TWI685811B - Risk assessment method - Google Patents

Risk assessment method Download PDF

Info

Publication number
TWI685811B
TWI685811B TW106134223A TW106134223A TWI685811B TW I685811 B TWI685811 B TW I685811B TW 106134223 A TW106134223 A TW 106134223A TW 106134223 A TW106134223 A TW 106134223A TW I685811 B TWI685811 B TW I685811B
Authority
TW
Taiwan
Prior art keywords
factor
attribute
disaster
score
risk
Prior art date
Application number
TW106134223A
Other languages
Chinese (zh)
Other versions
TW201915905A (en
Inventor
何英蘭
葉日進
蔡世賢
詹筱蕙
周敬翔
王順民
Original Assignee
新光產物保險股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新光產物保險股份有限公司 filed Critical 新光產物保險股份有限公司
Priority to TW106134223A priority Critical patent/TWI685811B/en
Publication of TW201915905A publication Critical patent/TW201915905A/en
Application granted granted Critical
Publication of TWI685811B publication Critical patent/TWI685811B/en

Links

Images

Abstract

一種風險評估方法,藉由一經由一通訊網路與一使用端連接的伺服端來實施,並包含以下步驟:該伺服端在接收到一來自該使用端且相關於一目標標的物的目標標的物資訊後,獲得一對應於該目標標的物資料的目標風險評估資料;對於每一致災屬性,該伺服端根據該致災屬性所對應的一風險級距評分表,將該目標風險評估資料中的每一風險因子之風險值給予一級距評分,獲得一包含該致災屬性的每一風險因子之級距評分的評分結果;對於每一致災屬性,該伺服端將該致災屬性的評分結果導入該致災屬性各自對應的一危害度分級換算規則,獲得一目標危害等級。A risk assessment method is implemented by a server connected to a user terminal through a communication network, and includes the following steps: the server terminal receives a target object from the user terminal and is related to a target object After the information is obtained, a target risk assessment data corresponding to the target object data is obtained; for each consistent disaster attribute, the server end uses the risk rating score table corresponding to the disaster-causing attribute to The risk value of each risk factor is given a first-degree score to obtain a score result of the grade score of each risk factor containing the disaster-causing attribute; for each consistent disaster attribute, the server end imports the score result of the disaster-causing attribute A hazard degree classification conversion rule corresponding to each of the disaster-causing attributes obtains a target hazard level.

Description

風險評估方法Risk assessment method

本發明是有關於一種獲得多種天災風險的方法,特別是指一種風險評估方法。The present invention relates to a method for obtaining multiple natural disaster risks, in particular to a risk assessment method.

由於台灣處於地震帶,加上近年對於土壤液化議題探討,使得消費者對於建築物的安全性及「建築物以外之整體」的保障有越來越重視的趨勢。故保險業者也爭相推行各種相關於標的物的保險類型,企圖將人類生活重要的居住元素,納入保險商品的範疇中。Because Taiwan is in the seismic zone, and the recent discussion on soil liquefaction issues, consumers are paying more and more attention to the safety of buildings and the protection of "outside buildings". Therefore, insurance companies are also eager to promote various types of insurance related to the subject matter, trying to include the important residential elements of human life into the category of insurance commodities.

然而,不論是消費者在規劃標的物之購買前,還是保險業者在規劃建築物整體之核保前,消費者或保險業務服務人員會先對待評估之標的物(亦即,所欲購買或投保之建築物整體)的周遭環境進行風險評估。現有的風險評估方式往往須安排查勘工程師至標的物現場進行勘查並製作出標的物的風險評估報告。然而,此種評估方式須耗費大量的時間及人力資源,實屬不便,故有必要提出一解決方案。However, regardless of whether the consumer is planning the purchase of the subject matter, or the insurance company is planning the underwriting of the entire building, the consumer or insurance service personnel will treat the subject matter of the assessment (ie, the purchase or insurance Risk assessment of the surrounding environment of the building. Existing risk assessment methods often require an investigation engineer to go to the site of the object to conduct an investigation and produce a risk assessment report for the object. However, this type of assessment requires a lot of time and human resources, which is inconvenient, so it is necessary to propose a solution.

因此,本發明的目的,即在提供一種自動地獲得相關於一標的物之多種不同災害的危害等級,以有效節省時間及人力的風險評估方法。Therefore, the object of the present invention is to provide a risk assessment method that automatically obtains the hazard levels of a variety of different disasters related to a target object to effectively save time and manpower.

於是,本發明風險評估方法,藉由一伺服端來實施,該伺服端經由該通訊網路與一使用端連接,該伺服端儲存多筆分別對應於多個標的物的風險評估資料,及多筆分別對應於多種不同致災屬性的致災屬性資訊,每一風險評估資料包含每一致災屬性各自對應之多個風險因子的多個風險值,每一致災屬性資訊包含一風險級距評分表,及一危害度分級換算規則,該風險評估方法包含一步驟(A)、一步驟(B),以及一步驟(C)。Therefore, the risk assessment method of the present invention is implemented by a server, the server is connected to a user end through the communication network, and the server stores multiple pieces of risk assessment data corresponding to a plurality of target objects, respectively Corresponding to various disaster-causing hazard information, each risk assessment data includes multiple risk values of multiple risk factors corresponding to each consistent disaster attribute, and each consistent disaster attribute information includes a risk grade score table, And a hazard degree classification conversion rule, the risk assessment method includes a step (A), a step (B), and a step (C).

該步驟(A)是藉由該伺服端在接收到一來自該使用端且相關於一目標標的物的目標標的物資訊後,自該等風險評估資料中獲得一對應於該目標標的物資料的目標風險評估資料。The step (A) is that the server obtains a target object data corresponding to the target object from the risk assessment data after receiving the target object information from the user terminal and related to a target object Target risk assessment data.

該步驟(B)是對於每一致災屬性,藉由該伺服端,根據該致災屬性所對應的風險級距評分表,將該目標風險評估資料中的該致災屬性的每一風險因子之風險值給予一級距評分,以獲得一包含該致災屬性的每一風險因子之級距評分的評分結果。The step (B) is for each consistent disaster attribute, through the server, according to the risk level score table corresponding to the disaster attribute, the risk factor of each hazard factor in the target risk assessment data The risk value is given a first grade score to obtain a score result of the grade score of each risk factor containing the hazard attribute.

該步驟(C)是對於每一致災屬性,藉由該伺服端,將該致災屬性的評分結果,導入該致災屬性各自對應的該危害度分級換算規則,以獲得一目標危害等級。In this step (C), for each consistent disaster attribute, through the server, the score result of the disaster attribute is imported into the hazard degree classification conversion rule corresponding to the disaster attribute to obtain a target hazard level.

本發明之功效在於:藉由該伺服端根據所儲存的該等風險評估資料及該等致災屬性資訊,自動地對該目標標的物進行風險評估以獲得該目標標的物對應於各種致災屬性的目標危害等級。The effect of the present invention is that: the server automatically performs a risk assessment on the target object according to the stored risk assessment data and the hazard attribute information to obtain that the target object corresponds to various hazard attributes Target hazard level.

參閱圖1,一系統100用於實施本發明風險評估方法的一實施例,該系統100包含一伺服端1,以及一經由一通訊網路101與該伺服端1連接的使用端2。Referring to FIG. 1, a system 100 is used to implement an embodiment of the risk assessment method of the present invention. The system 100 includes a server 1 and a user terminal 2 connected to the server 1 via a communication network 101.

該伺服端1包含一連接該通訊網路101的伺服端通訊模組11、一伺服端儲存模組12,以及一電連接該伺服端通訊模組11與該伺服端儲存模組12的伺服端處理模組13。The server 1 includes a server communication module 11 connected to the communication network 101, a server storage module 12, and a server side process electrically connecting the server communication module 11 and the server storage module 12 Module 13.

該伺服端1的該伺服端儲存模組12儲存多筆分別對應於多個標的物的風險評估資料,及多筆分別對應於多種不同致災屬性的致災屬性資訊。The server-side storage module 12 of the server-side 1 stores a plurality of pieces of risk assessment data respectively corresponding to a plurality of target objects, and a plurality of pieces of disaster-causing attribute information respectively corresponding to a plurality of different disaster-causing attributes.

每一風險評估資料包含每一致災屬性各自對應之多個風險因子的多個風險值。每一風險因子可被分類為一可能性因子及一規模因子之其中一者。在該實施例中,該等致災屬性包含一活動斷層、一地震、一土石流、一山崩、一淹水,以及一土壤液化,但不以此為限。Each risk assessment data includes multiple risk values of multiple risk factors corresponding to each consistent disaster attribute. Each risk factor can be classified as one of a likelihood factor and a scale factor. In this embodiment, the disaster-causing attributes include an active fault, an earthquake, a landslide, a landslide, a flood, and a soil liquefaction, but not limited to this.

