TWI689162B - Quasi-resonant flyback converter power supply system - Google Patents

Quasi-resonant flyback converter power supply system Download PDF

Info

Publication number
TWI689162B
TWI689162B TW107116336A TW107116336A TWI689162B TW I689162 B TWI689162 B TW I689162B TW 107116336 A TW107116336 A TW 107116336A TW 107116336 A TW107116336 A TW 107116336A TW I689162 B TWI689162 B TW I689162B
Authority
TW
Taiwan
Prior art keywords
frequency
signal
valley
voltage
power switch
Prior art date
Application number
TW107116336A
Other languages
Chinese (zh)
Other versions
TW201944712A (en
Inventor
褚海
林元
Original Assignee
大陸商昂寶電子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商昂寶電子(上海)有限公司 filed Critical 大陸商昂寶電子(上海)有限公司
Publication of TW201944712A publication Critical patent/TW201944712A/en
Application granted granted Critical
Publication of TWI689162B publication Critical patent/TWI689162B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

公開了一種準諧振返馳變換器電源系統,包括變壓器、功率開關、以及包括抖頻模組和谷底控制模組的準諧振控制器。抖頻模組通過調節流過變壓器的初級繞組的峰值電流來調節功率開關的開關頻率,或者通過在功率開關的汲極電壓的諧振谷底添加提前量或者延遲量來調節功率開關的開關頻率;谷底控制模組通過對功率開關的開關頻率及該頻率與第一參考頻率、第二參考頻率的大小關係進行運算、處理後得到增加谷底信號和減少谷底信號,並根據增加谷底信號和減少谷底信號控制功率開關在其汲極電壓的預定諧振谷底從關斷狀態切換到導通狀態。 A quasi-resonant flyback converter power supply system is disclosed, which includes a transformer, a power switch, and a quasi-resonant controller including a frequency-jittering module and a valley control module. Frequency dithering module adjusts the switching frequency of the power switch by adjusting the peak current flowing through the primary winding of the transformer, or by adding an advance or delay to the resonance valley of the drain voltage of the power switch to adjust the switching frequency of the power switch; The control module calculates the switching frequency of the power switch and the relationship between the frequency and the first reference frequency and the second reference frequency, and obtains the increased valley signal and the reduced valley signal after the processing, and controls according to the increased valley signal and the reduced valley signal The power switch switches from an off state to an on state at a predetermined resonance valley bottom of its drain voltage.

Description

準諧振返馳變換器電源系統 Quasi-resonant flyback converter power supply system

本發明涉及電路領域,更具體地涉及一種準諧振返馳變換器電源系統。 The present invention relates to the field of circuits, and more particularly to a quasi-resonant flyback converter power supply system.

第1圖示出了傳統的準諧振返馳變換器電源系統的原理圖。第2圖示出了第1圖所示的系統中的功率開關S1的汲極電壓Vd、閘極電壓Vg、以及流過變壓器T的初級繞組的電流Ip的波形圖,其中,Ton是功率開關S1的導通時間,Toff是功率開關S1的關斷時間。如第2圖所示,在功率開關S1處於關斷狀態時,當變壓器T的主電感Lp退磁結束後,變壓器T的主電感Lp和功率開關S1的寄生電容Cp自由諧振。此時,第1圖所示的系統中的準諧振控制器可以在功率開關S1的汲極電壓的諧振谷底控制功率開關S1從關斷狀態切換到導通狀態,以降低第1圖所示的系統中的開關損耗和電磁干擾(Electromagnetic Interference,EMI)。由變壓器T的主電感Lp和功率開關S1的寄生電容Cp構成的LC諧振腔的諧振週期相對於功率開關S1的開關週期較小,所以第1圖所示的系統近似於工作在臨界導通模式。 Figure 1 shows a schematic diagram of a conventional quasi-resonant flyback converter power supply system. FIG. 2 shows a waveform diagram of the drain voltage Vd, the gate voltage Vg, and the current Ip flowing through the primary winding of the transformer T in the system shown in FIG. 1, where Ton is the power switch The turn-on time of S1, Toff is the turn-off time of the power switch S1. As shown in FIG. 2, when the power switch S1 is in an off state, when the main inductance Lp of the transformer T is demagnetized, the main inductance Lp of the transformer T and the parasitic capacitance Cp of the power switch S1 resonate freely. At this time, the quasi-resonant controller in the system shown in FIG. 1 can control the power switch S1 to switch from the off state to the on state at the resonance valley of the drain voltage of the power switch S1 to reduce the system shown in FIG. 1 Switching losses and electromagnetic interference (Electromagnetic Interference, EMI). The resonant period of the LC resonator formed by the main inductance Lp of the transformer T and the parasitic capacitance Cp of the power switch S1 is smaller than the switching period of the power switch S1, so the system shown in FIG. 1 is approximately operating in the critical conduction mode.

在第1圖所示的系統中,系統輸出功率和系統工作頻率(即,功率開關S1的開關頻率)可以表示為公式(1)和公式(2):

Figure 107116336-A0305-02-0003-1
In the system shown in Figure 1, the system output power and the system operating frequency (that is, the switching frequency of the power switch S1) can be expressed as formula (1) and formula (2):
Figure 107116336-A0305-02-0003-1

Figure 107116336-A0305-02-0003-2
Figure 107116336-A0305-02-0003-2

在公式(1)和公式(2)中,POUT是系統輸出功率,f s 是系統工作頻率,η是系統功率轉換效率,VOUT是系統輸出電壓(即,變壓器T的次級輸出電壓),Vin是系統輸入電壓(即,線輸入整流電壓),IPK是流過變壓器T的初級繞組的峰值電流(即,流過功率開關S1的峰值電流),N是變壓器T的初級繞組與次級繞組的匝數比,VF是變壓器T的次級側的整流二極體D1的壓降,D是功率開關S1的導通時間占空比。 In formula (1) and formula (2), P OUT is the system output power, f s is the system operating frequency, η is the system power conversion efficiency, and V OUT is the system output voltage (ie, the secondary output voltage of the transformer T) , V in is the system input voltage (ie, line input rectified voltage), I PK is the peak current flowing through the primary winding of the transformer T (ie, the peak current flowing through the power switch S1), and N is the primary winding of the transformer T and The turns ratio of the secondary winding, V F is the voltage drop of the rectifier diode D1 on the secondary side of the transformer T, and D is the on-time duty cycle of the power switch S1.

從公式(1)和公式(2)可知,在系統輸出功率和系統輸入電壓不變的情況下,系統工作頻率基本不變。所以,第1圖所示的系統工作在臨界導通模式時的EMI在低頻段會比較差。 It can be seen from formula (1) and formula (2) that the system operating frequency is basically unchanged when the system output power and system input voltage are unchanged. Therefore, the EMI when the system shown in Figure 1 works in the critical conduction mode will be worse in the low frequency band.

第3圖示出了第1圖所示的系統中的準諧振控制器的原理圖。如第3圖所示,準諧振控制器的FB端子接收誤差放大與隔離模組基於系統輸出電壓或系統輸出電流生成的、用於表徵系統輸出電壓或系統輸出電流的輸出電壓或電流回饋信號;準諧振控制器的CS端子接收流過變壓器T的初級繞組的電流在電流感測電阻Rsense上產生的、用於表徵流過變壓器T的初級繞組的電流的變壓器初級繞組電流表徵信號;脈寬調變(Pulse Width Modulation,PWM)比較器基於輸出電壓或電流表徵信號和變壓器初級繞組電流表徵信號控制功率開關S1的導通與關斷,從而控制系統輸出電壓或者系統輸出電流。 FIG. 3 shows a schematic diagram of the quasi-resonant controller in the system shown in FIG. 1. As shown in Figure 3, the FB terminal of the quasi-resonant controller receives the output voltage or current feedback signal generated by the error amplification and isolation module based on the system output voltage or system output current and used to characterize the system output voltage or system output current; The CS terminal of the quasi-resonant controller receives the transformer primary winding current characterization signal generated by the current flowing through the primary winding of the transformer T on the current sensing resistor Rsense to characterize the current flowing through the primary winding of the transformer T; A Pulse Width Modulation (PWM) comparator controls the power switch S1 on and off based on the output voltage or current characterization signal and the transformer primary winding current characterization signal, thereby controlling the system output voltage or system output current.

