊接不良的判定。 In this embodiment, in the above parent group, at each time tx, based on the N measured values Px(1) to Px(N) standard deviation σ x at time tx, the upper limit P upper ( In the case of x) and the lower limit P lower (x), it is possible to determine welding defects with high accuracy even in a welding state other than the stable state. In addition, in this embodiment, in the above parent group, at each time tx, based on NY (Y
Figure 105126332-A0202-12-0025-45
2) The standard deviation σ x of the measured values Pz(1)~Pz(NY), when the upper limit P upper (x) and the lower limit P lower (x) of the set time tx are set, even when they are not stable In the welding state, it is possible to determine welding defects with higher accuracy.

本實施方式中,在上述母集團中,於每個時刻tx,將時刻tx的平均值μ x加上時刻tx或包含時刻tx的複數個時刻的標準差σ x的K倍(K

Figure 105126332-A0202-12-0025-52
1)的值設定為時刻tx之上限值Pupper(x),並且將時刻tx的平均值μ x減去時刻tx或包含時刻tx的複數個時刻的標準差σ x的K倍(K
Figure 105126332-A0202-12-0025-47
1)的值設定為時刻tx之下限值Plower(x)的情況下,即使在穩定時以外的焊接狀態,亦能夠進行精度高的焊接不良的判定。 In the present embodiment, in the above parent group, at each time tx, the average value μ x of the time tx is added to the time tx or K times the standard deviation σ x of the plurality of times including the time tx (K
Figure 105126332-A0202-12-0025-52
The value of 1) is set to the upper limit P upper (x) of the time tx, and the average value μ x of the time tx minus the time tx or K times (K times (K
Figure 105126332-A0202-12-0025-47
When the value of 1) is set to the lower limit P lower (x) at time tx, it is possible to determine welding defects with high accuracy even in a welding state other than the stable time.

在本實施方式中,在檢測出包含於取得的各個測量值P1~PN中的、離焊接開始位置或焊接開始時最近的測量值Px(i)(開始時測量值),並且以按每個測量值P1~PN所檢測出的開始時測量值的時刻作為起點,設定時刻tx之上限值Pupper(x)和下限值Plower(x)的情況下,能夠減少起因於焊接開始時刻的偏差的誤判定。 In the present embodiment, the measured value Px(i) (measured value at the start) which is the closest to the welding start position or the welding start time among the acquired measured values P 1 to P N is detected, and the When the measured value at the beginning of each measured value P 1 ~P N is detected as a starting point, when the upper limit P upper (x) and the lower limit P lower (x) of the time tx are set, the cause can be reduced Misjudgment of deviation at the start of welding.

在本實施方式中,因為作為用於判定焊接不良的測量值,使 用了焊接電流Is、焊接電壓Vs、送絲速度Vf、焊接速度Vw或短路頻率fs,故即使在穩定時以外的焊接狀態,亦能夠進行焊接不良的判定。又,在本實施方式中,因為設置了測量焊接電流Is、焊接電壓Vs、送絲速度Vf、焊接速度Vw或短路頻率fs的測量部,並且由該測量部測量得到的值被用於焊接不良的判定,故即使在穩定時以外的焊接狀態,亦能夠進行焊接不良的判定。 In the present embodiment, as a measurement value for determining welding failure, the The welding current Is, the welding voltage Vs, the wire feed speed Vf, the welding speed Vw, or the short-circuit frequency fs are used, so that the welding failure can be determined even in a welding state other than stable. Furthermore, in the present embodiment, because a measuring section that measures the welding current Is, the welding voltage Vs, the wire feed speed Vf, the welding speed Vw, or the short-circuit frequency fs is provided, and the value measured by the measuring section is used for welding failure Determination, it is possible to determine the welding failure even in the welding state other than the stable time.

