TWI688750B - Encoder - Google Patents

Encoder Download PDF

Info

Publication number
TWI688750B
TWI688750B TW108113594A TW108113594A TWI688750B TW I688750 B TWI688750 B TW I688750B TW 108113594 A TW108113594 A TW 108113594A TW 108113594 A TW108113594 A TW 108113594A TW I688750 B TWI688750 B TW I688750B
Authority
TW
Taiwan
Prior art keywords
magneto
sensitive element
magnetic sensor
magnetic
sensor
Prior art date
Application number
TW108113594A
Other languages
Chinese (zh)
Other versions
TW201944031A (en
Inventor
齋藤豊
奥村宏克
Original Assignee
日商日本電產三協股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本電產三協股份有限公司 filed Critical 日商日本電產三協股份有限公司
Publication of TW201944031A publication Critical patent/TW201944031A/en
Application granted granted Critical
Publication of TWI688750B publication Critical patent/TWI688750B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24485Error correction using other sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/249Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using pulse code
    • G01D5/2497Absolute encoders

Abstract

本發明提供一種高精度並且能夠抑制外部磁通的影響的編碼器。編碼器1包括包含檢測磁鐵30的位置的第一磁敏元件70及第二磁敏元件79的多個磁敏元件傳感器部60,作為磁敏元件傳感器部60,至少設置有第一磁敏元件傳感器部61及第二磁敏元件傳感器部62,第一磁敏元件傳感器部61及第二磁敏元件傳感器部62是以如下的方式而配置,即,第一磁敏元件傳感器部61與第二磁敏元件傳感器部62的第一磁敏元件70彼此的輸出、以及第二磁敏元件79彼此的輸出配置於以電角度計具有180°的偶數倍的相位差的位置即以機械角度計30°以下。The present invention provides an encoder with high accuracy and capable of suppressing the influence of external magnetic flux. The encoder 1 includes a plurality of magneto-sensitive element sensor sections 60 including a first magneto-sensitive element 70 and a second magneto-sensitive element 79 that detect the position of the magnet 30. As the magneto-sensitive element sensor section 60, at least the first magneto-sensitive element is provided The sensor section 61 and the second magneto-sensitive element sensor section 62, the first magneto-sensitive element sensor section 61 and the second magneto-sensitive element sensor section 62 are arranged in such a manner that the first magneto-sensitive element sensor section 61 and the first The outputs of the first magneto-sensitive elements 70 and the outputs of the second magneto-sensitive elements 79 of the two magneto-sensitive element sensor sections 62 are arranged at positions having a phase difference of an even multiple of 180° in electrical angle, that is, in mechanical angle Below 30°.

Description

編碼器Encoder

本發明是有關於一種編碼器(encoder)。 The invention relates to an encoder.

從以前以來,一直使用各種編碼器。其中,大多使用利用磁敏元件的磁式編碼器。 Since before, various encoders have been used. Among them, a magnetic encoder using a magnetic sensor is often used.

例如,在專利文獻1中,公開了一種能夠以電角度計以90°的相位差進行磁尺的移動檢測的旋轉編碼器(rotary encoder)。 For example, Patent Document 1 discloses a rotary encoder capable of detecting movement of a magnetic scale with a phase difference of 90° in an electrical angle meter.

並且,例如,在專利文獻2及專利文獻3中,公開了一種磁式編碼器,其包括以機械角度計每隔90°配置的霍爾傳感器(磁敏元件)、以及配置於相對於這些霍爾傳感器以機械角度計各偏離60°的位置的霍爾傳感器。 Also, for example, Patent Document 2 and Patent Document 3 disclose a magnetic encoder including a Hall sensor (magnetic sensor) arranged every 90° in mechanical angle, and a sensor arranged relative to these sensors. The Hall sensor is a mechanical angle meter that deviates from each 60° position.

[現有技術文獻] [Prior Art Literature] [專利文獻] [Patent Literature]

[專利文獻1]日本專利特開2012-118000號公報 [Patent Document 1] Japanese Patent Laid-Open No. 2012-118000

[專利文獻2]WO2007/132603號公報 [Patent Document 2] WO2007/132603

[專利文獻3]WO2009/84346號公報 [Patent Document 3] WO2009/84346

如專利文獻1所公開,通過以電角度計以90°的相位差進行磁尺的移動檢測,可以形成為高精度的編碼器。 As disclosed in Patent Document 1, by detecting the movement of the magnetic scale with a phase difference of 90° using an electrical angle meter, a high-precision encoder can be formed.

並且,如專利文獻2及專利文獻3所公開,通過在多個位置上配置磁敏元件,也可以形成為高精度的編碼器。 Furthermore, as disclosed in Patent Document 2 and Patent Document 3, by arranging the magnetic sensitive elements at a plurality of positions, a high-precision encoder can also be formed.

但是,在磁式編碼器中,有時會因為對包含所述編碼器的裝置進行驅動等而受到外部磁通的影響,而編碼器的性能下降。並且,例如,只是設置多個在能夠以電角度計以90°的相位差進行檢測的位置上設置有磁敏元件的單元,無法抑制外部磁通的影響。即,根據所述單元(磁敏元件)的位置或磁敏元件彼此的連接的方式等,存在無法抑制外部磁通的影響的情況。 However, in a magnetic encoder, an external magnetic flux may be affected by driving the device including the encoder, etc., and the performance of the encoder may deteriorate. Moreover, for example, only a plurality of units provided with magnetic sensitive elements at positions that can be detected with an electrical angle meter at a phase difference of 90° cannot suppress the influence of external magnetic flux. That is, depending on the position of the unit (magneto-sensitive element) or the manner in which the magneto-sensitive elements are connected to each other, there is a case where the influence of external magnetic flux cannot be suppressed.

因此,本發明的目的在於提供一種高精度並且能夠抑制外部磁通的影響的編碼器。 Therefore, an object of the present invention is to provide an encoder with high accuracy and capable of suppressing the influence of external magnetic flux.

本發明的第一形態的編碼器的特徵在於包括:磁鐵,交替地磁化有多個N極及S極;以及多個磁敏元件傳感器部,包括檢測所述磁鐵的位置的第一磁敏元件、及配置於相對於所述第一磁敏元件的輸出以電角度計具有90°的相位差的位置而檢測所述磁鐵的位置的第二磁敏元件;並且作為所述磁敏元件傳感器部,至少設置有第一磁敏元件傳感器部及第二磁敏元件傳感器部,所述第一磁敏元件傳感器部及所述第二磁敏元件傳感器部是以如下的方式而配置,即,所述第一磁敏元件傳感器部的所述第一磁敏元件的輸出與所述第二磁敏元件傳感器部的所述第一磁敏元件的輸出、以及所述第一磁敏元件傳感器部的所述第二磁敏元件的輸出與所述第二磁敏元件傳感器部的所述第二磁敏元件的輸出配置 於以電角度計具有180°的奇數倍的相位差的位置即以機械角度計30°以下,將所述第一磁敏元件傳感器部的正輸出端子與所述第二磁敏元件傳感器部的負輸出端子加以連接,將所述第一磁敏元件傳感器部的負輸出端子與所述第二磁敏元件傳感器部的正輸出端子加以連接。 The encoder of the first aspect of the present invention is characterized by including: a magnet having a plurality of N poles and S poles alternately magnetized; and a plurality of magneto-sensitive element sensor sections including a first magneto-sensitive element that detects the position of the magnet And a second magneto-sensitive element arranged to detect the position of the magnet with respect to the output of the first magneto-sensitive element having a phase difference of 90° in an electrical angle meter; and as the magneto-sensitive element sensor section , At least a first magneto-sensitive element sensor section and a second magneto-sensitive element sensor section are provided, the first magneto-sensitive element sensor section and the second magneto-sensitive element sensor section are arranged in the following manner, that is, The output of the first magnetic sensor of the first magnetic sensor element and the output of the first magnetic sensor of the second magnetic sensor element, and the output of the first magnetic sensor element The output configuration of the second magnetic sensitive element and the output of the second magnetic sensitive element of the second magnetic sensitive element sensor section At a position with an odd multiple of 180° in electrical angle, that is, 30° or less in mechanical angle, connect the positive output terminal of the first magnetic sensor element to the second magnetic sensor sensor Is connected to connect the negative output terminal of the first magnetic sensor element and the positive output terminal of the second magnetic sensor element.

根據本形態,包含多個磁敏元件傳感器部,所述磁敏元件傳感器部在能夠以電角度計以90°的相位差進行檢測的位置上設置有磁敏元件,因此能夠形成為高精度的編碼器。並且,以第一磁敏元件彼此的輸出及第二磁敏元件彼此的輸出配置於以電角度計具有180°的奇數倍的相位差的位置即以機械角度計30°以下的方式而配置第一磁敏元件傳感器部及第二磁敏元件傳感器部,並且,將第一磁敏元件傳感器部的正輸出端子與第二磁敏元件傳感器部的負輸出端子加以連接,將第一磁敏元件傳感器部的負輸出端子與第二磁敏元件傳感器部的正輸出端子加以連接。即,通過使配置於以磁週期計相位偏離1/2個週期份的位置即接近的位置上的第一磁敏元件傳感器部及第二磁敏元件傳感器部的輸出中的一者反轉並加以平均化,可以抑制外部磁通的影響。 According to this aspect, a plurality of magneto-sensitive element sensor sections are included, and the magneto-sensitive element sensor section is provided with a magneto-sensitive element at a position that can be detected with an electrical angle meter at a phase difference of 90°, and therefore can be formed with high accuracy Encoder. Furthermore, the outputs of the first magneto-sensitive elements and the outputs of the second magneto-sensitive elements are arranged at positions having an odd multiple of 180° in electrical angle, that is, 30° or less in mechanical angle The first magneto-sensitive element sensor section and the second magneto-sensitive element sensor section, and the positive output terminal of the first magneto-sensitive element sensor section and the negative output terminal of the second magneto-sensitive element sensor section are connected to connect the first magneto-sensitive element The negative output terminal of the element sensor section is connected to the positive output terminal of the second magnetic sensor element section. That is, by inverting one of the outputs of the first magneto-sensitive element sensor section and the second magneto-sensitive element sensor section disposed at a position that is phase-shifted by 1/2 period of the magnetic cycle, that is, a close position, By averaging, the influence of external magnetic flux can be suppressed.

本發明的第二形態的編碼器的特徵在於包括:磁鐵,交替地磁化有多個N極及S極;以及多個磁敏元件傳感器部,包括檢測所述磁鐵的位置的第一磁敏元件、及配置於相對於所述第一磁敏元件的輸出以電角度計具有90°的相位差的位置而檢測所述磁鐵的位置的第二磁敏元件;並且作為所述磁敏元件傳感器部, 至少設置有第一磁敏元件傳感器部及第二磁敏元件傳感器部,所述第一磁敏元件傳感器部及所述第二磁敏元件傳感器部是以如下的方式而配置,即,所述第一磁敏元件傳感器部的所述第一磁敏元件的輸出與所述第二磁敏元件傳感器部的所述第一磁敏元件的輸出、以及所述第一磁敏元件傳感器部的所述第二磁敏元件的輸出與所述第二磁敏元件傳感器部的所述第二磁敏元件的輸出配置於以電角度計具有180°的偶數倍的相位差的位置即以機械角度計30°以下,將所述第一磁敏元件傳感器部的正輸出端子與所述第二磁敏元件傳感器部的正輸出端子加以連接,將所述第一磁敏元件傳感器部的負輸出端子與所述第二磁敏元件傳感器部的負輸出端子加以連接。 The encoder of the second aspect of the present invention is characterized by including: a magnet having a plurality of N poles and S poles alternately magnetized; and a plurality of magneto-sensitive element sensor sections including a first magneto-sensitive element that detects the position of the magnet And a second magneto-sensitive element arranged to detect the position of the magnet with respect to the output of the first magneto-sensitive element having a phase difference of 90° in an electrical angle meter; and as the magneto-sensitive element sensor section , At least a first magneto-sensitive element sensor section and a second magneto-sensitive element sensor section are provided, and the first magneto-sensitive element sensor section and the second magneto-sensitive element sensor section are arranged in such a manner that the The output of the first magneto-sensitive element of the first magneto-sensitive element sensor section and the output of the first magneto-sensitive element of the second magneto-sensitive element sensor section, and the position of the first magneto-sensitive element sensor section The output of the second magneto-sensitive element and the output of the second magneto-sensitive element of the second magneto-sensitive element sensor section are arranged at positions having a phase difference of an even multiple of 180° in electrical angle, that is, in mechanical angle 30° or less, connect the positive output terminal of the first magnetic sensor element and the positive output terminal of the second magnetic sensor element, and connect the negative output terminal of the first magnetic sensor element to The negative output terminal of the second magnetic sensor element is connected.

根據本形態,包括多個磁敏元件傳感器部,所述磁敏元件傳感器部是在能夠以電角度計以90°的相位差進行檢測的位置上設置有磁敏元件,因此能夠形成為高精度的編碼器。並且,以第一磁敏元件彼此的輸出及第二磁敏元件彼此的輸出配置於以電角度計具有180°的偶數倍的相位差的位置即以機械角度計30°以下的方式而配置第一磁敏元件傳感器部及第二磁敏元件傳感器部,並且,將第一磁敏元件傳感器部的正輸出端子與第二磁敏元件傳感器部的正輸出端子加以連接,將第一磁敏元件傳感器部的負輸出端子與第二磁敏元件傳感器部的負輸出端子加以連接。即,通過使配置於以磁週期計相位偏離一個週期份的位置即接近的位置上的第一磁敏元件傳感器部及第二磁敏元件傳感器部的輸 出平均化,可以抑制外部磁通的影響。 According to this aspect, it includes a plurality of magneto-sensitive element sensor sections that are provided with a magneto-sensitive element at a position that can be detected with an electrical angle meter at a phase difference of 90°, and therefore can be formed with high accuracy Encoder. In addition, the outputs of the first magneto-sensitive elements and the outputs of the second magneto-sensitive elements are arranged at positions having a phase difference of an even multiple of 180° in electrical angle, that is, 30° or less in mechanical angle. A magneto-sensitive element sensor section and a second magneto-sensitive element sensor section, and the positive output terminal of the first magneto-sensitive element sensor section and the positive output terminal of the second magneto-sensitive element sensor section are connected to connect the first magneto-sensitive element The negative output terminal of the sensor unit is connected to the negative output terminal of the second magneto-sensitive element sensor unit. In other words, by inputting the first magnetic sensor element and the second magnetic sensor element at a position that is phase-shifted by one period from the magnetic period, that is, close to the position. Averaging can suppress the influence of external magnetic flux.

本發明的第三形態的編碼器根據所述第一形態或第二形態,其特徵在於,所述第一磁敏元件傳感器部及所述第二磁敏元件傳感器部是以如下的方式而配置,即,所述第一磁敏元件傳感器部的所述第一磁敏元件與所述第二磁敏元件傳感器部的所述第一磁敏元件、以及所述第一磁敏元件傳感器部的所述第二磁敏元件與所述第二磁敏元件傳感器部的所述第二磁敏元件以磁週期計配置於兩個週期以內。 The encoder of the third aspect of the present invention is according to the first aspect or the second aspect, characterized in that the first magnetic sensor element and the second magnetic sensor element are arranged as follows That is, the first magneto-sensitive element of the first magneto-sensitive element sensor section and the first magneto-sensitive element of the second magneto-sensitive element sensor section, and the The second magneto-sensitive element and the second magneto-sensitive element of the second magneto-sensitive element sensor section are arranged within two cycles with a magnetic period meter.

根據本形態,將第一磁敏元件傳感器部及第二磁敏元件傳感器部配置於以磁週期計為兩個週期以內的狹窄範圍內。因此,能夠有效抑制外部磁通的影響。 According to this aspect, the first magneto-sensitive element sensor portion and the second magneto-sensitive element sensor portion are arranged in a narrow range within two cycles in terms of the magnetic cycle. Therefore, the influence of external magnetic flux can be effectively suppressed.

本發明的第四形態的編碼器根據所述第一形態至第三形態中的任一形態,其特徵在於,所述磁敏元件傳感器部是在一個封裝體內具有所述第一磁敏元件及所述第二磁敏元件。 The encoder of the fourth aspect of the present invention is any one of the first to third aspects, characterized in that the magnetic sensor element includes the first magnetic sensor and the first magnetic sensor in one package. The second magnetic sensor.

根據本形態,在一個封裝體內設置有第一磁敏元件及第二磁敏元件,因此能夠以高精度對第一磁敏元件及第二磁敏元件進行定位,從而能夠形成為特別高精度的編碼器。 According to this aspect, since the first magneto-sensitive element and the second magneto-sensitive element are provided in one package, the first magneto-sensitive element and the second magneto-sensitive element can be positioned with high accuracy, and it can be formed to a particularly high accuracy Encoder.

本發明的第五形態的編碼器根據所述第一形態至第四形態中的任一形態,其特徵在於,所述第一磁敏元件及所述第二磁敏元件是霍爾元件。 An encoder according to a fifth aspect of the present invention is any one of the first to fourth aspects, characterized in that the first magneto-sensitive element and the second magneto-sensitive element are Hall elements.

根據本形態,第一磁敏元件及第二磁敏元件是霍爾元件,能夠單獨檢測磁場的方向(N極與S極的辨別),因此能夠廉 價地形成編碼器。 According to this aspect, the first magneto-sensitive element and the second magneto-sensitive element are Hall elements, which can independently detect the direction of the magnetic field (discrimination of N pole and S pole), and therefore can be inexpensive The encoder is formed inexpensively.

本發明的第六形態的編碼器根據所述第一形態至第五形態中的任一形態,其特徵在於,所述第一磁敏元件及所述第二磁敏元件是磁阻元件。 An encoder of a sixth aspect of the present invention is any one of the first to fifth aspects, characterized in that the first magneto-sensitive element and the second magneto-sensitive element are magnetoresistive elements.

根據本形態,可以利用磁阻元件形成編碼器,所以檢測相向的磁鐵的旋轉磁場,因此與如霍爾元件那樣檢測磁通的強弱的情況相比,即使因為磁化不均或旋轉部的抖動而使磁通強度發生變動,也能夠穩定地檢測旋轉位置。 According to this aspect, the encoder can be formed by using the magnetoresistive element, so the rotating magnetic field of the opposing magnet is detected. Therefore, compared with the case of detecting the strength of the magnetic flux like the Hall element, even if it is caused by uneven magnetization or jitter of the rotating part Even if the magnetic flux intensity is changed, the rotation position can be detected stably.

本發明的第七形態的編碼器根據所述第一形態至第六形態中的任一形態,其特徵在於,所述磁鐵是在圓周方向上交替地磁化有多個N極及S極的第一旋轉磁鐵,且所述編碼器包括能夠與所述第一旋轉磁鐵一同旋轉並且在圓周方向上磁化有N極及S極的第二旋轉磁鐵、以及檢測所述第二旋轉磁鐵的位置的第二旋轉磁鐵用磁敏元件。 An encoder according to a seventh aspect of the present invention is any one of the first to sixth aspects, characterized in that the magnet is a magnet having a plurality of N poles and S poles alternately magnetized in the circumferential direction A rotating magnet, and the encoder includes a second rotating magnet that can rotate together with the first rotating magnet and has N poles and S poles magnetized in the circumferential direction, and a first that detects the position of the second rotating magnet Two magnetosensitive elements for rotating magnets.

根據本形態,利用第二旋轉磁鐵及第二旋轉磁鐵用磁敏元件,不但可以檢測旋轉磁鐵(第一旋轉磁鐵)的旋轉量,而且可以檢測絕對位置。 According to this aspect, the second rotating magnet and the second rotating magnet magneto-sensitive element can detect not only the amount of rotation of the rotating magnet (first rotating magnet) but also the absolute position.