參閱下表1,該風險評估資料分別對應於例如一地址A、一地址B,以及一地址C等標的物地址,對於屬於該活動斷層的致災屬性,該風險評估資料包含一發生規模6.5地震之機率、一與斷層線之距離,以及一斷層上下盤倍率等三種風險因子,其中,該發生規模6.5地震之機率被分類為該可能性因子,而該與斷層線之距離與該斷層上下盤倍率被分類為該規模因子,此外,每一標的物地址(例:地址A、地址B,以及地址C)對應的每一風險因子(例:發生規模6.5地震之機率、與斷層線之距離,及斷層上下盤倍率)的風險值示例於下表1中,但不以此為限。值得特別說明的是,本實施例僅示例出對應於該地址A、該地址B,以及該地址C此三個地址的風險評估資料,然而,該等風險評估資料還包含更多標的物地址,而不限於本實施例所示例的三個標的物地址,此外,在該實施例中,該風險評估資料包含該等標的物地址,而在其他實施例中,該風險評估資料還可以包含相關於該等標的物地址之標的物的名稱或關鍵字,使得操作該使用端2的使用者更直覺地搜尋到所需的標的物資訊,但不以此為限。 表1

Figure 106134223-A0304-0001
Referring to Table 1 below, the risk assessment data correspond to target object addresses such as an address A, an address B, and an address C, respectively. For disaster-causing attributes belonging to the active fault, the risk assessment data includes an earthquake with a magnitude of 6.5 The probability, the distance from the fault line, and the magnification of a fault's upper and lower walls are three risk factors. Among them, the probability of an earthquake with a magnitude of 6.5 is classified as the probability factor, and the distance from the fault line is above and below the fault. The magnification is classified as the scale factor. In addition, each risk factor (for example: the probability of occurrence of a magnitude 6.5 earthquake and the distance from the fault line) corresponding to each target factor (for example: address A, address B, and address C) And the upper and lower magnifications of the fault) are exemplified in Table 1 below, but not limited to this. It is worth noting that this embodiment only exemplifies the risk assessment data corresponding to the three addresses of the address A, the address B, and the address C. However, the risk assessment data also includes more subject addresses, It is not limited to the three target object addresses exemplified in this embodiment. In addition, in this embodiment, the risk assessment data includes the target object addresses, while in other embodiments, the risk assessment data may also include The name or keyword of the target object of the target object address makes the user operating the user terminal 2 more intuitively search for the required target object information, but not limited to this. Table 1
Figure 106134223-A0304-0001

參閱下表2,對於屬於該地震的致災屬性,該風險評估資料包含一尖峰地表加速度,以及一地表下之剪力波速等二種風險因子,其中,該尖峰地表加速度被分類為該可能性因子,而該地表下之剪力波速被分類為該規模因子,此外,每一標的物地址(例:地址A、地址B,以及地址C)對應每一風險因子(例:尖峰地表加速度,及地表下之剪力波速)的風險值示例於下表2中,但不以此為限。 表2

Figure 106134223-A0304-0002
Refer to Table 2 below. For the hazard attributes belonging to the earthquake, the risk assessment data includes two types of risk factors including a peak surface acceleration and a shear wave velocity below the surface, where the peak surface acceleration is classified as the possibility Factor, and the shear wave velocity under the surface is classified as the scale factor. In addition, each target object address (for example: address A, address B, and address C) corresponds to each risk factor (for example: peak surface acceleration, and The risk value of shear wave velocity below the surface is exemplified in Table 2 below, but not limited to this. Table 2
Figure 106134223-A0304-0002

參閱下表3,對於屬於該土石流的致災屬性,該風險評估資料還包含一土石流潛勢溪流風險潛勢等級、一土石流警戒基準值、一土石流潛勢溪流距離,以及一土石流潛勢溪流影響範圍距離等四種風險因子,其中,該土石流潛勢溪流風險潛勢等級與該土石流警戒基準值被分類為該可能性因子,而該土石流潛勢溪流距離與該土石流潛勢溪流影響範圍距離被分類為該規模因子,此外,每一標的物地址(例:地址A、地址B,以及地址C)對應每一風險因子(例:土石流潛勢溪流風險潛勢等級、土石流警戒基準值、土石流潛勢溪流距離,及土石流潛勢溪流影響範圍距離)的風險值示例於下表3中,但不以此為限。 表3

Figure 106134223-A0304-0003
Refer to Table 3 below. For the hazard attributes belonging to the soil and rock flow, the risk assessment data also includes a soil and rock flow potential stream risk potential level, a soil and rock flow alert reference value, a soil and rock flow potential stream distance, and a soil and rock flow potential stream impact There are four risk factors, such as range distance, among which the risk potential level of the earth-rock flow potential stream and the warning reference value of the earth-rock flow are classified as the possibility factors, and the distance of the earth-rock flow potential stream distance and the distance range of the earth-rock flow potential stream influence range are It is classified as the scale factor. In addition, each target object address (for example: address A, address B, and address C) corresponds to each risk factor (for example: earth-rock flow potential creek risk potential level, earth-rock flow warning reference value, earth-rock flow potential The risk value of the distance of potential streams and the distance of the influence range of potential streams of earth and rocks are shown in Table 3 below, but not limited to this. table 3
Figure 106134223-A0304-0003

參閱下表4,對於屬於該山崩的致災屬性,該風險評估資料還包含一山崩潛勢、一重現期最大二十四小時累積雨量、該尖峰地表加速度、一山崩類型、一山崩面積,以及一與山崩距離等六種風險因子,其中,該山崩潛勢、該重現期最大二十四小時累積雨量,以及該尖峰地表加速度被分類為該可能性因子,而該山崩類型、該山崩面積,以及該與山崩距離被分類為該規模因子,此外,每一標的物地址(例:地址A、地址B,以及地址C)對應每一風險因子(例:山崩潛勢、重現期最大二十四小時累積雨量、地表尖峰加速度、山崩類型、山崩面積,及與山崩距離)的風險值示例於下表4中,但不以此為限。 表4

Figure 106134223-A0304-0004
Refer to Table 4 below. For the hazard attributes belonging to the landslide, the risk assessment data also includes a landslide potential, a maximum 24-hour cumulative rainfall during a recurrence period, the peak surface acceleration, a landslide type, and a landslide area, And six risk factors such as a distance from the landslide, among which the landslide potential, the maximum cumulative rainfall of 24 hours in the recurrence period, and the peak surface acceleration are classified as the probability factors, and the landslide type, the landslide The area and the distance from the landslide are classified as the scale factor. In addition, each target object address (for example: address A, address B, and address C) corresponds to each risk factor (for example: landslide potential, maximum recurrence period The risk values of cumulative rainfall, surface peak acceleration, landslide type, landslide area, and distance from landslides for 24 hours are shown in Table 4 below, but not limited to this. Table 4
Figure 106134223-A0304-0004

參閱下表5,對於屬於該淹水的致災屬性,該風險評估資料還包含一警戒雨量值,以及一淹水深度等二種風險因子,其中,該警戒雨量值被分類為該可能性因子,而該淹水深度被分類為該規模因子,此外,每一標的物地址(例:地址A、地址B,以及地址C)對應每一風險因子(例:警戒雨量值,及淹水深度)的風險值示例於下表5中,但不以此為限。 表5

Figure 106134223-A0304-0005
Refer to Table 5 below. For the disaster-causing attributes belonging to the flood, the risk assessment data also includes a warning rain value and a flooding depth and other two risk factors, where the warning rain value is classified as the probability factor , And the flooding depth is classified as the scale factor, in addition, each target object address (for example: address A, address B, and address C) corresponds to each risk factor (for example: warning rainfall amount, and flooding depth) Examples of risk values are shown in Table 5 below, but not limited to this. table 5
Figure 106134223-A0304-0005

參閱下表6,對於屬於該土壤液化的致災屬性,該風險評估資料還包含該地表尖峰加速度、一地下水位深度、一高程,以及一地層等四種風險因子,其中,該地表尖峰加速度與該地下水位深度被分類為該可能性因子,而該高程與該地層被分類為該規模因子,此外,每一標的物地址(例:地址A、地址B,以及地址C)對應每一風險因子(例:地表尖峰加速度、地下水位深度、高程,及地層)的風險值示例於下表6中,但不以此為限。 表6

Figure 106134223-A0304-0006
Refer to Table 6 below. For the hazard attributes that belong to the soil liquefaction, the risk assessment data also includes the surface peak acceleration, a groundwater level depth, an elevation, and a stratum. Four risk factors, among which the surface peak acceleration and The depth of the groundwater table is classified as the probability factor, and the elevation and the stratum are classified as the scale factor. In addition, each target object address (eg, address A, address B, and address C) corresponds to each risk factor (Example: surface peak acceleration, groundwater depth, elevation, and stratum) The risk values are shown in Table 6 below, but not limited to this. Table 6
Figure 106134223-A0304-0006

在該實施例中,該等致災屬性資訊分別對應該等致災屬性,而每一致災屬性資訊包含一風險級距評分表,及一危害度分級換算規則。In this embodiment, the disaster-causing attribute information respectively corresponds to the disaster-causing attribute information, and each consistent disaster-causing attribute information includes a risk level score table and a hazard degree classification conversion rule.

該等致災屬性資訊包含一活動斷層資訊、一地震資訊、一土石流資訊、一山崩資訊、一淹水資訊,以及一土壤液化資訊,但不以此為限。The disaster-causing attribute information includes an active fault information, an earthquake information, a soil flow information, a landslide information, a flooding information, and a soil liquefaction information, but not limited to this.

每一致災屬性對應的該風險級距評分表包括所對應之致災屬性對應的該等風險因子、每一風險因子各自所對應的多個分級級距,以及每一分級級距所對應的級距評分。The risk scale score table corresponding to each consistent disaster attribute includes the risk factors corresponding to the corresponding disaster-causing attributes, the multiple hierarchical grades corresponding to each risk factor, and the grade corresponding to each hierarchical grade Distance ratings.

每一致災屬性對應的該危害度分級換算規則包括一可能性因子公式、一規模因子公式,以及一換算矩陣,該換算矩陣具有多個可能性因子級距、多個規模因子級距,及每一可能性因子級距相對於每一規模因子級距各自所對應的一危害等級。The conversion rule of the hazard degree classification corresponding to each consistent disaster attribute includes a probability factor formula, a scale factor formula, and a conversion matrix, the conversion matrix having multiple probability factor steps, multiple scale factor steps, and each A probability factor rank is relative to a hazard level corresponding to each scale factor rank.