在本實施方式中,因為將測量值Px(i)與焊接距離Wp的關係、以及上限值Pupper(x)和下限值Plower(x)一起用圖形顯示在顯示部32,故即使在穩定時以外的焊接狀態,用戶亦能夠直觀地確認焊接不良的判定結果。 In this embodiment, since the relationship between the measured value Px(i) and the welding distance Wp, and the upper limit value P upper (x) and the lower limit value P lower (x) are graphically displayed on the display unit 32, even if In the welding state other than the stable time, the user can intuitively confirm the result of the welding defect determination.

<2.變形例> <2. Modifications>

以下,針對上述實施方式的焊接機器人系統1的變形例進行說明。再者,在下文中,對與上述實施方式共通的構成要素,賦予與上述實施方式同樣的符號。又,主要說明與上述實施方式不同的構成要素,針對與上述實施方式共通的構成要素的說明,適當加以省略。 Hereinafter, a modification of the welding robot system 1 of the above-described embodiment will be described. In addition, in the following, constituent elements common to the above-mentioned embodiment are given the same symbols as those of the above-mentioned embodiment. In addition, the main components that are different from the above-mentioned embodiment are mainly described, and the description of the components common to the above-mentioned embodiment is appropriately omitted.

[變形例A] [Modification A]

在上述實施方式中,於每個以採樣周期△t規定的時刻tx(1

Figure 105126332-A0202-12-0026-48
x
Figure 105126332-A0202-12-0026-49
X),設定了上限值Pupper(x)和下限值Plower(x)。但是,在上述實施方式中,亦可以於每個以不同於採樣周期△t的周期規定的時刻tx(1
Figure 105126332-A0202-12-0026-50
x
Figure 105126332-A0202-12-0026-51
X),設定上限值Pupper(x)和下限值Plower(x)。 In the above embodiment, at each time tx(1
Figure 105126332-A0202-12-0026-48
x
Figure 105126332-A0202-12-0026-49
X), the upper limit P upper (x) and the lower limit P lower (x) are set. However, in the above-described embodiment, each time tx(1
Figure 105126332-A0202-12-0026-50
x
Figure 105126332-A0202-12-0026-51
X), set the upper limit P upper (x) and the lower limit P lower (x).

[變形例B] [Modification B]

在上述實施方式中,在設定檔案22D中,例如記述有焊接電流Is、焊 接電壓Vs、送絲速度Vf和焊接速度Vw各自的設定值。但是,在上述實施方式及其變形例中,在設定檔案22D中,亦可以進一步記述上述送絲負荷Ld和脈衝頻率fp各自的設定值。此時,在測量檔案22E中,記述送絲負荷Ld和脈衝頻率fp的測量值。送絲負荷Ld係從送絲裝置14的馬達電流算出的物理量。脈衝頻率fp係以脈衝焊接法進行的焊接中的每1秒的脈衝數。在本變形例B中,因為作為用於判定焊接不良的測量值,使用了送絲負荷Ld或脈衝頻率fp,故即使在穩定時以外的焊接狀態,亦能夠進行焊接不良的判定。又,在本變形例B中,因為設置了測量送絲負荷Ld或脈衝頻率fp的測量部,並且由該測量部測量得到的值被用於焊接不良的判定,故即使在穩定時以外的焊接狀態,亦能夠進行焊接不良的判定。 In the above embodiment, in the setting file 22D, for example, the welding current Is, welding The setting values of the connection voltage Vs, the wire feed speed Vf and the welding speed Vw. However, in the above-described embodiment and its modification, the setting file 22D may further describe the setting values of the wire feed load Ld and the pulse frequency fp. At this time, in the measurement file 22E, the measured values of the wire feed load Ld and the pulse frequency fp are described. The wire feed load Ld is a physical quantity calculated from the motor current of the wire feed device 14. The pulse frequency fp is the number of pulses per second during welding by the pulse welding method. In this modification B, since the wire feed load Ld or the pulse frequency fp is used as a measurement value for determining welding failure, the welding failure can be determined even in a welding state other than the stable state. In addition, in the present modification B, since a measuring section for measuring the wire feed load Ld or the pulse frequency fp is provided, and the value measured by the measuring section is used for the determination of welding failure, the welding is not performed even when it is stable. In the state, it is possible to determine the welding defect.