本發明的第八形態的編碼器根據所述第一形態至第七形態中的任一形態,其特徵在於,所述磁敏元件傳感器部由所述第一磁敏元件傳感器部及所述第二磁敏元件傳感器部兩者所構成。 An encoder of an eighth aspect of the present invention is any one of the first to seventh aspects, characterized in that the magnetic sensor element is composed of the first magnetic element sensor and the first The two magnetic sensor elements are composed of both.

根據本形態,磁敏元件傳感器部包括第一磁敏元件傳感器部及第二磁敏元件傳感器部兩者,所以能夠廉價地形成編碼器。 According to this aspect, the magnetic sensor element includes both the first magnetic sensor element and the second magnetic sensor element, so the encoder can be formed inexpensively.

本發明的第九形態的編碼器根據所述第一形態至第七形態中的任一形態,其特徵在於,所述編碼器是所述磁鐵是在圓周方向上交替地磁化有多個N極及S極的旋轉磁鐵的旋轉編碼器,作為所述磁敏元件傳感器部,除了所述第一磁敏元件傳感器部及所述第二磁敏元件傳感器部以外,至少在以所述旋轉磁鐵的旋轉軸為基準的所述第一磁敏元件傳感器部或所述第二磁敏元件傳感器部的相反側,設置有包括所述第一磁敏元件及所述第二磁敏元件的第三磁敏元件傳感器部。 An encoder according to a ninth aspect of the present invention is any one of the first to seventh aspects, characterized in that the encoder is such that the magnet is alternately magnetized with a plurality of N poles in the circumferential direction And the rotary encoder of the S-pole rotating magnet, as the magnetic sensor element, in addition to the first magnetic sensor element and the second magnetic sensor element, at least the rotating magnet On the opposite side of the first magneto-sensitive element sensor section or the second magneto-sensitive element sensor section based on the rotation axis, a third magnet including the first magneto-sensitive element and the second magneto-sensitive element is provided Sensitive element sensor section.

根據本形態,在以旋轉磁鐵的旋轉軸為基準的第一磁敏元件傳感器部或第二磁敏元件傳感器部的相反側設置有第三磁敏元件傳感器部,因此利用來自第一磁敏元件傳感器部或第二磁敏元件傳感器部的輸出(檢測結果)及來自第三磁敏元件傳感器部的輸出(檢測結果),即使在旋轉磁鐵中產生了磁通變動的情況下,也能夠抑制所述磁通變動的影響。 According to this aspect, since the third magneto-sensitive element sensor section is provided on the opposite side of the first magneto-sensitive element sensor section or the second magneto-sensitive element sensor section based on the rotation axis of the rotating magnet, the first magneto-sensitive element is used. The output (detection result) of the sensor section or the second magneto-sensitive element sensor section and the output (detection result) from the third magneto-sensitive element sensor section can suppress all changes even when a magnetic flux fluctuation occurs in the rotating magnet Describe the effects of flux changes.

本發明可以提供一種高精度並且能夠抑制外部磁通的影響的編碼器。 The present invention can provide an encoder with high accuracy and capable of suppressing the influence of external magnetic flux.

1:編碼器(旋轉編碼器) 1: Encoder (rotary encoder)

2:旋轉體 2: rotating body

10:固定體 10: fixed body

11:支撐構件 11: Supporting member

12:基體 12: substrate

13:傳感器支撐板 13: Sensor support plate

15:傳感器基板 15: Sensor substrate

16:端子 16: Terminal

17:連接器 17: connector

20:第二旋轉磁鐵 20: Second rotating magnet

21、31:磁化面 21, 31: magnetized surface

30:第一旋轉磁鐵 30: First rotating magnet

40、50:磁敏元件傳感器部(第二旋轉磁鐵用磁敏元件) 40, 50: Magnetic sensor element (magnetic sensor for the second rotating magnet)

41、42、43、44:磁阻圖案 41, 42, 43, 44: magnetoresistive pattern

51、52:磁敏元件傳感器部 51, 52: Magnetic sensor element

60:磁敏元件傳感器部(第一旋轉磁鐵用磁敏元件) 60: Magnetic sensor element (magnetic sensor for the first rotating magnet)

61:磁敏元件傳感器部(第一磁敏元件傳感器部) 61: Magnetic sensor element (first magnetic sensor element)

62:磁敏元件傳感器部(第二磁敏元件傳感器部) 62: Magnetic sensor element (second magnetic sensor element)

63:磁敏元件傳感器部(第三磁敏元件傳感器部) 63: Magnetic sensor element (third magnetic sensor element)

64:磁敏元件傳感器部(第四磁敏元件傳感器部) 64: magneto-sensitive element sensor section (fourth magneto-sensitive element sensor section)

70:第一磁敏元件 70: The first magnetic sensor

71、72、73、74、75、76、77、78:磁敏元件 71, 72, 73, 74, 75, 76, 77, 78: magnetic sensor

79:第二磁敏元件 79: Second magnetic sensor

90:數據處理部 90: Data Processing Department

91、92、93:放大器 91, 92, 93: amplifier

121:底板部 121: Floor section

122:開口部 122: opening

123:主體部 123: Main body

124:突起 124: protrusion

125:孔 125: hole

191、192、193:螺絲 191, 192, 193: screws

201、202、203、204:輸出線 201, 202, 203, 204: output line

cos、sin:正弦波信號 cos, sin: sine wave signal

GND:接地端子 GND: ground terminal

HE1N、HE2N:負輸出端子 HE1N, HE2N: negative output terminal

HE1P、HE2P:正輸出端子 HE1P, HE2P: positive output terminal

L:旋轉軸線方向 L: rotation axis direction

L1:旋轉軸線方向L上的一側 L1: One side in the rotation axis direction L

L2:L1側的相反側 L2: the opposite side of the L1 side

VC:電壓端子 VC: voltage terminal

圖1是表示應用有本發明的編碼器(旋轉編碼器)的外觀等的說明圖(立體圖)。 FIG. 1 is an explanatory diagram (perspective view) showing the appearance and the like of an encoder (rotary encoder) to which the present invention is applied.

圖2是表示應用有本發明的編碼器的外觀等的說明圖(俯視 圖)。 2 is an explanatory diagram showing the appearance and the like of an encoder to which the present invention is applied (plan view Figure).

圖3是表示切去應用有本發明的編碼器的固定體的一部分的側視圖。 Fig. 3 is a side view showing a part of a fixing body to which the encoder of the present invention is applied.

圖4是表示應用有本發明的編碼器的旋轉磁鐵及磁敏元件傳感器部的佈局的說明圖。 4 is an explanatory diagram showing the layout of a rotary magnet and a magnetic sensor element part to which the encoder of the present invention is applied.

圖5是表示應用有本發明的編碼器中的檢測原理的說明圖。 FIG. 5 is an explanatory diagram showing the principle of detection in an encoder to which the present invention is applied.

圖6是表示應用有本發明的編碼器中的檢測原理的說明圖。 6 is an explanatory diagram showing the principle of detection in an encoder to which the present invention is applied.

圖7是表示應用有本發明的編碼器中的角度位置的確定方法的基本的結構的說明圖。 7 is an explanatory diagram showing a basic configuration of a method for determining an angular position in an encoder to which the present invention is applied.

圖8是用於說明應用有本發明的編碼器中的相對於旋轉磁鐵的磁敏元件傳感器部的配置的概略俯視圖。 FIG. 8 is a schematic plan view for explaining the arrangement of the magnetic sensor element portion with respect to the rotating magnet in the encoder to which the present invention is applied.

圖9是用於說明應用有本發明的編碼器中的相對於旋轉磁鐵的磁敏元件傳感器部的配置的概略放大圖。 9 is a schematic enlarged view for explaining the arrangement of the magnetic sensor element portion with respect to the rotating magnet in the encoder to which the present invention is applied.

圖10是表示應用有本發明的編碼器中的磁敏元件傳感器部的配線的圖。 FIG. 10 is a diagram showing the wiring of the magnetic sensor element of the encoder to which the present invention is applied.

圖11是表示使用一個磁敏元件傳感器部,並且無外部磁通,無磁通變動,無旋轉磁鐵的旋轉偏離的情況下的利薩茹(Lissajous)圓的圖。 FIG. 11 is a diagram showing a Lissajous circle in the case where one magnetic sensor element is used, and there is no external magnetic flux, no variation in magnetic flux, and no rotation deviation of the rotating magnet.

圖12是表示使用兩個磁敏元件傳感器部,並且無外部磁通,無磁通變動,無旋轉磁鐵的旋轉偏離的情況下的利薩茹圓的圖。 FIG. 12 is a diagram showing a Lissajous circle when two magnetic sensor elements are used, and there is no external magnetic flux, no variation in magnetic flux, and no rotation deviation of the rotating magnet.

圖13是表示使用一個磁敏元件傳感器部,並且無外部磁通,無磁通變動,無旋轉磁鐵的旋轉偏離的情況下的檢測角度誤差的 圖。 13 is a diagram showing a detection angle error when a single magnetic sensor element is used, and there is no external magnetic flux, no magnetic flux fluctuation, and no rotation deviation of the rotating magnet Figure.

圖14是表示使用兩個磁敏元件傳感器部,並且無外部磁通,無磁通變動,無旋轉磁鐵的旋轉偏離的情況下的檢測角度誤差的圖。 14 is a diagram showing a detection angle error when two magnetic sensor elements are used, and there is no external magnetic flux, no magnetic flux fluctuation, and no rotation deviation of the rotating magnet.

圖15是表示使用一個磁敏元件傳感器部,並且有外部磁通,無磁通變動,無旋轉磁鐵的旋轉偏離的情況下的利薩茹圓的圖。 15 is a diagram showing a Lissajous circle in the case where one magneto-sensitive element sensor unit is used and there is external magnetic flux, no variation in magnetic flux, and no rotation deviation of the rotating magnet.

圖16是表示使用兩個磁敏元件傳感器部,並且有外部磁通,無磁通變動,無旋轉磁鐵的旋轉偏離的情況下的利薩茹圓的圖。 16 is a diagram showing a Lissajous circle when two magnetic sensor elements are used, and there is external magnetic flux, no magnetic flux fluctuation, and no rotation deviation of the rotating magnet.

圖17是表示使用一個磁敏元件傳感器部,並且有外部磁通,無磁通變動,無旋轉磁鐵的旋轉偏離的情況下的檢測角度誤差的圖。 FIG. 17 is a diagram showing a detection angle error when one magnetic sensor element is used and there is external magnetic flux, there is no variation in magnetic flux, and there is no deviation in rotation of the rotating magnet.

圖18是表示使用一個磁敏元件傳感器部,並且有外部磁通,有磁通變動,無旋轉磁鐵的旋轉偏離的情況下的利薩茹圓的圖。 FIG. 18 is a diagram showing a Lissajous circle when one magnetic sensor element is used, and there is external magnetic flux, there is magnetic flux variation, and there is no rotation deviation of the rotating magnet.

圖19是表示使用兩個磁敏元件傳感器部,並且有外部磁通,有磁通變動,無旋轉磁鐵的旋轉偏離的情況下的利薩茹圓的圖。 FIG. 19 is a diagram showing a Lissajous circle when two magnetic sensor elements are used, and there is external magnetic flux, there is magnetic flux variation, and there is no rotation deviation of the rotating magnet.

圖20是表示使用一個磁敏元件傳感器部,並且有外部磁通,有磁通變動,無旋轉磁鐵的旋轉偏離的情況下的檢測角度誤差的圖。 FIG. 20 is a diagram showing a detection angle error when one magnetic sensor element is used, and there is external magnetic flux, there is magnetic flux variation, and there is no rotation deviation of the rotating magnet.

圖21是表示使用兩個磁敏元件傳感器部,並且有外部磁通,有磁通變動,無旋轉磁鐵的旋轉偏離的情況下的檢測角度誤差的圖。 FIG. 21 is a diagram showing a detection angle error when two magnetic sensor elements are used, and there is external magnetic flux, there is magnetic flux variation, and there is no rotation deviation of the rotating magnet.

圖22是表示使用四個磁敏元件傳感器部,並且有外部磁通, 有磁通變動,有旋轉磁鐵的旋轉偏離的情況下的利薩茹圓的圖。 22 is a diagram showing the use of four magnetic sensor elements, and there is external magnetic flux, Diagram of Lissajous circle when there is magnetic flux fluctuation and rotation of the rotating magnet is deviated.

圖23是表示使用四個磁敏元件傳感器部,並且有外部磁通,有磁通變動,有旋轉磁鐵的旋轉偏離的情況下的檢測角度誤差的圖。 FIG. 23 is a diagram showing a detection angle error when four magnetic sensor elements are used, and there is external magnetic flux, there is magnetic flux variation, and there is a deviation in rotation of the rotating magnet.

圖24是用於說明應用有本發明的編碼器中的相對於旋轉磁鐵的磁敏元件傳感器部的配置的概略放大圖。 FIG. 24 is a schematic enlarged view for explaining the arrangement of the magnetic sensor element portion with respect to the rotating magnet in the encoder to which the present invention is applied.

圖25是表示應用有本發明的編碼器中的磁敏元件傳感器部的配線的圖。 25 is a diagram showing the wiring of the magnetic sensor element of the encoder to which the present invention is applied.

以下,說明本發明的編碼器(旋轉編碼器)的一個實施例。 Hereinafter, an embodiment of the encoder (rotary encoder) of the present invention will be described.

再者,在以下的說明中,對旋轉編碼器的一個實施例進行說明,但是本發明的編碼器並不限定於旋轉編碼器,例如也可以是線性編碼器(linear encoder)。 In addition, in the following description, an embodiment of a rotary encoder will be described. However, the encoder of the present invention is not limited to a rotary encoder, and may be, for example, a linear encoder.

再者,在以下的說明中,作為旋轉編碼器,以磁敏元件傳感器部包含磁鐵及磁敏元件(磁阻元件、霍爾元件)的磁式旋轉編碼器為中心進行說明。這時,可以採用在固定體上設置有磁鐵且在旋轉體上設置有磁敏元件的結構、以及在固定體上設置有磁敏元件且在旋轉體上設置有磁鐵的結構中的任一結構,但是在以下的說明中,是以在固定體上設置磁敏元件,在旋轉體上設置旋轉磁鐵的結構為中心進行說明。即,在以下的“旋轉磁鐵”中,也包括以所述旋轉磁鐵不旋轉,磁敏元件旋轉的結構而使用的情 況。並且,在以下參照的附圖中,示意性地表示了旋轉磁鐵及磁敏元件等的結構,存在例如對旋轉磁鐵中的磁極數量或來自磁敏元件的輸出線的條數等減少其數量而表示的情況。並且,為了易於理解結構,存在省略(簡化)表示一部分結構零件的情況。 In the following description, as the rotary encoder, a magnetic type rotary encoder in which the magnetic sensor element portion includes a magnet and a magnetic sensor (magnetoresistive element, Hall element) will be mainly described. At this time, any structure may be adopted in which the magnet is provided on the fixed body and the magneto-sensitive element is provided on the rotating body, and the magnetosensitive element is provided on the fixed body and the magnet is provided on the rotating body. However, in the following description, the description will focus on the structure in which the magnetosensitive element is provided on the fixed body and the rotating magnet is provided on the rotating body. That is, the following "rotating magnet" also includes a case where the rotating magnet does not rotate and the magnetic sensor rotates. condition. In the drawings referred to below, the structure of the rotating magnet and the magneto-sensitive element is schematically shown. For example, the number of magnetic poles in the rotating magnet or the number of output lines from the magneto-sensitive element may be reduced. The situation indicated. In addition, in order to make the structure easy to understand, there are cases where some structural components are omitted (simplified).

(整體結構) (the whole frame)

圖1是表示本實施例的編碼器1的外觀等的說明圖,是從旋轉軸線方向L上的一側(L1側)且傾斜方向觀察編碼器1的立體圖。並且,圖2是表示本實施例的編碼器1的外觀等的說明圖,是從旋轉軸線方向L上的一側(L1側)觀察的俯視圖。而且,圖3是表示切去本實施例的編碼器1的固定體10的一部分的側視圖。 FIG. 1 is an explanatory diagram showing the appearance and the like of the encoder 1 of the present embodiment, and is a perspective view of the encoder 1 viewed from one side (L1 side) in the rotation axis direction L (L1 side) and obliquely. 2 is an explanatory diagram showing the appearance and the like of the encoder 1 of the present embodiment, and is a plan view seen from one side (L1 side) in the rotation axis direction L. 3 is a side view showing a part of the fixed body 10 of the encoder 1 of this embodiment.

圖1至圖3所示的編碼器1是對旋轉體2相對於固定體10圍繞著軸線(圍繞著旋轉軸線)的旋轉進行磁性檢測的裝置,固定體10固定於馬達裝置的框架等,旋轉體2是在與馬達裝置的旋轉輸出軸等連結的狀態下使用。固定體10包括傳感器基板15、以及支撐傳感器基板15的多個支撐構件11,在本實施例中,支撐構件11包括包含形成有圓形的開口部122的底板部121的基體12、以及固定於基體12上的傳感器支撐板13。再者,在圖1至圖3中,雖然為了易於觀察內部結構而省略表示,但是在以旋轉軸線方向L為基準而與圖中的支撐構件11相向的位置上,形成有與所述支撐構件11同樣的結構的支撐構件11(在其中一個支撐構件11上形成有後述的磁敏元件傳感器部61及磁敏元件傳感器部62,在另一個支撐構件11上形成有後述的磁敏元件傳感器部63 及磁敏元件傳感器部64)。並且,在各個支撐構件11上,設置有具有霍爾元件即磁敏元件的磁敏元件傳感器部60(磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64,參照圖4),其詳細情況將在後文描述。磁敏元件傳感器部60是包括檢測磁場的方向的磁敏元件的磁敏元件傳感器部,所述磁場是由在磁化面31上在圓周方向上交替地磁化有多個N極及S極的第一旋轉磁鐵30所形成。 The encoder 1 shown in FIGS. 1 to 3 is a device that magnetically detects the rotation of the rotating body 2 relative to the fixed body 10 around the axis (around the rotation axis). The fixed body 10 is fixed to the frame of the motor device, etc., and rotates The body 2 is used in a state of being connected to a rotary output shaft of a motor device or the like. The fixed body 10 includes a sensor substrate 15 and a plurality of support members 11 that support the sensor substrate 15. In this embodiment, the support member 11 includes a base body 12 including a bottom plate portion 121 formed with a circular opening 122 and a base 12 fixed to The sensor support plate 13 on the base 12. In addition, in FIGS. 1 to 3, although the illustration is omitted for easy observation of the internal structure, the support member 11 is formed at a position facing the support member 11 in the drawing with the rotation axis direction L as a reference 11 A support member 11 having the same structure (one of the support members 11 is formed with a magneto-sensitive element sensor section 61 and a magneto-sensitive element sensor section 62 described later, and the other support member 11 is formed with a magneto-sensitive element sensor section described below 63 And magnetic sensor element 64). In addition, each support member 11 is provided with a magnetic sensor element 60 (magnetic sensor element 61, magnetic sensor element 62, magnetic sensor element 63, and magnetic sensor The element sensor section 64, see FIG. 4), the details of which will be described later. The magneto-sensitive element sensor section 60 is a magneto-sensitive element sensor section that includes a magneto-sensitive element that detects the direction of a magnetic field caused by a plurality of N poles and S poles alternately magnetized in the circumferential direction on the magnetized surface 31 A rotating magnet 30 is formed.