為了改善第1圖所示的系統工作在臨界導通模式時的EMI,系統工作頻率不能太集中,因此需要實現系統工作頻率的抖動。這裡,系統工作頻率也可以表示為公式(3):

Figure 107116336-A0305-02-0004-3
In order to improve the EMI when the system shown in Figure 1 works in the critical conduction mode, the system operating frequency cannot be too concentrated, so it is necessary to realize the jitter of the system operating frequency. Here, the system operating frequency can also be expressed as formula (3):
Figure 107116336-A0305-02-0004-3

在公式(3)中,系統輸入電壓Vin、變壓器T的初級繞組與次級繞組的匝數比N、以及變壓器T的次級側的整流二極體D1的壓降VF均為系統參數。從公式(3)可知,系統工作頻率與流過變壓器T的初級繞組的峰值電流成反比。因此,可以通過對流過變壓器T的初繞組的峰值電流進行擾動來實現系統工作頻率的抖動。 In equation (3), the system input voltage V in , the turns ratio N of the primary and secondary windings of the transformer T, and the voltage drop V F of the rectifier diode D1 on the secondary side of the transformer T are system parameters . From formula (3), the system operating frequency is inversely proportional to the peak current flowing through the primary winding of the transformer T. Therefore, the system operating frequency can be dithered by disturbing the peak current flowing through the primary winding of the transformer T.

第4圖示出了在第1圖所示的系統中實現三角波頻率抖動方案時,流過變壓器T的一次繞組的峰值電流IPK和系統工作頻率f s 的 波形圖。第5圖示出了在第1圖所示的系統中實現偽隨機頻率抖動方案時,流過變壓器T的初級繞組的峰值電流IPK和系統工作頻率f s 的波形圖。 FIG. 4 shows a waveform diagram of the peak current I PK flowing through the primary winding of the transformer T and the system operating frequency f s when the triangular wave frequency dithering scheme is implemented in the system shown in FIG. 1. FIG. 5 shows a waveform diagram of the peak current I PK flowing through the primary winding of the transformer T and the system operating frequency f s when the pseudo-random frequency jitter scheme is implemented in the system shown in FIG. 1.

如第4圖和第5圖所示,系統工作頻率f s 與流過變壓器T的初級繞組的峰值電流IPK成反比關係。當峰值電流IPK的抖動頻率遠大於系統的環路頻寬時,可以通過對流過變壓器T的初級繞組的峰值電流IPK的調節來實現對系統工作頻率f s 的調節,其中,流過變壓器T的初級繞組的峰值電流IPK的週期性變化可以導致系統工作頻率的週期性變化。 As shown in Figures 4 and 5, the system operating frequency f s is inversely proportional to the peak current I PK flowing through the primary winding of the transformer T. When the jitter frequency of the peak current I PK is much greater than the loop bandwidth of the system, the adjustment of the system operating frequency f s can be achieved by adjusting the peak current I PK flowing through the primary winding of the transformer T, where the flow through the transformer The periodic change of the peak current I PK of the primary winding of T can cause the periodic change of the operating frequency of the system.

除了通過對流過變壓器T的初級繞組的峰值電流IPK進行擾動來實現系統工作頻率的抖動外,也可以通過在環路內加入一定幅度的、變化的延遲來實現系統工作頻率f s 的抖動。例如,可以讓功率開關S1從關斷狀態切換到導通狀態的時刻在功率開關S1的汲極電壓的諧振谷底附近的一小段時間範圍內變化。第6圖示出了在第1圖所示的系統中實現控制延遲頻率抖動方案時,功率開關S1的汲極電壓Vd和系統工作頻率f s 的波形圖。相比於控制功率開關S1固定在汲極電壓Vd的諧振谷底導通,第6圖所示的控制延遲頻率抖動方案會在一定程度上降低第1圖所示的系統的效率。但是,只要控制好延遲的幅度,就可以把第1圖所示的系統的效率損失控制在可以接受的範圍內。 In addition to realizing the jitter of the system operating frequency by disturbing the peak current I PK flowing through the primary winding of the transformer T, the jitter of the system operating frequency f s can also be achieved by adding a certain amplitude and varying delay in the loop. For example, the moment when the power switch S1 is switched from the off state to the on state can be changed within a short period of time near the resonance valley bottom of the drain voltage of the power switch S1. FIG. 6 shows a waveform diagram of the drain voltage Vd of the power switch S1 and the system operating frequency f s when the control delay frequency jitter scheme is implemented in the system shown in FIG. 1. The control delay frequency dithering scheme shown in FIG. 6 will reduce the efficiency of the system shown in FIG. 1 to a certain extent compared to turning on the resonance valley bottom where the control power switch S1 is fixed at the drain voltage Vd. However, as long as the delay amplitude is controlled, the efficiency loss of the system shown in Figure 1 can be controlled within an acceptable range.

在很多應用場景中,準諧振返馳變換器電源系統的工作頻率會被限制在一定範圍以內。對於存在抖頻的準諧振返馳變換器電源系統,當系統工作頻率接近設定的上限頻率或者下限頻率時,疊加了抖頻後的系統工作頻率有可能落在預定的頻率區間以外,從而可能導致其中的功率開關從關斷狀態切換到導通狀態的時刻在其汲極電壓的若干相鄰的諧振谷底之間反復跳動。這種反復跳動會導致系統輸出電壓或電流以及系統輸出電壓或電流回饋信號出現波動,從而導致系統輸出紋波變大。此外,系統工作頻率出現巨大的波動時,落在音訊區的頻率分量也會變多,從而使得系統噪音指標也會大大惡化。 In many application scenarios, the operating frequency of the quasi-resonant flyback converter power system will be limited to a certain range. For a quasi-resonant flyback converter power supply system with frequency jitter, when the system operating frequency is close to the set upper or lower frequency limit, the system operating frequency after superimposing the frequency jitter may fall outside the predetermined frequency interval, which may result in The moment when the power switch is switched from the off state to the on state repeatedly jumps between several adjacent resonance valley bottoms of its drain voltage. This repeated bounce will cause the system output voltage or current and the system output voltage or current feedback signal to fluctuate, resulting in a larger system output ripple. In addition, when the system's operating frequency fluctuates greatly, the frequency components that fall in the audio area will also increase, which will greatly deteriorate the system noise index.

鑒於以上所述一個或多個問題,本發明提供了一種結合 了頻率抖動和谷底控制的準諧振返馳變換器電源系統。 In view of the above one or more problems, the present invention provides a combination The power system of quasi-resonant flyback converter with frequency jitter and valley control is introduced.

根據本發明實施例的準諧振返馳變換器電源系統,包括變壓器、功率開關、以及包括抖頻模組和谷底控制模組的準諧振控制器。抖頻模組通過調節流過變壓器的初級繞組的峰值電流來調節功率開關的開關頻率,或者通過在功率開關的汲極電壓的諧振谷底添加提前量或者延遲量來調節功率開關的開關頻率;谷底控制模組通過對功率開關的開關頻率進行頻率/電壓轉換得到反映功率開關的開關頻率的第一電壓信號,通過對第一電壓信號進行積分或濾波處理濾除其中的毛刺或高頻擾動得到第二電壓信號,通過將第二電壓信號分別與反映第一參考頻率的第一參考電壓和反映第二參考頻率的第二參考電壓進行比較生成增加谷底信號和減少谷底信號,並根據增加谷底信號和減少谷底信號控制功率開關在其汲極電壓的預定諧振谷底從關斷狀態切換到導通狀態,或者通過將功率開關的開關頻率分別與第一參考頻率和第二參考頻率進行比較生成第一頻率比較器輸出信號和第二頻率比較器輸出信號,通過分別對第一頻率比較器輸出信號和第二頻率比較器輸出信號進行積分或濾波處理,濾除第一頻率比較器輸出信號和第二頻率比較器輸出信號中的毛刺或高頻擾動,得到增加谷底信號和減少谷底信號,並根據增加谷底信號和減少谷底信號控制功率開關在其汲極電壓的預定諧振谷底從關斷狀態切換到導通狀態。 A quasi-resonant flyback converter power supply system according to an embodiment of the present invention includes a transformer, a power switch, and a quasi-resonant controller including a frequency-jittering module and a valley control module. Frequency dithering module adjusts the switching frequency of the power switch by adjusting the peak current flowing through the primary winding of the transformer, or by adding an advance or delay to the resonance valley of the drain voltage of the power switch to adjust the switching frequency of the power switch; The control module obtains the first voltage signal reflecting the switching frequency of the power switch by performing frequency/voltage conversion on the switching frequency of the power switch, and the first voltage signal is integrated or filtered to remove glitches or high-frequency disturbances to obtain the first Two voltage signals, by comparing the second voltage signal with the first reference voltage reflecting the first reference frequency and the second reference voltage reflecting the second reference frequency to generate an increased valley signal and a reduced valley signal, and according to the increased valley signal and Reduce the valley signal to control the power switch to switch from the off state to the on state at the predetermined resonance valley of its drain voltage, or generate the first frequency comparison by comparing the switching frequency of the power switch with the first reference frequency and the second reference frequency, respectively Output signal and second frequency comparator output signal, by integrating or filtering the first frequency comparator output signal and the second frequency comparator output signal, the first frequency comparator output signal and the second frequency comparison are filtered out The glitches or high-frequency disturbances in the output signal of the converter obtain the increased valley signal and the reduced valley signal, and control the power switch to switch from the off state to the on state at the predetermined resonance valley of its drain voltage according to the increased valley signal and the reduced valley signal.