[變形例C] [Variant C]

在上述實施方式中,閾值檔案22F保存於機器人控制裝置20的儲存部24內。但是,在上述實施方式及其變形例中,閾值檔案22F例如亦可以保存於與機器人控制裝置20用網路連接的別的硬碟等的儲存部內。但是,在此情況下,機器人控制裝置20將閾值檔案22F保存於用網路連接的別的硬碟等的儲存部內,或從用網路連接的別的硬碟等的儲存部內讀出閾值檔案22F。 In the above embodiment, the threshold file 22F is stored in the storage unit 24 of the robot control device 20. However, in the above-described embodiment and its modification, the threshold file 22F may be stored in a storage unit such as another hard disk connected to the robot controller 20 via a network. However, in this case, the robot control device 20 stores the threshold file 22F in a storage unit such as another hard disk connected via the network, or reads the threshold file from the storage unit such as another hard disk connected via the network 22F.

[變形例D] [Modification D]

在上述實施方式中,控制部21在偵測焊接區間WS的結束次數達到既定次數(N次)的情況下,生成時刻tx之上限值Pupper(x)和下限值Plower(x)。但是,在上述實施方式及其變形例中,亦可以在焊接區間WS的結束次數達到既定次數(N次)時,用戶對機器人控制裝置20(控制部21)發出生 成時刻tx之上限值Pupper(x)和下限值Plower(x)的指示。 In the above-described embodiment, the control unit 21 generates the upper limit value P upper (x) and the lower limit value P lower (x) at the time tx when the detection frequency of the end of the welding section WS reaches a predetermined number (N times). . However, in the above-described embodiment and its modification, the user may issue the upper limit value P of the generation time tx to the robot control device 20 (control unit 21) when the number of times the welding section WS ends reaches a predetermined number (N times) The indication of upper (x) and lower limit P lower (x).

本申請案以2015年8月21日於日本專利局申請之日本專利申請案2015-164131為基礎主張優先權,且參照該案之全部內容以引用之方式併入本文中。 This application claims priority based on the Japanese Patent Application 2015-164131 filed with the Japan Patent Office on August 21, 2015, and is incorporated by reference with reference to the entire contents of the case.

若為所屬技術領域中具有通常知識者,可根據設計要件及其他因素想到各種修改,組合,子組合及變更,但皆應包含於附加之申請專利範圍及其均等物之範疇內。 Those with ordinary knowledge in the technical field can think of various modifications, combinations, sub-combinations and changes based on design requirements and other factors, but they should be included in the scope of the additional patent application and their equivalents.

Claims (9)