傳感器支撐板13是通過螺絲191、螺絲192等而固定於大致圓筒狀的主體部123,所述大致圓筒狀的主體部123是在基體12上從開口部122的邊緣部分向旋轉軸線方向L上的一側即L1側突出。再者,在圖1及圖3中,將旋轉軸線方向L上的L1側的相反側表示為L2側。從傳感器支撐板13向旋轉軸線方向L上的L1側突出有多根端子16。在主體部123中位於旋轉軸線方向L上的L1側的端面上,形成有突起124或孔125等,利用所述孔125等,在主體部123上利用螺絲193等而固定有傳感器基板15。這時,傳感器基板15是以被突起124等定位於規定位置的狀態而高精度地固定。 The sensor support plate 13 is fixed to a substantially cylindrical body portion 123 by screws 191, screws 192, and the like, and the substantially cylindrical body portion 123 is on the base body 12 from the edge portion of the opening 122 in the direction of the rotation axis One side on L, that is, the L1 side protrudes. In addition, in FIGS. 1 and 3, the side opposite to the L1 side in the rotation axis direction L is indicated as the L2 side. A plurality of terminals 16 protrude from the sensor support plate 13 toward the L1 side in the rotation axis direction L. On the end surface of the body portion 123 located on the L1 side in the rotation axis direction L, protrusions 124, holes 125, and the like are formed, and the sensor substrate 15 is fixed to the body portion 123 with screws 193 and the like through the holes 125 and the like. At this time, the sensor substrate 15 is fixed with high accuracy in a state where it is positioned at a predetermined position by the protrusion 124 or the like.

在傳感器基板15中,在旋轉軸線方向L上的L1側的面上設置有連接器17。此外,在傳感器基板15上,設置有磁阻(magnetic resistance,MR)元件(MR元件)即磁敏元件傳感器部40、以及霍爾元件即磁敏元件傳感器部50。磁敏元件傳感器部40以及磁敏元件傳感器部50是檢測磁場的方向的磁敏元件,所述 磁場是由在磁化面21上磁化有各一個N極及S極的第二旋轉磁鐵20所形成。 In the sensor substrate 15, a connector 17 is provided on the surface on the L1 side in the rotation axis direction L. In addition, the sensor substrate 15 is provided with a magnetic resistance (MR) element (MR element) as a magnetic sensor element sensor section 40 and a Hall element as a magnetic sensor element sensor section 50. The magneto-sensitive element sensor section 40 and the magneto-sensitive element sensor section 50 are magneto-sensitive elements that detect the direction of the magnetic field. The magnetic field is formed by the second rotating magnet 20 having an N pole and an S pole each magnetized on the magnetized surface 21.

旋轉體2是包括第一旋轉磁鐵30及第二旋轉磁鐵20等,配置於主體部123的內側的圓筒狀的構件,在所述旋轉體2的內側通過嵌合等的方法而連結著馬達的旋轉輸出軸(未圖示)。因此,旋轉體2能夠圍繞著軸線旋轉。 The rotating body 2 includes a first rotating magnet 30, a second rotating magnet 20, and the like, and is a cylindrical member disposed inside the body portion 123, and the motor is connected to the inside of the rotating body 2 by a method such as fitting. Rotating output shaft (not shown). Therefore, the rotating body 2 can rotate around the axis.

(旋轉磁鐵及磁敏元件傳感器部的佈局) (Layout of rotating magnet and magnetic sensor element)

圖4是表示本實施例的編碼器1的旋轉磁鐵及磁敏元件傳感器部的佈局的說明圖。再者,在圖4中,箭頭是第一旋轉磁鐵30的旋轉方向。並且,圖4中的數據處理部90包括基於預先存儲於未圖示的存儲器中的程序而運行的中央處理器(Central Processing Unit,CPU)等。 4 is an explanatory diagram showing the layout of the rotating magnet and the magnetic sensor element portion of the encoder 1 of this embodiment. Furthermore, in FIG. 4, the arrow indicates the rotation direction of the first rotating magnet 30. In addition, the data processing unit 90 in FIG. 4 includes a central processing unit (CPU) or the like that operates based on a program stored in a memory not shown in advance.

如圖3所示,在本實施例的編碼器1中,設置有以下說明的多個磁敏元件傳感器部(檢測第一旋轉磁鐵30的磁場的四個磁敏元件傳感器部60、以及檢測第二旋轉磁鐵20的磁場的磁敏元件傳感器部40及兩個磁敏元件傳感器部50)。 As shown in FIG. 3, in the encoder 1 of the present embodiment, a plurality of magneto-sensitive element sensor sections (four magneto-sensitive element sensor sections 60 that detect the magnetic field of the first rotating magnet 30 and The magnetic sensor element portion 40 of the magnetic field of the two rotating magnets 20 and the two magnetic element sensor portions 50).

本實施例的編碼器1在旋轉體2之側,在相對於第二旋轉磁鐵20在徑向外側相離的位置上具有第一旋轉磁鐵30,所述第一旋轉磁鐵30是使在圓周方向上交替地磁化有多個N極及S極的環狀的磁化面31朝向旋轉軸線方向L上的L1側。在本實施例的第一旋轉磁鐵30中,形成有共計32對的N極與S極的對。但是,N極與S極的對數並不限定於32對。並且,本實施例的編碼器1 在固定體10之側,包括相對於第一旋轉磁鐵30的磁化面31在旋轉軸線方向L上的L1側相向的磁敏元件傳感器部60(磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64)。關於磁敏元件傳感器部60(磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64)的詳細情況將在後文描述。 The encoder 1 of this embodiment has a first rotating magnet 30 on the side of the rotating body 2 at a position radially outward relative to the second rotating magnet 20. The first rotating magnet 30 is arranged in the circumferential direction The ring-shaped magnetized surface 31 having a plurality of N poles and S poles alternately magnetized toward the L1 side in the rotation axis direction L. In the first rotating magnet 30 of the present embodiment, a total of 32 pairs of N poles and S poles are formed. However, the number of pairs of N poles and S poles is not limited to 32 pairs. Also, the encoder 1 of this embodiment On the side of the fixed body 10, a magneto-sensitive element sensor section 60 (magneto-sensitive element sensor section 61, magneto-sensitive element sensor section 62) opposite to the magnetization surface 31 of the first rotating magnet 30 in the rotation axis direction L on the L1 side is included , The magnetic sensor element 63 and the magnetic sensor element 64). The details of the magnetic sensor element 60 (the magnetic sensor element 61, the magnetic sensor element 62, the magnetic sensor element 63, and the magnetic sensor element 64) will be described later.

本實施例的編碼器1包括使在圓周方向上磁化有各一個N極及S極的磁化面21朝向旋轉軸線方向L上的L1側的第二旋轉磁鐵20。並且,本實施例的編碼器1在固定體10之側,包括相對於第二旋轉磁鐵20的磁化面21在旋轉軸線方向L上的L1側相向的磁敏元件傳感器部40、以及相對於第二旋轉磁鐵20的磁化面21在旋轉軸線方向L上的L1側相向的磁敏元件傳感器部50(磁敏元件傳感器部51及磁敏元件傳感器部52)。磁敏元件傳感器部52配置於相對於磁敏元件傳感器部51圍繞著旋轉中心軸線(圓周方向)以機械角度計偏離90°的位置上。 The encoder 1 of the present embodiment includes a second rotating magnet 20 having a magnetized surface 21 magnetized with one N pole and one S pole in the circumferential direction toward the L1 side in the rotation axis direction L. Also, the encoder 1 of the present embodiment includes a magneto-sensitive element sensor portion 40 opposed to the magnetization surface 21 of the second rotating magnet 20 on the L1 side in the rotation axis direction L on the side of the fixed body 10, and The magneto-sensitive element sensor portion 50 (the magneto-sensitive element sensor portion 51 and the magneto-sensitive element sensor portion 52) of the magnetized surface 21 of the two rotating magnets 20 facing the L1 side in the rotation axis direction L. The magnetic sensor element 52 is arranged at a position that is offset from the magnetic sensor element 51 by 90° in a mechanical angle around the rotation center axis (circumferential direction).

第一旋轉磁鐵30及第二旋轉磁鐵20與旋轉體2一體地圍繞著旋轉軸線旋轉。第二旋轉磁鐵20包括圓盤狀的永久磁鐵。第一旋轉磁鐵30呈圓筒狀,配置於相對於第二旋轉磁鐵20在徑向外側相離的位置上。第一旋轉磁鐵30及第二旋轉磁鐵20包括粘接磁鐵(bonded magnet)等。 The first rotating magnet 30 and the second rotating magnet 20 rotate around the axis of rotation integrally with the rotating body 2. The second rotating magnet 20 includes a disc-shaped permanent magnet. The first rotating magnet 30 has a cylindrical shape, and is arranged at a position radially outward from the second rotating magnet 20. The first rotating magnet 30 and the second rotating magnet 20 include bonded magnets and the like.

磁敏元件傳感器部40是包括相對於第二旋轉磁鐵20相互以電角度計具有90°的相位差的A相(SIN)的磁阻圖案及B相 (COS)的磁阻圖案的磁阻元件。在所述磁敏元件傳感器部40中,A相的磁阻圖案包括具有180°的相位差而進行旋轉體2的移動檢測的+a相(SIN+)的磁阻圖案43及-a相(SIN-)的磁阻圖案41。B相的磁阻圖案包括具有180°的相位差而進行旋轉體2的移動檢測的+b相(COS+)的磁阻圖案44及-b相(COS-)的磁阻圖案42。在這裡,+a相的磁阻圖案43及-a相的磁阻圖案41構成橋接電路(bridge circuit),+b相的磁阻圖案44及-b相的磁阻圖案42也與+a相的磁阻圖案43及-a相的磁阻圖案41同樣地構成橋接電路。 The magneto-sensitive element sensor section 40 is a magnetoresistive pattern including a phase A (SIN) and a phase B that have a phase difference of 90° with respect to the second rotating magnet 20 in an electrical angle. (COS) magnetoresistive element with a magnetoresistive pattern. In the magneto-sensitive element sensor section 40, the A-phase magnetoresistive pattern includes the +a-phase (SIN+) magnetoresistive pattern 43 and the -a-phase (SIN) having a phase difference of 180° to detect the movement of the rotating body 2 -)的 magnetoresistive pattern 41. The B-phase magnetoresistive pattern includes a +b-phase (COS+) magnetoresistive pattern 44 and a -b-phase (COS-) magnetoresistive pattern 42 having a phase difference of 180° to detect the movement of the rotating body 2. Here, the +a-phase magnetoresistive pattern 43 and the -a-phase magnetoresistive pattern 41 constitute a bridge circuit, and the +b-phase magnetoresistive pattern 44 and the -b-phase magnetoresistive pattern 42 also correspond to the +a-phase The magnetoresistive pattern 43 and the -a phase magnetoresistive pattern 41 similarly constitute a bridge circuit.

在本實施例中,磁敏元件傳感器部40、磁敏元件傳感器部51、磁敏元件傳感器部52及磁敏元件傳感器部60(磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64)均設置於傳感器基板15的旋轉軸線方向L上的L2側的面上(參照圖3)。並且,在傳感器基板15上,設置有與磁敏元件傳感器部40電連接的放大器91、與磁敏元件傳感器部50電連接的放大器92、及與磁敏元件傳感器部60電連接的放大器93。並且,將輸出線201從磁敏元件傳感器部61經由放大器93連接至數據處理部90為止,使來自磁敏元件傳感器部62的輸出線202連接於輸出線201,使來自磁敏元件傳感器部63的輸出線203在比輸出線201與輸出線202的連接點更靠數據處理部90側連接於輸出線201,使來自磁敏元件傳感器部64的輸出線204連接於輸出線203。再者,在圖4中,輸出線201、輸出線202、 輸出線203及輸出線204是簡化地表達(詳細情況參照圖10)。 In this embodiment, the magneto-sensitive element sensor section 40, the magneto-sensitive element sensor section 51, the magneto-sensitive element sensor section 52, and the magneto-sensitive element sensor section 60 (magneto-sensitive element sensor section 61, magneto-sensitive element sensor section 62, magneto-sensitive The element sensor portion 63 and the magnetic sensor element portion 64) are both provided on the surface on the L2 side in the rotation axis direction L of the sensor substrate 15 (see FIG. 3 ). In addition, the sensor substrate 15 is provided with an amplifier 91 electrically connected to the magnetic sensor element 40, an amplifier 92 electrically connected to the magnetic sensor element 50, and an amplifier 93 electrically connected to the magnetic sensor element 60. Then, the output line 201 is connected from the magnetic sensor element 61 to the data processor 90 via the amplifier 93, the output wire 202 from the magnetic sensor element 62 is connected to the output line 201, and the magnetic wire sensor 63 is connected The output line 203 is connected to the output line 201 closer to the data processing unit 90 side than the connection point of the output line 201 and the output line 202, and the output line 204 from the magnetic sensor element 64 is connected to the output line 203. Furthermore, in FIG. 4, the output line 201, the output line 202, The output line 203 and the output line 204 are simply expressed (see FIG. 10 for details).

本實施例的編碼器1通過形成為如上所述的佈局,可以根據磁敏元件傳感器部40及磁敏元件傳感器部50的檢測結果,檢測出第二旋轉磁鐵20的粗略的絕對位置(即,旋轉體2的粗略的絕對位置)。此外,根據磁敏元件傳感器部60的檢測結果,可以檢測出第一旋轉磁鐵30的詳細旋轉量(即旋轉體2的詳細旋轉量)。並且,基於磁敏元件傳感器部40及磁敏元件傳感器部50的檢測結果及磁敏元件傳感器部60的檢測結果,可以檢測出旋轉體2的詳細絕對位置(角度位置)。 The encoder 1 of this embodiment is configured as described above, and can detect the rough absolute position of the second rotating magnet 20 based on the detection results of the magnetic sensor element 40 and the magnetic sensor element 50 (ie, The rough absolute position of the rotating body 2). Further, based on the detection result of the magnetic sensor element section 60, the detailed rotation amount of the first rotating magnet 30 (that is, the detailed rotation amount of the rotating body 2) can be detected. Further, based on the detection results of the magnetic sensor element section 40 and the magnetic sensor element section 50 and the detection results of the magnetic sensor element section 60, the detailed absolute position (angular position) of the rotating body 2 can be detected.

本實施例的編碼器1如上所述,使用霍爾元件作為磁敏元件傳感器部60,但是也可以使用磁阻元件(MR元件)作為磁敏元件傳感器部60。當使用磁阻元件作為磁敏元件傳感器部60時,作為第一旋轉磁鐵30,不是如本實施例那樣包含在圓周方向上一周份交替地磁化有多個N極及S極的環狀的磁化面31的結構的磁鐵,而可以使用包含如下磁化面31的結構的磁鐵,所述磁化面31構成為在圓周方向上在內側及外側兩周份交替地磁化有多個N極與S極,在所述內側及所述外側上,N極與S極互不相同(方格花紋:交錯)。當使用磁阻元件作為磁敏元件傳感器部60時,通過使用這種第一旋轉磁鐵30,可以利用磁阻元件來檢測圓周方向上的磁場的變化及徑向上的磁場的變化,即檢測旋轉磁場。 The encoder 1 of this embodiment uses the Hall element as the magnetic sensor element 60 as described above, but a magnetoresistive element (MR element) may be used as the magnetic sensor element 60. When a magnetoresistive element is used as the magneto-sensitive element sensor section 60, the first rotating magnet 30 does not include a ring-shaped magnetization in which a plurality of N poles and S poles are alternately magnetized in a circumferential direction in the circumferential direction as in the present embodiment. For the magnet having the structure of the surface 31, a magnet including the structure of the magnetization surface 31 which is configured such that a plurality of N poles and S poles are alternately magnetized in the circumferential direction on both the inside and the outside can be used. On the inner side and the outer side, the N pole and the S pole are different from each other (checkered pattern: staggered). When a magnetoresistive element is used as the magneto-sensitive element sensor section 60, by using such a first rotating magnet 30, it is possible to use the magnetoresistive element to detect changes in the magnetic field in the circumferential direction and changes in the magnetic field in the radial direction, that is, to detect the rotating magnetic field .

(角度位置的檢測原理) (Detection principle of angular position)

圖5是表示本實施例的編碼器1中的檢測原理的說明圖,是 從磁敏元件傳感器部輸出的信號等的說明圖。並且,圖6是表示本實施例的編碼器1中的檢測原理的說明圖,是表示圖5中表示的信號與旋轉體2的角度位置(電角度)的關係的說明圖。而且,圖7是表示本實施例的編碼器1中的角度位置的確定方法的基本結構的說明圖。 FIG. 5 is an explanatory diagram showing the principle of detection in the encoder 1 of this embodiment. An explanatory diagram of signals and the like output from the magnetic sensor element. 6 is an explanatory diagram showing the detection principle in the encoder 1 of the present embodiment, and is an explanatory diagram showing the relationship between the signal shown in FIG. 5 and the angular position (electrical angle) of the rotating body 2. 7 is an explanatory diagram showing the basic structure of the method of determining the angular position in the encoder 1 of this embodiment.

如圖4所示,在本實施例的編碼器1中,磁敏元件傳感器部40、磁敏元件傳感器部50及磁敏元件傳感器部60的輸出是經由放大器91、放大器92及放大器93而輸出至包含進行插值處理或各種運算處理的CPU等的數據處理部90。數據處理部90基於來自磁敏元件傳感器部40、磁敏元件傳感器部50及磁敏元件傳感器部60的輸出,求出相對於固定體10的旋轉體2的角度位置(絕對位置)。 As shown in FIG. 4, in the encoder 1 of this embodiment, the outputs of the magnetic sensor element 40, the magnetic sensor element 50, and the magnetic sensor element 60 are output via the amplifier 91, the amplifier 92, and the amplifier 93 The data processing unit 90 includes a CPU and the like that perform interpolation processing or various arithmetic processing. The data processing unit 90 obtains the angular position (absolute position) of the rotating body 2 relative to the fixed body 10 based on the outputs from the magnetic sensor element unit 40, the magnetic sensor element unit 50, and the magnetic sensor element unit 60.

更具體地說,在編碼器1中,如果旋轉體2旋轉一圈,第二旋轉磁鐵20的磁化面21的磁通就如圖5的最上方的正弦波所示發生變化。如果旋轉體2旋轉一圈,第二旋轉磁鐵20就旋轉一圈,因此從磁敏元件傳感器部40,如圖5的從上方起第二個正弦波所示,輸出兩個週期份的正弦波信號sin、正弦波信號cos。因此,在數據處理部90中,如圖6所示,只要根據正弦波信號sin、正弦波信號cos求出θ=tan-1(sin/cos),就可知旋轉體2的角度位置θ。並且,在本實施例中,在從第二旋轉磁鐵20的中心觀察偏離90°的位置上,均配置有作為霍爾元件的磁敏元件傳感器部51及磁敏元件傳感器部52。因此,如由圖5的從上方起第三個波 形及圖5的最下方的波形可知那樣,可知當前位置是否位於正弦波信號sin、正弦波信號cos中的任一區間,所以可知旋轉體2的絕對角度位置。 More specifically, in the encoder 1, if the rotating body 2 rotates once, the magnetic flux of the magnetized surface 21 of the second rotating magnet 20 changes as indicated by the uppermost sine wave in FIG. 5. If the rotating body 2 rotates once, the second rotating magnet 20 rotates once. Therefore, from the magnetic sensor element 40, as shown in the second sine wave from above in FIG. 5, a sine wave of two cycles is output Signal sin, sine wave signal cos. Therefore, in the data processing unit 90, as shown in FIG. 6, as long as θ=tan-1(sin/cos) is obtained from the sine wave signal sin and the sine wave signal cos, the angular position θ of the rotating body 2 can be known. Furthermore, in this embodiment, the magnetic sensor element 51 and the magnetic sensor element 52 as Hall elements are arranged at positions offset by 90° from the center of the second rotating magnet 20. Therefore, as shown in Figure 5 from the top of the third wave As can be seen from the waveform at the bottom of FIG. 5, it can be known whether the current position is in any one of the sine wave signal sin and the sine wave signal cos, so the absolute angular position of the rotating body 2 can be known.

