TWI684314B - Pwm/pfm dual mode charging system - Google Patents
Pwm/pfm dual mode charging system Download PDFInfo
- Publication number
- TWI684314B TWI684314B TW108115134A TW108115134A TWI684314B TW I684314 B TWI684314 B TW I684314B TW 108115134 A TW108115134 A TW 108115134A TW 108115134 A TW108115134 A TW 108115134A TW I684314 B TWI684314 B TW I684314B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- current
- transistor
- signal
- charge
- Prior art date
Links
- 230000009977 dual effect Effects 0.000 title abstract 2
- 238000006243 chemical reaction Methods 0.000 claims abstract description 31
- 239000003990 capacitor Substances 0.000 claims description 44
- 238000001514 detection method Methods 0.000 claims description 13
- 239000013078 crystal Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 10
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 7
- 238000007599 discharging Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000003137 locomotive effect Effects 0.000 description 2
- FHIJMQWMMZEFBL-HLAPJUAOSA-N DISS Natural products COc1cc(C=CC(=O)OC[C@H]2O[C@H](O[C@]3(CO)O[C@H](CO)[C@@H](O)[C@@H]3OC(=O)C=Cc3cc(OC)c(O)c(OC)c3)[C@H](O)[C@@H](O)[C@@H]2O)cc(OC)c1O FHIJMQWMMZEFBL-HLAPJUAOSA-N 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
本發明是關於一種充電系統,特別是關於一種PWM/PFM雙模式充電系統。The invention relates to a charging system, in particular to a PWM/PFM dual-mode charging system.
隨著電動汽機車及可攜式個人裝置的快速發展,電動汽機車及可攜式個人裝置所使用之儲能裝置對於電力容量的需求越來越大,其中,鋰電池因為具有高能量密度的優點而被廣泛使用,此外,為了提供快速、穩定及高效率的充電,充電的控制方法也相當受到重視。一般而言,鋰電池的充電曲線可區分為三個階段,首先,在預充電階段以微小的電流進行充電,以避免對低電壓之電池造成傷害;接著當鋰電池的電壓上升至一準位時,切換至定電流模式進行充電,以最大的電流對鋰電池進行充電而加快充電速度;最後當鋰電池的電壓達到滿額電壓時,切換至定電壓模式進行充電,以緩慢遞減的電流對鋰電池充電,避免鋰電池被過度充電。其中,較為常見的充電系統為切換式電源轉換電路搭配PWM(Pulse Width Modulation)的控制達成三階段的充電,在定電流模式下可將其視為重載,在定電壓模式下則可將其視為輕載,雖然以PWM進行控制可在定電流模式下達到高效率的電源轉換,但單純使用PWM在定電壓模式下進行控制並無法達到高效率。With the rapid development of electric steam locomotives and portable personal devices, the energy storage devices used in electric steam locomotives and portable personal devices have an increasing demand for power capacity. Among them, lithium batteries have high energy density. The advantages are widely used. In addition, in order to provide fast, stable and high-efficiency charging, charging control methods have also received considerable attention. Generally speaking, the charging curve of a lithium battery can be divided into three stages. First, the small current is charged in the pre-charging stage to avoid damage to the low-voltage battery; then when the voltage of the lithium battery rises to a level At the time, switch to constant current mode for charging, charge the lithium battery with the maximum current to speed up the charging speed; finally, when the voltage of the lithium battery reaches the full voltage, switch to constant voltage mode for charging, and charge the lithium battery with a slowly decreasing current Charge the battery to prevent the lithium battery from being overcharged. Among them, the more common charging system is a switching power conversion circuit with PWM (Pulse Width Modulation) control to achieve three-stage charging, which can be regarded as a heavy load in a constant current mode, and can be used in a constant voltage mode Regarded as light load, although PWM control can achieve high efficiency power conversion in constant current mode, but simply using PWM to control in constant voltage mode cannot achieve high efficiency.
本發明的主要目的在於提供具有雙模式充電控制之充電系統,能在定電流模式下以PWM(Pulse-width modulation)進行電源轉換之控制,並在定電壓模式下以PFM(Pulse-frequency modulation)進行電源轉換之控制,以克服先前技術中單純透過PWM進行控制而在定電壓模式下有著效率低的問題,且本發明僅透過一個或閘即達成PWM及PFM兩種模式的結合,可有效地減少模式切換時的損耗並提高整體效率。The main objective of the present invention is to provide a charging system with dual-mode charging control, which can perform power conversion control by PWM (Pulse-width modulation) in constant current mode and PFM (Pulse-frequency modulation) in constant voltage mode The control of power conversion is performed to overcome the problem of low efficiency in the constant voltage mode simply controlled by PWM in the prior art, and the present invention achieves the combination of PWM and PFM modes through only one OR gate, which can effectively Reduce losses during mode switching and increase overall efficiency.
