TWI685972B - Crystalline multiple-nanosheet strained channel fets - Google Patents

Crystalline multiple-nanosheet strained channel fets Download PDF

Info

Publication number
TWI685972B
TWI685972B TW104118904A TW104118904A TWI685972B TW I685972 B TWI685972 B TW I685972B TW 104118904 A TW104118904 A TW 104118904A TW 104118904 A TW104118904 A TW 104118904A TW I685972 B TWI685972 B TW I685972B
Authority
TW
Taiwan
Prior art keywords
layer
gate
crystalline semiconductor
crystalline
channel region
Prior art date
Application number
TW104118904A
Other languages
Chinese (zh)
Other versions
TW201607039A (en
Inventor
玻那J 哦拉都比
羅伯特C 保文
麥克S 羅德爾
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/729,652 external-priority patent/US9570609B2/en
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW201607039A publication Critical patent/TW201607039A/en
Application granted granted Critical
Publication of TWI685972B publication Critical patent/TWI685972B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

A field effect transistor includes a body layer having a strained crystalline semiconductor channel region, and a gate stack on the channel region. The gate stack includes a crystalline semiconductor gate layer that is lattice mismatched with the channel region, and a crystalline gate dielectric layer between the gate layer and the channel region. Related devices and fabrication methods are also discussed.

Description

結晶多奈米片應變通道場效電晶體 Crystalline Strain Channel Field Effect Transistor 【優先權宣告】 【Priority Announcement】

本申請案為2014年5月6日申請之美國專利申請案第14/270,690號的部分延續案,該案名稱為「Crystalline Multiple-Nanosheet III-V Channel FETs and Methods of Fabricating the Same」,其主張2013年11月1日申請之美國臨時申請案第61/898,815號的優先權,該案名稱為「Fully-Crystalline Multiple-Nanosheet III-V Channel MOSFET」,其內容全文併入本案供參考。本申請案也主張2014年06月11日申請之美國臨時申請案第62/010,585號的優先權,該案名稱為「A Fully Crystalline Multiple-Nanosheet Strained Si/SiGe Channel MOSFET」,其內容全文併入本案供參考。 This application is a partial continuation of US Patent Application No. 14/270,690 filed on May 6, 2014. The name of the case is " Crystalline Multiple-Nanosheet III-V Channel FETs and Methods of Fabricating the Same. " The priority of US Provisional Application No. 61/898,815, which was applied on November 1, 2013. The name of the case is " Fully-Crystalline Multiple-Nanosheet III-V Channel MOSFET ", and the entire contents are incorporated into this case for reference. This application also claims the priority of US Provisional Application No. 62/010,585 filed on June 11, 2014. The name of the case is " A Fully Crystalline Multiple-Nanosheet Strained Si/SiGe Channel MOSFET ", and the entire contents are incorporated This case is for reference.

本發明概念是關於半導體元件,且更特定言之是關於半 導體場效電晶體元件。 The concept of the present invention relates to semiconductor elements, and more specifically to semi-conductors Conductor field effect transistor element.

包含III-V族通道材料的III-V族半導體類的金屬氧化物半導體場效電晶體(metal-oxide-semiconductor field-effect transistor,MOSFET)可在低電壓下具有良好的CV/I特性以及相對高的電流。此可歸因於可在通道中實現的相對高的遷移率,以及一些半導體/金屬組合的相對低的寄生電阻(parasitic resistance)。高遷移率可至少部分歸因於相對低的電子有效質量。 因為許多III-V族半導體中的有效質量的等向(isotropic)性質,量子局限質量(quantum-confinement mass)亦可為小,此可導致電子波函數可為寬的且可穿透至圍繞通道的閘極介電層中。閘極介電層可為通道上的非結晶層(non-crystalline layer)及/或可將通道與非結晶閘極電極分離。典型結晶通道的表面上的此等非結晶層的存在可能導致載流子散射(carrier scattering)(通常稱為表面粗糙(surface roughness,SR)散射),此可能限制受局限電子(confined electron)的遷移率。 Metal-oxide-semiconductor field-effect transistors (MOSFETs) of group III-V semiconductors containing group III-V channel materials can have good CV/I characteristics and relatively low voltages High current. This can be attributed to the relatively high mobility that can be achieved in the channel, and the relatively low parasitic resistance of some semiconductor/metal combinations. The high mobility can be due at least in part to the relatively low effective mass of electrons. Because of the isotropic nature of the effective mass in many III-V semiconductors, the quantum-confinement mass can also be small, which can result in the electron wave function being wide and penetrating to surrounding channels In the gate dielectric layer. The gate dielectric layer may be a non-crystalline layer on the channel and/or may separate the channel from the amorphous gate electrode. The presence of these non-crystalline layers on the surface of a typical crystalline channel may cause carrier scattering (commonly referred to as surface roughness (SR) scattering), which may limit the confined electron (confined electron) Mobility.

包含III-V族通道材料的一些III-V族半導體類MOSFET可在通道周圍包含結晶緩衝層(諸如,磷化銦(InP))。結晶緩衝層可具有足以將結晶通道與非結晶層分離且幫助減少載流子散射的厚度。然而,此等緩衝層會由於閘電極與通道反轉層的分離增加而降低元件的短通道表現(short-channel performance)。因 此,結晶緩衝層的使用會將III-V族MOSFET的使用限制於相對長的閘極長度(例如,大於約40奈米)。 Some III-V semiconductor-based MOSFETs containing III-V channel materials may include a crystalline buffer layer (such as indium phosphide (InP)) around the channel. The crystalline buffer layer may have a thickness sufficient to separate the crystalline channel from the non-crystalline layer and help reduce carrier scattering. However, these buffer layers reduce the short-channel performance of the device due to the increased separation between the gate electrode and the channel inversion layer. because Thus, the use of crystalline buffer layers limits the use of III-V group MOSFETs to relatively long gate lengths (eg, greater than about 40 nanometers).

舉例來說,由於已改善的靜電(關於鰭式場效電晶體)及奈米片的堆疊,IV族半導體類MOSFET(像是矽(Si)及矽鍺(SiGe)奈米片電晶體)可為次10奈米技術的一個選擇。然而,改善與鰭式場效電晶體相關的直流效能(DC performance)可能需要相對寬的奈米片以實現在所需佈局區域(layout area)中足夠的Ieff,以及具有所需數量的堆疊奈米片層。上述情況會呈現處理難度,因為相對於其他類型的奈米片(例如SiGe或Si)可能需要高度選擇性蝕刻以底切(undercut)一種類型的奈米片(例如Si或SiGe),以產生形成有所需類型的奈米片材料的所需傳導通道。另外,蝕刻製程會暫時產生環繞奈米片的自由表面(free surface),此造成任何內建應變(built-in strain)鬆弛,其會限制奈米片的效能。 For example, due to the improved static electricity (about fin field effect transistors) and nanochip stacking, Group IV semiconductor-type MOSFETs (such as silicon (Si) and silicon germanium (SiGe) nanochip transistors) can be A choice of 10 nanometer technology. However, improving the DC performance associated with fin field-effect transistors may require relatively wide nanochips to achieve sufficient I eff in the required layout area and have the required number of stacked nano-crystals Rice slices. The above situation presents difficulty in processing because it may require highly selective etching to undercut one type of nanoplate (such as Si or SiGe) relative to other types of nanoplates (such as SiGe or Si) to produce There are required conduction channels for the desired type of nanosheet material. In addition, the etching process temporarily creates a free surface surrounding the nanosheet, which causes any built-in strain to relax, which limits the effectiveness of the nanosheet.

根據本發明概念的一些實施例,場效電晶體包含具有多個個別閘控的傳導通道的奈米片堆疊。所述個別閘控的傳導通道各自包含結晶半導體通道層(crystalline semiconductor channel layer)、位於所述通道層上的結晶閘極介電層以及結晶半導體閘極層,所述結晶半導體閘極層位於與所述通道層相對的所述閘極介電層上。所述奈米片堆疊是由所述結晶半導體通道層、所述結 晶介電層以及所述結晶半導體閘極層中的兩者間的晶格失配(lattice mismatch)而受應變。 According to some embodiments of the inventive concept, a field effect transistor includes a stack of nanosheets with multiple individually gated conductive channels. The individually gated conduction channels each include a crystalline semiconductor channel layer, a crystalline gate dielectric layer on the channel layer, and a crystalline semiconductor gate layer, the crystalline semiconductor gate layer is located at On the gate dielectric layer opposite to the channel layer. The nanosheet stack is composed of the crystalline semiconductor channel layer, the junction The lattice mismatch between the crystalline dielectric layer and the crystalline semiconductor gate layer is strained.

在一些實施例中,結晶通道層、結晶閘極介電層以及結晶閘極層可為異質磊晶層(heteroepitaxial layers)。 In some embodiments, the crystalline channel layer, the crystalline gate dielectric layer, and the crystalline gate layer may be heteroepitaxial layers.

在一些實施例中,場效電晶體可為n型元件(n-type device)且結晶通道層包含矽(Si)。 In some embodiments, the field effect transistor may be an n-type device and the crystalline channel layer includes silicon (Si).

在一些實施例中,場效電晶體可為p型元件(p-type device)且結晶通道層包含矽鍺(SiGe)。 In some embodiments, the field effect transistor may be a p-type device and the crystalline channel layer includes silicon germanium (SiGe).

在一些實施例中,結晶介電層可為氟化鈣(CaF2)、硫化鋅(ZnS)、氧化鐠(Pr2O3)及/或氧化釓(Gd2O3)。 In some embodiments, the crystalline dielectric layer may be calcium fluoride (CaF 2 ), zinc sulfide (ZnS), oxide oxide (Pr 2 O 3 ), and/or gadolinium oxide (Gd 2 O 3 ).

在一些實施例中,場效電晶體可為n型元件,且結晶閘極層可為經摻雜的矽鍺(SiGe)。 In some embodiments, the field effect transistor may be an n-type device, and the crystalline gate layer may be doped silicon germanium (SiGe).

在一些實施例中,場效電晶體可為p型元件,且結晶閘極層可為經摻雜的矽(Si)。 In some embodiments, the field effect transistor may be a p-type device, and the crystalline gate layer may be doped silicon (Si).

根據本發明概念的其他實施例,場效電晶體包括含有結晶半導體通道區域(crystalline semiconductor channel region)的本體層(body layer),以及位於通道區域上的閘極堆疊。所述閘極堆疊包含結晶半導體閘極層,所述結晶半導體閘極層與所述通道區域晶格失配,以及包含位於所述閘極層及所述通道區域之間的結晶閘極介電層。 According to other embodiments of the inventive concept, the field effect transistor includes a body layer containing a crystalline semiconductor channel region, and a gate stack on the channel region. The gate stack includes a crystalline semiconductor gate layer that has a lattice mismatch with the channel region and includes a crystalline gate dielectric between the gate layer and the channel region Floor.

在一些實施例中,所述通道區域與所述閘極堆疊之間的界面可不含非晶材料。舉例來說,所述閘極介電層可為直接在所 述通道區域上的高介電係數結晶絕緣層。 In some embodiments, the interface between the channel region and the gate stack may be free of amorphous material. For example, the gate dielectric layer may be directly The high dielectric constant crystalline insulating layer on the channel area.

在一些實施例中,所述閘極層可直接在所述閘極介電層上。所述通道區域及所述閘極層可為異質磊晶應變半導體層。 In some embodiments, the gate layer may be directly on the gate dielectric layer. The channel region and the gate layer may be heteroepitaxial strained semiconductor layers.

在一些實施例中,所述通道區域及所述閘極層可為不同IV族材料,且所述閘極層相對於所述通道區域可為重摻雜的。 In some embodiments, the channel region and the gate layer may be different Group IV materials, and the gate layer may be heavily doped relative to the channel region.

在一些實施例中,所述通道區域及所述閘極層的其中一者可為壓縮(compressively)應變矽鍺(SiGe),且所述通道區域及所述閘極層的另一者可為拉伸(tensile)應變矽(Si)。 In some embodiments, one of the channel region and the gate layer may be compressively strained silicon germanium (SiGe), and the other of the channel region and the gate layer may be Tensile strained silicon (Si).

在一些實施例中,所述閘極層可包含位於所述通道區域的相對表面上的各別結晶半導體閘極層,且所述閘極介電層可包含位於各別閘極層與所述通道區域的所述相對表面之間的各別閘極介電層。 In some embodiments, the gate layer may include separate crystalline semiconductor gate layers on opposite surfaces of the channel region, and the gate dielectric layer may include separate gate layers and the Gate dielectric layers between the opposing surfaces of the channel area.

在一些實施例中,包含所述閘極堆疊以及所述本體層的結構可重複地堆疊以界定多個個別閘控的通道區域,且可在整個結構維持位於所述通道區域及所述閘極層中的應變。 In some embodiments, the structure including the gate stack and the body layer may be repeatedly stacked to define a plurality of individually gated channel regions, and may remain in the channel region and the gate electrode throughout the structure Strain in the layer.

在一些實施例中,所述結構可具有大於約30奈米但小於約100奈米的寬度。所述通道區域可藉由厚度小於約3奈米的所述閘極介電層而與所述閘極層分離。所述通道區域及/或所述閘極層在一些實施例中可具有小於約10奈米的各別厚度。 In some embodiments, the structure may have a width greater than about 30 nanometers but less than about 100 nanometers. The channel region can be separated from the gate layer by the gate dielectric layer having a thickness of less than about 3 nanometers. The channel region and/or the gate layer may have various thicknesses of less than about 10 nanometers in some embodiments.

在一些實施例中,位於所述通道區域的所述相對表面上的各別閘極層可為主要閘極層。次要閘極層可在所述通道區域的所述相對表面之間設置於所述通道區域的至少一個側壁上。所述 次要閘極層可由金屬材料或經摻雜的多晶材料形成。 In some embodiments, each gate layer on the opposite surface of the channel area may be a main gate layer. The secondary gate layer may be disposed on at least one side wall of the channel region between the opposing surfaces of the channel region. Said The secondary gate layer may be formed of metal material or doped polycrystalline material.

在一些實施例中,所述多個個別閘控的通道區域可界定自基板突起的鰭,且所述次要閘極層可在所述鰭的相對側壁上以及相對側壁之間的表面上延伸。 In some embodiments, the plurality of individually gated channel regions may define fins protruding from the substrate, and the secondary gate layer may extend on opposing sidewalls of the fin and on surfaces between the opposing sidewalls .

在一些實施例中,非晶絕緣層可將所述通道區域的側壁與所述次要閘極層分離,且所述次要閘極層可導電性地耦接至所有所述主要閘極層。 In some embodiments, an amorphous insulating layer may separate the side wall of the channel region from the secondary gate layer, and the secondary gate layer may be conductively coupled to all of the primary gate layers .

在一些實施例中,源極/汲極區域可設置於所述通道區域的相對末端上且電性地耦接至所述通道區域,且鄰近於所述通道區域上的所述閘極堆疊。非晶絕緣層可將所述閘極層的相對側壁與所述源極/汲極區域分離。 In some embodiments, the source/drain regions may be disposed on opposite ends of the channel region and electrically coupled to the channel region, and adjacent to the gate stack on the channel region. An amorphous insulating layer may separate the opposite sidewalls of the gate layer from the source/drain regions.

根據本發明概念的其他實施例,場效電晶體的製造方法包含:提供包含結晶半導體通道區域的本體層,以及在所述通道區域上提供閘極堆疊。所述閘極堆疊包含與所述通道區域晶格失配的結晶半導體閘極層,以及包含位於所述閘極層與所述通道區域之間的結晶閘極介電層。 According to other embodiments of the inventive concept, a method of manufacturing a field effect transistor includes: providing a body layer including a crystalline semiconductor channel region, and providing a gate stack on the channel region. The gate stack includes a crystalline semiconductor gate layer that is lattice mismatched with the channel region, and includes a crystalline gate dielectric layer between the gate layer and the channel region.

在一些實施例中,所述閘極介電層可為直接形成於所述通道區域上的高介電係數結晶半導體層。所述通道區域及所述閘極層可為應變半導體層。 In some embodiments, the gate dielectric layer may be a high dielectric constant crystalline semiconductor layer formed directly on the channel region. The channel region and the gate layer may be strained semiconductor layers.

在一些實施例中,可藉由異質磊晶生長而形成所述通道區域、所述閘極介電層及所述閘極層。 In some embodiments, the channel region, the gate dielectric layer, and the gate layer may be formed by heteroepitaxial growth.

在一些實施例中,所述通道區域及所述閘極層可由不同 IV族材料形成,且所述閘極層相對於所述通道區域可為重摻雜的。 In some embodiments, the channel region and the gate layer may be different Group IV materials are formed, and the gate layer may be heavily doped with respect to the channel region.

在一些實施例中,所述通道區域及所述閘極層的其中一者可為壓縮應變矽鍺(SiGe),且所述通道區域及所述閘極層的另一者可為拉伸應變矽(Si)。 In some embodiments, one of the channel region and the gate layer may be compressively strained silicon germanium (SiGe), and the other of the channel region and the gate layer may be tensile strain Silicon (Si).

在一些實施例中,在提供所述閘極堆疊時,可在所述通道區域的相對表面上形成各別閘極介電層以及所述各別閘極介電層上的各別閘極層。 In some embodiments, when providing the gate stack, respective gate dielectric layers and respective gate layers on the respective gate dielectric layers may be formed on opposite surfaces of the channel region .

在一些實施例中,提供所述閘極堆疊及所述本體層可包括形成包含重複堆疊的所述閘極堆疊以及所述本體層的結構以界定多個個別閘控的通道區域。 In some embodiments, providing the gate stack and the body layer may include forming a structure including the repeated stack of the gate stack and the body layer to define a plurality of individually gated channel regions.

在一些實施例中,位於所述通道區域的所述相對表面上的所述各別閘極層可為主要閘極層,且次要閘極層可在所述通道區域的所述相對表面之間形成於所述通道區域的至少一個側壁上。所述次要閘極層可由金屬材料或經摻雜的多晶材料形成。 In some embodiments, the respective gate layers on the opposite surfaces of the channel area may be primary gate layers, and the secondary gate layer may be on the opposite surface of the channel area Is formed on at least one side wall of the channel area. The secondary gate layer may be formed of metal material or doped polycrystalline material.

在一些實施例中,所述多個個別閘控的通道區域可界定自基板突起的鰭,且所述次要閘極層可在所述鰭的相對側壁上以及相對側壁之間的表面上形成。 In some embodiments, the plurality of individually gated channel regions may define fins protruding from the substrate, and the secondary gate layer may be formed on opposing sidewalls of the fin and on surfaces between the opposing sidewalls .

在一些實施例中,在形成所述次要閘極層之前,可選擇性地使所述通道區域的所述側壁凹陷以在其中界定凹陷處,且可在所述通道區域的所述側壁中的所述凹陷處中形成非晶絕緣層。所述非晶絕緣層可將所述通道區域與所述次要閘極層分離。 In some embodiments, before forming the secondary gate layer, the sidewall of the channel region may be selectively recessed to define a recess therein, and may be in the sidewall of the channel region An amorphous insulating layer is formed in the recess. The amorphous insulating layer may separate the channel region from the secondary gate layer.

在一些實施例中,可選擇性地使所述主要閘極層的相對 側壁凹陷以在其中界定各別凹陷區域,且可在所述各別凹陷區域中形成非晶絕緣層。可自所述通道區域的相對末端磊晶生長源極/汲極區域,且所述非晶絕緣層可將所述主要閘極層的所述相對側壁與所述源極/汲極區域分離。 In some embodiments, the relative The sidewall is recessed to define respective recessed regions therein, and an amorphous insulating layer may be formed in the respective recessed regions. Source/drain regions can be epitaxially grown from opposite ends of the channel region, and the amorphous insulating layer can separate the opposite sidewalls of the main gate layer from the source/drain regions.

在檢視附圖以及詳細描述後,對於所屬技術領域中具有通常知識者而言,根據一些實施例的其他元件及/或方法將變得顯而易見。上述實施例的任何及所有組合之外的所有此等額外實施例傾向於亦包含在本說明書內及本發明的範疇內,且由隨附申請專利範圍保護。 After reviewing the drawings and detailed description, other elements and/or methods according to some embodiments will become apparent to those of ordinary skill in the art. All such additional embodiments other than any and all combinations of the above embodiments are intended to be included within this description and within the scope of the present invention, and are protected by the scope of the accompanying patent application.