根據本發明實施例的準諧振返馳變換器電源系統可以解決傳統的準諧振返馳變換器電源系統的EMI問題,同時也避免了在存在頻率上下限的準諧振返馳變換器電源系統中因為引入抖頻而導致的系統輸出紋波及雜訊變大的問題。 The quasi-resonant flyback converter power supply system according to the embodiment of the present invention can solve the EMI problem of the conventional quasi-resonant flyback converter power supply system, and also avoids the The problem of increased system output ripple and noise caused by the introduction of frequency jitter.

S1:功率開關 S1: Power switch

Vd:汲極電壓 Vd: drain voltage

Vg:閘極電壓 Vg: gate voltage

T:變壓器 T: transformer

Ip:一次繞組的電流 Ip: primary winding current

Ton:功率開關S1的導通時間 Ton: On-time of power switch S1

Toff:功率開關S1的關斷時間 Toff: off time of power switch S1

Lp:變壓器T的主電感 Lp: main inductance of transformer T

Cp:寄生電容 Cp: parasitic capacitance

POUT:系統輸出功率 P OUT : system output power

f s :系統工作頻率 f s : system operating frequency

η:系統功率轉換效率 η: system power conversion efficiency

IPK:峰值電流 I PK : peak current

FB、CS、dem:端子 FB, CS, dem: terminal

R0、R1R2、R3:電阻 R0, R1R2, R3: resistance

D:功率開關S1的導通時間占空比 D: On-time duty cycle of power switch S1

VF:變壓器T的次級側的整流二極體D1的壓降 V F : voltage drop of the rectifier diode D1 on the secondary side of the transformer T

Rsense:電阻 Rsense: resistance

N:匝數比 N: turns ratio

D1:整流二極體 D1: rectifier diode

Vf、Vavg:電壓信號 Vf, Vavg: voltage signal

fup、fdw:參考頻率 fup, fdw: reference frequency

Vup、Vdw:參考位準 Vup, Vdw: reference level

de-mag:退磁感測信號 de-mag: demagnetization sensing signal

Gate:驅動信號 Gate: drive signal

Q1、Q2:開關 Q1, Q2: switch

Ics_jitter:抖頻電流 I cs_jitter : jitter current

VFB_jitter:抖頻電壓 V FB_jitter : jitter frequency voltage

VOUT:系統輸出電壓 V OUT : system output voltage

Vin:系統輸入電壓 V in : system input voltage

S:RS鎖存器置位端 S: RS latch set terminal

Q:RS鎖存器輸出端 Q: RS latch output

R:RS鎖存器復位端 R: RS latch reset terminal

從下面結合附圖對本發明的具體實施方式的描述中可以更好地理解本發明,其中:第1圖示出了傳統的準諧振返馳變換器電源系統的原理圖;第2圖示出了第1圖所示的系統中的功率開關S1的汲極電壓Vd、閘極電壓Vg、以及流過變壓器T的一次繞組的電流Ip的波形圖;第3圖示出了第1圖所示的系統中的準諧振控制器的原理圖; 第4圖示出了在第1圖所示的系統中實現三角波頻率抖動方案時,流過變壓器T的初級繞組的峰值電流IPK和系統工作功頻率f s 的波形圖;第5出了在第1圖所示的系統中實現偽隨機頻率抖動方案時,流過變壓器T的初級繞組的峰值電流IPK和系統工作頻率f s 的波形圖;第6示出了在第1圖所示的系統中實現控制延遲頻率抖動方案時,功率開關S1的汲極電壓Vd和系統工作頻率f s 的波形圖;第7示出了可應用第1圖所示的系統的根據本發明實施例的準諧振控制器的原理圖;第8示出了可應用第1圖所示的系統的根據本發明另一實施例的準諧振控制器的原理圖;第9示出了可應用第1圖所示的系統的根據本發明又一實施例的準諧振控制器的原理圖;第10示出了可應用於第7圖至第9圖所示的準諧振控制器的根據本發明實施例的谷底控制模組的原理圖;第11示出了可應用於第7圖至第9圖所示的準諧振控制器的根據本發明另一實施例的谷底控制模組的原理圖;第12圖示出了第10圖所示的谷底控制模組的具體實現電路;第13圖示出了第11圖所示的谷底控制模組的具體實現電路;第14圖示出了第13圖所示的頻率比較器#1的原理圖;第15圖示出了第7圖所示的準諧振控制器的具體實現電路;第16圖示出了第8圖所示的準諧振控制器的具體實現電路;第17圖示出了第8圖所示的準諧振控制器的另一具體實現電路;第18圖示出了第8圖所示的準諧振控制器的又一具體實現電路;第19圖示出了第9圖所示的準諧振控制器的具體實現電路。 The present invention can be better understood from the following description of specific embodiments of the present invention with reference to the drawings, in which: FIG. 1 shows a schematic diagram of a conventional quasi-resonant flyback converter power supply system; FIG. 2 shows The waveform diagram of the drain voltage Vd, the gate voltage Vg, and the current Ip flowing through the primary winding of the transformer T in the system shown in FIG. 1; FIG. 3 shows the diagram shown in FIG. The schematic diagram of the quasi-resonant controller in the system; Figure 4 shows the peak current I PK flowing through the primary winding of the transformer T and the system operating power frequency when the triangular wave frequency jitter scheme is implemented in the system shown in Figure 1 The waveform diagram of f s ; the fifth is the waveform diagram of the peak current I PK flowing through the primary winding of the transformer T and the system operating frequency f s when the pseudo-random frequency jitter scheme is implemented in the system shown in FIG. 1; 6 shows the waveform diagram of the drain voltage Vd of the power switch S1 and the system operating frequency f s when the control delay frequency dithering scheme is implemented in the system shown in FIG. 1; FIG. 7 shows the application of FIG. 1 A schematic diagram of a quasi-resonant controller according to an embodiment of the present invention of the system shown; FIG. 8 shows a schematic diagram of a quasi-resonant controller according to another embodiment of the present invention to which the system shown in FIG. 1 can be applied; 9 shows a schematic diagram of a quasi-resonant controller according to yet another embodiment of the present invention to which the system shown in FIG. 1 can be applied; FIG. 10 shows a quasi-resonant controller that can be applied to FIGS. 7 to 9 The principle diagram of the valley bottom control module of the controller according to the embodiment of the present invention; FIG. 11 shows the valley bottom control according to another embodiment of the present invention applicable to the quasi-resonant controller shown in FIGS. 7 to 9 The schematic diagram of the module; Figure 12 shows the specific implementation circuit of the valley control module shown in Figure 10; Figure 13 shows the specific implementation circuit of the valley control module shown in Figure 11; The figure shows the principle diagram of the frequency comparator #1 shown in FIG. 13; FIG. 15 shows the specific realization circuit of the quasi-resonant controller shown in FIG. 7; FIG. 16 shows the figure 8 Figure 17 shows the specific implementation circuit of the quasi-resonant controller; Figure 17 shows another specific implementation circuit of the quasi-resonant controller shown in Figure 8; Figure 18 shows the quasi-resonant controller shown in Figure 8 Fig. 19 shows the specific realization circuit of the quasi-resonant controller shown in Fig. 9.

下面將詳細描述本發明的各個方面的特徵和示例性實施例。在下面的詳細描述中,提出了許多具體細節,以便提供對本發明的全面理解。但是,對於本領域技術人員來說很明顯的是,本發明可以在不需要這些具體細節中的一些細節的情況下實施。下面對實施例的描述僅僅是 為了通過示出本發明的示例來提供對本發明的更好的理解。本發明決不限於下面所提出的任何具體配置和演算法,而是在不脫離本發明的精神的前提下覆蓋了元素、部件和演算法的任何修改、替換和改進。在附圖和下面的描述中,沒有示出公知的結構和技術,以便避免對本發明造成不必要的模糊。 The features and exemplary embodiments of the various aspects of the invention will be described in detail below. In the following detailed description, many specific details are presented in order to provide a comprehensive understanding of the present invention. However, it is obvious to those skilled in the art that the present invention can be implemented without some of these specific details. The following description of the embodiment is only In order to provide a better understanding of the present invention by showing examples of the present invention. The present invention is by no means limited to any specific configurations and algorithms proposed below, but covers any modification, replacement, and improvement of elements, components, and algorithms without departing from the spirit of the present invention. In the drawings and the following description, well-known structures and techniques are not shown in order to avoid unnecessarily obscuring the present invention.

