TWI645358B - Risk identification insurance recommendation and policy valuation method - Google Patents

Risk identification insurance recommendation and policy valuation method Download PDF

Info

Publication number
TWI645358B
TWI645358B TW106134222A TW106134222A TWI645358B TW I645358 B TWI645358 B TW I645358B TW 106134222 A TW106134222 A TW 106134222A TW 106134222 A TW106134222 A TW 106134222A TW I645358 B TWI645358 B TW I645358B
Authority
TW
Taiwan
Prior art keywords
disaster
risk
level
factor
server
Prior art date
Application number
TW106134222A
Other languages
Chinese (zh)
Other versions
TW201915904A (en
Inventor
何英蘭
葉日進
蔡世賢
詹筱蕙
周敬翔
王順民
Original Assignee
新光產物保險股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新光產物保險股份有限公司 filed Critical 新光產物保險股份有限公司
Priority to TW106134222A priority Critical patent/TWI645358B/en
Application granted granted Critical
Publication of TWI645358B publication Critical patent/TWI645358B/en
Publication of TW201915904A publication Critical patent/TW201915904A/en

Links

Abstract

一種風險辨識投保建議及保單估價方法,藉由一經由一通訊網路與一使用端連接的伺服端來實施,該方法包含:該伺服端在接收到一相關於一目標標的物的目標標的物資訊後,獲得多個分別對應於多種不同災害種類的風險評估等級;該伺服端判定該等風險評估等級中是否存在至少一第一風險評估等級;當存在該至少一第一風險評估等級時,該伺服端產生並傳送至少一對應於該至少一第一風險評估等級所對應之災害種類的第一推薦投保項目至該使用端;該伺服端根據該使用端的輸入訊號,獲得該至少一第一推薦投保項目中之至少一欲投保項目所對應的保費費率。A risk identification insurance recommendation and a policy evaluation method are implemented by a server connected to a user terminal via a communication network, the method comprising: the server receiving a target information related to a target object And obtaining a plurality of risk assessment levels respectively corresponding to the plurality of different disaster categories; the server determines whether there is at least one first risk assessment level in the risk assessment levels; and when the at least one first risk assessment level exists, the The server generates and transmits at least one first recommended insurance item corresponding to the disaster type corresponding to the at least one first risk assessment level to the use end; the server obtains the at least one first recommendation according to the input signal of the use end The premium rate corresponding to at least one of the insured items to be insured.

Description

風險辨識投保建議及保單估價方法Risk identification insurance recommendation and policy valuation method

本發明是有關於一種獲得一建議保單及其保費的方法,特別是指一種風險辨識投保建議及保單估價方法。The present invention relates to a method for obtaining a proposed policy and its premium, and more particularly to a risk identification insurance recommendation and a policy valuation method.

由於台灣處於地震帶,加上近年對於土壤液化議題探討,使得消費者對於建築物的安全性及「建築物以外之整體」的保障有越來越重視的趨勢。故保險業者也爭相推行各種相關於標的物的保險類型,企圖將人類生活重要的居住元素,納入保險商品的範疇中。As Taiwan is in the earthquake zone and the discussion on soil liquefaction in recent years, consumers are paying more and more attention to the safety of buildings and the protection of "outside the building". Therefore, the insurers are also rushing to promote various types of insurance related to the subject matter, in an attempt to incorporate the important elements of human life into the category of insurance products.

然而,目前保險業務服務人員在對消費者進行推薦與報價前,必須先對待評估之標的物(亦即,所欲購買或投保之建築物整體)的周遭環境進行風險評估,再根據風險評估結果推薦相對應投保項目及其保額,但現有的風險評估方式往往須安排查勘工程師至標的物現場進行勘查並製作出標的物的風險評估報告,保險業務服務人員再根據風險評估報告內容將所需投保項目推薦給消費者,此種報價方式耗費了大量的時間及人力資源,實屬不便,故有必要提出一解決方案。However, at present, the insurance business service personnel must conduct a risk assessment on the surrounding environment of the subject matter of the evaluation (that is, the entire building to be purchased or insured) before recommending and quoting the consumer, and then based on the risk assessment result. The corresponding insured items and their insured amount are recommended. However, the existing risk assessment methods often require the surveying engineer to go to the target site to conduct the survey and produce the risk assessment report of the subject matter. The insurance business service personnel will insure the required risk according to the risk assessment report. The project is recommended to consumers. This kind of quotation method consumes a lot of time and human resources, which is inconvenient, so it is necessary to propose a solution.

因此,本發明的目的,即在提供一種自動地獲得相關於一標的物之多種投保項目及其保費費率,以有效節省時間及人力的風險辨識投保建議及保單估價方法。Accordingly, it is an object of the present invention to provide an insurance claim and a policy valuation method by providing a plurality of insurance items and their premium rates that are automatically associated with a subject matter, thereby effectively saving time and manpower risks.

於是,本發明一種風險辨識投保建議及保單估價方法,藉由一伺服端來實施,該伺服端經由一通訊網路與一使用端連接,該伺服端儲存一災害費率調整表,該風險辨識投保建議及保單估價方法包含一步驟(A) 、一步驟(B) 、一步驟(C),以及一步驟(D)。Therefore, the risk identification insurance recommendation and the policy evaluation method of the present invention are implemented by a server, and the server is connected to a user terminal via a communication network, and the server stores a disaster rate adjustment table, and the risk identification is insured. The proposal and policy valuation method includes a step (A), a step (B), a step (C), and a step (D).

該步驟(A)是藉由該伺服端,在接收到一來自該使用端且相關於一目標標的物的目標標的物資訊後,獲得多個皆相關於該目標標的物且分別對應於多種不同災害種類的風險評估等級。The step (A) is that, after receiving the information of the target object from the use end and related to a target object, the server obtains a plurality of objects related to the target target and respectively corresponding to the plurality of different objects. The level of risk assessment for the type of disaster.

該步驟(B)是藉由該伺服端,判定該等風險評估等級中是否存在至少一位於一第一風險範圍內的第一風險評估等級。The step (B) is to determine, by the server, whether at least one first risk assessment level located in a first risk range exists in the risk assessment levels.

該步驟(C)是當該伺服端判定出存在該至少一第一風險評估等級時,藉由該伺服端根據該至少一第一風險評估等級所對應的災害種類,產生並傳送至少一對應於該至少一第一風險評估等級所對應之災害種類的第一推薦投保項目至該使用。The step (C) is: when the server determines that the at least one first risk assessment level exists, the server generates and transmits at least one corresponding to the disaster type corresponding to the at least one first risk assessment level. The first recommended insurance item of the disaster category corresponding to the at least one first risk assessment level is to be used.

該步驟(D)是藉由該伺服端,在接收到一來自該使用端且相關於該至少一第一推薦投保項目中之至少一欲投保項目的查詢請求後,對於每一欲投保項目,至少根據該欲投保項目所對應之災害種類的風險評估等級及該災害費率調整表,獲得一相關於該欲投保項目的保費費率。The step (D) is, by the server, after receiving a query request from the user terminal and related to at least one item to be insured in the at least one first recommended insurance item, for each item to be insured, The premium rate associated with the item to be insured is obtained based on at least the risk assessment level of the disaster type corresponding to the insured item and the disaster rate adjustment table.

本發明之功效在於:自動地對該目標標的物進行風險評估,並根據所儲存的該災害費率調整表,自動地獲得該伺服端推薦的相關於該目標標的物的投保項目,最後,根據使用者的選擇獲得使用者所欲投保項目所對應的保費費率,進而有效地節省時間及人力。The effect of the invention is that: the risk assessment of the target object is automatically performed, and according to the stored disaster rate adjustment table, the insurance item recommended by the server for the target object is automatically obtained, and finally, according to The user's choice obtains the premium rate corresponding to the item that the user wants to insure, thereby effectively saving time and manpower.

參閱圖1,一系統100用於實施本發明風險辨識投保建議及保單估價方法的一實施例,該系統100包含一伺服端1,以及一經由一通訊網路101與該伺服端1連接的使用端2。Referring to FIG. 1, an embodiment of a system 100 for implementing the risk identification insurance recommendation and the policy evaluation method of the present invention includes a server 1 and a user terminal connected to the server 1 via a communication network 101. 2.

該伺服端1包含一連接該通訊網路101的伺服端通訊模組11、一伺服端儲存模組12,以及一電連接該伺服端通訊模組11與該伺服端儲存模組12的伺服端處理模組13。The server 1 includes a server communication module 11 connected to the communication network 101, a server storage module 12, and a servo terminal for electrically connecting the server communication module 11 and the server storage module 12. Module 13.

該伺服端1的該伺服端儲存模組12儲存一災害費率調整表、一建物費率調整表、多筆分別對應於多個標的物的風險評估資料,及多筆分別對應於多種不同致災屬性的致災屬性資訊。The server storage module 12 of the server 1 stores a disaster rate adjustment table, a construction rate adjustment table, multiple risk assessment materials respectively corresponding to a plurality of objects, and multiple strokes corresponding to different types of Information on the disaster attribute of the disaster attribute.

參閱下表1,該災害費率調整表包含多個分別對應於多個級別的災害權重係數。值得特別說明的是,該等級別與其災害權重係數,可由該領域具通常知識者自由修改,進而達到本發明之功效,故不以此為限。 表1 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 級別 </td><td> 1 </td><td> 2 </td><td> 3 </td><td> 4 </td><td> 5 </td></tr><tr><td> 災害權重係數 </td><td> 0.7 </td><td> 0.85 </td><td> 1 </td><td> 1.15 </td><td> 1.3 </td></tr></TBODY></TABLE>Referring to Table 1 below, the disaster rate adjustment table includes a plurality of disaster weight coefficients respectively corresponding to multiple levels. It is worth noting that these levels and their disaster weighting factors can be freely modified by those with ordinary knowledge in the field to achieve the efficacy of the present invention, and therefore are not limited thereto. Table 1  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> level</td><td> 1 </td><td> 2 </td> <td> 3 </td><td> 4 </td><td> 5 </td></tr><tr><td> Disaster weight coefficient </td><td> 0.7 </td>< Td> 0.85 </td><td> 1 </td><td> 1.15 </td><td> 1.3 </td></tr></TBODY></TABLE>

參閱下表2,該建物費率調整表包含多個分別對應多種建物結構的建物權重係數。在該實施例中,該等建物結構包含一鋼筋水泥、一鋼骨水泥、一加強磚造、一鐵皮造,以及一木造,但不以此為限。值得特別說明的是,該等建物結構與其建物權重係數,可由該領域具通常知識者自由修改,進而達到本發明之功效,故不以此為限。 表2 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 建物結構 </td><td> 鋼筋水泥 </td><td> 鋼骨水泥 </td><td> 加強磚造 </td><td> 鐵皮 </td><td> 木造 </td></tr><tr><td> 建物權重係數 </td><td> 0.3 </td><td> 0.7 </td><td> 1 </td><td> 1.2 </td><td> 1.5 </td></tr></TBODY></TABLE>Referring to Table 2 below, the construction rate adjustment table includes a plurality of building weight coefficients respectively corresponding to a plurality of building structures. In this embodiment, the structures include a reinforced concrete, a steel reinforced cement, a reinforced brick, a ferrule, and a wood, but are not limited thereto. It is worth noting that the construction structure and its construction weight coefficient can be freely modified by the general knowledge in the field to achieve the effect of the present invention, and therefore is not limited thereto. Table 2  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> building structure</td><td> reinforced concrete</td><td> steel cement </td><td> Strengthening brickwork</td><td> Iron sheet</td><td> Wood making</td></tr><tr><td> Building weight coefficient</td><td> 0.3 </td><td> 0.7 </td><td> 1 </td><td> 1.2 </td><td> 1.5 </td></tr></TBODY></TABLE>

每一風險評估資料包含每一致災屬性各自對應之多個風險因子的多個風險值。每一風險因子可被分類為一可能性因子及一規模因子之其中一者。在該實施例中,該等致災屬性包含一活動斷層、一地震、一土石流、一山崩、一淹水,以及一土壤液化,但不以此為限。Each risk assessment data includes a plurality of risk values for a plurality of risk factors corresponding to each of the consistent disaster attributes. Each risk factor can be classified into one of a likelihood factor and a scale factor. In this embodiment, the disaster-causing attributes include an active fault, an earthquake, a soil flow, a landslide, a flood, and a soil liquefaction, but not limited thereto.

參閱下表3,該風險評估資料分別對應於例如一經緯度A、一經緯度B,以及一經緯度C等標的物經緯度,對於屬於該活動斷層的致災屬性,該風險評估資料包含一發生規模6.5地震之機率、一與斷層線之距離,以及一斷層上下盤倍率等三種風險因子,其中,該發生規模6.5地震之機率被分類為該可能性因子,而該與斷層線之距離與該斷層上下盤倍率被分類為該規模因子,此外,每一標的物經緯度(例:經緯度A、經緯度B,以及經緯度C)對應的每一風險因子(例:發生規模6.5地震之機率、與斷層線之距離,及斷層上下盤倍率)的風險值示例於下表3中,但不以此為限。值得特別說明的是,本實施例僅示例出對應於該經緯度A、該經緯度B,以及該經緯度C此三個經緯度的風險評估資料,然而,該等風險評估資料還包含更多標的物經緯度,而不限於本實施例所示例的三個標的物經緯度,此外,在該實施例中,該風險評估資料包含該等標的物經緯度,而在其他實施例中,該風險評估資料還可以包含相關於該等標的物經緯度之標的物的名稱或關鍵字,使得操作該使用端2的使用者更直覺地搜尋到所需的標的物資訊,但不以此為限。 表3 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 活動斷層 </td></tr><tr><td> 風險 因子 標的物 經緯度 </td><td> 可能性因子 </td><td> 規模因子 </td></tr><tr><td> 發生規模6.5地震之機率 </td><td> 與斷層線之距離 </td><td> 斷層上下盤倍率 </td></tr><tr><td> 經緯度A </td><td> 15% </td><td> 900m </td><td> 上盤 </td></tr><tr><td> 經緯度B </td><td> 25% </td><td> 400m </td><td> 上盤 </td></tr><tr><td> 經緯度C </td><td> 35% </td><td> 70m </td><td> 下盤 </td></tr></TBODY></TABLE>Referring to Table 3 below, the risk assessment data respectively correspond to, for example, a latitude and longitude A, a latitude and longitude B, and a latitude and longitude latitude and longitude. For the disaster attribute belonging to the active fault, the risk assessment data includes a scale 6.5 earthquake. The probability, the distance from the fault line, and the risk factor of a fault upper and lower disk, wherein the probability of occurrence of the scale 6.5 earthquake is classified as the likelihood factor, and the distance from the fault line and the fault The magnification is classified into the scale factor. In addition, each risk factor corresponding to the latitude and longitude of each target (eg, latitude and longitude A, latitude and longitude B, and longitude and latitude C) (eg, the probability of occurrence of a scale 6.5 earthquake, the distance from the fault line, The risk values of the fault and the upper and lower disk magnifications are exemplified in Table 3 below, but are not limited thereto. It should be particularly noted that the present embodiment only exemplifies the risk assessment data corresponding to the latitude and longitude A, the latitude and longitude B, and the latitude and longitude C. However, the risk assessment data also includes more latitude and longitude of the target. The risk assessment data includes the latitude and longitude of the target, and in other embodiments, the risk assessment data may further include related to the latitude and longitude of the three objects as exemplified in the embodiment. The name or keyword of the object of the latitude and longitude of the object is such that the user operating the terminal 2 more intuitively searches for the desired object information, but not limited thereto. table 3  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> active fault</td></tr><tr><td> risk factor target latitude and longitude </td><td> probability factor</td><td> scale factor</td></tr><tr><td> probability of occurrence of scale 6.5 earthquake</td><td> and fault line Distance </td><td> Fault upper and lower disk magnification</td></tr><tr><td> Longitude and latitude A </td><td> 15% </td><td> 900m </td>< Td> upper plate</td></tr><tr><td> latitude and longitude B </td><td> 25% </td><td> 400m </td><td> upper plate</td> </tr><tr><td> Latitude and longitude C </td><td> 35% </td><td> 70m </td><td> Lower plate</td></tr></TBODY> </TABLE>