100、100’、1300、1300’、1300”‧‧‧電晶體 100, 100’, 1300, 1300’, 1300” ‧‧‧ transistor

101、101’、1301‧‧‧奈米片 101, 101’, 1301‧‧‧ Nano tablets

102、102’、1302‧‧‧堆疊 102, 102’, 1302‧‧‧Stack

103’、1303’、2420r‧‧‧部分 103’, 1303’, 2420r‧‧‧

105、105’、1305、1305’‧‧‧通道區域 105, 105’, 1305, 1305’‧‧‧ channel area

105d、105d’、1305d、1305d’‧‧‧汲極區域 105d, 105d’, 1305d, 1305d’‧‧‧ Drain area

105s、105s’、1305s、1305s’‧‧‧源極區域 105s, 105s’, 1305s, 1305s’‧‧‧‧ source region

1308d、1308d’、1308d”‧‧‧金屬汲極區域 1308d, 1308d’, 1308d” ‧‧‧ metal drain region

1308s、1308s’、1308s”‧‧‧金屬源極區域 1308s, 1308s’, 1308s”‧‧‧‧metal source region

105r’、115r’、1315r’‧‧‧凹陷區域 105r’, 115r’, 1315r’‧‧‧ depressed area

106、106’、1306‧‧‧閘極堆疊 106, 106’, 1306‧‧‧ gate stack

107‧‧‧基板 107‧‧‧ substrate

110、110’、1310、1310’、1310”‧‧‧介電層 110, 110’, 1310, 1310’, 1310” ‧‧‧ dielectric layer

115、115’、1315、1315’、1315”‧‧‧閘極層 115, 115’, 1315, 1315’, 1315” ‧‧‧ gate layer

420r、420’、1020’、1820r‧‧‧絕緣層 420r, 420’, 1020’, 1820r‧‧‧Insulation

420r’、1020r’‧‧‧剩餘部分 420r’, 1020r’‧‧‧ remaining

615、615’、2015、2015’、2015”‧‧‧閘極接觸層 615, 615’, 2015, 2015’, 2015” ‧‧‧ gate contact layer

1390‧‧‧間隙壁 1390‧‧‧Gap

本揭露的態樣是以舉例方式來說明,且不受附圖限制,相似元件符號指示相似部件。 The aspect of the present disclosure is illustrated by way of example, and is not limited by the accompanying drawings. Symbols of similar elements indicate similar parts.

圖1A為說明根據本發明概念的一些實施例的具有結晶通道層、介電層及閘極層的FET的透視圖。 FIG. 1A is a perspective view illustrating an FET having a crystalline channel layer, a dielectric layer, and a gate layer according to some embodiments of the inventive concept.

圖1B及圖1C為分別沿著圖1A的線B-B’及C-C’截取的橫截面圖。 1B and 1C are cross-sectional views taken along lines B-B' and C-C' of FIG. 1A, respectively.

圖2至圖6為沿著圖1A的線B-B’截取的橫截面圖,說明根據本發明概念的一些實施例的具有結晶通道層、介電層及閘極層的FET的製造方法。 2 to 6 are cross-sectional views taken along line B-B' of FIG. 1A, illustrating a method of manufacturing an FET having a crystalline channel layer, a dielectric layer, and a gate layer according to some embodiments of the inventive concept.

圖7至圖12為沿著圖1A的線C-C’截取的橫截面圖,說明根據本發明概念的一些實施例的具有結晶通道層、介電層及閘極層 的FET的製造方法。 7 to 12 are cross-sectional views taken along line C-C' of FIG. 1A, illustrating a crystalline channel layer, a dielectric layer, and a gate layer according to some embodiments of the inventive concept FET manufacturing method.

圖13為說明根據本發明概念的其他實施例的具有結晶通道層、介電層及閘極層的FET的透視圖。 13 is a perspective view illustrating an FET having a crystalline channel layer, a dielectric layer, and a gate layer according to other embodiments of the inventive concept.

圖14A及圖14B為分別沿著圖13的線A-A’及B-B’截取的橫截面圖,其說明根據本發明概念的其他實施例的n通道FET。 14A and 14B are cross-sectional views taken along lines A-A' and B-B' of FIG. 13, respectively, illustrating n-channel FETs according to other embodiments of the inventive concept.

圖15A及圖15B為分別沿著圖13的線A-A’及B-B’截取的橫截面圖,其說明根據本發明概念的其他實施例的p通道FET。 15A and 15B are cross-sectional views taken along lines A-A' and B-B' of FIG. 13, respectively, illustrating p-channel FETs according to other embodiments of the inventive concept.

圖16至圖20為分別沿著圖13的線A-A’截取的橫截面圖,其說明根據本發明概念的其他實施例的具有結晶通道層、介電層及閘極層的n型FET的製造方法。 16 to 20 are cross-sectional views taken along line AA' of FIG. 13, respectively, illustrating an n-type FET having a crystalline channel layer, a dielectric layer, and a gate layer according to other embodiments of the inventive concept Manufacturing method.

圖21至圖26為分別沿著圖13的線B-B’截取的橫截面圖,其說明根據本發明概念的一些實施例的具有結晶通道層、介電層及閘極層的n型FET的製造方法。 21 to 26 are cross-sectional views taken along line BB' of FIG. 13, respectively, illustrating an n-type FET having a crystalline channel layer, a dielectric layer, and a gate layer according to some embodiments of the inventive concept Manufacturing method.

現將參看附圖來更全面描述各種實施例,附圖中呈現了一些實施例。然而,本發明概念可按照不同形式來體現且不應解釋為限於本文所闡述的實施例。反而是,提供此等實施例,以使得本揭露將為全面且完整的,且向所屬技術領域具有通常知識者完全傳達本發明概念。在諸圖中,層及區域的大小及相對大小未按比例繪製,且在一些情況下,可能為了清楚起見而進行誇示。 Various embodiments will now be described more fully with reference to the drawings, in which some embodiments are presented. However, the inventive concept can be embodied in different forms and should not be interpreted as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that the disclosure will be comprehensive and complete, and fully convey the concept of the present invention to those with ordinary knowledge in the art. In the drawings, the sizes and relative sizes of layers and regions are not drawn to scale, and in some cases, may be exaggerated for clarity.

呈現以下描述內容以使所屬技術領域具有通常知識者能 夠製作並使用本發明,且在專利申請案及其要求的上下文中提供以下描述內容。對本文中所描述的例示性實施例以及一般原理及特徵的各種修改將是易見的。主要就提供於特定實施中的特定方法及系統而言描述例示性實施例。然而,所述方法及系統將於其他實施中有效地操作。諸如「例示性實施例」、「一個實施例」及「另一實施例」的詞語可指相同或不同實施例以及指多個實施例。將關於具有某些組件的系統及/或元件來描述實施例。然而,所述系統及/或元件可包含多於或少於所繪示之組件的組件,且在不脫離本發明的範疇的情況下,可做出所述組件的配置及類型的變化。將亦在具有某些步驟的特定方法的上下文中描述例示性實施例。然而,對於具有不同及/或額外步驟及按不符合例示性實施例的不同次序的步驟的其他方法,所述方法及系統仍能有效地操作。因此,本發明並不意欲限於所繪示的實施例,而是應符合與本文中所描述的原理及特徵一致的最廣範疇。 Present the following description to enable those with ordinary knowledge in the technical field Enough to make and use the invention, and provide the following description in the context of the patent application and its requirements. Various modifications to the exemplary embodiments and general principles and features described herein will be readily apparent. Exemplary embodiments are described primarily in terms of specific methods and systems provided in specific implementations. However, the method and system will operate effectively in other implementations. Words such as "exemplary embodiment", "one embodiment" and "another embodiment" may refer to the same or different embodiments and to multiple embodiments. Embodiments will be described with respect to systems and/or elements with certain components. However, the system and/or elements may include more or less components than those shown, and changes in the configuration and type of the components may be made without departing from the scope of the present invention. Exemplary embodiments will also be described in the context of specific methods with certain steps. However, for other methods with different and/or additional steps and steps in different orders that do not conform to the exemplary embodiments, the method and system can still operate efficiently. Therefore, the present invention is not intended to be limited to the illustrated embodiments, but should conform to the broadest scope consistent with the principles and features described herein.

本發明概念的一些實施例源於認識到通道區域上及/或通道區域周圍的結晶緩衝材料的使用可以短通道表現為代價而抑制SR散射,在III-V族MOSFET中在遷移率與短通道表現之間進行權衡。本發明概念的一些實施例提供一種III-V族FET結構,其減小及/或消除此權衡以改良III-V族FET的潛能。 Some embodiments of the inventive concept stem from the recognition that the use of crystalline buffer materials on and/or around the channel region can suppress SR scattering at the expense of short channel performance, in III-V MOSFETs, mobility and short channel There is a trade-off between performance. Some embodiments of the inventive concept provide a III-V FET structure that reduces and/or eliminates this trade-off to improve the potential of the III-V FET.

特定言之,本發明概念的一些實施例引入III-V族通道FET,其中通道層以及閘極堆疊實質上或整體上由單晶的晶格匹配的半導體形成。舉例而言,閘極堆疊可包含II-VI族寬帶隙高介電 係數(亦即,相對於二氧化矽具有高介電常數)半導體作為閘極介電層,且包含中等帶隙III-V族半導體作為閘極層。在一些實施例中,通道材料為砷化銦(InAs),閘極介電質材料為碲化鋅(ZnTe),且閘極材料為銻化鋁(AlSb)。多個通道層(以及多個閘極堆疊)可(例如)以藉由元件的目標電流承載能力要求所判定或基於元件的目標電流承載能力要求而形成。每一通道層可由重摻雜的AlSb層自上方及下方進行閘控。ZnTe閘極介電層可設置於每一通道層與鄰近閘極層之間。通道/介電質/閘極堆疊可配置為下文被稱為奈米片的薄層(所述薄層各自的寬度大於其各自的厚度)。整個結構可向FET提供高通道遷移率(例如,此是歸因於表面粗糙(SR)散射的減少或最小化)、良好的短通道表現(例如,此是歸因於不存在將通道與非結晶層進一步分離的導電緩衝層,因此將反轉層保持接近於閘極)以及低寄生電阻(例如,此是歸因於經摻雜的InAs的高導電率以及n-觸點(n-contact)的低接觸電阻),因此適用於7奈米以下的技術。 In particular, some embodiments of the inventive concept introduce III-V group channel FETs, where the channel layer and the gate stack are formed substantially or entirely by a lattice-matched semiconductor of single crystal. For example, the gate stack may include II-VI wide bandgap high dielectric A coefficient (ie, having a high dielectric constant relative to silicon dioxide) semiconductor serves as the gate dielectric layer, and includes a medium band gap III-V group semiconductor as the gate layer. In some embodiments, the channel material is indium arsenide (InAs), the gate dielectric material is zinc telluride (ZnTe), and the gate material is aluminum antimonide (AlSb). Multiple channel layers (and multiple gate stacks) can be formed, for example, by the target current carrying capacity requirements of the device or based on the target current carrying capacity requirements of the device. Each channel layer can be gated from above and below by a heavily doped AlSb layer. The ZnTe gate dielectric layer can be disposed between each channel layer and the adjacent gate layer. The channel/dielectric/gate stack can be configured as a thin layer, hereinafter referred to as a nanosheet (each thin layer has a width greater than its respective thickness). The entire structure can provide the FET with high channel mobility (for example, this is due to the reduction or minimization of surface roughness (SR) scattering), good short channel performance (for example, this is due to the absence of the channel A conductive buffer layer where the crystalline layer is further separated, thus keeping the inversion layer close to the gate) and low parasitic resistance (for example, this is due to the high conductivity and n-contact of the doped InAs )'S low contact resistance), so it is suitable for technologies below 7nm.

圖1A為說明根據本發明概念的一些實施例的具有結晶通道層、介電層及閘極層的FET的透視圖,而圖1B及圖1C為分別沿著圖1A的線B-B’及C-C’截取的橫截面圖。如圖1A至圖1C所示,根據本發明概念的一些實施例的場效電晶體(FET)100包含具有界定電晶體通道層或電晶體通道區域105的半導體主動層或本體層以及位於通道區域105上的半導體閘極堆疊106的結構。閘極堆疊106包含結晶閘極介電層110以及位於結晶閘極介 電層110上的結晶閘極層115(本文中亦稱為主要閘極層或第一閘電極)。結晶閘極介電層110可為高介電係數寬帶隙半導體,而結晶閘極層115可為具有高摻質活化(high dopant activation)的中等帶隙半導體。舉例而言,所述結構可包含砷化銦(InAs)通道區域105、碲化鋅(ZnTe)閘極介電層110以及經高度摻雜的銻化鋁(AlSb)閘極層115,其在一些實施例中可全部為單晶的。 FIG. 1A is a perspective view illustrating a FET having a crystalline channel layer, a dielectric layer, and a gate layer according to some embodiments of the inventive concept, and FIGS. 1B and 1C are along the line BB′ and FIG. 1A, respectively. Cross-sectional view taken by CC'. As shown in FIGS. 1A to 1C, a field-effect transistor (FET) 100 according to some embodiments of the inventive concept includes a semiconductor active layer or body layer having a transistor channel layer or transistor channel region 105 defined and located in the channel region The structure of the semiconductor gate stack 106 on 105. The gate stack 106 includes a crystalline gate dielectric layer 110 and a crystalline gate dielectric The crystalline gate layer 115 on the electrical layer 110 (also referred to herein as the main gate layer or the first gate electrode). The crystalline gate dielectric layer 110 may be a high dielectric constant wide band gap semiconductor, and the crystalline gate layer 115 may be a medium band gap semiconductor with high dopant activation. For example, the structure may include an indium arsenide (InAs) channel region 105, a zinc telluride (ZnTe) gate dielectric layer 110, and a highly doped aluminum antimonide (AlSb) gate layer 115, which is In some embodiments, all may be single crystal.

通道區域105為結晶半導體層,其在位於結晶半導體層的相對側上的源極區域105s與汲極區域105d之間延伸。源極區域105s/汲極區域105d可為經高度摻雜的,從而導致低接觸電阻。 源極區域105s/汲極區域105d亦可由結晶半導體材料形成,且在一些實施例中可由與通道區域105相同的材料形成。在一些實施例中,源極區域105s/汲極區域105d亦可部分由金屬形成以實現較低電阻。 The channel region 105 is a crystalline semiconductor layer, which extends between the source region 105s and the drain region 105d on opposite sides of the crystalline semiconductor layer. The source region 105s/drain region 105d may be highly doped, resulting in low contact resistance. The source region 105s/drain region 105d may also be formed of a crystalline semiconductor material, and in some embodiments may be formed of the same material as the channel region 105. In some embodiments, the source region 105s/drain region 105d may also be partially formed of metal to achieve lower resistance.

包含通道區域105、閘極介電層110以及閘極層115的結構界定本文中亦稱為奈米片101的個別閘控的通道區域,奈米片101經重複以界定本文中亦稱為奈米片堆疊102的多個堆疊的個別閘控的通道區域。奈米片堆疊102因此為可形成於基板107上(例如,作為突起鰭形成於基板107的表面上)或基板107內(例如,形成於基板107中所界定的渠溝中)的三維結構,且可(例如)基於所需應用而包含任何數目/數量的個別閘控的通道區域105。舉例而言,電晶體100中的通道區域105的數目或數量可由電晶體100的目標電流承載能力來決定。通道區域105中的每一 者可相對地薄(亦即,厚度小於約10奈米),從而實現改良的靜電控制。基板107可(例如)為矽基板、絕緣體上矽(SOI)基板或其他基板。 The structure including the channel region 105, the gate dielectric layer 110, and the gate layer 115 defines individually gated channel regions also referred to herein as nanosheets 101, which are repeated to define nanometers 101 also referred to herein. Multiple stacked individually gated channel areas of the rice sheet stack 102. The nanosheet stack 102 is therefore a three-dimensional structure that can be formed on the substrate 107 (eg, as a protruding fin on the surface of the substrate 107) or within the substrate 107 (eg, in a trench defined in the substrate 107), And, for example, any number/number of individually gated channel regions 105 may be included based on the desired application. For example, the number or number of channel regions 105 in the transistor 100 can be determined by the target current carrying capacity of the transistor 100. Each of the channel areas 105 The person may be relatively thin (ie, the thickness is less than about 10 nm), thereby achieving improved static control. The substrate 107 may be, for example, a silicon substrate, a silicon-on-insulator (SOI) substrate, or other substrates.

將結晶半導體材料用於閘極介電層110、閘極層115以及通道區域105實現了幾乎完全地結晶的奈米片堆疊102,其中結晶閘極介電層110直接位在結晶通道區域105上。通道區域105與閘極堆疊106之間的界面可因此不含非晶層或非結晶層,藉此減少歸因於缺乏界面表面粗糙度的SR散射。電晶體100可藉此展現極高的通道遷移率。通道區域105與閘極堆疊106之間的界面亦可不含低介電係數結晶緩衝層(諸如,磷化銦(InP)),如此可藉由改良(亦即,減小)等效氧化物厚度(equivalent oxide thickness,EOT)而改良電晶體100的短通道表現,此是因為只有相對薄的閘極介電層110(例如,厚度為約2至3奈米)會將閘極層115與通道區域105分離。 The use of crystalline semiconductor materials for the gate dielectric layer 110, the gate layer 115, and the channel region 105 realizes a nanocrystal stack 102 that is almost completely crystallized, wherein the crystalline gate dielectric layer 110 is directly on the crystalline channel region 105 . The interface between the channel region 105 and the gate stack 106 may therefore be free of amorphous or non-crystalline layers, thereby reducing SR scattering due to lack of interface surface roughness. The transistor 100 can thereby exhibit extremely high channel mobility. The interface between the channel region 105 and the gate stack 106 may also be free of low dielectric constant crystalline buffer layers (such as indium phosphide (InP)), so that the equivalent oxide thickness can be improved (ie, reduced) (equivalent oxide thickness, EOT) to improve the short channel performance of the transistor 100, because only a relatively thin gate dielectric layer 110 (for example, a thickness of about 2 to 3 nanometers) will connect the gate layer 115 and the channel The area 105 is separated.

且,如圖1A至圖1C的實施例中所示,通道區域105中的每一者在其上方及下方(亦即,在通道區域105的相對表面上)包含閘極堆疊106,從而實現改良的控制。舉例而言,每一砷化銦通道區域105中的二維電子氣體(two-dimensional electron gas,2DEG)可自上方(亦即,在通道區域105的頂部上)及下方(亦即,在通道區域105的底部處)進行閘控。此外,奈米片堆疊102的通道區域105、閘極介電層110、閘極層115中的每一者可具有實質上與下方的層晶格匹配的各別晶體結構。舉例而言,通道區 域105、閘極介電層110及/或閘極層115可為晶格匹配的異質磊晶層。 And, as shown in the embodiment of FIGS. 1A to 1C, each of the channel regions 105 includes a gate stack 106 above and below it (ie, on the opposite surface of the channel region 105), thereby achieving improvements control. For example, the two-dimensional electron gas (2DEG) in each indium arsenide channel region 105 can be from above (ie, on top of the channel region 105) and below (ie, in the channel (At the bottom of the area 105). In addition, each of the channel region 105, the gate dielectric layer 110, and the gate layer 115 of the nanosheet stack 102 may have respective crystal structures that substantially lattice match the underlying layers. For example, the channel area The domain 105, the gate dielectric layer 110, and/or the gate layer 115 may be lattice-matched heteroepitaxial layers.

電晶體100亦包含在奈米片堆疊102的上表面以及相對側壁上(亦即,在至少三側上)的金屬或多晶閘極接觸層(本文中亦稱為次要閘極層或第二閘電極)615。閘極接觸層615電接觸奈米片堆疊102中的閘極層115中的每一者,以使得多個閘極層115可由單一閘極接觸層615控制,從而界定多閘極多通道元件。 The transistor 100 also includes a metal or polycrystalline gate contact layer (also referred to herein as a secondary gate layer or a first gate layer) on the upper surface of the nanosheet stack 102 and on opposite sidewalls (ie, on at least three sides) Second gate electrode) 615. The gate contact layer 615 electrically contacts each of the gate layers 115 in the nanochip stack 102 so that multiple gate layers 115 can be controlled by a single gate contact layer 615, thereby defining multiple gate multi-channel devices.