並且,關於磁敏元件傳感器部60的詳細結構將在後文描述,各個磁敏元件傳感器部60(磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64)包括第一磁敏元件70(參照圖8)、以及與所述第一磁敏元件70以電角度計具有90°的相位差(以第一旋轉磁鐵30的相位為基準的相位差)的位置上的第二磁敏元件79(參照圖8)。並且,在本實施例的編碼器1中,是使用包含在圓周方向上交替地磁化有多個N極及S極的環狀的磁化面31的第一旋轉磁鐵30,每當旋轉體2旋轉第一旋轉磁鐵30的磁極的一個週期份時,就從與所述第一旋轉磁鐵30相向的各個磁敏元件傳感器部60(磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64)輸出正弦波信號sin、正弦波信號cos。詳細地說,從第一磁敏元件70輸出正弦波信號cos,從第二磁敏元件79輸出正弦波信號sin。因此,關於從各個磁敏元件傳感器部60輸出的正弦波信號sin、正弦波信號cos,也如圖6所示,只要根據正弦波信號sin、正弦波信號cos求出θ=tan-1(sin/cos),就可知相當於第一旋轉磁鐵30的磁極的一個週期份的角度內的旋轉體2的角度位置θ。 The detailed structure of the magnetic sensor element 60 will be described later. Each magnetic sensor element 60 (magnetic sensor element 61, magnetic element sensor 62, magnetic element sensor 63, and magnetic element The sensor portion 64) includes a first magneto-sensitive element 70 (see FIG. 8), and a phase difference of 90° with the first magneto-sensitive element 70 in an electrical angle (a phase based on the phase of the first rotating magnet 30 The second magneto-sensitive element 79 (see FIG. 8) at the position of the difference). Furthermore, in the encoder 1 of the present embodiment, the first rotating magnet 30 including a ring-shaped magnetized surface 31 having a plurality of N poles and S poles alternately magnetized in the circumferential direction is used, and each time the rotating body 2 rotates When the magnetic pole of the first rotating magnet 30 is divided into one period, the magnetic sensor elements 60 (the magnetic sensor element 61, the magnetic sensor element 62, the magnetic sensor The sensor section 63 and the magnetic sensor element section 64) output a sine wave signal sin and a sine wave signal cos. In detail, the sine wave signal cos is output from the first magnetic sensor 70, and the sine wave signal sin is output from the second magnetic sensor 79. Therefore, as for the sine wave signal sin and the sine wave signal cos output from the respective magnetic sensor elements 60, as shown in FIG. 6, as long as θ=tan-1(sin is obtained from the sine wave signal sin and the sine wave signal cos /cos), the angular position θ of the rotating body 2 within an angle corresponding to one period of the magnetic pole of the first rotating magnet 30 is known.

因此,在本實施例中,基於旋轉一圈一個週期的絕對角 度數據(圖7的最上方的數據)及旋轉一圈N個週期的增量(incremental)角度數據(圖7的從上方起第二個數據),來檢測旋轉體2的瞬間的角度位置。因此,即使在旋轉一圈一個週期的絕對角度數據的分辨率低的情況下,也如高分辨率絕對值數據(圖7的最下方的數據)所示,可以獲得分辨率高的絕對角度數據。 Therefore, in this embodiment, based on the absolute angle of one revolution and one cycle Degree data (the uppermost data in FIG. 7) and incremental angular data for N cycles of one revolution (the second data from the top in FIG. 7) detect the instantaneous angular position of the rotating body 2. Therefore, even when the resolution of the absolute angle data of one revolution and one cycle is low, as shown in the high-resolution absolute value data (the lowermost data in FIG. 7 ), the absolute angle data of high resolution can be obtained .

採用所述檢測方式時,製作將旋轉一圈一個週期的絕對角度數據內插分割成第一旋轉磁鐵30的磁極對的數量(N為2以上的正整數)的第二絕對角度數據,檢測瞬間來自磁敏元件傳感器部40及磁敏元件傳感器部50的輸出位於第二絕對角度數據的週期1、2......n-1、n、n+1......N中的哪個週期。並且,檢測瞬間來自磁敏元件傳感器部60的輸出相當於增量角度數據的週期1、2......m-1、m、m+1......N中的哪個位置。並且,將瞬間的磁敏元件傳感器部40及磁敏元件傳感器部50中的輸出位於第二絕對角度數據的哪個週期設為數字數據的上位數據,將來自磁敏元件傳感器部60的輸出相當於增量角度數據的哪個位置設為數字數據的下位數據,檢測瞬間的旋轉體2的絕對角度位置。 In the detection method described above, second absolute angle data is prepared by interpolating and dividing the absolute angle data of one rotation and one cycle into the number of magnetic pole pairs of the first rotating magnet 30 (N is a positive integer of 2 or more), and the detection instant is The outputs from the magneto-sensitive element sensor section 40 and the magneto-sensitive element sensor section 50 are located in the period 1, 2...n-1, n, n+1...N of the second absolute angle data Which period of time. Also, it is detected at which position in the period 1, 2...m-1, m, m+1...N that the output from the magnetic sensor element 60 corresponds to the incremental angle data at the moment . In addition, the period of the second absolute angle data at which the output of the magnetic sensor element unit 40 and the magnetic sensor element unit 50 at the instant is set as the superordinate data of the digital data, and the output from the magnetic sensor element unit 60 is equivalent to Which position of the incremental angle data is the lower data of the digital data, and detects the absolute angular position of the rotating body 2 at the instant.

在圖4所示的數據處理部90中,設置有存儲第二絕對角度數據及增量角度數據的未圖示的存儲器。此外,在數據處理部90中,設置有未圖示的角度位置確定部,所述角度位置確定部是基於瞬間的來自磁敏元件傳感器部40及磁敏元件傳感器部50的輸出、瞬間的來自磁敏元件傳感器部60的輸出、存儲於存儲器中的第二絕對角度數據及存儲於存儲器中的增量角度數據,確定瞬 間的旋轉體2的絕對角度位置。 The data processing unit 90 shown in FIG. 4 is provided with a memory (not shown) that stores the second absolute angle data and the incremental angle data. In addition, the data processing unit 90 is provided with an angular position determination unit (not shown) based on the instantaneous output from the magnetic sensor element unit 40 and the magnetic sensor element unit 50 and the instantaneous The output of the magnetic sensor element 60, the second absolute angle data stored in the memory, and the incremental angle data stored in the memory determine the instant The absolute angular position of the rotating body 2 between.

(相對於第一旋轉磁鐵30的磁敏元件傳感器部60的配置) (Arrangement of the magnetic sensor element 60 relative to the first rotating magnet 30)

其次,說明本實施例的編碼器1的磁敏元件傳感器部60的結構、以及相對於第一旋轉磁鐵30的各個磁敏元件傳感器部60的配置。 Next, the configuration of the magneto-sensitive element sensor section 60 of the encoder 1 of this embodiment and the arrangement of the magneto-sensitive element sensor sections 60 with respect to the first rotating magnet 30 will be described.

在這裡,圖8是用於說明本實施例的編碼器1中的相對於第一旋轉磁鐵30的磁敏元件傳感器部60(磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64)的配置的概略俯視圖。再者,在圖8中,箭頭是第一旋轉磁鐵30的旋轉方向。並且,圖9是用於說明本實施例的編碼器1中的相對於第一旋轉磁鐵30的磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64的配置的概略放大圖。並且,圖10是表示本實施例的編碼器1中的相對於第一旋轉磁鐵30的磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64的配線的圖。 Here, FIG. 8 is a diagram for explaining the magneto-sensitive element sensor section 60 (magneto-sensitive element sensor section 61, magneto-sensitive element sensor section 62, magneto-sensitive element with respect to the first rotating magnet 30 in the encoder 1 of the present embodiment Schematic plan view of the arrangement of the sensor portion 63 and the magnetic sensor element 64). In addition, in FIG. 8, the arrow indicates the rotation direction of the first rotating magnet 30. 9 is a diagram for explaining the magnetic sensor element 61, the magnetic sensor element 62, the magnetic sensor element 63, and the magnetic sensor of the first rotary magnet 30 in the encoder 1 of this embodiment. A schematic enlarged view of the arrangement of the unit 64. FIG. 10 shows the magnetic sensor element 61, the magnetic sensor element 62, the magnetic sensor element 63, and the magnetic sensor element 64 relative to the first rotating magnet 30 in the encoder 1 of this embodiment. Diagram of the wiring.

如圖8及圖9所示,本實施例的磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64均包括兩個磁敏元件(第一磁敏元件70及第二磁敏元件79)。具體地說,磁敏元件傳感器部61包括作為第一磁敏元件70的磁敏元件71及作為第二磁敏元件79的磁敏元件72,磁敏元件傳感器部62包括作為第一磁敏元件70的磁敏元件73及作為第二磁敏 元件79的磁敏元件74,磁敏元件傳感器部63包括作為第一磁敏元件70的磁敏元件75及作為第二磁敏元件79的磁敏元件76,磁敏元件傳感器部64包括作為第一磁敏元件70的磁敏元件77及作為第二磁敏元件79的磁敏元件78。本實施例的磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64只是相對於第一旋轉磁鐵30的配置不同,其餘均相同。 As shown in FIGS. 8 and 9, the magnetic sensor element 61, the magnetic sensor element 62, the magnetic sensor element 63, and the magnetic sensor element 64 of this embodiment each include two magnetic elements (first The magneto-sensitive element 70 and the second magneto-sensitive element 79). Specifically, the magneto-sensitive element sensor section 61 includes the magneto-sensitive element 71 as the first magneto-sensitive element 70 and the magneto-sensitive element 72 as the second magneto-sensitive element 79, and the magneto-sensitive element sensor section 62 includes as the first magneto-sensitive element 70 magnetic sensitive element 73 and as the second magnetic sensitive The magnetic sensor 74 of the element 79, the magnetic sensor element 63 includes the magnetic sensor 75 as the first magnetic sensor 70 and the magnetic sensor 76 as the second magnetic sensor 79, and the magnetic sensor sensor 64 includes as the first A magnetic sensor 77 of a magnetic sensor 70 and a magnetic sensor 78 as a second magnetic sensor 79. The magnetic sensor element 61, the magnetic sensor element 62, the magnetic sensor element 63, and the magnetic sensor element 64 of this embodiment differ only in the arrangement with respect to the first rotating magnet 30, and the rest are the same.

並且,如圖9所示,在磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64中,第一磁敏元件70及第二磁敏元件79均配置於與第一旋轉磁鐵30的磁化面31的N極及S極相對應的以電角度計具有90°的相位差的位置(以磁週期計隔開1/4個週期份的位置)上。本實施例的磁敏元件傳感器部60通過形成為這種結構,而如上所述,每當旋轉體2旋轉第一旋轉磁鐵30的磁極的一個週期份時,就輸出正弦波信號sin、正弦波信號cos。 Furthermore, as shown in FIG. 9, in the magnetic sensor element 61, the magnetic sensor element 62, the magnetic sensor element 63, and the magnetic element sensor 64, the first magnetic element 70 and the second magnetic element 79 are arranged at positions corresponding to the N pole and S pole of the magnetized surface 31 of the first rotating magnet 30 with a phase difference of 90° in electrical angle (positions separated by 1/4 period in terms of magnetic period) )on. The magnetic sensor element 60 of this embodiment is formed in such a structure, and as described above, each time the rotating body 2 rotates one period of the magnetic pole of the first rotating magnet 30, a sine wave signal sin, a sine wave is output Signal cos.

並且,如圖9所示,磁敏元件傳感器部62配置於輸出相對於磁敏元件傳感器部61的輸出以電角度計具有540°的相位差的信號的位置(以磁週期計隔開一個半週期的位置)上。並且,如圖8及圖9所示,磁敏元件傳感器部63配置於相對於磁敏元件傳感器部61以機械角度偏離180°的位置(在圓周方向上以機械角度計偏離180°的位置)上,磁敏元件傳感器部64配置於相對於磁敏元件傳感器部62以機械角度計偏離180°的位置上。 Further, as shown in FIG. 9, the magnetic sensor element 62 is arranged to output a signal having a phase difference of 540° in electrical angle with respect to the output of the magnetic element sensor 61 (separated by one and a half on a magnetic period meter) Cycle position). Further, as shown in FIGS. 8 and 9, the magnetic sensor element 63 is disposed at a position that is 180° offset from the magnetic sensor element 61 by a mechanical angle (a position that is offset by 180° in the circumferential direction by a mechanical angle) In the above, the magnetic sensor element 64 is disposed at a position that is 180° offset from the magnetic sensor element 62 by a mechanical angle.

即,相對於來自磁敏元件傳感器部61的第一磁敏元件即 磁敏元件71的輸出,來自磁敏元件傳感器部62的第一磁敏元件即磁敏元件73的輸出中,正弦波信號cos以磁週期計偏離1/2個週期份。並且,相對於來自磁敏元件傳感器部61的第一磁敏元件即磁敏元件71的輸出,來自磁敏元件傳感器部63的第一磁敏元件即磁敏元件75的輸出沒有正弦波信號cos的相位偏離。而且,相對於來自磁敏元件傳感器部63的第一磁敏元件即磁敏元件75的輸出,來自磁敏元件傳感器部64的第一磁敏元件即磁敏元件77的輸出中,正弦波信號cos以磁週期計偏離1/2個週期份。 That is, with respect to the first magneto-sensitive element from the magneto-sensitive element sensor section 61, that is The output of the magnetic sensitive element 71 and the output of the magnetic sensitive element 73 which is the first magnetic sensitive element of the magnetic sensitive element sensor section 62 deviate from the sine wave signal cos by 1/2 period in terms of the magnetic period. In addition, the output of the first magnetic sensor 75 which is the first magnetic sensor from the magnetic sensor element 63 does not have a sine wave signal cos with respect to the output of the first magnetic sensor 71 which is the first magnetic sensor from the magnetic sensor element 61. Of phase deviation. In addition, with respect to the output of the first magnetic sensor element 64 that is the first magnetic sensor element of the magnetic sensor element portion 63, the sine wave signal Cos deviates by 1/2 period in terms of magnetic period.

同樣地,相對於來自磁敏元件傳感器部61的第二磁敏元件即磁敏元件72的輸出,來自磁敏元件傳感器部62的第二磁敏元件即磁敏元件74的輸出中,正弦波信號sin以磁週期計偏離1/2個週期份。並且,相對於來自磁敏元件傳感器部61的第二磁敏元件即磁敏元件72的輸出,來自磁敏元件傳感器部63的第二磁敏元件即磁敏元件76的輸出沒有正弦波信號sin的相位偏離。並且,相對於來自磁敏元件傳感器部63的第二磁敏元件即磁敏元件76的輸出,來自磁敏元件傳感器部64的第二磁敏元件即磁敏元件78的輸出中,正弦波信號sin以磁週期計偏離1/2個週期份。 Similarly, with respect to the output of the second magneto-sensitive element, ie, the magneto-sensitive element 72 from the magneto-sensitive element sensor section 61, the sine wave The signal sin deviates by 1/2 period in terms of magnetic period. Furthermore, the output of the second magnetic sensor element 63 which is the second magnetic sensor element of the magnetic sensor element 63 does not have a sinusoidal wave signal sin with respect to the output of the magnetic sensor element 72 which is the second magnetic sensor element of the magnetic sensor element 61 Of phase deviation. In addition, the sine wave signal is output from the output of the magnetic sensor 78 which is the second magnetic sensor of the magnetic sensor element 64 with respect to the output of the magnetic sensor 76 which is the second magnetic sensor of the magnetic sensor element 63. Sin deviates by 1/2 period in terms of magnetic period.

由於以上所述,在本實施例中,形成為如圖10所示那樣的配線。在這裡,圖中的VC表示電壓端子,GND表示接地端子,HE1P表示來自第一磁敏元件70的正輸出端子,HE1N表示來自第一磁敏元件70的負輸出端子,HE2P表示來自第二磁敏元件79的正輸出端子,HE2N表示來自第二磁敏元件79的負輸出端子。具 體地說,將磁敏元件傳感器部62的輸出線202正負極相反地連接於磁敏元件傳感器部61的輸出線201。並且,將磁敏元件傳感器部64的輸出線204正負極相反地連接於磁敏元件傳感器部63的輸出線203。並且,此外,將連接著輸出線204的輸出線203以正極彼此及負極彼此連接於連接著輸出線202的輸出線201。 As described above, in this embodiment, the wiring is formed as shown in FIG. 10. Here, VC in the figure represents the voltage terminal, GND represents the ground terminal, HE1P represents the positive output terminal from the first magnetic sensitive element 70, HE1N represents the negative output terminal from the first magnetic sensitive element 70, and HE2P represents the second magnetic The positive output terminal of the sensitive element 79, HE2N represents the negative output terminal from the second magnetic sensitive element 79. With Specifically, the positive and negative poles of the output line 202 of the magnetic sensor element 62 are connected to the output line 201 of the magnetic sensor element 61 in reverse. The positive and negative poles of the output line 204 of the magnetic sensor element 64 are connected to the output line 203 of the magnetic sensor element 63 in reverse. In addition, the output line 203 connected to the output line 204 is connected to the output line 201 connected to the output line 202 with positive electrodes and negative electrodes.

(本實施例的編碼器1的效果) (Effect of the encoder 1 of this embodiment)

其次,對本實施例的編碼器1的效果進行說明。 Next, the effect of the encoder 1 of this embodiment will be described.