一種電弧焊接品質判定系統,其中,具備:設定部,將在共通的焊接條件設定下反覆進行焊接時得到的複數個第1測量值作為母集團時,在前述母集團中,於每個第一時刻,根據前述第一時刻或包含前述第一時刻的複數個時刻之最大值設定前述第一時刻之上限值,並且根據前述第一時刻或包含前述第一時刻的複數個時刻之最小值設定前述第一時刻之下限值;以及判定部,在前述焊接條件設定下焊接時得到的第2測量值處於前述上限值與前述下限值的範圍內時,判定為沒有焊接不良,而在前述測量值處於前述範圍之外時,判定為有焊接不良。 An arc welding quality judging system, comprising: a setting unit that uses a plurality of first measured values obtained when welding is repeated under common welding condition settings as a parent group, in the parent group, each first At the time, the upper limit value of the first time is set according to the maximum value of the first time or the plurality of times including the first time, and the minimum value is set based on the minimum value of the first time or the plurality of times including the first time The lower limit at the first time; and the determination unit, when the second measurement value obtained during welding under the welding condition setting is within the range of the upper limit and the lower limit, it is determined that there is no welding defect, and the When the aforementioned measured value is outside the aforementioned range, it is determined that the welding is defective. 一種電弧焊接品質判定系統,其中,具備:設定部,將在共通的焊接條件設定下反覆進行焊接時得到的複數個第1測量值作為母集團時,在前述母集團中,於每個第一時刻,根據前述第一時刻或包含前述第一時刻的複數個時刻的標準差設定前述第一時刻之上限值和下限值;以及判定部,在前述焊接條件設定下焊接時得到的第2測量值處於前述上限值與前述下限值的範圍內時,判定為沒有焊接不良,而在前述測量值處於前述範圍之外時,判定為有焊接不良。 An arc welding quality judging system, comprising: a setting unit that uses a plurality of first measured values obtained when welding is repeated under common welding condition settings as a parent group, in the parent group, each first At the time, the upper limit and the lower limit of the first time are set according to the standard deviation of the first time or a plurality of times including the first time; and the determination unit obtains the second value obtained by welding under the welding condition setting When the measured value is within the range of the upper limit and the lower limit, it is determined that there is no welding defect, and when the measured value is outside the range, it is determined that there is welding defect. 如申請專利範圍第2項所述之電弧焊接品質判定系統,其中,前述設定部在前述母集團中,於每個前述第一時刻,將前述第一時刻的平均值加上前述第一時刻或包含前述第一時刻的複數個時刻的標準差的正整數倍的值,設定為前述第一時刻之上限值, 前述設定部在前述母集團中,於每個前述第一時刻,將前述第一時刻的平均值減去前述第一時刻或包含前述第一時刻的複數個時刻的標準差的正整數倍的值,設定為前述第一時刻之下限值。 The arc welding quality determination system as described in item 2 of the patent application scope, wherein the setting unit adds the average value of the first time to the first time or The value including the positive integer multiple of the standard deviation of the plural times at the first time is set as the upper limit at the first time, In the parent group, at each first time, the setting unit subtracts the average value of the first time or a positive integer multiple of the standard deviation of the first time or a plurality of times including the first time , Set to the lower limit value at the first moment. 如申請專利範圍第1項所述之電弧焊接品質判定系統,其中,複數個前述第1測量值係焊接電流、焊接電壓、送絲速度、焊接速度、送絲負荷、短路頻率或脈衝頻率。 The arc welding quality judgment system as described in item 1 of the patent application range, wherein the plurality of first measured values are welding current, welding voltage, wire feed speed, welding speed, wire feed load, short circuit frequency or pulse frequency. 如申請專利範圍第2項所述之電弧焊接品質判定系統,其中,複數個前述第1測量值係焊接電流、焊接電壓、送絲速度、焊接速度、送絲負荷、短路頻率或脈衝頻率。 The arc welding quality judgment system as described in item 2 of the patent application range, wherein the plurality of the first measured values are welding current, welding voltage, wire feed speed, welding speed, wire feed load, short circuit frequency or pulse frequency. 如申請專利範圍第4項所述之電弧焊接品質判定系統,其中,進一步具備測量前述焊接電流、前述焊接電壓、前述送絲速度、前述焊接速度、前述送絲負荷、前述短路頻率或前述脈衝頻率的測量部。 The arc welding quality judgment system according to item 4 of the patent application scope, further comprising measuring the welding current, the welding voltage, the wire feed speed, the welding speed, the wire feed load, the short circuit frequency or the pulse frequency Measurement department. 如申請專利範圍第5項所述之電弧焊接品質判定系統,其中,進一步具備測量前述焊接電流、前述焊接電壓、前述送絲速度、前述焊接速度、前述送絲負荷、前述短路頻率或前述脈衝頻率的測量部。 The arc welding quality judgment system according to item 5 of the patent application scope, further comprising measuring the welding current, the welding voltage, the wire feed speed, the welding speed, the wire feed load, the short circuit frequency or the pulse frequency Measurement department. 如申請專利範圍第1項所述之電弧焊接品質判定系統,其中,進一步具備將前述第2測量值與焊接距離的關係、以及前述上限值和前述下限值一起用圖形顯示的顯示部。 The arc welding quality determination system according to item 1 of the patent application scope further includes a display unit that graphically displays the relationship between the second measured value and the welding distance, and the upper limit value and the lower limit value. 如申請專利範圍第2項所述之電弧焊接品質判定系統,其中,進一步具備將前述第2測量值與焊接距離的關係、以及前述上限值和前述下限值一起用圖形顯示的顯示部。 The arc welding quality determination system according to item 2 of the patent application scope further includes a display unit that graphically displays the relationship between the second measured value and the welding distance, and the upper limit value and the lower limit value.
TW105126332A 2015-08-21 2016-08-18 Arc welding quality determination system TWI689369B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP2015-164131 2015-08-21
JP2015164131A JP6636284B2 (en) 2015-08-21 2015-08-21 Arc welding quality judgment system

