TWI687711B - Epicenter distance estimation device, epicenter distance estimation method, and computer-readable recording medium - Google Patents

Epicenter distance estimation device, epicenter distance estimation method, and computer-readable recording medium Download PDF

Info

Publication number
TWI687711B
TWI687711B TW106122623A TW106122623A TWI687711B TW I687711 B TWI687711 B TW I687711B TW 106122623 A TW106122623 A TW 106122623A TW 106122623 A TW106122623 A TW 106122623A TW I687711 B TWI687711 B TW I687711B
Authority
TW
Taiwan
Prior art keywords
waveform data
data
learning
waveform
learning model
Prior art date
Application number
TW106122623A
Other languages
Chinese (zh)
Other versions
TW201812339A (en
Inventor
鍬守直樹
Original Assignee
日商日本電氣股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本電氣股份有限公司 filed Critical 日商日本電氣股份有限公司
Publication of TW201812339A publication Critical patent/TW201812339A/en
Application granted granted Critical
Publication of TWI687711B publication Critical patent/TWI687711B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

無。

Description

震央距離推定裝置、震央距離推定方法及電腦可讀取之記錄媒體Epicenter distance estimation device, epicenter distance estimation method, and computer-readable recording medium

本發明係關於在地震發生時推定震央距離所用的震央距離推定裝置及震央距離推定方法,也關於記錄實現前述方法所用的程式之電腦可讀取之記錄媒體。 The invention relates to an epicenter distance estimation device and an epicenter distance estimation method used for estimating the epicenter distance when an earthquake occurs, and also relates to a computer-readable recording medium for recording a program for implementing the aforementioned method.

在地震發生時,為了推定各地的震度及主要震動的到達時刻,必須迅速確定震央距離。通常,震央距離的深度會由在複數地點的震度計所檢測的震度而確定。 When an earthquake occurs, in order to estimate the magnitude of each location and the arrival time of the main vibration, the epicentral distance must be quickly determined. Generally, the depth of the epicentral distance will be determined by the magnitude detected by the seismometers at multiple locations.

然而,震源的位置在海底或者在震度計的設置密度較低的地域的話,為了取得由複數個震度計所測定的震度,必須耗費過多時間,導致無法及時確定震央距離。因此,近年來,開發出僅使用單一震度計所測定的震度以確定震央距離的技術。 However, if the location of the source is on the seabed or in an area where the seismometers are installed at a low density, it takes too much time to obtain the seismicity measured by a plurality of seismometers, which makes it impossible to determine the epicenter distance in time. Therefore, in recent years, techniques have been developed to determine the epicenter distance using only the magnitude measured by a single seismometer.

作為這種技術,已知有利用「地震到達時的地震波形資料之上升強度係愈靠近震源的地震則愈強,震源愈遠的地震則愈平緩」,而推定震央距離的技術(例如參考專利文獻1)。 As this technique, there is known a technique for estimating the epicentral distance by using "the intensity of seismic waveform data when the earthquake arrives is closer to the source, and the farther the source is, the smoother the earthquake is." Literature 1).

具體而言,在專利文獻1所揭示的技術,將從地震計所得的時間數列資料之絕對值設為y(t),將時間設為t,將地震計檢測到地震的時間設為t=0,由地震計所取得的地震初動部分之波形形狀藉由下述數學式1所示的函數擬合。在下述數學式1,A為與初動部分的最大振幅相關的參數,B為與地震波形的初動振幅之時間變化相關的參數。尚且,實際上,在擬合過程中,必須仰賴人的經驗與直覺,以便將複雜的個別地點屬性反映在影響因素及方式不明的參數A及B。 Specifically, in the technique disclosed in Patent Document 1, the absolute value of the time series data obtained from the seismometer is y(t), the time is t, and the time when the seismometer detects an earthquake is t= 0, the waveform shape of the initial part of the earthquake obtained by the seismometer is fitted by the function shown in the following mathematical formula 1. In the following mathematical formula 1, A is a parameter related to the maximum amplitude of the initial motion part, and B is a parameter related to the time change of the initial motion amplitude of the seismic waveform. Moreover, in fact, in the fitting process, one must rely on human experience and intuition in order to reflect the complex individual location attributes in the parameters A and B of unknown factors and methods.

【數學式1】y(t)=Bte -At [Mathematical Formula 1] y ( t )= Bte - At

然後,在專利文獻1所揭示的技術,藉由最小平方法求得參數A及B。其中,可知雖然參數B與震央距離之間具有相互關係,但此一相互關係不會受到地震規模影響。因此,若預先將參數B與震央距離之間的關係予以公式化,則藉由從地震初動部分的波形形狀,利用數學式1算出參數B,即可確定震央距離。若依照專利文獻1所揭示的技術,則可從地震初動部分的波形形狀,迅速確定震央距離。 Then, in the technique disclosed in Patent Document 1, the parameters A and B are obtained by the least square method. Among them, it can be seen that although the parameter B and the epicentral distance have a mutual relationship, this mutual relationship will not be affected by the magnitude of the earthquake. Therefore, if the relationship between the parameter B and the epicentral distance is formulated in advance, the epicentral distance can be determined by calculating the parameter B from the waveform shape of the initial part of the earthquake using Mathematical Formula 1. According to the technique disclosed in Patent Document 1, the epicentral distance can be quickly determined from the waveform shape of the initial part of the earthquake.

〔先前技術文獻〕 [Previous Technical Literature]

〔專利文獻〕 [Patent Literature]

〔專利文獻1〕日本特開2002-277557號公報 [Patent Document 1] Japanese Unexamined Patent Publication No. 2002-277557

然而,專利文獻1所揭示的技術在某些狀況下會發生無法算出係數A及B的情形,而也有可靠性不足的問題。另外,專利文獻1所揭示的技術也有不易將算出震央距離所需的時間縮短的問題。 However, the technology disclosed in Patent Document 1 may cause the situation that the coefficients A and B cannot be calculated under certain circumstances, and there is also a problem of insufficient reliability. In addition, the technique disclosed in Patent Document 1 has a problem that it is not easy to shorten the time required to calculate the epicenter distance.

本發明的目的之一例提供可解決上述問題,並且穩定地算出震央距離,並且可使算出時間縮短之震央距離推定裝置、震央距離推定方法及電腦可讀取之記錄媒體。 An example of an object of the present invention is to provide an epicenter distance estimation device, an epicenter distance estimation method, and a computer-readable recording medium that can solve the above problems and stably calculate the epicenter distance and shorten the calculation time.

為了達成上述目的,本發明的一型態之震央距離推定裝置的特徵為:具備:地震資訊取得部,其取得已發生的地震之波形資料;及推定處理部,其對學習地震的波形資料與震央距離之間的關係而得到的學習模型,套用已取得的前述波形資料,而推定震央距離。 In order to achieve the above object, a type of epicenter distance estimation device of the present invention is characterized by: an earthquake information acquisition unit that acquires waveform data of an earthquake that has occurred; and an estimation processing unit that learns the waveform data of an earthquake and The learning model obtained from the relationship between epicenter distances applies the aforementioned waveform data to estimate the epicenter distance.

另外,為了達成上述目的,本發明的一型態之震央距離推定方法的特徵為:具有以下步驟:(a)取得已發生的地震之波形資料的步驟;(b)對學習地震的波形資料與震央距離之間的關係而得到的學習模型,套用已取得的前述波形資料,而推定震央距離。 In addition, in order to achieve the above object, a type of epicenter distance estimation method of the present invention is characterized by the following steps: (a) a step of acquiring waveform data of an existing earthquake; (b) learning waveform data of an earthquake and The learning model obtained from the relationship between epicenter distances applies the aforementioned waveform data to estimate the epicenter distance.

此外,為了達成上述目的,本發明的一型態之電腦可讀取之記錄媒體的特徵為:記錄一程式,該程式包含在電腦中執行以下步驟的命令:(a)取得已發生的地震之波形資料的步驟; (b)對學習地震的波形資料與震央距離之間的關係而得到的學習模型,套用已取得的前述波形資料,而推定震央距離。 In addition, in order to achieve the above purpose, a type of computer-readable recording medium of the present invention is characterized by recording a program that includes commands to perform the following steps in the computer: (a) Obtain the occurrence of an earthquake Waveform data steps; (b) For the learning model obtained by learning the relationship between the waveform data of the earthquake and the epicentral distance, the aforementioned waveform data has been applied to estimate the epicentral distance.

如以上所述,若依照本發明,則可穩定地算出震央距離,並且可使算出時間縮短。 As described above, according to the present invention, the epicentral distance can be calculated stably, and the calculation time can be shortened.

10:震央距離推定裝置(實施型態1) 10: Device for estimating the epicentral distance (implementation type 1)

11:地震資訊取得部 11: Earthquake Information Acquisition Department

12:推定處理部 12: Estimation processing department

13:學習資訊取得部 13: Learning Information Acquisition Department

14:學習部 14: Learning Department

15:儲存部 15: Storage Department

16:學習模型 16: learning model

20:地震檢測裝置 20: Earthquake detection device

30:地震活動等綜合監視系統 30: Integrated monitoring system for seismic activity

40:震央距離推定裝置(實施型態2) 40: Epicenter distance estimation device (implementation type 2)

41:波形前處理部 41: Waveform pre-processing section

110:電腦 110: computer

111:CPU 111: CPU

112:主記憶體 112: main memory

113:儲存裝置 113: Storage device

114:輸入介面 114: Input interface

115:顯示控制器 115: display controller

116:資料讀取器/寫入器 116: data reader/writer

117:通訊介面 117: Communication interface

118:輸入機器 118: Enter the machine

119:顯示裝置 119: display device

120:記錄媒體 120: Recording media

121:匯流排 121: busbar

【圖1】圖1為表示本發明的實施型態1之震央距離推定裝置的概略構成之方塊圖。 [FIG. 1] FIG. 1 is a block diagram showing a schematic configuration of an epicenter distance estimating device according to Embodiment 1 of the present invention.

【圖2】圖2為具體表示本發明的實施型態1之震央距離推定裝置的構成之方塊圖。 [FIG. 2] FIG. 2 is a block diagram specifically showing the configuration of the epicenter distance estimating device according to Embodiment 1 of the present invention.

【圖3】圖3為表示本發明的實施型態1中用於學習的輸入資料及正解資料的一例之圖。 [FIG. 3] FIG. 3 is a diagram showing an example of input data and positive solution data for learning in Embodiment 1 of the present invention.

【圖4】圖4為表示本發明的實施型態1之震央距離推定裝置的學習處理執行時之動作的流程圖。 [FIG. 4] FIG. 4 is a flowchart showing the operation when the learning process of the epicenter distance estimating device in Embodiment 1 of the present invention is executed.

【圖5】圖5為表示本發明的實施型態1之震央距離推定裝置的推定處理執行時之動作的流程圖。 [Fig. 5] Fig. 5 is a flowchart showing the operation when the estimation process of the epicentral distance estimation device of Embodiment 1 of the present invention is executed.

【圖6】圖6為具體表示本發明的實施型態2之震央距離推定裝置的構成之方塊圖。 [FIG. 6] FIG. 6 is a block diagram specifically showing the configuration of the epicenter distance estimating device according to Embodiment 2 of the present invention.

【圖7】圖7為表示本發明的實施型態2之震央距離推定裝置的學習處理執行時之動作的流程圖。 [FIG. 7] FIG. 7 is a flowchart showing the operation when the learning process of the epicentral distance estimation device of Embodiment 2 of the present invention is executed.

【圖8】圖8為表示本發明的實施型態2之震央距離推定裝置的推定處理執行時之動作的流程圖。 [FIG. 8] FIG. 8 is a flowchart showing the operation when the estimation process of the epicentral distance estimation device of Embodiment 2 of the present invention is executed.

【圖9】圖9為表示實現本發明的實施型態1及2之震央距離推定裝置的電腦之一例的方塊圖。 [FIG. 9] FIG. 9 is a block diagram showing an example of a computer that realizes the epicenter distance estimation device of Embodiments 1 and 2 of the present invention.

(實施型態1) (Implementation type 1)

以下,針對本發明的實施形態1之震央距離推定裝置、震央距離推定方法及程式,參考圖1~圖5來說明。 Hereinafter, the epicenter distance estimation device, epicenter distance estimation method, and program according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 5.