在這裡,圖11是表示只使用一個磁敏元件傳感器部61,並且無外部磁通,無磁通變動,無旋轉磁鐵的旋轉偏離的情況下的利薩茹圓的圖。並且,圖12是表示使用兩個磁敏元件傳感器部61及磁敏元件傳感器部62,並且無外部磁通,無磁通變動,無旋轉磁鐵的旋轉偏離的情況下的利薩茹圓的圖。並且,圖13是表示只使用一個磁敏元件傳感器部61,並且無外部磁通,無磁通變動,無旋轉磁鐵的旋轉偏離的情況下的檢測角度誤差的圖。並且,圖14是表示使用兩個磁敏元件傳感器部61及磁敏元件傳感器部62,並且無外部磁通,無磁通變動,無旋轉磁鐵的旋轉偏離的情況下的檢測角度誤差的圖。並且,圖15是表示只使用一個磁敏元件傳感器部61,並且有外部磁通,無磁通變動,無旋轉磁鐵的旋轉偏離的情況下的利薩茹圓的圖。並且,圖16是表示使用兩個磁敏元件傳感器部61及磁敏元件傳感器部62,並且有外部磁通,無磁通變動,無旋轉磁鐵的旋轉偏離的情況下的利薩茹圓的圖。並且,圖17是表示只使用一個磁敏元件傳感器部61,並且有外部磁 通,無磁通變動,無旋轉磁鐵的旋轉偏離的情況下的檢測角度誤差的圖。並且,圖18是表示只使用一個磁敏元件傳感器部61,並且有外部磁通,有磁通變動,無旋轉磁鐵的旋轉偏離的情況下的利薩茹圓的圖。並且,圖19是表示使用兩個磁敏元件傳感器部61及磁敏元件傳感器部62,並且有外部磁通,有磁通變動,無旋轉磁鐵的旋轉偏離的情況下的利薩茹圓的圖。並且,圖20是表示只使用一個磁敏元件傳感器部61,並且有外部磁通,有磁通變動,無旋轉磁鐵的旋轉偏離的情況下的檢測角度誤差的圖。並且,圖21是表示使用兩個磁敏元件傳感器部61及磁敏元件傳感器部62,並且有外部磁通,有磁通變動,無旋轉磁鐵的旋轉偏離的情況下的檢測角度誤差的圖。並且,圖22是表示使用四個磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64,並且有外部磁通,有磁通變動,有旋轉磁鐵的旋轉偏離的情況下的利薩茹圓的圖。並且,圖23是表示使用四個磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64,並且有外部磁通,有磁通變動,有旋轉磁鐵的旋轉偏離的情況下的檢測角度誤差的圖。 Here, FIG. 11 is a diagram showing a Lissajous circle when only one magnetic sensor element 61 is used, and there is no external magnetic flux, no variation in magnetic flux, and no rotation deviation of the rotating magnet. 12 is a diagram showing the Lissajous circle when two magnetic sensor elements 61 and 62 are used, and there is no external magnetic flux, no magnetic flux fluctuation, and no rotation deviation of the rotating magnet . 13 is a diagram showing a detection angle error when only one magnetic sensor element 61 is used, and there is no external magnetic flux, no magnetic flux fluctuation, and no rotation deviation of the rotating magnet. 14 is a diagram showing a detection angle error when two magnetic sensor elements 61 and 62 are used, and there is no external magnetic flux, no magnetic flux fluctuation, and no rotation deviation of the rotating magnet. 15 is a diagram showing a Lissajous circle when only one magnetic sensor element 61 is used, and there is external magnetic flux, there is no magnetic flux variation, and there is no rotation deviation of the rotating magnet. 16 is a diagram showing a Lisaru circle when two magnetic sensor elements 61 and 62 are used, and there is external magnetic flux, no magnetic flux fluctuation, and no rotation deviation of the rotating magnet . Also, FIG. 17 shows that only one magnetic sensor element 61 is used, and there is an external magnetic A diagram of the detected angle error when there is no magnetic flux fluctuation and no rotation deviation of the rotating magnet. 18 is a diagram showing a Lissajous circle when only one magnetic sensor element 61 is used, and there is external magnetic flux, there is magnetic flux variation, and there is no rotation deviation of the rotating magnet. 19 is a diagram showing the Lissajous circle when two magnetic sensor elements 61 and 62 are used, and there is external magnetic flux, there is magnetic flux variation, and there is no rotation deviation of the rotating magnet . In addition, FIG. 20 is a diagram showing a detection angle error when only one magnetic sensor element 61 is used, and there is external magnetic flux, there is magnetic flux variation, and there is no rotation deviation of the rotating magnet. Furthermore, FIG. 21 is a diagram showing a detection angle error when two magnetic sensor elements 61 and 62 are used, and there is external magnetic flux, there is magnetic flux variation, and there is no rotation deviation of the rotating magnet. 22 shows the use of four magnetic sensor element 61, magnetic sensor element 62, magnetic sensor element 63 and magnetic element sensor 64, and there is external magnetic flux, there is magnetic flux fluctuations, there is rotation Diagram of Lisajo circle with rotation of magnet deviated. 23 shows the use of four magnetic sensor element 61, magnetic sensor element 62, magnetic element sensor 63 and magnetic element sensor 64, and there is an external magnetic flux, there is flux variation, there is rotation A diagram of the detected angle error when the rotation of the magnet deviates.

再者,圖11、圖15及圖18是將最高溫度(Max)設為25℃、-20℃、105℃的情況下、以及將最低溫度(Min)設為25℃、-20℃、105℃的情況下的將橫軸設為磁敏元件71的差動電壓(單位為V),將縱軸設為磁敏元件72的差動電壓(單位為V)的利薩茹圓。並且,圖12、圖16及圖19是將最高溫度設為25℃、 -20℃、105℃的情況下、以及將最低溫度設為25℃、-20℃、105℃的情況下的將橫軸設為磁敏元件71與磁敏元件73中的差動電壓(單位為V),將縱軸設為磁敏元件72與磁敏元件74中的差動電壓(單位為V)的利薩茹圓。並且,圖22是將最高溫度設為25℃、-20℃、105℃的情況下、以及將最低溫度設為25℃、-20℃、105℃的情況下的將橫軸設為磁敏元件71、磁敏元件73、磁敏元件75與磁敏元件77中的差動電壓(單位為V),將縱軸設為磁敏元件72、磁敏元件74、磁敏元件76與磁敏元件78中的差動電壓(單位為V)的利薩茹圓。 11, 15 and 18 are when the maximum temperature (Max) is set to 25°C, -20°C, 105°C, and the minimum temperature (Min) is set to 25°C, -20°C, 105 In the case of ℃, the horizontal axis is the Lissajous circle of the differential voltage (unit V) of the magnetic sensor 71 and the vertical axis is the differential voltage (unit V) of the magnetic sensor 72. In addition, in FIGS. 12, 16 and 19, the maximum temperature is set to 25°C, In the case of -20°C, 105°C, and when the minimum temperature is 25°C, -20°C, 105°C, the horizontal axis is the differential voltage (unit) between the magnetic sensor 71 and the magnetic sensor 73 Is V), and the vertical axis is the Lissajous circle of the differential voltage (in V) between the magnetic sensitive element 72 and the magnetic sensitive element 74. 22 is a case where the maximum temperature is set to 25 °C, -20 °C, 105 °C, and the minimum temperature is set to 25 °C, -20 °C, 105 °C, the horizontal axis is the magnetic sensor 71. The differential voltage (unit V) of the magnetic sensor 73, the magnetic sensor 75 and the magnetic sensor 77, the vertical axis is set to the magnetic sensor 72, the magnetic sensor 74, the magnetic sensor 76 and the magnetic sensor The Lissajous circle of the differential voltage (in V) in 78.

並且,圖13、圖14、圖17、圖20、圖21及圖22是表示將最高溫度設為25℃、-20℃、105℃的情況下、以及將最低溫度設為25℃、-20℃、105℃的情況下的將橫軸設為第一旋轉磁鐵30的角度位置(單位為度(deg)),將縱軸設為檢測角度誤差(單位為度(deg))的檢測角度誤差的曲線圖。 13, FIG. 14, FIG. 17, FIG. 20, FIG. 21 and FIG. 22 show the case where the highest temperature is set to 25° C., -20° C., 105° C., and the lowest temperature is set to 25° C., -20 In the case of ℃ and 105°C, the horizontal axis is the angular position of the first rotating magnet 30 (unit is degree (deg)), and the vertical axis is the detection angle error of detection angle error (unit is degree (deg)) Graph.

當外部磁通、磁通變動、第一旋轉磁鐵30的旋轉偏離均沒有時,如果只使用一個磁敏元件傳感器部61,就存在形成為如圖11所示那樣的利薩茹圓的情況,並存在如圖13所示那樣的檢測出角度誤差的情況。另一方面,如果使用兩個磁敏元件傳感器部61及磁敏元件傳感器部62,就形成為如圖12所示那樣的利薩茹圓,並如圖14所示,幾乎未檢測出角度誤差。 When there is no external magnetic flux, magnetic flux fluctuation, or rotation deviation of the first rotating magnet 30, if only one magnetic sensor element 61 is used, there may be a Lissajous circle as shown in FIG. 11, There are also cases where an angle error is detected as shown in FIG. 13. On the other hand, if two magnetic sensor elements 61 and 62 are used, a Lissajous circle as shown in FIG. 12 is formed, and as shown in FIG. 14, almost no angle error is detected .

圖12中所示的利薩茹圓形成為以橫軸0V與縱軸0V的交點為中心呈同心圓狀的利薩茹圓,因此,如圖14所示,檢測角 度誤差從0度到360度大致為0。另一方面,圖11中所示的利薩茹圓不為以橫軸0V與縱軸0V的交點為中心的利薩茹圓,並如圖13所示檢測出角度誤差。 The Lisaru circle shown in FIG. 12 becomes a Lisaru circle concentric with the intersection of the horizontal axis 0V and the vertical axis 0V as the center. Therefore, as shown in FIG. 14, the detection angle The degree error is approximately 0 from 0 degrees to 360 degrees. On the other hand, the Lisaru circle shown in FIG. 11 is not a Lisaru circle centered on the intersection of the horizontal axis 0V and the vertical axis 0V, and an angular error is detected as shown in FIG. 13.

再者,當使用四個磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64時,與使用兩個磁敏元件傳感器部61及磁敏元件傳感器部62的情況同樣地,形成為與圖12中所示的利薩茹圓大致同樣的形狀的利薩茹圓,並與圖14中所示的角度誤差的曲線圖同樣地,幾乎未檢測出角度誤差。 Furthermore, when four magnetic sensor elements 61, magnetic sensor elements 62, magnetic sensor elements 63, and magnetic sensor elements 64 are used, two magnetic sensor elements 61 and magnetic elements are used In the case of the sensor unit 62, it is formed into a Lisaru circle having substantially the same shape as the Lisaru circle shown in FIG. 12, and is almost undetected like the graph of the angle error shown in FIG. 14. Out of angle error.

當有外部磁通,沒有磁通變動及第一旋轉磁鐵30的旋轉偏離時,如果只使用一個磁敏元件傳感器部61,就形成為如圖15所示那樣的利薩茹圓,並檢測出如圖17所示那樣的角度誤差。另一方面,如果使用兩個磁敏元件傳感器部61及磁敏元件傳感器部62,就形成為如圖16所示那樣的利薩茹圓(與圖12中所示的利薩茹圓大致同樣),並如圖14所示,幾乎未檢測出角度誤差。 When there is external magnetic flux, there is no magnetic flux fluctuation and the rotation deviation of the first rotating magnet 30, if only one magnetic sensor element 61 is used, a Lissajous circle as shown in FIG. 15 is formed and detected Angle error as shown in FIG. 17. On the other hand, if two magnetic sensor elements 61 and 62 are used, the Lissajous circle as shown in FIG. 16 (which is almost the same as the Lissajous circle shown in FIG. 12 is formed) ), and as shown in Fig. 14, almost no angle error was detected.

當使用兩個磁敏元件傳感器部61及磁敏元件傳感器部62時,幾乎未檢測出角度誤差的原因在於,通過在如磁敏元件傳感器部61及磁敏元件傳感器部62那樣接近的位置上分別檢測磁場,並使這些檢測結果組合起來(信號合計),可以消除外部磁場對磁場的變化的影響(因外部磁場引起的磁場的偏置(offset))。特別是如本實施例那樣,通過設為使磁敏元件傳感器部61及磁敏元件傳感器部62的檢測結果反轉而組合的結構,可以有效地消除 外部磁場對磁場的變化的影響。 When two magnetic sensor elements 61 and 62 are used, the reason why the angle error is hardly detected is that they are close to the magnetic sensor element 61 and the magnetic sensor 62 Detecting the magnetic field separately and combining these detection results (total signal) can eliminate the influence of the external magnetic field on the change of the magnetic field (offset of the magnetic field due to the external magnetic field). In particular, as in the present embodiment, the configuration in which the detection results of the magnetic sensor element 61 and the magnetic sensor element 62 are inverted and combined can be effectively eliminated The influence of external magnetic field on the change of magnetic field.

再者,當使用四個磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64時,與使用兩個磁敏元件傳感器部61及磁敏元件傳感器部62的情況同樣地,形成為與圖16中所示的利薩茹圓大致同樣的形狀的利薩茹圓,並與圖14中所示的角度誤差的曲線圖同樣地,幾乎未檢測出角度誤差。 Furthermore, when four magnetic sensor elements 61, magnetic sensor elements 62, magnetic sensor elements 63, and magnetic sensor elements 64 are used, two magnetic sensor elements 61 and magnetic elements are used In the case of the sensor unit 62, it is formed into a Lisaru circle having substantially the same shape as the Lisaru circle shown in FIG. 16, and is almost undetected like the graph of the angle error shown in FIG. 14. Out of angle error.

當有外部磁通及磁通變動,沒有第一旋轉磁鐵30的旋轉偏離時,如果只使用一個磁敏元件傳感器部62,就形成為如圖18所示那樣的利薩茹圓,並檢測出如圖20所示那樣的角度誤差。並且,如果使用兩個磁敏元件傳感器部61及磁敏元件傳感器部62,就形成為如圖19所示那樣的利薩茹圓,並檢測出如圖21所示那樣的角度誤差。即,當使用兩個磁敏元件傳感器部61及磁敏元件傳感器部62時,雖然比不上只使用一個磁敏元件傳感器部62的情況,但檢測出角度誤差。 When there is external magnetic flux and magnetic flux variation and there is no rotation deviation of the first rotating magnet 30, if only one magnetic sensor element 62 is used, a Lissajous circle as shown in FIG. 18 is formed and detected The angle error as shown in Fig. 20. In addition, if two magnetic sensor elements 61 and 62 are used, a Lissajous circle as shown in FIG. 19 is formed, and an angle error as shown in FIG. 21 is detected. That is, when two magneto-sensitive element sensor sections 61 and 62 are used, although it is inferior to the case where only one magneto-sensitive element sensor section 62 is used, an angle error is detected.

另一方面,當使用四個磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64時,形成為與圖16中所示的利薩茹圓大致同樣的形狀的利薩茹圓,並與圖14中所示的角度誤差的曲線圖同樣地幾乎未檢測出角度誤差。當使用四個磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64時,幾乎未檢測出角度誤差的原因在於,通過在如磁敏元件傳感器部61及磁敏元件傳 感器部63、以及磁敏元件傳感器部62及磁敏元件傳感器部64那樣相向的位置(如果進行其它表達,則是相對於第一旋轉磁鐵30大致相等間隔的配置)上分別檢測磁場,並使這些檢測結果組合起來(信號合計),可以消除磁通變動對磁場的變化的影響(因磁通變動引起的磁場的偏置)。 On the other hand, when four magnetic sensor elements 61, 62, 63, and 64 are used, they are formed as Lisaru circles shown in FIG. 16. The Lisaru circle of substantially the same shape has almost no angle error detected as in the angle error graph shown in FIG. 14. When four magnetic sensor element 61, magnetic sensor element 62, magnetic element sensor 63, and magnetic element sensor 64 are used, the reason why the angle error is hardly detected is that Part 61 and magnetic sensor transmission The sensor portion 63 and the magnetic sensor element portion 62 and the magnetic sensor element portion 64 are located at opposite positions (in other expressions, they are arranged at substantially equal intervals with respect to the first rotating magnet 30), and Combining these detection results (total signal) can eliminate the influence of magnetic flux fluctuations on magnetic field changes (magnetic field bias due to magnetic flux fluctuations).

再者,當有磁通變動,沒有外部磁通及第一旋轉磁鐵30的旋轉偏離時等,例如,即便使用磁敏元件傳感器部61及磁敏元件傳感器部63兩者,或者磁敏元件傳感器部62及磁敏元件傳感器部64兩者,也可以有效抑制角度誤差。其原因在於,即便是這種結構,也可以通過相對於第一旋轉磁鐵30以大致等間隔的配置分別檢測磁場,並使這些檢測結果組合起來(信號合計),而消除磁通變動對磁場的變化的影響(因磁通變動引起的磁場的偏置)。 Furthermore, when there is a fluctuation in magnetic flux, there is no external magnetic flux and the rotational deviation of the first rotating magnet 30, etc., for example, even if both the magnetic sensor element 61 and the magnetic sensor element 63 are used, or the magnetic sensor Both the portion 62 and the magnetic sensor element portion 64 can also effectively suppress the angle error. The reason for this is that, even with this structure, the magnetic fields can be detected at substantially equal intervals with respect to the first rotating magnet 30, and these detection results can be combined (total signals) to eliminate the magnetic field fluctuations that affect the magnetic field. Effect of change (offset of magnetic field due to flux fluctuation).

當外部磁通、磁通變動、第一旋轉磁鐵30的旋轉偏離均有時,如果只使用一個磁敏元件傳感器部62,就形成為與如圖18所示那樣的利薩茹圓大致同樣的利薩茹圓,並檢測出與如圖20所示那樣的角度誤差同樣的角度誤差。並且,如果使用兩個磁敏元件傳感器部61及磁敏元件傳感器部62,就形成為與如圖19所示那樣的利薩茹圓大致同樣的利薩茹圓,並檢測出與如圖21所示那樣的角度誤差同樣的角度誤差。並且,如果使用四個磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64,就形成為如圖22所示那樣的利薩茹圓,並檢測出如圖23所示那樣的角度誤差。在圖23中所示的角度誤差的曲 線圖中,所述角度誤差呈正弦波的形狀。 When the external magnetic flux, the magnetic flux fluctuation, and the rotational deviation of the first rotating magnet 30 are all present, if only one magnetic sensor element 62 is used, it is formed substantially the same as the Lissajous circle shown in FIG. 18 Lisaru circle, and detected the same angle error as shown in FIG. 20. Furthermore, if two magneto-sensitive element sensor sections 61 and 62 are used, a Lissajous circle that is substantially the same as the Lissajous circle as shown in FIG. 19 is formed and detected as shown in FIG. 21 The angular error as shown is the same angular error. In addition, if four magnetic sensor elements 61, 62, 63 and 63 are formed, the Lissajous circle is formed as shown in FIG. 22, and An angle error as shown in FIG. 23 is detected. The curve of the angle error shown in Figure 23 In the line diagram, the angular error is in the shape of a sine wave.

當角度誤差呈正弦波的形狀時,可以利用高精度誤差檢測裝置(例如光學上能夠檢測角度誤差的光學式編碼器)等,來簡單修正所述角度誤差。以下,作為所述角度誤差的修正方法的一例,說明通過製作修正表來修正所述角度誤差的方法。但是,並不限定於這種修正方法。 When the angle error takes the form of a sine wave, a high-precision error detection device (for example, an optical encoder capable of detecting an angle error optically) or the like can be used to simply correct the angle error. Hereinafter, as an example of the method of correcting the angle error, a method of correcting the angle error by creating a correction table will be described. However, it is not limited to this correction method.

所述角度誤差的修正方法是通過修正表製作裝置(本實施例中為數據處理部90)來執行的方法(修正表製作方法),所述修正表製作裝置是製作對根據磁敏元件的信號而檢測第一旋轉磁鐵30的角度位置的編碼器1的誤差進行修正的修正表。並且,通過利用未圖示的高精度誤差檢測裝置,算出旋轉一圈份的由成為被測定對象的編碼器1所檢測出的第一旋轉磁鐵30的角度位置的誤差,並對所算出的旋轉一圈份的誤差進行傅立葉變換(Fourier transform),而測定固有誤差成分,只對所算出的固有誤差成分的主要誤差週期成分的值進行逆傅立葉變換,製作將各角度位置上的誤差量作為修正值的修正表,將所製作的修正表保存於編碼器1的存儲組件(本實施例中為設置於數據處理部90的存儲器)。如上所述,利用主要誤差週期成分製作修正表,通過製作精度高的修正表,可以進行角度誤差的修正。 The angle error correction method is a method (correction table creation method) executed by a correction table creation device (in this embodiment, the data processing unit 90). The correction table creation device generates a signal based on the magnetic sensor On the other hand, a correction table that corrects the error of the encoder 1 that detects the angular position of the first rotating magnet 30. Then, by using a high-precision error detection device (not shown), an error of the angular position of the first rotating magnet 30 detected by the encoder 1 to be measured for one revolution is calculated, and the calculated rotation Fourier transform (Fourier transform) of the error of one circle is performed, and the inherent error component is measured, and only the value of the main error period component of the calculated inherent error component is inverse Fourier transformed, and the error amount at each angular position is used as a correction The value correction table stores the created correction table in the storage unit of the encoder 1 (in this embodiment, the memory provided in the data processing unit 90). As described above, the correction table is created using the main error period component, and the angle error can be corrected by creating the correction table with high accuracy.