Publications (2)

Publication Number Publication Date
TW201722598A TW201722598A (en) 2017-07-01
TWI689369B true TWI689369B (en) 2020-04-01

Family

ID=58100115

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105126332A TWI689369B (en) 2015-08-21 2016-08-18 Arc welding quality determination system

Country Status (5)

Country Link
JP (1) JP6636284B2 (en)
KR (1) KR102479865B1 (en)
CN (1) CN107921587B (en)
TW (1) TWI689369B (en)
WO (1) WO2017033832A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107414251B (en) * 2017-09-15 2019-06-04 唐山松下产业机器有限公司 Welding equipment, arcing determination processing method and device
JP6636004B2 (en) 2017-11-28 2020-01-29 株式会社ダイヘン Arc start adjusting device, welding system, arc start adjusting method, and computer program
KR102328306B1 (en) * 2017-12-27 2021-11-17 대우조선해양 주식회사 Method for estimating seam weld penetration depth
KR102400012B1 (en) * 2017-12-28 2022-05-20 대우조선해양 주식회사 Method for diagnosing seam weld quality
JP6599505B2 (en) * 2018-04-27 2019-10-30 株式会社ダイヘン Arc end adjusting device, welding system, arc end adjusting method, and computer program
JP7026576B2 (en) * 2018-05-28 2022-02-28 株式会社神戸製鋼所 Welding condition determination device, welding condition determination method, and program
JP7296792B2 (en) * 2019-06-19 2023-06-23 株式会社ダイヘン Controllers, programs, and robot control systems
JP7306898B2 (en) * 2019-07-09 2023-07-11 株式会社ダイヘン Controllers, programs, and robot control systems
JP7274990B2 (en) * 2019-09-06 2023-05-17 三菱重工業株式会社 Welding performance automatic collection method and system
WO2021111545A1 (en) * 2019-12-04 2021-06-10 東芝三菱電機産業システム株式会社 Welding abnormality diagnosis device
CN110883403B (en) * 2019-12-24 2020-10-30 华中科技大学 Welding bead modeling method, device and system for electric arc additive manufacturing
KR102181432B1 (en) * 2020-04-22 2020-11-24 김한수 Intelligent robot control system
CN111843272B (en) * 2020-07-10 2022-02-22 中车工业研究院有限公司 Quality discrimination method and device based on welding process information fusion
KR102335238B1 (en) * 2020-08-07 2021-12-06 백경봉 System for forming artificial intelligence-based metal products
JP7156421B2 (en) * 2021-02-16 2022-10-19 株式会社安川電機 WELDING SYSTEM, WELDING QUALITY EVALUATION METHOD, AND WELDING PRODUCTION METHOD
JP2022177565A (en) * 2021-05-18 2022-12-01 トヨタ自動車株式会社 Arc stud welding device and arc stud welding method
JP7326401B2 (en) * 2021-10-28 2023-08-15 株式会社安川電機 Anomaly estimation system, anomaly estimation method, and program
WO2023119470A1 (en) * 2021-12-22 2023-06-29 川崎重工業株式会社 Robot system and robot
CN115351456A (en) * 2022-08-25 2022-11-18 沈阳奇昊汽车配件有限公司 Weld joint welding quality judgment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04237565A (en) * 1991-01-22 1992-08-26 Matsushita Electric Ind Co Ltd Monitor device for arc welding machine
JP2000225466A (en) * 1999-02-04 2000-08-15 Ishikawajima Harima Heavy Ind Co Ltd Method for measuring welding temperature
JP2003117657A (en) * 2001-10-15 2003-04-23 Daido Steel Co Ltd Method for evaluating arc welding and welding equipment
JP2007253221A (en) * 2006-03-24 2007-10-04 Tokyu Car Corp Laser welding method
JP4237565B2 (en) 2003-07-14 2009-03-11 株式会社トクヤマ Method for producing optically active secondary alcohol compound