本發明之一種PWM/PFM雙模式充電系統包含一轉換電路、一電流感測器、一定電流模式控制單元、一定電壓模式控制單元及一或閘,其中該轉換電路具有一第一功率開關、一第二功率開關及一充放電單元,該充放電單元電性連接該第一功率開關及該第二功率開關,該轉換電路用以對一電池模組充電,其中該電池模組具有一電池電壓。該電流感測器耦接該充放電單元,該電流感測器用以感測該充放電單元之一電流的大小,且該電流感測器輸出一感測電壓,該定電流模式控制單元電性連接該電流感測器以接收該感測電壓,該定電流模式控制單元根據該電流感測器之該感測電壓、一限制電壓及一漣波電壓輸出一脈衝寬度調變訊號。該定電壓模式控制單元根據該電池電壓、一滿額電壓及一時脈訊號輸出一脈衝頻率調變訊號。該或閘電性連接該定電流模式控制單元及該定電壓模式控制單元以接收該脈衝寬度調變訊號及該脈衝頻率調變訊號,該或閘輸出一控制訊號以控制該轉換電路之該第一功率開關及該第二功率開關。A PWM/PFM dual-mode charging system of the present invention includes a conversion circuit, a current sensor, a certain current mode control unit, a certain voltage mode control unit, and an OR gate, wherein the conversion circuit has a first power switch, a A second power switch and a charge-discharge unit, the charge-discharge unit is electrically connected to the first power switch and the second power switch, the conversion circuit is used to charge a battery module, wherein the battery module has a battery voltage . The current sensor is coupled to the charge-discharge unit. The current sensor is used to sense a current of the charge-discharge unit. The current sensor outputs a sense voltage. The constant current mode controls the electrical property of the unit The current sensor is connected to receive the sensing voltage, and the constant current mode control unit outputs a pulse width modulation signal according to the sensing voltage of the current sensor, a limiting voltage, and a ripple voltage. The constant voltage mode control unit outputs a pulse frequency modulation signal according to the battery voltage, a full voltage and a clock signal. The OR gate is electrically connected to the constant current mode control unit and the constant voltage mode control unit to receive the pulse width modulation signal and the pulse frequency modulation signal, and the OR gate outputs a control signal to control the first of the conversion circuit A power switch and the second power switch.
本發明藉由該定電流模式控制單元及該定電壓模式控制單元達成PWM/PFM雙模式的充電控制,並僅透過單一個該或閘達成兩個模式之間的切換,可再進一步地減少模式切換時可能產生的損耗,提高該PWM/PFM雙模式充電系統的整體充電效率。 The present invention achieves PWM/PFM dual-mode charging control by the constant current mode control unit and the constant voltage mode control unit, and only achieves the switching between the two modes through a single OR gate, which can further reduce the mode The loss that may occur during switching improves the overall charging efficiency of the PWM/PFM dual-mode charging system.