如果作其它表達,則本實施例的編碼器1是製作對根據磁敏元件的信號而檢測角度位置的編碼器1的誤差進行修正的修正表的修正表製作裝置。並且,包括:旋轉一圈誤差計算組件, 利用高精度誤差檢測裝置,算出旋轉一圈份的由編碼器1所檢測出的第一旋轉磁鐵30的角度位置的誤差;固有誤差成分計算組件,通過對由所述旋轉一圈誤差計算組件所算出的旋轉一圈份的誤差進行傅立葉變換而算出固有誤差成分;修正表製作組件,只對由所述固有誤差成分計算組件所算出的固有誤差成分的主要誤差週期成分的值進行逆傅立葉變換,而製作將各角度位置上的誤差量設為修正值的修正表;以及修正表保存組件,將由所述修正表製作組件所製作的修正表,保存於編碼器1的存儲組件。由於是這種結構,所以在固有誤差成分中利用主要誤差週期成分而製作修正表,通過製作高精度的修正表,可以進行角度誤差的修正。 If expressed otherwise, the encoder 1 of this embodiment is a correction table creation device that creates a correction table that corrects the error of the encoder 1 that detects the angular position based on the signal of the magnetic sensor. And, including: one rotation error calculation component, Using a high-precision error detection device, calculate the error of the angular position of the first rotating magnet 30 detected by the encoder 1 for one rotation; the inherent error component calculation component is determined by the error calculation component for the one rotation The calculated error of one revolution is Fourier transformed to calculate the inherent error component; the correction table creation component performs inverse Fourier transform only on the value of the main error period component of the inherent error component calculated by the inherent error component calculation component, On the other hand, a correction table in which the amount of error at each angular position is set as a correction value is created; and a correction table storage unit stores the correction table created by the correction table creation unit in the storage unit of the encoder 1. Because of this structure, the correction table is created using the main error period component among the inherent error components, and the angle error can be corrected by creating a high-precision correction table.

並且,本實施例的編碼器1形成為能夠抑制高次諧波的影響的結構。具體地說,本實施例的編碼器1如上所述,包括基於磁敏元件傳感器部40、磁敏元件傳感器部50及磁敏元件傳感器部60的檢測結果(檢測數據),通過數據處理而求出旋轉體2的角度位置的數據處理部90,此外,設置有消除規定次數(例如七次)以下的高次諧波的高次諧波消除圖案,數據處理部90形成為能夠利用消除超過規定次數的高次諧波的修正數據來修正磁敏元件傳感器部60的檢測數據的結構。即,形成為如下的結構:能夠利用高次諧波消除圖案來消除規定次數以下(例如七次以下)的高次諧波,並利用修正數據來消除超過規定次數(例如超過七次)的高次諧波。 In addition, the encoder 1 of the present embodiment is configured to suppress the influence of higher harmonics. Specifically, as described above, the encoder 1 of the present embodiment includes the detection results (detection data) based on the magnetic sensor element section 40, the magnetic sensor element section 50, and the magnetic sensor element section 60, and is determined by data processing A data processing unit 90 that extracts the angular position of the rotating body 2 is provided with a harmonic elimination pattern that eliminates harmonics of a predetermined order (for example, seven times) or less, and the data processing unit 90 is formed to be able to use the cancellation to exceed the predetermined The correction data of the higher-order harmonic of the order corrects the detection data of the magnetic sensor element 60. That is, it is configured to be able to eliminate higher harmonics below a predetermined order (for example, seventh or less) using a harmonic elimination pattern, and use the correction data to eliminate high harmonics exceeding a predetermined order (for example, more than seventh order) Subharmonic.

(其它結構的實施例) (Examples of other structures)

其次,利用圖24及圖25,對與所述編碼器1不同的結構(磁敏元件傳感器部60的配置不同的結構)的實施例進行說明。圖24是用於說明編碼器1中的相對於第一旋轉磁鐵30的磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64的配置的概略放大圖,是與圖9相對應的圖。並且,圖25是表示編碼器1中的相對於第一旋轉磁鐵30的磁敏元件傳感器部61、磁敏元件傳感器部62、磁敏元件傳感器部63及磁敏元件傳感器部64的配線的圖,是與圖10相對應的圖。 Next, an embodiment having a configuration different from that of the encoder 1 (a configuration having a different arrangement of the magnetic sensor element 60) will be described with reference to FIGS. 24 and 25. 24 is a schematic diagram for explaining the arrangement of the magnetic sensor element 61, the magnetic sensor element 62, the magnetic sensor element 63, and the magnetic sensor element 64 with respect to the first rotating magnet 30 in the encoder 1. The enlarged view corresponds to FIG. 9. 25 is a diagram showing the wiring of the magnetic sensor element 61, the magnetic sensor element 62, the magnetic sensor element 63, and the magnetic sensor element 64 of the first rotating magnet 30 in the encoder 1. Is a diagram corresponding to FIG. 10.

圖9及圖10等所示的編碼器1中,磁敏元件傳感器部61與磁敏元件傳感器部62的輸出、以及磁敏元件傳感器部63與磁敏元件傳感器部64的輸出是以電角度計540°的間隔而配置,磁敏元件傳感器部61與磁敏元件傳感器部63是以機械角度計180°的間隔而配置(參照圖9)。另一方面,圖24及圖25中所示的編碼器1中,磁敏元件傳感器部61與磁敏元件傳感器部62的輸出、以及磁敏元件傳感器部63與磁敏元件傳感器部64的輸出是以電角度計360°的間隔而配置,磁敏元件傳感器部61與磁敏元件傳感器部63是以機械角度計180°且以正電角度計180°的間隔而配置(參照圖24)。 In the encoder 1 shown in FIGS. 9 and 10, the outputs of the magnetic sensor element 61 and the magnetic sensor sensor 62 and the output of the magnetic sensor element 63 and the magnetic sensor sensor 64 are at an electrical angle. They are arranged at intervals of 540°, and the magnetic sensor element 61 and the magnetic sensor element 63 are arranged at an interval of 180° in mechanical angle (see FIG. 9 ). On the other hand, in the encoder 1 shown in FIGS. 24 and 25, the outputs of the magnetic sensor element 61 and the magnetic sensor sensor 62, and the outputs of the magnetic sensor element 63 and the magnetic sensor sensor 64 The magnetic sensor element 61 and the magnetic sensor element 63 are arranged at an interval of 360° in an electrical angle meter, and are arranged at an interval of 180° in a mechanical angle and 180° in a positive electrical angle (see FIG. 24 ).

如上所述,在圖9及圖10等中所示的編碼器1中,磁敏元件傳感器部61與磁敏元件傳感器部62、以及磁敏元件傳感器部63與磁敏元件傳感器部64是以第一旋轉磁鐵30的相位為基準以磁週期計偏離1/2個週期份而配置。並且,磁敏元件傳感器部61 與磁敏元件傳感器部63是以第一旋轉磁鐵30的相位為基準相位不偏離而配置。另一方面,圖24及圖25中所示的編碼器1中,磁敏元件傳感器部61與磁敏元件傳感器部62、以及磁敏元件傳感器部63與磁敏元件傳感器部64是以第一旋轉磁鐵30的相位為基準相位不偏離而配置。並且,磁敏元件傳感器部61與磁敏元件傳感器部63是以第一旋轉磁鐵30的相位為基準以磁週期計偏離1/2個週期份而配置。 As described above, in the encoder 1 shown in FIGS. 9 and 10, etc., the magnetic sensor element 61 and the magnetic sensor element 62, and the magnetic element sensor 63 and the magnetic element sensor 64 are The phase of the first rotating magnet 30 is arranged with the magnetic cycle deviated by 1/2 cycle. In addition, the magnetic sensor element 61 The magnetic sensor element 63 is arranged so that the phase of the first rotating magnet 30 does not deviate from the phase. On the other hand, in the encoder 1 shown in FIGS. 24 and 25, the magnetic sensor element 61 and the magnetic sensor element 62, and the magnetic element sensor 63 and the magnetic element sensor 64 are the first The phase of the rotating magnet 30 is arranged so that the reference phase does not deviate. In addition, the magnetic sensor element 61 and the magnetic sensor element 63 are arranged with the phase of the first rotating magnet 30 deviated by 1/2 of the period of the magnetic period.

因此,圖24及圖25中所示的編碼器1的配線形成為如圖25所示的配線。具體地說,將磁敏元件傳感器部62的輸出線202以正極彼此及負極彼此連接於磁敏元件傳感器部61的輸出線201。並且,將磁敏元件傳感器部64的輸出線204以正極彼此及負極彼此連接於磁敏元件傳感器部63的輸出線203。並且,此外,將連接著輸出線204的輸出線203正負極相反地連接於連接著輸出線202的輸出線201。 Therefore, the wiring of the encoder 1 shown in FIGS. 24 and 25 is formed as shown in FIG. 25. Specifically, the output line 202 of the magnetic sensor element 62 is connected to the output line 201 of the magnetic sensor element 61 with positive electrodes and negative electrodes. The output line 204 of the magnetic sensor element 64 is connected to the output line 203 of the magnetic sensor element 63 with positive electrodes and negative electrodes. In addition, the positive and negative poles of the output line 203 connected to the output line 204 are reversely connected to the output line 201 connected to the output line 202.

並且,圖9及圖10等中所示的編碼器1、以及圖24及圖25中所示的編碼器1中,磁敏元件傳感器部61與磁敏元件傳感器部63、以及磁敏元件傳感器部62與磁敏元件傳感器部64是以機械角度計180°或大致180°的間隔而配置,但是並不限定於這種結構。例如,也可以相對於磁敏元件傳感器部61及磁敏元件傳感器部62分別在圓周方向上的兩側以機械角度計隔開大致120°的間隔而配置磁敏元件傳感器部(即,等間隔或大致等間隔地配置各三個磁敏元件傳感器部)。同樣地,也可以等間隔或大致等間隔地配 置四個以上的磁敏元件傳感器部。但是,優選為磁敏元件傳感器部彼此的輸出位於以電角度計具有180°的整數倍的相位差的位置。因為如果是這種結構,就可以通過使各個磁敏元件傳感器部的檢測結果組合起來,而有效消除磁通變動的影響。 In addition, in the encoder 1 shown in FIGS. 9 and 10 and the like, and the encoder 1 shown in FIGS. 24 and 25, the magnetic sensor element 61 and the magnetic sensor element 63 and the magnetic sensor The portion 62 and the magnetic sensor element portion 64 are arranged at an interval of 180° or approximately 180° in mechanical angle, but it is not limited to this structure. For example, the magnetic sensor elements may be arranged at intervals of approximately 120° in mechanical angle with respect to the magnetic sensor element 61 and the magnetic sensor element 62 on both sides in the circumferential direction (ie, at equal intervals) Or three magneto-sensitive element sensor portions are arranged at substantially equal intervals). Similarly, it can also be arranged at equal intervals or substantially equal intervals Place more than four magnetic sensor elements. However, it is preferable that the outputs of the magnetic sensor elements are positioned at a phase difference of an integer multiple of 180° in electrical angle. Because of this structure, it is possible to effectively eliminate the influence of magnetic flux fluctuations by combining the detection results of the various magnetic sensor elements.

並且,除了磁敏元件傳感器部60的配置以外,還可以將磁敏元件傳感器部40或磁敏元件傳感器部50設為其它結構。即,圖4中所示的編碼器1包括位於與第二旋轉磁鐵20的中心相向的位置上的磁阻元件即磁敏元件傳感器部40、位於與第二旋轉磁鐵20相向的位置上的霍爾元件即磁敏元件傳感器部51、以及位於與第二旋轉磁鐵20相向且相對於磁敏元件傳感器部51在圓周方向上以機械角度計偏離90°的位置上的霍爾元件即磁敏元件傳感器部52,但是只要能夠檢測出第二旋轉磁鐵20的粗略的絕對位置,就可以將磁敏元件傳感器部40或磁敏元件傳感器部50設為其它結構。 In addition to the arrangement of the magnetic sensor element 60, the magnetic sensor element 40 or the magnetic sensor element 50 may have other configurations. That is, the encoder 1 shown in FIG. 4 includes a magneto-sensitive element sensor portion 40 that is a magnetoresistive element located at a position facing the center of the second rotating magnet 20, and a sensor located at a position facing the second rotating magnet 20. Magnetic element sensor portion 51, which is a magnetic element, and a magnetic element, which is a Hall element located at a position facing the second rotating magnet 20 and deviating from the magnetic sensor element portion 51 in the circumferential direction by a mechanical angle of 90° The sensor unit 52 can be configured as another structure as long as the rough absolute position of the second rotating magnet 20 can be detected.

例如,可以設為在圖4中所示的編碼器1中省略了磁敏元件傳感器部40的結構,即,包括位於與第二旋轉磁鐵20相向的位置上的霍爾元件即磁敏元件傳感器部51、以及位於與第二旋轉磁鐵20相向且相對於磁敏元件傳感器部51在圓周方向上以機械角度計偏離90°的位置上的霍爾元件即磁敏元件傳感器部52的結構。即便是這種結構,由於霍爾元件即磁敏元件傳感器部51及磁敏元件傳感器部52均能夠檢測從N極到S極的磁場的方向,所以也能夠檢測出第二旋轉磁鐵20的粗略的絕對位置。 For example, the encoder 1 shown in FIG. 4 may be configured such that the magneto-sensitive element sensor section 40 is omitted, that is, includes a magneto-sensitive element sensor that is a Hall element located at a position facing the second rotating magnet 20 The structure of the magnetic sensor element 52, which is a Hall element located at a position opposed to the second rotating magnet 20 and a mechanical angle in the circumferential direction with respect to the magnetic sensor element 51, is offset by 90°. Even with this structure, since the Hall element, that is, the magnetic sensor element portion 51 and the magnetic sensor element portion 52 can detect the direction of the magnetic field from the N pole to the S pole, the roughness of the second rotating magnet 20 can also be detected Absolute position.

並且,例如,可以設為如下的結構:在圖4中所示的編碼器1中省略磁敏元件傳感器部40,在相對於磁敏元件傳感器部51在圓周方向上以機械角度計偏離180°的位置上設置霍爾元件即磁敏元件傳感器部,此外,在相對於磁敏元件傳感器部52在圓周方向上以機械角度計偏離180°的位置上設置霍爾元件即磁敏元件傳感器部。即便是這種結構,由於四個霍爾元件即磁敏元件傳感器部都能夠檢測從N極到S極的磁場的方向,所以也能夠檢測出第二旋轉磁鐵20的粗略的絕對位置。 In addition, for example, a configuration may be adopted in which the magnetic sensor element 40 is omitted in the encoder 1 shown in FIG. 4, and the magnetic sensor element 51 is deviated by 180° in the mechanical direction in the circumferential direction from the magnetic sensor element 51. The magnetic element sensor portion, which is a Hall element, is provided at a position where the magnetic element sensor portion, which is a Hall element, is provided at a position that is 180° apart from the magnetic sensor element portion 52 in the circumferential direction by a mechanical angle. Even with this structure, since the four Hall elements, that is, the magnetic sensor element portions, can detect the direction of the magnetic field from the N pole to the S pole, the rough absolute position of the second rotating magnet 20 can also be detected.

在這裡,如果對能夠應用本發明的編碼器1進行總結,則是能夠應用本發明的編碼器1包括:第一旋轉磁鐵30,其是交替地磁化有多個N極及S極的磁鐵;以及多個磁敏元件傳感器部60,包括檢測第一旋轉磁鐵30的位置的第一磁敏元件70、及配置於相對於第一磁敏元件70的輸出以電角度計具有90°的相位差的位置上而檢測第一旋轉磁鐵30的位置的第二磁敏元件79。 Here, if the encoder 1 to which the present invention can be applied is summarized, the encoder 1 to which the present invention can be applied includes: a first rotating magnet 30 which is a magnet having a plurality of N poles and S poles alternately magnetized; And a plurality of magneto-sensitive element sensor sections 60, including a first magneto-sensitive element 70 that detects the position of the first rotating magnet 30, and a phase difference of 90° in electrical angle with respect to the output of the first magneto-sensitive element 70 The second magneto-sensitive element 79 that detects the position of the first rotating magnet 30.

並且,如圖8及圖9所示,作為磁敏元件傳感器部60,至少設置有作為第一磁敏元件傳感器部的磁敏元件傳感器部61及作為第二磁敏元件傳感器部的磁敏元件傳感器部62,磁敏元件傳感器部61及磁敏元件傳感器部62是以如下的方式而配置,即,磁敏元件傳感器部61的第一磁敏元件70即磁敏元件71的輸出與磁敏元件傳感器部62的第一磁敏元件70即磁敏元件73的輸出、以及磁敏元件傳感器部61的第二磁敏元件79即磁敏元件72的輸出與磁敏元件傳感器部62的第二磁敏元件79即磁敏元件74的輸出配 置於以電角度計具有180°的奇數倍(具體地說540°)的相位差的位置即以機械角度計30°以下。 As shown in FIGS. 8 and 9, as the magnetic sensor element 60, at least the magnetic sensor element 61 as the first magnetic sensor element and the magnetic element as the second magnetic sensor element are provided. The sensor section 62, the magnetic sensor element section 61, and the magnetic sensor element section 62 are arranged in such a manner that the output and magnetic sensitivity of the first magnetic sensor element 70, that is, the magnetic sensor element 71 of the magnetic sensor element section 61 The output of the first magneto-sensitive element 70 of the element sensor section 62, that is, the magneto-sensitive element 73, and the output of the second magneto-sensitive element 79 of the magneto-sensitive element sensor section 61, that is, the magneto-sensitive element 72, and the second of the magneto-sensitive element sensor section 62 The output of the magnetic sensitive element 79, that is, the magnetic sensitive element 74 It is placed at a position having an odd multiple of 180° (specifically 540°) in electrical angle, that is, 30° or less in mechanical angle.

並且,如圖10所示,將磁敏元件傳感器部61的正輸出端子HE1P及正輸出端子HE2P與磁敏元件傳感器部62的負輸出端子HE1N及負輸出端子HE2N加以連接,將磁敏元件傳感器部61的負輸出端子HE1N及負輸出端子HE2N與磁敏元件傳感器部62的正輸出端子HE1P及正輸出端子HE2P加以連接。 Further, as shown in FIG. 10, the positive output terminal HE1P and the positive output terminal HE2P of the magnetic sensor element 61 are connected to the negative output terminal HE1N and the negative output terminal HE2N of the magnetic sensor element 62 to connect the magnetic sensor The negative output terminal HE1N and the negative output terminal HE2N of the unit 61 are connected to the positive output terminal HE1P and the positive output terminal HE2P of the magnetic sensor element 62.