從以上所述可知,在傳統的準諧振返馳變換器電源系統中,當系統輸入電壓和系統輸出功率恒定時,系統工作頻率基本不變,因此存在傳導EMI在低頻段餘量不足的問題。在準諧振返馳變換器電源系統中添加隨機抖頻是一種改善系統電磁干擾的方法。但是,對於系統工作頻率有上限或者下限的準諧振返馳變換器電源系統,當工作在系統工作頻率的上限或者下限附近時,系統工作頻率的抖動會導致其中的功率開關從關斷狀態切換到導通狀態的時刻在其汲極電壓的某幾個相鄰的諧振谷底之間反復跳動,因此系統工作頻率會產生很大幅度的波動。系統工作頻率的巨大波動一方面會導致輸出電壓或者電流產生較大的紋波,另一方面也會在音訊段產生較多的頻率分量,從而使得系統具有較高的噪音水準。 As can be seen from the above, in the conventional quasi-resonant flyback converter power supply system, when the system input voltage and the system output power are constant, the system operating frequency is basically unchanged, so there is a problem of insufficient conducted EMI margin in the low frequency band. Adding random frequency jitter to the power system of quasi-resonant flyback converter is a method to improve the electromagnetic interference of the system. However, for a quasi-resonant flyback converter power supply system with an upper or lower operating frequency, when operating near the upper or lower operating frequency of the system, the jitter of the operating frequency of the system will cause the power switch to switch from the off state to the The moment of the on-state repeatedly jumps between several adjacent resonance valley bottoms of its drain voltage, so the system operating frequency will fluctuate greatly. Large fluctuations in the operating frequency of the system on the one hand will cause a larger ripple in the output voltage or current, on the other hand, it will also generate more frequency components in the audio section, thus making the system have a higher noise level.

在系統工作頻率受到限制的準諧振返馳變換器電源系統中,為了兼顧系統的EMI、雜訊和紋波指標,必須提供一種新的方法來同時實現抖頻、谷底鎖定、和對系統工作頻率的限制。 In the quasi-resonant flyback converter power supply system where the operating frequency of the system is limited, in order to take into account the EMI, noise and ripple indicators of the system, a new method must be provided to achieve frequency jitter, valley lock, and system operating frequency limits.

本發明提供了一種可應用於第1圖所示的系統的新穎的準諧振控制器,該準諧振控制器需要實現以下功能:1)實現系統工作頻率的抖動;2)當流過變壓器T1的初級繞組的峰值電流IPK存在高頻變化的擾動時,功率開關S1從關斷狀態切換到導通狀態的時刻不會由於該擾動而在其汲極電壓的諧振谷底之間切換;3)只有在系統輸入電壓或者系統輸出功率變化導致系統工作頻率超過上限頻率或者低於下限頻率時,才調整功率開關S1從關斷狀態切換到導通狀態的時刻所在的汲極電壓的諧振谷底,從而將系統平均工作頻率調整到上下限頻率之間。 The present invention provides a novel quasi-resonant controller applicable to the system shown in FIG. 1. The quasi-resonant controller needs to realize the following functions: 1) realizing jitter of the system operating frequency; 2) when flowing through the transformer T1 When the peak current I PK of the primary winding is disturbed by high-frequency changes, the moment when the power switch S1 is switched from the off state to the on state will not switch between the resonance valley bottoms of its drain voltages due to the disturbance; 3) only When the system input voltage or system output power changes to cause the system operating frequency to exceed the upper limit frequency or lower than the lower limit frequency, the resonance valley of the drain voltage at the moment when the power switch S1 is switched from the off state to the on state is adjusted, thereby averaging the system The operating frequency is adjusted between the upper and lower frequency limits.

第7圖示出了可應用第1圖所示的系統的根據本發明實施例的準諧振控制器的原理圖。相比於第3圖所示的準諧振控制器,根據本發明實施例的準諧振控制器同時包括谷底控制模組和抖頻模組。這裡, 抖頻模組通過在準諧振控制器的CS端子接收到的用於表徵流過變壓器T的初級繞組的電流Ip的變壓器初級繞組電流表徵信號上疊加一個變化的電壓來實現調節流過變壓器T的初級繞組的峰值電流IPK的功能,從而實現對系統工作頻率的調整。所疊加的電壓可以是連續變化的也可以是隨機變化的,並且其變化頻率要大於第1圖所示的系統的回饋環路的頻寬。 FIG. 7 shows a schematic diagram of a quasi-resonant controller according to an embodiment of the present invention to which the system shown in FIG. 1 can be applied. Compared to the quasi-resonant controller shown in FIG. 3, the quasi-resonant controller according to the embodiment of the present invention includes both a valley control module and a frequency-jittering module. Here, the frequency-jittering module implements regulation of the flow through the transformer by superimposing a varying voltage on the transformer primary winding current characterization signal received at the CS terminal of the quasi-resonant controller and characterizing the current Ip flowing through the primary winding of the transformer T The function of the peak current I PK of the primary winding of T, thereby realizing the adjustment of the system operating frequency. The superimposed voltage may be continuously changed or randomly changed, and the frequency of change is greater than the bandwidth of the feedback loop of the system shown in FIG. 1.

第8圖示出了可應用圖1所示的系統的根據本發明另一實施例的準諧振控制器的原理圖。類似地,相比於第3圖所示的準諧振控制器,根據本發明另一實施例的準諧振控制器同時包括谷底控制模組和抖頻模組。這裡,抖頻模組通過在準諧振控制器的FB端子接收到的用於表徵系統輸出電壓或系統輸出電流的輸出電壓或電流回饋信號上疊加偽隨機電壓來實現調節流過變壓器T的初級繞組的峰值電流IPK的功能,從而實現對系統工作頻率的調節。 FIG. 8 shows a schematic diagram of a quasi-resonant controller according to another embodiment of the present invention to which the system shown in FIG. 1 can be applied. Similarly, compared to the quasi-resonant controller shown in FIG. 3, a quasi-resonant controller according to another embodiment of the present invention includes both a valley control module and a frequency-jittering module. Here, the frequency-jittering module realizes the regulation of the primary winding flowing through the transformer T by superimposing a pseudo-random voltage on the output voltage or current feedback signal that is used to characterize the system output voltage or system output current received by the FB terminal of the quasi-resonant controller The function of the peak current I PK to achieve the adjustment of the system operating frequency.

第9圖示出了可應用圖1所示的系統的根據本發明又一實施例的準諧振控制器的原理圖。類似地,相比於第3圖所示的準諧振控制器,根據本發明又一實施例的準諧振控制器同時包括谷底控制模組和抖頻模組。這裡,抖頻模組通過在功率開關S1的汲極電壓的諧振谷底附近添加一個小的提前量或者一個小的延遲量(即,正或負延遲)來實現對系統工作頻率的調節。只要控制好所添加的延遲的大小,使得功率開關S1仍然在其汲極電壓的諧振谷底附近從關斷狀態切換到導通狀態,就可以把第1圖所示的系統的效率損失控制到足夠小的程度。 FIG. 9 shows a schematic diagram of a quasi-resonant controller according to yet another embodiment of the present invention to which the system shown in FIG. 1 can be applied. Similarly, compared to the quasi-resonant controller shown in FIG. 3, a quasi-resonant controller according to another embodiment of the present invention includes both a valley control module and a frequency-jittering module. Here, the frequency dithering module adjusts the operating frequency of the system by adding a small amount of advance or a small amount of delay (ie, positive or negative delay) near the resonance valley of the drain voltage of the power switch S1. As long as the magnitude of the added delay is controlled so that the power switch S1 still switches from the off state to the on state near the resonance valley bottom of its drain voltage, the efficiency loss of the system shown in Figure 1 can be controlled to be sufficiently small Degree.

第10圖示出了可應用於第7圖至第9圖所示的準諧振控制器的根據本發明實施例的谷底控制模組的原理圖。如第10圖所示,信號處理單元通過對系統工作頻率fs進行頻率/電壓轉換得到反映系統工作頻率fs的第一電壓信號,並通過對反映系統工作頻率fs的第一電壓信號進行積分或濾波處理,濾除系統工作頻率fs中的毛刺或高頻擾動得到第二電壓信號;電壓比較單元將第二電壓信號分別與反映第一參考頻率的第一參考電壓和反映第二參考頻率的第二參考電壓進行比較,確定是否改變當前鎖定的諧振谷底序號(例如,由鎖定到第二個諧振谷底變化到鎖定第三個諧振谷底或第一個諧振谷底),並輸出增加谷底信號(+1)和減少谷底信 號(-1);谷底選擇單元根據增加谷底信號和減少谷底信號而遮罩一定數目的諧振谷底,從而控制功率開關S1在其汲極電壓的預定諧振谷底從關斷狀態切換到導通狀態。 FIG. 10 shows a schematic diagram of a valley control module according to an embodiment of the present invention that can be applied to the quasi-resonant controller shown in FIGS. 7 to 9. As shown in FIG. 10, the signal processing unit obtains a first voltage signal reflecting the system operating frequency fs by performing frequency/voltage conversion on the system operating frequency fs, and integrating or filtering the first voltage signal reflecting the system operating frequency fs Processing, filtering out glitches or high-frequency disturbances in the operating frequency fs of the system to obtain a second voltage signal; the voltage comparing unit respectively compares the second voltage signal with the first reference voltage reflecting the first reference frequency and the second reflecting the second reference frequency Compare the reference voltage to determine whether to change the currently locked resonance valley bottom number (for example, from locking to the second resonance valley bottom to locking the third resonance valley bottom or the first resonance valley bottom), and output an increase valley signal (+1) And reduce valley letters No. (-1); the valley selection unit masks a certain number of resonance valleys according to increasing valley signals and decreasing valley signals, thereby controlling the power switch S1 to switch from an off state to an on state at a predetermined resonance valley of its drain voltage.