根據本發明概念的一些實施例的奈米片堆疊102的物理性質可包含(但不限於):完全結晶的晶格匹配的多通道結構,其包含結晶半導體通道區域105、閘極介電層110以及閘極層115;每一通道區域105在閘極層115藉由共同閘極接觸層615而電接觸的頂部及底部被閘控;ZnTe閘極介電層110具有約3電子伏特的帶隙(寬帶隙半導體)與7.9的k值(中等的高介電係數);AlSb閘極層115具有約1.5電子伏特的帶隙(中等的帶隙半導體)與高度摻質活化;及/或多個通道區域105,其數目視特定應用所需而定。 The physical properties of the nanosheet stack 102 according to some embodiments of the inventive concept may include (but is not limited to): a fully crystalline lattice-matched multi-channel structure including a crystalline semiconductor channel region 105 and a gate dielectric layer 110 And gate layer 115; each channel region 105 is gated at the top and bottom of the gate layer 115 electrically contacted by the common gate contact layer 615; the ZnTe gate dielectric layer 110 has a band gap of about 3 electron volts (Wide band gap semiconductor) and a k value of 7.9 (medium high dielectric constant); AlSb gate layer 115 has a band gap of about 1.5 electron volts (medium band gap semiconductor) and highly doped activation; and/or multiple The number of channel areas 105 depends on the specific application.

根據本發明概念的一些實施例的奈米片堆疊102的電性質可包含(但不限於):改良(亦即,較薄)的EOT,此是歸因於在通道區域105與閘極層115之間不存在或省略InP或其他緩衝層;每一InAs通道區域105中的2DEG可藉由各別閘極層115自上方及下方進行控制;減少的SR散射,此是歸因於在通道區域105與閘極介電層110之間的界面處不存在/省略表面粗糙度/非晶 層(其中僅少量的非晶絕緣層420r存在於通道區域105的側壁處,以與閘極接觸層615絕緣);低寄生電阻及/或低接觸電阻,此是歸因於高度摻雜的InAs源極區域105s/汲極區域105d;以及高通道遷移率,而並未使用緩衝層(此是歸因於在通道區域105與閘極介電層110之間的界面處不存在非晶層)。因此,本發明概念的實施例可減小及/或消除遷移率/EOT權衡。 The electrical properties of the nanosheet stack 102 according to some embodiments of the inventive concept may include (but is not limited to): improved (ie, thinner) EOT, which is attributed to the channel region 105 and the gate layer 115 No InP or other buffer layers are present or omitted; the 2DEG in each InAs channel region 105 can be controlled from above and below by each gate layer 115; reduced SR scattering is due to the channel region No interface/absence of surface roughness/amorphism at interface between 105 and gate dielectric layer 110 Layer (in which only a small amount of amorphous insulating layer 420r is present at the sidewall of the channel region 105 to insulate from the gate contact layer 615); low parasitic resistance and/or low contact resistance due to highly doped InAs Source region 105s/drain region 105d; and high channel mobility without the use of a buffer layer (this is due to the absence of an amorphous layer at the interface between channel region 105 and gate dielectric layer 110) . Therefore, embodiments of the inventive concept may reduce and/or eliminate the mobility/EOT trade-off.

雖然參考圖1A至圖1C中的實例結構進行了說明,但應理解,本發明概念的實施例不限於此。舉例而言,在一些實施例中,在finFET結構中,奈米片堆疊102可界定自基板突起的三維鰭狀主動區域,其中閘極接觸層615位於奈米片堆疊102的上表面以及側壁上。在其他實施例中,奈米片堆疊102可類似地形成於基板中的渠溝結構內,其中閘極接觸層615在基板與奈米片堆疊102之間至少沿著渠溝的側壁而延伸。閘極接觸層615亦可在環繞式閘極(gate-all-around,GAA)FET結構中在奈米片堆疊的頂表面上延伸。更一般而言,雖然在本文中參考特定結構進行了描述,但本發明概念的實施例可包含實施本文所述的實質上結晶的通道/介電質/閘極堆疊的任何結構或其子結構。 Although described with reference to the example structures in FIGS. 1A to 1C, it should be understood that the embodiments of the present inventive concept are not limited thereto. For example, in some embodiments, in a finFET structure, the nanosheet stack 102 may define a three-dimensional fin-shaped active region protruding from the substrate, where the gate contact layer 615 is located on the upper surface and sidewalls of the nanosheet stack 102 . In other embodiments, the nanochip stack 102 may be similarly formed in the trench structure in the substrate, wherein the gate contact layer 615 extends at least along the sidewall of the trench between the substrate and the nanochip stack 102. The gate contact layer 615 may also extend on the top surface of the nanochip stack in a gate-all-around (GAA) FET structure. More generally, although described herein with reference to specific structures, embodiments of the inventive concepts may include any structure or substructure that implements the substantially crystalline channel/dielectric/gate stack described herein .

圖2至圖12為說明根據本發明概念的一些實施例的FET元件的製造方法的橫截面圖,其中圖2至圖6為沿著圖1的線B-B’截取的橫截面圖。現參看圖2,在形成根據本發明概念的一些實施例的多通道III-V族FET時,形成實質上或完全結晶的奈米片堆疊102’。堆疊102’中的每一奈米片101’包含閘極層115’與閘極介 電層110’(兩者界定閘極堆疊106’)以及通道區域105’。堆疊102’中的通道區域105’、閘極介電層110’、閘極層115’中的一或多者可為磊晶生長的結晶半導體層(例如包含II-VI族及/或III-V族材料),以使得通道區域105’、閘極介電層110’及/或閘極層115’各自的結晶方向是有序的或與下方的層匹配。在圖2至圖12的實施例中,通道區域105’中的每一者在其相對側上包含閘極層115’,且藉由各閘極介電層110’而與閘極層115’分離,以使得通道區域105’自上方及下方而被個別閘控。 2 to 12 are cross-sectional views illustrating a method of manufacturing a FET element according to some embodiments of the inventive concept, where FIGS. 2 to 6 are cross-sectional views taken along line B-B' of FIG. 1. Referring now to FIG. 2, when forming a multi-channel III-V group FET according to some embodiments of the inventive concept, a substantially or fully crystalline nanosheet stack 102' is formed. Each nanosheet 101' in the stack 102' includes a gate layer 115' and a gate dielectric The electrical layer 110' (both define the gate stack 106') and the channel region 105'. One or more of the channel region 105', the gate dielectric layer 110', and the gate layer 115' in the stack 102' may be epitaxially grown crystalline semiconductor layers (including, for example, Group II-VI and/or III- Group V materials), so that the crystalline directions of the channel region 105', the gate dielectric layer 110', and/or the gate layer 115' are ordered or matched to the underlying layers. In the embodiments of FIGS. 2-12, each of the channel regions 105' includes a gate layer 115' on its opposite side, and is connected to the gate layer 115' by each gate dielectric layer 110' Separated so that the channel area 105' is individually gated from above and below.

通道區域105’、閘極介電層110’、閘極層115’中的一些或全部是使用具有實質上晶格匹配的晶體結構的半導體材料而形成。在圖2至圖12中所示的實例製造方法中,閘極層115’是使用經重摻雜的(n+)AlSb而形成,閘極介電層110’是使用本質(intrinsic)ZnTe(或其他寬帶隙II-VI族半導體)而形成,且通道區域105’是使用本質的(或經輕摻雜的)InAs而形成。通道區域105’可為相對薄的(例如,厚度為約2奈米至約10奈米)以實現良好的靜電控制,藉此形成多個量子阱。多個奈米片101’可得以形成(例如,藉由通道區域105’、閘極介電層110’、閘極層115’的交替異質磊晶生長)以界定包含數目可視所需而定的通道區域105’的堆疊,以(例如)滿足電流及/或佈局面積限制。 Some or all of the channel region 105', the gate dielectric layer 110', and the gate layer 115' are formed using a semiconductor material having a substantially lattice-matched crystal structure. In the example manufacturing method shown in FIGS. 2 to 12, the gate layer 115′ is formed using heavily doped (n+) AlSb, and the gate dielectric layer 110′ uses intrinsic ZnTe (or Other wide bandgap II-VI semiconductors), and the channel region 105' is formed using intrinsic (or lightly doped) InAs. The channel region 105' may be relatively thin (e.g., a thickness of about 2 nm to about 10 nm) to achieve good electrostatic control, thereby forming a plurality of quantum wells. Multiple nanosheets 101' can be formed (e.g., by alternating heteroepitaxial growth of channel region 105', gate dielectric layer 110', and gate layer 115') to define the number of inclusions as required The stacking of the channel regions 105', for example, to meet current and/or layout area constraints.

根據本發明概念的實施例的實質上或完全結晶的奈米片堆疊102’的使用可大幅減少SR散射,甚至在並未使用緩衝層的情況下亦是如此。此外,不存在或省略緩衝層可改良短通道表現, 從而提供適用於次10奈米整合的元件。根據本發明概念的實施例的FET元件可因此除了通道中的低密度狀態以及其他III-V族元件中所發現的對應低電容外,亦具有高遷移率、良好的短通道行為以及卓越的寄生電阻。 The use of substantially or fully crystallized nanosheet stacks 102' according to embodiments of the inventive concept can greatly reduce SR scattering, even when no buffer layer is used. In addition, the absence or omission of the buffer layer can improve short-channel performance, Thereby providing components suitable for sub-10 nm integration. FET devices according to embodiments of the inventive concept can therefore have high mobility, good short channel behavior, and excellent parasitics in addition to the low-density state in the channel and the corresponding low capacitance found in other III-V devices resistance.

因此,根據本發明的實施例的元件可在CV/I量度(CV/I metric)方面為優秀的或提供改良的CV/I量度。通道區域105’中的反轉層的低電荷片密度亦可允許使用經重摻雜的多晶閘極接觸(而非金屬閘極接觸),以在完全結晶的堆疊102’的多側上圍繞完全結晶的堆疊102’,如此可簡化製程(如下文參看圖6所論述),此是因為經重摻雜的閘極接觸中的相關聯的低電荷密度可導致極薄的空乏層(且因此可不顯著降低靜電表現)。 Therefore, an element according to an embodiment of the present invention can be measured in CV/I (CV/I metric) is excellent or provides improved CV/I measurement. The low charge sheet density of the inversion layer in the channel region 105' may also allow the use of heavily doped polycrystalline gate contacts (rather than metal gate contacts) to surround on multiple sides of the fully crystallized stack 102' A fully crystalline stack 102', which simplifies the process (discussed below with reference to FIG. 6), because the associated low charge density in the heavily doped gate contact can result in an extremely thin depletion layer (and therefore Can not significantly reduce the static performance).

為了形成與三維奈米片堆疊102’的接觸,通道區域105’應絕緣而不與任何閘極或金屬層接觸。因此,如圖3中所示,進行通道區域105’的選擇性等向性蝕刻。蝕刻劑可經選擇以移除在奈米片堆疊102’的側壁處的通道區域105’的部分,而不實質上移除或損壞閘極層115’及/或閘極介電層110’。舉例而言,為了選擇性地蝕刻圖3的InAs通道區域105’,可將乙酸以及過氧化氫用作為蝕刻劑。然而,取決於特定材料,其他蝕刻化學物可用於選擇性地蝕刻通道區域105’而不實質上蝕刻閘極層115’及/或閘極介電層110’。因此,通道區域105’的側壁相對於奈米片堆疊102’的側壁而選擇性地凹陷,從而界定凹陷區域105r’。 To form a contact with the three-dimensional nanosheet stack 102', the channel region 105' should be insulated without contact with any gate or metal layer. Therefore, as shown in FIG. 3, selective isotropic etching of the channel region 105' is performed. The etchant may be selected to remove portions of the channel region 105' at the sidewalls of the nanosheet stack 102' without substantially removing or damaging the gate layer 115' and/or the gate dielectric layer 110'. For example, in order to selectively etch the InAs channel region 105' of FIG. 3, acetic acid and hydrogen peroxide may be used as etchant. However, depending on the particular material, other etching chemicals can be used to selectively etch the channel region 105' without substantially etching the gate layer 115' and/or the gate dielectric layer 110'. Therefore, the sidewall of the channel region 105' is selectively recessed with respect to the sidewall of the nanosheet stack 102', thereby defining the recessed region 105r'.

現參看圖4,在奈米片堆疊的側壁以及上表面上沉積或形 成絕緣層420’。絕緣層420’可為氧化物或其他非晶層,且可形成於堆疊102’上,以實質上填充通道區域105’的側壁處的凹陷區域105r’。 Referring now to FIG. 4, deposited or shaped on the sidewalls and upper surface of the nanosheet stack An insulating layer 420' is formed. The insulating layer 420' may be an oxide or other amorphous layer, and may be formed on the stack 102' to substantially fill the recessed region 105r' at the sidewall of the channel region 105'.

如圖5所示,進行蝕刻製程以自奈米片堆疊102’的上表面以及側壁移除絕緣層420’。舉例而言,在氧化物層用作絕緣層420’的情況下,電漿蝕刻製程可用於移除氧化物層。然而,部分絕緣層420’可保留於通道區域105’的側壁處的凹陷區域105r’中。 絕緣層420’的此等剩餘部分420r’可將通道區域105’與後續製程中所形成的一或多個導電層電隔離。 As shown in FIG. 5, an etching process is performed to remove the insulating layer 420' from the upper surface and sidewalls of the nanosheet stack 102'. For example, in the case where an oxide layer is used as the insulating layer 420', a plasma etching process may be used to remove the oxide layer. However, part of the insulating layer 420' may remain in the recessed region 105r' at the sidewall of the channel region 105'. These remaining portions 420r' of the insulating layer 420' can electrically isolate the channel region 105' from one or more conductive layers formed in subsequent processes.

現參看圖6,在奈米片堆疊102’的上表面以及側壁的部分上選擇性地形成閘極接觸層615’。在本文中,閘極接觸層615’亦可稱為次要閘極或頂部閘極。閘極接觸層615’可藉此「纏繞(wrap)」整個奈米片堆疊102’,從而提供與堆疊102’的閘極層115’中的每一者的電接觸,進而實現其整體控制。然而,通道區域105’可藉由其側壁處的絕緣層420’的剩餘部分420r’而與閘極接觸層615’電隔離。特定言之,如圖6中所示,閘極接觸層615’可在AlSb閘極層115’的側壁處接觸AlSb閘極層115’,但可藉由絕緣層剩餘部分420r’而與InAs通道區域105’分離且電隔離。 Referring now to FIG. 6, a gate contact layer 615' is selectively formed on the upper surface of the nanosheet stack 102' and portions of the sidewalls. Herein, the gate contact layer 615' may also be referred to as a secondary gate or a top gate. The gate contact layer 615' can thereby "wrap" the entire nanosheet stack 102', thereby providing electrical contact with each of the gate layers 115' of the stack 102', thereby achieving its overall control. However, the channel region 105' can be electrically isolated from the gate contact layer 615' by the remaining portion 420r' of the insulating layer 420' at its sidewall. Specifically, as shown in FIG. 6, the gate contact layer 615 ′ may contact the AlSb gate layer 115 ′ at the side wall of the AlSb gate layer 115 ′, but may communicate with the InAs channel through the remaining portion of the insulating layer 420 r ′ The area 105' is separated and electrically isolated.

閘極接觸層615’可包含金屬或半導體材料。舉例而言,在一些實施例中,多晶半導體材料可用作為閘極接觸層615’。多晶閘極接觸層615’可為經重摻雜的,經重摻雜的閘極接觸層615’中的相對低的電荷密度可導致相對薄的空乏層(且因此可不顯著 降低元件的靜電表現)。閘極接觸層615’中不存在金屬亦可簡化製程。然而,在其他實施例中,金屬材料可用作閘極接觸層615’以實現改良的控制及/或效能。舉例而言,在一些實施例中,在如本文中所描述的處理操作的結尾或在所述處理操作後,多晶閘極接觸層615’可替換為金屬。 The gate contact layer 615' may include metal or semiconductor materials. For example, in some embodiments, polycrystalline semiconductor material may be used as the gate contact layer 615'. The polycrystalline gate contact layer 615' may be heavily doped, and the relatively low charge density in the heavily doped gate contact layer 615' may result in a relatively thin depletion layer (and therefore may not be significant Reduce the electrostatic performance of the component). The absence of metal in the gate contact layer 615' can also simplify the manufacturing process. However, in other embodiments, metallic materials can be used as the gate contact layer 615' to achieve improved control and/or performance. For example, in some embodiments, the polycrystalline gate contact layer 615' may be replaced with metal at the end of or after the processing operation as described herein.

圖7至圖12為進一步說明根據本發明概念的一些實施例的FET元件的製造方法的橫截面圖,其是沿著圖1A的線C-C’而截取。在圖6的閘極接觸層615’包含多晶半導體材料的實施例中,可在圖6中的閘極接觸層615’的形成之後進行圖7至圖12的操作。 7 to 12 are cross-sectional views further illustrating a method of manufacturing a FET element according to some embodiments of the inventive concept, which is taken along line C-C' of FIG. 1A. In the embodiment where the gate contact layer 615' of FIG. 6 includes a polycrystalline semiconductor material, the operations of FIGS. 7 to 12 may be performed after the formation of the gate contact layer 615' of FIG.

如圖7中的橫截面所示,通道區域105’的側壁藉由其凹陷區域105r’中的絕緣層剩餘部分420r’而保持電絕緣。因此,為了實現通道區域105’與源極/汲極區域之間的接觸,進行蝕刻製程以移除將在後續操作中形成的源極/汲極區域處的奈米片堆疊102’的部分。特定言之,如圖8中所示,對奈米片堆疊102’進行圖案化(例如,使用罩幕)及蝕刻,以在通道區域105’的相對側處移除奈米片堆疊102’的部分103’。 As shown in the cross-section in FIG. 7, the side wall of the channel region 105' is kept electrically insulated by the remaining portion 420r' of the insulating layer in its recessed region 105r'. Therefore, in order to achieve contact between the channel region 105' and the source/drain regions, an etching process is performed to remove a portion of the nanosheet stack 102' at the source/drain regions to be formed in subsequent operations. In particular, as shown in FIG. 8, the nanosheet stack 102' is patterned (eg, using a mask) and etched to remove the nanosheet stack 102' at opposite sides of the channel region 105' Part 103'.

現參看圖9,進行閘極層115’的選擇性蝕刻。蝕刻劑經選擇以選擇性地移除閘極層115’的部分,而不實質上移除或損壞閘極介電層110’及/或通道區域105’。舉例而言,對於圖9中所示的AlSb閘極層115’,氟化氫、過氧化氫以及乳酸及/或AZ400K可用作蝕刻劑。然而,取決於特定材料,其他蝕刻化學物可用於選擇性地蝕刻閘極層115’而不實質上蝕刻閘極介電層110’及/或通道區 域105’。因此,閘極層115’的側壁相對於奈米片堆疊102’的側壁而選擇性地凹陷,以界定凹陷區域115r’。 Referring now to Fig. 9, selective etching of the gate layer 115' is performed. The etchant is selected to selectively remove portions of the gate layer 115' without substantially removing or damaging the gate dielectric layer 110' and/or the channel region 105'. For example, for the AlSb gate layer 115' shown in FIG. 9, hydrogen fluoride, hydrogen peroxide, and lactic acid and/or AZ400K can be used as an etchant. However, depending on the particular material, other etching chemicals may be used to selectively etch the gate layer 115' without substantially etching the gate dielectric layer 110' and/or the channel region Domain 105’. Therefore, the sidewall of the gate layer 115' is selectively recessed with respect to the sidewall of the nanosheet stack 102' to define a recessed region 115r'.

如圖10中所示,在奈米片堆疊102’的側壁以及上表面上沉積或形成絕緣層1020’。絕緣層1020’可為氧化物或其他非晶層,且可形成於閘極層115’的側壁處的凹陷區域115r’上及/或實質上填充閘極層115’的側壁處的凹陷區域115r’。 As shown in FIG. 10, an insulating layer 1020' is deposited or formed on the sidewalls and upper surface of the nanosheet stack 102'. The insulating layer 1020' may be an oxide or other amorphous layer, and may be formed on the recessed region 115r' at the sidewall of the gate layer 115' and/or substantially fill the recessed region 115r at the sidewall of the gate layer 115' '.

現參看圖11,進行蝕刻製程以自奈米片堆疊102’的上表面以及側壁移除絕緣層1020’。舉例而言,在氧化物層用作為絕緣層1020’的情況下,電漿蝕刻製程可用於移除氧化物層。然而,絕緣層1020’的剩餘部分1020r’可保留於閘極層115’的側壁處的凹陷區域115r’中。絕緣層的此等剩餘部分1020r’可將閘極層115’與後續製程中所形成的源極/汲極區域電隔離。 Referring now to FIG. 11, an etching process is performed to remove the insulating layer 1020' from the upper surface and sidewalls of the nanosheet stack 102'. For example, in the case where an oxide layer is used as the insulating layer 1020', a plasma etching process may be used to remove the oxide layer. However, the remaining portion 1020r' of the insulating layer 1020' may remain in the recessed region 115r' at the sidewall of the gate layer 115'. These remaining portions 1020r' of the insulating layer can electrically isolate the gate layer 115' from the source/drain regions formed in subsequent processes.