〔裝置構成〕 [Device configuration]

首先,使用圖1說明本實施形態1的震央距離推定裝置之概略構成。圖1為表示本發明的實施型態1之震央距離推定裝置的概略構成之方塊圖。 First, the schematic configuration of the epicenter distance estimation device of the first embodiment will be described using FIG. 1. FIG. 1 is a block diagram showing a schematic configuration of an epicenter distance estimation device according to Embodiment 1 of the present invention.

如圖1所示,本實施型態1的震央距離推定裝置10為從地震發生時所量測的波形資料推定震央距離所用的裝置。如圖1所示,震央距離推定裝置10具備地震資料取得部11及推定處理部12。 As shown in FIG. 1, the epicentral distance estimation device 10 of the first embodiment is an apparatus for estimating the epicentral distance from waveform data measured when an earthquake occurs. As shown in FIG. 1, the epicenter distance estimation device 10 includes an earthquake data acquisition unit 11 and an estimation processing unit 12.

地震資料取得部11會取得已發生的地震之波形資料。推定處理部12會對學習模型套用藉由地震資料取得部11所取得的波形資料,而推定震央距離。學習模型係預先藉由學習地震的波形資料與震央距離之間的關係而得到。 The seismic data acquisition unit 11 acquires waveform data of an earthquake that has occurred. The estimation processing unit 12 applies the waveform data acquired by the seismic data acquisition unit 11 to the learning model, and estimates the epicenter distance. The learning model is obtained in advance by learning the relationship between the waveform data of the earthquake and the epicentral distance.

如此一來,本實施型態1係與以往的技術不同,不必使波形資料擬合到函數即可推定震央距離,因此可穩定地算出震央距離。另外,在本實施型態1,不需要利用最小平方法進行計算處理,故可使算出時間縮短。 In this way, the first type of the present embodiment is different from the conventional technology, and the epicenter distance can be estimated without fitting the waveform data to the function, so the epicenter distance can be calculated stably. In addition, in the first embodiment, calculation processing by the least square method is unnecessary, so the calculation time can be shortened.

接著,使用圖2,更具體說明本實施型態1的震央距離推定裝置之構成。圖2為具體表示本發明的實施型態1之震央距離推定裝置的構成之方塊圖。 Next, the configuration of the epicenter distance estimation device of the first embodiment will be described more specifically using FIG. 2. FIG. 2 is a block diagram specifically showing the configuration of the epicenter distance estimating device according to Embodiment 1 of the present invention.

如圖2所示,在本實施型態1,震央距離推定裝置10會經由網絡而連接到地震檢測裝置20及地震活動等綜合監視系統30。其中,地震檢測裝置20係具備地震計,當藉由地震計檢測地震波時,檢測到的地震波之波形資料會被傳送到震央距離推定裝置10。在本實施型態1,地震檢測裝置20為地震資料取得部11之波形資料的取得來源。 As shown in FIG. 2, in the first embodiment, the epicenter distance estimation device 10 is connected to the earthquake detection device 20 and the integrated monitoring system 30 such as the seismic activity via the network. Among them, the seismic detection device 20 is equipped with a seismometer. When the seismic wave is detected by the seismometer, the waveform data of the detected seismic wave is transmitted to the epicenter distance estimation device 10. In the first embodiment, the seismic detection device 20 is the source of waveform data acquisition by the seismic data acquisition unit 11.

另外,在圖2之例,雖然僅例示單一地震檢測裝置20,但連接有震央距離推定裝置10的地震檢測裝置20之數量並未特別限定。然而,作為地震資料取得部11之取得來源的地震檢測裝置20可為在這之中的任1個。 In addition, in the example of FIG. 2, although only a single seismic detection device 20 is illustrated, the number of seismic detection devices 20 to which the epicenter distance estimation device 10 is connected is not particularly limited. However, the seismic detection device 20 as the source of the seismic data acquisition unit 11 may be any one of them.

地震活動等綜合監視系統30在日本為氣象廳所保有的系統,當地震發生時,該系統會算出氣象廳地震規模,再基於已算出的氣象廳地震規模,預測海嘯高度。此外,地震活動等綜合監視系統30會將已算出的氣象廳地震規模及已預測的海嘯高度以緊急地震速報的方式傳達給各種媒體。 The integrated monitoring system 30 for seismic activity and other systems in Japan is maintained by the Meteorological Agency. When an earthquake occurs, the system calculates the magnitude of the earthquake of the Meteorological Agency and then predicts the tsunami height based on the calculated magnitude of the earthquake of the Meteorological Agency. In addition, the integrated monitoring system 30 for earthquake activity and the like transmits the calculated magnitude of the earthquake of the Meteorological Agency and the predicted height of the tsunami to various media in the form of an emergency earthquake quick report.

另外,在本實施型態1,震央距離推定裝置10會將已推定的震央距離輸入到地震活動等綜合監視系統30。因此,地震活動等綜合監視系統30會使用由震央距離推定裝置10所推定的震央距離,而算出氣象廳地震規模及預測海嘯高度。 In addition, in the first embodiment, the epicenter distance estimation device 10 inputs the estimated epicenter distance to the integrated monitoring system 30 such as seismic activity. Therefore, the integrated monitoring system 30 such as seismic activity uses the epicentral distance estimated by the epicentral distance estimation device 10 to calculate the earthquake scale and the predicted tsunami height of the Meteorological Agency.

另外,如圖2所示,在本實施型態1,震央距離推定裝置10除了上述的地震資料取得部11及推定處理部12,更具備學習資料取得部13、學習部14及儲存部15。尚且,圖2表示震央距離推定裝置10的一例,學習資料取得部13、學習部14及儲存部15可位在震央距離推定裝置10以外的裝置。 In addition, as shown in FIG. 2, in the present embodiment 1, the epicenter distance estimation device 10 includes a learning data acquisition unit 13, a learning unit 14, and a storage unit 15 in addition to the seismic data acquisition unit 11 and the estimation processing unit 12 described above. Furthermore, FIG. 2 shows an example of the epicenter distance estimation device 10, and the learning data acquisition unit 13, the learning unit 14, and the storage unit 15 may be located in devices other than the epicenter distance estimation device 10.

學習資料取得部13會取得在後述的學習部14之學習中成為輸入資料的波形資料、及同樣在學習時作為正解資料的震央距離,並予以輸入到學習部14。尚且,輸入資料及正解資料的取得來源並未特別限定於此。 The learning material acquisition unit 13 acquires the waveform data that becomes the input data in the learning of the learning unit 14 described later, and the epicentral distance that is also the positive solution data during the learning, and inputs it to the learning unit 14. Moreover, the source of the input data and correct solution data is not particularly limited to this.

學習部14將地震的波形資料作為輸入資料,將地震的震央距離作為正解資料,而學習波形資料與震央距離之間的關係,然後產生表示學習結果的學習模型16。另外,學習部14將已產生的學習模型16儲存在儲存部15。 The learning section 14 uses the waveform data of the earthquake as input data and the epicenter distance of the earthquake as positive solution data, and learns the relationship between the waveform data and the epicenter distance, and then generates a learning model 16 representing the learning result. In addition, the learning unit 14 stores the generated learning model 16 in the storage unit 15.

圖3為表示本實施型態1中用於學習的輸入資料及正解資料的一例之圖。在圖3表示震央距離不同的複數個波形資料。圖3所示的各波形資料為過去所觀測的地震之波形資料。另外,對應各波形資料的震央距離為正解資料。學習部14將圖3所示的各波形資料作為輸入資料,將震央距離作為正解資料,而進行學習。 FIG. 3 is a diagram showing an example of input data and positive solution data for learning in the first embodiment. Figure 3 shows a plurality of waveform data with different epicenter distances. The waveform data shown in Figure 3 is the waveform data of earthquakes observed in the past. In addition, the epicentral distance corresponding to each waveform data is positive solution data. The learning unit 14 uses the waveform data shown in FIG. 3 as input data and the epicentral distance as positive solution data for learning.

另外,在本實施型態1,作為正解資料,可使用氣象廳公佈的資料。氣象廳公佈的資料包含各觀測點的震央距離及震源要素,這些資料係氣象廳利用一元 化系統所計算的檢測值(http://www.data.jma.go.jp/svd/eqev/data/bulletin/deck.html)而求得。此外,在本實施型態1,用於學習的輸入資料及正確資料由震度為設定值(例如震度4)以上的地震所計算者為佳。 In addition, in the present embodiment 1, as the positive solution data, the data published by the Meteorological Agency can be used. The data published by the Meteorological Agency contains the epicentral distance and source elements of each observation point. The detection value calculated by the chemical system (http://www.data.jma.go.jp/svd/eqev/data/bulletin/deck.html) is obtained. In addition, in the first embodiment, the input data and the correct data for learning are preferably calculated from earthquakes having a magnitude greater than a set value (for example, magnitude 4).

另外,在本實施型態1,學習部14例如可藉由機械學習而建構神經網路,然後將神經網路設成學習模型16。具體而言,學習部14在具備輸入層、中間層及輸出層的階層型神經網路中,使用輸入資料與正解資料,藉由調整相鄰之層的節點間的耦合之值,而產生學習模型。 In addition, in the first embodiment, the learning unit 14 can construct a neural network by mechanical learning, for example, and then set the neural network as the learning model 16. Specifically, the learning unit 14 uses input data and positive solution data in a hierarchical neural network having an input layer, an intermediate layer, and an output layer to generate learning by adjusting the coupling value between nodes of adjacent layers model.

另外,在本實施型態1,學習部14進行的「學習」係指所謂的「機械學習」。此外,學習部14進行的「學習」並不限於使用上述的神經網路之深層學習,可為使用邏輯回歸的學習、使用支援向量機的學習、使用決策樹的學習及異種混合學習等。 In addition, in the present embodiment 1, the "learning" performed by the learning unit 14 refers to so-called "mechanical learning". In addition, the "learning" performed by the learning unit 14 is not limited to the deep learning using the aforementioned neural network, but may be learning using logistic regression, learning using support vector machines, learning using decision trees, and heterogeneous hybrid learning.

地震資料取得部11在本實施型態1從單一地震檢測裝置20接收已發生的地震之波形資料。另外,地震資料取得部11將已接收的波形資料傳送到推定處理部12。 The seismic data acquisition unit 11 in the present embodiment 1 receives waveform data of an earthquake that has occurred from a single seismic detection device 20. In addition, the seismic data acquisition unit 11 transmits the received waveform data to the estimation processing unit 12.

推定處理部12在本實施型態1存取儲存部15,取得學習模型16,再對已取得的學習模型16套用從學習資料取得部13傳送的波形資料,藉此推定震央距離。 The estimation processing unit 12 accesses the storage unit 15 in the present embodiment 1, acquires the learning model 16, and then applies the waveform data transmitted from the learning data acquisition unit 13 to the acquired learning model 16 to estimate the epicenter distance.

另外,在本實施型態1,學習部14還可另外使用地震的震源之深度作為正解資料,以便學習波形資料、震央距離及震源的深度之間的關係,而產生學習模型16。此時,推定處理部12除了可推定震央距離,還可推定震源的深度。 In addition, in the first embodiment, the learning unit 14 can additionally use the depth of the seismic source as the positive solution data, so as to learn the relationship between the waveform data, the epicentral distance, and the depth of the focal source to generate the learning model 16. At this time, the estimation processing unit 12 can estimate the depth of the seismic source in addition to the epicenter distance.

此外,在本實施型態1,學習部14除了可將波形資料作為輸入資料,還可將已取得波形資料的地點之地點資料作為輸入資料使用。此時,學習部14會學習波形資料及地點資料、與震央距離(或震央距離及震源的深度)之間的關係,而產生學習模型16。 In addition, in the first embodiment, in addition to the waveform data as the input data, the learning unit 14 can also use the location data of the location where the waveform data has been obtained as the input data. At this time, the learning unit 14 will learn the relationship between the waveform data and location data, and the epicenter distance (or epicenter distance and depth of the epicenter), and generate a learning model 16.