通過包括多個在能夠以電角度計以90°的相位差進行檢測的位置上設置有磁敏元件的磁敏元件傳感器部60,可以形成為高精度的編碼器1。並且,以第一磁敏元件70彼此的輸出及第二磁敏元件79彼此的輸出配置於以電角度計具有180°的奇數倍的相位差的位置即以機械角度計30°以下的方式而配置第一磁敏元件傳感器部61及第二磁敏元件傳感器部62,並且,將磁敏元件傳感器部61的正輸出端子HE1P及正輸出端子HE2P與磁敏元件傳感器部62的負輸出端子HE1N及負輸出端子HE2N加以連接,將磁敏元件傳感器部61的負輸出端子HE1N及負輸出端子HE2N與磁敏元件傳感器部62的正輸出端子HE1P及正輸出端子HE2P加以連接。即,通過使配置於以磁週期計相位偏離1/2個週期份的位置即接近的位置上的磁敏元件傳感器部61及磁敏元件傳感器部62的輸出中的一者反轉並且平均化,可以抑制外部磁通的影響。例如,當在編碼器1的外部大電流流入的供電線接近時,為了使第一磁敏元件傳感器部61與第二磁敏元件傳感器部62相對於所產 生的磁場以相同電平(level)消除磁通,可以配置於以機械角度計30°以下而抑制外部磁通的影響。 By including a plurality of magneto-sensitive element sensor sections 60 provided with magneto-sensitive elements at positions that can be detected with an electrical angle meter at a phase difference of 90°, the encoder 1 can be formed with high accuracy. In addition, the output of the first magneto-sensitive elements 70 and the output of the second magneto-sensitive elements 79 are arranged at positions having an odd multiple of 180° in electrical angle, that is, 30° or less in mechanical angle On the other hand, the first magnetic sensor element 61 and the second magnetic sensor element 62 are arranged, and the positive output terminal HE1P and the positive output terminal HE2P of the magnetic sensor element 61 and the negative output terminal of the magnetic sensor element 62 are arranged. HE1N and the negative output terminal HE2N are connected, and the negative output terminal HE1N and the negative output terminal HE2N of the magnetic sensor element 61 are connected to the positive output terminal HE1P and the positive output terminal HE2P of the magnetic sensor element 62. That is, by inverting and averaging one of the outputs of the magnetic sensor element 61 and the magnetic sensor element 62 arranged at a position that is phase-shifted by 1/2 period of the magnetic cycle, that is, a close position , Can suppress the influence of external magnetic flux. For example, when the power supply line in which a large current flows outside the encoder 1 approaches, in order to make the first magneto-sensitive element sensor section 61 and the second magneto-sensitive element sensor section 62 relative to the The generated magnetic field cancels the magnetic flux at the same level, and it can be arranged at a mechanical angle of 30° or less to suppress the influence of external magnetic flux.

再者,在所述說明中,是將磁敏元件傳感器部61設為第一磁敏元件傳感器部,將磁敏元件傳感器部62設為第二磁敏元件傳感器部而進行說明,但是也可以將磁敏元件傳感器部62看作第一磁敏元件傳感器部,將磁敏元件傳感器部61看作第二磁敏元件傳感器部。同樣地,還可以將磁敏元件傳感器部63看作第一磁敏元件傳感器部,將磁敏元件傳感器部64看作第二磁敏元件傳感器部、以及將磁敏元件傳感器部64看作第一磁敏元件傳感器部,將磁敏元件傳感器部63看作第二磁敏元件傳感器部。 In the above description, the magnetic sensor element 61 is set as the first magnetic sensor element, and the magnetic element sensor 62 is set as the second magnetic element sensor, but it may be The magnetic sensor element 62 is regarded as a first magnetic sensor element, and the magnetic sensor element 61 is regarded as a second magnetic sensor element. Similarly, the magnetic sensor element 63 may be regarded as the first magnetic sensor element, the magnetic sensor element 64 may be regarded as the second magnetic sensor element, and the magnetic element sensor 64 may be regarded as the first A magneto-sensitive element sensor section, the magneto-sensitive element sensor section 63 is regarded as a second magneto-sensitive element sensor section.

並且,如圖24所示,能夠應用本發明的編碼器1中,作為磁敏元件傳感器部60,至少設置有磁敏元件傳感器部61及磁敏元件傳感器部62,磁敏元件傳感器部61及磁敏元件傳感器部62是以如下的方式而配置,即,磁敏元件傳感器部61的第一磁敏元件70即磁敏元件71的輸出與磁敏元件傳感器部62的第一磁敏元件70即磁敏元件73的輸出、以及磁敏元件傳感器部61的第二磁敏元件79即磁敏元件72的輸出與磁敏元件傳感器部62的第二磁敏元件79即磁敏元件74的輸出配置於以電角度計具有180°的偶數倍(具體地說360°)的相位差的位置即以機械角度計30°以下。 Further, as shown in FIG. 24, in the encoder 1 to which the present invention can be applied, as the magnetic sensor element 60, at least the magnetic sensor element 61 and the magnetic sensor element 62 are provided, and the magnetic sensor element 61 and The magnetic sensor element 62 is configured in such a manner that the output of the first magnetic sensor 70 of the magnetic sensor element 61, that is, the output of the magnetic sensor 71 and the first magnetic sensor 70 of the magnetic sensor element 62 That is, the output of the magnetic sensor 73, and the output of the second magnetic sensor 79 of the magnetic sensor element 61, that is, the magnetic sensor 72 and the output of the second magnetic sensor 79 of the magnetic sensor element 62, that is, the magnetic sensor 74 It is arranged at a position having a phase difference of an even multiple of 180° (specifically 360°) in electrical angle, that is, 30° or less in mechanical angle.

並且,如圖25所示,將磁敏元件傳感器部61的正輸出端子HE1P及正輸出端子HE2P與磁敏元件傳感器部62的正輸出端子HE1P及正輸出端子HE2P加以連接,將磁敏元件傳感器部61的 負輸出端子HE1N及負輸出端子HE2N與磁敏元件傳感器部62的負輸出端子HE1N及負輸出端子HE2N加以連接。 Further, as shown in FIG. 25, the positive output terminal HE1P and the positive output terminal HE2P of the magnetic sensor element 61 are connected to the positive output terminal HE1P and the positive output terminal HE2P of the magnetic sensor element 62 to connect the magnetic sensor Department 61 The negative output terminal HE1N and the negative output terminal HE2N are connected to the negative output terminal HE1N and the negative output terminal HE2N of the magnetic sensor element 62.

通過包括多個在能夠以電角度計以90°的相位差進行檢測的位置上設置有磁敏元件的磁敏元件傳感器部60,可以形成為高精度的編碼器1。並且,以第一磁敏元件70彼此的輸出及第二磁敏元件79彼此的輸出配置於以電角度計具有180°的偶數倍的相位差的位置即以機械角度計30°以下的方式而配置磁敏元件傳感器部61及磁敏元件傳感器部62,並且,將磁敏元件傳感器部61的正輸出端子HE1P及正輸出端子HE2P與磁敏元件傳感器部62的正輸出端子HE1P及正輸出端子HE2P加以連接,將磁敏元件傳感器部61的負輸出端子HE1N及負輸出端子HE2N與磁敏元件傳感器部62的負輸出端子HE1N及負輸出端子HE2N加以連接。即,通過使配置於無相位偏離的位置(以磁週期計相位偏離一個週期份的位置)即接近的位置上的磁敏元件傳感器部61及磁敏元件傳感器部62的輸出平均化,可以抑制外部磁通的影響。例如,當在編碼器1的外部大電流流入的供電線接近時,為了使第一磁敏元件傳感器部61與第二磁敏元件傳感器部62相對於所產生的磁場以相同電平消除磁通,可以配置於以機械角度計30°以下而抑制外部磁通的影響。 By including a plurality of magneto-sensitive element sensor sections 60 provided with magneto-sensitive elements at positions that can be detected with an electrical angle meter at a phase difference of 90°, the encoder 1 can be formed with high accuracy. In addition, the output of the first magneto-sensitive elements 70 and the output of the second magneto-sensitive elements 79 are arranged at positions having an even multiple of 180° in phase difference in electrical angle, that is, 30° or less in mechanical angle The magnetic sensor element 61 and the magnetic sensor element 62 are arranged, and the positive output terminals HE1P and HE2P of the magnetic sensor element 61 and the positive output terminals HE1P and positive output terminals of the magnetic sensor element 62 are arranged. HE2P is connected to connect the negative output terminal HE1N and the negative output terminal HE2N of the magnetic sensor element 61 to the negative output terminal HE1N and the negative output terminal HE2N of the magnetic sensor element 62. That is, by averaging the outputs of the magnetic sensor element section 61 and the magnetic sensor element section 62 arranged at a position without phase shift (a position shifted by one period in terms of the magnetic cycle), that is, a close position, it can be suppressed Influence of external magnetic flux. For example, when the power supply line in which a large current flows outside the encoder 1 approaches, in order to cause the first magnetic sensor element 61 and the second magnetic sensor element 62 to cancel the magnetic flux at the same level with respect to the generated magnetic field It can be placed at a mechanical angle of 30° or less to suppress the influence of external magnetic flux.

並且,在能夠應用本發明的編碼器1中,磁敏元件傳感器部61及磁敏元件傳感器部62是將磁敏元件傳感器部61的第一磁敏元件即磁敏元件71與磁敏元件傳感器部62的第一磁敏元件 即磁敏元件73、以及磁敏元件傳感器部61的第二磁敏元件即磁敏元件72與磁敏元件傳感器部62的第二磁敏元件即磁敏元件74配置於以磁週期計為兩個週期以內的狹窄範圍內。因此,能夠有效抑制外部磁通的影響。 In addition, in the encoder 1 to which the present invention can be applied, the magnetic sensor element 61 and the magnetic sensor element 62 are a magnetic sensor 71 which is the first magnetic sensor of the magnetic sensor element 61 and the magnetic sensor Part 62 of the first magneto-sensitive element That is, the magnetic sensor 73 and the second magnetic sensor 72 of the magnetic sensor element 61 and the second magnetic sensor 74 of the magnetic sensor sensor 62 are arranged in two Within a narrow range within a period. Therefore, the influence of external magnetic flux can be effectively suppressed.

並且,如圖8及圖9等所示,在能夠應用本發明的編碼器1中,磁敏元件傳感器部60是在一個封裝體內包括第一磁敏元件70及第二磁敏元件79。因此,能夠以高精度對第一磁敏元件70及第二磁敏元件79進行定位,從而能夠形成為特別高精度的編碼器1。 As shown in FIGS. 8 and 9, in the encoder 1 to which the present invention can be applied, the magnetic sensor element 60 includes the first magnetic sensor 70 and the second magnetic sensor 79 in one package. Therefore, the first magneto-sensitive element 70 and the second magneto-sensitive element 79 can be positioned with high accuracy, and the encoder 1 can be formed with particularly high accuracy.

並且,如上所述,在能夠應用本發明的編碼器1中,第一磁敏元件70及第二磁敏元件79是霍爾元件,能夠單獨檢測磁場的方向(N極與S極的辨別),因此能夠廉價地形成編碼器1。 In addition, as described above, in the encoder 1 to which the present invention can be applied, the first magneto-sensitive element 70 and the second magneto-sensitive element 79 are Hall elements, and can independently detect the direction of the magnetic field (discrimination of N pole and S pole) Therefore, the encoder 1 can be formed inexpensively.

但是,如上所述,也可以將第一磁敏元件70及第二磁敏元件79設為磁阻元件。通過這樣操作,就檢測相向的磁鐵的旋轉磁場,所以即使因為磁化不均或旋轉部的抖動而使磁通強度發生變動,也能夠穩定地檢測旋轉位置。 However, as described above, the first magneto-sensitive element 70 and the second magneto-sensitive element 79 may be magnetoresistive elements. By doing so, the rotating magnetic field of the opposing magnets is detected, so that even if the magnetic flux intensity fluctuates due to uneven magnetization or jitter of the rotating portion, the rotating position can be stably detected.

並且,如圖4等所示,能夠應用本發明的編碼器1包括在圓周方向上交替地磁化有多個N極及S極的第一旋轉磁鐵30、檢測第一旋轉磁鐵30的位置的作為第一旋轉磁鐵用磁敏元件的磁敏元件傳感器部60、能夠與第一旋轉磁鐵30一同旋轉並在圓周方向上磁化有N極及S極的第二旋轉磁鐵20、以及檢測第二旋轉磁鐵20的位置的第二旋轉磁鐵用磁敏元件即磁敏元件傳感器部40 及磁敏元件傳感器部50。因此,利用第二旋轉磁鐵20與磁敏元件傳感器部40及磁敏元件傳感器部50,不但能夠檢測第一旋轉磁鐵30(旋轉體2)的旋轉量,而且能夠檢測絕對位置(角度位置)。 Further, as shown in FIG. 4 and the like, the encoder 1 to which the present invention can be applied includes a first rotating magnet 30 in which a plurality of N poles and S poles are alternately magnetized in the circumferential direction, and detecting the position of the first rotating magnet 30 as The magneto-sensitive element sensor section 60 of the magneto-sensitive element for the first rotating magnet, the second rotating magnet 20 that can rotate together with the first rotating magnet 30 and magnetize the N pole and the S pole in the circumferential direction, and detects the second rotating magnet The magnetic sensor element 40, which is a magnetic sensor for the second rotating magnet at the position 20 And magnetic sensor element 50. Therefore, the second rotating magnet 20 and the magnetic sensor element portion 40 and the magnetic sensor element portion 50 can detect not only the amount of rotation of the first rotating magnet 30 (rotating body 2) but also the absolute position (angular position).

再者,在所述編碼器1中,是包括在圓周方向上磁化有各一個N極及S極的第二旋轉磁鐵20的結構,但是只要是能夠檢測旋轉體2的絕對位置(角度位置)的結構,第二旋轉磁鐵20就不限定於在圓周方向上磁化有各一個N極及S極的結構。 In addition, the encoder 1 includes a second rotating magnet 20 having N and S poles magnetized in the circumferential direction, but as long as it can detect the absolute position (angular position) of the rotating body 2 The structure of the second rotating magnet 20 is not limited to a structure in which one N pole and one S pole are magnetized in the circumferential direction.

並且,如圖8及圖9等所示,能夠應用本發明的編碼器1是第一旋轉磁鐵30是在圓周方向上交替地磁化有多個N極及S極的旋轉磁鐵的旋轉編碼器,作為磁敏元件傳感器部60,除了作為第一磁敏元件傳感器部的磁敏元件傳感器部61及作為第二磁敏元件傳感器部的磁敏元件傳感器部62以外,還在以第一旋轉磁鐵30的旋轉軸為基準的磁敏元件傳感器部61及磁敏元件傳感器部62的相反側,設置有包括第一磁敏元件70及第二磁敏元件79的作為第三磁敏元件傳感器部的磁敏元件傳感器部63及包括第一磁敏元件70及第二磁敏元件79的作為第四磁敏元件傳感器部的磁敏元件傳感器部64。 As shown in FIGS. 8 and 9, the encoder 1 to which the present invention can be applied is a first rotary magnet 30 which is a rotary encoder in which a plurality of N-pole and S-pole rotating magnets are alternately magnetized in the circumferential direction. As the magnetic sensor element 60, in addition to the magnetic sensor element 61 as the first magnetic sensor element and the magnetic element sensor 62 as the second magnetic sensor element, the first rotating magnet 30 is also used. The opposite side of the magneto-sensitive element sensor section 61 and the magneto-sensitive element sensor section 62 based on the rotation axis of the magnetic field is provided with a magnet as the third magneto-sensitive element sensor section including the first magneto-sensitive element 70 and the second magneto-sensitive element 79 The sensitive element sensor section 63 and the magnetic sensitive element sensor section 64 as the fourth magnetic sensitive element sensor section including the first magnetic sensitive element 70 and the second magnetic sensitive element 79.

如上所述,通過至少在以第一旋轉磁鐵30的旋轉軸為基準的第一磁敏元件傳感器部或第二磁敏元件傳感器部的相反側設置有磁敏元件傳感器部(第三磁敏元件傳感器部),即使在第一旋轉磁鐵30中產生了磁通變動的情況下,也能夠利用來自第一磁敏元件傳感器部或第二磁敏元件傳感器部的輸出(檢測結果)及來 自第三磁敏元件傳感器部(此外,圖8及圖9等中所示的結構等,根據情況,來自第四磁敏元件傳感器部)的輸出(檢測結果),而抑制所述磁通變動的影響。 As described above, by providing the magneto-sensitive element sensor section (third magneto-sensitive element) at least on the opposite side of the first magneto-sensitive element sensor section or the second magneto-sensitive element sensor section based on the rotation axis of the first rotary magnet 30 Sensor section), even when the magnetic flux fluctuation occurs in the first rotating magnet 30, the output (detection result) from the first magnetosensitive element sensor section or the second magnetosensitive element sensor section can be used The magnetic flux variation is suppressed from the output (detection result) of the third magnetic sensor element (the structure shown in FIGS. 8 and 9 etc., and from the fourth magnetic sensor element according to circumstances). Impact.

在這裡,所謂“相反側”,是指以機械角度計90°以上270°以下。 Here, the "opposite side" refers to a mechanical angle of 90° or more and 270° or less.

再者,在所述說明中,是將磁敏元件傳感器部61設為第一磁敏元件傳感器部,將磁敏元件傳感器部62設為第二磁敏元件傳感器部,將磁敏元件傳感器部63設為第三磁敏元件傳感器部,將磁敏元件傳感器部64設為第四磁敏元件傳感器部而進行說明,但是也可以將磁敏元件傳感器部62看作第一磁敏元件傳感器部,將磁敏元件傳感器部61看作第二磁敏元件傳感器部,將磁敏元件傳感器部64看作第三磁敏元件傳感器部,將磁敏元件傳感器部63看作第四磁敏元件傳感器部。同樣地,還可以將磁敏元件傳感器部63看作第一磁敏元件傳感器部,將磁敏元件傳感器部64看作第二磁敏元件傳感器部,將磁敏元件傳感器部61看作第三磁敏元件傳感器部,將磁敏元件傳感器部62看作第四磁敏元件傳感器部、以及將磁敏元件傳感器部64看作第一磁敏元件傳感器部,將磁敏元件傳感器部63看作第二磁敏元件傳感器部,將磁敏元件傳感器部62看作第三磁敏元件傳感器部,將磁敏元件傳感器部61看作第四磁敏元件傳感器部。此外,還可以設置其它磁敏元件傳感器部。 In the above description, the magnetic sensor element 61 is the first magnetic sensor element, the magnetic sensor element 62 is the second magnetic sensor element, and the magnetic element sensor is the 63 is set as the third magneto-sensitive element sensor section, and the magneto-sensitive element sensor section 64 is set as the fourth magneto-sensitive element sensor section. However, the magneto-sensitive element sensor section 62 may be regarded as the first magneto-sensitive element sensor section. , The magnetic sensor element 61 is regarded as the second magnetic sensor sensor, the magnetic sensor sensor 64 is regarded as the third magnetic sensor sensor, and the magnetic sensor sensor 63 is regarded as the fourth magnetic sensor unit. Similarly, the magnetic sensor element 63 may be regarded as the first magnetic sensor element, the magnetic sensor element 64 may be regarded as the second magnetic sensor element, and the magnetic element sensor 61 may be regarded as the third For the magnetic sensor element, the magnetic sensor element 62 is regarded as the fourth magnetic sensor element, and the magnetic element sensor 64 is regarded as the first magnetic element sensor, and the magnetic sensor element 63 is regarded as The second magneto-sensitive element sensor section regards the magneto-sensitive element sensor section 62 as a third magneto-sensitive element sensor section, and the magneto-sensitive element sensor section 61 as a fourth magneto-sensitive element sensor section. In addition, other magnetic sensor elements may be provided.

但是,磁敏元件傳感器部60也可以包括作為第一磁敏元 件傳感器部的磁敏元件傳感器部61及作為第二磁敏元件傳感器部的磁敏元件傳感器部62兩者。如果進行其它表達,那麼也可以不包括磁敏元件傳感器部63及磁敏元件傳感器部64。通過利用第一磁敏元件傳感器部及第二磁敏元件傳感器部兩者構成磁敏元件傳感器部60,可以廉價地構成編碼器1。 However, the magneto-sensitive element sensor section 60 may also include as the first magneto-sensitive element Both the magneto-sensitive element sensor section 61 of the element sensor section and the magneto-sensitive element sensor section 62 as the second magneto-sensitive element sensor section. If other expressions are made, the magnetic sensor element 63 and the magnetic sensor element 64 may not be included. By configuring the magnetic sensor element 60 using both the first magnetic sensor element and the second magnetic sensor element, the encoder 1 can be constructed at low cost.