參閱下表7,對於屬於該活動斷層的致災屬性所對應的致災屬性資訊,該風險級距評分表包含該發生規模6.5地震之機率 F1 、該與斷層線之距離 M1 ,以及該斷層上下盤倍率 M2 等三種風險因子,其中,該發生規模6.5地震之機率 F1 被分類為該可能性因子 M1 ,而該與斷層線之距離與該斷層上下盤倍率 M2 被分類為該規模因子,此外,每一風險因子各自所對應的該等分級級距,以及每一分級級距所對應的級距評分示例於下表7中,但不以此為限。 表7

Figure 106134223-A0304-0007
Referring to Table 7 below, for the hazard attribute information corresponding to the hazard attributes belonging to the active fault, the risk level distance score table includes the probability F 1 of the occurrence magnitude 6.5 earthquake, the distance from the fault line M 1 , and the Three risk factors, including the upper and lower fault magnifications M 2 , where the probability of occurrence of an earthquake with a magnitude of 6.5 F 1 is classified as the probability factor M 1 , and the distance from the fault line and the upper and lower fault magnifications M 2 are classified as The scale factor, in addition, the respective hierarchical grades corresponding to each risk factor, and the grade grade score corresponding to each hierarchical grade are shown in Table 7 below, but not limited thereto. Table 7
Figure 106134223-A0304-0007

對於屬於該活動斷層的致災屬性所對應的致災屬性資訊,該活動斷層對應的可能性因子公式為 S1= F1 、該活動斷層對應的規模因子公式為 S2= M1 ×M2 ,而該活動斷層對應的換算矩陣如下表8,此外,每一可能性因子級距相對於每一規模因子級距各自所對應的一危害等級示例於下表8中,但不以此為限。 表8

Figure 106134223-A0304-0008
For the hazard attribute information corresponding to the hazard attributes belonging to the active fault, the probability factor formula corresponding to the active fault is S 1 = F 1 , and the scale factor formula corresponding to the active fault is S 2 = M 1 ×M 2 The conversion matrix corresponding to this active fault is shown in Table 8 below. In addition, each hazard factor rank relative to each scale factor rank corresponds to an example of a hazard level in Table 8 below, but not limited to this . Table 8
Figure 106134223-A0304-0008

參閱下表9,對於屬於該地震的致災屬性所對應的致災屬性資訊,該風險級距評分表包含該尖峰地表加速度 F2 ,以及該地表下之剪力波速 M3 等二種風險因子,其中,該尖峰地表加速度 F2 被分類為該可能性因子,而該地表下之剪力波速 M3 被分類為該規模因子,此外,每一風險因子各自所對應的該等分級級距,以及每一分級級距所對應的級距評分示例於下表9中,但不以此為限。 表9

Figure 106134223-A0304-0009
Refer to Table 9 below. For the hazard attribute information corresponding to the hazard attributes of the earthquake, the risk scale score table includes the peak surface acceleration F 2 and the shear wave velocity M 3 and other two risk factors under the surface , Where the peak surface acceleration F 2 is classified as the probability factor, and the shear wave velocity M 3 below the surface is classified as the scale factor, in addition, each risk factor corresponds to each of these grading levels, An example of the grade score corresponding to each grade grade is shown in Table 9 below, but not limited to this. Table 9
Figure 106134223-A0304-0009

對於屬於該地震的致災屬性所對應的致災屬性資訊,該地震對應的可能性因子公式為 S3= F2 、該地震對應的規模因子公式為 S4= M3 ,而該地震對應的換算矩陣如下表10,此外,每一可能性因子級距相對於每一規模因子級距各自所對應的一危害等級示例於下表10中,但不以此為限。 表10

Figure 106134223-A0304-0010
For the hazard attribute information corresponding to the hazard attributes of the earthquake, the probability factor formula corresponding to the earthquake is S 3 = F 2 , the scale factor formula corresponding to the earthquake is S 4 = M 3 , and the earthquake corresponds to The conversion matrix is shown in Table 10 below. In addition, each hazard factor rank relative to each scale factor rank corresponds to an example of a hazard level in Table 10 below, but not limited to this. Table 10
Figure 106134223-A0304-0010

參閱下表11,對於屬於該土石流的致災屬性所對應的致災屬性資訊,該風險級距評分表包含該土石流潛勢溪流風險潛勢等級 F3 、該土石流警戒基準值 F4 、該土石流潛勢溪流距離 M4 ,以及該土石流潛勢溪流影響範圍距離 M5 等四種風險因子,其中,該土石流潛勢溪流風險潛勢等級 F3 與該土石流警戒基準值 F4 被分類為該可能性因子,而該土石流潛勢溪流距離 M4 與該土石流潛勢溪流影響範圍距離 M5 被分類為該規模因子,此外,每一風險因子各自所對應的該等分級級距,以及每一分級級距所對應的級距評分示例於下表11中,但不以此為限。 表11

Figure 106134223-A0304-0011
Refer to Table 11 below. For the hazard attribute information corresponding to the hazard attributes of the earth and rock flow, the risk rating scale includes the potential risk level of the earth and rock flow stream F 3 , the earth and rock flow warning reference value F 4 , and the earth and rock flow Potential stream distance M 4 and the potential range of the earth and rock flow potential stream distance M 5 and other four risk factors, of which the earth and rock flow potential stream risk potential level F 3 and the earth and rock flow warning reference value F 4 are classified as possible Factors, and the distance M 4 of the potential flow of the earth and rock flow and the distance M 5 of the influence range of the potential flow of the soil and rock flow are classified as the scale factor. In addition, each of these risk factors corresponds to each of these grades and each grade An example of the grade score corresponding to the grade distance is shown in Table 11 below, but not limited to this. Table 11
Figure 106134223-A0304-0011

對於屬於該土石流的致災屬性所對應的致災屬性資訊,該土石流對應的可能性因子公式為 S5= F3 +F4 、該土石流對應的規模因子公式為 S6= MAX{ M4 , M5 },亦即取 M4 和 M5 兩者中級距評分較高者,而該土石流對應的換算矩陣如下表12,此外,每一可能性因子級距相對於每一規模因子級距各自所對應的一危害等級示例於下表12中,但不以此為限。 表12

Figure 106134223-A0304-0012
For the hazard attribute information corresponding to the hazard attribute of the earth and rock flow, the probability factor formula corresponding to the earth and rock flow is S 5 = F 3 + F 4 , and the scale factor formula corresponding to the earth and rock flow is S 6 = MAX{ M 4 , M 5 }, that is, the one with the higher intermediate distance score for both M 4 and M 5 , and the conversion matrix corresponding to the soil and rock flow is shown in Table 12 below. In addition, each possibility factor grade distance is relative to each scale factor grade distance. An example of a corresponding hazard level is shown in Table 12 below, but not limited to this. Table 12
Figure 106134223-A0304-0012

參閱下表13,對於屬於該山崩的致災屬性所對應的致災屬性資訊,該風險級距評分表包含該山崩潛勢 F5 、該重現期最大二十四小時累積雨量 F6 、該尖峰地表加速度 F2 、該山崩類型 M6 、該山崩面積 M7 ,以及該與山崩距離 M8 等六種風險因子,其中,該山崩潛勢 F5 、該重現期最大二十四小時累積雨量 F6 ,以及該尖峰地表加速度 F2 被分類為該可能性因子,而該山崩類型 M6 、該山崩面積 M7 ,以及該與山崩距離 M8 被分類為該規模因子,此外,每一風險因子各自所對應的該等分級級距,以及每一分級級距所對應的級距評分示例於下表13中,但不以此為限。 表13

Figure 106134223-A0304-0013
Refer to Table 13 below. For the hazard attribute information corresponding to the hazard attributes of the landslide, the risk rating scale includes the landslide potential F 5 and the maximum 24-hour cumulative rainfall F 6 of the recurrence period. Six types of risk factors including peak surface acceleration F 2 , the landslide type M 6 , the landslide area M 7 , and the distance from the landslide M 8 , among which the landslide potential F 5 and the maximum recurrence period are 24 hours. The rainfall F 6 and the peak surface acceleration F 2 are classified as the probability factor, and the landslide type M 6 , the landslide area M 7 , and the distance from the landslide M 8 are classified as the scale factor. In addition, each The respective hierarchical grades corresponding to risk factors and the grade scores corresponding to each grade are shown in Table 13 below, but not limited thereto. Table 13
Figure 106134223-A0304-0013

對於屬於該山崩的致災屬性所對應的致災屬性資訊,該山崩對應的可能性因子公式為 S7= MAX{F5 +F6 , F5 +F2 },亦即取 (F5 +F6 ) 和 (F5 +F2 ) 兩者中級距評分較高者,而該山崩對應的規模因子公式為 S8= M6 ×(M7 +M8 ),而該山崩對應的換算矩陣如下表14,此外,每一可能性因子級距相對於每一規模因子級距各自所對應的一危害等級示例於下表14中,但不以此為限。 表14

Figure 106134223-A0304-0014
For the hazard attribute information corresponding to the disaster attribute of the landslide, the probability factor formula corresponding to the landslide is S 7 = MAX{F 5 +F 6 , F 5 +F 2 }, that is, (F 5 +F 6 ) And (F 5 + F 2 ) who have higher intermediate distance scores, and the scale factor formula for the landslide is S 8 = M 6 ×(M 7 + M 8 ), and the conversion matrix corresponding to the landslide is shown in Table 14 below. For each possibility factor step distance relative to each scale factor step distance, a corresponding hazard level example is shown in Table 14 below, but not limited to this. Table 14
Figure 106134223-A0304-0014