在此,已取得波形資料的地點係指已觀測到作為波形資料之來源的地震波之地點。另外,作為地點資料,例如可舉出表層地盤增幅率、表示板塊的狀態之資料、表示已觀測到地震波的地點附近所存在的火山之資料、地殻厚度、岩石圈厚度等。如此一來,若使用波形資料與地點資料這兩者作為輸入資料而產生學習模型16,則可提升推定處理的精確度。 Here, the location where the waveform data has been obtained refers to the location where the seismic wave as the source of the waveform data has been observed. In addition, as the location data, for example, the surface site increase rate, the data indicating the state of the plate, the data indicating the presence of volcanoes near the location where the seismic wave has been observed, the thickness of the crust, the thickness of the lithosphere, and the like. In this way, if both the waveform data and the location data are used as input data to generate the learning model 16, the accuracy of the estimation process can be improved.

使用地點資料作為學習的輸入資料時,地震資料取得部11除了取得已發生的地震之波形資料,還會取得已取得此波形資料的地點之地點資料,也就是設置有地震檢測裝置20的地點之地點資料。 When using location data as input data for learning, the seismic data acquisition unit 11 not only acquires waveform data of an earthquake that has occurred, but also acquires location data of a location where the waveform data has been acquired, that is, a location where the seismic detection device 20 is installed Location information.

另外,地點資料可預先儲存在各個地震檢測裝置20的儲存部15,在這個態様,每當地震資料取得部11取得波形資料,就會從儲存部15取得對應的地點資料。另外,地點資料可從地震檢測裝置20連同波形資料共同被傳送,在這個態様,地震資料取得部11會連同波形資料取得地點資料。 In addition, the location data may be stored in the storage unit 15 of each seismic detection device 20 in advance. In this state, whenever the seismic data acquisition unit 11 acquires waveform data, the corresponding location data will be acquired from the storage unit 15. In addition, the location data can be transmitted from the seismic detection device 20 together with the waveform data. In this state, the seismic data acquisition unit 11 will acquire the location data together with the waveform data.

此外,使用地點資料作為學習的輸入資料時,推定處理部12會對藉由學習部14而產生的學習模型16套用已取得的波形資料及地點資料,而推定震央距離(或震央距離及震源的深度)。 In addition, when using the location data as the input data for learning, the estimation processing unit 12 applies the acquired waveform data and location data to the learning model 16 generated by the learning unit 14 and estimates the epicenter distance (or epicenter distance and the source depth).

尚且,在本實施型態1,輸入資料及正解資料並不限定於上述的範例。可使用波形資料及地點資料以外的資料作為輸入資料。另外,可使用震央距離及震源的深度以外的資料作為正解資料。 Furthermore, in the first embodiment, the input data and the positive solution data are not limited to the above examples. Data other than waveform data and location data can be used as input data. In addition, data other than the epicentral distance and the depth of the source can be used as positive solution data.

〔裝置動作〕 [Device operation]

接著,針對本實施型態1的震央距離推定裝置10之動作使用圖4及圖5進行說明。在以下的說明會適當參考圖1~圖3。另外,在本實施型態1,藉由使震央距離推定裝置10動作,而實施震央距離推定方法。因此,本實施型態1的震央距離推定方法之說明會取代以下的震央距離推定裝置10之動作說明。 Next, the operation of the epicentral distance estimation device 10 according to the first embodiment will be described using FIGS. 4 and 5. In the following description, reference will be made to Figures 1 to 3 as appropriate. In addition, in the first embodiment, the epicenter distance estimation method is implemented by operating the epicenter distance estimation device 10. Therefore, the description of the epicenter distance estimation method in the first embodiment will replace the following operational description of the epicenter distance estimation device 10.

在本實施型態1,震央距離推定裝置10主要執行學習處理及推定處理。首先,說明學習處理。圖4為表示本發明的實施型態1之震央距離推定裝置的學習處理執行時之動作的流程圖。 In the first embodiment, the epicentral distance estimation device 10 mainly performs learning processing and estimation processing. First, the learning process will be explained. FIG. 4 is a flowchart showing the operation when the learning process of the epicentral distance estimation device of Embodiment 1 of the present invention is executed.

如圖4所示,首先,學習資料取得部13取得輸入資料及正解資料(步驟A1)。具體而言,在步驟A1,學習資料取得部13除了將波形資料作為輸入資料,更取得地點資料作為輸入資料,除了將震央距離作為正解資料,更取得震源的深度作為正解資料。 As shown in FIG. 4, first, the learning material acquisition unit 13 acquires input data and correct solution data (step A1). Specifically, in step A1, the learning data acquisition unit 13 not only uses waveform data as input data, but also acquires location data as input data, in addition to epicentral distance as positive solution data, and further obtains the depth of the source as positive solution data.

接著,學習部14會判斷學習模型16是否已經存在(步驟A2)。具體而言,學習部14判斷在儲存部15是否儲存學習模型16。 Next, the learning unit 14 determines whether the learning model 16 already exists (step A2). Specifically, the learning unit 14 determines whether the learning model 16 is stored in the storage unit 15.

步驟A2的判定之結果為學習模型16尚未存在時,學習部14會學習波形資料及地點資料、與震央距離及震源的深度之間的關係,然後新產生表示學習結果的學習模型16(步驟A3)。 When the result of the determination in step A2 is that the learning model 16 does not yet exist, the learning unit 14 will learn the relationship between the waveform data and location data, the epicentral distance and the depth of the source, and then newly generate a learning model 16 representing the learning result (step A3 ).

具體而言,在步驟A3,學習部14會藉由學習而建構神經網路,並予以作為學習模型16。另外,學習部14會將已作成的學習模型16儲存於儲存部15。 Specifically, in step A3, the learning unit 14 constructs a neural network through learning and uses it as a learning model 16. In addition, the learning unit 14 stores the created learning model 16 in the storage unit 15.

另外,步驟A2的判定之結果為學習模型16已經存在時,學習部14會使用在步驟A1所取得的輸入資料與正解資料,以便更新既有的學習模型16(步驟A4)。具體而言,學習部14會使用在步驟A1所取得的輸入資料與正解資料,而更新節點間的耦合之值。 In addition, when the result of the determination in step A2 is that the learning model 16 already exists, the learning unit 14 uses the input data and the positive solution data obtained in step A1 to update the existing learning model 16 (step A4). Specifically, the learning unit 14 uses the input data and the positive solution data obtained in step A1 to update the coupling value between the nodes.

藉由執行步驟A1~A4,可作成或更新學習模型。然後,使用已作成或更新的學習模型來執行推定處理。圖5為表示本發明的實施型態1之震央距離推定裝置的推定處理執行時之動作的流程圖。 By executing steps A1~A4, a learning model can be created or updated. Then, the estimation process is performed using the learning model that has been created or updated. FIG. 5 is a flowchart showing the operation when the estimation process of the epicentral distance estimation device of Embodiment 1 of the present invention is executed.

如圖5,首先,從地震檢測裝置20傳送已發生的地震之波形資料的話,地震資料取得部11會接收已傳送的波形資料(步驟B1)。 As shown in FIG. 5, first, if the waveform data of the earthquake that has occurred is transmitted from the earthquake detection device 20, the seismic data acquisition unit 11 receives the transmitted waveform data (step B1).

接著,地震資料取得部11會從儲存部15取得設置有已傳送波形資料的地震檢測裝置20之地點的地點資料(步驟B2)。尚且,地點資料連同波形資料被傳送時,地震資料取得部11會接收已傳送的地點資料。 Next, the seismic data acquisition unit 11 acquires the location data of the location where the seismic detection device 20 having transmitted waveform data is installed from the storage unit 15 (step B2). Moreover, when the location data and the waveform data are transmitted, the seismic data acquisition unit 11 receives the transmitted location data.

接著,推定處理部12會將在步驟B1所接收的波形資料與在步驟B2所取得的地點資料套用到藉由圖4所示的學習處理而作成或更新的學習模型16,而推定震央距離及震源的深度(步驟B3)。 Next, the estimation processing unit 12 applies the waveform data received in step B1 and the location data obtained in step B2 to the learning model 16 created or updated by the learning process shown in FIG. 4 to estimate the epicentral distance and The depth of the source (step B3).

藉由執行步驟B1~B3,基於從單一地震檢測裝置20取得的波形資料,而推定震央距離及震源的深度。 By performing steps B1 to B3, the epicenter distance and the depth of the source are estimated based on the waveform data obtained from the single seismic detection device 20.

〔實施型態1的效果〕 [Effects of Embodiment 1]

如以上所述,若依照本實施型態1,不必使波形資料擬合到函數,即可從單一波形資料推定震央距離及震源的深度。另外,推定處理係藉由學習模型16而進行,故震央距離及震源的深度可穩定地在短時間內算出。 As described above, according to the first embodiment, it is possible to estimate the epicenter distance and the depth of the source from the single waveform data without fitting the waveform data to the function. In addition, the estimation process is performed by learning the model 16, so the epicentral distance and the depth of the source can be stably calculated in a short time.

換言之,在本實施型態1,與專利文獻1所揭示之以往的方式不同,不必藉由人工操作將複雜的個別地點屬性反映在影響因素及方式不明的參數之作業。若依照本實施型態1,可僅藉由客觀的波形資料與機械學習而取得達到可利用之精確度的資料。本實施型態1的震央距離推定裝置10可導入到多個地點及多個地域。 In other words, in the first embodiment, unlike the conventional method disclosed in Patent Document 1, it is not necessary to manually perform the operation of reflecting the complex individual location attributes in the influencing factors and parameters of unknown methods. According to the first embodiment, the available accuracy data can be obtained only by objective waveform data and machine learning. The epicentral distance estimation device 10 of the first embodiment can be introduced to multiple locations and multiple regions.

另外,如上述,在本實施型態,也可藉由單一波形資料而推定震源的深度,而上述專利文獻1所揭示的技術則無法推定震源的深度。使用上述專利文獻1所揭示的技術時,為了測定震源的深度,必須使用複數個地震計的測定結果。 In addition, as described above, in the present embodiment, the depth of the source can also be estimated from single waveform data, but the technique disclosed in Patent Document 1 above cannot estimate the depth of the source. When using the technique disclosed in the above-mentioned Patent Document 1, in order to measure the depth of the seismic source, it is necessary to use the measurement results of a plurality of seismometers.

〔變形例1〕 [Modification 1]

接著,說明本實施型態1的變形例。首先,在變形例1,學習部14會對被設定的波形量各者而產生學習模型16。具體而言,波形量會以從地震發生時所經過的時間而顯示。因此,學習部14會從由學習資料取得部13所取得的波形資料,在每個設定經過時間,切割出相應於經過時間長度的波形資料,再將切割出的波形資料作為輸入資料,然後進行學習而產生學習模型16。藉此,學習模型16會對波形量各者而產生。 Next, a modification of the first embodiment will be described. First, in Modification 1, the learning unit 14 generates a learning model 16 for each of the set waveform amounts. Specifically, the amount of waveform is displayed as the time elapsed since the earthquake occurred. Therefore, the learning unit 14 cuts out the waveform data corresponding to the elapsed time length from the waveform data acquired by the learning data acquisition unit 13 at each set elapsed time, and then uses the cut waveform data as input data, and then performs Learning to produce a learning model 16. With this, the learning model 16 is generated for each of the waveform amounts.

另外,在變形例1,推定處理部12會算出已發生的地震之波形資料的波形量,再基於已算出的波形量,而從產生的複數個學習模型16之中,選擇欲使用的學習模型。然後,推定處理部12對已選擇的學習模型16套用已發生的地震之波形資料,而推定震央距離(或震央距離及震源的深度)。 In addition, in Modification 1, the estimation processing unit 12 calculates the waveform amount of the waveform data of the earthquake that has occurred, and then selects the learning model to be used from the generated plurality of learning models 16 based on the calculated waveform amount . Then, the estimation processing unit 12 applies the waveform data of the earthquake that has occurred to the selected learning model 16 and estimates the epicenter distance (or epicenter distance and depth of the epicenter).