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH677891A5 (en) * 1988-12-16 1991-07-15 Elpatronic Ag
JPH05329645A (en) * 1992-06-02 1993-12-14 Nachi Fujikoshi Corp Arc sensor monitoring device and its using method
AT504197B1 (en) * 2006-09-08 2010-01-15 Fronius Int Gmbh WELDING METHOD FOR CARRYING OUT A WELDING PROCESS
KR100760655B1 (en) * 2007-07-09 2007-09-20 강성관 Welding quality monitoring method and welding quality monitoring apparatus
US8742280B2 (en) * 2010-01-07 2014-06-03 Illinois Tool Works Inc. Systems and methods for statistically analyzing welding operations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04237565A (en) * 1991-01-22 1992-08-26 Matsushita Electric Ind Co Ltd Monitor device for arc welding machine
JP2000225466A (en) * 1999-02-04 2000-08-15 Ishikawajima Harima Heavy Ind Co Ltd Method for measuring welding temperature
JP2003117657A (en) * 2001-10-15 2003-04-23 Daido Steel Co Ltd Method for evaluating arc welding and welding equipment
JP4237565B2 (en) 2003-07-14 2009-03-11 株式会社トクヤマ Method for producing optically active secondary alcohol compound
JP2007253221A (en) * 2006-03-24 2007-10-04 Tokyu Car Corp Laser welding method

Also Published As

Publication number Publication date
CN107921587B (en) 2020-11-10
TW201722598A (en) 2017-07-01
CN107921587A (en) 2018-04-17
KR102479865B1 (en) 2022-12-20
JP2017039160A (en) 2017-02-23
KR20180043255A (en) 2018-04-27
WO2017033832A1 (en) 2017-03-02
JP6636284B2 (en) 2020-01-29

Similar Documents

Publication Publication Date Title
TWI689369B (en) Arc welding quality determination system
CN109834367B (en) System and method for torch oscillation
JP6240133B2 (en) Spot welding system that measures the position of the spot where welding is performed
CN106457468A (en) Hybrid laser welding system and method using two robots
KR102202535B1 (en) Welding condition judgment system and welding condition judgment method
CN110662620B (en) Method and device for marking the surface of a metal workpiece using a welding wire electrode
JP2013010119A (en) Arc welding monitor device
JP2017185529A (en) Consumption article monitoring device
JP4780901B2 (en) Method of monitoring welding operation in stud welding process and apparatus for executing the method
JP6546407B2 (en) Arc welding monitoring system
JP2001212671A (en) Automatic welding machine
CN111132788A (en) Method and apparatus for providing a reference distance signal for controlling the position of a welding gun
JP2017030047A (en) Welding monitoring device and welding robot system
JP6672551B2 (en) Display device and display method for arc welding
WO2015198816A1 (en) Arc welding quality determination system
JP2017226000A (en) Cable monitoring device and welding robot system
JP2017064720A (en) Replacement information output device
JPH09262670A (en) Status indicating method of welding equipment
CN109562477B (en) Welding circuit communication device for compensating welding voltage through communication on welding circuit
JP7296791B2 (en) Controllers, programs, and robot control systems
JP7306898B2 (en) Controllers, programs, and robot control systems
JP7296792B2 (en) Controllers, programs, and robot control systems
KR101267687B1 (en) Method of adjusting distacne for mig welding touch
US20220161348A1 (en) Welding method and assembly with measurement value synchronization
CN118251285A (en) Welding apparatus, robotic welding system and method for feeding wire electrode with high precision protrusion setting