請參閱第1圖,其為本發明之一實施例,一PWM/PFM雙模式充電系統100的功能方塊圖,該PWM/PFM雙模式充電系統100具有一轉換電路110、一電流感測器120、一定電流模式控制單元130、一定電壓模式控制單元140及一或閘150。該轉換電路110接收一輸入電壓Vin並將其進行轉換為合適之電流或電壓對一電池模組B充電,該電流感測器120耦接該轉換電路110以感測其電流大小,且該電流感測器120輸出一感測電壓Vsense。該定電流模式控制單元130電性連接該電流感測器120以接收該感測電壓Vsense,該定電流模式控制單元130另接
收一限制電壓Vlimit及一漣波電壓Vramp,且該定電流模式控制單元130根據該感測電壓Vsense、該限制電壓Vlimit及該漣波電壓Vramp輸出一脈衝寬度調變訊號PWM。該定電壓模式控制單元140根據該電池模組B之一電池電壓VBAT、一滿額電壓Vfull及一時脈訊號Clk輸出一脈衝頻率調變訊號PFM,該或閘150電性連接該定電流模式控制單元130及該定電壓模式控制單元140以接收該脈衝寬度調變訊號PWM及該脈衝頻率調變訊號PFM,該或閘150輸出一控制訊號SC至該轉換電路110並控制該轉換電路110,使該轉換電路110能在各個充電階段下以合適的電流或電壓對該電池模組B進行充電,其中各電路單元的詳細電路及作動方式詳述於下。
Please refer to FIG. 1, which is a functional block diagram of a PWM/PFM dual-
請參閱第1及2圖,在本實施例中,該轉換電路110為一切換式電源轉換架構,該轉換電路110具有一第一功率開關111、一第二功率開關112、一充放電單元113、一非交疊電路114、一零電流偵測電路115及一高準位位移器116。其中,該第一功率開關111為一P型功率電晶體,該第二功率開關112為一N型功率電晶體,該第一功率開關111之源極接收該輸入電壓Vin,該第一功率開關111之汲極電性連接一節點VX,該第一功率開關111之閘極接收一第一控制訊號SC1。該第二功率開關112之汲極電性連接該節點VX,該第二功率開關112之源極接地,該第二功率開關112之閘極接收一第二控制訊號SC2。該充放電單元113具有一電感113a、一電阻113b及一電容113c,該電感113a之兩端分別電性連接該節點VX及該電池模組B,該電阻113b之兩端分別電性連接該電池模組B及該電容113c之一端,該電容113c之另一端接地。該非交疊電路114電性連接該或閘150以接收該控制訊號SC,且該非交疊電路114將該控制訊號SC分為該第一控制訊號SC1及該第二控制訊號SC2。該零電流偵測電路115電性連接該非交疊電路114,以將該第二控制訊號SC2傳送至該第二功率開關112。該高準位位移器116電性連接該非交疊電
路114,以提昇該第一控制訊號SC1的準位並傳送至該第一功率開關111。該轉換電路110藉由該第一控制訊號SC1及該第二控制訊號SC2控制該第一功率開關111及該第二功率開關112之責任週期(Duty cycle),而將該輸入電壓Vin轉換為合適之電流或電壓對該電池模組B充電。
Please refer to FIGS. 1 and 2. In this embodiment, the
請參閱第2及3圖,該電流感測器120用以感測該充放電單元113之該電感113a的電流大小,以得知該電感113a的電流是否已經大於一預定值而判斷該轉換電路110是否切換至定電流模式。請參閱第3圖,在本實施例中,該電流感測器120具有一負載121、一第一電流鏡122、一第二電流鏡123及一電流電壓轉換迴路124。該負載121具有一第一電晶體121a及一第二電晶體121b,該第一電流鏡122具有一第三電晶體122a及一第四電晶體122b,該第二電流鏡123具有一第五電晶體123a、一第六電晶體123b及一第七電晶體123c,該第一電晶體121a、該第三電晶體122a及該第五電晶體123a構成一第一電流迴路L1,該第二電晶體121b、該第四電晶體122b及該第六電晶體123b構成一第二電流迴路L2,該第七電晶體123c用以複製電流至該第一電流迴路L1及該第二電流迴路L2,使該第一電流迴路L1及該第二電流迴路L2的電流與該第七電晶體123c的電流相同,且由於該第一電流迴路L1及該第二電流迴路L2的路徑相同,因此,節點VY與節點VZ的電壓相同。此外,該第一電流迴路L1電性連接該電感113a而由該電感113a擷取部份之電流,該電流電壓轉換迴路124電性連接該第二電晶體121b以由該第二電流迴路L2擷取一偵測電流並將其轉換為該感測電壓Vsense,其中,藉由該第一電晶體121a之寬度比為該第二電晶體121b之寬度比的K倍,該第二電晶體121b可以複製K分之一倍的該第一電晶體121a之電流並由該電流電壓轉換迴路124轉換為該感測電壓Vsense,而可藉由該感測電壓Vsense的電位偵測該電感113a的電流大小。
Please refer to FIG. 2 and FIG. 3, the