一般而言,緊急地震速報所用的震央距離及震源深度之推定即使在波形資料的波形量較小時也可進行。因此,藉由地震資料取得部11而取得的波形資料未必為一定,可能會有學習模型的產生所使用的波形資料之波形量與已發生的地震之波形資料的波形量不一致,使得推定精確度降低。然而,若依照本變形例1,則會配合已發生的地震之波形資料的波形量來選擇學習模型16,因而可避開上述的推定精確度降低的問題。 In general, the estimation of the epicentral distance and the depth of the focal point used in the emergency quick report can be performed even when the amount of waveform data is small. Therefore, the waveform data obtained by the seismic data acquisition unit 11 may not be constant, and the waveform amount of the waveform data used for generating the learning model may not match the waveform amount of the waveform data of the earthquake that has occurred, making the estimation accuracy reduce. However, according to the first modification, the learning model 16 is selected according to the waveform amount of the waveform data of the earthquake that has occurred, so that the above-mentioned problem of reduced estimation accuracy can be avoided.

〔變形例2〕 [Modification 2]

在變形例2,學習部14對成為輸入資料的波形資料之觀測點各者,而產生學習模型16。具體而言,學習部14僅使用在地震檢測裝置各者(地震計各者)所取得的波形資料,而產生學習模型16。 In Modification 2, the learning unit 14 generates a learning model 16 for each observation point of the waveform data to be input data. Specifically, the learning unit 14 uses only the waveform data acquired by each of the seismic detection devices (each of the seismometers) to generate the learning model 16.

另外,在變形例2,推定處理部12確認已發生的地震之波形資料的觀測點(也就是作為波形資料的送訊來源之地震檢測裝置20),再基於已確認的觀測點,從所產生的複數個學習模型16之中,選擇欲使用的學習模型。然後,推定處理部12會對已選擇的學習模型16套用已發生的地震之波形資料,而推定震央距離(或震央距離及震源的深度)。 In addition, in Modification 2, the estimation processing unit 12 confirms the observation point of the waveform data of the earthquake that has occurred (that is, the seismic detection device 20 as the transmission source of the waveform data), and then based on the confirmed observation point, generates Among the plurality of learning models 16, select the learning model to be used. Then, the estimation processing unit 12 applies the waveform data of the earthquake that has occurred to the selected learning model 16 and estimates the epicenter distance (or epicenter distance and depth of the epicenter).

若依照變形例2,則即使不使用觀測點各者的特性(也就是地點資料)進行學習,也可進行符合觀測點的特性之推定處理。尚且,在無法充分確保輸入資料的觀測點,難以進行完整的學習,導致難以對這樣的觀測點產生學習模型。 According to Modification 2, even if the characteristics of each observation point (that is, location data) are not used for learning, it is possible to perform estimation processing that conforms to the characteristics of the observation point. Moreover, it is difficult to perform complete learning at observation points where input data cannot be sufficiently secured, resulting in difficulty in generating a learning model for such observation points.

〔變形例3〕 [Modification 3]

在變形例3,學習部14對成為輸入資料的波形資料之觀測點的地盤特性各者,而產生學習模型16。具體而言,例如配合地盤增幅率等地盤特性(地點資料的值),將觀測點(地震檢測裝置20)歸類為不同群組。此時,學習部14對各個群組僅使用該群組內所得到的波形資料,而產生學習模型16。 In Modification 3, the learning unit 14 generates a learning model 16 for each of the site characteristics of the observation points of the waveform data to be input data. Specifically, for example, the observation points (earthquake detection device 20) are classified into different groups in accordance with site characteristics (value of location data) such as site increase rate. At this time, the learning unit 14 uses only the waveform data obtained in the group for each group to generate the learning model 16.

另外,在變形例3,推定處理部12確認已發生的地震之波形資料的觀測點之地盤特性,再基於已確認的地盤特性,從已產生的複數個學習模型16之中,選擇欲使用的學習模型。然後,推定處理部12會對已選擇的學習模型16,套用已發生的地震之波形資料,而推定震央距離(或震央距離及震源的深度)。 In addition, in Modification 3, the estimation processing unit 12 confirms the site characteristics of the observation point of the waveform data of the earthquake that has occurred, and then selects the desired learning model 16 from the plurality of generated learning models 16 based on the confirmed site characteristics Learning model. Then, the estimation processing unit 12 applies the waveform data of the earthquake that has occurred to the selected learning model 16 and estimates the epicenter distance (or epicenter distance and depth of the epicenter).

若依照變形例3,即使存在未完整獲得輸入資料的觀測點,也可不必進行使用地點資料的學習,即進行符合觀測點的特性之推定處理。 According to Modification 3, even if there are observation points where the input data are not completely obtained, it is not necessary to learn the use location data, that is, to perform the estimation processing conforming to the characteristics of the observation points.

〔程式〕 〔Program〕

本實施型態1的程式可為在電腦中執行圖4所示的步驟A1~A4、圖5所示的步驟B1~B3之程式。藉由將該程式安裝到電腦執行,可實現本實施型態1的震央距離推定裝置10與震央距離推定方法。此時,電腦的CPU(Central Processing Unit)可發揮地震資料取得部11、推定處理部12、學習資料取得部13及學習部14的功能而進行處理。 The program of this embodiment 1 may be a program that executes steps A1 to A4 shown in FIG. 4 and steps B1 to B3 shown in FIG. 5 in a computer. By installing the program to a computer and executing it, the epicenter distance estimation device 10 and the epicenter distance estimation method of the first embodiment can be realized. At this time, the CPU (Central Processing Unit) of the computer can perform functions by performing functions of the seismic data acquisition unit 11, the estimation processing unit 12, the learning data acquisition unit 13, and the learning unit 14.

另外,本實施型態12的程式可由複數台電腦所建構的電腦系統執行。此時,各部電腦可分別發揮地震資料取得部11、推定處理部12、學習資料取得部13及學習部14任一者的功能。另外,儲存部15可被設置在與執行本實施型態的程式之電腦不同的電腦上。 In addition, the program of this embodiment 12 can be executed by a computer system constructed by a plurality of computers. At this time, each computer can play the functions of any one of the seismic data acquisition unit 11, the estimation processing unit 12, the learning data acquisition unit 13, and the learning unit 14, respectively. In addition, the storage unit 15 may be provided on a computer different from the computer that executes the program of this embodiment.

(實施型態2) (Implementation type 2)

接著,針對本發明的實施型態2之震央距離推定裝置、震央距離推定方法及程式,參考圖6~圖8來說明。 Next, the epicentral distance estimation device, epicentral distance estimation method and formula of Embodiment 2 of the present invention will be described with reference to FIGS. 6 to 8.

〔裝置構成〕 [Device configuration]

首先,使用圖6說明本實施型態2的震央距離推定裝置之構成。圖6為具體表示本發明的實施型態2之震央距離推定裝置的構成之方塊圖。 First, the configuration of the epicenter distance estimation device of the second embodiment will be described using FIG. 6. 6 is a block diagram specifically showing the configuration of an epicenter distance estimating device according to Embodiment 2 of the present invention.

如圖6所示,本實施型態2的震央距離推定裝置40會具備波形前處理部41,在這一點上,與圖1及圖2所示的實施型態1之震央距離推定裝置10不同。以下,主要說明與實施型態1的相異點。 As shown in FIG. 6, the epicentral distance estimation device 40 of the present embodiment 2 includes the waveform pre-processing unit 41. This point is different from the epicenter distance estimation device 10 of the embodiment 1 shown in FIGS. 1 and 2. . In the following, the differences from Embodiment 1 are mainly explained.

波形前處理部41對在學習部14作為輸入資料所使用的波形資料、及在地震資料取得部11所取得的波形資料執行前處理。作為前處理,可舉出影像轉換處理、包絡線轉換處理、帶通轉換處理、微分轉換處理及傅立葉轉換處理。 The waveform preprocessing unit 41 performs preprocessing on the waveform data used as the input data in the learning unit 14 and the waveform data obtained in the seismic data acquisition unit 11. Examples of pre-processing include image conversion processing, envelope conversion processing, band-pass conversion processing, differential conversion processing, and Fourier conversion processing.

具體而言,影像轉換處理為將波形資料變換成以圖表顯示的影像之影像資料的處理。一般認為,若依照影像轉換處理,則學習部14會基於影像資料而執行學習,使得學習處理變容易。 Specifically, the image conversion process is a process of converting waveform data into image data of an image displayed as a graph. It is generally believed that if the image conversion process is followed, the learning unit 14 will perform learning based on the image data, making the learning process easier.

另外,包絡線轉換處理為使波形資料的波形變平滑的處理。若執行包絡線處理,則容易確認地震波的上升特性,因而會產生反映了地震波的上升特性之學習模型16。 In addition, the envelope conversion processing is processing to smooth the waveform of the waveform data. If the envelope processing is performed, it is easy to confirm the rising characteristic of the seismic wave, and thus a learning model 16 reflecting the rising characteristic of the seismic wave is generated.

帶通轉換處理為突顯特定周期的波形之處理。若依照帶通轉換處理,則地震波的特徵會突顯,因而會產生反映了地震波的特徵之學習模型16。 The band-pass conversion process is a process of highlighting the waveform of a specific period. According to the band-pass conversion process, the characteristics of the seismic wave will be highlighted, and thus a learning model 16 reflecting the characteristics of the seismic wave will be generated.

另外,微分轉換處理為將波形資料微分,然後轉換成加速度資料的處理。進行微分轉換處理時,也容易確認地震波的上升特性,因而會產生反映了地震波的上升特性之學習模型16。 In addition, the differential conversion process is a process of differentiating the waveform data and then converting it into acceleration data. When performing the differential conversion process, it is also easy to confirm the rising characteristics of the seismic wave, so that a learning model 16 reflecting the rising characteristics of the seismic wave is generated.

此外,傅立葉轉換處理為求得波形資料之頻率分布的處理。若依照傅立葉變換,則波形資料各者的周期差異會突顯,因而會產生反映了地震波的周期之學習模型16。 In addition, the Fourier transform processing is processing to obtain the frequency distribution of the waveform data. According to the Fourier transform, the period difference of each of the waveform data will be prominent, and thus a learning model 16 reflecting the period of the seismic wave will be generated.

波形前處理部41可執行影像轉換處理、包絡線轉換處理、帶通轉換處理、微分轉換處理及傅立葉轉換處理中任一者或任兩者以上。 The waveform pre-processing section 41 may perform any one or more of any one of image conversion processing, envelope conversion processing, band-pass conversion processing, differential conversion processing, and Fourier conversion processing.

〔裝置動作〕 [Device operation]

接著,針對本實施型態2的震央距離推定裝置40之動作利用圖7及圖8進行說明。在以下的說明,適當參考圖1~圖6。另外,在本實施型態2,藉由使震央距離推定裝置40動作,而實施震央距離推定方法。因此,本實施型態2的震央距離推定方法之說明取代以下的震央距離推定裝置40之動作說明。 Next, the operation of the epicentral distance estimation device 40 of the second embodiment will be described using FIGS. 7 and 8. In the following description, refer to FIGS. 1 to 6 as appropriate. In addition, in the second embodiment, the epicenter distance estimation method is implemented by operating the epicenter distance estimation device 40. Therefore, the description of the epicenter distance estimation method of the present embodiment 2 replaces the following operational description of the epicenter distance estimation device 40.

首先,說明學習處理。圖7為表示本發明的實施型態2之震央距離推定裝置的學習處理執行時之動作的流程圖。 First, the learning process will be explained. FIG. 7 is a flowchart showing the operation when the learning process of the epicentral distance estimation device of Embodiment 2 of the present invention is executed.

如圖7所示,首先,學習資料取得部13取得輸入資料及正解資料(步驟A11)。另外,學習資料取得部13將已取得的資料輸入到波形前處理部41。 As shown in FIG. 7, first, the learning material acquisition unit 13 acquires input data and correct solution data (step A11). In addition, the learning data acquisition unit 13 inputs the acquired data to the waveform pre-processing unit 41.

接著,波形前處理部41對在步驟A11所取得的輸入資料所包含的波形資料執行前處理(步驟A12)。然後,波形前處理部41將前處理後的波形資料、除此以外的輸入資料(地點資料)與正解資料輸入到學習部14。 Next, the waveform preprocessing section 41 performs preprocessing on the waveform data included in the input data acquired in step A11 (step A12). Then, the waveform pre-processing section 41 inputs the pre-processed waveform data, other input data (location data) and correct solution data to the learning section 14.