參閱下表15,對於屬於該淹水的致災屬性所對應的致災屬性資訊,該風險級距評分表包含該警戒雨量值 F7 ,以及該淹水深度 M9 等二種風險因子,其中,該警戒雨量值 F7 被分類為該可能性因子,而該淹水深度 M9 被分類為該規模因子,此外,每一風險因子各自所對應的該等分級級距,以及每一分級級距所對應的級距評分示例於下表15中,但不以此為限。 表15

Figure 106134223-A0304-0015
Referring to Table 15 below, for the hazard attribute information corresponding to the flood hazard attributes, the risk scale score table includes the warning rain value F 7 and the flood depth M 9 and other two risk factors, of which , The warning rainfall value F 7 is classified as the probability factor, and the flooding depth M 9 is classified as the scale factor, in addition, each risk factor corresponds to each of these grades and each grade Examples of grade distance scores corresponding to distances are shown in Table 15 below, but not limited to this. Table 15
Figure 106134223-A0304-0015

對於屬於該淹水的致災屬性所對應的致災屬性資訊,該淹水對應的可能性因子公式為 S9= F7 、該淹水對應的規模因子公式為 S10= M9 ,而該淹水對應的換算矩陣如下表16,此外,每一可能性因子級距相對於每一規模因子級距各自所對應的一危害等級示例於下表16中,但不以此為限。 表16

Figure 106134223-A0304-0016
For the hazard attribute information corresponding to the flooding hazard attributes, the probability factor formula corresponding to the flooding is S 9 = F 7 , and the scale factor formula corresponding to the flooding is S 10 = M 9 , and the The conversion matrix corresponding to flooding is shown in Table 16 below. In addition, each hazard factor rank relative to each scale factor rank corresponds to an example of a hazard level in Table 16 below, but not limited to this. Table 16
Figure 106134223-A0304-0016

參閱下表17,對於屬於該土壤液化的致災屬性所對應的致災屬性資訊,該風險級距評分表包含該地表尖峰加速度 F2 、該地下水位深度 F8 、該高程 M10 ,以及該地層 M11 等四種風險因子,其中,該地表尖峰加速度 F2 與該地下水位深度 F8 被分類為該可能性因子,而該高程 M10 與該地層 M11 被分類為該規模因子,此外,每一風險因子各自所對應的該等分級級距,以及每一分級級距所對應的級距評分示例於下表17中,但不以此為限。 表17

Figure 106134223-A0304-0017
Referring to Table 17 below, for the hazard attribute information corresponding to the hazard attributes of the soil liquefaction, the risk level distance score table includes the surface peak acceleration F 2 , the groundwater level depth F 8 , the elevation M 10 , and the formation M 11 and other four risk factors, wherein the peak acceleration surface F 2 F 8 with the depth of water table is classified as the likelihood factor, and the elevation of the M 10 and M 11 are classified as the formation of scale factors, in addition Each of these risk factors corresponds to the grading grades, and the grading scores corresponding to each grading grade are shown in Table 17 below, but not limited to this. Table 17
Figure 106134223-A0304-0017

對於屬於該土壤液化的致災屬性所對應的致災屬性資訊,該土壤液化對應的可能性因子公式為 S11= F2 +F8 、該土壤液化對應的規模因子公式為 S12= M10 +M11 ,而該土壤液化對應的換算矩陣如下表18,此外,每一可能性因子級距相對於每一規模因子級距各自所對應的一危害等級示例於下表18中,但不以此為限。 表18

Figure 106134223-A0304-0018
For the hazard attribute information corresponding to the hazard attributes of the soil liquefaction, the probability factor formula corresponding to the soil liquefaction is S 11 = F 2 + F 8 , and the scale factor formula corresponding to the soil liquefaction is S 12 = M 10 + M 11 , and the conversion matrix corresponding to the soil liquefaction is shown in Table 18 below. In addition, each possibility factor grade distance corresponding to each scale factor grade distance corresponds to an example of a hazard level in Table 18 below, but not as limit. Table 18
Figure 106134223-A0304-0018

該使用端2包含一連接該通訊網路101的使用端通訊模組21、一使用端輸入模組22,以及一電連接該使用端通訊模組21與該使用端輸入模組22的使用端處理模組23。The user terminal 2 includes a user terminal communication module 21 connected to the communication network 101, a user terminal input module 22, and a user terminal processing electrically connecting the user terminal communication module 21 and the user terminal input module 22 Module 23.

在本實施例中,該伺服端1之實施態樣例如為一個人電腦、一伺服器或一雲端主機,但不以此為限。該使用端2之實施態樣例如為一平板電腦、一筆記型電腦、一智慧型手機或一個人電腦,但不以此為限。In this embodiment, the implementation of the server 1 is, for example, a personal computer, a server, or a cloud host, but it is not limited thereto. The implementation of the user terminal 2 is, for example, a tablet computer, a notebook computer, a smartphone or a personal computer, but it is not limited thereto.

參閱圖1、圖2,以下將藉由本發明風險評估方法的該實施例來說明該伺服端1,以及該使用端2各元件的運作細節,該風險評估方法的該實施例包含以下步驟:一步驟61、一步驟62、一步驟63、一步驟64,以及一步驟65。Referring to FIG. 1 and FIG. 2, the operation details of the components of the server 1 and the use end 2 will be described below by the embodiment of the risk assessment method of the present invention. The embodiment of the risk assessment method includes the following steps: a Step 61, a step 62, a step 63, a step 64, and a step 65.

在步驟61中,該使用端處理模組23根據來自該使用端輸入模組22的輸入訊號產生一相關於一目標標的物的目標標的物資訊,並將該目標標的物資訊經由該使用端通訊模組21透過該通訊網路101傳送至該伺服端1。值得特別說明的是,在該實施例中,該目標標的物資訊是例如該目標標的物的地址,但亦可使用相關於該目標標的物的名稱或關鍵字,以達到相同功效。In step 61, the user terminal processing module 23 generates target object information related to a target object according to the input signal from the user terminal input module 22, and communicates the target object information through the user terminal The module 21 is transmitted to the server 1 through the communication network 101. It is worth noting that in this embodiment, the target object information is, for example, the address of the target object, but the name or keyword related to the target object can also be used to achieve the same effect.

在步驟62中,該伺服端處理模組13在經由該伺服端通訊模組11接收到該目標標的物資訊後,自儲存於該伺服端儲存模組12中的該等風險評估資料中獲得一對應於該目標標的物資料的目標風險評估資料。In step 62, after receiving the target object information through the server-side communication module 11, the server-side processing module 13 obtains a value from the risk assessment data stored in the server-side storage module 12 The target risk assessment data corresponding to the target object data.

在步驟63中,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的風險級距評分表,將該目標風險評估資料中的該致災屬性的每一風險因子之風險值給予一級距評分,以獲得一包含該致災屬性的每一風險因子之級距評分的評分結果。In step 63, for each consistent disaster attribute, the server-side processing module 13 stores the target risk assessment data according to the risk rating score table corresponding to the disaster-causing attribute stored in the server-side storage module 12 The risk value of each risk factor of the disaster-causing attribute is given a first-degree score to obtain a score result of the grade score of each risk factor containing the disaster-causing attribute.

參閱圖3,值得特別說明的是,在該實施例中,步驟63還進一步包含一子步驟631,以及一子步驟632之細部流程。Referring to FIG. 3, it is worth noting that in this embodiment, step 63 further includes a sub-step 631 and a sub-step 632 detailed flow.

在子步驟631中,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的風險級距評分表,獲得該目標風險評估資料中的該致災屬性的每一風險因子之風險值所屬的一分級級距。In sub-step 631, for each consistent disaster attribute, the server-side processing module 13 obtains the target risk assessment data according to the risk rating score table corresponding to the disaster-causing attribute stored in the server-side storage module 12 The risk value of each risk factor of the disaster-causing attribute in the belongs to a hierarchical level.

在子步驟632中,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的風險級距評分表,獲得該目標風險評估資料中的該致災屬性的每一風險因子之風險值所屬的該分級級距所對應的該級距評分,以獲得一包含該致災屬性的每一風險因子之級距評分的評分結果。In sub-step 632, for each consistent disaster attribute, the server-side processing module 13 obtains the target risk assessment data according to the risk rating score table corresponding to the disaster-causing attribute stored in the server-side storage module 12 The rating score corresponding to the grading level to which the risk value of each risk factor of the disaster-causing attribute in is obtained to obtain a scoring result of the rating score containing each risk factor of the disaster-causing attribute.

在步驟64中,對於每一致災屬性,該伺服端處理模組13將該致災屬性的評分結果,導入儲存於該伺服端儲存模組12中的該致災屬性各自對應的該危害度分級換算規則,以獲得一目標危害等級。In step 64, for each consistent disaster attribute, the server-side processing module 13 imports the score result of the disaster-causing attribute into the hazard level corresponding to each of the disaster-causing attributes stored in the server-side storage module 12 Conversion rules to obtain a target hazard level.

參閱圖4,值得特別說明的是,在該實施例中,步驟64還進一步包含子一步驟641、一子步驟642,以及一子步驟643之細部流程。Referring to FIG. 4, it is worth noting that, in this embodiment, step 64 further includes detailed processes of sub-step 641, sub-step 642, and sub-step 643.

在子步驟641中,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性中屬於可能性因子的級距評分及該致災屬性的可能性因子公式,計算一可能性因子評分,並根據儲存於該伺服端儲存模組12中的該致災屬性中屬於規模因子的級距評分及該致災屬性的規模因子公式,計算一規模因子評分。In sub-step 641, for each consistent disaster attribute, the server-side processing module 13 is based on the rank score of the probability factor and the disaster attribute of the disaster-causing attribute stored in the server-side storage module 12 Probability factor formula, calculate a probability factor score, and calculate a scale based on the scale score of the scale factor in the disaster attribute stored in the server-side storage module 12 and the scale factor formula of the disaster attribute Factor score.