參閱下表4,對於屬於該地震的致災屬性,該風險評估資料包含一尖峰地表加速度,以及一地表下之剪力波速等二種風險因子,其中,該尖峰地表加速度被分類為該可能性因子,而該地表下之剪力波速被分類為該規模因子,此外,每一標的物經緯度(例:經緯度A、經緯度B,以及經緯度C)對應每一風險因子(例:尖峰地表加速度,及地表下之剪力波速)的風險值示例於下表4中,但不以此為限。 表4 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 地震 </td></tr><tr><td> 風險 因子 標的物 經緯度 </td><td> 可能性因子 </td><td> 規模因子 </td></tr><tr><td> 尖峰地表加速度 </td><td> 地表下之剪力波速 </td></tr><tr><td> 經緯度A </td><td> 0.2g </td><td> 350m/s </td></tr><tr><td> 經緯度B </td><td> 0.32g </td><td> 450m/s </td></tr><tr><td> 經緯度C </td><td> 0.22g </td><td> 550m/s </td></tr></TBODY></TABLE>Refer to Table 4 below. For the disaster attribute belonging to the earthquake, the risk assessment data includes two peak risk factors: a peak surface acceleration and a shear wave velocity under the surface. The peak surface acceleration is classified as the probability. Factor, and the shear wave velocity under the surface is classified as the scale factor. In addition, each target latitude and longitude (eg, latitude and longitude A, latitude and longitude B, and latitude and longitude C) corresponds to each risk factor (eg, peak surface acceleration, and The risk values of the shear wave velocity under the surface are exemplified in Table 4 below, but are not limited thereto. Table 4  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Earthquake</td></tr><tr><td> Risk factor latitude and longitude < /td><td> likelihood factor</td><td> scale factor</td></tr><tr><td> peak surface acceleration</td><td> shear wave velocity below the surface</ Td></tr><tr><td> Latitude and longitude A </td><td> 0.2g </td><td> 350m/s </td></tr><tr><td> Longitude and latitude B < /td><td> 0.32g </td><td> 450m/s </td></tr><tr><td> Latitude and longitude C </td><td> 0.22g </td><td> 550m/s </td></tr></TBODY></TABLE>

參閱下表5,對於屬於該土石流的致災屬性,該風險評估資料還包含一土石流潛勢溪流風險潛勢等級、一土石流警戒基準值、一土石流潛勢溪流距離,以及一土石流潛勢溪流影響範圍距離等四種風險因子,其中,該土石流潛勢溪流風險潛勢等級與該土石流警戒基準值被分類為該可能性因子,而該土石流潛勢溪流距離與該土石流潛勢溪流影響範圍距離被分類為該規模因子,此外,每一標的物經緯度(例:經緯度A、經緯度B,以及經緯度C)對應每一風險因子(例:土石流潛勢溪流風險潛勢等級、土石流警戒基準值、土石流潛勢溪流距離,及土石流潛勢溪流影響範圍距離)的風險值示例於下表5中,但不以此為限。 表5 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 土石流 </td></tr><tr><td> 風險 因子 標的物 經緯度 </td><td> 可能性因子 </td><td> 規模因子 </td></tr><tr><td> 土石流潛勢溪流風險潛勢等級 </td><td> 土石流警戒基準值 </td><td> 土石流潛勢溪流距離 </td><td> 土石流潛勢溪流影響範圍距離 </td></tr><tr><td> 經緯度A </td><td> 中 </td><td> 480mm </td><td> 35m </td><td> 7% </td></tr><tr><td> 經緯度B </td><td> 低 </td><td> 900mm </td><td> 15m </td><td> 13% </td></tr><tr><td> 經緯度C </td><td> 持續觀察 </td><td> 350mm </td><td> 28m </td><td> 17% </td></tr></TBODY></TABLE>Refer to Table 5 below. For the disaster attribute belonging to the earth-rock flow, the risk assessment data also includes a risk potential level of the earth-rock flow potential stream, a baseline value of the earth-rock flow warning, a distance of the earth-rock flow potential stream, and the influence of a earth-rock flow potential stream. Four risk factors, such as the range distance, wherein the earth-rock flow potential risk potential level and the earth-rock flow warning reference value are classified as the possibility factor, and the distance between the earth-rock flow potential stream and the influence of the earth-rock flow potential stream is Classified as the scale factor. In addition, each target latitude and longitude (eg, latitude and longitude A, latitude and longitude B, and longitude and latitude C) corresponds to each risk factor (eg: earth-rock flow potential stream risk potential level, earth-rock flow warning reference value, earth-rock flow dive The risk values of the potential flow distance and the distance between the influence of the earth and rock flow potential are shown in Table 5 below, but not limited thereto. table 5  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Earth and Stone Flow</td></tr><tr><td> Risk Factor latitude and longitude < /td><td> probability factor</td><td> scale factor</td></tr><tr><td> earth-rock flow potential stream potential level</td><td> earth-rock flow warning benchmark Value </td><td> Earth-rock flow potential stream </td><td> Earth-rock flow potential stream distance range </td></tr><tr><td> Longitude and latitude A </td><td> Medium </td><td> 480mm </td><td> 35m </td><td> 7% </td></tr><tr><td> latitude and longitude B </td><td> low </td><td> 900mm </td><td> 15m </td><td> 13% </td></tr><tr><td> Longitude and latitude C </td><td> Continuous observation </td><td> 350mm </td><td> 28m </td><td> 17% </td></tr></TBODY></TABLE>

參閱下表6,對於屬於該山崩的致災屬性,該風險評估資料還包含一山崩潛勢、一重現期最大二十四小時累積雨量、該尖峰地表加速度、一山崩類型、一山崩面積,以及一與山崩距離等六種風險因子,其中,該山崩潛勢、該重現期最大二十四小時累積雨量,以及該尖峰地表加速度被分類為該可能性因子,而該山崩類型、該山崩面積,以及該與山崩距離被分類為該規模因子,此外,每一標的物經緯度(例:經緯度A、經緯度B,以及經緯度C)對應每一風險因子(例:山崩潛勢、重現期最大二十四小時累積雨量、地表尖峰加速度、山崩類型、山崩面積,及與山崩距離)的風險值示例於下表6中,但不以此為限。 表6 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 山崩 </td></tr><tr><td> 風險 因子 標的物 經緯度 </td><td> 可能性因子 </td><td> 規模因子 </td></tr><tr><td> 山崩潛勢 </td><td> 重現期最大二十四小時累積雨量 </td><td> 地表尖峰加速度 </td><td> 山崩類型 </td><td> 山崩面積 </td><td> 與山崩距離 </td></tr><tr><td> 經緯度A </td><td> 中 </td><td> 440 公厘 </td><td> 0.5g </td><td> 岩屑 崩滑 </td><td> 0.7 公頃 </td><td> 0.7H </td></tr><tr><td> 經緯度B </td><td> 中 </td><td> 480 公厘 </td><td> 0.32g </td><td> 岩屑 崩滑 </td><td> 0.85 公頃 </td><td> 0.45H </td></tr><tr><td> 經緯度C </td><td> 低 </td><td> 650 公厘 </td><td> 0.22g </td><td> 岩屑 崩滑 </td><td> 1.2 公頃 </td><td> 0.75H </td></tr></TBODY></TABLE>Refer to Table 6 below. For the disaster attribute belonging to the landslide, the risk assessment data also includes a landslide potential, a maximum 24-hour cumulative rainfall during a return period, the peak surface acceleration, a landslide type, and a landslide area. And a risk factor such as a landslide distance, wherein the landslide potential, the maximum 24-hour accumulated rainfall during the return period, and the peak surface acceleration are classified as the likelihood factor, and the landslide type, the landslide The area, and the distance from the landslide are classified as the scale factor. In addition, each target latitude and longitude (eg, latitude and longitude A, latitude and longitude B, and longitude and latitude C) corresponds to each risk factor (eg, landslide potential, maximum return period) The risk values for twenty-four hours of accumulated rainfall, surface spike acceleration, landslide type, landslide area, and landslide distance are illustrated in Table 6 below, but are not limited thereto. Table 6  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> landslide</td></tr><tr><td> risk factor target latitude and longitude < /td><td> likelihood factor</td><td> scale factor</td></tr><tr><td> landslide potential</td><td> maximum twenty-four hour return period Cumulative rainfall</td><td> surface peak acceleration</td><td> landslide type</td><td> landslide area</td><td> and landslide distance</td></tr><tr ><td> latitude and longitude A </td><td> </td><td> 440 mm </td><td> 0.5g </td><td> lithic chipping slip</td><td > 0.7 hectares</td><td> 0.7H </td></tr><tr><td> latitude and longitude B </td><td> </td><td> 480 mm</td> <td> 0.32g </td><td> Rock chip collapse</td><td> 0.85 hectare</td><td> 0.45H </td></tr><tr><td> latitude and longitude C </td><td> low </td><td> 650 mm</td><td> 0.22g </td><td> lithic chipping slip</td><td> 1.2 hectares</td ><td> 0.75H </td></tr></TBODY></TABLE>

參閱下表7,對於屬於該淹水的致災屬性,該風險評估資料還包含一警戒雨量值,以及一淹水深度等二種風險因子,其中,該警戒雨量值被分類為該可能性因子,而該淹水深度被分類為該規模因子,此外,每一標的物經緯度(例:經緯度A、經緯度B,以及經緯度C)對應每一風險因子(例:警戒雨量值,及淹水深度)的風險值示例於下表7中,但不以此為限。 表7 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 淹水 </td></tr><tr><td> 風險 因子 標的物 經緯度 </td><td> 可能性因子 </td><td> 規模因子 </td></tr><tr><td> 警戒雨量值 </td><td> 淹水深度 </td></tr><tr><td> 經緯度A </td><td> 550 </td><td> 0m </td></tr><tr><td> 經緯度B </td><td> 490 </td><td> 0.3m </td></tr><tr><td> 經緯度C </td><td> 290 </td><td> 1.2m </td></tr></TBODY></TABLE>Refer to Table 7 below. For the disaster attribute belonging to the flooding, the risk assessment data also includes a warning rainfall value and a flooding depth. The warning rainfall value is classified as the likelihood factor. The flooding depth is classified as the scale factor. In addition, each target latitude and longitude (eg, latitude and longitude A, latitude and longitude B, and longitude and latitude C) corresponds to each risk factor (eg, warning rainfall value, and flooding depth). The risk values are exemplified in Table 7 below, but are not limited thereto. Table 7  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Flooding</td></tr><tr><td> Risk factor target latitude and longitude </td><td> likelihood factor</td><td> scale factor</td></tr><tr><td> warning rainfall value</td><td> flooding depth</td> </tr><tr><td> latitude and longitude A </td><td> 550 </td><td> 0m </td></tr><tr><td> latitude and longitude B </td><td > 490 </td><td> 0.3m </td></tr><tr><td> Latitude and longitude C </td><td> 290 </td><td> 1.2m </td></ Tr></TBODY></TABLE>

參閱下表8,對於屬於該土壤液化的致災屬性,該風險評估資料還包含該地表尖峰加速度、一地下水位深度、一高程,以及一地層等四種風險因子,其中,該地表尖峰加速度與該地下水位深度被分類為該可能性因子,而該高程與該地層被分類為該規模因子,此外,每一標的物經緯度(例:經緯度A、經緯度B,以及經緯度C)對應每一風險因子(例:地表尖峰加速度、地下水位深度、高程,及地層)的風險值示例於下表8中,但不以此為限。 表8 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 土壤液化 </td></tr><tr><td> 風險 因子 標的物 經緯度 </td><td> 可能性因子 </td><td> 規模因子 </td></tr><tr><td> 地表尖峰加速度 </td><td> 地下水位深度 </td><td> 高程 </td><td> 地層 </td></tr><tr><td> 經緯度A </td><td> 0.5g </td><td> 距地表 20m內 </td><td> 25m </td><td> 階地堆積層 </td></tr><tr><td> 經緯度B </td><td> 0.32g </td><td> 距地表 20m內 </td><td> 55m </td><td> 其他 </td></tr><tr><td> 經緯度C </td><td> 0.22g </td><td> 距地表超過20m </td><td> 112m </td><td> 階地堆積層 </td></tr></TBODY></TABLE>Refer to Table 8 below. For the disaster attribute belonging to the soil liquefaction, the risk assessment data also includes four kinds of risk factors: the peak acceleration, a groundwater depth, an elevation, and a stratum. The surface peak acceleration and The groundwater level depth is classified into the probability factor, and the elevation is classified into the scale factor, and in addition, each target latitude and longitude (eg, latitude and longitude A, latitude and longitude B, and longitude and latitude C) corresponds to each risk factor. The risk values for (eg, surface peak acceleration, groundwater depth, elevation, and formation) are shown in Table 8 below, but are not limited thereto. Table 8  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Soil liquefaction</td></tr><tr><td> Risk factor target latitude and longitude </td><td> likelihood factor</td><td> scale factor</td></tr><tr><td> surface peak acceleration</td><td> groundwater level depth</td> <td> elevation </td><td> stratum</td></tr><tr><td> latitude and longitude A </td><td> 0.5g </td><td> within 20m from the surface </ Td><td> 25m </td><td> terrace layer </td></tr><tr><td> latitude and longitude B </td><td> 0.32g </td><td> Within 20m of the surface </td><td> 55m </td><td> Other </td></tr><tr><td> Longitude and latitude C </td><td> 0.22g </td><td > More than 20m from the surface </td><td> 112m </td><td> Terrace layer </td></tr></TBODY></TABLE>

在該實施例中,該等致災屬性資訊分別對應該等致災屬性,而每一致災屬性資訊包含一風險級距評分表,及一危害度分級換算規則。In this embodiment, the disaster-tolerant attribute information respectively corresponds to the disaster-causing attribute, and each of the consistent disaster attribute information includes a risk level score table and a risk degree classification conversion rule.

該等致災屬性資訊包含一活動斷層資訊、一地震資訊、一土石流資訊、一山崩資訊、一淹水資訊,以及一土壤液化資訊,但不以此為限。The disaster attribute information includes an activity fault information, an earthquake information, a soil flow information, a landslide information, a flooding information, and a soil liquefaction information, but not limited thereto.

每一致災屬性對應的該風險級距評分表包括所對應之致災屬性對應的該等風險因子、每一風險因子各自所對應的多個分級級距,以及每一分級級距所對應的級距評分。The risk level score table corresponding to each consistent disaster attribute includes the risk factors corresponding to the corresponding disaster-causing attributes, the plurality of hierarchical steps corresponding to each risk factor, and the level corresponding to each hierarchical level Distance score.

每一致災屬性對應的該危害度分級換算規則包括一可能性因子公式、一規模因子公式,以及一換算矩陣,該換算矩陣具有多個可能性因子級距、多個規模因子級距,及每一可能性因子級距相對於每一規模因子級距各自所對應的一危害等級。The hazard grading conversion rule corresponding to each consistent disaster attribute includes a likelihood factor formula, a scale factor formula, and a conversion matrix having a plurality of likelihood factor intervals, a plurality of scale factor intervals, and each A likelihood factor step is a hazard level corresponding to each of the scale factor intervals.

參閱下表9,對於屬於該活動斷層的致災屬性所對應的致災屬性資訊,該風險級距評分表包含該發生規模6.5地震之機率 F 1、該與斷層線之距離 M 1,以及該斷層上下盤倍率 M 2等三種風險因子,其中,該發生規模6.5地震之機率 F 1被分類為該可能性因子 M 1,而該與斷層線之距離與該斷層上下盤倍率 M 2被分類為該規模因子,此外,每一風險因子各自所對應的該等分級級距,以及每一分級級距所對應的級距評分示例於下表9中,但不以此為限。 表9 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 活動斷層 </td></tr><tr><td> 因子類別 </td><td> 風險因子 </td><td> 編號 </td><td> 分級級距 </td><td> 級距評分 </td></tr><tr><td> 可能性因子 </td><td> 發生規模6.5地震之機率 </td><td> F<sub>1</sub></td><td> 0%~10% </td><td> 20 </td></tr><tr><td> 10%~20% </td><td> 40 </td></tr><tr><td> 20%~30% </td><td> 60 </td></tr><tr><td> >30% </td><td> 100 </td></tr><tr><td> 規模因子 </td><td> 與斷層線之距離 </td><td> M<sub>1</sub></td><td> <30m </td><td> 50 </td></tr><tr><td> 30~50m </td><td> 30 </td></tr><tr><td> 50~100m </td><td> 10 </td></tr><tr><td> >100m </td><td> 0 </td></tr><tr><td> 斷層上下盤倍率 </td><td> M<sub>2</sub></td><td> 上盤 </td><td> 2 </td></tr><tr><td> 下盤 </td><td> 1 </td></tr></TBODY></TABLE>Referring to Table 9 below, for the disaster attribute information corresponding to the disaster attribute belonging to the active fault, the risk level score table includes the probability F 1 of the magnitude 6.5 earthquake, the distance M 1 from the fault line, and the There are three risk factors such as the fault upper and lower disk magnification M 2 , wherein the probability F 1 of the occurrence of the scale 6.5 earthquake is classified as the likelihood factor M 1 , and the distance from the fault line and the upper and lower disk magnification M 2 are classified as The scale factor, in addition, the rank ranks corresponding to each risk factor, and the rank scores corresponding to each graded pitch are exemplified in the following Table 9, but are not limited thereto. Table 9 <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td> active fault</td></tr><tr><td> factor category</td><td> Risk Factor</td><td>Number</td><td> Grading Spacing</td><td> Spacing Score</td></tr><tr><td> Possibility factor</td><td> probability of occurrence of scale 6.5 earthquake</td><td>F<sub>1</sub></td><td> 0%~10% </td><td > 20 </td></tr><tr><td> 10%~20% </td><td> 40 </td></tr><tr><td> 20%~30% </ Td><td> 60 </td></tr><tr><td>>30%</td><td> 100 </td></tr><tr><td> scale factor</td ><td> Distance from fault line</td><td>M<sub>1</sub></td><td><30m</td><td> 50 </td></tr><tr><td> 30~50m </td><td> 30 </td></tr><tr><td> 50~100m </td><td> 10 </td></tr><tr><td>>100m</td><td> 0 </td></tr><tr><td> Fault Upper and Lower Disk Magnification</td><td>M<sub>2</sub></td><td> Upper plate</td><td> 2 </td></tr><tr><td> Lower plate</td><td> 1 </td></tr></TBODY></TABLE>