接著,學習部14會判斷學習模型16是否已存在(步驟A13)。 Next, the learning unit 14 determines whether the learning model 16 already exists (step A13).

步驟A13的判定之結果在學習模型16尚未存在時,學習部14會學習波形資料及地點資料、與震央距離及震源的深度之間的關係,然後新產生表示學習結果的學習模型16(步驟A14)。 As a result of the determination in step A13, when the learning model 16 does not yet exist, the learning unit 14 will learn the relationship between the waveform data and location data, the epicentral distance and the depth of the epicenter, and then newly generate a learning model 16 representing the learning result (step A14 ).

另外,步驟A13的判定之結果在學習模型16已經存在時,學習部14會使用輸入資料與正解資料,而更新既有的學習模型16(步驟A15)。 In addition, when the learning model 16 already exists as a result of the determination in step A13, the learning unit 14 updates the existing learning model 16 using the input data and the correct solution data (step A15).

藉由執行步驟A11~A15,而更新或作成學習模型16。之後,使用已作成或更新的學習模型16,而執行推定處理。圖8為表示本發明的實施型態2之震央距離推定裝置的學習處理執行時之動作的流程圖。 By performing steps A11 to A15, the learning model 16 is updated or created. After that, the learning model 16 that has been created or updated is used to execute the estimation process. FIG. 8 is a flowchart showing the operation when the learning process of the epicentral distance estimation device of Embodiment 2 of the present invention is executed.

如圖8所示,首先,從地震檢測裝置20傳送已發生的地震之波形資料的話,地震資料取得部11會接收已傳送的波形資料(步驟B11)。 As shown in FIG. 8, first, if the waveform data of the earthquake that has occurred is transmitted from the earthquake detection device 20, the seismic data acquisition unit 11 receives the transmitted waveform data (step B11).

接著,地震資料取得部11從儲存部15取得設置有已傳送波形資料的地震檢測裝置20之地點的地點資料(步驟B12)。尚且,地點資料連同波形資料被傳送時,地震資料取得部11會接收已傳送的地點資料。 Next, the seismic data acquisition unit 11 acquires the location data of the location where the seismic detection device 20 that has transmitted the waveform data is installed from the storage unit 15 (step B12). Moreover, when the location data and the waveform data are transmitted, the seismic data acquisition unit 11 receives the transmitted location data.

接著,波形前處理部41對在步驟B11接收的波形資料執行前處理(步驟B13)。然後,波形前處理部41將前處理後的波形資料與地點資料輸入到推定處理部12。 Next, the waveform preprocessing section 41 performs preprocessing on the waveform data received in step B11 (step B13). Then, the waveform pre-processing section 41 inputs the pre-processed waveform data and location data to the estimation processing section 12.

接著,推定處理部12將在步驟B13進行前處理後的波形資料與在步驟B12所取得的地點資料,套用到藉由圖7所示的學習處理所作成或更新的學習模型16,而推定震央距離及震源的深度(步驟B14)。 Next, the estimation processing unit 12 applies the waveform data after the pre-processing in step B13 and the location data obtained in step B12 to the learning model 16 created or updated by the learning process shown in FIG. 7 to estimate the epicenter Distance and source depth (step B14).

藉由執行步驟B11~B14,本實施型態2也與實施型態1相同,基於從單一地震檢測裝置20所取得的波形資料,而推定震央距離及震源的深度。 By performing steps B11 to B14, the present embodiment 2 is also the same as the embodiment 1, based on the waveform data obtained from the single seismic detection device 20 to estimate the epicentral distance and the depth of the source.

〔實施型態2的效果〕 [Effects of Embodiment 2]

如以上所述,在本實施型態2,藉由波形前處理部41所進行的前處理,對用於學習的波形資料抑制雜訊並且突顯特徵。因此,若依照本實施型態2,則學習模型的精確度會提升,結果,可提升推定精確度。 As described above, in the second embodiment, the pre-processing performed by the waveform pre-processing unit 41 suppresses noise and highlights features of the waveform data used for learning. Therefore, according to the second embodiment, the accuracy of the learning model is improved, and as a result, the estimation accuracy can be improved.

(物理構成) (Physical composition)

在此,藉由執行實施型態1及2的程式,針對實現震央距離推定裝置的電腦使用圖9進行說明。圖9為表示實現本發明的實施型態1及2之震央距離推定裝置的電腦之一例的方塊圖。 Here, by executing the programs of the implementation modes 1 and 2, the computer for realizing the epicenter distance estimation device will be described using FIG. 9. 9 is a block diagram showing an example of a computer that realizes the epicentral distance estimation device of Embodiments 1 and 2 of the present invention.

如圖9所示,電腦110具備CPU111、主記憶體112、儲存裝置113、輸入介面114、顯示控制器115、資料讀取器/寫入器116及通訊介面117。以上各部經由匯流排121以可互相傳送資料的方式連接。 As shown in FIG. 9, the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader/writer 116 and a communication interface 117. The above-mentioned parts are connected via the bus 121 in such a way that data can be transferred to each other.

CPU111被收納在儲存裝置113,將本實施型態的程式(編碼)在主記憶體112展開,然後以既定順序執行這些程式,藉此實施各種演算。主記憶體112一般而言為DRAM(Dynamic Random Access Memory)等揮發性的儲存裝置。另外,本實施型態的程式以被收納在電腦可讀取的記錄媒體120之狀態而提供。尚且,本實施型態的程式可為在經由通訊介面117而連接的網路上所流通的程式。 The CPU 111 is stored in the storage device 113, expands the programs (codes) of the present embodiment in the main memory 112, and then executes the programs in a predetermined order to implement various calculations. The main memory 112 is generally a volatile storage device such as DRAM (Dynamic Random Access Memory). In addition, the program of the present embodiment is provided in a state of being stored in a computer-readable recording medium 120. Moreover, the program of the present embodiment may be a program that circulates on the network connected through the communication interface 117.

另外,作為儲存裝置113的具體例,除了硬碟之外,還可舉出快閃記憶體等半導體儲存裝置。輸入介面114作為中介而協助CPU111、鍵盤及滑鼠等輸入機器118之間的資料傳送。顯示控制器115係與顯示裝置119連接,並且控制顯示裝置119的顯示。 In addition, as a specific example of the storage device 113, in addition to a hard disk, a semiconductor storage device such as a flash memory can also be mentioned. The input interface 114 serves as an intermediary to assist data transfer between the input devices 118 such as the CPU 111, keyboard, and mouse. The display controller 115 is connected to the display device 119 and controls the display of the display device 119.

資料讀取器/寫入器116作為中介協助CPU111與記錄媒體120之間的資料傳送,而從記錄媒體120讀取程式及將電腦110的處理結果寫入記錄媒體120。通訊介面117作為中介協助CPU111與其他電腦之間的資料傳送。 The data reader/writer 116 acts as an intermediary to assist data transfer between the CPU 111 and the recording medium 120, read programs from the recording medium 120, and write processing results of the computer 110 to the recording medium 120. The communication interface 117 serves as an intermediary to assist data transfer between the CPU 111 and other computers.

另外,作為記錄媒體120的具體例,可舉出CF(Compact Flash(註冊商標))及SD(Secure Digital)等汎用半導體記錄裝置、軟碟機(Flexible Disk)等磁記錄媒體或CD-ROM(Compact Disk Read Only Memory)等光學記錄媒體。 In addition, specific examples of the recording medium 120 include general-purpose semiconductor recording devices such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), magnetic recording media such as flexible disks, and CD-ROM ( Compact Disk Read Only Memory) and other optical recording media.

另外,本實施型態1及2的震央距離推定裝置10及40不僅可藉由已安裝程式的電腦來實現,還可藉由使用對應於各部的硬碟來實現。此外,震央距離推定裝置10及40也可構成為一部分由程式實現,而其餘的部分由硬碟實現。 In addition, the epicentral distance estimation devices 10 and 40 of the first and second embodiments can be implemented not only by a computer with a program installed, but also by using a hard disk corresponding to each part. In addition, the epicentral distance estimation devices 10 and 40 may also be configured to be implemented partly by a program, and the remaining part by a hard disk.

上述的實施型態之一部分或全部可由以下所記載的(付記1)~(付記15)表現,但不限於以下的記載。 Part or all of the above-mentioned embodiments can be expressed by (Supplement 1) to (Supplement 15) described below, but is not limited to the following description.

(備註1) (Remark 1)

一種震央距離推定裝置,其特徵為:具備:地震資訊取得部,其取得已發生的地震之波形資料;及 推定處理部,其對學習地震的波形資料與震央距離之間的關係而得到的學習模型,套用已取得的前述波形資料,而推定震央距離。 A device for estimating the epicentral distance, which is characterized by having: an earthquake information acquisition unit that acquires waveform data of an earthquake that has occurred; and The estimation processing unit applies the aforementioned waveform data to the learning model obtained by learning the relationship between the waveform data of the earthquake and the epicentral distance to estimate the epicentral distance.

(備註2) (Remark 2)

如備註1之震央距離推定裝置,其更具備學習部,該學習部將地震的波形資料作為輸入資料,並且將前述地震的震央距離作為正解資料,而學習波形資料與震央距離之間的關係,然後產生表示學習結果的學習模型,前述推定處理部對藉由前述學習部而產生的學習模型,套用已取得的前述波形資料,而推定震央距離。 For example, the device for estimating the epicentral distance in Note 1 further includes a learning unit, which uses the waveform data of the earthquake as input data and the epicentral distance of the aforementioned earthquake as the positive solution data, and learns the relationship between the waveform data and the epicentral distance, Then, a learning model representing the learning result is generated, and the estimation processing unit applies the acquired waveform data to the learning model generated by the learning unit to estimate the epicenter distance.

(備註3) (Remark 3)

如備註2之震央距離推定裝置,其中前述學習部除了將前述波形資料作為輸入資料,還將已取得前述波形資料的地點之地點資料也作為輸入資料,而學習前述波形資料及前述地點資料與前述震央距離之間的關係,然後產生前述學習模型,前述地震資訊取得部除了取得前述波形資料,更取得已得到已發生的地震之波形資料的地點之地點資料,前述推定處理部對前述學習模型除了套用前述波形資料,更套用已取得的前述地點資料,而推定前述震央距離。 For example, in the device for estimating the epicentral distance in Note 2, in addition to using the waveform data as input data, the learning section also uses the location data of the location where the waveform data has been obtained as input data, and learns the waveform data and the location data and the foregoing The relationship between the epicentral distances, and then the aforementioned learning model is generated. In addition to acquiring the aforementioned waveform data, the aforementioned seismic information acquiring unit also acquires the location data of the location where the waveform data of the earthquake that has occurred has been acquired. Apply the aforementioned waveform data, and apply the aforementioned location data already obtained, and estimate the aforementioned epicentral distance.

(備註4) (Remark 4)

如備註2或3之震央距離推定裝置,其中 前述學習部更使用前述地震之震源的深度作為前述正解資料,而學習前述波形資料與前述震央距離及前述震源的深度之間的關係,然後產生前述學習模型,前述推定處理部除了推定前述震央距離,更推定震源的深度。 If the device for estimating the epicentral distance of remarks 2 or 3, where The learning unit further uses the depth of the seismic source as the positive solution data, and learns the relationship between the waveform data and the epicenter distance and the depth of the epicenter, and then generates the learning model. The estimation processing unit estimates the epicenter distance. , And the depth of the source is presumed.

(備註5) (Remark 5)

如備註2至4中任一項之震央距離推定裝置,其中前述學習部藉由學習而構築神經網路,並且將前述神經網路作為學習模型。 The device for estimating the epicentral distance according to any one of Remarks 2 to 4, wherein the learning unit constructs a neural network by learning, and uses the neural network as a learning model.

(備註6) (Note 6)

如備註2至5中任一項之震央距離推定裝置,其中前述學習部對成為輸入資料的波形資料之波形量各者,產生前述學習模型,前述推定處理部會算出已取得的前述波形資料之波形量,再基於已算出的波形量,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。 For example, in the device for estimating the epicentral distance according to any one of Remarks 2 to 5, the learning unit generates the learning model for each of the waveform quantities of the waveform data to be input data, and the estimation processing unit calculates the acquired waveform data. The amount of waveforms, based on the calculated amount of waveforms, select the learning model to be used from among the generated learning models, and then apply the acquired waveform data to the selected learning model to estimate The aforementioned epicentral distance.