請參閱第2及4圖,該定電流模式控制單元130具有一第一比較器131、一充放電選擇電路132、一充電電容133、一第二比較器134、一延遲器135及一低準位位移器136。該第一比較器131電性連接該電流感測器120及該低準位位移器136,以由該電流感測器120接收該感測電壓Vsense,並由該低準位位移器136接收該限制電壓Vlimit,該第一比較器131比對該感測電壓Vsense及該限制電壓Vlimit的電位大小並輸出一第一比較訊號comp1。該充放電選擇電路132電性連接該第一比較器131以接收該第一比較訊號comp1,該充電電容133電性連接該充放電選擇電路132,其中,該充放電選擇電路132根據該第一比較訊號comp1選擇性地對該充電電容133充電或放電,使該充電電容133之一電容電壓VCC上升或下降。該第二比較器134電性連接該充電電容133,該第二比較器134比對該充電電容133之該電容電壓VCC及該漣波電壓Vramp的電位大小而輸出該脈衝寬度調變訊號PWM。該延遲器135接收反相之該脈衝寬度調變訊號PWM進行延遲,該低準位位移器136接收該延遲器135輸出之一延遲訊號Sdelay進行準位位移,且該低準位位移器136輸出該限制電壓Vlimit至該第一比較器131。
Please refer to FIGS. 2 and 4, the constant current
請參閱第4圖,該充放電選擇電路132具有一第一開關132a、一第二開關132b及一反相器132c,該第一開關132a之閘極電性連接該第一比較器131以接收該第一比較訊號comp1並受該第一比較訊號comp1控制,該第二開關132b之閘極經由該反相器132c接收反相之該第一比較訊號comp1並受反相之該第一比較訊號comp1控制,在本實施例中,該第一開關132a及該第二開關132b皆為NMOS電晶體,由於受到互為反相之訊號控制,該第一開關132a導通時,該第二開關132b截止,而該第一開關132a截止時,該第二開關132b導通。其中,當該感測電壓Vsense小於該限制電壓Vlimit時,該第一比較器131輸出之該第一比較訊號comp1為高電位,導通該第一開關132a並截止該第二開關132b,此時一充電電流I
C經由該第一開關132a對該充電電容133充電,使該充電電容133的該電容電壓V
cc緩慢上升。相對地,當該感測電壓V
sense大於該限制電壓V
limit時,該第一比較器131輸出之第一比較訊號comp1為低電位,而截止該第一開關132a並導通該第二開關132b,此時該第二開關132b提供一放電電流I
DISS對該充電電容133放電,使該充電電容133的該電容電壓V
CC上升速度放緩或是下降,接著再透過該第二比較器134比對該充電電容133的該電容電壓V
CC與該漣波電壓V
ramp的大小後即可輸出責任週期(Duty cycle)可變之該脈衝寬度調變訊號PWM,而可藉由該脈衝寬度調變訊號PWM的控制讓該充放電單元113的輸出電流維持在定電流。
Referring to FIG. 4, the charge-
請參閱第2及5圖,該定電壓模式控制單元140具有一第三比較器141、一正反器142及一定電壓控制或閘143,該第三比較器141接收該電池模組B之該電池電壓V
BAT及該滿額電壓V
full,其中該滿額電壓V
full是藉由該電池模組B的額定電壓進行設定,該第三比較器141比對該電池電壓V
BAT及該滿額電壓V
full的電位大小並輸出一第三比較訊號comp3。該正反器142之輸入端電性連接第三比較器141以接收該第三比較訊號comp3,該正反器142之時脈輸入端接收該時脈訊號Clk,且該正反器142根據該第三比較訊號comp3及該時脈訊號Clk輸出一正反器輸出訊號S
FF,該定電壓控制或閘143電性連接該正反器142,且該定電壓控制或閘143根據該正反器輸出訊號S
FF及該時脈訊號Clk輸出該脈衝頻率調變訊號PFM。
Referring to FIGS. 2 and 5, the constant voltage
請參閱第2及5圖,當該電池模組B之該電池電壓V
BAT尚未達到該滿額電壓V
full前,該第三比較器141輸出之該第三比較訊號comp3為低電位,使得該定電壓控制或閘143輸出之該脈衝頻率調變訊號PFM的電位變化與該時脈訊號Clk相同,而由於該時脈訊號Clk的責任週期很小,因此,該或閘150接收該脈衝寬度調變訊號PWM及該脈衝頻率調變訊號PFM後,該脈衝頻率調變訊號PFM會被該脈衝寬度調變訊號PWM遮蔽,使得該控制訊號S
C的電位變化與該脈衝寬度調變訊號PWM相同。而當該電池模組B之該電池電壓V
BAT達到該滿額電壓V
full時,該第三比較器141輸出之該第三比較訊號comp3為高電位,使得該正反器輸出訊號S
FF為較長的邏輯1訊號而遮蔽該時脈訊號Clk,讓該定電壓控制或閘143輸出之該脈衝頻率調變訊號PFM也為較長的邏輯1訊號,該或閘150接收該脈衝寬度調變訊號PWM及該脈衝頻率調變訊號PFM後,該脈衝寬度調變訊號PWM會被該脈衝頻率調變訊號PFM遮蔽,使得該控制訊號S
C的電位變化與該脈衝頻率調變訊號PFM相同,藉此,本發明可以僅透過單一個該或閘150達成充電系統於雙模式之間的切換,而減少兩個模式之間切換可能產生的損失並提高整體效率。