第11圖示出了可應用於第7圖至第9圖所示的準諧振控制器的根據本發明另一實施例的谷底控制模組的原理圖。如第11圖所示,頻率比較單元直接將系統工作頻率fs分別與第一參考頻率和第二參考頻率比較,生成第一頻率比較器輸出信號和第二頻率比較器輸出信號;信號處理單元通過類比電路或者數位電路分別對第一頻率比較器輸出信號和第二頻率比較器輸出信號進行積分、濾波或其它處理,濾除第一頻率比較器輸出信號和第二頻率比較器輸出信號中的毛刺或高頻擾動,得到增加谷底信號和減少谷底信號;谷底選擇單元根據的增加谷底信號和減少谷底信號控制功率開關S1在其汲極電壓的預定諧振谷底從關斷狀態切換到導通狀態。 FIG. 11 shows a schematic diagram of a valley control module according to another embodiment of the present invention that can be applied to the quasi-resonant controller shown in FIGS. 7 to 9. As shown in Figure 11, the frequency comparison unit directly compares the system operating frequency fs with the first reference frequency and the second reference frequency, respectively, to generate the first frequency comparator output signal and the second frequency comparator output signal; the signal processing unit passes The analog circuit or digital circuit respectively integrates, filters or otherwise processes the output signal of the first frequency comparator and the output signal of the second frequency comparator to filter out glitches in the output signal of the first frequency comparator and the output signal of the second frequency comparator Or high-frequency disturbances to obtain the increased valley signal and reduced valley signal; the valley selection unit controls the power switch S1 to switch from the off state to the on state at the predetermined resonance valley of its drain voltage according to the increased valley signal and the reduced valley signal.

在第10圖至第11圖所示的準諧振控制器中,當增加谷底信號(+1)有效時,谷底選擇單元會增加所遮罩的諧振谷底的數目;當減少谷底信號(-1)有效時,谷底選擇單元會減少所遮罩的諧振谷底的數目;當增加和減少谷底信號都無效時,谷底選擇單元會維持當前所遮罩的諧振谷底的數目不變。 In the quasi-resonant controller shown in Figs. 10 to 11, when the valley signal (+1) is effective, the valley selection unit will increase the number of resonant valleys that are masked; when the valley signal (-1) is reduced When effective, the valley selection unit will reduce the number of resonant valleys that are masked; when both increasing and decreasing valley signals are invalid, the valley selection unit will maintain the current number of resonant valleys that are masked unchanged.

第12圖示出了第10圖所示的谷底控制模組的具體實現電路。在第12圖所示的電路中:將能夠表徵系統工作頻率fs的、用於驅動功率開關S1的導通與關斷的驅動信號(Gate)進行頻率/電壓轉換,得到反映系統工作頻率fs的電壓信號Vf;對電壓信號Vf進行低通濾波,得到反映系統工作頻率fs的平均頻率的電壓信號Vavg;將電壓信號Vavg與分別對應兩個參考頻率fup和fdw的兩個參考位準Vup和Vdw進行比較,得到增加谷底信號(+1)和減少谷底信號(-1)。這裡,Vavg>Vup意味著系統工作頻率fs大於參考頻率fup,此時增加谷底信號(+1)有效;Vavg>Vdw意味著系統工作頻率fs小於參考頻率fdw,減少谷底信號(-1)有效。谷底選擇單元可以包括一個雙向計數器、一個累加器、以及若干個邏輯門,其中:雙向計數器接收增加谷底信號(+1)和減少谷底信號(- 1)增減或保持n-bit寄存器Q[(n-1):0];累加器利用從準諧振控制器的dem端子接收到的針對變壓器T的退磁感測信號de-mag的下降沿對當前開關週期中已經遮罩的諧振谷底的數目C[(n-1):0]進行計數。谷底選擇單元的工作原理是:在每個開關週期中,在功率開關S1從導通狀態切換到關斷狀態(即,在將驅動信號Gate拉低)後,累加器開始從零對退磁感測信號de-mag的下降沿計數,記錄在當前開關週期中已經遮罩的諧振谷底數;當C<Q時,遮罩退磁感測信號de-mag;當C>=Q時,不再遮罩退磁感測信號de-mag,在當前開關週期內的第Q[(n-1):0]+1個諧振谷底將功率開關S1從關斷狀態切換到導通狀態(即,將驅動信號Gate拉高);驅動信號拉高會重置累加器C[(n-1):0]為零,直到下一次驅動信號Gate拉低後重新開始計數。 FIG. 12 shows a specific implementation circuit of the valley control module shown in FIG. 10. In the circuit shown in FIG. 12: Frequency/voltage conversion is performed on the drive signal (Gate) that can characterize the system operating frequency fs and used to drive the power switch S1 on and off to obtain a voltage that reflects the system operating frequency fs Signal Vf; low-pass filtering the voltage signal Vf to obtain a voltage signal Vavg reflecting the average frequency of the system operating frequency fs; the voltage signal Vavg is performed with two reference levels Vup and Vdw corresponding to two reference frequencies fup and fdw, respectively In comparison, the increase of the bottom signal (+1) and the decrease of the bottom signal (-1) are obtained. Here, Vavg>Vup means that the system operating frequency fs is greater than the reference frequency fup, at this time increasing the valley signal (+1) is effective; Vavg>Vdw means that the system operating frequency fs is less than the reference frequency fdw, and reducing the valley signal (-1) is effective. The valley selection unit may include a bidirectional counter, an accumulator, and several logic gates, wherein: the bidirectional counter receives an increase valley signal (+1) and a decrease valley signal (- 1) Increase or decrease or maintain the n-bit register Q[(n-1): 0]; the accumulator uses the falling edge pair of the demagnetization sensing signal de-mag for the transformer T received from the dem terminal of the quasi-resonant controller The number C[(n-1):0] of the resonant valley bottoms that have been masked in the current switching cycle is counted. The working principle of the valley selection unit is: in each switching cycle, after the power switch S1 is switched from the on state to the off state (ie, after driving the gate signal low), the accumulator starts to demagnetize the sensing signal from zero Count the falling edge of de-mag and record the number of resonance valleys that have been masked in the current switching cycle; when C<Q, the mask demagnetization sensing signal de-mag; when C>=Q, the demagnetization is no longer masked Sensing signal de-mag, the Q[(n-1): 0]+1 resonance valleys within the current switching cycle to switch the power switch S1 from the off state to the on state (ie, the drive signal Gate is pulled high ); driving the signal high will reset the accumulator C[(n-1): 0] to zero until the next time the driving signal Gate is pulled low to restart counting.

第13圖示出了第11圖所示的谷底控制模組的具體實現電路。在第13圖所示的電路中,兩個頻率比較器分別將系統工作頻率fs和參考頻率fup、fdw進行比較;信號處理單元對頻率比較器的輸出結果進行運算和處理;雙向計數器利用頻率比較器輸出的比較結果(即,增加谷底信號和減少谷底信號)來控制諧振谷底的增減變化;多路器基於雙向計數器的輸出來實現谷底控制功能。 FIG. 13 shows a specific implementation circuit of the valley control module shown in FIG. 11. In the circuit shown in Figure 13, two frequency comparators compare the system operating frequency fs with the reference frequencies fup and fdw; the signal processing unit performs calculation and processing on the output result of the frequency comparator; the two-way counter uses frequency comparison The comparison result of the output of the multiplexer (that is, increase the valley signal and decrease the valley signal) to control the increase and decrease of the resonance valley; the multiplexer realizes the valley control function based on the output of the bidirectional counter.

第14圖示出了第13圖所示的頻率比較器#1的原理圖。如第14圖所示,頻率比較器#1的工作原理如下:將驅動信號Gate的週期Tsw(即,功率開關S1的開關頻率對應的開關週期)與參考頻率fup對應的延遲量T=1/fup進行比較,得到的結果就對應了fsw與fup的大小關係(即,可以通過比較fsw與fup生成增加谷底信號)。頻率比較器#1還通過使用脈衝電流源對電容充電的方式對比較結果進行積分操作(即,可以通過積分處理濾除增加谷底信號中的毛刺)。頻率比較器#2的電路原理圖相比於頻率比較器#1,需要把延遲單元的延遲由T=1/fup變為T=1/fdw,同時把開關Q1與Q2交換位置以實現反相。 FIG. 14 shows a schematic diagram of the frequency comparator #1 shown in FIG. 13. As shown in FIG. 14, the working principle of the frequency comparator #1 is as follows: the delay amount T=1/ corresponding to the period Tsw of the drive signal Gate (that is, the switching period corresponding to the switching frequency of the power switch S1) and the reference frequency fup fup is compared, and the result obtained corresponds to the size relationship between fsw and fup (that is, the valley signal can be generated by comparing fsw and fup). The frequency comparator #1 also performs an integration operation on the comparison result by using a pulse current source to charge the capacitor (that is, the glitch in the increased valley signal can be filtered through integration processing). The circuit schematic of frequency comparator #2 is compared with frequency comparator #1, and the delay of the delay unit needs to be changed from T=1/fup to T=1/fdw, and the switches Q1 and Q2 are exchanged to achieve inversion .

第15圖示出了第7圖所示的準諧振控制器的具體實現電路。在第15圖所示的電路中,抖頻模組由電阻R0和抖頻電流源Ics_jitter實現。這裡,疊加到用於表徵流過變壓器T1的初級繞組的電流Ip的變壓器 初級繞組電流表徵信號上的電壓Vcs_jitter=Ics_jitter×R0週期性變化,其變化頻率高於誤差放大與隔離模組的頻寬。抖頻電流Ics_jitter的信號幅度在一個開關週期內可以是連續變化的也可以是隨機變化的。抖頻電流Ics_jitter可以對流過變壓器T的初級繞組的峰值電流IPK實現調節,通過調節IPK可以控制系統工作頻率fs週期性變化。 FIG. 15 shows a specific implementation circuit of the quasi-resonant controller shown in FIG. 7. In the circuit shown in Figure 15, the frequency- jittering module is implemented by a resistor R0 and a frequency- jittering current source I cs_jitter . Here, the voltage V cs_jitter =I cs_jitter ×R0, which is superimposed on the transformer primary winding current characterization signal used to characterize the current Ip flowing through the primary winding of the transformer T1, changes periodically, and its change frequency is higher than that of the error amplification and isolation module bandwidth. The signal amplitude of the frequency- jittering current I cs_jitter may change continuously or randomly during a switching period. The frequency- jittering current I cs_jitter can adjust the peak current I PK flowing through the primary winding of the transformer T. By adjusting the I PK, the system operating frequency fs can be controlled to change periodically.

第16圖示出了第8圖所示的準諧振控制器的具體實現電路。在第16圖所示的電路中,通過在準諧振控制器的FB端子接收到的、用於表徵系統輸出電壓或系統輸出電流的輸出電壓或電流回饋信號進入PWM比較器之前疊加一個抖頻電壓VFB_jitter,實現對流過變壓器T的初級繞組的峰值電流IPK的調節,通過調節IPK可以控制系統工作頻率fs週期性變化。 FIG. 16 shows a specific implementation circuit of the quasi-resonant controller shown in FIG. 8. In the circuit shown in Figure 16, a dithering voltage is superimposed before the output voltage or current feedback signal used to characterize the system output voltage or system output current received at the FB terminal of the quasi-resonant controller enters the PWM comparator V FB_jitter realizes the adjustment of the peak current I PK flowing through the primary winding of the transformer T. By adjusting I PK, the system operating frequency fs can be controlled to change periodically.

第17圖示出了第8圖所示的準諧振控制器的另一具體實現電路。在第17圖所示的電路中,R1和R2組成的分壓電阻網路和PWM比較器之間插入了電阻R3,在電阻R3上疊加週期性變化的抖頻電流Ics_jitter,Vcs_jitter=Ics_jitter*R3週期性變化,其變化頻率高於第1圖所示的系統的回饋環路的頻寬即可實現對流過變壓器T的初級繞組的峰值電流IPK的調節,通過調節IPK可以控制系統工作頻率fs週期性變化。 FIG. 17 shows another specific implementation circuit of the quasi-resonant controller shown in FIG. 8. In the circuit shown in Figure 17, a resistor R3 is inserted between the voltage dividing resistor network composed of R1 and R2 and the PWM comparator, and a periodically varying jitter current I cs_jitter is superimposed on the resistor R3, V cs_jitter =I cs_jitter *R3 changes periodically, and its change frequency is higher than the bandwidth of the feedback loop of the system shown in Figure 1 to achieve the adjustment of the peak current I PK flowing through the primary winding of the transformer T, which can be controlled by adjusting I PK The system operating frequency fs changes periodically.

第18圖示出了第8圖所示的準諧振控制器的又一具體實現電路。在第18圖所示的電路中,抖頻電壓VFB_jitter疊加在電阻分壓網路R1和R2下面,抖頻電壓VFB_jitter週期性變化,其變化頻率高於第1圖所示的系統的回饋環路的頻寬即可實現對流過變壓器T的初級繞組的峰值電流IPK的調節,通過調節IPK可以控制系統工作頻率fs週期性變化。 FIG. 18 shows another specific implementation circuit of the quasi-resonant controller shown in FIG. 8. In the circuit shown in Figure 18, the jitter frequency V FB_jitter is superimposed under the resistor divider network R1 and R2. The jitter frequency V FB_jitter changes periodically, and the frequency of its change is higher than the feedback of the system shown in Figure 1 The bandwidth of the loop can adjust the peak current I PK flowing through the primary winding of the transformer T. By adjusting I PK, the system operating frequency fs can be controlled to change periodically.

第19圖示出了第9圖所示的準諧振控制器的具體實現電路。在第19圖所示的電路中,谷底控制模組給出的信號經過延遲單元後疊加了一個變化的延遲,該延遲的大小由抖頻電流Ijitter和電容Cd決定。抖頻電流Ijitter的變化頻率略高於第1所示的系統的頻寬。控制抖頻電流Ijitter的頻率和幅度即可控制系統工作頻率fs的抖動的大小和幅度,控制抖頻電流Ijitter的波形即可控制系統工作頻率fs的抖動方式。 FIG. 19 shows a specific implementation circuit of the quasi-resonant controller shown in FIG. 9. In the circuit shown in Figure 19, the signal provided by the valley control module is superimposed on a delay by the delay unit. The magnitude of this delay is determined by the jitter current I jitter and the capacitance Cd. The frequency of jitter current I jitter is slightly higher than the bandwidth of the system shown in the first. Controlling the frequency and amplitude of the jitter current I jitter can control the size and amplitude of the jitter of the system operating frequency fs, and controlling the waveform of the jitter current I jitter can control the jitter mode of the system operating frequency fs.

第15至第19中的谷底控制模組可以直接採用第12至第 13所示的實現方式,也可以採用其它經過修改、替換或者重新組合的方式。 The valley control module in the 15th to 19th can directly adopt the 12th to the The implementation shown in 13 can also be modified, replaced, or recombined.

根據本發明實施例的準諧振返馳變換器電源系統可以解決傳統的準諧振可開關電源系統的EMI問題,同時也避免了在存在頻率上下限的準諧振返馳變換器電源系統中因為引入抖頻而導致的系統輸出紋波及雜訊變大的問題。 The quasi-resonant flyback converter power supply system according to the embodiment of the present invention can solve the EMI problem of the traditional quasi-resonant switchable power supply system, and at the same time avoids the introduction of jitter in the quasi-resonant flyback converter power supply system with upper and lower frequency limits. The problem of increased system output ripple and noise due to high frequency.

本發明可以以其他的具體形式實現,而不脫離其精神和本質特徵。例如,特定實施例中所描述的演算法可以被修改,而系統體系結構並不脫離本發明的基本精神。因此,當前的實施例在所有方面都被看作是示例性的而非限定性的,本發明的範圍由所附權利要求而非上述描述定義,並且,落入權利要求的含義和等同物的範圍內的全部改變從而都被包括在本發明的範圍之中。 The present invention can be implemented in other specific forms without departing from its spirit and essential characteristics. For example, the algorithm described in a specific embodiment may be modified, and the system architecture does not deviate from the basic spirit of the present invention. Therefore, the current embodiment is considered to be exemplary rather than limiting in all respects, the scope of the present invention is defined by the appended claims rather than the above description, and falls within the meaning and equivalent of the claims All changes within the scope are thus included in the scope of the present invention.

S1:功率開關 S1: Power switch

T:變壓器 T: transformer

R1、R2:電阻 R1, R2: resistance

Gate:驅動信號 Gate: drive signal

FB、CS、dem:端子 FB, CS, dem: terminal

Vin:輸入電壓 Vin: input voltage

Rsense:電阻 Rsense: resistance

Qb:RS鎖存器反相輸出端 Qb: RS latch inverting output

S:RS鎖存器置位端 S: RS latch set terminal

Q:RS鎖存器輸出端 Q: RS latch output

R:RS鎖存器復位端 R: RS latch reset terminal

Claims (6)

一種準諧振返馳變換器電源系統,包括變壓器、功率開關、以及包括抖頻模組和谷底控制模組的準諧振控制器,其中:該抖頻模組通過調節流過該變壓器的初級繞組的峰值電流,來調節該功率開關的開關頻率,或者通過在該功率開關的汲極電壓的諧振谷底添加提前量或者延遲量,來調節該功率開關的開關頻率;該谷底控制模組通過對該功率開關的開關頻率進行頻率/電壓轉換得到反映該功率開關的開關頻率的第一電壓信號,通過對該第一電壓信號進行積分或濾波處理濾除其中的毛刺或高頻擾動得到第二電壓信號,通過將該第二電壓信號分別與反映第一參考頻率的第一參考電壓和反映第二參考頻率的第二參考電壓進行比較生成增加谷底信號和減少谷底信號,並根據該增加谷底信號和該減少谷底信號控制該功率開關在其汲極電壓的預定諧振谷底從關斷狀態切換到導通狀態,或者通過將該功率開關的開關頻率分別與該第一參考頻率和該第二參考頻率進行比較生成第一頻率比較器輸出信號和第二頻率比較器輸出信號,通過分別對該第一頻率比較器輸出信號和該第二頻率比較器輸出信號進行積分或濾波處理,濾除該第一頻率比較器輸出信號和該第二頻率比較器輸出信號中的毛刺或高頻擾動,得到該增加谷底信號和該減少谷底信號,並根據該增加谷底信號和該減少谷底信號控制該功率開關在其汲極電壓的預定諧振谷底從關斷狀態切換到導通狀態。 A quasi-resonant flyback converter power supply system includes a transformer, a power switch, and a quasi-resonant controller including a frequency-jittering module and a valley control module, wherein: the frequency-jittering module adjusts the flow of the primary winding flowing through the transformer Peak current, to adjust the switching frequency of the power switch, or to adjust the switching frequency of the power switch by adding an advance or delay to the resonance valley of the drain voltage of the power switch; the valley control module Perform a frequency/voltage conversion on the switching frequency of the switch to obtain a first voltage signal reflecting the switching frequency of the power switch, and obtain a second voltage signal by integrating or filtering the first voltage signal to remove glitches or high-frequency disturbances, The second voltage signal is compared with the first reference voltage reflecting the first reference frequency and the second reference voltage reflecting the second reference frequency to generate an increased valley signal and a reduced valley signal, and according to the increased valley signal and the decrease The valley signal controls the power switch to switch from the off state to the on state at a predetermined resonance valley of its drain voltage, or to generate the first by comparing the switching frequency of the power switch with the first reference frequency and the second reference frequency, respectively A frequency comparator output signal and a second frequency comparator output signal, by integrating or filtering the first frequency comparator output signal and the second frequency comparator output signal, the first frequency comparator output is filtered out Glitches or high-frequency disturbances in the signal and the output signal of the second frequency comparator to obtain the increased valley signal and the reduced valley signal, and according to the increased valley signal and the reduced valley signal, the power switch is controlled at its drain voltage The predetermined resonance valley bottom is switched from the off state to the on state. 如申請專利範圍第1項該的準諧振返馳變換器電源系統,其中,該抖頻模組通過在用於表徵流過該變壓器的一次繞組的電流的變壓器初級繞組電流表徵信號上疊加變化的電壓來調節流過該變壓器的初級繞組的峰值電流。 The quasi-resonant flyback converter power supply system as claimed in item 1 of the patent scope, wherein the frequency-jittering module superimposes the change on the transformer primary winding current characterization signal used to characterize the current flowing through the primary winding of the transformer Voltage to regulate the peak current flowing through the primary winding of the transformer. 如申請專利範圍第1項該的準諧振返馳變換器電源系統,其中,該 抖頻模組通過在用於表徵該準諧振返馳變換器電源系統的系統輸出電壓或系統輸出電流的輸出電壓或電流回饋信號上疊加偽隨機電壓來調節流過該變壓器的一次繞組的峰值電流。 The quasi-resonant flyback converter power supply system as claimed in item 1 of the patent scope, in which The frequency-jittering module adjusts the peak current flowing through the primary winding of the transformer by superimposing a pseudo-random voltage on the output voltage or current feedback signal that characterizes the quasi-resonant flyback converter power system . 如申請專利範圍第1項該的準諧振返馳變換器電源系統,其中,該谷底控制模組包括信號處理單元、電壓比較單元、以及谷底選擇單元,其中:該信號處理單元通過將用於驅動該功率開關的導通與關斷的驅動信號進行頻率/電壓轉換得到反映該功率開關的開關頻率的該第一電壓信號,並通過對該第一電壓信號進行低通濾波處理得到反映該功率開關的平均開關頻率的該第二電壓信號;該電壓比較單元通過將該第二電壓信號分別與該第一參考電壓和該第二參考電壓進行比較,生成該增加谷底信號和該減少谷底信號;該谷底選擇單元根據該增加谷底信號和該減少谷底信號控制該功率開關在其汲極電壓的預定諧振谷底從關斷狀態切換到導通狀態。 The quasi-resonant flyback converter power supply system as described in item 1 of the patent scope, wherein the valley control module includes a signal processing unit, a voltage comparison unit, and a valley selection unit, wherein: the signal processing unit is used to drive The on/off driving signal of the power switch performs frequency/voltage conversion to obtain the first voltage signal reflecting the switching frequency of the power switch, and the low voltage filtering process is performed on the first voltage signal to obtain the reflection of the power switch. The second voltage signal of the average switching frequency; the voltage comparison unit generates the increased valley signal and the decreased valley signal by comparing the second voltage signal with the first reference voltage and the second reference voltage, respectively; the valley floor The selection unit controls the power switch to switch from an off state to an on state at a predetermined resonance valley bottom of its drain voltage according to the increasing valley signal and the decreasing valley signal. 如申請專利範圍第4項該的準諧振返馳變換器電源系統,其中,該谷底選擇單元當該增加谷底信號有效時,控制該功率開關在下一開關週期中從關斷狀態切換到導通狀態的時刻比當前開關週期延遲一個諧振谷底;當該減少谷底信號有效時,控制該功率開關在下一開關週期中從關斷狀態切換到導通狀態的時刻比當前開關週期提前一個諧振谷底;當該減少谷底信號和該增加谷底信號均無效時,控制該功率開關在下一開關週期中從關斷狀態切換到導通狀態的時刻與當前開關週期處於相同的諧振谷底。 The quasi-resonant flyback converter power supply system as claimed in item 4 of the patent scope, wherein the valley selection unit controls the power switch to switch from the off state to the on state in the next switching cycle when the increased valley signal is valid The time is delayed by one resonance trough from the current switching cycle; when the reduction trough signal is valid, the time when the power switch is controlled to switch from the off state to the on state in the next switching cycle is advanced by one resonance trough from the current switching cycle; when the reduction trough When both the signal and the increased valley signal are invalid, the power switch is controlled to switch from the off state to the on state in the next switching cycle at the same resonance valley as the current switching cycle. 如申請專利範圍第1項該的準諧振返馳變換器電源系統,其中,該谷底控制模組包括頻率比較單元、信號處理單元、以及谷底選擇單元,其中:該頻率比較單元包括第一頻率比較器和第二頻率比較器,該第一頻率比較器通過將該功率開關的開關頻率對應的開關週期與該第一參考頻率對應的第一參考週期進行比較生成該第一頻率比較器輸出信號、該第二頻率 比較器通過將該功率開關的開關頻率對應的開關週期與該第二參考頻率對應的第二參考週期進行比較生成該第二頻率比較器輸出信號;該信號處理單元通過分別對該第一頻率比較器輸出信號和該第二頻率比較器輸出信號在類比域或者數位域進行積分或濾波處理,濾除該第一頻率比較器輸出信號和該第二頻率比較器輸出信號中的毛刺或高頻擾動,得到該增加谷底信號和該減小谷底信號;該谷底選擇單元根據該增加谷底信號和該減少谷底信號控制該功率開關在其汲極電壓的預定諧振谷底從關斷狀態切換到導通狀態。 The quasi-resonant flyback converter power supply system as claimed in item 1 of the patent scope, wherein the valley control module includes a frequency comparison unit, a signal processing unit, and a valley selection unit, wherein: the frequency comparison unit includes a first frequency comparison And a second frequency comparator, the first frequency comparator generates the first frequency comparator output signal by comparing the switching period corresponding to the switching frequency of the power switch with the first reference period corresponding to the first reference frequency, The second frequency The comparator generates the output signal of the second frequency comparator by comparing the switching period corresponding to the switching frequency of the power switch with the second reference period corresponding to the second reference frequency; the signal processing unit compares the first frequency by respectively The output signal of the comparator and the output signal of the second frequency comparator are integrated or filtered in the analog domain or the digital domain to filter out glitches or high-frequency disturbances in the output signal of the first frequency comparator and the output signal of the second frequency comparator To obtain the increased valley signal and the reduced valley signal; the valley selection unit controls the power switch to switch from an off state to an on state at a predetermined resonance valley of its drain voltage according to the increased valley signal and the reduced valley signal.
TW107116336A 2018-04-08 2018-05-14 Quasi-resonant flyback converter power supply system TWI689162B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810306947.3A CN108347173B (en) 2018-04-08 2018-04-08 Quasi-resonance flyback switching power supply system
CN201810306947.3 2018-04-08
??201810306947.3 2018-04-08

Publications (2)

Publication Number Publication Date
TW201944712A TW201944712A (en) 2019-11-16
TWI689162B true TWI689162B (en) 2020-03-21

Family

ID=62956886

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107116336A TWI689162B (en) 2018-04-08 2018-05-14 Quasi-resonant flyback converter power supply system

Country Status (2)

Country Link
CN (1) CN108347173B (en)
TW (1) TWI689162B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109067213B (en) * 2018-08-08 2019-12-20 苏州博创集成电路设计有限公司 Switching power supply controller in quasi-resonance mode and control method
CN109302074B (en) * 2018-11-02 2024-09-17 杰华特微电子股份有限公司 Detection circuit and method, switch control circuit and flyback conversion circuit
CN109546875A (en) * 2018-12-29 2019-03-29 杭州士兰微电子股份有限公司 Switching Power Supply, the control circuit of Switching Power Supply and control method
US10804806B1 (en) * 2019-08-14 2020-10-13 Semiconductor Components Industries, Llc Method and system of a switching power converter
CN111049388B (en) * 2019-12-06 2021-03-23 深圳南云微电子有限公司 Quasi-resonance control circuit
CN111478602B (en) * 2020-04-15 2021-05-28 瀚昕微电子(无锡)有限公司 Flyback circuit, control method and device of switching device of flyback circuit and switching power supply system
CN111884494B (en) * 2020-07-23 2021-11-12 成都启臣微电子股份有限公司 Quasi-resonance valley bottom conduction circuit with compensation function
CN114649933A (en) * 2020-12-17 2022-06-21 南京志行聚能科技有限责任公司 Valley bottom locking system for switching power supply
CN112701924B (en) 2020-12-28 2022-07-08 昂宝电子(上海)有限公司 Apparatus and method for valley lock in quasi-resonant switching power supplies
CN113068282B (en) * 2021-03-11 2023-07-25 昂宝电子(上海)有限公司 Electromagnetic heating system and method
CN113162425A (en) * 2021-04-13 2021-07-23 昂宝电子(上海)有限公司 Apparatus and method for controlling dead time of active clamp flyback switching power supply
CN113541469A (en) * 2021-06-24 2021-10-22 深圳市必易微电子股份有限公司 Self-adaptive quasi-resonant EMI optimization circuit, optimization method and switching power supply circuit
CN113992018B (en) * 2021-09-30 2023-12-26 昂宝电子(上海)有限公司 Quasi-resonant switching power supply, control chip and control method thereof
CN113992028B (en) * 2021-11-08 2023-07-28 上海南芯半导体科技股份有限公司 Control method and control circuit of flyback power supply
CN114900025B (en) * 2022-04-15 2024-08-16 上海南芯半导体科技股份有限公司 Frequency control circuit and control method of quasi-resonant switching power supply
CN118199397A (en) * 2024-03-21 2024-06-14 深圳市诚芯微科技股份有限公司 Control method of quasi-resonant switching element, electronic equipment and storage medium

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7035122B2 (en) * 2003-09-08 2006-04-25 Fairchild Korea Semiconductor Ltd. Switching power supply device and method
CN101826796A (en) * 2009-03-02 2010-09-08 昂宝电子(上海)有限公司 Quasi resonator system and method by utilizing multimode control
TW201101691A (en) * 2009-06-16 2011-01-01 Grenergy Opto Inc Method and device to detect the voltage of quasi-resonant wave trough
TW201238228A (en) * 2011-03-03 2012-09-16 Monolithic Power Systems Inc Smart driver for flyback converts
CN103078489A (en) * 2011-10-25 2013-05-01 昂宝电子(上海)有限公司 System and method for reducing electromagnetic interference by using switching frequency jitter
TW201340561A (en) * 2012-03-31 2013-10-01 昂寶電子(上海)有限公司 System and method applied to constant voltage control and constant current control
TW201342783A (en) * 2012-04-12 2013-10-16 昂寶電子(上海)有限公司 Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
CN104348352A (en) * 2013-07-31 2015-02-11 通嘉科技股份有限公司 Controller and method for producing jitter at quasi-resonance mode
US20150303787A1 (en) * 2014-04-18 2015-10-22 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating output currents of power conversion systems
TWI608695B (en) * 2016-05-23 2017-12-11 System controller and method for regulating power converter

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7035122B2 (en) * 2003-09-08 2006-04-25 Fairchild Korea Semiconductor Ltd. Switching power supply device and method
CN101826796A (en) * 2009-03-02 2010-09-08 昂宝电子(上海)有限公司 Quasi resonator system and method by utilizing multimode control
TW201101691A (en) * 2009-06-16 2011-01-01 Grenergy Opto Inc Method and device to detect the voltage of quasi-resonant wave trough
TW201238228A (en) * 2011-03-03 2012-09-16 Monolithic Power Systems Inc Smart driver for flyback converts
CN103078489A (en) * 2011-10-25 2013-05-01 昂宝电子(上海)有限公司 System and method for reducing electromagnetic interference by using switching frequency jitter
TW201318324A (en) * 2011-10-25 2013-05-01 昂寶電子(上海)有限公司 Systems and methods for reducing electomagnetic interference using switching frequency jittering
TW201340561A (en) * 2012-03-31 2013-10-01 昂寶電子(上海)有限公司 System and method applied to constant voltage control and constant current control
TW201342783A (en) * 2012-04-12 2013-10-16 昂寶電子(上海)有限公司 Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
CN104348352A (en) * 2013-07-31 2015-02-11 通嘉科技股份有限公司 Controller and method for producing jitter at quasi-resonance mode
US20150303787A1 (en) * 2014-04-18 2015-10-22 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating output currents of power conversion systems
TWI608695B (en) * 2016-05-23 2017-12-11 System controller and method for regulating power converter

Also Published As

Publication number Publication date
CN108347173B (en) 2019-12-27
CN108347173A (en) 2018-07-31
TW201944712A (en) 2019-11-16

Similar Documents

Publication Publication Date Title
TWI689162B (en) Quasi-resonant flyback converter power supply system
KR102226978B1 (en) Resonant capacitor stabilizer in resonant converters
US10389234B2 (en) Systems and methods for reducing electromagnetic interference using switching frequency jittering
US9705413B2 (en) Multi-mode operation and control of a resonant converter
US9859788B2 (en) Power factor correction circuit and switching power supply apparatus
JP6170659B2 (en) Power controller
TWI835957B (en) Power converter, frequency controller, and method for controlling constant on-time
US7773392B2 (en) Isolated switching power supply apparatus
JP6790583B2 (en) Switching power supply
US7504815B2 (en) Switch mode power supply control systems
US8665611B2 (en) Controller for a resonant switched-mode power converter
US9318966B2 (en) Method of controlling a switching converter in burst mode and related controller for a switching converter
KR101811740B1 (en) Hybrid control techniques for series resonant converter
CN1909352A (en) Method and apparatus for increasing the power capability of a power supply
KR20180007339A (en) Variable blanking frequency for resonant converters
JPWO2013008537A1 (en) Switching power supply control circuit and switching power supply
CN110752750A (en) Resonant converter and control circuit and control method thereof
US20130107579A1 (en) Switching power supply apparatus
TWI651921B (en) System for improving EMI of flyback switching power supplies
TWI842011B (en) Quasi-resonant switching power supply and control chip and control method thereof
JP2011087394A (en) Switching element driving control circuit and switching power supply device
JP2005532028A (en) DC-DC converter
JP7322881B2 (en) switching power supply
WO2023051520A1 (en) Control method for switching power supply and switching power supply
US20200274454A1 (en) Direct Feedback for Isolated Switching Converters