(備註7) (Note 7)

如備註2至5中任一項之震央距離推定裝置,其中前述學習部對成為輸入資料的波形資料之觀測點各者,產生前述學習模型,前述推定處理部確認已取得的前述波形資料之觀測點,再基於已確認的觀測點,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。 An epicenter distance estimation device according to any one of remarks 2 to 5, wherein the learning section generates the learning model for each observation point of the waveform data to be input data, and the estimation processing section confirms the observation of the acquired waveform data Point, based on the confirmed observation point, select the learning model to be used from each of the generated learning models, and then apply the acquired waveform data to the selected learning model to estimate the aforementioned Epicenter distance.

(備註8) (Note 8)

如備註2至5中任一項之震央距離推定裝置,其中前述學習部對成為輸入資料的波形資料之觀測點的地盤特性各者,產生前述學習模型,前述推定處理部確認已取得的前述波形資料的觀測點之地盤特性,再基於已確認的地盤特性,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。 For example, in the device for estimating the epicentral distance according to any one of Remarks 2 to 5, the learning unit generates the learning model for each of the site characteristics of the observation point of the waveform data to be input data, and the estimation processing unit confirms the acquired waveform The site characteristics of the observation point of the data, and then based on the confirmed site characteristics, from each of the aforementioned learning models, select the aforementioned learning model to be used, and then apply the acquired aforementioned to the selected learning model Waveform data, and the aforementioned epicentral distance is estimated.

(備註9) (Note 9)

如備註1至8中任一項之震央距離推定裝置,其更具備波形前處理部,該波形前處理部對在前述學習部作為前述輸入資料所使用的波形資料,及在前述地震資訊取得部所取得的波形資料,執行前處理。 As described in any one of the remarks 1 to 8, the epicentral distance estimation device further includes a waveform pre-processing unit for the waveform data used as the input data in the learning unit and the seismic information obtaining unit Perform pre-processing on the acquired waveform data.

(備註10) (Note 10)

如備註9之震央距離推定裝置,其中前述波形前處理部從影像轉換處理、包絡線轉換處理、帶通轉換處理、微分轉換處理及傅立葉轉換處理中執行至少1個處理,以作為前述前處理。 As in the epicentral distance estimation device of note 9, the waveform pre-processing section executes at least one process from image conversion processing, envelope conversion processing, band-pass conversion processing, differential conversion processing, and Fourier conversion processing as the pre-processing.

(備註11) (Remark 11)

一種震央距離推定方法,其特徵為:具有以下步驟:(a)取得已發生的地震之波形資料的步驟;(b)對學習地震的波形資料與震央距離之間的關係而得到的學習模型,套用已取得的前述波形資料,而推定震央距離。 A method for estimating the epicentral distance, which is characterized by the following steps: (a) the step of obtaining waveform data of an existing earthquake; (b) the learning model obtained by learning the relationship between the seismic waveform data and epicentral distance, Apply the aforementioned waveform data and estimate the epicentral distance.

(備註12) (Note 12)

如備註11之震央距離推定方法,其還具有以下步驟:(c)將地震的波形資料作為輸入資料,將前述地震的震央距離作為正解資料,而學習波形資料與震央距離之間的關係,然後產生表示學習結果的學習模型,在前述(b)的步驟,對由前述(c)的步驟而產生的學習模型,套用已取得的前述波形資料,而推定震央距離。 For example, the method of estimating the epicentral distance in Note 11 has the following steps: (c) Use the waveform data of the earthquake as input data and the epicentral distance of the aforementioned earthquake as the positive solution data, and learn the relationship between the waveform data and epicentral distance, and then To generate a learning model representing the learning result, in the step (b), apply the acquired waveform data to the learning model generated in the step (c), and estimate the epicenter distance.

(備註13) (Remark 13)

如備註12之震央距離推定方法,其中:在前述(c)的步驟,除了將前述波形資料作為輸入資料,還將已得到前述波形資料的地點之地點資料作為輸入資料,而學習前述波形資料及前述地點資料與前述震央距離之間的關係,然後產生前述學習模型,在前述(a)的步驟,除了取得前述波形資料,更取得已得到已發生的地震之波形資料的地點之地點資料,在前述(b)的步驟,對前述學習模型,除了套用前述波形資料,更套用已取得的前述地點資料,而推定前述震央距離。 For example, the method of estimating the epicentral distance in Note 12, where: in the step (c), in addition to the aforementioned waveform data as input data, the location data of the location where the aforementioned waveform data has been obtained is also used as input data, and the aforementioned waveform data and The relationship between the aforementioned location data and the aforementioned epicentral distance, and then the aforementioned learning model is generated. In step (a), in addition to obtaining the aforementioned waveform data, the location data of the location where the waveform data of the earthquake that has occurred has been obtained. In the step (b), in addition to applying the waveform data to the learning model, the acquired location data is applied to estimate the epicenter distance.

(備註14) (Remark 14)

如備註12或13之震央距離推定方法,其中:在前述(c)的步驟,更使用前述地震的震源之深度作為前述正解資料,並且學習前述波形資料與前述震央距離及前述震源的深度之間的關係,然後產生前述學習模型,在前述(b)的步驟,除了推定前述震央距離,更推定震源的深度。 For example, the method for estimating the epicentral distance of Note 12 or 13, wherein: in the step (c) above, the depth of the epicenter of the earthquake is used as the positive solution data, and the waveform data is learned between the epicentral distance and the depth of the epicenter Then, the aforementioned learning model is generated. In the aforementioned step (b), in addition to estimating the aforementioned epicentral distance, the depth of the source is also estimated.

(備註15) (Note 15)

如備註12至14中任一項之震央距離推定方法,其中:在前述(c)的步驟,藉由學習而建構神經網路,並且將前述神經網路作為學習模型。 The method for estimating the epicentral distance according to any one of Remarks 12 to 14, wherein: in the step (c), a neural network is constructed by learning, and the neural network is used as a learning model.

(備註16) (Note 16)

如備註12至15中任一項之震央距離推定方法,其中:在前述(c)的步驟,對成為輸入資料的波形資料之波形量各者,產生前述學習模型,在前述(b)的步驟,算出已取得的前述波形資料之波形量,再基於已算出的波形量,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。 For example, the method for estimating the epicentral distance according to any one of Remarks 12 to 15, wherein: in the step (c) above, the aforementioned learning model is generated for each waveform amount of the waveform data to be input data, and in the step (b) above , Calculate the waveform amount of the acquired waveform data, and then select the learning model to be used from among the generated learning models based on the calculated waveform amount, and then apply the selected learning model The aforementioned waveform data is obtained, and the aforementioned epicentral distance is estimated.

(備註17) (Note 17)

如備註12至15中任一項之震央距離推定方法,其中:在前述(c)的步驟,對成為輸入資料的波形資料之觀測點各者,產生前述學習模型,在前述(b)的步驟,確認已取得的前述波形資料之觀測點,再基於已確認的觀測點,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。 For example, the method for estimating the epicentral distance according to any one of Remarks 12 to 15, wherein: in the step (c) above, the aforementioned learning model is generated for each observation point of the waveform data that becomes the input data, and in the step (b) above , Confirm the observation points of the acquired waveform data, and then select the learning model to be used from among the generated learning models based on the confirmed observation points, and then apply the selected learning model The aforementioned waveform data is obtained, and the aforementioned epicentral distance is estimated.

(備註18) (Note 18)

如備註12至15中任一項之震央距離推定方法,其中:在前述(c)的步驟,對成為輸入資料的波形資料之觀測點的地盤特性各者,產生前述學習模型,在前述(b)的步驟,確認已取得的前述波形資料之觀測點的地盤特性,再基於已確認的地盤特性,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。 For example, the method for estimating the epicentral distance according to any one of Remarks 12 to 15, wherein: in the step (c), the learning model is generated for each of the site characteristics of the observation point of the waveform data that becomes the input data. ), confirm the site characteristics of the observation points of the acquired waveform data, and then, based on the confirmed site characteristics, select the learning model to be used from each of the generated learning models, and then select The aforementioned learning model applies the acquired waveform data to estimate the epicentral distance.

(備註19) (Remark 19)

如備註11至18中任一項之震央距離推定方法,其還具有以下步驟:(d)在前述(c)的步驟,對作為前述輸入資料所使用的波形資料、及在前述(a)的步驟所取得的波形資料,執行前處理。 If the method for estimating the epicentral distance according to any one of Remarks 11 to 18, it also has the following steps: (d) in the step (c), the waveform data used as the input data, and the (a) Perform the preprocessing on the waveform data obtained in the step.

(備註20) (Remark 20)

在前述(d)的步驟,執行影像轉換處理、包絡線轉換處理、帶通轉換處理、微分轉換處理及傅立葉轉換處理之中至少1個處理,以作為前述前處理。 In the step (d), at least one of image conversion processing, envelope conversion processing, band-pass conversion processing, differential conversion processing, and Fourier conversion processing is executed as the aforementioned pre-processing.

(備註21) (Note 21)

一種記錄程式的電腦可讀取之記錄媒體,其包含在電腦中執行以下步驟的命令:(a)取得已發生的地震之波形資料的步驟;(b)對學習地震的波形資料與震央距離之間的關係而得到的學習模型,套用已取得的前述波形資料,而推定震央距離。 A computer-readable recording medium for recording programs, which contains commands to execute the following steps in a computer: (a) the step of obtaining waveform data of an earthquake that has occurred; (b) the distance between the waveform data of a learned earthquake and the epicenter The learning model obtained from the relationship between the two is applied to the aforementioned waveform data to estimate the epicentral distance.

(備註22) (Remark 22)

如備註21的電腦可讀取之記錄媒體,其在前述電腦中還執行以下步驟:(c)將地震的波形資料作為輸入資料,將前述地震的震央距離作為正解資料,並且學習波形資料與震央距離之間的關係,再產生表示學習結果的學習模型,在前述(b)的步驟,對藉由前述(c)的步驟而產生的學習模型,套用已取得的前述波形資料,而推定震央距離。 If the computer-readable recording medium of Note 21, it also performs the following steps in the aforementioned computer: (c) Use the waveform data of the earthquake as input data, the epicenter distance of the aforementioned earthquake as the positive solution data, and learn the waveform data and the epicenter The relationship between the distances, and a learning model representing the learning result is regenerated. In the step (b), the learning model generated by the step (c) is applied with the waveform data obtained to estimate the epicenter distance. .

(備註23) (Remark 23)

如備註22的電腦可讀取之記錄媒體,其中:在前述(c)的步驟,除了將前述波形資料作為輸入資料,還將從前述波形資料所得到的地點之地點資料作為輸入資料,並且學習前述波形資料及前述地點資料與前述震央距離之間的關係,然後產生前述學習模型,在前述(a)的步驟,除了取得前述波形資料,更取得已得到已發生的地震之波形資料的地點之地點資料,在前述(b)的步驟,對前述學習模型,除了套用前述波形資料,更套用已取得的前述地點資料,而推定前述震央距離。 For example, the computer-readable recording medium of Note 22, where: in the step (c) above, in addition to the aforementioned waveform data as input data, the location data of the location obtained from the aforementioned waveform data will also be used as input data, and learn The aforementioned waveform data and the relationship between the aforementioned location data and the aforementioned epicentral distance, and then the aforementioned learning model is generated. In the step (a), in addition to acquiring the aforementioned waveform data, the location of the waveform data of the earthquake that has occurred has been obtained. For the location data, in the step (b), in addition to the waveform data, the acquired location data is applied to the learning model, and the epicenter distance is estimated.

(備註24) (Remark 24)

如備註22或23的電腦可讀取之記錄媒體,其中:在前述(c)的步驟,更使用前述地震的震源之深度作為前述正解資料,並且學習前述波形資料與前述震央距離及前述震源的深度之間的關係,然後產生前述學習模型, 在前述(b)的步驟,除了推定前述震央距離,更推定震源的深度。 For example, the computer-readable recording medium of note 22 or 23, wherein: in the step (c), the depth of the earthquake source is used as the positive solution data, and the distance between the waveform data and the epicenter and the source The relationship between depth, and then generate the aforementioned learning model, In the aforementioned step (b), in addition to estimating the aforementioned epicentral distance, the depth of the source is also estimated.