本發明並不限於所述實施例,可以在不脫離其主旨的範圍內以各種結構來實現。例如,與發明概要欄中所述的各形態中的技術特徵相對應的實施例中的技術特徵可以適當地進行替換或組合,以解決所述問題的一部分或全部,或以達成所述效果的一部分或全部。 The present invention is not limited to the embodiments described above, and can be implemented in various structures without departing from the gist thereof. For example, the technical features in the embodiments corresponding to the technical features in each form described in the summary column of the invention may be appropriately replaced or combined to solve a part or all of the problem, or to achieve the effect Part or all.

並且,只要所述技術特徵在本說明書中沒有作為必需的內容而說明,就可以適當地刪除。 In addition, as long as the technical features are not described as necessary in this specification, they can be deleted as appropriate.

30‧‧‧第一旋轉磁鐵 30‧‧‧The first rotating magnet

31‧‧‧磁化面 31‧‧‧Magnetized surface

60‧‧‧磁敏元件傳感器部(第一旋轉磁鐵用磁敏元件) 60‧‧‧Magnetic sensor sensor section (Magnetic sensor for the first rotating magnet)

61‧‧‧磁敏元件傳感器部(第一磁敏元件傳感器部) 61‧‧‧Magnetic sensor unit (first magnetosensitive sensor unit)

62‧‧‧磁敏元件傳感器部(第二磁敏元件傳感器部) 62‧‧‧Magnetic sensor unit (second magnetic sensor unit)

63‧‧‧磁敏元件傳感器部(第三磁敏元件傳感器部) 63‧‧‧Magnetic sensor unit (third magnetic sensor unit)

64‧‧‧磁敏元件傳感器部(第四磁敏元件傳感器部) 64‧‧‧Magnetic sensor unit (fourth magnetic sensor unit)

70‧‧‧第一磁敏元件 70‧‧‧The first magnetic sensor

71、72、73、74、75、76、77、78‧‧‧磁敏元件 71, 72, 73, 74, 75, 76, 77, 78

79‧‧‧第二磁敏元件 79‧‧‧Second magnetic sensor

L‧‧‧旋轉軸線方向 L‧‧‧Rotation axis direction

Claims (16)

一種編碼器,包括:磁鐵,交替地磁化有多個N極及S極;以及多個磁敏元件傳感器部,包括檢測所述磁鐵的位置的第一磁敏元件、以及配置於相對於所述第一磁敏元件的輸出以電角度計具有90°的相位差的位置而檢測所述磁鐵的位置的第二磁敏元件;並且作為所述磁敏元件傳感器部,至少設置有第一磁敏元件傳感器部及第二磁敏元件傳感器部,所述第一磁敏元件傳感器部及所述第二磁敏元件傳感器部是以如下的方式而配置,即,所述第一磁敏元件傳感器部的所述第一磁敏元件的輸出與所述第二磁敏元件傳感器部的所述第一磁敏元件的輸出、以及所述第一磁敏元件傳感器部的所述第二磁敏元件的輸出與所述第二磁敏元件傳感器部的所述第二磁敏元件的輸出配置於以電角度計具有180°的奇數倍的相位差的位置即以機械角度計30°以下,將所述第一磁敏元件傳感器部的正輸出端子與所述第二磁敏元件傳感器部的負輸出端子加以連接,將所述第一磁敏元件傳感器部的負輸出端子與所述第二磁敏元件傳感器部的正輸出端子加以連接。 An encoder includes: a magnet having a plurality of N poles and S poles alternately magnetized; and a plurality of magneto-sensitive element sensor parts including a first magneto-sensitive element that detects the position of the magnet, The output of the first magneto-sensitive element is a second magneto-sensitive element that detects the position of the magnet with the position of a phase difference of 90° in an electrical angle meter; and as the magneto-sensitive element sensor section, at least the first magneto-sensitive element is provided An element sensor section and a second magnetic sensor element section, the first magnetic sensor element section and the second magnetic element sensor section are arranged in such a manner that the first magnetic element sensor section The output of the first magneto-sensitive element and the output of the first magneto-sensitive element of the second magneto-sensitive element sensor section, and the output of the second magneto-sensitive element of the first magneto-sensitive element sensor section The output and the output of the second magneto-sensitive element of the second magneto-sensitive element sensor section are arranged at a position that has a phase difference of an odd multiple of 180° in electrical angle, that is, 30° or less in mechanical angle. The positive output terminal of the first magnetic sensor element is connected to the negative output terminal of the second magnetic sensor element, and the negative output terminal of the first magnetic sensor element is connected to the second magnetic sensor Connect the positive output terminal of the element sensor section. 如申請專利範圍第1項所述的編碼器,其中所述第一磁敏元件傳感器部及所述第二磁敏元件傳感器部是以如下的方式而 配置,即,所述第一磁敏元件傳感器部的所述第一磁敏元件的輸出與所述第二磁敏元件傳感器部的所述第一磁敏元件的輸出、以及所述第一磁敏元件傳感器部的所述第二磁敏元件的輸出與所述第二磁敏元件傳感器部的所述第二磁敏元件的輸出以磁週期計配置於兩個週期以內。 The encoder according to item 1 of the patent application scope, wherein the first magnetic sensor element portion and the second magnetic sensor element portion are as follows Configuration, that is, the output of the first magnetic sensor of the first magnetic sensor element and the output of the first magnetic sensor of the second magnetic sensor element, and the first magnetic The output of the second magneto-sensitive element of the sensor element sensor section and the output of the second magneto-sensitive element of the second magnetic sensor element section are arranged within two cycles on a magnetic cycle meter. 如申請專利範圍第1項所述的編碼器,其中所述磁敏元件傳感器部是在一個封裝體內具有所述第一磁敏元件及所述第二磁敏元件。 The encoder according to item 1 of the scope of the patent application, wherein the magneto-sensitive element sensor section includes the first magneto-sensitive element and the second magneto-sensitive element in one package. 如申請專利範圍第1項所述的編碼器,其中所述第一磁敏元件及所述第二磁敏元件是霍爾元件。 The encoder as described in item 1 of the patent application range, wherein the first magneto-sensitive element and the second magneto-sensitive element are Hall elements. 如申請專利範圍第1項所述的編碼器,其中所述第一磁敏元件及所述第二磁敏元件是磁阻元件。 The encoder according to item 1 of the patent application scope, wherein the first magneto-sensitive element and the second magneto-sensitive element are magnetoresistive elements. 如申請專利範圍第1項所述的編碼器,其中所述磁鐵是在圓周方向上交替地磁化有多個N極及S極的第一旋轉磁鐵,且所述編碼器包括能夠與所述第一旋轉磁鐵一同旋轉並且在圓周方向上磁化有N極及S極的第二旋轉磁鐵、以及檢測所述第二旋轉磁鐵的位置的第二旋轉磁鐵用磁敏元件。 The encoder as described in item 1 of the patent application range, wherein the magnet is a first rotating magnet having a plurality of N poles and S poles alternately magnetized in the circumferential direction, and the encoder includes A rotating magnet rotates together and has a second rotating magnet having N poles and S poles magnetized in the circumferential direction, and a second rotating magnet magneto-sensitive element that detects the position of the second rotating magnet. 如申請專利範圍第1項所述的編碼器,其中所述磁敏元件傳感器部由所述第一磁敏元件傳感器部及所述第二磁敏元件傳感器部兩者所構成。 The encoder according to item 1 of the patent application range, wherein the magnetic sensor element is composed of both the first magnetic sensor element and the second magnetic sensor element. 如申請專利範圍第1項至第6項任一項所述的編碼器,其中所述編碼器是所述磁鐵是在圓周方向上交替地磁化有多個N極及S極的旋轉磁鐵的旋轉編碼器,作為所述磁敏元件傳感器部,除了所述第一磁敏元件傳感器部及所述第二磁敏元件傳感器部以外,至少在以所述旋轉磁鐵的旋轉軸為基準的所述第一磁敏元件傳感器部或所述第二磁敏元件傳感器部的相反側,設置有包括所述第一磁敏元件及所述第二磁敏元件的第三磁敏元件傳感器部。 The encoder according to any one of claims 1 to 6, wherein the encoder is a rotation of the magnet in which a plurality of N poles and S poles are alternately magnetized in the circumferential direction The encoder, as the magneto-sensitive element sensor section, in addition to the first magneto-sensitive element sensor section and the second magneto-sensitive element sensor section, at least in the first A third magneto-sensitive element sensor section including the first magneto-sensitive element and the second magneto-sensitive element is provided on the opposite side of a magneto-sensitive element sensor section or the second magneto-sensitive element sensor section. 一種編碼器,包括:磁鐵,交替地磁化有多個N極及S極;以及多個磁敏元件傳感器部,包括檢測所述磁鐵的位置的第一磁敏元件、以及配置於相對於所述第一磁敏元件的輸出以電角度計具有90°的相位差的位置而檢測所述磁鐵的位置的第二磁敏元件;並且作為所述磁敏元件傳感器部,至少設置有第一磁敏元件傳感器部及第二磁敏元件傳感器部,所述第一磁敏元件傳感器部及所述第二磁敏元件傳感器部是以如下的方式而配置,即,所述第一磁敏元件傳感器部的所述第一磁敏元件的輸出與所述第二磁敏元件傳感器部的所述第一磁敏元件的輸出、以及所述第一磁敏元件傳感器部的所述第二磁敏元件的輸出與所述第二磁敏元件傳感器部的所述第二磁敏元件的輸出配置於以電角度計具有180°的偶數倍的相位差的位置即以機械 角度計30°以下,將所述第一磁敏元件傳感器部的正輸出端子與所述第二磁敏元件傳感器部的正輸出端子加以連接,將所述第一磁敏元件傳感器部的負輸出端子與所述第二磁敏元件傳感器部的負輸出端子加以連接。 An encoder includes: a magnet having a plurality of N poles and S poles alternately magnetized; and a plurality of magneto-sensitive element sensor parts including a first magneto-sensitive element that detects the position of the magnet, The output of the first magneto-sensitive element is a second magneto-sensitive element that detects the position of the magnet with the position of a phase difference of 90° in an electrical angle meter; and as the magneto-sensitive element sensor section, at least the first magneto-sensitive element is provided An element sensor section and a second magnetic sensor element section, the first magnetic sensor element section and the second magnetic element sensor section are arranged in such a manner that the first magnetic element sensor section The output of the first magneto-sensitive element and the output of the first magneto-sensitive element of the second magneto-sensitive element sensor section, and the output of the second magneto-sensitive element of the first magneto-sensitive element sensor section The output and the output of the second magneto-sensitive element of the second magneto-sensitive element sensor section are arranged at a position that has a phase difference of an even multiple of 180° in electrical angle, that is, a mechanical An angle meter of 30° or less, connects the positive output terminal of the first magnetic sensor element and the positive output terminal of the second magnetic sensor element, and outputs the negative output of the first magnetic sensor element The terminal is connected to the negative output terminal of the second magnetic sensor element. 如申請專利範圍第9項所述的編碼器,其中所述第一磁敏元件傳感器部及所述第二磁敏元件傳感器部是以如下的方式而配置,即,所述第一磁敏元件傳感器部的所述第一磁敏元件的輸出與所述第二磁敏元件傳感器部的所述第一磁敏元件的輸出、以及所述第一磁敏元件傳感器部的所述第二磁敏元件的輸出與所述第二磁敏元件傳感器部的所述第二磁敏元件的輸出以磁週期計配置於兩個週期以內。 The encoder according to item 9 of the patent application range, wherein the first magneto-sensitive element sensor section and the second magneto-sensitive element sensor section are configured in such a manner that the first magneto-sensitive element The output of the first magnetosensitive element of the sensor section and the output of the first magnetosensitive element of the second magnetosensitive element sensor section, and the second magnetosensitive of the first magnetosensitive element sensor section The output of the element and the output of the second magnetic-sensitive element of the second magnetic-sensitive element sensor section are arranged within two cycles on a magnetic cycle meter. 如申請專利範圍第9項所述的編碼器,其中所述磁敏元件傳感器部是在一個封裝體內具有所述第一磁敏元件及所述第二磁敏元件。 The encoder according to item 9 of the patent application scope, wherein the magneto-sensitive element sensor section includes the first magneto-sensitive element and the second magneto-sensitive element in one package. 如申請專利範圍第9項所述的編碼器,其中所述第一磁敏元件及所述第二磁敏元件是霍爾元件。 The encoder as described in item 9 of the patent application scope, wherein the first magneto-sensitive element and the second magneto-sensitive element are Hall elements. 如申請專利範圍第9項所述的編碼器,其中所述第一磁敏元件及所述第二磁敏元件是磁阻元件。 The encoder as described in item 9 of the patent application scope, wherein the first magneto-sensitive element and the second magneto-sensitive element are magnetoresistive elements. 如申請專利範圍第9項所述的編碼器,其中所述磁鐵是在圓周方向上交替地磁化有多個N極及S極的第一旋轉磁鐵,且所述編碼器包括能夠與所述第一旋轉磁鐵一同旋轉並且在圓 周方向上磁化有N極及S極的第二旋轉磁鐵、以及檢測所述第二旋轉磁鐵的位置的第二旋轉磁鐵用磁敏元件。 The encoder according to item 9 of the patent application range, wherein the magnet is a first rotating magnet having a plurality of N poles and S poles alternately magnetized in the circumferential direction, and the encoder includes A rotating magnet rotates together and in a circle In the circumferential direction, a second rotating magnet magnetized with an N pole and an S pole, and a second magnetic sensitive element for a rotating magnet that detects the position of the second rotating magnet. 如申請專利範圍第9項所述的編碼器,其中所述磁敏元件傳感器部由所述第一磁敏元件傳感器部及所述第二磁敏元件傳感器部兩者所構成。 The encoder according to item 9 of the patent application range, wherein the magnetic sensor element is composed of both the first magnetic sensor element and the second magnetic sensor element. 如申請專利範圍第9項至第14項中任一項所述的編碼器,其中所述編碼器是所述磁鐵是在圓周方向上交替地磁化有多個N極及S極的旋轉磁鐵的旋轉編碼器,作為所述磁敏元件傳感器部,除了所述第一磁敏元件傳感器部及所述第二磁敏元件傳感器部以外,至少在以所述旋轉磁鐵的旋轉軸為基準的所述第一磁敏元件傳感器部或所述第二磁敏元件傳感器部的相反側,設置有包括所述第一磁敏元件及所述第二磁敏元件的第三磁敏元件傳感器部。 The encoder according to any one of items 9 to 14 of the patent application range, wherein the encoder is a rotating magnet in which the magnet is alternately magnetized with a plurality of N poles and S poles in the circumferential direction A rotary encoder, as the magnetic sensor element, in addition to the first magnetic sensor element and the second magnetic sensor element, at least the reference to the rotation axis of the rotary magnet On the opposite side of the first magneto-sensitive element sensor section or the second magneto-sensitive element sensor section, a third magneto-sensitive element sensor section including the first magneto-sensitive element and the second magneto-sensitive element is provided.
TW108113594A 2018-04-19 2019-04-18 Encoder TWI688750B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-080618 2018-04-19
JP2018080618A JP7114315B2 (en) 2018-04-19 2018-04-19 encoder

Publications (2)

Publication Number Publication Date
TW201944031A TW201944031A (en) 2019-11-16
TWI688750B true TWI688750B (en) 2020-03-21

Family

ID=68284940

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108113594A TWI688750B (en) 2018-04-19 2019-04-18 Encoder

Country Status (4)

Country Link
JP (1) JP7114315B2 (en)
KR (1) KR20190122141A (en)
CN (1) CN110388943B (en)
TW (1) TWI688750B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932514B (en) * 2019-12-30 2021-06-04 深圳市优必选科技股份有限公司 Brushless motor and detection method for motor rotor position
CN116892960B (en) * 2023-09-06 2023-12-08 西安甘鑫科技股份有限公司 Angle rotary encoder suitable for ultralow temperature environment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058256A (en) * 2015-09-16 2017-03-23 日本電産サンキョー株式会社 Rotary encoder and absolute angle position detection method of rotary encoder
TW201802436A (en) * 2016-03-10 2018-01-16 日本電產三協股份有限公司 Rotary encoder and angle correction method of rotary encoder

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5392321A (en) * 1994-01-24 1995-02-21 Westinghouse Electric Corporation Method and system for magnetic coupling compensating a rod position indication system
WO2007132603A1 (en) 2006-05-12 2007-11-22 Kabushiki Kaisha Yaskawa Denki Magnetic encoder
US8115479B2 (en) 2006-11-21 2012-02-14 Hitachi Metals, Ltd. Rotation-angle-detecting apparatus, rotating machine, and rotation-angle-detecting method
DE112007003469B4 (en) 2007-04-24 2014-12-11 Harmonic Drive Systems Inc. Magnetic encoder and method of detecting an absolute rotational position
WO2009084346A1 (en) 2007-12-27 2009-07-09 Kabushiki Kaisha Yaskawa Denki Magnetic encoder
US8400096B2 (en) 2008-06-20 2013-03-19 Harmonic Drive Systems Inc. Magnetic encoder and actuator
CN102597709B (en) * 2009-07-24 2014-12-24 丰田自动车株式会社 Rotation angle detection device
US8664943B2 (en) 2010-07-07 2014-03-04 Asahi Kasei Microdevices Corporation Position detecting apparatus
CN103180751B (en) * 2010-11-12 2015-01-21 阿尔卑斯电气株式会社 Arrival angle calculation device
JP5666886B2 (en) * 2010-11-22 2015-02-12 日本電産サンキョー株式会社 Rotary encoder
JP5780744B2 (en) 2010-12-03 2015-09-16 日本電産サンキョー株式会社 Rotary encoder
CN103718056B (en) 2011-07-29 2016-08-17 旭化成微电子株式会社 Magnetic field measuring device
JP6417699B2 (en) * 2013-10-25 2018-11-07 株式会社リコー Rotation detection device and rotation detection method
JP6769799B2 (en) * 2016-09-21 2020-10-14 日本電産サンキョー株式会社 Rotary encoder and absolute angle position detection method for rotary encoder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058256A (en) * 2015-09-16 2017-03-23 日本電産サンキョー株式会社 Rotary encoder and absolute angle position detection method of rotary encoder
TW201802436A (en) * 2016-03-10 2018-01-16 日本電產三協股份有限公司 Rotary encoder and angle correction method of rotary encoder

Also Published As

Publication number Publication date
JP7114315B2 (en) 2022-08-08
KR20190122141A (en) 2019-10-29
CN110388943B (en) 2022-04-01
JP2019190872A (en) 2019-10-31
CN110388943A (en) 2019-10-29
TW201944031A (en) 2019-11-16

Similar Documents

Publication Publication Date Title
US10775200B2 (en) Rotary encoder and absolute angular position detection method thereof
JP5062450B2 (en) Rotating magnetic field sensor
US8604780B2 (en) Rotating field sensor
KR102195533B1 (en) Rotary encoder and angle correction method of rotary encoder
JP2017058256A (en) Rotary encoder and absolute angle position detection method of rotary encoder
JP2011038855A (en) Magnetic sensor
JP5062454B2 (en) Magnetic sensor
TW201842299A (en) Rotation angle detection device and rotation angle detection method
WO2017090146A1 (en) Angle detection device and electric power steering device
TWI688750B (en) Encoder
JP6969581B2 (en) Rotation angle detector
JP2018132356A (en) Rotary encoder
JP5762567B2 (en) Rotation angle detector
TWI683990B (en) Encoder
JP6877169B2 (en) Rotary encoder
JP5062453B2 (en) Magnetic sensor
JP7351179B2 (en) position detection device
JP5212452B2 (en) Rotation sensor
JP6842943B2 (en) Rotary encoder
JP2020153981A (en) System for determining at least one rotation parameter of rotating member
JP2012198180A (en) Rotation sensor