Please refer to FIGS. 2 and 5, before the battery voltage V BAT of the battery module B has not reached the full voltage V full , the third comparison signal comp3 output by the
請參閱第2及6圖,該非交疊電路114電性連接該或閘150以接收該控制訊號S
C,且該非交疊電路114分別輸出該第一控制訊號S
C1及該第二控制訊號S
C2至該第一功率開關111及該第二功率開關112,其中,該非交疊電路114透過兩個反相器串使得該第一控制訊號S
C1開啟該第一功率開關111的時間長於該第二控制訊號S
C2關閉該第二功率開關112的時間,讓該第一功率開關111及該第二功率開關112的切換時間交錯,以避免該第一功率開關111及該第二功率開關112同時導通使該輸入電壓V
in經由該第一功率開關111及該第二功率開關112接地產生大電流,造成功率損耗或是功率開關的燒毀的問題發生。
See FIGS. 2 and 6, the
請參閱第2及7圖,為了避免該第二功率開關112產生逆電流,該PWM/PFM雙模式充電系統100藉由該零電流偵測電路115偵測該節點V
X的電壓,而能在該節點V
X的電壓為零時關閉該第二功率開關112。在本實施例中,該零電流偵測電路115電性連接該第二功率開關112及該非交疊電路114,使得該非交疊電路114輸出之該第二控制訊號SC2經由該零電流偵測電路115傳送至該第二功率開關112,該零電流偵測電路115具有一正反器115a、一及閘115b及一比較器115c,該比較器115c電性連接該節點VX,並將節點VX的電壓與接地之零電位進行比較,該正反器115a之一重置端電性連接該比較器115c,該及閘115b電性連接該正反器115a及該非交疊電路114,其中,當該節點VX的電壓降至零時重置該正反器115a,使得該及閘115b輸出低電位而立即關閉該第二功率開關112,而避免該第二功率開關112產生逆電流。
Please refer to FIGS. 2 and 7, in order to avoid the reverse current generated by the
請參閱第2及8圖,為本實施例之一三角波及時脈產生器160的電路圖,其中該三角波及時脈產生器160具有一電容161、一電晶體串162及一邏輯電路163。該電晶體串162產生一偏壓電流對該電容161充電使該電容161的電壓上升,而當該電容161的電壓大於該邏輯電路163接收之一高電位位準VH時,該邏輯電路163之一第四比較器163a輸出低電位,使該邏輯電路163輸出之該時脈訊號Clk為高電位,此時該時脈訊號Clk會關閉該電晶體串162之一PMOS電晶體162a並開啟一NMOS電晶體162b,讓該電容161快速放電而電壓下降,當該電容161的電壓小於該邏輯電路163接收之一低電位位準VL時,該邏輯電路163之一第五比較器163b輸出低電位,使該邏輯電路163輸出之該時脈訊號Clk為低電位,開啟該電晶體串162之該PMOS電晶體162a並關閉該NMOS電晶體162b,而重新對該電容161充電並反覆上述之充電、放電步驟,而由該電容161輸出該漣波電壓Vramp,並由該邏輯電路163輸出該時脈訊號Clk。此外,該邏輯電路163還另接收一重置訊號R,以對該三角波及時脈產生器160進行重置。
Please refer to FIGS. 2 and 8 for a circuit diagram of a triangular wave and
本發明藉由該定電流模式控制單元130及該定電壓模式控制單元
140達成PWM/PFM雙模式的充電控制而避免定電壓模式下發生低效率的問題,並僅透過單一個該或閘150即達成兩個模式之間的切換,可減少切換模式時的損耗,提高該PWM/PFM雙模式充電系統100整體的充電效率。
The present invention uses the constant current
本發明之保護範圍當視後附之申請專利範圍所界定者為準,任何熟知此項技藝者,在不脫離本發明之精神和範圍內所作之任何變化與修改,均屬於本發明之保護範圍。 The scope of protection of the present invention shall be subject to the scope defined in the attached patent application. Any changes and modifications made by those who are familiar with this skill without departing from the spirit and scope of the present invention shall fall within the scope of protection of the present invention. .