在子步驟642中,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的換算矩陣,獲得該致災屬性之可能性因子評分所屬的一可能性因子級距、該致災屬性之規模因子評分所屬的一規模因子級距。In sub-step 642, for each consistent disaster attribute, the server-side processing module 13 obtains the probability factor of the disaster-causing attribute according to the conversion matrix corresponding to the disaster-causing attribute stored in the server-side storage module 12 A probability factor scale to which the score belongs, and a scale factor scale to which the scale factor score of the disaster-causing attribute belongs.

在子步驟643中,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的換算矩陣,獲得該致災屬性所屬的可能性因子級距相對於該致災屬性之規模因子評分所屬的規模因子級距所對應的該目標危害等級。In sub-step 643, for each consistent disaster attribute, the server-side processing module 13 obtains the probability that the disaster attribute belongs to according to the conversion matrix corresponding to the disaster attribute stored in the server-side storage module 12 The factor scale is relative to the target hazard level corresponding to the scale factor scale to which the scale factor score of the disaster-causing attribute belongs.

在步驟65中,該伺服端根據儲存於該伺服端儲存模組12中的每一致災屬性各自對應的目標危害等級,獲得多個皆相關於該目標標的物且分別對應於多種不同災害種類的風險評估等級,並將該等風險評估等級經由該伺服端通訊模組11傳送至該使用端2。值得特別說明的是,每一災害種類所對應之災害相關於至少一致災屬性。而在該實施例中,該伺服端處理模組13根據屬於該活動斷層之致災屬性的該目標危害等級,及屬於該地震之致災屬性的該目標危害等級獲得一災害種類為地震的地震風險評估等級。該伺服端處理模組13根據屬於該土石流之致災屬性的目標危害等級獲得一災害種類為土石流的土石流風險評估等級。該伺服端處理模組13根據屬於該山崩之致災屬性的目標危害等級獲得一災害種類為山崩的山崩風險評估等級。該伺服端處理模組13根據屬於該淹水之致災屬性的目標危害等級獲得一災害種類為淹水的淹水風險評估等級。該伺服端處理模組13根據屬於該土壤液化之致災屬性的目標危害等級獲得一災害種類為土壤液化的土壤液化風險評估等級。值得一提的是,該伺服端處理模組13係根據屬於該活動斷層之致災屬性的該目標危害等級,及屬於該地震之致災屬性的該目標危害等級中等級較高者作為該地震風險評估等級,而屬於該土石流之致災屬性的目標危害等級、屬於該山崩之致災屬性的目標危害等級、屬於該淹水之致災屬性的目標危害等級及屬於該土壤液化之致災屬性的目標危害等級係分別作為該土石流風險評估等級、該山崩風險評估等級、該淹水風險評估等級及該土壤液化風險評估等級。In step 65, the server obtains a plurality of objects that are all related to the target and correspond to a variety of different types of disasters according to the respective target hazard levels corresponding to each consistent disaster attribute stored in the server-side storage module 12 The risk assessment level, and transmit the risk assessment levels to the user end 2 through the server-side communication module 11. It is worth noting that the disasters corresponding to each disaster type are related to at least consistent disaster attributes. In this embodiment, the server-side processing module 13 obtains an earthquake with a disaster type of earthquake according to the target hazard level belonging to the hazard attribute of the active fault and the target hazard level belonging to the hazard attribute of the earthquake Risk assessment level. The server-side processing module 13 obtains an earth-rock flow risk assessment level whose disaster type is earth-rock flow according to the target hazard level belonging to the disaster-causing attribute of the earth-rock flow. The server-side processing module 13 obtains a landslide risk assessment level whose disaster type is landslide according to the target hazard level belonging to the disaster-causing attribute of the landslide. The servo-side processing module 13 obtains a flood risk assessment level with a flood type of flood according to the target hazard level belonging to the disaster-causing attribute of the flood. The servo-side processing module 13 obtains a soil liquefaction risk assessment level with a disaster type of soil liquefaction according to the target hazard level belonging to the hazard attribute of the soil liquefaction. It is worth mentioning that the server-side processing module 13 is based on the target hazard level belonging to the hazard attribute of the active fault, and the higher of the target hazard level belonging to the hazard attribute of the earthquake as the earthquake The risk assessment level, and the target hazard level belonging to the hazard attribute of the earth and rock flow, the target hazard level belonging to the hazard attribute of the landslide, the target hazard level belonging to the hazard attribute of flooding and the hazard attribute of the soil liquefaction The target hazard grades are taken as the risk assessment grade of the earth and rock flow, the landslide risk assessment grade, the flooding risk assessment grade and the soil liquefaction risk assessment grade, respectively.

以下將配合一應用範例,來說明本發明風險評估方法之該實施例。在該應用範例中,將上述表1~表6作為該等風險評估資料,同時,將該地址A作為該目標標的物之地址。The following describes an embodiment of the risk assessment method of the present invention with an application example. In this application example, the above Tables 1 to 6 are used as the risk assessment data, and at the same time, the address A is used as the address of the target object.

如步驟61所示,該使用端處理模組23根據來自該使用端輸入模組22的輸入訊號產生一相關於一目標標的物的目標標的物資訊(如,台中市北區學士路91號),並將該目標標的物資訊經由該使用端通訊模組21透過該通訊網路101傳送至該伺服端1。值得特別說明的是,在該應用範例中,該目標標的物資訊是以地址作說明,但亦可使用相關於該目標標的物的名稱(如,中國醫藥大學)或關鍵字(如,醫院、大學)作為該目標標的物資訊。As shown in step 61, the user terminal processing module 23 generates target object information related to a target object according to the input signal from the user terminal input module 22 (eg, 91 Xueshi Road, North District, Taichung City) , And the object information of the target is transmitted to the server 1 through the communication network 101 through the user-end communication module 21. It is worth noting that in this application example, the information of the target object is described by address, but the name of the target object (eg, China Medical University) or keywords (eg, hospital, University) as the target object information.

如步驟62所示,該伺服端處理模組13在經由該伺服端通訊模組11接收到該目標標的物資訊後,自儲存於該伺服端儲存模組12中的該等風險評估資料中獲得一目標風險評估資料(亦即,表1~表6中相關於地址A的所有風險因子,以及所有風險因子對應的風險值),其中該目標風險評估資料所對應的地址A與該目標標的物資訊所指示出之地址一致。As shown in step 62, after receiving the target object information through the server-side communication module 11, the server-side processing module 13 is obtained from the risk assessment data stored in the server-side storage module 12 A target risk assessment data (that is, all risk factors related to address A in Tables 1 to 6 and the risk values corresponding to all risk factors), where address A corresponding to the target risk assessment data and the target subject matter The addresses indicated by the information are consistent.

如子步驟631所示,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的風險級距評分表,獲得該目標風險評估資料中的該致災屬性的每一風險因子之風險值所屬的一分級級距(如下表19~表22中的分級級距)。As shown in sub-step 631, for each consistent disaster attribute, the server-side processing module 13 obtains the target risk assessment according to the risk rating score table corresponding to the disaster-causing attribute stored in the server-side storage module 12 The risk value of each risk factor of the disaster-causing attribute in the data belongs to a grading step (the following grading step in Table 19 to Table 22).

如子步驟632所示,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的風險級距評分表,獲得該目標風險評估資料中的該致災屬性的每一風險因子之風險值所屬的該分級級距(如下表19~表22中的分級級距)所對應的該級距評分(如下表19~表22中的級距評分),以獲得一包含該致災屬性的每一風險因子之級距評分的評分結果。 表19

Figure 106134223-A0304-0019
表20
Figure 106134223-A0304-0020
表21
Figure 106134223-A0304-0021
表22
Figure 106134223-A0304-0022
As shown in sub-step 632, for each consistent disaster attribute, the server-side processing module 13 obtains the target risk assessment according to the risk rating score table corresponding to the disaster-causing attribute stored in the server-side storage module 12 The rating score corresponding to the grading grade (the grading grade in Table 19~Table 22 below) to which the risk value of each risk factor of the hazard attribute in the data belongs (the following in Table 19~Table 22) Grade distance score) to obtain a score result of the grade score of each risk factor containing the hazard attribute. Table 19
Figure 106134223-A0304-0019
Table 20
Figure 106134223-A0304-0020
Table 21
Figure 106134223-A0304-0021
Table 22
Figure 106134223-A0304-0022

如子步驟641所示,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性中屬於可能性因子的級距評分及該致災屬性的可能性因子公式,計算一可能性因子評分(如下表23之 S1 、S3 、S5 、S7 、S9 ,及S11 ),並根據儲存於該伺服端儲存模組12中的該致災屬性中屬於規模因子的級距評分及該致災屬性的規模因子公式,計算一規模因子評分(如下表23之 S2 、S4 、S6 、S8 、S10 ,及S12 )。在此,以致災屬性為該土石流作說明(見表20),該土石流對應的可能性因子公式為 S5= F3 +F4 ,其中F3 為土石流潛勢溪流風險潛勢等級其級距評分為30, F4 為土石流警戒基準值其級距評分為 10,故該土石流對應的可能性因子評分S5= 40,而該土石流對應的規模因子公式為 S6= MAX{ M4 , M5 },其中 M4 為土石流潛勢溪流距離其級距評分為 5,M5 為土石流潛勢溪流影響範圍距離其級距評分為 60,故該土石流對應的規模因子評分 S6= 60 如下表23。As shown in sub-step 641, for each consistent disaster attribute, the server-side processing module 13 according to the rank score belonging to the possibility factor of the disaster attribute stored in the server-side storage module 12 and the disaster attribute Formula of probability factor, calculate a possibility factor score (S 1 , S 3 , S 5 , S 7 , S 9 , and S 11 in Table 23 below), and store the data in the server-side storage module 12 according to the Calculate a scale factor score (S 2 , S 4 , S 6 , S 8 , S 10 , and S 12 in Table 23 below) from the scale score of the disaster attribute and the scale factor formula of the disaster attribute ). Here, taking the disaster-causing attribute as the description of the earth and rock flow (see Table 20), the corresponding probability factor formula of the earth and rock flow is S 5 = F 3 + F 4 , where F 3 is the earth and rock flow potential creek risk potential level and its grade rating Is 30, F 4 is the base value of earth and rock flow warning, and its grade score is 10, so the probability factor score corresponding to the earth and rock flow is S 5= 40, and the scale factor formula corresponding to the earth and rock flow is S 6 = MAX{ M 4 , M 5 }, where M 4 is the distance from the potential flow of the earth and rock flow to a grade of 5, and M 5 is the influence range of the potential flow of the soil and rock flow to a grade of 60, so the scale factor score S 6 = 60 corresponding to the soil and rock flow is shown in Table 23 below .

如子步驟642所示,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的換算矩陣,獲得該致災屬性之可能性因子評分所屬的一可能性因子級距、該致災屬性之規模因子評分所屬的一規模因子級距。在此,以致災屬性為該土石流作說明(見表12),該土石流對應的可能性因子評分 S5= 40,故對應的該可能性因子級距為 40~70,而該土石流對應的規模因子評分 S6= 60,故對應的該規模因子級距為 40~70。As shown in sub-step 642, for each consistent disaster attribute, the server-side processing module 13 obtains the possibility of the disaster-causing attribute according to the conversion matrix corresponding to the disaster-causing attribute stored in the server-side storage module 12 A probability factor scale to which the factor score belongs, and a scale factor scale to which the scale factor score of the disaster-causing attribute belongs. Here, taking the disaster-causing attribute as the description of the earth and rock flow (see Table 12), the probability factor corresponding to the earth and rock flow is S 5= 40, so the corresponding probability factor is 40~70, and the corresponding scale of the earth and rock flow The factor score S 6 = 60, so the corresponding scale factor scale is 40~70.

如子步驟643所示,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的換算矩陣,獲得該致災屬性所屬的可能性因子級距相對於該致災屬性之規模因子評分所屬的規模因子級距所對應的該目標危害等級。在此,以致災屬性為該土石流作說明(見表12),該可能性因子級距為 40~70,而該土石流對應的規模因子級距為 40~70,故對應的目標危害等級為 3 如下表23。 表23

Figure 106134223-A0304-0023
As shown in sub-step 643, for each consistent disaster attribute, the server-side processing module 13 obtains the possibility that the disaster attribute belongs to based on the conversion matrix corresponding to the disaster attribute stored in the server-side storage module 12 The scale of the sex factor is relative to the target hazard level corresponding to the scale of the scale factor to which the scale factor score of the hazard attribute belongs. Here, taking the disaster-causing attribute as the description of the soil and rock flow (see Table 12), the probability factor is 40~70, and the scale factor corresponding to the soil and rock flow is 40~70, so the corresponding target hazard level is 3 See Table 23 below. Table 23
Figure 106134223-A0304-0023

如步驟65所示,該伺服端處理模組13根據屬於該活動斷層之致災屬性的該目標危害等級為 1(見表23),及屬於該地震之致災屬性的該目標危害等級為 1(見表23),獲得的該地震風險評估等級為 1。該伺服端處理模組13根據屬於該土石流之致災屬性的目標危害等級為 3 (見表23),獲得的該土石流風險評估等級為 3。該伺服端處理模組13根據屬於該山崩之致災屬性的目標危害等級為 2 (見表23),獲得的該山崩風險評估等級為 2。該伺服端處理模組13根據屬於該淹水之致災屬性的目標危害等級為 1 (見表23),獲得的該淹水風險評估等級為 1。該伺服端處理模組13根據屬於該土壤液化之致災屬性的目標危害等級為 3 (見表23),獲得的該土壤液化風險評估等級為 3。最後,該伺服端處理模組13將該地震風險評估等級、該土石流風險評估等級、該山崩風險評估等級、該淹水風險評估等級,及該土壤液化風險評估等級經由該伺服端通訊模組11透過該通訊網路101傳送至該使用端2。As shown in step 65, the server-side processing module 13 according to the target hazard level belonging to the disaster-causing attribute of the active fault is 1 (see Table 23), and the target hazard level belonging to the disaster-causing attribute of the earthquake is 1 (See Table 23), the seismic risk assessment level obtained is 1. The server-side processing module 13 has a target hazard level of 3 (see Table 23) according to the hazard attributes of the earth and rock flow, and the risk evaluation level of the earth and rock flow is 3. The server-side processing module 13 has a target hazard level of 2 according to the disaster-causing attribute of the landslide (see Table 23), and the landslide risk assessment level obtained is 2. According to the target hazard level belonging to the disaster-causing attribute of the flooding, the server-side processing module 13 is 1 (see Table 23), and the flooding risk evaluation level obtained is 1. The servo-side processing module 13 has a target hazard level of 3 (see Table 23) according to the hazard attributes of the soil liquefaction, and the obtained soil liquefaction risk assessment level is 3. Finally, the servo-side processing module 13 passes the earthquake risk assessment level, the earth and rock flow risk assessment level, the landslide risk assessment level, the flooding risk assessment level, and the soil liquefaction risk assessment level through the servo-end communication module 11 It is transmitted to the user terminal 2 through the communication network 101.

綜上所述,本發明風險評估方法,藉由該伺服端處理模組13根據該伺服端儲存模組12所儲存的該等風險評估資料,獲得相關於該標的物的該目標風險評估資料中的每一筆風險因子的風險值,再藉由該伺服端儲存模組12所儲存的該等風險級距評分表,獲得該目標風險評估資料中的每一筆風險因子的風險值所對應的分級級距與級距評分,最後藉由該等危害度分級換算規則,獲得每一致災屬性所對應的目標危害等級,如以一來,即可快速且正確地提供該目標標的物於該等災害種類的風險評估等級,進而降低風險評估所需耗費的人力及時間成本。因此,故確實能達成本發明的目的。In summary, in the risk assessment method of the present invention, the server-side processing module 13 obtains the target risk assessment data related to the subject matter according to the risk assessment data stored by the server-side storage module 12 The risk value of each risk factor of the risk, and then through the risk-level distance score table stored in the server-side storage module 12 to obtain the risk level of each risk factor in the target risk assessment data The distance and the grade distance are scored, and finally through these hazard degree classification conversion rules, the target hazard level corresponding to each consistent disaster attribute is obtained. As a result, the target object can be quickly and correctly provided for the disaster types Risk assessment level, which in turn reduces the labor and time costs of risk assessment. Therefore, the purpose of cost invention can indeed be achieved.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above are only examples of the present invention, and the scope of implementation of the present invention cannot be limited by this, any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still classified as Within the scope of the invention patent.

100‧‧‧系統101‧‧‧通訊網路1‧‧‧伺服端11‧‧‧伺服端通訊模組12‧‧‧伺服端儲存模組13‧‧‧伺服端處理模組2‧‧‧使用端21‧‧‧使用端通訊模組22‧‧‧使用端輸入模組23‧‧‧使用端處理模組61~65‧‧‧步驟631、632‧‧‧子步驟641~643‧‧‧子步驟 100‧‧‧System 101‧‧‧Communication network 1‧‧‧Servo terminal 11‧‧‧Servo terminal communication module 12‧‧‧Servo terminal storage module 13‧‧‧Servo terminal processing module 2‧‧‧Using terminal 21‧‧‧Usage end communication module 22‧‧‧Usage end input module 23‧‧‧Usage end processing module 61~65‧‧‧Steps 631, 632‧‧‧Substeps 641~643‧‧‧Substep

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊圖,說明實施本發明風險評估方法之一實施例的一系統; 圖2是一流程圖,說明本發明風險評估方法之該實施例的流程步驟; 圖3是一流程圖,說明本發明風險評估方法之該實施例如何獲得一評分結果;及 圖4是一流程圖,說明本發明風險評估方法之該實施例如何獲得一目標危害等級。Other features and functions of the present invention will be clearly presented in the embodiment with reference to the drawings, in which: FIG. 1 is a block diagram illustrating a system for implementing an embodiment of the risk assessment method of the present invention; FIG. 2 is a A flowchart illustrating the process steps of the embodiment of the risk assessment method of the present invention; FIG. 3 is a flowchart illustrating how the embodiment of the risk assessment method of the present invention obtains a scoring result; and FIG. 4 is a flowchart illustrating the present invention. How does this embodiment of the invention risk assessment method obtain a target hazard level.

61~65‧‧‧步驟 61~65‧‧‧Step

Claims (10)

一種風險評估方法,藉由一伺服端來實施,該伺服端經由一通訊網路與一使用端連接,該伺服端儲存多筆分別對應於多個標的物的風險評估資料,及多筆分別對應於多種不同致災屬性的致災屬性資訊,其中該等風險評估資料分別對應於多個標的物的地址,每一風險評估資料包含每一致災屬性各自對應之多個風險因子的多個風險值,每一致災屬性資訊包含一風險級距評分表,及一危害度分級換算規則,該風險評估方法包含以下步驟:(A)藉由該伺服端,在接收到一來自該使用端且相關於一目標標的物的目標標的物資訊後,依據該等風險評估資料中該些標的物的地址獲得一對應於該目標標的物資料的目標風險評估資料;(B)對於每一致災屬性,藉由該伺服端,根據該致災屬性所對應的風險級距評分表,將該目標風險評估資料中的該致災屬性的每一風險因子之風險值給予一級距評分,以獲得一包含該致災屬性的每一風險因子之級距評分的評分結果;(C)對於每一致災屬性,藉由該伺服端,將該致災屬性的評分結果,導入該致災屬性各自對應的該危害度分級換算規則,以獲得一目標危害等級;以及(D)藉由該伺服端,依據每一致災屬性的該目標危害等級,傳送對應於該多個致災屬性的多個風險評估等級至該使用端。 A risk assessment method is implemented by a server, which is connected to a user end via a communication network, the server end stores multiple pieces of risk assessment data corresponding to multiple objects, and multiple pieces correspond to Disaster attribute information of a variety of different disaster attributes, where the risk assessment data respectively correspond to the addresses of multiple target objects, and each risk assessment data includes multiple risk values of multiple risk factors corresponding to each consistent disaster attribute, Each consistent disaster attribute information includes a risk grade score table and a hazard classification conversion rule. The risk assessment method includes the following steps: (A) through the server, after receiving a After the target object information of the target object, obtain a target risk assessment data corresponding to the target object data according to the addresses of the target objects in the risk assessment data; (B) For each consistent disaster attribute, by the The server side, according to the risk level score table corresponding to the disaster-causing attribute, gives the first-level score to the risk value of each risk factor of the disaster-causing attribute in the target risk assessment data to obtain a file containing the disaster-causing attribute (C) For each consistent disaster attribute, through the server, the score result of the disaster attribute is imported into the hazard degree classification conversion corresponding to the disaster attribute for each consistent disaster attribute. Rules to obtain a target hazard level; and (D) through the server, according to the target hazard level of each consistent disaster attribute, send multiple risk assessment levels corresponding to the multiple hazard attributes to the user end. 如請求項1所述的風險評估方法,該風險級距評分表包括所對應之致災屬性對應的該等風險因子、每一風險因子各自所對應的多個分級級距,以及每一分級級距所對應的級距評分,該步驟(B)包含以下步驟:(B-1)對於每一致災屬性,藉由該伺服端,根據該致災屬性所對應的風險級距評分表,獲得該目標風險評估資料中的該致災屬性的每一風險因子之風險值所屬的一分級級距;及(B-2)對於每一致災屬性,藉由該伺服端,根據該致災屬性所對應的風險級距評分表,獲得該目標風險評估資料中的該致災屬性的每一風險因子之風險值所屬的該分級級距所對應的該級距評分,以獲得一包含該致災屬性的每一風險因子之級距評分的評分結果。 According to the risk assessment method described in claim 1, the risk grade score table includes the risk factors corresponding to the corresponding disaster-causing attributes, the multiple grade grades corresponding to each risk factor, and each grade grade Step (B) includes the following steps: (B-1) For each consistent disaster attribute, through the server, according to the risk level score table corresponding to the disaster-causing attribute, obtain the A hierarchical level to which the risk value of each risk factor of the hazard attribute in the target risk assessment data belongs; and (B-2) For each consistent disaster attribute, the server side corresponds to the hazard attribute according to The risk grade score table of the target risk assessment data to obtain the grade score corresponding to the grade grade to which the risk value of each risk factor of the hazard attribute in the target risk assessment data is to obtain a The scoring result of the grade score of each risk factor. 如請求項1所述的風險評估方法,其中,在步驟(B)中,該等致災屬性資訊包含一活動斷層資訊、一地震資訊、一土石流資訊、一山崩資訊、一淹水資訊,以及一土壤液化資訊。 The risk assessment method according to claim 1, wherein, in step (B), the hazard attribute information includes an active fault information, an earthquake information, a debris flow information, a landslide information, a flooding information, and 1. Soil liquefaction information. 如請求項3所述的風險評估方法,每一致災屬性各自對應之多個風險因子可被分類為一可能性因子及一規模因子之其中一者,每一致災屬性對應的該危害度分級換算規則包括一可能性因子公式、一規模因子公式,以及一換算矩陣,該換算矩陣具有多個可能性因子級距、多個規模因子級距,及每一可能性因子級距相對於每一規模因子級距各自所對應的一危害等級,其中,該步驟(C)包含以下步驟: (C-1)對於每一致災屬性,藉由該伺服端,根據該致災屬性中屬於可能性因子的級距評分及該致災屬性的可能性因子公式,計算一可能性因子評分,並根據該致災屬性中屬於規模因子的級距評分及該致災屬性的規模因子公式,計算一規模因子評分;(C-2)對於每一致災屬性,藉由該伺服端,根據該致災屬性所對應的換算矩陣,獲得該致災屬性之可能性因子評分所屬的一可能性因子級距、該致災屬性之規模因子評分所屬的一規模因子級距;及(C-3)對於每一致災屬性,藉由該伺服端,根據該致災屬性所對應的換算矩陣,獲得該致災屬性所屬的可能性因子級距相對於該致災屬性之規模因子評分所屬的規模因子級距所對應的該目標危害等級。 According to the risk assessment method described in claim 3, multiple risk factors corresponding to each consistent disaster attribute can be classified into one of a probability factor and a scale factor, and the hazard degree corresponding to each consistent disaster attribute is converted The rule includes a probability factor formula, a scale factor formula, and a conversion matrix, the conversion matrix has multiple probability factor steps, multiple scale factor steps, and each possibility factor step is relative to each scale A hazard level corresponding to each of the factor levels, where step (C) includes the following steps: (C-1) For each consistent disaster attribute, through the server, a probability factor score is calculated according to the grade score of the probability factor belonging to the disaster attribute and the probability factor formula of the disaster attribute, and Calculate a scale factor score according to the scale score of the disaster attribute belonging to the scale factor and the scale factor formula of the disaster attribute; (C-2) For each consistent disaster attribute, by the server, according to the disaster The conversion matrix corresponding to the attribute, to obtain a probability factor grade to which the probability factor score of the disaster-causing attribute belongs, and a scale factor grade to which the scale factor score of the disaster-causing attribute belongs; and (C-3) for each Consistent disaster attribute, through the server, according to the conversion matrix corresponding to the disaster attribute, obtain the probability factor rank of the disaster attribute relative to the scale factor grade of the scale factor score of the disaster attribute Corresponding to the target hazard level. 如請求項4所述的風險評估方法,當該致災屬性為一活動斷層時,該致災屬性的該等風險因子包含一被歸類為該可能性因子且相關於發生規模6.5地震之機率的第一因子、一被歸類為該規模因子且相關於與斷層線之距離的第二因子,及一被歸類為該規模因子且相關於斷層上下盤倍率的第三因子,其中:在步驟(C-1)中,對於屬於該活動斷層的致災屬性,藉由該伺服端,根據該第一因子的級距評分F1及下列可能性因子公式計算該可能性因子評分S1:S1=F1,並根據該第二因子的級距評分M1、該第二因子的級 距評分M2及下列規模因子公式,計算該規模因子評分S2:S2=M1×M2According to the risk assessment method described in claim 4, when the disaster-causing attribute is an active fault, the risk factors of the disaster-causing attribute include a probability classified as the probability factor and related to the probability of occurrence of a magnitude 6.5 earthquake The first factor of, a second factor classified as the scale factor and related to the distance from the fault line, and a third factor classified as the scale factor and related to the upper and lower magnification of the fault, where: In step (C-1), for the hazard attributes belonging to the active fault, the server calculates the likelihood factor score S 1 according to the first factor's grade score F 1 and the following probability factor formula: S1=F 1 , and calculate the scale factor score S 2 according to the scale score M 1 of the second factor, the scale score M 2 of the second factor, and the following scale factor formula: S 2 =M 1 ×M 2 . 如請求項4所述的風險評估方法,當該致災屬性為一地震時,該致災屬性的該等風險因子還包含一被歸類為該可能性因子且相關於尖峰地表加速度的第四因子,以及一被歸類為該規模因子且相關於地表下之剪力波速的第五因子,其中:在步驟(C-1)中,對於屬於該活動斷層的致災屬性,藉由該伺服端,根據該第四因子的級距評分F2,及下列可能性因子公式計算該可能性因子評分S3:S3=F2,並根據該第五因子的級距評分M3,及下列規模因子公式,計算該規模因子評分S4:S4=M3According to the risk assessment method described in claim 4, when the disaster-causing attribute is an earthquake, the risk factors of the disaster-causing attribute also include a fourth categorized as the likelihood factor and related to the peak surface acceleration Factor, and a fifth factor that is classified as the scale factor and is related to the shear wave velocity below the surface, where: in step (C-1), for the hazard attributes belonging to the active fault, the servo At the end, the probability factor score S 3 is calculated according to the grade factor score F 2 of the fourth factor, and the following possibility factor formula: S 3 =F 2 , and the grade factor score M 3 according to the fifth factor, and the following Scale factor formula, calculate the scale factor score S 4 : S 4 =M 3 . 如請求項4所述的風險評估方法,當該致災屬性為一土石流時,該致災屬性的該等風險因子包含一被歸類為該可能性因子且相關於土石流潛勢溪流風險潛勢等級的第一因子、一被歸類為該可能性因子且相關於土石流警戒基準值的第二因子、一被歸類為該規模因子且相關於土石流潛勢溪流距離的第三因子,及一被歸類為該規模因子且相關於土石流潛勢溪流影響範圍距離的第四因子,其中:在步驟(C-1)中,對於屬於該土石流的致災屬性,藉由該伺服端,根據該第一因子的級距評分F3、該第二因子的級距評分F4,及下列可能性因子公式計算該可能性因子 評分S5:S5=F3+F4,並根據該第三因子的級距評分M4、該第二因子的級距評分M5,及下列規模因子公式為,計算該規模因子評分S6:S6=MAX{M4,M5},亦即取M4和M5兩者中級距評分較高者。 According to the risk assessment method described in claim 4, when the hazard attribute is a debris flow, the risk factors of the hazard attribute include a risk potential that is classified as the probability factor and is related to the potential of the debris flow The first factor of the grade, a second factor classified as the likelihood factor and related to the baseline value of the earth and rock flow alert, a third factor classified as the scale factor and related to the potential stream distance of the earth and rock flow, and a The fourth factor that is classified as the scale factor and is related to the distance range of the potential flow of earth and rock flows, where: in step (C-1), for the hazard attributes belonging to the earth and rock flows, by the server, according to the The grade factor score F 3 of the first factor, the grade factor score F 4 of the second factor, and the following probability factor formula calculate the probability factor score S 5 : S 5 =F 3 +F 4 , and according to the third The scale score M 4 of the factor, the scale score M 5 of the second factor, and the following scale factor formula is to calculate the scale factor score S 6 : S 6 =MAX{M 4 ,M 5 }, which is M 4 and M 5 have higher intermediate distance scores. 如請求項4所述的風險評估方法,當該致災屬性為一山崩時,該致災屬性的該等風險因子包含一被歸類為該可能性因子且相關於山崩潛勢的第一因子、一被歸類為該可能性因子且相關於重現期最大二十四小時累積雨量的第二因子、一被歸類為該可能性因子且相關於地表尖峰加速度的第三因子、一被歸類為該規模因子且相關於山崩類型的第四因子、一被歸類為該規模因子且相關於山崩面積的第五因子,及一被歸類為該規模因子且相關於山崩潛勢的第六因子,其中:在步驟(C-1)中,對於屬於該山崩的致災屬性,藉由該伺服端,根據該第一因子的級距評分F5、該第二因子的級距評分F6、該第三因子的級距評分F2,及下列可能性因子公式計算該可能性因子評分S7:S7=MAX{F5+F6,F5+F2},亦即取(F5+F6)和(F5+F2)兩者中級距評分較高者,並根據該第四因子的級距評分M6、該第五因子的級距評分M7、該第六因子的級距評分M8,及下列規模因子 公式為,計算該規模因子評分S8:S8=M6×(M7+M8)。 According to the risk assessment method described in claim 4, when the disaster-causing attribute is a landslide, the risk factors of the disaster-causing attribute include a first factor classified as the possibility factor and related to the potential of the landslide 1. A second factor that is classified as the likelihood factor and related to the accumulated rainfall during the maximum twenty-four hour recurrence period, a third factor that is classified as the likelihood factor and related to the surface peak acceleration, a A fourth factor that is classified as the scale factor and related to the type of landslide, a fifth factor that is classified as the scale factor and related to the area of the landslide, and a factor that is classified as the scale factor and related to the potential of the landslide The sixth factor, wherein: in step (C-1), for the disaster-causing attribute belonging to the landslide, the servo end is used according to the first factor's grade score F 5 and the second factor's grade score F 6 , the grade score F 2 of the third factor, and the following probability factor formula to calculate the likelihood factor score S 7 : S 7 =MAX{F 5 +F 6 ,F 5 +F 2 }, that is (F 5 +F 6 ) and (F 5 +F 2 ) who have higher intermediate distance scores, according to the fourth factor grade score M 6 , the fifth factor grade score M 7 , the first The six-factor grade score M 8 and the following scale factor formula is to calculate the scale factor score S 8 : S 8 =M 6 ×(M 7 +M 8 ). 如請求項4所述的風險評估方法,當該致災屬性為一淹水時,該致災屬性的該等風險因子包含一被歸類為該可能性因子且相關於警戒雨量值的第一因子、一被歸類為該規模因子且相關於淹水深度的第二因子,其中:在步驟(C-1)中,對於屬於該淹水的致災屬性,藉由該伺服端,根據該第一因子的級距評分F7,及下列可能性因子公式計算該可能性因子評分S9:S9=F7,並根據該第二因子的級距評分M9,及下列規模因子公式為,計算該規模因子評分S10:S10=M9According to the risk assessment method described in claim 4, when the disaster-causing attribute is a flood, the risk factors of the disaster-causing attribute include a first classifier that is classified as the likelihood factor and is related to the warning rainfall value Factor, a second factor that is categorized as the scale factor and related to the flooding depth, where: in step (C-1), for the disaster-causing attributes that belong to the flooding, by the server, according to the The grade factor score F 7 of the first factor and the following probability factor formula calculate the probability factor score S 9 : S 9 =F 7 , and according to the grade factor score M 9 of the second factor, and the following scale factor formula is , Calculate the scale factor score S 10 : S 10 =M 9 . 如請求項4所述的風險評估方法,當該致災屬性為一土壤液化時,該致災屬性的該等風險因子包含一被歸類為該可能性因子且相關於地表尖峰加速度的第一因子、一被歸類為該可能性因子且相關於地下水位深度的第二因子、一被歸類為該規模因子且相關於高程的第三因子、一被歸類為該規模因子且相關於地層的第四因子,其中:在步驟(C-1)中,對於屬於該土壤液化的致災屬性,藉由該伺服端,根據該第一因子的級距評分F2、該第二因子的級距評分F8,及下列可能性因子公式計算該可能性因子評分S11:S11=F2+F8, 並根據該第三因子的級距評分M10、該第二因子的級距評分M11,及下列規模因子公式為,計算該規模因子評分S12:S12=M10+M11According to the risk assessment method described in claim 4, when the hazard attribute is a soil liquefaction, the risk factors of the hazard attribute include a first categorized as the likelihood factor and related to the peak acceleration of the surface Factor, a second factor that is classified as the likelihood factor and related to the depth of the groundwater level, a third factor that is classified as the scale factor and related to elevation, and a third factor that is classified as the scale factor and related to The fourth factor of the stratum, where: in step (C-1), for the hazard attributes belonging to the soil liquefaction, the servo end is used to score F 2 according to the first factor’s step distance, and the second factor’s The grade score F 8 and the following probability factor formula calculate the possibility factor score S 11 : S 11 =F 2 +F 8 , and according to the grade factor score M 10 of the third factor, the grade factor of the second factor The score M 11 and the following scale factor formula are to calculate the scale factor score S 12 : S 12 =M 10 +M 11 .
TW106134223A 2017-10-03 2017-10-03 Risk assessment method TWI685811B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106134223A TWI685811B (en) 2017-10-03 2017-10-03 Risk assessment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106134223A TWI685811B (en) 2017-10-03 2017-10-03 Risk assessment method