對於屬於該活動斷層的致災屬性所對應的致災屬性資訊,該活動斷層對應的可能性因子公式為 S 1=F 1、該活動斷層對應的規模因子公式為 S 2=M 1×M 2,而該活動斷層對應的換算矩陣如下表10,此外,每一可能性因子級距相對於每一規模因子級距各自所對應的一危害等級示例於下表10中,但不以此為限。 表10 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 活動斷層 換算矩陣 </td><td> 可能性因子評分(S<sub>1</sub>) </td></tr><tr><td> 80~100 </td><td> 50~80 </td><td> 0~50 </td></tr><tr><td> 規模因子 評分(S<sub>2</sub>) </td><td> 80~100 </td><td> 5 </td><td> 4 </td><td> 3 </td></tr><tr><td> 50~80 </td><td> 4 </td><td> 3 </td><td> 2 </td></tr><tr><td> 0~50 </td><td> 3 </td><td> 2 </td><td> 1 </td></tr></TBODY></TABLE>For the disaster attribute information corresponding to the disaster attribute belonging to the active fault, the probability factor corresponding to the active fault is S 1 = F 1 , and the scale factor corresponding to the active fault is S 2 = M 1 × M 2 The conversion matrix corresponding to the active fault is as shown in Table 10 below. In addition, each hazard level corresponding to each scale factor step is corresponding to a hazard level corresponding to each scale factor in the following Table 10, but not limited thereto. . Table 10 <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td> active fault conversion matrix</td><td> probability factor score (S<sub >1</sub>) </td></tr><tr><td> 80~100 </td><td> 50~80 </td><td> 0~50 </td></ Tr><tr><td> scale factor score (S<sub>2</sub>) </td><td> 80~100 </td><td> 5 </td><td> 4 </ Td><td> 3 </td></tr><tr><td> 50~80 </td><td> 4 </td><td> 3 </td><td> 2 </td ></tr><tr><td> 0~50 </td><td> 3 </td><td> 2 </td><td> 1 </td></tr></TBODY></TABLE>

參閱下表11,對於屬於該地震的致災屬性所對應的致災屬性資訊,該風險級距評分表包含該尖峰地表加速度 F 2,以及該地表下之剪力波速 M 3等二種風險因子,其中,該尖峰地表加速度 F 2被分類為該可能性因子,而該地表下之剪力波速 M 3被分類為該規模因子,此外,每一風險因子各自所對應的該等分級級距,以及每一分級級距所對應的級距評分示例於下表11中,但不以此為限。 表11 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 地震 </td></tr><tr><td> 因子類別 </td><td> 風險因子 </td><td> 編號 </td><td> 分級級距 </td><td> 級距評分 </td></tr><tr><td> 可能性因子 </td><td> 尖峰地表加速度 </td><td> F<sub>2</sub></td><td> 0~0.23g </td><td> 30 </td></tr><tr><td> 0.23~0.33g </td><td> 40 </td></tr><tr><td> 0.33~0.48g </td><td> 60 </td></tr><tr><td> 0.48~0.66g </td><td> 80 </td></tr><tr><td> >0.66g </td><td> 100 </td></tr><tr><td> 規模因子 </td><td> 地表下之剪力波速 </td><td> M<sub>3</sub></td><td> 0~180m/s </td><td> 100 </td></tr><tr><td> 180~300 m/s </td><td> 70 </td></tr><tr><td> 300~500 m/s </td><td> 40 </td></tr><tr><td> >500 m/s </td><td> 0 </td></tr></TBODY></TABLE>Refer to Table 11 below. For the disaster attribute information corresponding to the disaster attribute of the earthquake, the risk level score table includes the peak surface acceleration F 2 and the shear wave velocity M 3 under the surface. Wherein the peak surface acceleration F 2 is classified as the likelihood factor, and the shear wave velocity M 3 under the surface is classified as the scale factor, and further, each of the risk factors corresponds to the hierarchical step, And the step scores corresponding to each hierarchical step are exemplified in the following Table 11, but are not limited thereto. Table 11 <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td>Earthquake</td></tr><tr><td> Factor category</ Td><td> risk factor</td><td>number</td><td> hierarchical distance</td><td> level score</td></tr><tr><td> possible Sex factor </td><td> peak surface acceleration</td><td>F<sub>2</sub></td><td> 0~0.23g </td><td> 30 </td ></tr><tr><td> 0.23~0.33g </td><td> 40 </td></tr><tr><td> 0.33~0.48g </td><td> 60 </td></tr><tr><td> 0.48~0.66g </td><td> 80 </td></tr><tr><td>>0.66g</td><td> 100 </td></tr><tr><td> scale factor</td><td> shear wave velocity under the surface</td><td>M<sub>3</sub></td><Td> 0~180m/s </td><td> 100 </td></tr><tr><td> 180~300 m/s </td><td> 70 </td></tr ><tr><td> 300~500 m/s </td><td> 40 </td></tr><tr><td>>500 m/s </td><td> 0 </ Td></tr></TBODY></TABLE>

對於屬於該地震的致災屬性所對應的致災屬性資訊,該地震對應的可能性因子公式為 S 3=F 2、該地震對應的規模因子公式為 S 4=M 3,而該地震對應的換算矩陣如下表12,此外,每一可能性因子級距相對於每一規模因子級距各自所對應的一危害等級示例於下表12中,但不以此為限。 表12 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 地震 換算矩陣 </td><td> 可能性因子評分(S<sub>3</sub>) </td></tr><tr><td> 70~100 </td><td> 50~70 </td><td> 30~50 </td><td> 0~30 </td></tr><tr><td> 規模因子評分(S<sub>4</sub>) </td><td> 70~100 </td><td> 5 </td><td> 5 </td><td> 4 </td><td> 3 </td></tr><tr><td> 50~70 </td><td> 5 </td><td> 4 </td><td> 3 </td><td> 2 </td></tr><tr><td> 30~50 </td><td> 4 </td><td> 3 </td><td> 2 </td><td> 1 </td></tr><tr><td> 0~30 </td><td> 3 </td><td> 2 </td><td> 1 </td><td> 1 </td></tr></TBODY></TABLE>For the disaster attribute information corresponding to the disaster attribute of the earthquake, the probability factor formula corresponding to the earthquake is S 3 = F 2 , and the scale factor formula corresponding to the earthquake is S 4 = M 3 , and the earthquake corresponds to The conversion matrix is as shown in Table 12 below. In addition, a hazard level corresponding to each scale factor step relative to each scale factor step is illustrated in Table 12 below, but is not limited thereto. Table 12 <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td> Earthquake Conversion Matrix</td><td> Possibility Factor Rating (S<sub>3</sub>)</td></tr><tr><td> 70~100 </td><td> 50~70 </td><td> 30~50 </td><td> 0~30 </td></tr><tr><td> Scale factor score (S<sub>4</sub>) </td><td> 70~100 </td><td> 5 </td><td> 5 </td><td> 4 </td><td> 3 </td></tr><tr><td> 50~70 </td><td> 5 </ Td><td> 4 </td><td> 3 </td><td> 2 </td></tr><tr><td> 30~50 </td><td> 4 </td ><td> 3 </td><td> 2 </td><td> 1 </td></tr><tr><td> 0~30 </td><td> 3 </td><td> 2 </td><td> 1 </td><td> 1 </td></tr></TBODY></TABLE>

參閱下表13,對於屬於該土石流的致災屬性所對應的致災屬性資訊,該風險級距評分表包含該土石流潛勢溪流風險潛勢等級 F 3、該土石流警戒基準值 F 4、該土石流潛勢溪流距離 M 4,以及該土石流潛勢溪流影響範圍距離 M 5等四種風險因子,其中,該土石流潛勢溪流風險潛勢等級 F 3與該土石流警戒基準值 F 4被分類為該可能性因子,而該土石流潛勢溪流距離 M 4與該土石流潛勢溪流影響範圍距離 M 5被分類為該規模因子,此外,每一風險因子各自所對應的該等分級級距,以及每一分級級距所對應的級距評分示例於下表13中,但不以此為限。 表13 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 土石流 </td></tr><tr><td> 因子類別 </td><td> 風險因子 </td><td> 編號 </td><td> 分級級距 </td><td> 級距評分 </td></tr><tr><td> 可能性因子 </td><td> 土石流潛勢溪流風險潛勢等級 </td><td> F<sub>3</sub></td><td> 高 </td><td> 40 </td></tr><tr><td> 中 </td><td> 30 </td></tr><tr><td> 低 </td><td> 10 </td></tr><tr><td> 持續觀察 </td><td> 5 </td></tr><tr><td> 土石流警戒基準值 </td><td> F<sub>4</sub></td><td> 200~300mm </td><td> 35 </td></tr><tr><td> 300~400mm </td><td> 20 </td></tr><tr><td> 400~500mm </td><td> 10 </td></tr><tr><td> 500~600mm </td><td> 0 </td></tr><tr><td> 規模因子 </td><td> 土石流潛勢溪流距離 </td><td> M<sub>4</sub></td><td> 10m以下 </td><td> 100 </td></tr><tr><td> 10~20m </td><td> 60 </td></tr><tr><td> 20~30m </td><td> 30 </td></tr><tr><td> 30~40m </td><td> 5 </td></tr><tr><td> 土石流潛勢溪流影響範圍距離 </td><td> M<sub>5</sub></td><td> 原有影響範圍 </td><td> 100 </td></tr><tr><td> 0~10%面積 </td><td> 60 </td></tr><tr><td> 10~20%面積 </td><td> 30 </td></tr></TBODY></TABLE>Referring to Table 13 below, for the disaster attribute information corresponding to the disaster attribute of the earth-rock flow, the risk level score table includes the earth-rock flow potential flow potential level F 3 , the earth-rock flow warning reference value F 4 , the earth-rock flow The potential stream distance M 4 and the influence range of the earth-rock flow potential stream distance M 5 are four risk factors, wherein the earth-rock flow potential stream potential level F 3 and the earth-rock flow warning reference value F 4 are classified as the possibility a sex factor, and the earth-rock flow potential flow distance M 4 and the earth-rock flow potential flow range distance M 5 are classified as the scale factor, and, in addition, each of the risk factors corresponds to the hierarchical step size, and each grade The step scores corresponding to the step distance are exemplified in Table 13 below, but are not limited thereto. Table 13 <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td> Earth and Stone Flow</td></tr><tr><td> Factor Category</ Td><td> risk factor</td><td>number</td><td> hierarchical distance</td><td> level score</td></tr><tr><td> possible Sex factor </td><td> Earth and rock flow potential risk potential level</td><td>F<sub>3</sub></td><td>high</td><td> 40 </td></tr><tr><td>Medium</td><td> 30 </td></tr><tr><td>Low</td><td> 10 </td></tr><tr><td> Continuous observation</td><td> 5 </td></tr><tr><td> Earth and rock flow warning reference value</td><td>F<sub>4</sub></td><td> 200~300mm </td><td> 35 </td></tr><tr><td> 300~400mm </td><td> 20 </td></tr><tr><td> 400~500mm </td><td> 10 </td></tr><tr><td> 500~600mm </td><td> 0 </td></tr><tr><td> scale factor</td><td> earth-rock flow potential stream distance</td><td>M<sub>4</sub></td><td> below 10m</td><td> 100 </td></tr><tr><td> 10~20m </td><td> 60 </td></tr><tr><td> 20~30m </td><td> 30 </td></tr><tr><td> 30~40m </td><td> 5 </td></tr><tr><td> Earth and Rock Flow Potential Stream Influence range distance </td><td>M<sub>5</sub></td><td> Scope of influence </td><td> 100 </td></tr><tr><td> 0~10% area</td><td> 60 </td></tr><tr><td > 10~20% area</td><td> 30 </td></tr></TBODY></TABLE>

對於屬於該土石流的致災屬性所對應的致災屬性資訊,該土石流對應的可能性因子公式為 S 5=F 3+F 4、該土石流對應的規模因子公式為 S 6=MAX{ M 4, M 5},亦即取 M 4和 M 5兩者中級距評分較高者,而該土石流對應的換算矩陣如下表14,此外,每一可能性因子級距相對於每一規模因子級距各自所對應的一危害等級示例於下表14中,但不以此為限。 表14 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 土石流 換算矩陣 </td><td> 可能性因子評分(S<sub>5</sub>) </td></tr><tr><td> 70~100 </td><td> 40~70 </td><td> 0~40 </td></tr><tr><td> 規模因子 評分(S<sub>6</sub>) </td><td> 70~100 </td><td> 5 </td><td> 4 </td><td> 3 </td></tr><tr><td> 40~70 </td><td> 4 </td><td> 3 </td><td> 2 </td></tr><tr><td> 0~40 </td><td> 3 </td><td> 2 </td><td> 1 </td></tr></TBODY></TABLE>For the disaster attribute information corresponding to the disaster attribute of the earth-rock flow, the probability factor corresponding to the earth-rock flow is S 5= F 3 +F 4 , and the scale factor corresponding to the earth-rock flow is S 6= MAX{ M 4 , M 5 }, that is, the higher the intermediate level scores of both M 4 and M 5 , and the conversion matrix corresponding to the earth and stone flow is as shown in Table 14 in addition, and each likelihood factor step is relative to each scale factor level. A corresponding hazard level is exemplified in Table 14 below, but is not limited thereto. Table 14 <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td> Earth and Stone Flow Conversion Matrix</td><td> Probability Factor Score (S<sub>5</sub>)</td></tr><tr><td> 70~100 </td><td> 40~70 </td><td> 0~40 </td></tr ><tr><td> Scale factor score (S<sub>6</sub>) </td><td> 70~100 </td><td> 5 </td><td> 4 </td ><td> 3 </td></tr><tr><td> 40~70 </td><td> 4 </td><td> 3 </td><td> 2 </td></tr><tr><td> 0~40 </td><td> 3 </td><td> 2 </td><td> 1 </td></tr></TBODY></TABLE>

參閱下表15,對於屬於該山崩的致災屬性所對應的致災屬性資訊,該風險級距評分表包含該山崩潛勢 F 5、該重現期最大二十四小時累積雨量 F 6、該尖峰地表加速度 F 2、該山崩類型 M 6、該山崩面積 M 7,以及該與山崩距離 M 8等六種風險因子,其中,該山崩潛勢 F 5、該重現期最大二十四小時累積雨量 F 6,以及該尖峰地表加速度 F 2被分類為該可能性因子,而該山崩類型 M 6、該山崩面積 M 7,以及該與山崩距離 M 8被分類為該規模因子,此外,每一風險因子各自所對應的該等分級級距,以及每一分級級距所對應的級距評分示例於下表15中,但不以此為限。 表15 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 山崩 </td></tr><tr><td> 因子類別 </td><td> 風險因子 </td><td> 編號 </td><td> 分級級距 </td><td> 級距評分 </td></tr><tr><td> 可能性因子 </td><td> 山崩潛勢 </td><td> F<sub>5</sub></td><td> 高 </td><td> 50 </td></tr><tr><td> 中 </td><td> 35 </td></tr><tr><td> 低 </td><td> 10 </td></tr><tr><td> 重現期最大二十四小時累積雨量 </td><td> F<sub>6</sub></td><td> >750公厘 </td><td> 50 </td></tr><tr><td> 600~750 公厘 </td><td> 40 </td></tr><tr><td> 450~600 公厘 </td><td> 25 </td></tr><tr><td> 300~450 公厘 </td><td> 15 </td></tr><tr><td> <300公厘 </td><td> 5 </td></tr><tr><td> 地表尖峰加速度 </td><td> F<sub>2</sub></td><td> 0~0.23g </td><td> 30 </td></tr><tr><td> 0.23~0.33g </td><td> 40 </td></tr><tr><td> 0.33~0.48g </td><td> 60 </td></tr><tr><td> 0.48~0.66g </td><td> 80 </td></tr><tr><td> >0.66g </td><td> 100 </td></tr><tr><td> 規模因子 </td><td> 山崩類型 </td><td> M<sub>6</sub></td><td> 順向坡 </td><td> 2 </td></tr><tr><td> 岩體滑動 </td><td> 1.5 </td></tr><tr><td> 落石 </td><td> 1.2 </td></tr><tr><td> 岩屑崩滑 </td><td> 1 </td></tr><tr><td> 山崩面積 </td><td> M<sub>7</sub></td><td> 10公頃以上 </td><td> 25 </td></tr><tr><td> 5~10公頃 </td><td> 20 </td></tr><tr><td> 1~5公頃 </td><td> 15 </td></tr><tr><td> 1公頃以下 </td><td> 10 </td></tr><tr><td> 與山崩距離 </td><td> M<sub>8</sub></td><td> 0.5H以下 </td><td> 25 </td></tr><tr><td> 0.5H~1H </td><td> 15 </td></tr><tr><td> 1H~2H </td><td> 5 </td></tr></TBODY></TABLE>Referring to Table 15 below, for the disaster attribute information corresponding to the disaster attribute of the landslide, the risk level score table includes the landslide potential F 5 and the maximum 24-hour accumulated rainfall F 6 of the return period, The peak surface acceleration F 2 , the landslide type M 6 , the landslide area M 7 , and the risk factor of the landslide distance M 8 , wherein the landslide potential F 5 , the maximum twenty-four hour accumulation of the return period The rainfall amount F 6 and the peak surface acceleration F 2 are classified as the likelihood factor, and the landslide type M 6 , the landslide area M 7 , and the landslide distance M 8 are classified as the scale factor, and further, each The hierarchical ranks corresponding to the risk factors and the grade scores corresponding to each graded pitch are exemplified in Table 15 below, but are not limited thereto. Table 15 <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td>landslide</td></tr><tr><td> factor category</ Td><td> risk factor</td><td>number</td><td> hierarchical distance</td><td> level score</td></tr><tr><td> possible Sex factor </td><td> landslide potential </td><td>F<sub>5</sub></td><td> high </td><td> 50 </td></ Tr><tr><td></td><td> 35 </td></tr><tr><td>low</td><td> 10 </td></tr><tr ><td> Maximum 24-hour accumulated rainfall during the return period</td><td>F<sub>6</sub></td><td>>750mm</td><td> 50 </td></tr><tr><td> 600~750 mm</td><td> 40 </td></tr><tr><td> 450~600 mm</td><Td> 25 </td></tr><tr><td> 300~450 mm</td><td> 15 </td></tr><tr><td><300mm</Td><td> 5 </td></tr><tr><td> Surface peak acceleration</td><td>F<sub>2</sub></td><td> 0~0.23g </td><td> 30 </td></tr><tr><td> 0.23~0.33g </td><td> 40 </td></tr><tr><td> 0.33~ 0.48g </td><td> 60 </td></tr><tr><td> 0.48~0.66g </td><td> 80 </td></tr><tr><td>>0.66g</td><td> 100 </td></tr><tr><td> scale factor</td><td> landslide type</td><td>M<sub>6</sub></td><td>顺坡坡</td><td> 2 </td></tr><tr><td> rock mass sliding</td><td> 1.5 </td></tr><tr><td>Rockfall</td><td> 1.2 </td></tr><tr><td> Rock debris collapse</td><td> 1 </td></tr><tr><td> landslide area</td><td>M<sub>7</sub></td><td> 10 hectares or more</td><td> 25 </td></tr><tr><td> 5~10 hectares</td><td> 20 </td></tr><tr><td> 1~5 hectares</td><td> 15 </td></tr><tr><td> below 1 hectare</td><td> 10 </td></tr><tr><td> distance from landslide</td><td>M<sub>8</sub></td><td> below 0.5H</td><td> 25 </td></tr><tr><td> 0.5H~1H </td><Td> 15 </td></tr><tr><td> 1H~2H </td><td> 5 </td></tr></TBODY></TABLE>

對於屬於該山崩的致災屬性所對應的致災屬性資訊,該山崩對應的可能性因子公式為 S 7=MAX{F 5+F 6, F 5+F 2},亦即取 (F 5+F 6) 和 (F 5+F 2) 兩者中級距評分較高者,而該山崩對應的規模因子公式為 S 8=M 6×(M 7+M 8),而該山崩對應的換算矩陣如下表16,此外,每一可能性因子級距相對於每一規模因子級距各自所對應的一危害等級示例於下表16中,但不以此為限。 表16 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 山崩 換算矩陣 </td><td> 可能性因子評分(S<sub>7</sub>) </td></tr><tr><td> 70~100 </td><td> 25~70 </td><td> 0~25 </td></tr><tr><td> 規模因子 評分(S<sub>8</sub>) </td><td> 70~100 </td><td> 5 </td><td> 4 </td><td> 3 </td></tr><tr><td> 25~70 </td><td> 4 </td><td> 3 </td><td> 2 </td></tr><tr><td> 0~25 </td><td> 3 </td><td> 2 </td><td> 1 </td></tr></TBODY></TABLE>For the disaster attribute information corresponding to the disaster attribute of the landslide, the likelihood factor corresponding to the landslide is S 7= MAX{F 5 +F 6 , F 5 +F 2 }, that is, taking (F 5 +F 6 ) And (F 5 +F 2 ) both have higher rankings, and the scale factor corresponding to the landslide is S 8= M 6 ×(M 7 +M 8 ), and the conversion matrix corresponding to the landslide is as shown in Table 16 below. For each of the probability factor levels, a hazard level corresponding to each scale factor step is exemplified in the following Table 16, but is not limited thereto. Table 16 <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td> landslide conversion matrix</td><td> probability factor score (S<sub>7</sub>)</td></tr><tr><td> 70~100 </td><td> 25~70 </td><td> 0~25 </td></tr ><tr><td> Scale factor score (S<sub>8</sub>) </td><td> 70~100 </td><td> 5 </td><td> 4 </td ><td> 3 </td></tr><tr><td> 25~70 </td><td> 4 </td><td> 3 </td><td> 2 </td></tr><tr><td> 0~25 </td><td> 3 </td><td> 2 </td><td> 1 </td></tr></TBODY></TABLE>

參閱下表17,對於屬於該淹水的致災屬性所對應的致災屬性資訊,該風險級距評分表包含該警戒雨量值 F 7,以及該淹水深度 M 9等二種風險因子,其中,該警戒雨量值 F 7被分類為該可能性因子,而該淹水深度 M 9被分類為該規模因子,此外,每一風險因子各自所對應的該等分級級距,以及每一分級級距所對應的級距評分示例於下表17中,但不以此為限。 表17 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 淹水 </td></tr><tr><td> 因子類別 </td><td> 風險因子 </td><td> 編號 </td><td> 分級級距 </td><td> 級距評分 </td></tr><tr><td> 可能性因子 </td><td> 警戒雨量值 </td><td> F<sub>7</sub></td><td> 200~300 </td><td> 100 </td></tr><tr><td> 300~400 </td><td> 80 </td></tr><tr><td> 400~500 </td><td> 60 </td></tr><tr><td> 500~700 </td><td> 10 </td></tr><tr><td> 規模因子 </td><td> 淹水深度 </td><td> M<sub>9</sub></td><td> 3m以上 </td><td> 100 </td></tr><tr><td> 2~3m </td><td> 100 </td></tr><tr><td> 1~2m </td><td> 90 </td></tr><tr><td> 0~1m </td><td> 80 </td></tr><tr><td> 0m </td><td> 0 </td></tr></TBODY></TABLE>Referring to Table 17 below, for the disaster attribute information corresponding to the flooding attribute of the flooding, the risk level score table includes the warning rainfall value F 7 and the flooding depth M 9 and the like, wherein The warning rainfall value F 7 is classified as the likelihood factor, and the flooding depth M 9 is classified into the scale factor, and further, each of the risk factors corresponds to the hierarchical step, and each hierarchical level Examples of the pitch scores corresponding to the distances are shown in Table 17, below, but are not limited thereto. Table 17 <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td>Flooding</td></tr><tr><td> Factor Category</td><td> Risk Factor</td><td>Number</td><td> Grading Spacing</td><td> Spacing Score</td></tr><tr><td> Possibility factor</td><td> warning rainfall value</td><td>F<sub>7</sub></td><td> 200~300 </td><td> 100 </td ></tr><tr><td> 300~400 </td><td> 80 </td></tr><tr><td> 400~500 </td><td> 60 </td ></tr><tr><td> 500~700 </td><td> 10 </td></tr><tr><td> scale factor</td><td> depth of flooding </ Td><td>M<sub>9</sub></td><td> 3m or more</td><td> 100 </td></tr><tr><td> 2~3m </ Td><td> 100 </td></tr><tr><td> 1~2m </td><td> 90 </td></tr><tr><td> 0~1m </ Td><td> 80 </td></tr><tr><td> 0m </td><td> 0 </td></tr></TBODY></TABLE>

對於屬於該淹水的致災屬性所對應的致災屬性資訊,該淹水對應的可能性因子公式為 S 9=F 7、該淹水對應的規模因子公式為 S 10=M 9,而該淹水對應的換算矩陣如下表18,此外,每一可能性因子級距相對於每一規模因子級距各自所對應的一危害等級示例於下表18中,但不以此為限。 表18 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 淹水 換算矩陣 </td><td> 可能性因子評分(S<sub>9</sub>) </td></tr><tr><td> 80~100 </td><td> 60~80 </td><td> 40~60 </td><td> 0~40 </td></tr><tr><td> 規模因子評分(S<sub>10</sub>) </td><td> 80~100 </td><td> 5 </td><td> 5 </td><td> 4 </td><td> 3 </td></tr><tr><td> 60~80 </td><td> 5 </td><td> 4 </td><td> 3 </td><td> 2 </td></tr><tr><td> 40~60 </td><td> 4 </td><td> 3 </td><td> 2 </td><td> 1 </td></tr><tr><td> 0~40 </td><td> 3 </td><td> 2 </td><td> 1 </td><td> 1 </td></tr></TBODY></TABLE>For the disaster attribute information corresponding to the disaster attribute attributed to the flooding, the probability factor formula corresponding to the flooding is S 9= F 7 , and the scale factor formula corresponding to the flooding is S 10= M 9 , and the The conversion matrix corresponding to the flooding is as shown in Table 18 below. In addition, a hazard level corresponding to each factor factor step relative to each scale factor step is exemplified in the following Table 18, but is not limited thereto. Table 18 <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td> Flooding conversion matrix</td><td> likelihood factor score (S<sub >9</sub>) </td></tr><tr><td> 80~100 </td><td> 60~80 </td><td> 40~60 </td><td > 0~40 </td></tr><tr><td> Scale factor score (S<sub>10</sub>) </td><td> 80~100 </td><td> 5 </td><td> 5 </td><td> 4 </td><td> 3 </td></tr><tr><td> 60~80 </td><td> 5 </td><td> 4 </td><td> 3 </td><td> 2 </td></tr><tr><td> 40~60 </td><td> 4 </ Td><td> 3 </td><td> 2 </td><td> 1 </td></tr><tr><td> 0~40 </td><td> 3 </td ><td> 2 </td><td> 1 </td><td> 1 </td></tr></TBODY></TABLE>

參閱下表19,對於屬於該土壤液化的致災屬性所對應的致災屬性資訊,該風險級距評分表包含該地表尖峰加速度 F 2、該地下水位深度 F 8、該高程 M 10,以及該地層 M 11等四種風險因子,其中,該地表尖峰加速度 F 2與該地下水位深度 F 8被分類為該可能性因子,而該高程 M 10與該地層 M 11被分類為該規模因子,此外,每一風險因子各自所對應的該等分級級距,以及每一分級級距所對應的級距評分示例於下表19中,但不以此為限。 表19 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 土壤液化 </td></tr><tr><td> 因子類別 </td><td> 風險因子 </td><td> 編號 </td><td> 分級級距 </td><td> 級距評分 </td></tr><tr><td> 可能性因子 </td><td> 地表尖峰加速度 </td><td> F<sub>2</sub></td><td> 0~0.23g </td><td> 30 </td></tr><tr><td> 0.23~0.33g </td><td> 40 </td></tr><tr><td> 0.33~0.48g </td><td> 60 </td></tr><tr><td> 0.48~0.66g </td><td> 80 </td></tr><tr><td> >0.66g </td><td> 100 </td></tr><tr><td> 地下水位深度 </td><td> F<sub>8</sub></td><td> 距離地表20m內 </td><td> 50 </td></tr><tr><td> 距離地表超過20m </td><td> 0 </td></tr><tr><td> 規模因子 </td><td> 高程 </td><td> M<sub>10</sub></td><td> 0~20m </td><td> 40 </td></tr><tr><td> 20~100m </td><td> 0 </td></tr><tr><td> 100m以上或 坡度6%以上 </td><td> 給定 危害等級1 </td></tr><tr><td> 地層 </td><td> M<sub>11</sub></td><td> 沖積層 </td><td> 50 </td></tr><tr><td> 階地堆積層 </td></tr><tr><td> 其他 </td><td> 0 </td></tr></TBODY></TABLE>Referring to Table 19 below, for the disaster attribute information corresponding to the disaster attribute of the soil liquefaction, the risk level score table includes the surface peak acceleration F 2 , the water table depth F 8 , the elevation M 10 , and the Four risk factors, such as formation M 11 , wherein the surface peak acceleration F 2 and the groundwater level depth F 8 are classified as the likelihood factor, and the elevation M 10 and the formation M 11 are classified as the scale factor, The rankings corresponding to each of the risk factors, and the step scores corresponding to each of the hierarchical intervals are exemplified in the following Table 19, but are not limited thereto. Table 19 <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td> Soil liquefaction</td></tr><tr><td> Factor category</td><td> Risk Factor</td><td>Number</td><td> Grading Spacing</td><td> Spacing Score</td></tr><tr><td> Possibility factor</td><td> Surface peak acceleration</td><td>F<sub>2</sub></td><td> 0~0.23g </td><td> 30 </ Td></tr><tr><td> 0.23~0.33g </td><td> 40 </td></tr><tr><td> 0.33~0.48g </td><td> 60 </td></tr><tr><td> 0.48~0.66g </td><td> 80 </td></tr><tr><td>>0.66g</td><td> 100 </td></tr><tr><td> Groundwater depth</td><td>F<sub>8</sub></td><td> Within 20m from the surface </td><Td> 50 </td></tr><tr><td> more than 20m from the surface </td><td> 0 </td></tr><tr><td> scale factor</td><Td> elevation </td><td>M<sub>10</sub></td><td> 0~20m </td><td> 40 </td></tr><tr><td > 20~100m </td><td> 0 </td></tr><tr><td> 100m or more or slope 6% or more</td><td> given hazard level 1 </td></tr><tr><td>Strata</td><td>M<sub>11</sub></td><td> Alluvium </td><td> 50 </td></tr ><tr><td> Terrace Stacking Layer</td></tr><tr><td> Others </ Td><td> 0 </td></tr></TBODY></TABLE>

對於屬於該土壤液化的致災屬性所對應的致災屬性資訊,該土壤液化對應的可能性因子公式為 S 11=F 2+F 8、該土壤液化對應的規模因子公式為 S 12=M 10+M 11,而該土壤液化對應的換算矩陣如下表20,此外,每一可能性因子級距相對於每一規模因子級距各自所對應的一危害等級示例於下表20中,但不以此為限。 表20 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 土壤液化 換算矩陣 </td><td> 可能性因子評分(S<sub>11</sub>) </td></tr><tr><td> 80~100 </td><td> 60~80 </td><td> 40~60 </td><td> 0~40 </td></tr><tr><td> 規模因子評分(S<sub>12</sub>) </td><td> 80~100 </td><td> 5 </td><td> 5 </td><td> 4 </td><td> 3 </td></tr><tr><td> 60~80 </td><td> 5 </td><td> 4 </td><td> 3 </td><td> 2 </td></tr><tr><td> 40~60 </td><td> 4 </td><td> 3 </td><td> 2 </td><td> 1 </td></tr><tr><td> 0~40 </td><td> 3 </td><td> 2 </td><td> 1 </td><td> 1 </td></tr></TBODY></TABLE>For the disaster attribute information corresponding to the disaster attribute of the soil liquefaction, the probability factor formula corresponding to the soil liquefaction is S 11= F 2 +F 8 , and the scale factor formula corresponding to the soil liquefaction is S 12= M 10 +M 11 , and the conversion matrix corresponding to the soil liquefaction is as shown in the following Table 20. In addition, a hazard level corresponding to each factor factor step relative to each scale factor step is exemplified in the following Table 20, but not limit. Table 20 <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td> Soil Liquefaction Conversion Matrix</td><td> Possibility Factor Score (S<sub >11</sub>) </td></tr><tr><td> 80~100 </td><td> 60~80 </td><td> 40~60 </td><td > 0~40 </td></tr><tr><td> Scale factor score (S<sub>12</sub>) </td><td> 80~100 </td><td> 5 </td><td> 5 </td><td> 4 </td><td> 3 </td></tr><tr><td> 60~80 </td><td> 5 </td><td> 4 </td><td> 3 </td><td> 2 </td></tr><tr><td> 40~60 </td><td> 4 </ Td><td> 3 </td><td> 2 </td><td> 1 </td></tr><tr><td> 0~40 </td><td> 3 </td ><td> 2 </td><td> 1 </td><td> 1 </td></tr></TBODY></TABLE>

該使用端2具有定位功能,並且包含一連接該通訊網路101的使用端通訊模組21、一使用端輸入模組22,以及一電連接該使用端通訊模組21與該使用端輸入模組22的使用端處理模組23。The user terminal 2 has a positioning function, and includes a user terminal communication module 21 connected to the communication network 101, a user terminal input module 22, and an electrical connection terminal device communication module 21 and the user terminal input module. The use end of the processing module 23 of 22.

在該實施例中,該伺服端1之實施態樣例如為一個人電腦、一伺服器或一雲端主機,但不以此為限。該使用端2之實施態樣例如為一平板電腦、一筆記型電腦、一智慧型手機或一個人電腦,但不以此為限。In this embodiment, the implementation of the server 1 is, for example, a personal computer, a server, or a cloud host, but is not limited thereto. The implementation of the terminal 2 is, for example, a tablet computer, a notebook computer, a smart phone or a personal computer, but is not limited thereto.

參閱圖1、圖2,以下將藉由本發明風險辨識投保建議及保單估價方法的該實施例來說明該伺服端1,以及該使用端2各元件的運作細節,該風險辨識投保建議及保單估價方法的該實施例包含以下步驟:一步驟61、一步驟62、一步驟63、一步驟64、一步驟65、一步驟66、一步驟67,以及一步驟68。Referring to FIG. 1 and FIG. 2, the following is a description of the operation of the server 1 and the components of the terminal 2 by the embodiment of the risk identification insurance recommendation and the policy evaluation method of the present invention. The risk identification recommendation and the policy valuation are described. This embodiment of the method comprises the following steps: a step 61, a step 62, a step 63, a step 64, a step 65, a step 66, a step 67, and a step 68.

在步驟61中,該使用端處理模組23根據來自該使用端輸入模組22的輸入訊號產生一相關於一目標標的物的目標標的物資訊,並將該目標標的物資訊經由該使用端通訊模組21透過該通訊網路101傳送至該伺服端1。該目標標的物資訊包含該目標標的物之地址,以及一相關於該目標標的物之結構的建物結構資料,其中,該目標標的物之結構為該等建物結構之其中一者。值得特別說明的是,在該實施例中,該目標標的物資訊是包含例如該目標標的物的地址。而在其他實施例中,該目標標的物資訊亦可包含相關於該目標標的物的名稱或關鍵字,使得使用者更直覺地搜尋到該目標標的物。又或者,該目標標的物資訊包含利用該使用端2的定位功能所獲得的該目標標的物之經緯度資料,以達到相同功效。In step 61, the user terminal processing module 23 generates an object information related to a target object according to the input signal from the user input module 22, and communicates the target object information through the user terminal. The module 21 is transmitted to the servo terminal 1 through the communication network 101. The target object information includes an address of the target object, and a structure structure related to the structure of the target object, wherein the target object structure is one of the structure structures. It is particularly worth mentioning that, in this embodiment, the target object information is an address containing, for example, the target object. In other embodiments, the target object information may also include a name or keyword related to the target object, so that the user more intuitively searches for the target object. Alternatively, the target object information includes the latitude and longitude data of the target object obtained by using the positioning function of the user terminal 2 to achieve the same effect.

在步驟62中,該伺服端處理模組13在經由該伺服端通訊模組11接收到該目標標的物資訊後,將該目標標的物資訊轉換成對應的一定位資訊,並自儲存於該伺服端儲存模組12獲得多個皆相關於該目標標的物且分別對應於多種不同災害種類的風險評估等級。值得特別說明的是,在該實施例中,該目標標的物資訊所對應的該定位資訊是經緯度資料。In step 62, after receiving the target object information through the server communication module 11, the server processing module 13 converts the target object information into a corresponding positioning information, and stores the information in the servo. The end storage module 12 obtains a plurality of risk assessment levels that are all related to the target object and respectively correspond to a plurality of different disaster categories. It should be noted that, in this embodiment, the positioning information corresponding to the target object information is latitude and longitude data.

參閱圖3,值得特別說明的是,在該實施例中,步驟62還進一步包含一子步驟621、一子步驟622、一子步驟623,以及一子步驟624之細部流程。Referring to FIG. 3, it is particularly noted that in this embodiment, step 62 further includes a sub-step 621, a sub-step 622, a sub-step 623, and a sub-step 624 detail flow.

在子步驟621中,該伺服端處理模組13在經由該伺服端通訊模組11接收到該目標標的物資訊後,將該目標標的物資訊轉換成對應的該定位資訊,並自儲存於該伺服端儲存模組12中的該等風險評估資料中獲得一對應於該目標標的物資訊的目標風險評估資料。In the sub-step 621, the server processing module 13 converts the target object information into the corresponding positioning information after receiving the target object information through the server communication module 11, and stores the information in the corresponding information. The risk assessment data in the server storage module 12 obtains a target risk assessment data corresponding to the target object information.

在子步驟622中,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的風險級距評分表,將該目標風險評估資料中的該致災屬性的每一風險因子之風險值給予一級距評分,以獲得一包含該致災屬性的每一風險因子之級距評分的評分結果。In the sub-step 622, the server processing module 13 selects the target risk assessment data according to the risk level score table corresponding to the disaster attribute stored in the server storage module 12 for each consistent disaster attribute. The risk value of each risk factor of the disaster-causing attribute is given a first-level distance score to obtain a score result of a step score of each risk factor including the disaster-causing attribute.

參閱圖4,值得特別說明的是,在該實施例中,子步驟622還進一步包含一子步驟622A,以及一子步驟622B之細部流程。Referring to FIG. 4, it is particularly noted that in this embodiment, sub-step 622 further includes a sub-step 622A, and a sub-step 622B detail flow.

在子步驟622A中,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的風險級距評分表,獲得該目標風險評估資料中的該致災屬性的每一風險因子之風險值所屬的一分級級距。In the sub-step 622A, for each consistent disaster attribute, the server processing module 13 obtains the target risk assessment data according to the risk level score table corresponding to the disaster attribute stored in the server storage module 12. The rank of the risk value of each risk factor of the disaster-causing attribute belongs to.

在子步驟622B中,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的風險級距評分表,獲得該目標風險評估資料中的該致災屬性的每一風險因子之風險值所屬的該分級級距所對應的該級距評分,以獲得一包含該致災屬性的每一風險因子之級距評分的評分結果。In the sub-step 622B, the server processing module 13 obtains the target risk assessment data according to the risk level score table corresponding to the disaster attribute stored in the server storage module 12 for each consistent disaster attribute. The rank value corresponding to the risk level of each risk factor of the disaster attribute in the score is scored to obtain a score result of the rank score of each risk factor including the disaster attribute.

請繼續參閱圖3,在子步驟623中,對於每一致災屬性,該伺服端處理模組13將該致災屬性的評分結果,導入儲存於該伺服端儲存模組12中的該致災屬性各自對應的該危害度分級換算規則,以獲得一目標危害等級。Continuing to refer to FIG. 3, in sub-step 623, for each consistent disaster attribute, the server processing module 13 imports the scoring result of the disaster attribute into the disaster attribute stored in the server storage module 12. The corresponding hazard grading conversion rules are respectively obtained to obtain a target hazard level.

參閱圖5,值得特別說明的是,在該實施例中,子步驟623還進一步包含一子步驟623A、一子步驟623B,以及一子步驟623C之細部流程。Referring to FIG. 5, it is particularly noted that in this embodiment, the sub-step 623 further includes a sub-step 623A, a sub-step 623B, and a sub-step 623C.

在子步驟623A中,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性中屬於可能性因子的級距評分及該致災屬性的可能性因子公式,計算一可能性因子評分,並根據儲存於該伺服端儲存模組12中的該致災屬性中屬於規模因子的級距評分及該致災屬性的規模因子公式,計算一規模因子評分。In sub-step 623A, for each consistent disaster attribute, the server processing module 13 is based on the rank score of the likelihood factor and the disaster attribute according to the disaster attribute stored in the server storage module 12. a likelihood factor formula, calculating a likelihood factor score, and calculating a scale according to the scale score belonging to the scale factor and the scale factor formula of the disaster attribute in the disaster attribute stored in the server storage module 12 Factor score.

在子步驟623B中,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的換算矩陣,獲得該致災屬性之可能性因子評分所屬的一可能性因子級距、該致災屬性之規模因子評分所屬的一規模因子級距。In the sub-step 623B, for each of the consistent disaster attributes, the server processing module 13 obtains the probability factor of the disaster attribute according to the conversion matrix corresponding to the disaster attribute stored in the server storage module 12. The probability factor level to which the score belongs, and the scale factor level to which the scale factor score of the disaster attribute belongs.

在子步驟623C中,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的換算矩陣,獲得該致災屬性所屬的可能性因子級距相對於該致災屬性之規模因子評分所屬的規模因子級距所對應的該目標危害等級。In the sub-step 623C, for each of the consistent disaster attributes, the server processing module 13 obtains the possibility that the disaster attribute belongs to according to the conversion matrix corresponding to the disaster attribute stored in the server storage module 12. The target level of hazard corresponding to the scale factor level to which the scale factor score belongs to the scale factor score of the disaster attribute.

請繼續參閱圖3,在子步驟624中,該伺服端根據儲存於該伺服端儲存模組12中的每一致災屬性各自對應的目標危害等級,獲得多個皆相關於該目標標的物且分別對應於多種不同災害種類的風險評估等級。值得特別說明的是,每一災害種類所對應之災害相關於至少一致災屬性。而在該實施例中,該伺服端處理模組13根據屬於該活動斷層之致災屬性的該目標危害等級,及屬於該地震之致災屬性的該目標危害等級獲得一災害種類為地震的地震風險評估等級。該伺服端處理模組13根據屬於該土石流之致災屬性的目標危害等級獲得一災害種類為土石流的土石流風險評估等級。該伺服端處理模組13根據屬於該山崩之致災屬性的目標危害等級獲得一災害種類為山崩的山崩風險評估等級。該伺服端處理模組13根據屬於該淹水之致災屬性的目標危害等級獲得一災害種類為淹水的淹水風險評估等級。該伺服端處理模組13根據屬於該土壤液化之致災屬性的目標危害等級獲得一災害種類為土壤液化的土壤液化風險評估等級。值得一提的是,該伺服端處理模組13係根據屬於該活動斷層之致災屬性的該目標危害等級,及屬於該地震之致災屬性的該目標危害等級中等級較高者作為該地震風險評估等級,而屬於該土石流之致災屬性的目標危害等級、屬於該山崩之致災屬性的目標危害等級、屬於該淹水之致災屬性的目標危害等級及屬於該土壤液化之致災屬性的目標危害等級係分別作為該土石流風險評估等級、該山崩風險評估等級、該淹水風險評估等級及該土壤液化風險評估等級。Referring to FIG. 3, in sub-step 624, the server obtains a plurality of target hazard levels corresponding to each target of each of the consistent disaster attributes stored in the server storage module 12, and respectively obtains a plurality of objects related to the target object and respectively Corresponds to the risk assessment level for many different disaster categories. It is worth noting that the disasters corresponding to each type of disaster are related to at least the same disaster attributes. In this embodiment, the server processing module 13 obtains an earthquake of an earthquake type according to the target hazard level belonging to the disaster attribute of the active fault and the target hazard level belonging to the disaster attribute of the earthquake. Risk assessment level. The servo end processing module 13 obtains a rock and stone flow risk assessment level of the earth and rock flow according to the target hazard level belonging to the disaster attribute of the earth and rock flow. The server processing module 13 obtains a landslide risk assessment level of a landslide according to a target hazard level belonging to the disaster attribute of the landslide. The server processing module 13 obtains a flooding risk assessment level of a flood type according to a target hazard level belonging to the disaster attribute of the flooding. The servo end processing module 13 obtains a soil liquefaction risk assessment level of soil liquefaction according to a target hazard level belonging to the disaster attribute of the soil liquefaction. It is worth mentioning that the server processing module 13 is based on the target hazard level belonging to the disaster attribute of the active fault, and the higher of the target hazard level belonging to the disaster attribute of the earthquake as the earthquake. The risk assessment level, the target hazard level of the disaster attribute of the earth-rock flow, the target hazard level belonging to the disaster attribute of the landslide, the target hazard level belonging to the hazard attribute of the flooding, and the disaster attribute belonging to the soil liquefaction The target hazard level is taken as the land flow risk assessment level, the landslide risk assessment level, the flood risk assessment level, and the soil liquefaction risk assessment level.

請繼續參閱圖2,在步驟63中,該伺服端處理模組13判定儲存於該伺服端儲存模組12中的該等風險評估等級中是否存在至少一位於一第一風險範圍內的第一風險評估等級,及/或至少一位於一第二風險範圍內的第二風險評估等級。當該伺服端處理模組13判定該等風險評估等級中存在至少一位於一第一風險範圍內的第一風險評估等級,及/或存在至少一位於一第二風險範圍內的第二風險評估等級時,流程進行步驟64;當該伺服端處理模組13判定該等風險評估等級中不存在至少一位於一第一風險範圍內的第一風險評估等級,且不存在至少一位於一第二風險範圍內的第二風險評估等級時,流程進行步驟68。在本實施例中,該伺服端處理模組13判定儲存於該伺服端儲存模組12中的該等風險評估等級中是否存在該至少一位於一第一風險範圍內的第一風險評估等級,並判定儲存於該伺服端儲存模組12中的該等風險評估等級中是否存在該至少一位於一第二風險範圍內的第二風險評估等級。然而,在本發明的其他實施例中,該伺服端處理模組13亦可僅判定該等風險評估等級中是否存在該至少一位於一第一風險範圍內的第一風險評估等級,並不限於此。Please continue to refer to FIG. 2. In step 63, the server processing module 13 determines whether there is at least one first in a first risk range among the risk assessment levels stored in the server storage module 12. A risk assessment level, and/or at least one second risk assessment level within a second risk range. When the server processing module 13 determines that there is at least one first risk assessment level in a first risk range, and/or at least one second risk assessment in a second risk range In the case of a level, the process proceeds to step 64; when the server processing module 13 determines that there is no at least one first risk assessment level within a first risk range, and at least one is located in a second When the second risk assessment level is within the risk range, the process proceeds to step 68. In this embodiment, the server processing module 13 determines whether there is at least one first risk assessment level located in a first risk range among the risk assessment levels stored in the server storage module 12. And determining whether the at least one second risk assessment level located in a second risk range exists in the risk assessment levels stored in the server storage module 12. However, in other embodiments of the present invention, the server processing module 13 may only determine whether the at least one first risk assessment level is within a first risk range, and is not limited to the risk assessment level. this.

在步驟64中,該伺服端處理模組13根據該至少一第一風險評估等級所對應的災害種類,及/或該至少一第二風險評估等級所對應的災害種類,產生至少一對應於該至少一第一風險評估等級所對應之災害種類的第一推薦投保項目,及/或至少一對應於該至少一第二風險評估等級所對應之災害種類的第二推薦投保項目,並將該至少一第一推薦投保項目,及/或該至少一第二推薦投保項目經由該伺服端通訊模組11透過該通訊網路101傳送至該使用端2。In step 64, the server processing module 13 generates at least one corresponding to the disaster type corresponding to the at least one first risk assessment level and/or the disaster type corresponding to the at least one second risk assessment level. a first recommended insured item of the disaster category corresponding to the at least one first risk assessment level, and/or at least one second recommended insured item corresponding to the disaster category corresponding to the at least one second risk assessment level, and the at least A first recommended insurance item, and/or the at least one second recommended insurance item is transmitted to the user terminal 2 via the communication network 101 via the server communication module 11.

在步驟65中,該使用端處理模組23根據來自該使用端輸入模組22的輸入訊號,自該至少一第一推薦投保項目,及/或該至少一第二推薦投保項目中,選取至少一欲投保項目,並產生一相關於該至少一欲投保項目的查詢請求,並將該相關於該至少一欲投保項目的查詢請求經由該使用端通訊模組21透過該通訊網路101傳送至該伺服端1。In step 65, the user terminal processing module 23 selects at least one of the at least one first recommended insurance item and/or the at least one second recommended insurance item according to the input signal from the user input module 22 In order to insure an item, and generate a query request related to the at least one item to be insured, and transmit the inquiry request related to the at least one item to be insured via the communication terminal 101 to the communication network 101 Servo terminal 1.

在步驟66中,該伺服端處理模組13在經由該伺服端通訊模組11接收到該相關於該至少一欲投保項目的查詢請求後,對於每一欲投保項目,該伺服端處理模組13根據該欲投保項目所對應之災害種類的風險評估等級,以及儲存於該伺服端儲存模組12中的該災害費率調整表,獲得該欲投保項目所對應之災害種類的風險評估等級所屬之級別所對應的一災害權重係數,同時,根據該建物結構資料,以及儲存於該伺服端儲存模組12中的該建物費率調整表,獲得該目標標的物所屬之建物結構的一建物權重係數,最後,根據所獲得的該災害權重係數,以及該建物權重係數計算並獲得該欲投保項目所對應的保費費率。值得特別說明的是,在該實施例中,該欲投保項目所對應的保費費率係藉由將一預設的基本費率乘上所獲得的該災害權重係數並乘上所獲得的該建物權重係數而獲得。此外,在該實施例中,該伺服端處理模組13是根據該欲投保項目所對應之災害種類的風險評估等級與該建物結構資料,及該伺服端儲存模組12中的該災害費率調整表與該建物費率調整表,計算並獲得該欲投保項目所對應的保費費率,而在其他實施例中,該伺服端處理模組13可僅根據該欲投保項目所對應之災害種類的風險評估等級,以及儲存於該伺服端儲存模組12中的該災害費率調整表,獲得該欲投保項目所對應的保費費率。故在其他實施例中,該伺服端處理模組13係先根據該欲投保項目所對應之災害種類的風險評估等級,以及儲存於該伺服端儲存模組12中的該災害費率調整表,獲得該欲投保項目所對應之災害種類的風險評估等級所屬之級別所對應的該災害權重係數,再根據該災害權重係數計算並獲得該欲投保項目所對應的保費費率。In step 66, after receiving the query request related to the at least one insured item via the server communication module 11, the server processing module 13 processes the server processing module for each item to be insured. According to the risk assessment level of the disaster type corresponding to the insured item and the disaster rate adjustment table stored in the server storage module 12, the risk assessment level of the disaster type corresponding to the item to be insured is obtained. a disaster weight coefficient corresponding to the level, and at the same time, according to the structure data of the building, and the construction rate adjustment table stored in the server storage module 12, obtaining a building weight of the building structure to which the target object belongs Coefficient, finally, calculating and obtaining the premium rate corresponding to the item to be insured according to the obtained disaster weight coefficient and the building weight coefficient. It should be particularly noted that, in this embodiment, the premium rate corresponding to the item to be insured is obtained by multiplying a predetermined basic rate by the obtained disaster weight coefficient and multiplying the obtained building. Obtained by the weight coefficient. In addition, in this embodiment, the server processing module 13 is based on the risk assessment level of the disaster type corresponding to the item to be insured and the structure structure data, and the disaster rate in the server storage module 12. The adjustment table and the construction rate adjustment table calculate and obtain the premium rate corresponding to the item to be insured, and in other embodiments, the server processing module 13 may only be based on the type of disaster corresponding to the item to be insured. The risk assessment level, and the disaster rate adjustment table stored in the server storage module 12, obtain the premium rate corresponding to the item to be insured. In other embodiments, the server processing module 13 is based on the risk assessment level of the disaster type corresponding to the item to be insured, and the disaster rate adjustment table stored in the server storage module 12. Obtaining the disaster weight coefficient corresponding to the level to which the risk assessment level of the disaster type corresponding to the insured item belongs, and calculating and obtaining the premium rate corresponding to the insured item according to the disaster weight coefficient.

在步驟67中,對於每一欲投保項目,該伺服端處理模組13根據該欲投保項目所對應的保費費率,計算出該欲投保項目所對應的保費,並將該欲投保項目所對應的保費經由該伺服端通訊模組11透過該通訊網路101傳送至該使用端2。值得特別說明的是,在該實施例中,該欲投保項目所對應的保費是利用其對應的保費費率乘上一保險金額而被計算出。In step 67, for each item to be insured, the server processing module 13 calculates the premium corresponding to the item to be insured according to the premium rate corresponding to the item to be insured, and corresponds to the item to be insured. The premium is transmitted to the user terminal 2 via the communication network 101 via the server communication module 11. It should be particularly noted that in this embodiment, the premium corresponding to the item to be insured is calculated by multiplying the corresponding premium rate by an insurance amount.

在步驟68中,該伺服端處理模組13將一基本投保項目經由該伺服端通訊模組11傳送至該使用端2。值得特別說明的是,基本投保項目可以為火災險,但不以此為限。In step 68, the server processing module 13 transmits a basic insured item to the user terminal 2 via the server communication module 11. It is worth noting that the basic insurance items can be fire insurance, but not limited to this.

以下將配合一應用範例,來說明本發明風險辨識投保建議及保單估價方法之該實施例。在該應用範例中,將上述表3~表8作為該等風險評估資料,同時,將該經緯度A作為該目標標的物之經緯度。The embodiment of the risk identification insurance recommendation and the policy evaluation method of the present invention will be described below in conjunction with an application example. In this application example, the above Tables 3 to 8 are used as the risk assessment data, and the latitude and longitude A is used as the latitude and longitude of the target object.

如步驟61所示,該使用端處理模組23根據來自該使用端輸入模組22的輸入訊號產生一相關於一目標標的物的目標標的物資訊,在此舉例該目標標的物資訊包含該目標標的物的地址(如,台中市北區學士路91號),以及該目標標的物之結構(如,鋼筋水泥),並將該目標標的物資訊經由該使用端通訊模組21透過該通訊網路101傳送至該伺服端1。值得特別說明的是,在該應用範例中,該目標標的物資訊是包含例如該目標標的物的地址,然而;在其他實施例中,還可使用相關於該目標標的物的名稱(如,中國醫藥大學)或關鍵字(如,醫院、大學),以幫助使用者更直覺地搜尋到所預期之目標標的物,亦或是利用該使用端2的定位裝置直接地獲得中國醫藥大學的經緯度資料。As shown in step 61, the user-side processing module 23 generates an object information related to a target object according to an input signal from the user input module 22, where the target object information includes the target. The address of the subject matter (eg, 91 Xueshi Road, North District, Taichung City), and the structure of the target object (eg, reinforced concrete), and the target object information is transmitted through the communication network via the communication terminal 21 101 is transmitted to the servo terminal 1. It should be particularly noted that, in this application example, the target object information is an address including, for example, the target object, however, in other embodiments, the name of the object related to the target object may also be used (eg, China) Medical University) or keywords (eg, hospitals, universities) to help users more intuitively search for the desired target, or use the positioning device 2 to directly obtain the latitude and longitude data of China Medical University .

如子步驟621所示,該伺服端處理模組13在經由該伺服端通訊模組11接收到該目標標的物資訊後,將該目標標的物資訊轉換成對應的該定位資訊,並自儲存於該伺服端儲存模組12中的該等風險評估資料中獲得一目標風險評估資料(亦即,表3~表8中相關於經緯度A的所有風險因子,以及所有風險因子對應的風險值),其中該目標風險評估資料所對應的經緯度A與該目標標的物資訊所指示出之經緯度一致。As shown in sub-step 621, after receiving the target object information through the server communication module 11, the server processing module 13 converts the target object information into corresponding positioning information, and stores the information in the corresponding information. A target risk assessment data is obtained in the risk assessment data in the server storage module 12 (that is, all risk factors related to latitude and longitude A in Tables 3 to 8 and risk values corresponding to all risk factors), The latitude and longitude A corresponding to the target risk assessment data is consistent with the latitude and longitude indicated by the target object information.

如子步驟622A所示,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的風險級距評分表,獲得該目標風險評估資料中的該致災屬性的每一風險因子之風險值所屬的一分級級距(如下表21~表24中的分級級距)。As shown in sub-step 622A, for each consistent disaster attribute, the server processing module 13 obtains the target risk assessment according to the risk level score table corresponding to the disaster attribute stored in the server storage module 12. The hierarchical value of the risk value of each risk factor of the disaster-causing attribute in the data (the hierarchical level in Table 21 to Table 24 below).

如子步驟622B所示,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的風險級距評分表,獲得該目標風險評估資料中的該致災屬性的每一風險因子之風險值所屬的該分級級距(如下表21~表24中的分級級距)所對應的該級距評分(如下表21~表24中的級距評分),以獲得一包含該致災屬性的每一風險因子之級距評分的評分結果 表21 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 經緯度A </td></tr><tr><td> 風險因子 </td><td> F<sub>1</sub></td><td> M<sub>1</sub></td><td> M<sub>2</sub></td><td> F<sub>2</sub></td><td> M<sub>3</sub></td></tr><tr><td> 發生規模6.5地震之機率 </td><td> 與斷層線之距離 </td><td> 斷層上下盤倍率 </td><td> 尖峰地表加速度 </td><td> 地表下之剪力波速 </td></tr><tr><td> 風險值 </td><td> 15% </td><td> 900m </td><td> 上盤 </td><td> 0.2g </td><td> 350m/s </td></tr><tr><td> 分級 級距 </td><td> 10%~20% </td><td> 100m 以上 </td><td> 上盤 </td><td> 0~0.23g </td><td> 300~500 m/s </td></tr><tr><td> 級距 評分 </td><td> 40 </td><td> 0 </td><td> 2 </td><td> 30 </td><td> 40 </td></tr></TBODY></TABLE>表22 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 經緯度A </td></tr><tr><td> 風險因子 </td><td> F<sub>3</sub></td><td> F<sub>4</sub></td><td> M<sub>4</sub></td><td> M<sub>5</sub></td><td> F<sub>5</sub></td></tr><tr><td> 土石流潛勢溪流風險潛勢等級 </td><td> 土石流警戒基準值 </td><td> 土石流潛勢溪流距離 </td><td> 土石流潛勢溪流影響範圍距離 </td><td> 山崩潛勢 </td></tr><tr><td> 風險值 </td><td> 中 </td><td> 480mm </td><td> 35m </td><td> 7% </td><td> 中 </td></tr><tr><td> 分級 級距 </td><td> 中 </td><td> 400~500mm </td><td> 30~40m </td><td> 0~10%面積 </td><td> 中 </td></tr><tr><td> 級距 評分 </td><td> 30 </td><td> 10 </td><td> 5 </td><td> 60 </td><td> 35 </td></tr></TBODY></TABLE>表23 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 經緯度A </td></tr><tr><td> 風險因子 </td><td> F<sub>6</sub></td><td> M<sub>6</sub></td><td> M<sub>7</sub></td><td> M<sub>8</sub></td><td> F<sub>7</sub></td></tr><tr><td> 重現期最大二十四小時累積雨量 </td><td> 山崩類型 </td><td> 山崩面積 </td><td> 與山崩距離 </td><td> 警戒雨量值 </td></tr><tr><td> 風險值 </td><td> 440公厘 </td><td> 岩屑崩滑 </td><td> 0.7公頃 </td><td> 0.7H </td><td> 550 </td></tr><tr><td> 分級 級距 </td><td> 300~450公厘 </td><td> 岩屑崩滑 </td><td> 1公頃 以下 </td><td> 0.5H~1H </td><td> 500~700 </td></tr><tr><td> 級距 評分 </td><td> 15 </td><td> 1 </td><td> 10 </td><td> 15 </td><td> 10 </td></tr></TBODY></TABLE>表24 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 經緯度A </td></tr><tr><td> 風險因子 </td><td> M<sub>9</sub></td><td> F<sub>8</sub></td><td> M<sub>10</sub></td><td> M<sub>11</sub></td></tr><tr><td> 淹水深度 </td><td> 地下水位深度 </td><td> 高程 </td><td> 地層 </td></tr><tr><td> 風險值 </td><td> 0m </td><td> 距地表 20m內 </td><td> 25m </td><td> 階地堆積層 </td></tr><tr><td> 分級級距 </td><td> 0m </td><td> 距地表 20m內 </td><td> 20~100m </td><td> 階地堆積層 </td></tr><tr><td> 級距評分 </td><td> 0 </td><td> 50 </td><td> 0 </td><td> 50 </td></tr></TBODY></TABLE>As shown in sub-step 622B, for each consistent disaster attribute, the server processing module 13 obtains the target risk assessment according to the risk level score table corresponding to the disaster attribute stored in the server storage module 12. The graded distance corresponding to the risk value of each risk factor of the disaster attribute in the data (the graded distance in the following Table 21 to Table 24) corresponds to the grade score (as shown in Table 21 to Table 24 below). Rank score) to obtain a score result of the rank score of each risk factor including the disaster attribute.  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Latitude and longitude A </td></tr><tr><td> Risk factor</td ><td> F<sub>1</sub></td><td> M<sub>1</sub></td><td> M<sub>2</sub></td>< Td> F<sub>2</sub></td><td> M<sub>3</sub></td></tr><tr><td> probability of magnitude 6.5 earthquake</td ><td> Distance from fault line</td><td> Fault upper and lower disk magnification</td><td> Peak surface acceleration</td><td> Shear force velocity under surface</td></tr ><tr><td> Risk value</td><td> 15% </td><td> 900m </td><td> Upper plate</td><td> 0.2g </td><td > 350m/s </td></tr><tr><td> Grading level </td><td> 10%~20% </td><td> 100m or more</td><td> Disk</td><td> 0~0.23g </td><td> 300~500 m/s </td></tr><tr><td> Grade score</td><td> 40 </td><td> 0 </td><td> 2 </td><td> 30 </td><td> 40 </td></tr></TBODY></TABLE>Table 22  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Latitude and longitude A </td></tr><tr><td> Risk factor</td ><td> F<sub>3</sub></td><td> F<sub>4</sub></td><td> M<sub>4</sub></td>< Td> M<sub>5</sub></td><td> F<sub>5</sub></td></tr><tr><td> Earth-rock flow potential stream potential level < /td><td> Earth and Rock Flow Warning Base Value</td><td> Earth and Rock Flow Potential Stream Distance</td><td> Earth and Rock Flow Potential Stream Distance </td><td> Landslide Potential</td> </tr><tr><td> risk value</td><td> </td><td> 480mm </td><td> 35m </td><td> 7% </td>< Td> 中</td></tr><tr><td> hierarchical distance </td><td> </td><td> 400~500mm </td><td> 30~40m </ Td><td> 0~10% area</td><td> medium</td></tr><tr><td> level score</td><td> 30 </td><td> 10 </td><td> 5 </td><td> 60 </td><td> 35 </td></tr></TBODY></TABLE> Table 23  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Latitude and longitude A </td></tr><tr><td> Risk factor</td ><td> F<sub>6</sub></td><td> M<sub>6</sub></td><td> M<sub>7</sub></td>< Td> M<sub>8</sub></td><td> F<sub>7</sub></td></tr><tr><td> Maximum twenty-four hour accumulation in the return period Rainfall</td><td> Landslide Type</td><td> Landslide Area</td><td> and Landslide Distance</td><td> Warning Rainfall Value</td></tr><tr> <td> Risk value</td><td> 440 mm</td><td> Rock chip collapse</td><td> 0.7 hectare</td><td> 0.7H </td><td > 550 </td></tr><tr><td> Grading step size</td><td> 300~450 mm</td><td> Debris slumping</td><td> 1 Below hectare</td><td> 0.5H~1H </td><td> 500~700 </td></tr><tr><td> Grade score</td><td> 15 </ Td><td> 1 </td><td> 10 </td><td> 15 </td><td> 10 </td></tr></TBODY></TABLE>Table 24  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Latitude and longitude A </td></tr><tr><td> Risk factor</td ><td> M<sub>9</sub></td><td> F<sub>8</sub></td><td> M<sub>10</sub></td>< Td> M<sub>11</sub></td></tr><tr><td> Flooding depth</td><td> Groundwater depth</td><td> elevation</td> <td> stratum</td></tr><tr><td> risk value</td><td> 0m </td><td> within 20m from the surface </td><td> 25m </td ><td> Terrace stacking layer</td></tr><tr><td> Grading step size</td><td> 0m </td><td> Within 20m from the surface </td><td > 20~100m </td><td> Terrace layer</td></tr><tr><td> Grade score</td><td> 0 </td><td> 50 </ Td><td> 0 </td><td> 50 </td></tr></TBODY></TABLE>

如子步驟623A所示,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性中屬於可能性因子的級距評分及該致災屬性的可能性因子公式,計算一可能性因子評分(如下表23之 S 1、S 3、S 5、S 7、S 9,及S 11),並根據儲存於該伺服端儲存模組12中的該致災屬性中屬於規模因子的級距評分及該致災屬性的規模因子公式,計算一規模因子評分(如下表23之 S 2、S 4、S 6、S 8、S 10,及S 12)。在此,以致災屬性為該土石流作說明(見表20),該土石流對應的可能性因子公式為 S 5=F 3+F 4,其中F 3為土石流潛勢溪流風險潛勢等級其級距評分為30, F 4為土石流警戒基準值其級距評分為 10,故該土石流對應的可能性因子評分S 5=40,而該土石流對應的規模因子公式為 S 6=MAX{ M 4, M 5},其中 M 4為土石流潛勢溪流距離其級距評分為 5,M 5為土石流潛勢溪流影響範圍距離其級距評分為 60,故該土石流對應的規模因子評分 S 6=60 如下表25。 As shown in sub-step 623A, for each consistent disaster attribute, the server processing module 13 ranks the probability score belonging to the likelihood factor and the disaster attribute according to the disaster attribute stored in the server storage module 12. a likelihood factor formula for calculating a likelihood factor score (S 1 , S 3 , S 5 , S 7 , S 9 , and S 11 in Table 23 below), and according to the storage in the server storage module 12 The scale attribute of the disaster attribute belonging to the scale factor and the scale factor formula of the disaster attribute, and calculating a scale factor score (S 2 , S 4 , S 6 , S 8 , S 10 , and S 12 in Table 23 below) ). Here, the disaster attribute is used to illustrate the earth-rock flow (see Table 20). The probability factor corresponding to the earth-rock flow is S 5= F 3 +F 4 , where F 3 is the risk potential level of the earth-rock flow potential stream. For 30, F 4 is the baseline value of the earth-rock flow warning, and its step score is 10, so the probability factor corresponding to the earth-rock flow is S 5= 40, and the scale factor corresponding to the earth-rock flow is S 6= MAX{ M 4 , M 5 }, where M 4 is the earth-rock flow potential stream with a distance of 5, and M 5 is the influence range of the earth-rock flow potential stream. The scale score is 60, so the scale factor score corresponding to the earth-rock flow is S 6= 60 as shown in Table 25 below. .

如子步驟623B所示,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的換算矩陣,獲得該致災屬性之可能性因子評分所屬的一可能性因子級距、該致災屬性之規模因子評分所屬的一規模因子級距。在此,以致災屬性為該土石流作說明(見表14),該土石流對應的可能性因子評分 S 5=40,故對應的該可能性因子級距為 40~70,而該土石流對應的規模因子評分 S 6=60,故對應的該規模因子級距為 40~70。 As shown in sub-step 623B, for each consistent disaster attribute, the server processing module 13 obtains the possibility of the disaster attribute according to the conversion matrix corresponding to the disaster attribute stored in the server storage module 12. A probability factor level to which the factor score belongs, and a scale factor level to which the scale factor score of the disaster attribute belongs. Here, the disaster attribute is used to describe the earth-rock flow (see Table 14), and the probability factor corresponding to the earth-rock flow is S 5= 40, so the corresponding probability factor level is 40-70, and the scale corresponding to the earth-rock flow The factor score S 6 = 60, so the corresponding scale factor scale is 40~70.

如子步驟623C所示,對於每一致災屬性,該伺服端處理模組13根據儲存於該伺服端儲存模組12中的該致災屬性所對應的換算矩陣,獲得該致災屬性所屬的可能性因子級距相對於該致災屬性之規模因子評分所屬的規模因子級距所對應的該目標危害等級。在此,以致災屬性為該土石流作說明(見表14),該可能性因子級距為 40~70,而該土石流對應的規模因子級距為 40~70,故對應的目標危害等級為 3 如下表25。 表25 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 目標標的物經緯度 </td><td> 經緯度A </td></tr><tr><td> 致災屬性 </td><td> 活動 斷層 </td><td> 地震 </td><td> 土石流 </td><td> 山崩 </td><td> 淹水 </td><td> 土壤 液化 </td></tr><tr><td> 風險因子 </td><td> S<sub>1</sub></td><td> S<sub>2</sub></td><td> S<sub>3</sub></td><td> S<sub>4</sub></td><td> S<sub>5</sub></td><td> S<sub>6</sub></td><td> S<sub>7</sub></td><td> S<sub>8</sub></td><td> S<sub>9</sub></td><td> S<sub>10</sub></td><td> S<sub>11</sub></td><td> S<sub>12</sub></td></tr><tr><td> 級距評分 </td><td> 40 </td><td> 0 </td><td> 30 </td><td> 40 </td><td> 40 </td><td> 60 </td><td> 65 </td><td> 25 </td><td> 10 </td><td> 0 </td><td> 80 </td><td> 50 </td></tr><tr><td> 目標危害等級 </td><td> 1 </td><td> 1 </td><td> 3 </td><td> 2 </td><td> 1 </td><td> 3 </td></tr><tr><td> 災害種類 </td><td> 地震 </td><td> 土石流 </td><td> 山崩 </td><td> 淹水 </td><td> 土壤 液化 </td></tr><tr><td> 風險評估等級 </td><td> 1 </td><td> 3 </td><td> 2 </td><td> 1 </td><td> 3 </td></tr></TBODY></TABLE>As shown in sub-step 623C, for each consistent disaster attribute, the server processing module 13 obtains the possibility that the disaster attribute belongs to the conversion matrix corresponding to the disaster attribute stored in the server storage module 12. The target factor level is the target hazard level corresponding to the scale factor level to which the scale factor score of the disaster attribute belongs. Here, the disaster attribute is used to illustrate the earth-rock flow (see Table 14). The probability factor step is 40-70, and the scale factor corresponding to the earth-rock flow is 40-70, so the corresponding target hazard level is 3. See Table 25 below. Table 25  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> latitude and longitude of the target </td><td> latitude and longitude A </td></tr> <tr><td> Disaster-causing attributes</td><td> Active faults</td><td> Earthquakes</td><td> Earth-rock flows</td><td> Landslides</td><td> Flooding </ s><td> <sub>2</sub></td><td> S<sub>3</sub></td><td> S<sub>4</sub></td><td> S<sub >5</sub></td><td> S<sub>6</sub></td><td> S<sub>7</sub></td><td> S<sub>8 </sub></td><td> S<sub>9</sub></td><td> S<sub>10</sub></td><td> S<sub>11</ Sub></td><td> S<sub>12</sub></td></tr><tr><td> Grade score</td><td> 40 </td><td> 0 </td><td> 30 </td><td> 40 </td><td> 40 </td><td> 60 </td><td> 65 </td><td> 25 < /td><td> 10 </td><td> 0 </td><td> 80 </td><td> 50 </td></tr><tr><td> Target Hazard Level </ Td><td> 1 </td><td> 1 </td><td> 3 </td><td> 2 </td><td> 1 </td><td> 3 </td> </tr><tr><td> Disaster Types</td><td> Earthquake</td><td> Earth and Rock Flow</td><td> Landslide</td><td> Flooding</td>< Td> soil liquefaction < /td></tr><tr><td> Risk Assessment Level</td><td> 1 </td><td> 3 </td><td> 2 </td><td> 1 </ Td><td> 3 </td></tr></TBODY></TABLE>

如子步驟624所示,該伺服端處理模組13根據屬於該活動斷層之致災屬性的該目標危害等級為 1(見表25),及屬於該地震之致災屬性的該目標危害等級為 1(見表25),獲得的該地震風險評估等級為 1。該伺服端處理模組13根據屬於該土石流之致災屬性的目標危害等級為 3 (見表25),獲得的該土石流風險評估等級為 3。該伺服端處理模組13根據屬於該山崩之致災屬性的目標危害等級為 2 (見表25),獲得的該山崩風險評估等級為 2。該伺服端處理模組13根據屬於該淹水之致災屬性的目標危害等級為 1 (見表25),獲得的該淹水風險評估等級為 1。該伺服端處理模組13根據屬於該土壤液化之致災屬性的目標危害等級為 3 (見表25),獲得的該土壤液化風險評估等級為 3。As shown in sub-step 624, the server-side processing module 13 has a target hazard level of 1 according to the disaster attribute attributed to the active fault (see Table 25), and the target hazard level belonging to the disaster attribute of the earthquake is 1 (see Table 25), the seismic risk assessment level obtained is 1. The servo end processing module 13 obtains a risk assessment level of 3 for the earth-rock flow according to a target hazard level of 3 (see Table 25) belonging to the disaster attribute of the earth-rock flow. The servo end processing module 13 obtains the landslide risk assessment level of 2 according to the target hazard level of the disaster attribute belonging to the landslide of 2 (see Table 25). The server processing module 13 obtains the flood risk assessment level of 1 according to the target hazard level of the flooding attribute belonging to the flooding level of 1 (see Table 25). The servo end processing module 13 obtains a soil liquefaction risk assessment level of 3 based on a target hazard level of 3 (see Table 25) belonging to the disaster mitigation attribute of the soil liquefaction.

如步驟63所示,該伺服端處理模組13判定儲存於該伺服端儲存模組12中的該等風險評估等級中是否存在至少一位於一第一風險範圍內的第一風險評估等級,及/或至少一位於一第二風險範圍內的第二風險評估等級。在此設定風險評估是4或5為位於一第一風險範圍內的第一風險評估等級,而風險評估是2或3為位於一第二風險範圍內的第二風險評估等級,而根據表25內容,不存在風險評估等級是4或5的第一風險評估等級,但是,該土石流風險評估等級為3、該山崩風險評估等級為2,以及該土壤液化風險評估等級為3,代表存在風險評估等級是2或3的第二風險評估等級,故流程進行步驟64。As shown in step 63, the server processing module 13 determines whether there is at least one first risk assessment level in a first risk range among the risk assessment levels stored in the server storage module 12, and / or at least one second risk assessment level within a second risk range. Here, the risk assessment is set to 4 or 5 as the first risk assessment level within a first risk range, and the risk assessment is 2 or 3 is a second risk assessment level within a second risk range, and according to Table 25 Content, there is no first risk assessment level with a risk assessment rating of 4 or 5, but the earth-rock flow risk assessment rating is 3, the landslide risk assessment rating is 2, and the soil liquefaction risk assessment rating is 3, representing a risk assessment The level is a second risk assessment level of 2 or 3, so the process proceeds to step 64.

如步驟64所示,該伺服端處理模組13根據該至少一第二風險評估等級所對應的災害種類,產生至少一對應於該至少一第二風險評估等級所對應之災害種類的第二推薦投保項目(如,該土石流、該山崩,以及該土壤液化),並將該至少一第二推薦投保項目經由該伺服端通訊模組11透過該通訊網路101傳送至該使用端2。As shown in step 64, the server processing module 13 generates at least one second recommendation corresponding to the disaster category corresponding to the at least one second risk assessment level according to the disaster type corresponding to the at least one second risk assessment level. The insured item (eg, the earth-rock flow, the landslide, and the soil liquefaction), and the at least one second recommended insured item is transmitted to the use end 2 via the communication network 101 via the server communication module 11.

如步驟65所示,該使用端處理模組23根據來自該使用端輸入模組22的輸入訊號,自該至少一第二推薦投保項目中(如,該土石流、該山崩,以及該土壤液化),選取至少一欲投保項目(假設使用者只有選取該土石流,以及該土壤液化作為欲投保項目),並產生一相關於該至少一欲投保項目的查詢請求,並將該相關於該至少一欲投保項目的查詢請求經由該使用端通訊模組21透過該通訊網路101傳送至該伺服端1。As shown in step 65, the user-side processing module 23 is based on the input signal from the user input module 22 from the at least one second recommended insurance item (eg, the earth-rock flow, the landslide, and the soil liquefaction). Selecting at least one item to be insured (assuming that the user only selects the earth and stone stream, and the soil liquefaction as an item to be insured), and generates a query request related to the at least one item to be insured, and correlates the at least one desire The inquiry request of the insurance item is transmitted to the server 1 via the communication network 101 via the communication terminal module 21.

如步驟66所示,該伺服端處理模組13在經由該伺服端通訊模組11接收到該相關於該至少一欲投保項目的查詢請求後,對於每一欲投保項目,該伺服端處理模組13根據該欲投保項目所對應之災害種類的風險評估等級(如,該土石流的風險評估等級為 3,以及該土壤液化的風險評估等級為 3),以及儲存於該伺服端儲存模組12中的該災害費率調整表(見表1),獲得該欲投保項目所對應之災害種類的風險評估等級所屬之級別所對應的一災害權重係數(如,該土石流的災害權重係數為0.85,以及該土壤液化的災害權重係數為1),同時,根據該建物結構資料(如,鋼筋水泥),以及儲存於該伺服端儲存模組12中的該建物費率調整表(見表2),獲得該目標標的物所屬之建物結構的一建物權重係數(該鋼筋水泥的建物權重係數為0.3),最後,根據所獲得的該災害權重係數,以及該建物權重係數計算並獲得該欲投保項目所對應的保費費率。在此,假設該土石流之一預設的基本費率為0.007,則該土石流所對應的保費費率的計算方式為0.007×0.85×0.3 =0.001758。As shown in step 66, after receiving the query request related to the at least one insured item via the server communication module 11, the server processing module 13 processes the server for each item to be insured. The group 13 is based on the risk assessment level of the disaster type corresponding to the insured item (eg, the risk assessment level of the earth and rock flow is 3, and the risk assessment level of the soil liquefaction is 3), and is stored in the server storage module 12 The disaster rate adjustment table (see Table 1) obtains a disaster weight coefficient corresponding to the level to which the risk assessment level of the disaster type corresponding to the item to be insured belongs (for example, the disaster weight coefficient of the earth-rock flow is 0.85, And the disaster weight coefficient of the soil liquefaction is 1), and according to the structural structure data (for example, reinforced concrete), and the construction rate adjustment table stored in the servo storage module 12 (see Table 2), Obtaining a building weight coefficient of the building structure to which the target object belongs (the building weight coefficient of the reinforced concrete is 0.3), and finally, according to the obtained damping weight coefficient, and the building And a weight coefficient calculating premium rates to obtain the corresponding item to be insured. Here, assuming that the basic rate of one of the earth-rock flows is 0.007, the calculation of the premium rate corresponding to the earth-rock flow is 0.007×0.85×0.3=0.001758.

如步驟67所示,對於每一欲投保項目,該伺服端處理模組13根據該欲投保項目所對應的保費費率,計算出該欲投保項目所對應的保費,以步驟66的例子來說,若該保險金額為30000元,則該土石流的保費為(30000×0.007×0.85×0.3)÷0.555 =96,並將所計算出的保費(該土石流的保費為96)經由該伺服端通訊模組11透過該通訊網路101傳送至該使用端2。 As shown in step 67, for each item to be insured, the server processing module 13 calculates the premium corresponding to the item to be insured according to the premium rate corresponding to the item to be insured, in the example of step 66. If the insurance amount is 30,000 yuan, the premium of the earth-rock flow is (30000×0.007×0.85×0.3)÷0.555 = 96, and the calculated premium (the premium of the earth-rock flow is 96) is passed through the servo communication mode. The group 11 is transmitted to the user terminal 2 via the communication network 101.

綜上所述,本發明風險辨識投保建議及保單估價方法,藉由該伺服端處理模組13根據該伺服端儲存模組12所儲存的該等風險評估資料、該等風險級距評分表,以及該等危害度分級換算規則,自動地獲得每一致災屬性所對應的目標危害等級,再由每一致災屬性所對應的目標危害等級,自動地獲得每一災害種類所對應的風險評估等級,並根據每一災害種類所對應的風險評估等級自動地推薦相對應的投保項目給使用者,並經由使用者自行選取所需的欲投保項目後,獲得欲投保項目所對應的保費費率,如以一來,即可提供使用者快速且專業的客製化投保項目,進而降低所需耗費的人力及時間成本。因此,故確實能達成本發明的目的。In summary, the risk identification insurance recommendation and the policy evaluation method of the present invention are performed by the server processing module 13 according to the risk assessment data stored by the server storage module 12, and the risk level distance score table. And the damage degree grading conversion rules automatically obtain the target hazard level corresponding to each consistent disaster attribute, and then automatically obtain the risk assessment level corresponding to each disaster type by the target hazard level corresponding to each consistent disaster attribute. And automatically recommend the corresponding insurance project to the user according to the risk assessment level corresponding to each disaster type, and obtain the premium rate corresponding to the project to be insured after the user selects the desired insurance project by himself, such as In one step, the user can provide a fast and professional customized insurance project, thereby reducing the labor and time cost required. Therefore, the object of the present invention can be achieved.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the simple equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still Within the scope of the invention patent.

100‧‧‧系統100‧‧‧ system

101‧‧‧通訊網路 101‧‧‧Communication network

1‧‧‧伺服端 1‧‧‧Server

11‧‧‧伺服端通訊模組 11‧‧‧Server communication module

12‧‧‧伺服端儲存模組 12‧‧‧Server storage module

13‧‧‧伺服端處理模組 13‧‧‧Server processing module

2‧‧‧使用端 2‧‧‧Use side

21‧‧‧使用端通訊模組 21‧‧‧Using the end communication module

22‧‧‧使用端輸入模組 22‧‧‧Using the input module

23‧‧‧使用端處理模組 23‧‧‧Using the end processing module

61~68‧‧‧步驟 61~68‧‧‧Steps

621~624‧‧‧子步驟 621~624‧‧‧ substeps

622A、622B‧‧‧子步驟 622A, 622B‧‧‧ substeps

623A~623C‧‧‧子步驟 623A~623C‧‧‧ substeps

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊圖,說明實施本發明風險辨識投保建議及保單估價方法之一實施例的一系統; 圖2是一流程圖,說明本發明風險辨識投保建議及保單估價方法之該實施例的流程步驟; 圖3是一流程圖,說明本發明風險辨識投保建議及保單估價方法之該實施例如何獲得一風險評估等級; 圖4是一流程圖,說明本發明風單估價方法之該實施例如何獲得一評分結果;及 圖5是一流程圖,說明本發明風單估價方法之該實施例如何獲得一目標危害等級。Other features and advantages of the present invention will be apparent from the embodiments of the present invention, wherein: Figure 1 is a block diagram illustrating a system for implementing one embodiment of the risk identification insurance recommendation and policy valuation method of the present invention. 2 is a flow chart illustrating the flow steps of the embodiment of the risk identification insurance recommendation and the policy evaluation method of the present invention; FIG. 3 is a flow chart illustrating how the embodiment of the risk identification insurance recommendation and the policy evaluation method of the present invention is Obtaining a risk assessment level; FIG. 4 is a flow chart illustrating how the embodiment of the wind list evaluation method of the present invention obtains a score result; and FIG. 5 is a flow chart illustrating how the embodiment of the wind list evaluation method of the present invention is Obtain a target hazard level.

Claims (9)

一種風險辨識投保建議及保單估價方法,藉由一伺服端來實施,該伺服端經由一通訊網路與一使用端連接,該伺服端儲存一災害費率調整表、多筆分別對應於多個標的物的風險評估資料,及多筆分別對應於多種不同致災屬性的致災屬性資訊,每一風險評估資料包含每一致災屬性各自對應之多個風險因子的多個風險值,每一致災屬性資訊包含一風險級距評分表,及一危害度分級換算規則,每一災害種類所對應之災害相關於至少一致災屬性,該風險辨識投保建議及保單估價方法包含以下步驟:(A-1)藉由該伺服端,在接收到來自該使用端且相關於該目標標的物的該目標標的物資訊後,自該等風險評估資料中獲得一對應於該目標標的物資訊的目標風險評估資料;(A-2)對於每一致災屬性,藉由該伺服端,根據該致災屬性所對應的風險級距評分表,將該目標風險評估資料中的該致災屬性的每一風險因子之風險值給予一級距評分,以獲得一包含該致災屬性的每一風險因子之級距評分的評分結果;(A-3)對於每一致災屬性,藉由該伺服端,將該致災屬性的評分結果,導入該致災屬性各自對應的該危害度分級換算規則,以獲得一目標危害等級;(A-4)對於每一災害種類,藉由該伺服端,根據該災害種類所對應的致災屬性,獲得一對應的風險評估等級; (B)藉由該伺服端,判定該等風險評估等級中是否存在至少一位於一第一風險範圍內的第一風險評估等級;(C)當該伺服端判定出存在該至少一第一風險評估等級時,藉由該伺服端根據該至少一第一風險評估等級所對應的災害種類,產生並傳送至少一對應於該至少一第一風險評估等級所對應之災害種類的第一推薦投保項目至該使用端;及(D)藉由該伺服端,在接收到一來自該使用端且相關於該至少一第一推薦投保項目中之至少一欲投保項目的查詢請求後,對於每一欲投保項目,至少根據該欲投保項目所對應之災害種類的風險評估等級及該災害費率調整表,獲得該欲投保項目所對應的保費費率。 A risk identification insurance recommendation and a policy evaluation method are implemented by a server, and the server is connected to a user terminal via a communication network, and the server stores a disaster rate adjustment table, and the plurality of pens respectively correspond to the plurality of targets. The risk assessment data of the object and the plurality of disaster attribute information corresponding to a plurality of different disaster-producing attributes, each risk assessment data includes multiple risk values of each risk factor corresponding to each of the consistent disaster attributes, and each of the consistent disaster attributes The information includes a risk level score table and a hazard grading conversion rule, and the disaster corresponding to each disaster type is related to at least the consistent disaster attribute, and the risk identification insurance recommendation and the policy evaluation method include the following steps: (A-1) Receiving, by the server, the target risk assessment data corresponding to the target object information from the risk assessment data after receiving the information of the target object from the use end and related to the target object; (A-2) For each consistent disaster attribute, the target risk is determined by the server according to the risk level score table corresponding to the disaster attribute The risk value of each risk factor of the disaster attribute in the assessment data is given a first-level distance score to obtain a score result of a grade distance score of each risk factor including the disaster attribute; (A-3) for each consistency The disaster attribute is obtained by the server, and the score result of the disaster attribute is imported into the hazard level conversion rule corresponding to each disaster attribute to obtain a target hazard level; (A-4) for each disaster type And obtaining, by the server, a corresponding risk assessment level according to the disaster attribute corresponding to the disaster type; (B) determining, by the server, whether there is at least one first risk assessment level within a first risk range among the risk assessment levels; (C) when the server determines that the at least one first risk exists When the level is evaluated, the server generates and transmits at least one first recommended insurance item corresponding to the disaster type corresponding to the at least one first risk assessment level according to the disaster type corresponding to the at least one first risk assessment level. And the (D) by the server, after receiving a query request from the user terminal and related to at least one of the at least one first recommended insurance items, for each desire Insured items, at least according to the risk assessment level of the disaster type corresponding to the insured item and the disaster rate adjustment table, obtain the premium rate corresponding to the item to be insured. 如請求項1所述的風險辨識投保建議及保單估價方法,該災害費率調整表包含多個分別對應於多個級別的災害權重係數,其中,在步驟(D)中,該伺服端係先根據該災害費率調整表,獲得該欲投保項目所對應之災害種類的風險評估等級所屬之級別所對應的一災害權重係數,再根據該災害權重係數計算該欲投保項目所對應的保費費率。 The risk identification insurance recommendation and the policy evaluation method according to claim 1, the disaster rate adjustment table includes a plurality of disaster weight coefficients respectively corresponding to the plurality of levels, wherein in the step (D), the server is first According to the disaster rate adjustment table, a disaster weight coefficient corresponding to the level to which the risk assessment level of the disaster type corresponding to the item to be insured belongs is obtained, and the premium rate corresponding to the item to be insured is calculated according to the disaster weight coefficient. . 如請求項1所述的風險辨識投保建議及保單估價方法,其中,在步驟(A-4)中,該等災害種類包含一地震、一土石流、一山崩、一淹水,以及一土壤液化。 The risk identification insurance recommendation and the policy evaluation method according to claim 1, wherein in the step (A-4), the disaster types include an earthquake, a soil flow, a landslide, a flooding, and a soil liquefaction. 如請求項1所述的風險辨識投保建議及保單估價方法,該伺服端還存一建物費率調整表,該建物費率調整表包含多個分別對應多種建物結構的建物權重係數,其中: 在步驟(A-1)中,該目標標的物資訊包含一相關於該目標標的物之結構的建物結構資料,其中該目標標的物之結構為該等建物結構之其中一者;及在步驟(D)中,藉由該伺服端,不僅根據該欲投保項目所對應之災害種類的風險評估等級與該災害費率調整表,還根據該建物結構資料及該建物費率調整表,獲得該欲投保項目所對應的保費費率。 According to the risk identification insurance recommendation and the policy evaluation method described in claim 1, the server further maintains a construction rate adjustment table, where the construction rate adjustment table includes a plurality of construction weight coefficients respectively corresponding to the plurality of building structures, wherein: In the step (A-1), the target object information includes a structure structure related to the structure of the target object, wherein the target object structure is one of the structure structures; and in the step ( In the D), the server obtains the desire based on the risk assessment level of the disaster type corresponding to the insured item and the disaster rate adjustment table, and the construction structure data and the construction rate adjustment table. The premium rate corresponding to the insured item. 如請求項4所述的風險辨識投保建議及保單估價方法,該災害費率調整表包含多個分別對應於多個級別的災害權重係數,其中,在步驟(D)中,該伺服端係先根據該災害費率調整表,獲得該欲投保項目所對應之災害種類的風險評估等級所屬之級別所對應的一災害權重係數,並根據該建物費率調整表,獲得該目標標的物所屬之建物結構的一建物權重係數,再根據該建物權重係數,及該災害權重係數計算該欲投保項目所對應的保費費率。 The risk identification insurance recommendation and the policy evaluation method according to claim 4, wherein the disaster rate adjustment table includes a plurality of disaster weight coefficients respectively corresponding to the plurality of levels, wherein in step (D), the server is first According to the disaster rate adjustment table, a disaster weight coefficient corresponding to the level of the risk assessment level of the disaster type corresponding to the item to be insured is obtained, and the construction item of the target object is obtained according to the construction rate adjustment table. The weight coefficient of a building structure is calculated, and the premium rate corresponding to the item to be insured is calculated according to the weight coefficient of the building and the weight coefficient of the disaster. 如請求項4所述的風險辨識投保建議及保單估價方法,其中,在步驟(A-1)中,該等建物結構包含一鋼筋水泥、一鋼骨水泥、一加強磚造、一鐵皮造,以及一木造。 The risk identification insurance recommendation and the policy evaluation method according to claim 4, wherein, in the step (A-1), the construction structures comprise a reinforced concrete, a steel reinforced cement, a reinforced brick, and a ferrous metal. And a wooden one. 如請求項1所述的風險辨識投保建議及保單估價方法,其中:在步驟(B)中,藉由該伺服端,不僅判定該等風險評估等級中是否存在該至少一位於該第一風險範圍內的第一風險評估等級,還判定該等風險評估等級中是否存在至少一位於一第二風險範圍內的第二風險評估等級; 在步驟(C)中,當該伺服端判定出存在該至少一第一風險評估等級,及/或該至少一第二風險評估等級時,藉由該伺服端根據該至少一第一風險評估等級所對應的災害種類,及/或該至少一第二風險評估等級所對應的災害種類,產生並傳送至少一對應於該至少一第一風險評估等級所對應之災害種類的第一推薦投保項目,及/或至少一對應於該至少一第二風險評估等級所對應之災害種類的第二推薦投保項目至該使用端;及在步驟(D)中,藉由該伺服端,在接收到一來自該使用端且相關於該至少一第一推薦投保項目,及/或相關於該至少一第二推薦投保項目中之該至少一欲投保項目的查詢請求後,對於每一欲投保項目,至少根據該欲投保項目所對應之災害種類的風險評估等級及該災害費率調整表,獲得該欲投保項目所對應的保費費率。 The risk identification insurance recommendation and the policy evaluation method according to claim 1, wherein: in the step (B), the server determines not only whether the at least one of the risk assessment levels exists in the first risk range a first risk assessment level within the first risk assessment level, and determining whether there is at least one second risk assessment level within a second risk range; In step (C), when the server determines that the at least one first risk assessment level, and/or the at least one second risk assessment level, the server is based on the at least one first risk assessment level Generating and transmitting at least one first recommended insurance item corresponding to the disaster type corresponding to the at least one first risk assessment level, corresponding to the type of disaster, and/or the type of disaster corresponding to the at least one second risk assessment level, And/or at least one second recommended insurance item corresponding to the disaster category corresponding to the at least one second risk assessment level to the use end; and in step (D), by the server, receiving a After the use end is related to the at least one first recommended insurance item, and/or related to the at least one request for the insured item in the at least one second recommended insurance item, for each item to be insured, at least according to The risk assessment level of the disaster type corresponding to the item to be insured and the disaster rate adjustment table obtain the premium rate corresponding to the item to be insured. 如請求項1所述的風險辨識投保建議及保單估價方法,該風險級距評分表包括所對應之災害種類對應的該等風險因子、每一風險因子各自所對應的多個分級級距,以及每一分級級距所對應的級距評分,該步驟(A-2)包含以下步驟:(A-2-1)對於每一致災屬性,藉由該伺服端,根據該致災屬性所對應的風險級距評分表,獲得該目標風險評估資料中的該致災屬性的每一風險因子之風險值所屬的一分級級距;及(A-2-2)對於每一致災屬性,藉由該伺服端,根據該 致災屬性所對應的風險級距評分表,獲得該目標風險評估資料中的該致災屬性的每一風險因子之風險值所屬的該分級級距所對應的該級距評分,以獲得一包含該致災屬性的每一風險因子之級距評分的評分結果。 The risk identification insurance recommendation and the policy evaluation method according to claim 1, wherein the risk level score table includes the risk factors corresponding to the corresponding disaster types, and the plurality of hierarchical intervals corresponding to each risk factor, and The step (A-2) includes the following steps: (A-2-1) for each consistent disaster attribute, by the server, according to the disaster attribute a risk level distance score table, which obtains a hierarchical level of the risk value of each risk factor of the disaster attribute in the target risk assessment data; and (A-2-2) for each consistent disaster attribute, by the Servo end, according to the a risk level distance score table corresponding to the disaster attribute, obtaining the level score corresponding to the level of the risk value of each risk factor of the disaster attribute in the target risk assessment data, to obtain an inclusion The score of the score of each risk factor of the disaster attribute. 如請求項6所述的風險辨識投保建議及保單估價方法,每一災害種類各自對應之多個風險因子可被分類為一可能性因子及一規模因子之其中一者,每一災害種類對應的該危害度分級換算規則包括一可能性因子公式、一規模因子公式,以及一換算矩陣,該換算矩陣具有多個可能性因子級距、多個規模因子級距,及每一可能性因子級距相對於每一規模因子級距各自所對應的一危害等級,該步驟(A-3)包含以下步驟:(A-3-1)對於每一致災屬性,藉由該伺服端,根據該致災屬性中屬於可能性因子的級距評分及該致災屬性的可能性因子公式,計算一可能性因子評分,並根據該致災屬性中屬於規模因子的級距評分及該致災屬性的規模因子公式,計算一規模因子評分;(A-3-2)對於每一致災屬性,藉由該伺服端,根據該致災屬性所對應的換算矩陣,獲得該致災屬性之可能性因子評分所屬的一可能性因子級距、該致災屬性之規模因子評分所屬的一規模因子級距;及(A-3-3)對於每一致災屬性,藉由該伺服端,根據該致災屬性所對應的換算矩陣,獲得該致災屬性所屬的可能性因子級距相對於該致災屬性之規模因子評分所屬的規 模因子級距所對應的該目標危害等級。 According to the risk identification insurance recommendation and the policy evaluation method described in claim 6, each risk factor corresponding to each disaster type may be classified into one of a likelihood factor and a scale factor, and each disaster type corresponds to The hazard grading conversion rule includes a likelihood factor formula, a scale factor formula, and a conversion matrix having a plurality of likelihood factor intervals, a plurality of scale factor intervals, and each likelihood factor interval The step (A-3) includes the following steps with respect to a respective hazard level corresponding to each scale factor level: (A-3-1) for each consistent disaster attribute, by the server, according to the disaster a rank probability score belonging to the likelihood factor and a likelihood factor formula of the disaster attribute, calculating a likelihood factor score, and according to the scale score belonging to the scale factor and the scale factor of the disaster attribute Formula, calculating a scale factor score; (A-3-2) for each consistent disaster attribute, by the server, according to the conversion matrix corresponding to the disaster attribute, the possibility of obtaining the disaster attribute a probability factor level to which the factor score belongs, a scale factor level to which the scale factor score of the disaster attribute belongs; and (A-3-3) for each consistent disaster attribute, by the server, according to the The conversion matrix corresponding to the disaster attribute obtains the rule of the probability factor level to which the disaster attribute belongs and the scale factor score of the disaster attribute The target hazard level corresponding to the mode factor step.
TW106134222A 2017-10-03 2017-10-03 Risk identification insurance recommendation and policy valuation method TWI645358B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106134222A TWI645358B (en) 2017-10-03 2017-10-03 Risk identification insurance recommendation and policy valuation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106134222A TWI645358B (en) 2017-10-03 2017-10-03 Risk identification insurance recommendation and policy valuation method

Publications (2)

Publication Number Publication Date
TWI645358B true TWI645358B (en) 2018-12-21
TW201915904A TW201915904A (en) 2019-04-16

Family

ID=65432156

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106134222A TWI645358B (en) 2017-10-03 2017-10-03 Risk identification insurance recommendation and policy valuation method

Country Status (1)

Country Link
TW (1) TWI645358B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI805244B (en) * 2022-02-25 2023-06-11 國泰世紀產物保險股份有限公司 Method and system for generating a recommendation for commercial insurance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI235936B (en) * 2000-06-15 2005-07-11 Matsushita Electric Ind Co Ltd An insurance content adjusting method, an insurance content adjusting device, a terminal device for obtaining status data, a terminal device for replying advice, an advice device, and a computer-readable recording medium
TW200532488A (en) * 2004-03-23 2005-10-01 Ind Tech Res Inst System and method for risk assessment
US8027850B1 (en) * 2005-11-28 2011-09-27 Millennium Information Services Property insurance risk assessment processing system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI235936B (en) * 2000-06-15 2005-07-11 Matsushita Electric Ind Co Ltd An insurance content adjusting method, an insurance content adjusting device, a terminal device for obtaining status data, a terminal device for replying advice, an advice device, and a computer-readable recording medium
TW200532488A (en) * 2004-03-23 2005-10-01 Ind Tech Res Inst System and method for risk assessment
US8027850B1 (en) * 2005-11-28 2011-09-27 Millennium Information Services Property insurance risk assessment processing system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI805244B (en) * 2022-02-25 2023-06-11 國泰世紀產物保險股份有限公司 Method and system for generating a recommendation for commercial insurance

Also Published As

Publication number Publication date
TW201915904A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
Carey Managed retreat increasingly seen as necessary in response to climate change’s fury
Tang et al. An intelligent simulation system for earthquake disaster assessment
Del Negro et al. Living at the edge of an active volcano: Risk from lava flows on Mt. Etna
Williams et al. Coupled economic‐coastline modeling with suckers and free riders
Hua et al. Assessment of ecological risks induced by land use and land cover changes in Xiamen City, China
Johnstone et al. Use of flood, loss, and evacuation models to assess exposure and improve a community tsunami response plan: Vancouver Island
Dias et al. Tsunami vulnerability functions from field surveys and Monte Carlo simulation
CN104200614A (en) County-scale geological disaster fine early-warning system
TWI645358B (en) Risk identification insurance recommendation and policy valuation method
Shahvar et al. I1‐net: The Iran strong motion network
Wei et al. Quantitative multi-hazard risk assessment to buildings in the Jiuzhaigou valley, a world natural heritage site in Western China
Khajavi et al. Seismically induced boulder displacement in the Port Hills, New Zealand during the 2010 Darfield (Canterbury) earthquake
Agius et al. The Easter Sunday 2011 earthquake swarm offshore Malta: Analysis on felt reports
Lee et al. City information model-based damage estimation in inundation condition
TWI685811B (en) Risk assessment method
Chien et al. The study of risk assessment of soil liquefaction on land development and utilization by GIS in Taiwan
Er et al. The impact of various geological factors on the real estate valuation using AHP analysis: case studies from Turkey
Zhu et al. Network modeling of hurricane evacuation using data driven demand and incident induced capacity loss models
Branham et al. Removing federal subsidies from high‐hazard coastal areas slows development
Main et al. A multi-hazard historical catalogue for the city-island-state of Malta (Central Mediterranean)
Putra Mapping Tsunami Vulnerability For Mataram City In Lombok Island–Indonesia: A Physical And Socioeconomic Assessment
Putri et al. Hydrometeorological Disaster Assessment: Study of Risk and Loss Assessment of Disaster Events in Central Java
KR102504503B1 (en) Location-specific integrated disaster risk level information provision system using disaster risk assessment algorithm
Ayers-Rigsby et al. Act local: Climate-change policy at the county level in South Florida
TWM442565U (en) Geology monitoring system