100‧‧‧PWM/PFM雙模式充電系統 100‧‧‧PWM/PFM dual-mode charging system
110‧‧‧轉換電路 110‧‧‧ Conversion circuit
111‧‧‧第一功率開關 111‧‧‧ First power switch
112‧‧‧第二功率開關 112‧‧‧The second power switch
113‧‧‧充放電單元 113‧‧‧Charge and discharge unit
113a‧‧‧電感 113a‧‧‧Inductance
113b‧‧‧電阻 113b‧‧‧Resistance
113c‧‧‧電容 113c‧‧‧Capacitance
114‧‧‧非交疊電路 114‧‧‧Non-overlapping circuit
115‧‧‧零電流偵測電路 115‧‧‧ Zero current detection circuit
115a‧‧‧正反器 115a‧‧‧Pros and cons
115b‧‧‧及閘 115b‧‧‧ and gate
115c‧‧‧比較器 115c‧‧‧Comparator
116‧‧‧高準位位移器 116‧‧‧High level shifter
120‧‧‧電流感測器 120‧‧‧current sensor
121‧‧‧負載 121‧‧‧Load
121a‧‧‧第一電晶體 121a‧‧‧First transistor
121b‧‧‧第二電晶體 121b‧‧‧Second transistor
122‧‧‧第一電流鏡 122‧‧‧First Current Mirror
122a‧‧‧第三電晶體 122a‧‧‧third transistor
122b‧‧‧第四電晶體 122b‧‧‧The fourth transistor
123‧‧‧第二電流鏡 123‧‧‧second current mirror
123a‧‧‧第五電晶體 123a‧‧‧Fifth transistor
123b‧‧‧第六電晶體 123b‧‧‧The sixth transistor
123c‧‧‧第七電晶體 123c‧‧‧The seventh transistor
130‧‧‧定電流模式控制單元 130‧‧‧ Constant current mode control unit
131‧‧‧第一比較器131‧‧‧ First comparator
132‧‧‧充放電選擇電路132‧‧‧ Charge and discharge selection circuit
132a‧‧‧第一開關132a‧‧‧First switch
132b‧‧‧第二開關132b‧‧‧Second switch
132c‧‧‧反相器132c‧‧‧Inverter
133‧‧‧充電電容133‧‧‧Charging capacitor
134‧‧‧第二比較器134‧‧‧ Second Comparator
135‧‧‧延遲器135‧‧‧delay
136‧‧‧低準位位移器136‧‧‧Low level shifter
140‧‧‧定電壓模式控制單元140‧‧‧ Constant voltage mode control unit
141‧‧‧第三比較器141‧‧‧The third comparator
142‧‧‧正反器142‧‧‧Pros and cons
143‧‧‧定電壓控制或閘143‧‧‧ Constant voltage control or gate
150‧‧‧或閘150‧‧‧ or gate
160‧‧‧三角波及時脈產生器160‧‧‧triangle wave and clock generator
161‧‧‧電容161‧‧‧Capacitance
162‧‧‧電晶體串162‧‧‧Transistor string
162a‧‧‧PMOS電晶體162a‧‧‧PMOS transistor
162b‧‧‧NMOS電晶體162b‧‧‧NMOS transistor
163‧‧‧邏輯電路163‧‧‧Logic circuit
163a‧‧‧第四比較器163a‧‧‧The fourth comparator
163b‧‧‧第五比較器163b‧‧‧Fifth comparator
VX、VY、VZ‧‧‧節點V X , V Y , V Z ‧‧‧ nodes
VBAT‧‧‧電池電壓V BAT ‧‧‧ Battery voltage
Vsense‧‧‧感測電壓V sense ‧‧‧ sense voltage
PWM‧‧‧脈衝寬度調變訊號PWM‧‧‧Pulse width modulation signal
PFM‧‧‧脈衝頻率調變訊號PFM‧‧‧Pulse frequency modulation signal
SC‧‧‧控制訊號S C ‧‧‧Control signal
SC1‧‧‧第一控制訊號S C1 ‧‧‧ First control signal
SC2‧‧‧第二控制訊號S C2 ‧‧‧ Second control signal
Vlimit‧‧‧限制電壓V limit ‧‧‧Limit voltage
comp1‧‧‧第一比較訊號comp1‧‧‧First comparison signal
Vfull‧‧‧滿額電壓V full ‧‧‧ full voltage
comp3‧‧‧第三比較訊號comp3‧‧‧The third comparison signal
Clk‧‧‧時脈訊號Clk‧‧‧clock signal
SFF‧‧‧正反器輸出訊號S FF ‧‧‧ flip-flop output signal
Vramp‧‧‧漣波電壓V ramp ‧‧‧ ripple voltage
VCC‧‧‧電容電壓V CC ‧‧‧ capacitor voltage
B‧‧‧電池模組B‧‧‧Battery module
L1‧‧‧第一電流迴路L1‧‧‧ First current loop
L2‧‧‧第二電流迴路L2‧‧‧second current loop
Sdelay‧‧‧延遲訊號S delay ‧‧‧ Delay signal
IC‧‧‧充電電流I C ‧‧‧ Charging current
IDISS‧‧‧放電電流I DISS ‧‧‧ Discharge current
Vin‧‧‧輸入電壓V in ‧‧‧ input voltage
R‧‧‧重置訊號R‧‧‧Reset signal
VH‧‧‧高電位位準V H ‧‧‧High potential level
VL‧‧‧低電位位準V L ‧‧‧ Low level
第1圖:依據本發明之一實施例,一種PWM/PFM雙模式充電系統的功能方塊圖。 Figure 1: A functional block diagram of a PWM/PFM dual-mode charging system according to an embodiment of the present invention.
第2圖:依據本發明之一實施例,該PWM/PFM雙模式充電系統的電路圖。 Figure 2: According to one embodiment of the present invention, the circuit diagram of the PWM/PFM dual-mode charging system.