Publications (2)

Publication Number Publication Date
TW201915905A TW201915905A (en) 2019-04-16
TWI685811B true TWI685811B (en) 2020-02-21

Family

ID=66991933

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106134223A TWI685811B (en) 2017-10-03 2017-10-03 Risk assessment method

Country Status (1)

Country Link
TW (1) TWI685811B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200601076A (en) * 2004-06-29 2006-01-01 Univ Nat Yunlin Sci & Tech Automatic hazard analaysis auxiliary system
TW200745984A (en) * 2006-06-09 2007-12-16 Taiwan Risk Man Corp Catastrophe risk assessment system and method of insurance policy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200601076A (en) * 2004-06-29 2006-01-01 Univ Nat Yunlin Sci & Tech Automatic hazard analaysis auxiliary system
TW200745984A (en) * 2006-06-09 2007-12-16 Taiwan Risk Man Corp Catastrophe risk assessment system and method of insurance policy

Also Published As

Publication number Publication date
TW201915905A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
KR100748528B1 (en) Information update method and the real-time automatic update system for disaster damage investigation using wireless communication technology and web-gis
Burton Social vulnerability and hurricane impact modeling
JP2020126670A (en) Information processing device, information processing method, and program
JP6374341B2 (en) Crisis management information sharing apparatus, crisis management information sharing method, and crisis management information sharing program
Del Negro et al. Living at the edge of an active volcano: Risk from lava flows on Mt. Etna
CN106529817A (en) Disaster information service platform and information service system
Hossain et al. A thematic mapping method to assess and analyze potential urban hazards and risks caused by flooding
US11562007B1 (en) Systems and methods of establishing correlative relationships between geospatial data features in feature vectors representing property locations
Kahle et al. Classifying the 2021 ‘Ahrtal’flood event using hermeneutic interpretation, natural language processing, and instrumental data analyses
Kam et al. Modelling of property market: The structural and locational attributes towards Malaysian properties
TWI685811B (en) Risk assessment method
TWI693575B (en) House automatic evaluation method and system
TWI645358B (en) Risk identification insurance recommendation and policy valuation method
Catanghal Jr et al. Crowdsourcing approach for disaster response assessment
KR20220110349A (en) A system for providing location and commercial area analysis services for each type of real estate item
Harasarn et al. Modelling Inbound International Tourism Demand: Evidence from Thailand
Vazquez Resilient Pacoima: A Plan for Building a Strong Community Strengthening Community Networks
KR102315762B1 (en) A method for spatializing disaster damage history data
Safari Ali Akbari Investigating the Status and Role of the Nomadic Community in the Sustainable Development of the Iranian Borders (Case Study of the Western Tribes of Iran)
Hong Landslide Susceptibility Mapping in the Youfang area (China) using Dagging-Random Forest model
Saverimuttu et al. Managing the socioeconomic impacts of extreme weather events in the southwest pacific basin
TWM568444U (en) Soil liquefaction policy evaluation system
Joyce et al. Using Social Sensing to Validate Flood Risk Modelling in England
TW201932676A (en) Soil liquefaction policy evaluation system and method thereof capable of automatically obtaining the premium rate of soil liquefaction related to a target object
Alian Characterization of Ecological Water Stress in the US Great Lakes Region Using a Geospatial Modeling Approach