特定言之,如圖12中所示,在奈米片堆疊102’中的InAs通道區域105’的相對側處形成InAs源極區域105s’/汲極區域105d’以完成場效電晶體100’。源極區域105s’/汲極區域105d’可藉由磊晶再生長製程而形成。特定言之,在圖12的實例中,原位(in-situ)摻雜的n+InAs區域於通道區域105’的相對側上(亦即,在圖8中被圖案化及蝕刻的奈米片堆疊的部分103’處)磊晶生長。因此,源極區域105s’/汲極區域105d’可在通道區域105’的側壁處接觸通道區域105’。然而,閘極層115’的側壁處的凹陷區域115r’中的絕緣層剩餘部分1020r’將源極區域105s’/汲極區域105d’與閘極層115’電隔離。特定言之,圖12說明InAs源極區域105s’及汲 極區域105d’可接觸InAs通道區域105’,但可藉由絕緣層剩餘部分1020r’而與AlSb閘極115’分離且電隔離。 Specifically, as shown in FIG. 12, InAs source regions 105s'/drain regions 105d' are formed at opposite sides of the InAs channel region 105' in the nanosheet stack 102' to complete the field effect transistor 100' . The source region 105s'/drain region 105d' can be formed by an epitaxial regrowth process. In particular, in the example of FIG. 12, in-situ doped n+InAs regions are on opposite sides of the channel region 105' (ie, the nano-patterns that are patterned and etched in FIG. 8 At the portion 103' of the sheet stack) epitaxial growth. Therefore, the source region 105s'/drain region 105d' may contact the channel region 105' at the sidewall of the channel region 105'. However, the remaining portion of the insulating layer 1020r' in the recessed region 115r' at the sidewall of the gate layer 115' electrically isolates the source region 105s'/drain region 105d' from the gate layer 115'. In particular, FIG. 12 illustrates the InAs source region 105s’ and The pole region 105d' can contact the InAs channel region 105', but can be separated and electrically isolated from the AlSb gate 115' by the remaining portion of the insulating layer 1020r'.

雖然在本文中已參考通道區域、閘極介電層以及閘極層的特定材料而描述本發明概念的實施例,但應理解,亦可使用其他材料。特定言之,本文中所描述的InAs通道區域105’/ZnTe介電層110’/AlSb閘極層115’奈米片堆疊102’可經選擇以在通道區域105’、閘極介電層110’及閘極層115’之間提供減少的或最小的晶格失配。然而,在一些實施例中,可使用少量的失配(例如,在1%的數量級上),從而在通道區域105’、閘極介電層110’及/或閘極層115’中導致應變,只要層足夠薄(或應變足夠小)而減少或防止鬆弛(以及缺陷的隨之引入)。舉例而言,銻化鎵(GaSb)可用於閘極層115’,而銻化銦(InSb)用於通道區域105’,此可導致更高或增大的遷移率。且,InAs可用於在源極區域105s及汲極區域105d處產生歐姆接觸,此可導致較低的或減少的寄生電阻。 Although embodiments of the inventive concept have been described herein with reference to the channel region, gate dielectric layer, and specific materials of the gate layer, it should be understood that other materials may be used. In particular, the InAs channel region 105'/ZnTe dielectric layer 110'/AlSb gate layer 115' nanochip stack 102' described herein can be selected to pass through the channel region 105', gate dielectric layer 110 A reduced or minimal lattice mismatch is provided between'and gate layer 115'. However, in some embodiments, a small amount of mismatch (eg, on the order of 1%) may be used, thereby causing strain in the channel region 105', the gate dielectric layer 110', and/or the gate layer 115' As long as the layer is thin enough (or the strain is small enough) to reduce or prevent slack (and the subsequent introduction of defects). For example, gallium antimonide (GaSb) can be used for the gate layer 115' and indium antimonide (InSb) for the channel region 105', which can result in higher or increased mobility. Also, InAs can be used to create ohmic contacts at the source region 105s and the drain region 105d, which can result in lower or reduced parasitic resistance.

本發明概念的實施例可提供若干優點。特定言之,本文中所描述的元件可提供高遷移率通道,此是因為通道區域105與閘極堆疊106之間的界面處不存在非晶層而大幅減少及/或消除SR散射。且,短通道表現可由於不存在增大有效閘極氧化物厚度的緩衝層而與次10奈米規模相容。 Embodiments of the inventive concept can provide several advantages. In particular, the devices described herein can provide a high mobility channel because the absence of an amorphous layer at the interface between the channel region 105 and the gate stack 106 greatly reduces and/or eliminates SR scattering. Also, the short channel performance can be compatible with the sub-10 nanometer scale due to the absence of a buffer layer that increases the effective gate oxide thickness.

此外,圍繞(或「纏繞」)奈米片101的堆疊102的閘極接觸層615可為金屬或多晶半導體。在一些實施例中,在給定預期的低電荷片密度(charge sheet density)的情況下,可使用多 晶閘極接觸層615,而僅有極少的靜電發生,且閘極接觸層615中不存在金屬可簡化製程。然而,在其他實施例中,金屬可用作閘極接觸層615以提供改良的控制及/或效能。 In addition, the gate contact layer 615 surrounding (or "winding") the stack 102 of nanosheets 101 may be a metal or polycrystalline semiconductor. In some embodiments, given the expected low charge sheet density (charge sheet density), multiple The gate contact layer 615 has very little static electricity, and the absence of metal in the gate contact layer 615 can simplify the manufacturing process. However, in other embodiments, metal can be used as the gate contact layer 615 to provide improved control and/or performance.

本發明概念的一些實施例可因此提供高效能多通道III-V族FinFET,其中每一通道被個別閘控。可不使用結晶緩衝層,從而實現高遷移率以及良好的(亦即,較薄的)EOT。如本文中所描述的FinFET亦可使用一些現有的處理操作來製造。本發明概念的特定實例實施例的特徵如下所述: Some embodiments of the inventive concept may thus provide high-performance multi-channel III-V group FinFETs, where each channel is individually gated. The crystalline buffer layer may not be used, thereby achieving high mobility and good (ie, thinner) EOT. FinFETs as described herein can also be manufactured using some existing processing operations. The features of specific example embodiments of the inventive concept are as follows:

(1)一種FET,包含多個晶格匹配的層的實質上或完全結晶的堆疊,所述多個晶格匹配的層形成個別閘控的傳導通道。 (1) An FET comprising a substantially or completely crystalline stack of a plurality of lattice-matched layers, the plurality of lattice-matched layers forming individually gated conduction channels.

(2)如(1)中所述的FET,其中所述多個晶格匹配的層的一個子集形成結晶傳導通道,所述多個晶格匹配的層的一個子集形成結晶閘極介電質,且所述多個晶格匹配的層的一個子集形成結晶第一閘電極,所述實質上或完全結晶的堆疊中的每一結晶傳導通道部分地或完全地由結晶閘極介電質以及結晶第一閘電極圍繞。 (2) The FET as described in (1), wherein a subset of the plurality of lattice-matched layers forms a crystalline conduction channel, and a subset of the plurality of lattice-matched layers forms a crystalline gate dielectric And a subset of the plurality of lattice-matched layers form a crystalline first gate electrode, each crystalline conduction channel in the substantially or completely crystalline stack is partially or completely mediated by a crystalline gate The first gate electrode of the crystal and crystal is surrounded.

(3)如(1)中所述的FET,其中所述晶格匹配的層包含III-V族或II-VI族材料。 (3) The FET as described in (1), wherein the lattice-matched layer contains a group III-V or group II-VI material.

(4)如(2)中所述的FET,其中所述傳導通道由InAs形成,所述閘極介電質由ZnTe形成,且所述第一閘電極包括AlSb。 (4) The FET as described in (2), wherein the conduction channel is formed of InAs, the gate dielectric is formed of ZnTe, and the first gate electrode includes AlSb.

(5)如(4)中所述的FET,更包括finFET,所述finFET形成有纏繞於多個晶格匹配的層的所述實質上或完全結晶的堆疊周 圍的第二閘電極,所述第二閘電極選擇性地接觸所述第一閘電極,所述第二閘電極以及所述第一閘電極形成環繞式閘極結構,所述環繞式閘極結構圍繞所述個別閘控的傳導通道。 (5) The FET as described in (4), further including a finFET formed with the substantially or completely crystallized stacking periphery wound around a plurality of lattice-matched layers Surrounding second gate electrode, the second gate electrode selectively contacts the first gate electrode, the second gate electrode and the first gate electrode form a wraparound gate structure, the wraparound gate electrode The structure surrounds the individually gated conduction channels.

(6)如(5)中所述的FET,所述第二閘電極包含金屬或多晶半導體。 (6) The FET described in (5), the second gate electrode includes a metal or a polycrystalline semiconductor.

(7)如(6)中所述的FET,所述finFET形成有源極/汲極電極,所述源極/汲極電極僅選擇性地接觸所述傳導通道。 (7) The FET described in (6), the finFET forms a source/drain electrode that only selectively contacts the conduction channel.

(8)如(7)中所述的FET,所述源極/汲極電極包含InAs。 (8) The FET as described in (7), the source/drain electrode contains InAs.

(9)如(8)中所述的FET,包含高遷移率傳導通道,高遷移率是歸因於每一傳導通道上方及下方的區域中的表面粗糙散射的減少或實質消除。 (9) The FET as described in (8), including high-mobility conduction channels, the high mobility is due to the reduction or substantial elimination of surface roughness scattering in the areas above and below each conduction channel.

(10)一種形成如(8)中所述的finFET的方法,所述方法包含形成多個晶格匹配的層的實質上或完全結晶的堆疊,形成纏繞於所述多個晶格匹配的層的結晶堆疊的周圍的第二閘電極,所述第二閘電極選擇性地接觸所述第一閘電極,以及形成選擇性地接觸所述傳導通道的源極/汲極電極。 (10) A method of forming a finFET as described in (8), the method comprising forming a substantially or completely crystalline stack of a plurality of lattice-matched layers, forming a layer wound around the plurality of lattice-matched layers A second gate electrode around the crystalline stack of the second gate electrode, the second gate electrode selectively contacts the first gate electrode, and forms a source/drain electrode that selectively contacts the conductive channel.

因此,根據本發明概念的一些實施例的場效電晶體可同時實現高通道遷移率(例如,此是歸因於通道區域上實質上不存在非晶或非結晶層)以及改良的短通道表現(例如,此是歸因於通道區域與閘極堆疊之間不存在結晶緩衝層,結晶緩衝層可能增大有效閘極氧化物厚度)的先前相競爭的目標。因此,本發明概念的實施例可減少及/或消除遷移率/EOT權衡。 Therefore, field effect transistors according to some embodiments of the inventive concept can achieve both high channel mobility (eg, this is due to the fact that there is substantially no amorphous or non-crystalline layer in the channel area) and improved short channel performance (For example, this is due to the absence of a crystalline buffer layer between the channel region and the gate stack, which may increase the effective gate oxide thickness). Therefore, embodiments of the inventive concept may reduce and/or eliminate the mobility/EOT trade-off.

本發明概念的其他實施例源於認識到可使用通道區域上及/或通道區域周圍的結晶材料以抑制SR散射,並結合IV族MOSFET中的應變層以提供高的遷移率,其可能超過一些III-V族元件的遷移率。詳述如下的本發明概念的實施例提供可用於場效電晶體應用(諸如MOSFET)的應變奈米片結構,及輔助元件(auxiliary component)及用於此等FET的主體元件(host device)。此等實施例亦可促進奈米片堆疊的通道層中的應變保持,也促進製造具有寬度為30奈米以上或超過40奈米的奈米片,其可比使用一些習知蝕刻-及-填充(etch-and-fill)方法所實際上可達成的奈米片寬。舉例而言,對於III-V族系統,片寬可藉由高介電係數及/或金屬填充來限制,而對於Si/SiGe系統,片寬可藉由犧牲材料與通道材料之間的蝕刻選擇性來作進一步限制(而非高介電係數/金屬填充或除了高介電係數/金屬填充)。 Other embodiments of the inventive concept stem from the recognition that crystalline materials on and/or around the channel region can be used to suppress SR scattering, and combined with a strained layer in the Group IV MOSFET to provide high mobility, which may exceed some Mobility of III-V group elements. Embodiments of the inventive concept described in detail below provide a strained nanoplate structure that can be used in field effect transistor applications such as MOSFETs, as well as auxiliary components and host devices for such FETs. These embodiments can also promote strain retention in the channel layer of the nanosheet stack, and also facilitate the manufacture of nanosheets with a width of 30 nanometers or more or more than 40 nanometers, which can be compared to using some conventional etch-and-fill (etch-and-fill) method can actually achieve the width of the nanochip. For example, for III-V systems, the chip width can be limited by high dielectric constant and/or metal filling, and for Si/SiGe systems, the chip width can be selected by etching between the sacrificial material and the channel material To limit further (not high dielectric constant/metal filling or in addition to high dielectric constant/metal filling).

特定言之,本發明概念的一些實施例引入一種IV族通道FET,其中本體層或通道層以及閘極堆疊實質上或整體上由單晶的晶格失配固體狀態材料層形成。在特定實施例中,以Si、SiGe的交替層的完全結晶的堆疊以及結晶絕緣體(crystalline insulator)(例如氟化鈣,CaF2)來實施多通道Si/SiGe MOSFET。對於n通道MOSFET(本文中亦稱為nFET)元件,通道可為矽,且閘極可為經重摻雜的矽鍺。對於p通道MOSFET(本文中亦稱為pFET)元件,通道可為矽鍺,且閘極可為經重摻雜的矽。因各別通道的晶體結構及閘極層材料之間的晶格失配,整個堆疊結構受應變而 增加nFET及pFET的通道遷移率。此外,非晶介電層或非結晶介電層的界面處的不存在大幅抑制SR散射,從而改善通道遷移率。 磊晶性質的生長及不存在深且高度選擇性側向(底切)蝕刻的需求可實現具有不含在標準奈米片製程中通常所發現的限制的高度及/或寬度的奈米片結構的製造。根據本發明概念的實施例的元件可因此提供相對於一些傳統(底切蝕刻)奈米片及FinFET在直流(DC)及交流(AC)性質中顯著的改進。 In particular, some embodiments of the inventive concept introduce a Group IV channel FET, where the body layer or channel layer and the gate stack are formed substantially or entirely by a single crystal lattice mismatch solid state material layer. In a specific embodiment, a multi-channel Si/SiGe MOSFET is implemented with a fully crystalline stack of alternating layers of Si, SiGe and a crystalline insulator (eg calcium fluoride, CaF 2 ). For n-channel MOSFET (also referred to herein as nFET) devices, the channel can be silicon and the gate can be heavily doped silicon germanium. For p-channel MOSFET (also referred to herein as pFET) devices, the channel can be silicon germanium, and the gate can be heavily doped silicon. Due to the lattice mismatch between the crystal structure of each channel and the material of the gate layer, the entire stack structure is strained to increase the channel mobility of nFET and pFET. In addition, the absence of an amorphous dielectric layer or the interface of the amorphous dielectric layer greatly suppresses SR scattering, thereby improving channel mobility. The growth of epitaxial properties and the absence of deep and highly selective lateral (undercut) etching can achieve nanosheet structures with height and/or width that do not contain the limitations normally found in standard nanosheet processes Of manufacturing. Components according to embodiments of the inventive concept can thus provide significant improvements in direct current (DC) and alternating current (AC) properties over some conventional (undercut etched) nanochips and FinFETs.

圖13為說明根據本發明概念的一些實施例的具有結晶通道層、介電層及閘極層的FET的透視圖。圖14A及圖14B為分別沿著圖13的線A-A’及B-B’截取的橫截面圖,其說明根據本發明概念的其他實施例的n型FET,而圖15A及圖15B為分別沿著圖13的線A-A’及B-B’截取的橫截面圖,其說明根據本發明概念的其他實施例的p型FET。 13 is a perspective view illustrating a FET having a crystalline channel layer, a dielectric layer, and a gate layer according to some embodiments of the inventive concept. 14A and 14B are cross-sectional views taken along lines AA' and BB' of FIG. 13, respectively, illustrating n-type FETs according to other embodiments of the inventive concept, and FIGS. 15A and 15B are Cross-sectional views taken along lines AA' and BB' of FIG. 13, respectively, illustrating p-type FETs according to other embodiments of the inventive concept.

如圖13至圖15B中所示,根據本發明概念的一些實施例的場效電晶體1300/1300’/1300”包含具有界定電晶體通道層或通道區域1305/1305’/1305”的半導體主動層或本體層以及位於通道區域1305/1305’/1305”上的半導體閘極堆疊1306的結構。閘極堆疊1306包含結晶閘極介電層1310/1310’/1310”以及結晶閘極層1315/1315’/1315”(本文中亦稱為主要閘極層或第一閘電極)。結晶閘極介電層1310/1310’/1310”可為未經摻雜、高介電係數、寬帶隙半導體或絕緣體,而結晶閘極層1315/1315’/1315”可為具有經高度摻雜、中等帶隙半導體。 As shown in FIGS. 13-15B, a field effect transistor 1300/1300'/1300" according to some embodiments of the inventive concept includes a semiconductor active having a defined transistor channel layer or channel region 1305/1305'/1305" Layer or body layer and the structure of the semiconductor gate stack 1306 on the channel area 1305/1305'/1305". The gate stack 1306 includes a crystalline gate dielectric layer 1310/1310'/1310" and a crystalline gate layer 1315/ 1315'/1315" (also referred to herein as the main gate layer or the first gate electrode). The crystalline gate dielectric layer 1310/1310'/1310" can be an undoped, high dielectric constant, wide band gap semiconductor Or an insulator, and the crystalline gate layer 1315/1315'/1315" may be a highly doped, medium band gap semiconductor.

特定言之,如圖14A至圖14B中所示的實例nFET,結構可包括矽通道區域1305’、氟化鈣(CaF2)、硫化鋅(ZnS)、氧化鐠(Pr2O3)及/或氧化釓(Gd2O3)閘極介電層1310’以及經高度摻雜矽鍺(n++SiGe)閘極層1315’,其在一些實施例中可全部為單晶的。通道區域1305’可在拉伸應變(t-Si)下,而閘極層1315’可在壓縮應變(c-SiGe)下。 Specifically, as shown in the example nFET shown in FIGS. 14A to 14B, the structure may include a silicon channel region 1305′, calcium fluoride (CaF 2 ), zinc sulfide (ZnS), oxide (Pr 2 O 3 ), and/or Or a Gd 2 O 3 gate dielectric layer 1310′ and a highly doped silicon germanium (n++SiGe) gate layer 1315′, which in some embodiments may all be single crystal. The channel region 1305' may be under tensile strain (t-Si), and the gate layer 1315' may be under compressive strain (c-SiGe).

且,如圖15A至圖15B中所示的實例pFET,結構可包括矽鍺通道區域1305”、氟化鈣(CaF2)、硫化鋅(ZnS)、氧化鐠(Pr2O3)及/或氧化釓(Gd2O3)閘極介電層1310”以及經高度摻雜矽(p++Si)閘極層1315”,其在一些實施例中可全部為單晶的。 通道區域1305”可在壓縮應變(c-SiGe)下,而閘極層1315”可在拉伸應變(t-Si)下。 And, as in the example pFET shown in FIGS. 15A-15B, the structure may include a silicon germanium channel region 1305″, calcium fluoride (CaF 2 ), zinc sulfide (ZnS), oxide (Pr 2 O 3 ), and/or Gd 2 O 3 gate dielectric layer 1310″ and highly doped silicon (p++Si) gate layer 1315″, which in some embodiments may all be single crystal. Channel region 1305″ It may be under compressive strain (c-SiGe), while the gate layer 1315" may be under tensile strain (t-Si).

通道區域1305為結晶半導體層,其在位於相對側上的源極區域1305s與汲極區域1305d之間延伸。源極區域1305s/汲極區域1305d可為經高度摻雜的,從而提供低接觸電阻。源極區域1305s/汲極區域1305d(圖14B中的源極區域1305s’/汲極區域1305d’;圖15B中的源極區域1305s”/汲極區域1305d”)亦可由結晶半導體材料形成,且在一些實施例中可由與通道區域1305(圖14A至14B中的通道區域1305’;圖15A至15B中的通道區域1305”)相同的材料形成。在一些實施例中,源極區域1305s/汲極區域1305d(圖14B中的源極區域1305s’/汲極區域1305d’;圖15B中的源極區域1305s”/汲極區域1305d”)亦可部分由金屬源極區 域1308s/金屬汲極區域1308d(圖14B中的金屬源極區域1308s’/金屬汲極區域1308d’;圖15B中的金屬源極區域1308s”/金屬汲極區域1308d”)形成以實現較低電阻。 The channel region 1305 is a crystalline semiconductor layer that extends between the source region 1305s and the drain region 1305d on the opposite side. The source region 1305s/drain region 1305d may be highly doped to provide low contact resistance. The source region 1305s/drain region 1305d (source region 1305s'/drain region 1305d' in FIG. 14B; source region 1305s"/drain region 1305d" in FIG. 15B can also be formed of a crystalline semiconductor material, and In some embodiments, it may be formed of the same material as the channel region 1305 (channel region 1305′ in FIGS. 14A to 14B; channel region 1305″ in FIGS. 15A to 15B). In some embodiments, the source region 1305s/d The source region 1305d (source region 1305s'/drain region 1305d' in FIG. 14B; source region 1305s"/drain region 1305d" in FIG. 15B may also be partially formed by a metal source region The domain 1308s/metal drain region 1308d (metal source region 1308s'/metal drain region 1308d' in FIG. 14B; metal source region 1308s"/metal drain region 1308d" in FIG. 15B are formed to achieve lower resistance.

包含通道區域1305、閘極介電層1310以及閘極層1315的結構界定本文中亦稱為奈米片1301的個別閘控的通道區域,所述個別閘控的通道區域經重複以界定本文中亦稱為奈米片堆疊1302的多個堆疊的個別閘控的通道區域。奈米片堆疊1302因此為可形成於基板1307上(例如,作為突起鰭形成於基板1307的表面上)或基板1307內(例如,形成於基板1307中所界定的渠溝中)的三維結構,且可(例如)基於所需的應用及/或相關的堆疊高度以提供所需的電流密度而包含任何數目/數量的個別閘控的通道區域1305。此外,通道區域1305中的應變可不管或不取決於堆疊高度而維持在整個堆疊1302,如同應變來源(亦即,在通道區域1305以及下方/上方閘極層1315間的晶格失配)在整個堆疊1302持續。通道區域1305中的每一者可相對地薄(亦即,厚度小於約10奈米),從而實現改良的靜電控制。基板1307可(例如)為矽基板、絕緣體上矽(SOI)基板或其他基板。 The structure including the channel region 1305, the gate dielectric layer 1310, and the gate layer 1315 defines individual gated channel regions, also referred to herein as nanosheets 1301, which are repeated to define the document Multiple stacked individually gated channel regions, also known as nanosheet stacks 1302. The nanosheet stack 1302 is therefore a three-dimensional structure that can be formed on the substrate 1307 (for example, as a protruding fin on the surface of the substrate 1307) or within the substrate 1307 (for example, in a trench defined in the substrate 1307), And, for example, any number/number of individually gated channel regions 1305 may be included based on the desired application and/or related stack height to provide the required current density. In addition, the strain in the channel region 1305 can be maintained in the entire stack 1302 regardless of or independent of the stack height, as the source of strain (ie, the lattice mismatch between the channel region 1305 and the lower/upper gate layer 1315) The entire stack 1302 continues. Each of the channel regions 1305 may be relatively thin (that is, less than about 10 nanometers thick), thereby achieving improved static control. The substrate 1307 may be, for example, a silicon substrate, a silicon-on-insulator (SOI) substrate, or other substrates.

將結晶材料用於閘極介電層1310、閘極層1315以及通道區域1305實現了幾乎整體上結晶的奈米片堆疊1302,其中結晶閘極介電層1310直接在結晶通道區域1305上。通道區域1305與閘極堆疊1306之間的界面可因此不含非晶層或非結晶層,藉此歸因於缺乏界面表面粗糙度而減少SR散射。電晶體1300可藉此展現 極高的通道遷移率。 Using a crystalline material for the gate dielectric layer 1310, the gate layer 1315, and the channel region 1305 realizes a nearly entirely crystalline nanoplate stack 1302, where the crystalline gate dielectric layer 1310 is directly on the crystalline channel region 1305. The interface between the channel region 1305 and the gate stack 1306 may therefore not contain an amorphous layer or an amorphous layer, thereby reducing SR scattering due to lack of interface surface roughness. Transistor 1300 can be used to show Very high channel mobility.

在一些實施例中(例如,特徵為高Ge含量的SiGe的通道的實施例),通道區域1305與閘極堆疊1306之間的界面亦可不含低介電係數結晶緩衝層,如此可藉由改良(亦即,減小)等效氧化物厚度而改良電晶體1300的短通道表現,此是因為只有相對薄的閘極介電層1310(例如,厚度為約2至3奈米)將閘極層1315與通道區域1305分離。 In some embodiments (for example, an embodiment characterized by a SiGe channel with a high Ge content), the interface between the channel region 1305 and the gate stack 1306 may also not contain a low dielectric constant crystal buffer layer, which can be improved by (Ie, reduce) the equivalent oxide thickness to improve the short channel performance of transistor 1300, because only a relatively thin gate dielectric layer 1310 (eg, a thickness of about 2 to 3 nanometers) The layer 1315 is separated from the channel area 1305.

另外,完全結晶奈米片堆疊1302(包括用於閘極介電層1310、閘極層1315以及通道區域1305的結晶材料)實現了具有超出藉由一些習知方法所能達成的堆疊寬度及/或高度的應變通道區域的製造。特定言之,因本發明概念的實施例藉由磊晶生長提供完全結晶堆疊,故可避免應變奈米片材料的習知的底切/側向蝕刻及填充(可放鬆層間的應變),從而實現不取決於堆疊高度而維持應變及實現堆疊寬度不被側向蝕刻限制局限。因此,本發明概念的實施例可實現堆疊寬度大於約100奈米或更多及/或堆疊高度大於約100奈米或更多,其可能無法藉由一些習知方法達成。 舉例來說,5奈米奈米片的6層堆疊(其被7個各10奈米厚的閘極層環繞)可提供約100奈米的堆疊高度,其可能無法使用一些習知的蝕刻-及-填充方法達成。 In addition, the fully crystalline nanosheet stack 1302 (including the crystalline material for the gate dielectric layer 1310, the gate layer 1315, and the channel region 1305) is realized to have a stack width that exceeds what can be achieved by some conventional methods and/or Or the manufacture of highly strained channel areas. In particular, since embodiments of the inventive concept provide a complete crystalline stack by epitaxial growth, the conventional undercut/side etching and filling of strained nanosheet materials can be avoided (the strain between layers can be relaxed), thereby The realization does not depend on the stack height while maintaining strain and the realization of the stack width is not limited by the lateral etching limitation. Therefore, embodiments of the inventive concept can achieve stack widths greater than about 100 nanometers or more and/or stack heights greater than about 100 nanometers or more, which may not be achieved by some conventional methods. For example, a 6-layer stack of 5nm nanosheets (which is surrounded by 7 gate layers each 10nm thick) can provide a stack height of about 100nm, which may not be able to use some conventional etching- And-filling method is achieved.

且,如圖13至圖15B的實施例中所示,通道區域1305/1305’/1305”中的每一者在上方及下方(亦即,在通道區域的相對表面上)包含閘極堆疊1306,從而實現改良的控制。舉例而 言,每一矽通道區域1305’或矽鍺通道區域1305”中的二維電子氣體可自上方(亦即,在通道區域1305’/1305”的頂部上)及下方(亦即,在通道區域1305’/1305”的底部處)進行閘控。此外,奈米片堆疊1302的通道區域1305、閘極介電層1310、閘極層1315中的每一者可具有與下方層晶格失配的各別晶體結構。舉例而言,通道區域1305、閘極介電層1310及/或閘極層1315可為晶格失配的異質磊晶層。 And, as shown in the embodiment of FIGS. 13 to 15B, each of the channel regions 1305/1305'/1305" includes a gate stack 1306 above and below (ie, on the opposite surface of the channel region) To achieve improved control. For example In other words, the two-dimensional electron gas in each silicon channel region 1305' or silicon germanium channel region 1305" can be from above (ie, on top of the channel region 1305'/1305") and below (ie, in the channel region At the bottom of 1305'/1305"). In addition, each of the channel region 1305, the gate dielectric layer 1310, and the gate layer 1315 of the nanosheet stack 1302 may have a lattice mismatch with the underlying layer For example, the channel region 1305, the gate dielectric layer 1310, and/or the gate layer 1315 may be heteroepitaxial layers with lattice mismatch.

電晶體1300/1300’/1300”亦在奈米片堆疊1302的上表面以及相對側壁上(亦即,在至少三側上)包含金屬或多晶閘極接觸層(本文中亦稱為次要閘極層或第二閘電極)2015/2015’/2015”。舉例而言,用於nFET 1300’的閘極接觸層2015’可為SiGe,而用於pFET 1300”的閘極接觸層2015”可為Si。閘極接觸層2015電接觸奈米片堆疊1302中的閘極層1315中的每一者,以使得多個閘極層1315可由單一閘電極/閘極接觸層2015控制,從而界定多閘極多通道元件。纏繞環繞間隙壁(wraparound spacer)1390可設置在閘極接觸層2015/2015’/2015”的相對側上。 Transistor 1300/1300'/1300" also includes a metal or polycrystalline gate contact layer (also referred to herein as a secondary) on the upper surface and opposite sidewalls of the nanosheet stack 1302 (ie, on at least three sides) Gate layer or second gate electrode) 2015/2015'/2015". For example, the gate contact layer 2015' for nFET 1300' may be SiGe, and the gate contact layer 2015" for pFET 1300" may be Si. The gate contact layer 2015 electrically contacts each of the gate layers 1315 in the nanosheet stack 1302 so that multiple gate layers 1315 can be controlled by a single gate electrode/gate contact layer 2015 to define multiple gates Channel element. A wraparound spacer 1390 may be provided on the opposite side of the gate contact layer 2015/2015'/2015".

根據本發明概念的一些實施例的奈米片堆疊1302的物理性質可包含(但不限於):完全結晶的晶格失配的多通道結構,包含結晶半導體通道區域1305、閘極介電層1310以及閘極層1315;每一通道區域1305在頂部及底部被閘控,其中閘極層1315由共同閘極接觸層2015電接觸;具有帶有中等高介電係數的寬帶隙的CaF2、ZnS、Pr2O3及/或Gd2O3閘極介電層1310;在閘極介 電層1310上磊晶地生長的Si/SiGe層;多個通道區域1305,其數目視特定應用所需而定;通道區域1305及閘極層1315之間的藉由介電層(例如SiO2)的絕緣;閘極層1315及源極區域1305s/汲極區域1305d之間的藉由介電層(例如SiO2)的絕緣;經高度摻雜單晶閘極層1315;經輕摻雜(或本質的)通道區域1305;及用於SiGe層的化學計量(stoichiometry),其經選擇以在矽層中引起足夠的應變。 The physical properties of the nanosheet stack 1302 according to some embodiments of the inventive concept may include (but is not limited to): a fully crystalline lattice mismatched multi-channel structure, including a crystalline semiconductor channel region 1305, and a gate dielectric layer 1310 And the gate layer 1315; each channel region 1305 is gated at the top and bottom, where the gate layer 1315 is electrically contacted by a common gate contact layer 2015; CaF 2 , ZnS with a wide band gap with a medium high dielectric constant , Pr 2 O 3 and/or Gd 2 O 3 gate dielectric layer 1310; a Si/SiGe layer epitaxially grown on the gate dielectric layer 1310; multiple channel regions 1305, the number of which depends on the specific application Depends; the insulation between the channel region 1305 and the gate layer 1315 by a dielectric layer (eg, SiO 2 ); the dielectric layer between the gate layer 1315 and the source region 1305s/drain region 1305d ( For example, SiO 2 ) insulation; highly doped single crystal gate layer 1315; lightly doped (or intrinsic) channel region 1305; and stoichiometry for the SiGe layer, which is selected to be in the silicon layer Caused enough strain in the process.

根據本發明概念的一些實施例的奈米片堆疊1302的電性質可包含(但不限於):每一Si或SiGe通道區域1305’或1305”中的2DEG可由各閘極層1315’或1315”自上方及下方進行控制;減少的SR散射,此是歸因於在通道區域1305與閘極介電層1310之間的界面處不存在/省略表面粗糙/非晶層(其中僅少量的非晶絕緣層1820r存在於通道區域1305的側壁處以與閘極接觸層2015絕緣);在Si通道中的高拉伸應變(或在SiGe通道中的高壓縮應變),具有歸因於沿著整個堆疊高度維持應變來源的減少的或最小的鬆弛;高通道遷移率,不使用緩衝層(因為通道區域1305與閘極介電層1310之間的界面處不存在非晶層);歸因於閘極空乏的中度反轉電荷/低電容;以及歸因於大接觸面積的低寄生電阻(Rpara)。 The electrical properties of the nanosheet stack 1302 according to some embodiments of the present inventive concept may include (but is not limited to): the 2DEG in each Si or SiGe channel region 1305' or 1305" may be each gate layer 1315' or 1315" Control from above and below; reduced SR scattering due to the absence/omitting of the surface roughness/amorphous layer (only a small amount of amorphous) at the interface between the channel region 1305 and the gate dielectric layer 1310 Insulation layer 1820r exists at the side wall of the channel region 1305 to insulate from the gate contact layer 2015); high tensile strain in the Si channel (or high compressive strain in the SiGe channel), which is attributed to the height along the entire stack Maintain reduced or minimal relaxation of strain sources; high channel mobility, no buffer layer used (because there is no amorphous layer at the interface between channel region 1305 and gate dielectric layer 1310); due to gate depletion Moderate reversal charge/low capacitance; and low parasitic resistance (Rpara) due to large contact area.

在一些實施例中,在通道層中的應變的強度可依據通道層、介電層及閘極層的相對厚度(而不是絕對厚度)以及通道及閘極堆疊的晶格常數(lattice constant)差異。對於本文中敘述的 一些材料,厚度比為1可導致在通道中大約1.5GPa的應力。對於在本文中敘述的一些實施例中的大約為2的比例,應力在2.5Gpa至3Gpa的範圍中是有可能的;所述層可因此保持薄(舉例而言,臨界厚度(critical thickness)小於20奈米)以減少或防止鬆弛。 In some embodiments, the strength of the strain in the channel layer may depend on the relative thickness (rather than the absolute thickness) of the channel layer, the dielectric layer and the gate layer and the difference in lattice constant of the channel and gate stack . For what is described in this article For some materials, a thickness ratio of 1 can result in a stress of about 1.5 GPa in the channel. For a ratio of approximately 2 in some embodiments described herein, the stress is possible in the range of 2.5 Gpa to 3 Gpa; the layer can therefore be kept thin (for example, the critical thickness is less than 20 nm) to reduce or prevent sagging.

雖然參考圖13至圖15B中的實例結構進行了說明,但應理解,本發明概念的實施例不限於此。舉例而言,在一些實施例中,奈米片堆疊1302可在finFET結構中界定自基板突起的三維鰭狀主動區域,其中閘極接觸層2015位於奈米片堆疊1302的上表面以及側壁上。在其他實施例中,奈米片堆疊1302可類似地形成於基板中的渠溝結構內,其中閘極接觸層2015在基板與奈米片堆疊1302之間至少沿著渠溝的側壁而延伸。閘極接觸層2015亦可在環繞式閘極(gate-all-around;GAA)FET結構中在奈米片堆疊的頂表面上延伸。更一般而言,雖然在本文中參考特定結構進行了描述,但本發明概念的實施例可包含實施本文所述的實質上結晶應變的通道/介電質/閘極堆疊的任何結構或其子結構。 Although described with reference to the example structures in FIGS. 13 to 15B, it should be understood that the embodiments of the present inventive concept are not limited thereto. For example, in some embodiments, the nanosheet stack 1302 may define a three-dimensional fin-shaped active region protruding from the substrate in the finFET structure, where the gate contact layer 2015 is located on the upper surface and sidewalls of the nanosheet stack 1302. In other embodiments, the nanosheet stack 1302 may be similarly formed in the trench structure in the substrate, wherein the gate contact layer 2015 extends between the substrate and the nanosheet stack 1302 at least along the sidewall of the trench. The gate contact layer 2015 may also extend on the top surface of the nanosheet stack in a gate-all-around (GAA) FET structure. More generally, although described herein with reference to specific structures, embodiments of the inventive concept may include any structure or sub-structure that implements substantially crystalline strained channel/dielectric/gate stacks described herein structure.

圖16至圖20為說明根據本發明概念的一些實施例的如圖14A至圖14B中所示的nFET元件的製造方法的橫截面圖,其中圖16至圖20沿著圖13的線A-A’截取。但應理解,圖16至圖20的方法可相似地應用在製造如圖15A至圖15B中所示的pFET元件(藉由使用在其中呈現的材料)。亦即,雖然參考nFET的製造,但應理解說明的製造步驟可藉由取代相對應的材料層而相似地應用在pFET的製造。 16 to 20 are cross-sectional views illustrating a method of manufacturing an nFET element as shown in FIGS. 14A to 14B according to some embodiments of the inventive concept, where FIGS. 16 to 20 are along the line A- of FIG. 13 A'interception. However, it should be understood that the method of FIGS. 16 to 20 can be similarly applied to manufacturing the pFET device as shown in FIGS. 15A to 15B (by using the materials presented therein). That is, although reference is made to the manufacturing of nFETs, it should be understood that the illustrated manufacturing steps can be similarly applied to the manufacturing of pFETs by replacing the corresponding material layers.

現參看圖16,在形成根據本發明概念的一些實施例的多通道Si/SiGe MOSFET時,形成實質上或完全結晶的奈米片堆疊1302。堆疊1302中的每一奈米片1301包含結晶閘極層1315’與結晶閘極介電層1310’(兩者界定閘極堆疊1306)以及結晶通道區域1305’。所有通道區域1305’、閘極介電層1310’、閘極層1315’利用結晶半導體或絕緣體形成。堆疊1302中的通道區域1305’、閘極介電層1310’、閘極層1315’中的一或多者可為磊晶生長,以使得通道區域1305’、閘極介電層1310’及/或閘極層1315’各自的結晶方向是有序的或與下方的層匹配。在圖16至圖26的實施例中,通道區域1305’中的每一者在其相對側上包含閘極層1315’且藉由各別介電層1310’而與閘極層1315’分離,以使得通道區域1305’自上方及下方而被個別閘控。 Referring now to FIG. 16, when forming a multi-channel Si/SiGe MOSFET according to some embodiments of the inventive concept, a substantially or fully crystalline nanosheet stack 1302 is formed. Each nanoplate 1301 in the stack 1302 includes a crystalline gate layer 1315' and a crystalline gate dielectric layer 1310' (both define the gate stack 1306) and a crystalline channel region 1305'. All the channel regions 1305', the gate dielectric layer 1310', and the gate layer 1315' are formed using a crystalline semiconductor or an insulator. One or more of the channel region 1305', the gate dielectric layer 1310', and the gate layer 1315' in the stack 1302 may be epitaxially grown so that the channel region 1305', the gate dielectric layer 1310' and/or Or the crystal direction of each gate layer 1315' is ordered or matched with the layer below. In the embodiments of FIGS. 16 to 26, each of the channel regions 1305' includes a gate layer 1315' on its opposite side and is separated from the gate layer 1315' by respective dielectric layers 1310', In this way, the channel area 1305' is individually gated from above and below.

通道區域1305’、閘極介電層1310’、閘極層1315’中的一些或全部是使用具有晶格失配的結晶結構的半導體材料而形成。 在圖16至圖26的實施例中,閘極層1315’是使用經重摻雜的(n++)SiGe而形成,結晶介電層1310’是使用CaF2、ZnS、Pr2O3或Gd2O3的其中一者而形成,以及通道區域1305’是使用本質的(或經輕摻雜的)Si而形成。另外,對於pFET,閘極層1315’是使用經重摻雜的Si而形成,結晶介電層1310’是使用CaF2、ZnS、Pr2O3或Gd2O3的其中一者而形成,以及通道區域1305’是使用本質的(或經輕摻雜的)SiGe而形成。通道區域1305’為薄的(在一實施例中,在少量奈米的數量級上)以實現良好的靜電控制,藉此形成多個量 子阱。多個奈米片1301可用來得到所需的電流/佈局面積。 Some or all of the channel region 1305', the gate dielectric layer 1310', and the gate layer 1315' are formed using a semiconductor material having a crystal structure with lattice mismatch. In the embodiments of FIGS. 16 to 26, the gate layer 1315′ is formed using heavily doped (n++) SiGe, and the crystalline dielectric layer 1310′ is formed using CaF 2 , ZnS, Pr 2 O 3 or Gd 2 One of O 3 is formed, and the channel region 1305 ′ is formed using intrinsic (or lightly doped) Si. In addition, for the pFET, the gate layer 1315′ is formed using heavily doped Si, and the crystalline dielectric layer 1310′ is formed using one of CaF 2 , ZnS, Pr 2 O 3, or Gd 2 O 3 , And the channel region 1305' is formed using intrinsic (or lightly doped) SiGe. The channel region 1305' is thin (on the order of a few nanometers in one embodiment) to achieve good electrostatic control, thereby forming multiple quantum wells. Multiple nanochips 1301 can be used to obtain the required current/layout area.

根據本發明概念的實施例的實質上或完全結晶的奈米片堆疊1302的使用可大幅減少或消除SR散射,其歸因於在通道區域1305與閘極堆疊1306之間的界面處不存在非晶層/非結晶層。此外,在Si層與SiGe層間的晶格失配在整個堆疊中產生應變。SiGe層受壓縮應變,而Si層具有拉伸應變。當堆疊為完全結晶堆疊,即使在較高的堆疊中(亦即,不受堆疊高度支配),應變可被保持,其歸因於應變來源(晶格失配)沿著整個堆疊的高度而保持。這與(在應力-鬆弛緩衝層(stress-relaxed buffer,SRB)上或在絕緣層上矽(或其他)(xOI)的)底部-應變(bottom-strained)finFET不同,其中應變可朝向鰭的頂部鬆弛。的確地,一些標準的奈米片(藉由相對於其他奈米片材料的一奈米片材料的底切蝕刻且接著藉由適當的材料回填底切區域形成)可為未受應變的,因為在鬆弛應力的處理中,每個通道片可具有兩個自由的表面。因此,根據本發明概念的實施例,在通道層中的SR抑制與應變的結合可導致極高的遷移率,超過未緩衝的III-V族InGaAs元件的遷移率。 The use of a substantially or fully crystalline nanoplate stack 1302 according to an embodiment of the present inventive concept can greatly reduce or eliminate SR scattering, which is attributed to the absence of non-existence at the interface between the channel region 1305 and the gate stack 1306 Crystal layer/non-crystalline layer. In addition, the lattice mismatch between the Si layer and the SiGe layer produces strain throughout the stack. The SiGe layer is subjected to compressive strain, while the Si layer has tensile strain. When the stack is a fully crystalline stack, even in higher stacks (ie, not subject to stack height), strain can be maintained due to strain sources (lattice mismatch) maintained along the height of the entire stack . This is different from bottom-strained finFETs (on a stress-relaxed buffer (SRB) or silicon (or other) (xOI) on an insulating layer, where the strain can be directed towards the fin's The top is slack. Indeed, some standard nanosheets (etched by undercutting a nanosheet material relative to other nanosheet materials and then formed by backfilling the undercut regions with appropriate materials) may be unstrained because In the relaxation stress treatment, each channel sheet may have two free surfaces. Therefore, according to an embodiment of the inventive concept, the combination of SR suppression and strain in the channel layer can result in extremely high mobility, exceeding the mobility of unbuffered III-V Group InGaAs devices.

使用代替金屬閘極的閘極材料的經重摻雜的半導體可導致反轉密度(“多”空乏(“poly”depletion))的損失。然而,對於整體較高的電流密度,極高的通道遷移率彌補電荷密度中的損失。因此,根據本發明概念的實施例的元件可提供改良的電流密度及減少電容,進而優化CV/I量度。奈米片的數量可對於電路應 用而修改,其具有較大數量的用以驅動電路的線的後末端(back end of line,BEOL)載入部分的片,以及閘極-載入(gate-loaded)、小-扇出(small-fanout)應用的較小數量的片。 The use of heavily doped semiconductors instead of metal gates can result in loss of inversion density ("poly" depletion). However, for overall higher current density, extremely high channel mobility compensates for the loss in charge density. Therefore, devices according to embodiments of the inventive concept can provide improved current density and reduced capacitance, thereby optimizing CV/I measurement. The number of nanochips can be Modified for use, it has a larger number of back end of line (BEOL) loading parts of the circuit, and gate-loaded (gate-loaded), small-fan-out ( small-fanout) applied to a smaller number of slices.

如本文描述的製造元件的方法可指出一些有關於對3-D奈米片堆疊形成接觸(contact)的挑戰,例如源極區域1305s’/汲極區域1305d’應該電接觸通道區域1305’,但不接觸閘極層1315’(如圖14B中所示),而纏繞環繞或次要閘極接觸層2015’應該電接觸閘極層1315’,但不接觸通道區域1305’(如圖14A中所示)。 特而言之,如圖17中所示,為了形成與三維奈米片堆疊1302的接觸而使得通道區域1305’與對於任何閘極或金屬層的接觸絕緣,進行通道區域1305’的選擇性等向性蝕刻。根據特定的材料,蝕刻劑經選擇以移除奈米片堆疊1302的側壁處的通道區域1305’的部分,而不實質上移除或損壞閘極層1315’及/或閘極介電層1310’。舉例而言,可使用一些用於Si/SiGe選擇性蝕刻的習知蝕刻化學品,且可不需要極高的選擇性以提供淺蝕刻。因此,通道區域1305’的側壁相對於奈米片堆疊1302的側壁而選擇性地凹陷,從而界定凹陷區域1305r’。 The method of fabricating components as described herein may point out some challenges related to forming contacts on the 3-D nanosheet stack, for example, the source region 1305s'/drain region 1305d' should electrically contact the channel region 1305', but The gate layer 1315' is not contacted (as shown in FIG. 14B), and the wrap around or secondary gate contact layer 2015' should be in electrical contact with the gate layer 1315', but not the channel region 1305' (as shown in FIG. 14A Show). In particular, as shown in FIG. 17, in order to form a contact with the three-dimensional nanosheet stack 1302 to insulate the channel region 1305' from any gate or metal layer contact, the channel region 1305' is selected, etc. Directional etching. Depending on the particular material, the etchant is selected to remove the portion of the channel region 1305' at the sidewall of the nanosheet stack 1302 without substantially removing or damaging the gate layer 1315' and/or the gate dielectric layer 1310 '. For example, some conventional etching chemicals for Si/SiGe selective etching may be used, and extremely high selectivity may not be required to provide shallow etching. Therefore, the sidewall of the channel region 1305' is selectively recessed relative to the sidewall of the nanosheet stack 1302, thereby defining the recessed region 1305r'.

現參看圖18,在奈米片堆疊的側壁以及上表面上沉積或形成絕緣層1820’。絕緣層1820’可為氧化物或其他非晶層,且可形成於堆疊1302上以實質上填充通道區域1305’的側壁處的凹陷區域1305r’。舉例而言,在一些實施例中,絕緣層1820’可為低介電係數介電層,譬如二氧化矽(SiO2)。 Referring now to FIG. 18, an insulating layer 1820' is deposited or formed on the sidewalls and upper surface of the nanosheet stack. The insulating layer 1820' may be an oxide or other amorphous layer, and may be formed on the stack 1302 to substantially fill the recessed region 1305r' at the sidewall of the channel region 1305'. For example, in some embodiments, the insulating layer 1820' may be a low dielectric constant dielectric layer, such as silicon dioxide (SiO 2 ).

如圖19中所示,進行蝕刻製程以自奈米片堆疊1302的上表面以及側壁移除絕緣層1820’。舉例而言,當氧化物層用作絕緣層1820’時,電漿蝕刻製程可用於移除氧化物層。然而,絕緣層1820’的部分可保留於通道區域1305’的側壁處的凹陷區域1305r’中。絕緣層1820’的這些剩餘部分1820r可將通道區域1305’與後續製程中所形成的一或多個導電層電隔離。 As shown in FIG. 19, an etching process is performed to remove the insulating layer 1820' from the upper surface and sidewalls of the nanosheet stack 1302. For example, when an oxide layer is used as the insulating layer 1820', a plasma etching process can be used to remove the oxide layer. However, a portion of the insulating layer 1820' may remain in the recessed region 1305r' at the sidewall of the channel region 1305'. These remaining portions 1820r of the insulating layer 1820' can electrically isolate the channel region 1305' from one or more conductive layers formed in subsequent processes.

現參看圖20,在奈米片堆疊1302的上表面以及側壁的部分上選擇性地形成閘極接觸層2015’。在本文中,閘極接觸層2015’亦可稱為次要閘極或頂部閘極。閘極接觸層2015’可藉此「纏繞」於整個奈米片堆疊1302上,從而提供與堆疊1302的閘極層1315’中的每一者的電接觸,進而實現其整體控制。然而,通道區域1305’可藉由其側壁處的絕緣層1820的剩餘部分1820r而與閘極接觸層2015’電隔離。特定言之,如圖20中所示,閘極接觸層2015’可在SiGe閘極層1315’的側壁處接觸SiGe閘極層1315’,但可藉由絕緣層剩餘部分1820r而與Si通道區域1305’分離且電隔離。 Referring now to FIG. 20, a gate contact layer 2015' is selectively formed on the upper surface of the nanosheet stack 1302 and a portion of the sidewall. Herein, the gate contact layer 2015' may also be referred to as a secondary gate or a top gate. The gate contact layer 2015' can thereby "wrap" around the entire nanosheet stack 1302, thereby providing electrical contact with each of the gate layers 1315' of the stack 1302, thereby achieving its overall control. However, the channel region 1305' can be electrically isolated from the gate contact layer 2015' by the remaining portion 1820r of the insulating layer 1820 at its sidewall. In particular, as shown in FIG. 20, the gate contact layer 2015' may contact the SiGe gate layer 1315' at the sidewall of the SiGe gate layer 1315', but may be connected to the Si channel region by the remaining portion of the insulating layer 1820r 1305' is separated and electrically isolated.

閘極接觸層2015’可包含金屬或半導體材料。在一些實施例中,多晶半導體材料可用作為閘極接觸層2015’。多晶閘極接觸層2015’可為經重摻雜的,且經重摻雜的閘極接觸層2015’中的相對低的電荷密度可導致相對薄的空乏層(且因此可不顯著地降低元件的靜電效能)。舉例而言,用於nFET的閘極接觸層2015’可為SiGe,而用於pFET的閘極接觸層2015”可為Si。在閘極接觸層2015’中不存在金屬亦可簡化製程。然而,在其他實施例中,金屬 材料可用作為閘極接觸層2015’以改良控制及/或效能。舉例而言,在一些實施例中,多晶閘極接觸層2015’可在如本文中所描述的處理操作的結尾或在所述處理操作後替換為金屬。 The gate contact layer 2015' may include metal or semiconductor materials. In some embodiments, polycrystalline semiconductor material may be used as the gate contact layer 2015'. The polycrystalline gate contact layer 2015' may be heavily doped, and the relatively low charge density in the heavily doped gate contact layer 2015' may result in a relatively thin depletion layer (and therefore may not significantly reduce the device Electrostatic performance). For example, the gate contact layer 2015' for nFET may be SiGe, and the gate contact layer 2015" for pFET may be Si. The absence of metal in the gate contact layer 2015' may also simplify the process. However , In other embodiments, the metal Materials can be used as the gate contact layer 2015' to improve control and/or performance. For example, in some embodiments, the polycrystalline gate contact layer 2015' may be replaced with metal at the end of or after the processing operation as described herein.

圖21至圖26為進一步說明根據本發明概念的一些實施例的nFET元件的製造方法的橫截面圖,其是沿著圖13的線B-B’而截取。在圖20的閘極接觸層2015’包含多晶半導體材料的實施例中,可在圖20中的閘極接觸層2015’的形成之後進行圖21至圖26的操作。 21 to 26 are cross-sectional views further illustrating a method of manufacturing an nFET element according to some embodiments of the inventive concept, which is taken along the line B-B' of FIG. 13. In the embodiment in which the gate contact layer 2015' of FIG. 20 includes a polycrystalline semiconductor material, the operations of FIGS. 21 to 26 may be performed after the formation of the gate contact layer 2015' in FIG. 20.

如圖21的橫截面中所示,通道區域1305’的側壁藉由在其凹陷區域1305r’中的絕緣層剩餘部分1820r而保持電絕緣。因此,為了實現通道區域1305’與源極/汲極區域之間的接觸,進行蝕刻製程以移除在後續操作中形成源極/汲極區域處的奈米片堆疊1302的部分。特定言之,如圖22中所示,對奈米片堆疊1302進行圖案化(例如,使用罩幕)及蝕刻以在通道區域1305’的相對側處移除奈米片堆疊的部分1303’。 As shown in the cross-section of FIG. 21, the side wall of the channel region 1305' is kept electrically insulated by the remaining portion of the insulating layer 1820r in its recessed region 1305r'. Therefore, in order to achieve the contact between the channel region 1305' and the source/drain regions, an etching process is performed to remove the portion where the nanosheet stack 1302 at the source/drain regions is formed in the subsequent operation. In particular, as shown in FIG. 22, the nanosheet stack 1302 is patterned (e.g., using a mask) and etched to remove the portion 1303' of the nanosheet stack at opposite sides of the channel region 1305'.

現參看圖23,進行閘極層1315’的選擇性等向性蝕刻。取決於特定材料,蝕刻劑經選擇以選擇性地移除閘極層1315’的部分,不實質上移除或損壞閘極介電層1310’及/或通道區域1305’。 因此,閘極層1315’的側壁相對於奈米片堆疊1302的側壁而選擇性地凹陷,以界定凹陷區域1315r’。 Referring now to Fig. 23, selective isotropic etching of the gate layer 1315' is performed. Depending on the particular material, the etchant is selected to selectively remove portions of the gate layer 1315' without substantially removing or damaging the gate dielectric layer 1310' and/or the channel region 1305'. Therefore, the sidewall of the gate layer 1315' is selectively recessed relative to the sidewall of the nanosheet stack 1302 to define a recessed region 1315r'.

如圖24中所示,在奈米片堆疊1302的側壁以及上表面上沉積或形成絕緣層2420。絕緣層2420可為氧化物或其他非晶 層,且可形成於閘極層1315’的側壁處的凹陷區域1315r’上及/或實質上填充閘極層1315’的側壁處的凹陷區域1315r’。舉例而言,在一些實施例中,絕緣層2420可為低介電係數介電層,譬如二氧化矽(SiO2)。 As shown in FIG. 24, an insulating layer 2420 is deposited or formed on the sidewalls and upper surface of the nanosheet stack 1302. The insulating layer 2420 may be an oxide or other amorphous layer, and may be formed on the recessed region 1315r' at the sidewall of the gate layer 1315' and/or substantially fill the recessed region 1315r' at the sidewall of the gate layer 1315' . For example, in some embodiments, the insulating layer 2420 may be a low dielectric constant dielectric layer, such as silicon dioxide (SiO 2 ).

現參看圖25,進行蝕刻製程以自奈米片堆疊1302的上表面以及側壁移除絕緣層2420。舉例而言,在氧化物層用作為絕緣層2420的情況下,電漿蝕刻製程可用於移除氧化物層。然而,絕緣層2420的部分2420r可保留於閘極層1315’的側壁處的凹陷區域1315r’中。絕緣層的這些剩餘部分2420r可將閘極層1315’與後續製程中所形成的源極/汲極區域電隔離。 Referring now to FIG. 25, an etching process is performed to remove the insulating layer 2420 from the upper surface and sidewalls of the nanosheet stack 1302. For example, in the case where an oxide layer is used as the insulating layer 2420, a plasma etching process may be used to remove the oxide layer. However, a portion 2420r of the insulating layer 2420 may remain in the recessed area 1315r' at the sidewall of the gate layer 1315'. These remaining portions 2420r of the insulating layer can electrically isolate the gate layer 1315' from the source/drain regions formed in subsequent processes.

特定言之,如圖26中所示,在奈米片堆疊1302’中的Si通道區域1305’的相對側處形成n++ Si源極區域1305s’/汲極區域1305d’以完成nFET 1300’。源極區域1305s’/汲極區域1305d’可藉由磊晶再生長製程而形成。舉例而言,在圖26的nFET1300’中,原位摻雜的n+Si源極區域1305s’/汲極區域1305d’在Si通道區域1305’的相對側上(亦即,在圖22中被圖案化及蝕刻的奈米片堆疊的部分1303’處)磊晶生長。同樣地,在如圖15B中所示的pFET1300”中,原位摻雜的p++SiGe源極區域1305s”/汲極區域1305d”可在SiGe通道區域1305”的相對側上磊晶生長。因此,源極區域1305s’/汲極區域1305d’可在通道區域1305’的側壁處接觸通道區域1305’。然而,閘極層1315’的側壁處的凹陷區域1315r’中的絕緣層剩餘部分2420r將源極區域1305s’/汲極區域1305d’與 閘極層1315’電隔離。特定言之,圖26說明Si源極區域1305s’及汲極區域1305d’可接觸Si通道區域1305’,但可藉由絕緣層剩餘部分2420r而與SiGe閘極層1315’分離且電隔離。 Specifically, as shown in FIG. 26, n++ Si source regions 1305s'/drain regions 1305d' are formed at opposite sides of the Si channel region 1305' in the nanosheet stack 1302' to complete the nFET 1300'. The source region 1305s'/drain region 1305d' can be formed by an epitaxial regrowth process. For example, in the nFET 1300' of FIG. 26, the in-situ doped n+Si source region 1305s'/drain region 1305d' are on opposite sides of the Si channel region 1305' (that is, The patterned and etched portion of the nanosheet stack 1303') is epitaxially grown. Likewise, in pFET1300" shown in FIG. 15B, the in-situ doped p++SiGe source region 1305s"/drain region 1305d" can be epitaxially grown on the opposite side of the SiGe channel region 1305". Therefore, the source region 1305s'/drain region 1305d' may contact the channel region 1305' at the sidewall of the channel region 1305'. However, the remaining portion of the insulating layer 2420r in the recessed region 1315r' at the side wall of the gate layer 1315' connects the source region 1305s'/drain region 1305d' with The gate layer 1315' is electrically isolated. Specifically, FIG. 26 illustrates that the Si source region 1305s' and the drain region 1305d' can contact the Si channel region 1305', but can be separated from and electrically isolated from the SiGe gate layer 1315' by the remaining portion of the insulating layer 2420r.

穿過或遍佈整個堆疊1302的高度的閘極層1315’及通道區域1305’之間的應變來源(材料的界面)的配置可減少或防止應變損失,其歸因於圖22中所示的源極/汲極凹陷。因此,可進行相對深的源極/汲極凹陷,且剩餘源極/汲極磊晶層的大部分或整個垂直側壁可被矽化以界定如圖13、圖14B及圖15B中所示的金屬源極區域1308s、1308s’、1308s”/金屬汲極區域1308d、1308d’、1308d”。這可提供相對大的接觸面積,從而減少整體的寄生電阻。 The configuration of the source of strain (interface of the material) between the gate layer 1315' and the channel region 1305' across or throughout the height of the entire stack 1302 can reduce or prevent strain loss due to the source shown in Figure 22 Pole/drain pole depression. Therefore, a relatively deep source/drain recess can be made, and most or the entire vertical sidewalls of the remaining source/drain epitaxial layer can be silicidated to define the metal as shown in FIGS. 13, 14B, and 15B Source regions 1308s, 1308s', 1308s"/metal drain regions 1308d, 1308d', 1308d". This can provide a relatively large contact area, thereby reducing the overall parasitic resistance.

雖然在本文中已參考在n型finFET的內文中的通道層、閘極介電層以及閘極層的特定材料而描述本發明概念的實施例,但應理解,亦可使用其他材料。特定言之,如上述所指出,p型finFET 1300”(如圖15A至15B中所示的實例)可藉由如圖16至圖26中說明的實質上相似的製造技術來形成,除了由SiGe形成通道層或通道區域1305”,由Si形成閘極層1315”以及由SiGe形成源極區域1305s”/汲極區域1305d”。 Although embodiments of the inventive concept have been described herein with reference to the channel layer, gate dielectric layer, and specific materials of the gate layer in the context of n-type finFETs, it should be understood that other materials may be used. In particular, as indicated above, the p-type finFET 1300" (as shown in the examples shown in FIGS. 15A to 15B) can be formed by substantially similar manufacturing techniques as illustrated in FIGS. 16 to 26, except that it is made of SiGe A channel layer or channel region 1305" is formed, a gate layer 1315" is formed from Si, and a source region 1305s"/drain region 1305d" is formed from SiGe.

在本文中所描述的n型FET1300’及p型FET1300”中,使用通道區域1305’/1305”與閘極層1315’/1315”之間的晶格失配以創造應變(SiGe層中的壓縮應變;Si層中的拉伸應變)。 In the n-type FET1300' and p-type FET1300" described herein, a lattice mismatch between the channel region 1305'/1305" and the gate layer 1315'/1315" is used to create strain (compression in the SiGe layer Strain; tensile strain in the Si layer).

本發明概念的實施例可提供若干優點。舉例而言,本文中所描述的元件可提供高遷移率的通道,此是因為(藉由通道區 域1305與閘極堆疊1306之間的界面處不存在非晶層)可大幅減少及/或消除SR散射,以及因為維持在通道區域1305中的高應變。並且,根據本發明概念的實施例的奈米片寬度可不由對奈米片材料的底切蝕刻選擇性或底切區域的金屬填充的限制而受限,不同於一些藉由相對於奈米片材料底切蝕刻一奈米片材料且接著金屬回填底切區域而形成的習知奈米片。另外,當本發明概念的實施例實現了薄通道層的精準控制,本文中所描述的元件可調整至短Lg(閘極長度)技術。 Embodiments of the inventive concept can provide several advantages. For example, the device described herein can provide a high mobility channel because (by the channel region The absence of an amorphous layer at the interface between the domain 1305 and the gate stack 1306) can greatly reduce and/or eliminate SR scattering, and because of the high strain maintained in the channel region 1305. Also, the width of the nanosheet according to an embodiment of the inventive concept may not be limited by the undercut etching selectivity of the nanosheet material or the metal filling of the undercut region, unlike some The material undercuts a conventional nanosheet formed by etching a nanosheet material and then metal backfilling the undercut region. In addition, when the embodiments of the inventive concept achieve precise control of the thin channel layer, the elements described herein can be adjusted to short Lg (gate length) technology.

本發明概念的實施例因此提供完全結晶多奈米片應變IV族MOSFET的製造方法。本文中所描述的一些操作可包括(但不侷限)習知技術。舉例而言,基板可包括任何含有(但不限於)譬如GaAs及InAs的半導體的半導體材料,或譬如Si、基體矽(bulk Si)、單晶矽、多晶矽、SiGe、非晶矽、絕緣體上矽、絕緣體上矽鍺(SiGe-on-insulator,SGOI)、絕緣體上應變矽(strained-silicon-on-insulator)、退火多晶矽(annealed poly-Si)及/或其他的含Si材料。在其他實施例中,譬如閘極介電層的層可使用習知技術(例如化學氣相沉積、原子層沉積、脈衝化學氣相沉積、電漿輔助化學氣相沉積、濺鍍、電子束沉積(e-beam deposition)及/或溶液沉積(solution-based deposition))而形成,及/或可使用熱生長製程(thermal growth process)來形成,熱生長製程可包括氧化、氧氮化、氮化及/或電漿處理。 Embodiments of the inventive concept therefore provide a method of manufacturing fully crystallized crystalline nano-strain Group IV MOSFETs. Some operations described herein may include (but are not limited to) conventional techniques. For example, the substrate may include any semiconductor material containing (but not limited to) semiconductors such as GaAs and InAs, or such as Si, bulk silicon, monocrystalline silicon, polycrystalline silicon, SiGe, amorphous silicon, silicon on insulator , SiGe-on-insulator (SGOI), strained-silicon-on-insulator, annealed poly-Si, and/or other Si-containing materials. In other embodiments, for example, the gate dielectric layer may use conventional techniques (eg, chemical vapor deposition, atomic layer deposition, pulsed chemical vapor deposition, plasma-assisted chemical vapor deposition, sputtering, electron beam deposition) (e-beam deposition) and/or solution-based deposition), and/or may be formed using a thermal growth process (thermal growth process), the thermal growth process may include oxidation, oxynitridation, nitridation And/or plasma treatment.

在其他實施例中,閘極結構可利用一些習知製程來製 造,(例如)可利用習知沉積製程(譬如為化學氣相沉積、電漿輔助化學氣相沉積或濺鍍)將硬罩幕形成在半導體材料的層頂上,及/或可利用傳統熱氧化製程且接續氮化製程將硬罩幕生長在半導體本體上。可利用傳統微影及蝕刻進行圖案化。特而言之,微影製程可包括施用光阻、將光阻暴露於照射圖案以及利用習知光阻顯影液(resist developer)將圖案顯影至光阻。光阻圖案化後,經暴露的部分(例如未被圖案化光阻保護的部分)可利用蝕刻製程移除,所述蝕刻製程在移除光暴露部分中為高度選擇性的。可施用來形成圖案化層的合適類型的蝕刻包括(但不限於)反應式離子蝕刻(reactive-ion etching,RIE)、電漿蝕刻(例如離子切割)及/或雷射剝蝕(laser ablation)。在這個蝕刻步驟之後,光阻可自所述結構移除。 In other embodiments, the gate structure can be manufactured using some conventional processes Manufacturing, for example, a conventional deposition process (such as chemical vapor deposition, plasma-assisted chemical vapor deposition, or sputtering) can be used to form a hard mask on top of the layer of semiconductor material, and/or traditional thermal oxidation can be used The process and the subsequent nitriding process will grow the hard mask on the semiconductor body. Traditional lithography and etching can be used for patterning. In particular, the lithography process may include applying a photoresist, exposing the photoresist to the irradiated pattern, and developing the pattern to the photoresist using a conventional resist developer. After the photoresist is patterned, the exposed portion (eg, the portion that is not protected by the patterned photoresist) can be removed using an etching process that is highly selective in removing the light-exposed portion. Suitable types of etching that can be applied to form the patterned layer include, but are not limited to, reactive-ion etching (RIE), plasma etching (eg ion cutting), and/or laser ablation. After this etching step, the photoresist can be removed from the structure.

在其他實施例中,可進行習知植入製程以在所述結構中於鄰近在(例如)鰭內的通道區域的區域內形成源極/汲極植入區域。所述植入可為n型或p型。在一實例中,鄰近於鰭的暴露區域可使用不同植入物種(例如砷及/或硼)來摻雜,以形成源極/汲極區域,其分別具有施體雜質或受體雜質。 In other embodiments, conventional implantation processes can be performed to form source/drain implant regions in the structure in regions adjacent to the channel region in, for example, the fin. The implant can be n-type or p-type. In one example, the exposed regions adjacent to the fins can be doped with different implanted species (such as arsenic and/or boron) to form source/drain regions with donor impurities or acceptor impurities, respectively.

本發明概念的特定實例實施例的特點如下所述: 在一實施例中,FET包含多個結晶Si/SiGe的完全結晶以及絕緣層的堆疊,所述多個層形成個別閘控的傳導通道。 The features of specific example embodiments of the inventive concept are as follows: In one embodiment, the FET includes a plurality of fully crystallized crystalline Si/SiGe and a stack of insulating layers that form individually gated conduction channels.

在一實施例中,FET包含多個結晶Si/SiGe的完全結晶的堆疊以及包含絕緣層,其包含多個應變結晶Si/SiGe的完全結晶以及絕 緣層的堆疊。 In one embodiment, the FET includes a fully crystalline stack of multiple crystalline Si/SiGe and includes an insulating layer that includes multiple fully crystalline and fully crystallized strained crystalline Si/SiGe The stack of marginal layers.

在一實施例中,FET包含所述多個形成經輕摻雜的結晶傳導通道的應變層的子集、形成未經摻雜的結晶閘極介電質的多個應變層的子集以及形成經重摻雜的結晶閘電極的應變層的子集,所述完全結晶的堆疊中的每一結晶傳導通道被結晶閘極介電質以及結晶第一閘電極圍繞。 In one embodiment, the FET includes the plurality of subsets of strain layers forming lightly doped crystalline conductive channels, the subset of strain layers forming undoped crystalline gate dielectrics, and forming A subset of the strained layer of the heavily doped crystalline gate electrode, each crystalline conduction channel in the fully crystallized stack is surrounded by a crystalline gate dielectric and a crystalline first gate electrode.

在一實施例中,nFET包括由Si形成的傳導通道,由CaF2、ZnS、Pr2O3或Gd2O3形成的結晶閘極介電質,以及由SiGe構成的第一閘電極。 In one embodiment, the nFET includes a conductive channel formed of Si, a crystalline gate dielectric formed of CaF 2 , ZnS, Pr 2 O 3 or Gd 2 O 3 , and a first gate electrode formed of SiGe.

在一實施例中,pFET包括由SiGe形成的傳導通道,由CaF2、ZnS、Pr2O3或Gd2O3形成的結晶閘極介電質,以及由Si構成的第一閘電極。 In one embodiment, the pFET includes a conductive channel formed of SiGe, a crystalline gate dielectric formed of CaF 2 , ZnS, Pr 2 O 3 or Gd 2 O 3 , and a first gate electrode formed of Si.

在一實施例中,FET包括奈米片FET,所述奈米片FET形成有纏繞於所述多個層的完全結晶的堆疊周圍的第二閘電極,所述第二閘電極僅選擇性地接觸所述第一閘電極,所述第二閘電極以及所述第一閘電極形成環繞式閘極結構,所述環繞式閘極結構完全地圍繞所述個別閘控的傳導通道。 In one embodiment, the FET includes a nanochip FET formed with a second gate electrode wrapped around the fully crystalline stack of the plurality of layers, the second gate electrode only selectively In contact with the first gate electrode, the second gate electrode and the first gate electrode form a wrap-around gate structure that completely surrounds the individually gated conduction channel.

在一實施例中,FET包括第二閘電極,所述第二閘電極由金屬或多晶半導體形成。 In one embodiment, the FET includes a second gate electrode formed of metal or polycrystalline semiconductor.

在一實施例中,FET包括奈米片FET,所述奈米片FET形成有源極/汲極電極,所述源極/汲極電極選擇性地接觸所述傳導通道,而不接觸所述閘電極。 In one embodiment, the FET includes a nanochip FET that forms a source/drain electrode that selectively contacts the conductive channel without contacting the Gate electrode.

在一實施例中,nFET包括源極/汲極電極,所述源極/汲極電極由下列中的一者(但非唯一)所形成:Si、C、n型摻雜物及金屬。 In one embodiment, the nFET includes a source/drain electrode formed by one (but not the only) of the following: Si, C, n-type dopant, and metal.

在一實施例中,pFET包括源極/汲極電極,所述源極/汲極電極由下列中的一者(但非唯一)所形成:SiGe、C、p型摻雜物及金屬。 In one embodiment, the pFET includes source/drain electrodes formed by one (but not the only) of the following: SiGe, C, p-type dopant, and metal.

在一實施例中,奈米片FET包含高遷移率傳導通道,高遷移率是歸因於每一傳導通道上方及下方的區域中的表面粗糙散射的實質消除。 In one embodiment, the nanochip FET includes high mobility conductive channels, the high mobility is due to the substantial elimination of surface rough scattering in the areas above and below each conductive channel.

在一實施例中,形成奈米片FET的方法包括形成應變層的完全結晶的堆疊、形成纏繞於所述多個應變層的完全結晶的堆疊的周圍的第二閘電極,所述第二閘電極選擇性地接觸所述第一閘電極而不接觸所述傳導通道,以及包括形成選擇性地接觸所述傳導通道而不接觸第一閘電極的源極/汲極電極。 In one embodiment, a method of forming a nanochip FET includes forming a fully crystalline stack of strained layers, forming a second gate electrode wound around the fully crystalline stack of the plurality of strained layers, the second gate The electrode selectively contacts the first gate electrode without contacting the conduction channel, and includes forming a source/drain electrode that selectively contacts the conduction channel without contacting the first gate electrode.

在一實施例中,奈米片FET包含SiGe層,在SiGe層中的Ge%低於100%以提供在不具過多缺陷的通道層中的合適的應變或遷移率,以及實質上小於50%以實現非過多缺陷,以及實質上小於或等於30%以實現非過多缺陷,其中nFET的閘極區域中的Ge%不需要與pFETs的通道傳導層中的Ge%相同。 In one embodiment, the nanochip FET includes a SiGe layer, the Ge% in the SiGe layer is less than 100% to provide a suitable strain or mobility in the channel layer without excessive defects, and substantially less than 50% Non-excessive defects are achieved, and substantially less than or equal to 30% to achieve non-excessive defects, where the Ge% in the gate region of the nFET need not be the same as the Ge% in the channel conduction layer of the pFETs.

在一實施例中,奈米片FET可包括nFET元件,所述nFET元件具有閘極區域,其中閘極區域中Ge%的範圍實現了依據層的厚度達到30%至50%的遷移率優勢,及/或包括pFET元件,所述pFET 元件具有在通道傳導層中高的Ge%(例如,100%(對於增加的遷移率)),但能帶間的穿隧電流(band-to-band-tunneling current)及寄生雙極性效應(parasitic bipolar effect)限制Ge%至約70%(或更高(對於低於0.6V的VDD操作)。 In an embodiment, the nanochip FET may include an nFET element having a gate region, wherein the range of Ge% in the gate region realizes a mobility advantage of 30% to 50% depending on the thickness of the layer, And/or including a pFET element, the pFET The device has a high Ge% in the channel conduction layer (for example, 100% (for increased mobility)), but band-to-band-tunneling current and parasitic bipolar effect effect) limits Ge% to about 70% (or higher (for VDD operation below 0.6V).

本文中所使用的術語僅是出於描述特定實施例的目的,且不意欲限制實例實施例。如本文中所使用,除非上下文另有清楚指示,否則單數形式「一個」以及「所述」意欲亦包含複數形式。應進一步理解,術語「包括」及/或「包含」在用於本文中時指定所敍述的特徵、整體、步驟、操作、部件及/或組件的存在,但不排除一或多個其他特徵、整體、步驟、操作、部件、組件及/或其群組的存在或添加。 The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit example embodiments. As used herein, unless the context clearly indicates otherwise, the singular forms "a" and "said" are intended to include the plural forms as well. It should be further understood that the terms "including" and/or "comprising" when used herein specify the presence of the recited features, wholes, steps, operations, parts and/or components, but do not exclude one or more other features, The existence or addition of wholes, steps, operations, parts, components, and/or groups thereof.

為了描述的簡易起見,可在本文中使用諸如「在……之下」、「在……下方」、「下方」、「在……上方」、「上方」以及其類似術語的空間相對術語,以描述如諸圖中所說明的一個部件或特徵相對於另一(其他)部件或特徵的關係。應理解,除了諸圖中所描繪的定向以外,所述空間相對術語意欲亦涵蓋在使用中或操作中的元件的不同定向。舉例而言,若翻轉諸圖中的元件,則描述為在其他部件或特徵「下方」或「之下」的部件繼而將定向於其他部件或特徵「上方」。因此,術語「在……下方」可涵蓋「在……上方」以及「在……下方」兩種定向。元件可以其他方式定向(旋轉90度或在其他的定向),且本文中所使用的空間相對描述詞可相應地作出解釋。此外,亦應理解,當一層被 稱為在兩個層「之間」時,其可為兩個層之間的唯一層或亦可存在一或多個介入層。 For simplicity of description, spatial relative terms such as "below", "below", "below", "above", "above", and similar terms may be used in this article To describe the relationship of one component or feature relative to another (other) component or feature as illustrated in the figures. It should be understood that in addition to the orientations depicted in the figures, the spatial relative terms are intended to also cover different orientations of elements in use or operation. For example, if the elements in the figures are turned over, the components described as "below" or "beneath" other components or features would then be oriented "above" the other components or features. Therefore, the term "below" can cover both "above" and "below" orientations. Elements can be oriented in other ways (rotated 90 degrees or in other orientations), and the spatial relative descriptors used herein can be interpreted accordingly. In addition, it should also be understood that when a layer is When referred to as "between" two layers, it may be the only layer between the two layers or there may be one or more intervening layers.

應理解,儘管本文中可使用術語「第一」、「第二」等來描述各種部件,但這些部件不應受這些術語限制。這些術語僅用於區分一個部件與另一部件。因此,下文所論述的第一部件可稱為第二部件,而不偏離本發明概念的範疇。此外,如本文中所使用,除非上下文另有清楚指示,否則單數形式「一個」以及「所述」意欲亦包含複數形式。亦應理解,如本文中所使用,術語「包括」為開端的,且包含一或多個所敍述的部件、操作及/或功能,而不排除一或多個未敍述的部件、操作及/或功能。術語「及/或」包含相關聯的所列出項目中的一或多者的任何及所有組合。 It should be understood that although the terms "first", "second", etc. may be used herein to describe various components, these components should not be limited by these terms. These terms are only used to distinguish one component from another. Therefore, the first component discussed below may be referred to as the second component without departing from the scope of the inventive concept. In addition, as used herein, unless the context clearly indicates otherwise, the singular forms "a" and "said" are intended to include the plural forms as well. It should also be understood that as used herein, the term "comprising" is inclusive and includes one or more recited components, operations, and/or functions, but does not exclude one or more undescribed components, operations, and/or functions. Features. The term "and/or" includes any and all combinations of one or more of the associated listed items.

亦應理解,當一部件被稱為在另一部件「上」或「連接至」另一部件時,所述部件可直接在所述另一部件上或連接至所述另一部件,或可存在介入部件。相比而言,當一部件被稱為「直接」在另一部件「上」或「直接連接至」另一部件時,不存在介入部件。然而,無論如何,不應將「在……上」或「直接在……上」解釋為需要一層完全覆蓋下方的層。 It should also be understood that when a component is referred to as being “on” or “connected to” another component, the component can be directly on or connected to the other component, or it can be There are intervening components. In contrast, when a component is referred to as being "directly on" or "directly connected to" another component, there are no intervening components. However, in any case, "on" or "directly on" should not be interpreted as requiring a layer to completely cover the layer below.

本文中參考橫截面說明及/或透視說明來描述實施例,所述橫截面說明及/或透視說明為理想化實施例(以及中間結構)的示意性說明。因而,應預料到由於(例如)製造技術及/或容差而存在相對於所述說明的形狀的變化。因此,實施例不應解釋為限於本文中所說明的區域的特定形狀,而是應包含由(例如)製造 引起的形狀的偏差。舉例而言,被說明為矩形的植入區域通常將具有圓形或彎曲特徵及/或在植入區域的邊緣處的植入濃度梯度,而非自植入區域至非植入區域的二元(binary)改變。同樣地,藉由植入形成的內埋區域可在所述內埋區域與進行所述植入時穿過的表面之間的區域中導致一些植入。因此,諸圖中所說明的區域本質上為示意性的,且其形狀不意欲說明元件的區域的實際形狀且不意欲限制本發明概念的範疇。 Embodiments are described herein with reference to cross-sectional illustrations and/or perspective illustrations, which are schematic illustrations of idealized embodiments (and intermediate structures). Therefore, it should be expected that there will be a change in shape from the description due to, for example, manufacturing techniques and/or tolerances. Therefore, the embodiments should not be interpreted as being limited to the specific shapes of the regions described herein, but should include manufacturing by, for example, The resulting deviation in shape. For example, an implanted area illustrated as a rectangle will generally have round or curved features and/or an implant concentration gradient at the edge of the implanted area, rather than a binary from the implanted area to the non-implanted area (binary) change. Likewise, an embedded area formed by implantation may result in some implantation in the area between the embedded area and the surface through which the implantation is performed. Therefore, the regions illustrated in the figures are schematic in nature, and their shapes are not intended to illustrate the actual shapes of the regions of the elements and are not intended to limit the scope of the inventive concept.

除非另有定義,否則本文中所使用的所有術語(包含技術以及科學術語)具有與一般熟習本發明概念所屬技術者通常所理解者相同的含義。應進一步理解,術語(諸如,常用字典中所定義的術語)應被解釋為具有與其在相關技術背景中的含義一致的含義,且不應以理想化或過度正式的意義來解釋,除非本文中明確地如此定義。 Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as those generally understood by those skilled in the art to which the concepts of the present invention belong. It should be further understood that terms (such as those defined in commonly used dictionaries) should be interpreted as having a meaning consistent with their meaning in the relevant technical background, and should not be interpreted in an idealized or excessively formal sense unless in this context So clearly defined.

提供可用於場效電晶體應用(例如MOSFET)的應變IV族奈米片結構(例如,Si/SiGe奈米片結構)的方法及系統已被描述。所述方法及系統根據已示的例示性實施例已被描述,且所屬技術領域具有通常知識者將輕易地理解對已說明的實施例可有變化,且任何變化皆在所述方法及系統的精神與範圍內。因此,所屬技術領域具有通常知識者可對本發明概念進行修飾,而不脫離本文所描述的發明及隨附申請專利範圍界定的精神以及範疇。 Methods and systems for providing strained Group IV nanosheet structures (eg, Si/SiGe nanosheet structures) that can be used in field effect transistor applications (eg, MOSFET) have been described. The method and system have been described according to the illustrated exemplary embodiments, and those of ordinary skill in the art will readily understand that there may be changes to the illustrated embodiments, and any changes are within the methods and systems Within spirit and scope. Therefore, those of ordinary skill in the art can modify the concept of the present invention without departing from the spirit and scope defined by the invention described herein and the accompanying patent application.

1300‧‧‧電晶體 1300‧‧‧transistor

1305‧‧‧通道區域 1305‧‧‧channel area

1305d‧‧‧汲極區域 1305d‧‧‧Drainage area

1308d‧‧‧金屬汲極區域 1308d‧‧‧Metal Drain Region

1305s‧‧‧源極區域 1305s‧‧‧Source region

1308s‧‧‧金屬源極區域 1308s‧‧‧Metal source area

1307‧‧‧基板 1307‧‧‧ substrate

1310‧‧‧介電層 1310‧‧‧dielectric layer

1315‧‧‧閘極層 1315‧‧‧Gate layer

1390‧‧‧間隙壁 1390‧‧‧Gap

2015‧‧‧閘極接觸層 2015‧‧‧Gate contact layer

Claims (19)

一種場效電晶體,包括:包括多個個別閘控的傳導通道的奈米片堆疊,所述個別閘控的傳導通道各自包含結晶半導體通道層;結晶介電層,位於所述結晶半導體通道層上;以及結晶半導體閘極層,位於與所述結晶半導體通道層相對的所述結晶介電層上,其中所述奈米片堆疊是由在所述結晶半導體通道層、所述結晶介電層以及所述結晶半導體閘極層中的兩者間的晶格失配而受應變,其中所述結晶介電層包括氟化鈣、硫化鋅及/或氧化釓。 A field effect transistor including: a stack of nanosheets including a plurality of individually gated conductive channels, each of the individually gated conductive channels includes a crystalline semiconductor channel layer; a crystalline dielectric layer located on the crystalline semiconductor channel layer Upper; and a crystalline semiconductor gate layer on the crystalline dielectric layer opposite to the crystalline semiconductor channel layer, wherein the nanosheet stack is composed of the crystalline semiconductor channel layer, the crystalline dielectric layer And the lattice mismatch between the two in the crystalline semiconductor gate layer is strained, wherein the crystalline dielectric layer includes calcium fluoride, zinc sulfide, and/or gallium oxide. 如申請專利範圍第1項所述的場效電晶體,其中所述結晶半導體通道層、所述結晶介電層以及所述結晶半導體閘極層包含異質磊晶層。 The field-effect transistor according to item 1 of the patent application range, wherein the crystalline semiconductor channel layer, the crystalline dielectric layer, and the crystalline semiconductor gate layer include a heteroepitaxial layer. 如申請專利範圍第1項所述的場效電晶體,其中所述場效電晶體為n型元件,且其中所述結晶半導體通道層包含矽。 The field effect transistor according to item 1 of the patent application range, wherein the field effect transistor is an n-type element, and wherein the crystalline semiconductor channel layer includes silicon. 如申請專利範圍第1項所述的場效電晶體,其中所述場效電晶體為p型元件,且其中所述結晶半導體通道層包含矽鍺。 The field effect transistor according to item 1 of the patent application range, wherein the field effect transistor is a p-type element, and wherein the crystalline semiconductor channel layer includes silicon germanium. 如申請專利範圍第1項所述的場效電晶體,其中所述場效電晶體為n型元件,且其中所述結晶半導體閘極層包含經摻雜的矽鍺。 The field effect transistor according to item 1 of the patent application range, wherein the field effect transistor is an n-type element, and wherein the crystalline semiconductor gate layer includes doped silicon germanium. 如申請專利範圍第1項所述的場效電晶體,其中所述場效電晶體為p型元件,且所述結晶半導體閘極層包含經摻雜的矽。 The field effect transistor according to item 1 of the patent application range, wherein the field effect transistor is a p-type element, and the crystalline semiconductor gate layer includes doped silicon. 一種場效電晶體,包括:包含結晶半導體通道區域的本體層;以及 閘極堆疊,位於所述結晶半導體通道區域上,所述閘極堆疊包含結晶半導體閘極層,所述結晶半導體閘極層與所述結晶半導體通道區域晶格失配;以及結晶閘極介電層,位於所述結晶半導體閘極層及所述結晶半導體通道區域之間,其中所述結晶閘極介電層包括氟化鈣、硫化鋅及/或氧化釓。 A field effect transistor, including: a body layer containing a crystalline semiconductor channel region; and A gate stack located on the crystalline semiconductor channel region, the gate stack including a crystalline semiconductor gate layer, a lattice mismatch between the crystalline semiconductor gate layer and the crystalline semiconductor channel region; and a crystalline gate dielectric A layer between the crystalline semiconductor gate layer and the crystalline semiconductor channel region, wherein the crystalline gate dielectric layer includes calcium fluoride, zinc sulfide, and/or gadolinium oxide. 如申請專利範圍第7項所述的場效電晶體,其中所述結晶半導體通道區域與所述閘極堆疊之間的界面不含非晶材料。 The field effect transistor as described in item 7 of the patent application range, wherein the interface between the crystalline semiconductor channel region and the gate stack is free of amorphous material. 如申請專利範圍第8項所述的場效電晶體,其中所述結晶閘極介電層包含直接於所述結晶半導體通道區域上的高介電係數結晶絕緣層。 The field effect transistor according to item 8 of the patent application range, wherein the crystalline gate dielectric layer includes a high dielectric constant crystalline insulating layer directly on the crystalline semiconductor channel region. 如申請專利範圍第9項所述的場效電晶體,其中所述結晶半導體閘極層直接於所述結晶閘極介電層上,且其中所述結晶半導體通道區域及所述結晶半導體閘極層包括異質磊晶應變半導體層。 The field effect transistor according to item 9 of the patent application range, wherein the crystalline semiconductor gate layer is directly on the crystalline gate dielectric layer, and wherein the crystalline semiconductor channel region and the crystalline semiconductor gate The layer includes a heteroepitaxial strained semiconductor layer. 如申請專利範圍第10項所述的場效電晶體,其中所述結晶半導體通道區域及所述結晶半導體閘極層包括不同IV族材料,且其中所述結晶半導體閘極層相對於所述結晶半導體通道區域為經重摻雜的。 The field-effect transistor of claim 10, wherein the crystalline semiconductor channel region and the crystalline semiconductor gate layer include different group IV materials, and wherein the crystalline semiconductor gate layer is relatively to the crystal The semiconductor channel region is heavily doped. 如申請專利範圍第11項所述的場效電晶體,其中所述結晶半導體通道區域及所述結晶半導體閘極層的其中一者包括壓縮應變矽鍺,且所述結晶半導體通道區域及所述結晶半導體閘極層的另一者包括拉伸應變矽。 The field effect transistor according to item 11 of the patent application range, wherein one of the crystalline semiconductor channel region and the crystalline semiconductor gate layer includes compressive strained silicon germanium, and the crystalline semiconductor channel region and the The other of the crystalline semiconductor gate layer includes tensile strained silicon. 如申請專利範圍第10項所述的場效電晶體,其中所述結晶半導體閘極層包括位於所述結晶半導體通道區域的相對表面上的各別結晶半導體閘極層,且其中所述結晶閘極介電層包括位於各別所述結晶半導體閘極層與所述結晶半導體通道區域的相對表面之間的各別結晶閘極介電層。 The field effect transistor of claim 10, wherein the crystalline semiconductor gate layer includes respective crystalline semiconductor gate layers on opposite surfaces of the crystalline semiconductor channel region, and wherein the crystalline gate The polar dielectric layer includes respective crystalline gate dielectric layers between the respective crystalline semiconductor gate layers and the opposite surfaces of the crystalline semiconductor channel region. 如申請專利範圍第13項所述的場效電晶體,其中包含所述閘極堆疊以及所述本體層的結構重複地堆疊以界定多個個別閘控的通道區域,以及其中所述結晶半導體通道區域及各別所述結晶半導體閘極層中的應變維持在整個所述結構。 The field effect transistor according to item 13 of the patent application scope, wherein the structure including the gate stack and the body layer is repeatedly stacked to define a plurality of individually gated channel regions, and wherein the crystalline semiconductor channel The strain in the region and each of the crystalline semiconductor gate layers is maintained throughout the structure. 如申請專利範圍第14項所述的場效電晶體,其中所述結構具有大於約30奈米但小於約100奈米的寬度。 A field effect transistor as described in item 14 of the patent application range, wherein the structure has a width greater than about 30 nanometers but less than about 100 nanometers. 如申請專利範圍第14項所述的場效電晶體,其中位於所述結晶半導體通道區域的相對表面上的各別所述結晶半導體閘極層包括主要閘極層,以及更包括:次要閘極層,位在所述結晶半導體通道區域的相對表面之間的所述結晶半導體通道區域的側壁上,其中所述次要閘極層包括金屬材料或經摻雜的多晶材料。 The field effect transistor according to item 14 of the patent application range, wherein each of the crystalline semiconductor gate layers located on opposite surfaces of the crystalline semiconductor channel region includes a main gate layer, and further includes: a secondary gate A polar layer is located on a side wall of the crystalline semiconductor channel region between opposite surfaces of the crystalline semiconductor channel region, wherein the secondary gate layer includes a metal material or a doped polycrystalline material. 如申請專利範圍第16項所述的場效電晶體,其中所述多個個別閘控的通道區域界定自基板突起的鰭,且其中所述次要閘極層在所述鰭的相對側壁上以及所述相對側壁之間的表面上延伸。 The field effect transistor according to item 16 of the patent application range, wherein the plurality of individually gated channel regions define a fin protruding from the substrate, and wherein the secondary gate layer is on opposite side walls of the fin And extending on the surface between the opposite side walls. 如申請專利範圍第16項所述的場效電晶體,更包括:非晶絕緣層,將所述結晶半導體通道區域的側壁與所述次要閘極層分離, 其中所述次要閘極層導電性地耦接至所述主要閘極層。 The field effect transistor as described in item 16 of the patent application scope further includes: an amorphous insulating layer that separates the side wall of the crystalline semiconductor channel region from the secondary gate layer, Wherein the secondary gate layer is conductively coupled to the primary gate layer. 如申請專利範圍第7項所述的場效電晶體,更包括:源極/汲極區域,位於的相對末端上且導電性地耦接至鄰近於其上的所述閘極堆疊的所述結晶半導體通道區域;以及非晶絕緣層,將所述結晶半導體閘極層的相對側壁與所述源極/汲極區域分離。 The field effect transistor as described in item 7 of the patent application scope further includes: a source/drain region located at opposite ends and electrically conductively coupled to the gate stack adjacent to the gate stack A crystalline semiconductor channel region; and an amorphous insulating layer separating the opposite sidewalls of the crystalline semiconductor gate layer from the source/drain regions.
TW104118904A 2014-06-11 2015-06-11 Crystalline multiple-nanosheet strained channel fets TWI685972B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462010585P 2014-06-11 2014-06-11
US62/010,585 2014-06-11
US14/729,652 US9570609B2 (en) 2013-11-01 2015-06-03 Crystalline multiple-nanosheet strained channel FETs and methods of fabricating the same
US14/729,652 2015-06-03

Publications (2)

Publication Number Publication Date
TW201607039A TW201607039A (en) 2016-02-16
TWI685972B true TWI685972B (en) 2020-02-21

Family

ID=54833856

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104118904A TWI685972B (en) 2014-06-11 2015-06-11 Crystalline multiple-nanosheet strained channel fets

Country Status (4)

Country Link
KR (1) KR102223971B1 (en)
CN (1) CN106463543B (en)
TW (1) TWI685972B (en)
WO (1) WO2015190852A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461114B2 (en) * 2014-12-05 2016-10-04 Samsung Electronics Co., Ltd. Semiconductor devices with structures for suppression of parasitic bipolar effect in stacked nanosheet FETs and methods of fabricating the same
CN106409907B (en) * 2015-08-03 2021-06-08 三星电子株式会社 Stack for semiconductor device and method of forming the same
KR102435521B1 (en) * 2016-02-29 2022-08-23 삼성전자주식회사 Semiconductor devices
US9978833B2 (en) * 2016-03-11 2018-05-22 Samsung Electronics Co., Ltd. Methods for varied strain on nano-scale field effect transistor devices
KR102294932B1 (en) 2016-04-25 2021-09-17 어플라이드 머티어리얼스, 인코포레이티드 Horizontal Gate All-Around Device Nanowire Air Gap Spacer Formation
US9882000B2 (en) * 2016-05-24 2018-01-30 Northrop Grumman Systems Corporation Wrap around gate field effect transistor (WAGFET)
US9905643B1 (en) 2016-08-26 2018-02-27 International Business Machines Corporation Vertically aligned nanowire channels with source/drain interconnects for nanosheet transistors
US9853114B1 (en) * 2016-10-24 2017-12-26 Samsung Electronics Co., Ltd. Field effect transistor with stacked nanowire-like channels and methods of manufacturing the same
US10008603B2 (en) 2016-11-18 2018-06-26 Taiwan Semiconductor Manufacturing Co., Ltd. Multi-gate device and method of fabrication thereof
EP3369702A1 (en) * 2017-03-03 2018-09-05 IMEC vzw Internal spacers for nanowire semiconductor devices
KR102400558B1 (en) * 2017-04-05 2022-05-20 삼성전자주식회사 semiconductor device
US9947804B1 (en) * 2017-07-24 2018-04-17 Globalfoundries Inc. Methods of forming nanosheet transistor with dielectric isolation of source-drain regions and related structure
US10651291B2 (en) * 2017-08-18 2020-05-12 Globalfoundries Inc. Inner spacer formation in a nanosheet field-effect transistor
KR102385567B1 (en) * 2017-08-29 2022-04-12 삼성전자주식회사 Semiconductor devices and method of manufacturing semiconductor devices
CN207458949U (en) * 2017-09-26 2018-06-05 京东方科技集团股份有限公司 Thin film transistor (TFT), array substrate and display device
US10566330B2 (en) * 2017-12-11 2020-02-18 Samsung Electronics Co., Ltd. Dielectric separation of partial GAA FETs
US10304833B1 (en) * 2018-02-19 2019-05-28 Globalfoundries Inc. Method of forming complementary nano-sheet/wire transistor devices with same depth contacts
US11101359B2 (en) * 2018-11-28 2021-08-24 Taiwan Semiconductor Manufacturing Company, Ltd. Gate-all-around (GAA) method and devices
CN111697072B (en) * 2019-03-13 2023-12-12 联华电子股份有限公司 Semiconductor structure and manufacturing process thereof
US11348803B2 (en) * 2019-05-20 2022-05-31 Applied Materials, Inc. Formation of bottom isolation
KR102183131B1 (en) * 2019-06-24 2020-11-26 포항공과대학교 산학협력단 Field-effect transistor with size-reduced source/drain epitaxy and fabrication method thereof
CN112582265B (en) * 2019-09-27 2023-06-02 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN112885901B (en) * 2021-04-29 2021-07-30 中芯集成电路制造(绍兴)有限公司 High electron mobility transistor and method of forming the same
WO2022241630A1 (en) * 2021-05-18 2022-11-24 复旦大学 Gate-all-around device and source/drain preparation method therefor, device preparation method and electronic device
CN113284806B (en) * 2021-05-18 2022-04-05 复旦大学 Ring gate device, source-drain preparation method thereof, device preparation method and electronic equipment
US12087770B2 (en) * 2021-08-05 2024-09-10 International Business Machines Corporation Complementary field effect transistor devices
WO2023035269A1 (en) * 2021-09-13 2023-03-16 上海集成电路制造创新中心有限公司 Gate-all-around device and source/drain preparation method therefor, device preparation method and electronic device
US11837604B2 (en) 2021-09-22 2023-12-05 International Business Machine Corporation Forming stacked nanosheet semiconductor devices with optimal crystalline orientations around devices
US20230086888A1 (en) * 2021-09-23 2023-03-23 International Business Machines Corporation Dual strained semiconductor substrate and patterning
US11705504B2 (en) 2021-12-02 2023-07-18 International Business Machines Corporation Stacked nanosheet transistor with defect free channel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060138548A1 (en) * 2004-12-07 2006-06-29 Thunderbird Technologies, Inc. Strained silicon, gate engineered Fermi-FETs
TW200629545A (en) * 2004-09-25 2006-08-16 Samsung Electronics Co Ltd Field effect transistors having a strained silicon channel and methods of fabricating same
US20080112784A1 (en) * 2006-11-13 2008-05-15 Rogers Theodore W Load port door with simplified FOUP door sensing and retaining mechanism
TW200913149A (en) * 2007-09-13 2009-03-16 United Microelectronics Corp Fabricating method of semiconductor device
US20110215028A1 (en) * 2010-03-08 2011-09-08 Tdk Corporation Substrate storage pod and lid opening/closing system for the same
US20120292665A1 (en) * 2011-05-16 2012-11-22 Fabio Alessio Marino High performance multigate transistor
TW201342602A (en) * 2011-12-09 2013-10-16 Intel Corp Strain compensation in transistors

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1555688B1 (en) * 2004-01-17 2009-11-11 Samsung Electronics Co., Ltd. Method of manufacturing a multi-sided-channel finfet transistor
US7385247B2 (en) * 2004-01-17 2008-06-10 Samsung Electronics Co., Ltd. At least penta-sided-channel type of FinFET transistor
US7388257B2 (en) * 2004-09-01 2008-06-17 International Business Machines Corporation Multi-gate device with high k dielectric for channel top surface
KR100674914B1 (en) * 2004-09-25 2007-01-26 삼성전자주식회사 MOS transistor having strained channel layer and methods of manufacturing thereof
KR100594327B1 (en) * 2005-03-24 2006-06-30 삼성전자주식회사 Semiconductor device comprising nanowire having rounded section and method for manufacturing the same
US8779495B2 (en) * 2007-04-19 2014-07-15 Qimonda Ag Stacked SONOS memory
US8889494B2 (en) * 2010-12-29 2014-11-18 Globalfoundries Singapore Pte. Ltd. Finfet
US8604518B2 (en) * 2011-11-30 2013-12-10 Taiwan Semiconductor Manufacturing Company, Ltd. Split-channel transistor and methods for forming the same
US9735239B2 (en) * 2012-04-11 2017-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device channel system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200629545A (en) * 2004-09-25 2006-08-16 Samsung Electronics Co Ltd Field effect transistors having a strained silicon channel and methods of fabricating same
US20060138548A1 (en) * 2004-12-07 2006-06-29 Thunderbird Technologies, Inc. Strained silicon, gate engineered Fermi-FETs
US20080112784A1 (en) * 2006-11-13 2008-05-15 Rogers Theodore W Load port door with simplified FOUP door sensing and retaining mechanism
TW200913149A (en) * 2007-09-13 2009-03-16 United Microelectronics Corp Fabricating method of semiconductor device
US20110215028A1 (en) * 2010-03-08 2011-09-08 Tdk Corporation Substrate storage pod and lid opening/closing system for the same
US20120292665A1 (en) * 2011-05-16 2012-11-22 Fabio Alessio Marino High performance multigate transistor
TW201342602A (en) * 2011-12-09 2013-10-16 Intel Corp Strain compensation in transistors

Also Published As

Publication number Publication date
TW201607039A (en) 2016-02-16
KR20150142632A (en) 2015-12-22
CN106463543A (en) 2017-02-22
CN106463543B (en) 2020-04-07
WO2015190852A1 (en) 2015-12-17
KR102223971B1 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
TWI685972B (en) Crystalline multiple-nanosheet strained channel fets
US9570609B2 (en) Crystalline multiple-nanosheet strained channel FETs and methods of fabricating the same
TWI695507B (en) Crystalline multiple-nanosheet iii-v channel fets and methods of fabricating the same
JP6549208B2 (en) Nonplanar germanium quantum well devices
US9647098B2 (en) Thermionically-overdriven tunnel FETs and methods of fabricating the same
US10418488B2 (en) Method to form strained channel in thin box SOI structures by elastic strain relaxation of the substrate
US6849884B2 (en) Strained Fin FETs structure and method
EP3127862A1 (en) Gate-all-around nanowire device and method for manufacturing such a device
US9853026B2 (en) FinFET device and fabrication method thereof
US9312387B2 (en) Methods of forming FinFET devices with alternative channel materials
US9905421B2 (en) Improving channel strain and controlling lateral epitaxial growth of the source and drain in FinFET devices
TW201709509A (en) Multi-layer fin field effect transistor devices
US9536795B2 (en) Multiple threshold voltage trigate devices using 3D condensation
US20230142609A1 (en) Integrated circuit devices including stacked transistors and methods of forming the same