第3圖:依據本發明之一實施例,一電流感測器的電路圖。 Figure 3: A circuit diagram of a current sensor according to an embodiment of the invention.
第4圖:依據本發明之一實施例,一定電流模式控制單元的電路圖。 Fig. 4: A circuit diagram of a constant current mode control unit according to an embodiment of the invention.
第5圖:依據本發明之一實施例,一定電壓模式控制單元的電路圖。 Fig. 5: A circuit diagram of a certain voltage mode control unit according to an embodiment of the present invention.
第6圖:依據本發明之一實施例,一非交疊電路的電路圖。 Fig. 6: A circuit diagram of a non-overlapping circuit according to an embodiment of the invention.
第7圖:依據本發明之一實施例,一零電流偵測電路的電路圖。 Fig. 7: A circuit diagram of a zero current detection circuit according to an embodiment of the invention.
第8圖:依據本發明之一實施例,一三角波及時脈產生器的電路圖。 Figure 8: A circuit diagram of a triangle wave and clock generator according to an embodiment of the invention.
100‧‧‧PWM/PFM雙模式充電系統 100‧‧‧PWM/PFM dual-mode charging system
110‧‧‧轉換電路 110‧‧‧ Conversion circuit
120‧‧‧電流感測器 120‧‧‧current sensor
130‧‧‧定電流模式控制單元 130‧‧‧ Constant current mode control unit
140‧‧‧定電壓模式控制單元 140‧‧‧ Constant voltage mode control unit
150‧‧‧或閘 150‧‧‧ or gate
Vin‧‧‧輸入電壓 V in ‧‧‧ input voltage
B‧‧‧電池模組 B‧‧‧Battery module
SC‧‧‧控制訊號 S C ‧‧‧Control signal
PWM‧‧‧脈衝寬度調變訊號 PWM‧‧‧Pulse width modulation signal
PFM‧‧‧脈衝頻率調變訊號 PFM‧‧‧Pulse frequency modulation signal
Vsense‧‧‧感測電壓 V sense ‧‧‧ sense voltage
Vlimit‧‧‧限制電壓 V limit ‧‧‧Limit voltage
Vramp‧‧‧漣波電壓 V ramp ‧‧‧ ripple voltage
Vfull‧‧‧滿額電壓 V full ‧‧‧ full voltage
VBAT‧‧‧電池電壓 V BAT ‧‧‧ Battery voltage
Clk‧‧‧時脈訊號 Clk‧‧‧clock signal
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108115134A TWI684314B (en) | 2019-04-30 | 2019-04-30 | Pwm/pfm dual mode charging system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108115134A TWI684314B (en) | 2019-04-30 | 2019-04-30 | Pwm/pfm dual mode charging system |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI684314B true TWI684314B (en) | 2020-02-01 |
TW202042476A TW202042476A (en) | 2020-11-16 |
Family
ID=70413447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108115134A TWI684314B (en) | 2019-04-30 | 2019-04-30 | Pwm/pfm dual mode charging system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI684314B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI765419B (en) * | 2020-11-19 | 2022-05-21 | 國立中山大學 | Single inductor dual output buck converter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW281826B (en) * | 1992-10-14 | 1996-07-21 | Electronic Power Conditioning Inc | |
WO2004047276A1 (en) * | 2002-11-14 | 2004-06-03 | Fyre Storm, Inc. | Power converter circuitry and method |
TW201411996A (en) * | 2012-08-06 | 2014-03-16 | System General Corp | A control circuit with fast dynamic response for power converters |
TW201415783A (en) * | 2012-10-01 | 2014-04-16 | System General Corp | A primary side regulation control circuit of a power converter |
TW201801438A (en) * | 2016-02-12 | 2018-01-01 | 電容器科學公司 | Capacitive energy storage cell, capacitive energy storage module, and capacitive energy storage system |
-
2019