(備註25) (Note 25)

如備註22至24中任一項的電腦可讀取之記錄媒體,其中:在前述(c)的步驟,藉由學習而建構神經網路,並且將前述神經網路作為學習模型。 A computer-readable recording medium according to any one of remarks 22 to 24, wherein: in the step (c), a neural network is constructed by learning, and the aforementioned neural network is used as a learning model.

(備註26) (Remark 26)

如備註22至25中任一項的電腦可讀取之記錄媒體,其中:在前述(c)的步驟,對成為輸入資料的波形資料之波形量各者,產生前述學習模型,在前述(b)的步驟,算出已取得的前述波形資料之波形量,再基於已算出的波形量,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。 A computer-readable recording medium as described in any one of Remarks 22 to 25, in which: in the step (c) above, the aforementioned learning model is generated for each of the waveform quantities of the waveform data to be input data, in the aforementioned (b ), calculate the waveform amount of the acquired waveform data, and then select the learning model to be used from among the generated learning models based on the calculated waveform amount, and then select the learning The model applies the acquired waveform data and estimates the epicentral distance.

(備註27) (Remark 27)

如備註22至25中任一項的電腦可讀取之記錄媒體,其中:在前述(c)的步驟,對成為輸入資料的波形資料之觀測點各者,產生前述學習模型,在前述(b)的步驟,確認已取得的前述波形資料之觀測點,再基於已確認的觀測點,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。 A computer-readable recording medium according to any one of remarks 22 to 25, wherein: in the step (c) above, the aforementioned learning model is generated for each observation point of the waveform data that becomes the input data, in the aforementioned (b ), confirm the observation points of the acquired waveform data, and then, based on the confirmed observation points, select the learning model to be used from among the generated learning models, and then select the selected learning model. The model applies the acquired waveform data and estimates the epicentral distance.

(備註28) (Note 28)

如備註22至25中任一項的電腦可讀取之記錄媒體,其中:在前述(c)的步驟,對成為輸入資料的波形資料之觀測點的地盤特性各者,產生前述學習模型,在前述(b)的步驟,確認已取得的前述波形資料之觀測點的地盤特性,再基於已確認的地盤特性,從已產生的前述學習模型各者之中,選擇欲使用的前述學習模型,再對已選擇的前述學習模型,套用已取得的前述波形資料,而推定前述震央距離。 A computer-readable recording medium as described in any one of Remarks 22 to 25, in which: in the step (c) above, the aforementioned learning model is generated for each of the site characteristics of the observation point of the waveform data that becomes the input data, in In the step (b) above, confirm the site characteristics of the observation points of the acquired waveform data, and then, based on the confirmed site characteristics, select the learning model to be used from each of the generated learning models, and then For the selected learning model, the acquired waveform data is applied to estimate the epicenter distance.

(備註29) (Note 29)

如備註21至28中任一項的電腦可讀取之記錄媒體,其中在前述電腦還執行以下步驟:(d)在前述(c)的步驟,對成為前述輸入資料所使用的波形資料及對在前述(a)的步驟所取得的波形資料,執行前處理。 If the computer-readable recording medium of any one of Remarks 21 to 28, the computer also performs the following steps: (d) In the step (c), the waveform data used for the input data and the Perform the pre-processing on the waveform data obtained in the aforementioned step (a).

(備註30) (Note 30)

如備註29中任一項的電腦可讀取之記錄媒體,其中:在前述(d)的步驟,執行影像轉換處理、包絡線轉換處理、帶通轉換處理、微分轉換處理及傅立葉轉換處理之中至少1個處理,以作為前述前處理。 A computer-readable recording medium as described in any one of Note 29, wherein: in the step (d) above, image conversion processing, envelope conversion processing, band-pass conversion processing, differential conversion processing, and Fourier conversion processing are performed At least one process is used as the aforementioned pre-processing.

以上,雖然參考實施型態而說明本申請案的發明,但本申請案的發明不限定於上述實施型態。可對本申請案的發明之構成或詳細內容,進行本申請案的發明之範疇內相關領域業者可理解的各種變更。 Although the invention of the present application has been described above with reference to the embodiment mode, the invention of the present application is not limited to the above embodiment mode. Various changes that can be understood by those in the relevant field within the scope of the invention of the present application can be made to the structure or details of the invention of the present application.

本申請案係根據2016年7月8日提出申請之日本出願特願2016-136310主張優先權,並將其全部揭示內容引用至此。 This application claims priority based on the Japanese petition 2016-136310 filed on July 8, 2016, and the entire disclosure content is cited here.

〔產業上的可利用性〕 [Industry availability]

如以上所述,若依照本發明,則可穩定地算出震央距離,並且使算出時間縮短。本發明可用於在地震發生時必須盡早傳送地震相關資料的系統。 As described above, according to the present invention, the epicentral distance can be calculated stably, and the calculation time can be shortened. The invention can be used in a system that must transmit earthquake related data as early as possible when an earthquake occurs.

10‧‧‧震央距離推定裝置(實施型態1) 10‧‧‧Estimation of epicentral distance (implementation type 1)

11‧‧‧地震資訊取得部 11‧‧‧Earthquake Information Acquisition Department

12‧‧‧推定處理部 12‧‧‧Estimated Processing Department

13‧‧‧學習資訊取得部 13‧‧‧ Learning Information Acquisition Department

14‧‧‧學習部 14‧‧‧Learning Department

15‧‧‧儲存部 15‧‧‧Storage Department

16‧‧‧學習模型 16‧‧‧ learning model

20‧‧‧地震檢測裝置 20‧‧‧Earthquake detection device

30‧‧‧地震活動等綜合監視系統 30‧‧‧Earthquake activity monitoring system

Claims (10)

一種震央距離推定裝置,其特徵為具備:學習部,將地震的波形資料作為輸入資料,並且將該地震的震央距離作為正解資料,而學習波形資料與震央距離之間的關係,然後產生表示學習結果的學習模型;地震資訊取得部,其取得已發生的地震之波形資料;及推定處理部,其對於藉由該學習部學習地震的波形資料與震央距離之間的關係而得到的學習模型,套用已取得的該波形資料,而推定震央距離;且該學習部從成為輸入資料的波形資料,在每個設定經過時間,切割出相應於經過時間長度的波形資料,再將切割出的波形資料作為輸入資料,對於以從地震發生時所經過的時間而顯示之波形量各者,產生該學習模型,該推定處理部算出已取得的該波形資料之波形量,再基於已算出的波形量,從已產生的該學習模型各者之中,選擇欲使用的該學習模型,再對已選擇的該學習模型,套用已取得的該波形資料,而推定該震央距離。 A device for estimating epicenter distance, which is characterized by having: a learning unit that takes the waveform data of an earthquake as input data, and uses the epicenter distance of the earthquake as positive solution data, and learns the relationship between the waveform data and the epicenter distance, and then generates representation learning A learning model of results; an earthquake information acquisition unit that acquires waveform data of an earthquake that has occurred; and an estimation processing unit that learns a model obtained by learning the relationship between the waveform data of an earthquake and the epicentral distance by the learning unit, Apply the acquired waveform data to estimate the epicenter distance; and the learning section cuts out the waveform data corresponding to the elapsed time length at each set elapsed time from the waveform data that becomes the input data, and then cuts the cut out waveform data As input data, the learning model is generated for each of the waveform amounts displayed from the time elapsed when the earthquake occurred, and the estimation processing section calculates the acquired waveform amount of the waveform data, and then based on the calculated waveform amount, From each of the generated learning models, select the learning model to be used, and then apply the acquired waveform data to the selected learning model to estimate the epicentral distance. 如申請專利範圍第1項之震央距離推定裝置,其中該學習部除了將該波形資料作為輸入資料之外,更將已取得該波形資料的地點之地點資料作為輸入資料,以學習該波形資料及該地點資料與該震央距離之間的關係,而產生該學習模型,該地震資訊取得部除了取得該波形資料,更取得已得到已發生的地震之波形資料的地點之地點資料,該推定處理部對該學習模型除了套用該波形資料,更套用已取得的該地點資料,而推定該震央距離。 For example, the device for estimating the epicentral distance according to item 1 of the patent scope, in which the learning section uses the waveform data as input data, and also uses the location data of the location where the waveform data has been obtained as input data to learn the waveform data and The relationship between the location data and the epicentral distance generates the learning model. In addition to acquiring the waveform data, the seismic information acquisition unit also acquires the location data of the location where the waveform data of the earthquake that has occurred has been obtained. In addition to applying the waveform data to the learning model, the acquired location data is also applied, and the epicentral distance is estimated. 如申請專利範圍第1項或第2項之震央距離推定裝置,其中該學習部更使用該地震之震源的深度作為該正解資料,以學習該波形資料與該震央距離及該震源的深度之間的關係,而產生該學習模型,該推定處理部除了推定該震央距離,更推定震源的深度。 For example, the device for estimating the epicentral distance according to item 1 or 2 of the patent scope, in which the learning part further uses the depth of the epicenter of the earthquake as the positive solution data to learn between the waveform data and the epicentral distance and the depth of the epicenter In order to generate the learning model, in addition to estimating the epicenter distance, the estimation processing unit also estimates the depth of the source. 如申請專利範圍第1項或第2項之震央距離推定裝置,其中該學習部藉由學習而構築神經網路,並且將該神經網路作為學習模型。 For example, the device for estimating the epicentral distance according to item 1 or item 2 of the patent scope, in which the learning unit constructs a neural network by learning and uses the neural network as a learning model. 如申請專利範圍第1項或第2項之震央距離推定裝置,其中該學習部對成為輸入資料的波形資料之觀測點各者,產生該學習模型,該推定處理部確認已取得的該波形資料之觀測點,再基於已確認的觀測點,從已產生的該學習模型各者之中,選擇欲使用的該學習模型,再對已選擇的該學習模型,套用已取得的該波形資料,而推定該震央距離。 For example, the device for estimating the epicentral distance according to item 1 or item 2 of the patent scope, wherein the learning unit generates the learning model for each observation point of the waveform data that becomes the input data, and the estimation processing unit confirms the acquired waveform data The observation point, based on the confirmed observation point, select the learning model to be used from each of the generated learning models, and then apply the acquired waveform data to the selected learning model, and The epicentral distance is presumed. 如申請專利範圍第1項或第2項之震央距離推定裝置,其中該學習部對成為輸入資料的波形資料之觀測點的地盤特性各者,產生該學習模型,該推定處理部確認已取得的該波形資料之觀測點的地盤特性,再基於已確認的地盤特性,從已產生的該學習模型各者之中,選擇欲使用的該學習模型,再對已選擇的該學習模型,套用已取得的該波形資料,而推定該震央距離。 For example, the device for estimating the epicentral distance according to item 1 or item 2 of the patent scope, in which the learning unit generates the learning model for each of the site characteristics of the observation point of the waveform data that becomes the input data, and the estimation processing unit confirms the acquired The site characteristics of the observation point of the waveform data, and then based on the confirmed site characteristics, from each of the generated learning models, select the learning model to be used, and then apply the acquired learning model to the acquired The waveform data, and the epicenter distance is estimated. 如申請專利範圍第1項或第2項之震央距離推定裝置,其更具備波形前處理部,該波形前處理部對在該學習部作為該輸入資料所使用的波形資料,及在該地震資訊取得部所取得的波形資料,執行前處理。 For example, the device for estimating the epicentral distance according to item 1 or item 2 of the patent application scope further includes a waveform pre-processing unit for the waveform data used as the input data in the learning unit and the seismic information The waveform data obtained by the acquisition section is pre-processed. 如申請專利範圍第7項之震央距離推定裝置,其中該波形前處理部從影像轉換處理、包絡線轉換處理、帶通轉換處理、微分轉換處理及傅立葉轉換處理中執行至少1個處理,以作為該前處理。 An apparatus for estimating the epicentral distance as claimed in item 7 of the patent scope, wherein the waveform pre-processing section executes at least one process from the image conversion process, the envelope conversion process, the band-pass conversion process, the differential conversion process, and the Fourier conversion process, as The pre-processing. 一種震央距離推定方法,其特徵為具有以下步驟:(a)將地震的波形資料作為輸入資料,並且將該地震的震央距離作為正解資料,而學習波形資料與震央距離之間的關係,然後產生表示學習結果的學習模型;(b)取得已發生的地震之波形資料的步驟;(c)對在該(a)步驟中學習地震的波形資料與震央距離之間的關係而得到的學習模型,套用已取得的該波形資料,而推定震央距離;且在該(a)步驟中,從成為輸入資料的波形資料,在每個設定經過時間,切割出相應於經過時間長度的波形資料,再將切割出的波形資料作為輸入資料,對於以從地震發生時所經過的時間而顯示之波形量各者,產生該學習模型,在該(c)步驟中,算出已取得的該波形資料之波形量,再基於已算出的波形量,從已產生的該學習模型各者之中,選擇欲使用的該學習模型,再對已選擇的該學習模型,套用已取得的該波形資料,而推定該震央距離。 A method for estimating the epicentral distance, which is characterized by the following steps: (a) The waveform data of the earthquake is used as input data, and the epicentral distance of the earthquake is used as the positive solution data, and the relationship between the waveform data and the epicentral distance is learned, and then generated A learning model representing the learning result; (b) the step of obtaining waveform data of an earthquake that has occurred; (c) the learning model obtained by learning the relationship between the waveform data of the earthquake and the epicentral distance in the step (a), Apply the acquired waveform data to estimate the epicenter distance; and in step (a), from the waveform data that becomes the input data, at each set elapsed time, cut out the waveform data corresponding to the elapsed time length, and then Cut the waveform data as input data, generate the learning model for each of the waveform amounts displayed from the time elapsed when the earthquake occurred, and in step (c), calculate the waveform amount of the acquired waveform data Then, based on the calculated waveform amount, select the learning model to be used from each of the generated learning models, and then apply the acquired waveform data to the selected learning model to estimate the epicenter distance. 一種記錄程式的電腦可讀取之記錄媒體,該程式包含在電腦中執行以下步驟的命令: (a)將地震的波形資料作為輸入資料,並且將該地震的震央距離作為正解資料,而學習波形資料與震央距離之間的關係,然後產生表示學習結果的學習模型;(b)取得已發生的地震之波形資料的步驟;(c)對在該(a)步驟中學習地震的波形資料與震央距離之間的關係而得到的學習模型,套用已取得的該波形資料,而推定震央距離;且在該(a)步驟中,從成為輸入資料的波形資料,在每個設定經過時間,切割出相應於經過時間長度的波形資料,再將切割出的波形資料作為輸入資料,對於以從地震發生時所經過的時間而顯示之波形量各者,產生該學習模型,在該(c)步驟中,算出已取得的該波形資料之波形量,再基於已算出的波形量,從已產生的該學習模型各者之中,選擇欲使用的該學習模型,再對已選擇的該學習模型,套用已取得的該波形資料,而推定該震央距離。 A computer-readable recording medium that records a program that contains commands that perform the following steps in the computer: (a) Use the waveform data of the earthquake as input data, and use the epicenter distance of the earthquake as the positive solution data, and learn the relationship between the waveform data and epicenter distance, and then generate a learning model representing the learning results; (b) Obtain the occurrence. Steps of waveform data of earthquakes; (c) Apply the obtained waveform data to the learned model obtained by learning the relationship between the waveform data of the earthquake and the epicentral distance in step (a); and estimate the epicentral distance; And in step (a), from the waveform data that becomes the input data, at each set elapsed time, cut out the waveform data corresponding to the elapsed time length, and then use the cut waveform data as the input data. Each of the waveform amounts displayed at the elapsed time of occurrence generates the learning model. In step (c), the waveform amount of the acquired waveform data is calculated, and then based on the calculated waveform amount, the generated Among each of the learning models, select the learning model to be used, and then apply the acquired waveform data to the selected learning model to estimate the epicenter distance.
TW106122623A 2016-07-08 2017-07-06 Epicenter distance estimation device, epicenter distance estimation method, and computer-readable recording medium TWI687711B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-136310 2016-07-08
JP2016136310 2016-07-08

Publications (2)

Publication Number Publication Date
TW201812339A TW201812339A (en) 2018-04-01
TWI687711B true TWI687711B (en) 2020-03-11

Family

ID=60912878

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106122623A TWI687711B (en) 2016-07-08 2017-07-06 Epicenter distance estimation device, epicenter distance estimation method, and computer-readable recording medium

Country Status (6)

Country Link
JP (1) JP6677300B2 (en)
CN (1) CN109416408B (en)
PE (1) PE20190303A1 (en)
PH (1) PH12018502661A1 (en)
TW (1) TWI687711B (en)
WO (1) WO2018008708A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7156613B2 (en) * 2018-10-01 2022-10-19 東電設計株式会社 Tsunami prediction device, method and program
JP7406828B2 (en) * 2019-03-26 2023-12-28 国立研究開発法人海洋研究開発機構 Earthquake estimation method, earthquake estimation program, and earthquake estimation device
CN114222934A (en) 2019-08-20 2022-03-22 日本电气株式会社 Earthquake observation apparatus, earthquake observation method, and recording medium
CN111538076B (en) * 2020-05-13 2021-08-03 浙江大学 Earthquake magnitude rapid estimation method based on deep learning feature fusion
JP7471924B2 (en) 2020-06-04 2024-04-22 清水建設株式会社 Earthquake motion evaluation model generation method, earthquake motion evaluation model generation device, earthquake motion evaluation method, and earthquake motion evaluation device
JP7423427B2 (en) 2020-06-04 2024-01-29 清水建設株式会社 Seismic motion evaluation model generation method, seismic motion evaluation model generation device, seismic motion evaluation method, and seismic motion evaluation device
JP7512090B2 (en) 2020-06-04 2024-07-08 清水建設株式会社 Earthquake motion evaluation model generation method, earthquake motion evaluation model generation device, earthquake motion evaluation method, and earthquake motion evaluation device
JP7469703B2 (en) 2020-07-20 2024-04-17 日本電信電話株式会社 Prediction method, learning method, prediction device, learning device, prediction program, and learning program
JP7512139B2 (en) 2020-09-14 2024-07-08 清水建設株式会社 Earthquake motion evaluation model providing method and earthquake motion evaluation model providing device
JP7512151B2 (en) 2020-09-24 2024-07-08 清水建設株式会社 Earthquake motion evaluation model generation method, earthquake motion evaluation model generation device, earthquake motion evaluation method, and earthquake motion evaluation device
JP7499137B2 (en) 2020-10-01 2024-06-13 清水建設株式会社 Earthquake phenomena integrated evaluation model generation method, earthquake phenomena integrated evaluation model generation device, earthquake phenomena integrated evaluation method, and earthquake phenomena integrated evaluation device
CN114371504B (en) * 2022-01-11 2022-09-02 西南交通大学 Earthquake epicenter position determination method, device, equipment and readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164533A (en) * 1997-08-21 1999-03-05 Kajima Corp Earthquake early detecting system having self-learning function by neural network
JP2007071707A (en) * 2005-09-07 2007-03-22 Taisei Corp Earthquake motion intensity prediction method and disaster prevention system, using real-time earthquake information
JP2012237650A (en) * 2011-05-12 2012-12-06 Railway Technical Research Institute Epicentral distance estimation method through independent observation point processing
JP2014006158A (en) * 2012-06-25 2014-01-16 Chuden Cti Co Ltd Method of creating simulated seismic wave and simulated seismic wave creating program, and computer-readable recording medium with simulated seismic wave creating program recorded therein
TW201411174A (en) * 2012-09-12 2014-03-16 Nat Applied Res Laboratories System and method for on-site instant earthquake analysis through artificial neural network

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000242497A (en) * 1999-02-19 2000-09-08 Fuji Electric Co Ltd Method for assisting structuring of fuzzy inference model and fuzzy inference method
US20060059112A1 (en) * 2004-08-25 2006-03-16 Jie Cheng Machine learning with robust estimation, bayesian classification and model stacking
JP2006170739A (en) * 2004-12-15 2006-06-29 Kajima Corp Earthquake disaster prevention system using urgent earthquake prompt report
US9465121B2 (en) * 2011-08-19 2016-10-11 National Applied Research Laboratories System and method for on-site instant seismic analysis
JP5958470B2 (en) * 2011-08-19 2016-08-02 日本電気株式会社 Magnitude estimation device, magnitude estimation method, and program
CN105223614B (en) * 2015-09-23 2017-06-23 中南大学 A kind of signals and associated noises P ripple first arrival kurtosis pick-up methods based on DWT_STA/LTA

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164533A (en) * 1997-08-21 1999-03-05 Kajima Corp Earthquake early detecting system having self-learning function by neural network
JP2007071707A (en) * 2005-09-07 2007-03-22 Taisei Corp Earthquake motion intensity prediction method and disaster prevention system, using real-time earthquake information
JP2012237650A (en) * 2011-05-12 2012-12-06 Railway Technical Research Institute Epicentral distance estimation method through independent observation point processing
JP2014006158A (en) * 2012-06-25 2014-01-16 Chuden Cti Co Ltd Method of creating simulated seismic wave and simulated seismic wave creating program, and computer-readable recording medium with simulated seismic wave creating program recorded therein
TW201411174A (en) * 2012-09-12 2014-03-16 Nat Applied Res Laboratories System and method for on-site instant earthquake analysis through artificial neural network

Also Published As

Publication number Publication date
JPWO2018008708A1 (en) 2019-04-11
CN109416408B (en) 2021-04-06
CN109416408A (en) 2019-03-01
WO2018008708A1 (en) 2018-01-11
PH12018502661A1 (en) 2019-10-21
PE20190303A1 (en) 2019-02-28
JP6677300B2 (en) 2020-04-08
TW201812339A (en) 2018-04-01

Similar Documents

Publication Publication Date Title
TWI687711B (en) Epicenter distance estimation device, epicenter distance estimation method, and computer-readable recording medium
JP7259969B2 (en) Seismic observation device, seismic observation method, program, and configuration program
KR101967415B1 (en) Localized learning from a global model
US10831577B2 (en) Abnormality detection system, abnormality detection method, abnormality detection program, and method for generating learned model
CN108875178B (en) Sensor arrangement method for reducing structural modal identification uncertainty
KR20160143512A (en) Advanced analytical infrastructure for machine learning
Sony et al. Multiclass damage identification in a full-scale bridge using optimally tuned one-dimensional convolutional neural network
JP2019159819A (en) Annotation method, annotation device, annotation program, and identification system
Kaloop et al. Multi input–single output models identification of tower bridge movements using GPS monitoring system
US10248462B2 (en) Management server which constructs a request load model for an object system, load estimation method thereof and storage medium for storing program
US11501209B2 (en) Behavior identification method, behavior identification device, non-transitory computer-readable recording medium recording therein behavior identification program, machine learning method, machine learning device, and non-transitory computer-readable recording medium recording therein machine learning program
WO2016084326A1 (en) Information processing system, information processing method, and recording medium
Impraimakis et al. Input–parameter–state estimation of limited information wind‐excited systems using a sequential Kalman filter
JP2019105871A (en) Abnormality candidate extraction program, abnormality candidate extraction method and abnormality candidate extraction apparatus
Fornasari et al. A Machine‐Learning Approach for the Reconstruction of Ground‐Shaking Fields in Real Time
Dederichs et al. Comparison of automated operational modal analysis algorithms for long-span bridge applications
CN114253605A (en) Runtime estimation of machine learning data processing pipelines
US10572609B2 (en) Method and apparatus to model objects including particles
KR102336962B1 (en) Apparatus for automatically performing labeling through Semi-weakly supervised learning and method therefor
US20230086261A1 (en) Clustering device, clustering method, and clustering program
US20220044152A1 (en) Signal selection device, learning device, and signal selection method and program
JP2020191595A (en) Electric wave propagation simulation apparatus and electric wave propagation simulation program
US10157166B2 (en) Method and system for measuring the performance of a diagnoser
CN112904366B (en) Repositioning method and device applied to sweeper, electronic equipment and medium
JP7070775B1 (en) Model management device and model management method