- 2019-04-30 TW TW108115134A patent/TWI684314B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW281826B (en) * | 1992-10-14 | 1996-07-21 | Electronic Power Conditioning Inc | |
WO2004047276A1 (en) * | 2002-11-14 | 2004-06-03 | Fyre Storm, Inc. | Power converter circuitry and method |
TW201411996A (en) * | 2012-08-06 | 2014-03-16 | System General Corp | A control circuit with fast dynamic response for power converters |
TW201415783A (en) * | 2012-10-01 | 2014-04-16 | System General Corp | A primary side regulation control circuit of a power converter |
TW201801438A (en) * | 2016-02-12 | 2018-01-01 | 電容器科學公司 | Capacitive energy storage cell, capacitive energy storage module, and capacitive energy storage system |
Also Published As
Publication number | Publication date |
---|---|
TW202042476A (en) | 2020-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10903742B2 (en) | Switched-capacitor converter circuit, charging control system, and control method | |
JP6272928B2 (en) | Continuously variable switched capacitor DC-DC voltage converter | |
CN103516207B (en) | The synchronous rectifier timer of discontinuous mode DC/DC converters | |
CN113054838B (en) | Hybrid dual-path buck converter | |
US20110134665A1 (en) | Low-voltage start up circuit and method for DC-DC boost converter | |
US20140119060A1 (en) | Power converter and method for controlling the same | |
US20170288440A1 (en) | Secondary control device and charging system having the same | |
CN101356732A (en) | Pulse generator, electronic device using the same, and pulse generating method | |
WO2021244265A1 (en) | Cell balancing device based on capacitor network, cascadable balancing battery pack, and control method thereof | |
TWI689161B (en) | Power converter | |
CN106992670B (en) | Adaptive turn-on time control circuit for PFM mode boost type DC-DC converter | |
EP4142131B1 (en) | Multi-level direct current converter and power supply system | |
TWI684314B (en) | Pwm/pfm dual mode charging system | |
CN106160452A (en) | The power-supply system of suppression electromagnetic interference | |
RU2734903C1 (en) | Device for resonance charge of capacitor | |
JP2017022953A (en) | Step-down circuit and step-down charging circuit using the same | |
CN110649336B (en) | Voltage equalization circuit with complete equalization branch and control method | |
Nguyen-Van et al. | A topology of charging mode control circuit suitable for long-life Li-Ion battery charger | |
Ranjana et al. | A novel high gain floating output DC-DC multilevel boost converter for fuelcell applications | |
CN114527407B (en) | Capacitance detection circuit, device and equipment | |
CN113783429B (en) | Hybrid DC-DC boost converter | |
CN114337251B (en) | Low-voltage noise charge pump circuit | |
Haq et al. | Detachable Lithium-Ion Starter Battery and Analog Battery Management System for ICE Vehicles | |
CN111682748B (en) | Energy acquisition low-voltage cold start circuit suitable for indoor sunlight | |
TWI765480B (en) | Charging system with mppt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |