TWI683449B - Quantum dot material, manufacturing method of the quantum dot material and display device of the quantum dot material - Google Patents

Quantum dot material, manufacturing method of the quantum dot material and display device of the quantum dot material Download PDF

Info

Publication number
TWI683449B
TWI683449B TW107140478A TW107140478A TWI683449B TW I683449 B TWI683449 B TW I683449B TW 107140478 A TW107140478 A TW 107140478A TW 107140478 A TW107140478 A TW 107140478A TW I683449 B TWI683449 B TW I683449B
Authority
TW
Taiwan
Prior art keywords
quantum dot
dot material
composite quantum
optical core
composite
Prior art date
Application number
TW107140478A
Other languages
Chinese (zh)
Other versions
TW202018968A (en
Inventor
李碧鳳
Original Assignee
晟森科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晟森科技有限公司 filed Critical 晟森科技有限公司
Priority to TW107140478A priority Critical patent/TWI683449B/en
Priority to CN201811529365.8A priority patent/CN111187610A/en
Application granted granted Critical
Publication of TWI683449B publication Critical patent/TWI683449B/en
Publication of TW202018968A publication Critical patent/TW202018968A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • C09K11/592Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/671Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/74Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)

Abstract

The present invention discloses a quantum dot material comprising an optical core, an inorganic ligand layer which includes a least one SiO xmaterial wrapped on the surface of the optical core, and a water-vapor barring layer wrapped on the surface of the inorganic ligand layer. The abovementioned water-vapor barring layer is formed by stacking a plurality of stacked structures including at least one metal oxide in an irregular arrangement. In addition, a manufacturing method and application of the quantum dot material are also disclosed by the present invention.

Description

複合量子點材料、製備方法及其顯示裝置Composite quantum dot material, preparation method and display device

本發明係關於一種複合量子點材料、複合量子點材料的製備方法及其顯示裝置,尤指一種可提升量子點之穩定性及發光效率的複合量子點材料、複合量子點材料的製備方法及其顯示裝置。The invention relates to a composite quantum dot material, a preparation method of the composite quantum dot material and a display device thereof, in particular to a composite quantum dot material and a preparation method of the composite quantum dot material which can improve the stability and luminous efficiency of the quantum dot and the composite quantum dot material Display device.

量子點從被製作以後,由於其優異的光電性能引起了科學界和工業界廣泛的興趣。與傳統螢光材料相比,量子點的發光性能更具有半峰寬窄、顆粒小、無散射損失和光譜隨尺寸可調控等優點,被廣泛地認為將在顯示、照明和生物螢光標記等領域具有重大應用前景。Since the quantum dots were made, they have attracted wide interest in the scientific and industrial circles due to their excellent photoelectric properties. Compared with traditional fluorescent materials, the luminous properties of quantum dots have more advantages such as narrower half-width, smaller particles, no scattering loss, and adjustable spectrum with size. They are widely considered to be in the fields of display, lighting, and bioluminescent marking. Has significant application prospects.

各單位皆投入了大量的時間和人力成本進行量子點材料的研究,使量子點的光電性能得到不斷的提升,相關應用的元件也相繼出現。Each unit has invested a lot of time and labor costs in the research of quantum dot materials, so that the photoelectric performance of quantum dots has been continuously improved, and related application components have also appeared one after another.

其中,量子點作為發光材料應用於顯示設備被認為是量子點最先實現突破的應用領域。然而,量子點作為一種優越的發光材料,仍然存在許多基礎問題尚未能得到解決,尤其又以「量子點的穩定性問題」困擾著許多的研究單位,成為限制量子點領域發展的瓶頸之一。進一步而言,量子點在其它應用領域,如太陽能電池、生物標記以及環境污染冶理等方面,其穩定性亦是很大的挑戰。Among them, the application of quantum dots as light-emitting materials in display devices is considered to be the first application field of quantum dots to achieve breakthroughs. However, as a superior light-emitting material, quantum dots still have many basic problems that have not yet been solved. Especially, the "quantum dot stability problem" has plagued many research units and has become one of the bottlenecks restricting the development of quantum dots. . Furthermore, the stability of quantum dots in other applications, such as solar cells, biomarkers, and environmental pollution treatment, is also a great challenge.

有鑑於上述的缺失,本發明旨在提出一種可提升量子點穩定性及發光效率的複合量子點材料、複合量子點材料的製備方法及其顯示裝置。In view of the above deficiencies, the present invention aims to propose a composite quantum dot material that can improve the stability of quantum dots and luminous efficiency, a method for preparing the composite quantum dot material, and a display device thereof.

首先,本發明提出一種複合量子點材料。該複合量子點材料包含:一光學核心;一無機配體層,包覆於該光學核心的表面上,該無機配體層包含至少一氧化矽(SiO x)材料;以及一水氧阻障層,包覆於該無機配體層的表面上。其中,該水氧阻障層係由包含有至少一金屬氧化物的複數個層積結構,以不規則的排列方式堆疊而成。 First, the present invention proposes a composite quantum dot material. The composite quantum dot material comprising: an optical core; a ligand of the inorganic layer, coated on the surface of the optical core, the inorganic alignment layer comprises at least a silicon oxide (SiO x) material; and an aqueous oxygen barrier layer , Coated on the surface of the inorganic ligand layer. Wherein, the water-oxygen barrier layer is formed by stacking a plurality of laminated structures including at least one metal oxide in an irregular arrangement.

再者,本發明還提出一種複合量子點材料的製備方法,包含以下步驟:(A)提供一光學核心,並對該光學核心進行矽烷化處理;(B)添加一表面活性劑和一非極性溶劑於經矽烷化處理後的該光學核心;(C)添加一含矽化合物,使得該光學核心表面具有至少一氧化矽(SiO x)材料;(D)添加一含水化合物,該含水化合物與該含矽化合物進行水解和縮合反應,以形成一無機配體層;(E)混合一醋酸鋅水合物和乙醇,並添加至包覆有該無機配體層的該光學核心;以及(F)將包覆有該無機配體層的該光學核心浸泡於氫氧化鈉(NaOH)-乙醇(Ethanol)水溶液,形成一複合量子點材料。 Furthermore, the present invention also provides a method for preparing a composite quantum dot material, including the following steps: (A) providing an optical core, and silanizing the optical core; (B) adding a surfactant and a non-polar Solvent in the optical core after silanization treatment; (C) Add a silicon-containing compound so that the surface of the optical core has at least silicon monoxide (SiO x ) material; (D) Add an aqueous compound, the aqueous compound and the The silicon-containing compound undergoes hydrolysis and condensation reactions to form an inorganic ligand layer; (E) a zinc acetate hydrate and ethanol are mixed and added to the optical core coated with the inorganic ligand layer; and (F) The optical core coated with the inorganic ligand layer is immersed in an aqueous solution of sodium hydroxide (NaOH)-ethanol (Ethanol) to form a composite quantum dot material.

本發明還提出另一種複合量子點材料的製備方法,包含以下步驟:(G)提供一光學核心,並對該光學核心進行矽烷化處理;(H)添加一表面活性劑和一非極性溶劑於經矽烷化處理後的該光學核心;(I)添加一含矽化合物,使得該光學核心表面具有至少一氧化矽(SiO x)材料;(J)添加一含水化合物,該含水化合物與該含矽化合物進行水解和縮合反應,以形成一無機配體層;(K)添加異丙醇鈦(Titanium isopropoxide, TTIP)或鈦酸四丁酯(TBOT)至包覆有該無機配體層的該光學核心;以及(L)將包覆有該無機配體層的該光學核心浸泡於水-醇溶液,形成一複合量子點材料。 The present invention also proposes another method for preparing a composite quantum dot material, which includes the following steps: (G) providing an optical core and silanizing the optical core; (H) adding a surfactant and a non-polar solvent to The optical core after silanization treatment; (I) Add a silicon-containing compound so that the surface of the optical core has at least silicon monoxide (SiO x ) material; (J) Add an aqueous compound, the aqueous compound and the silicon-containing The compound undergoes hydrolysis and condensation reactions to form an inorganic ligand layer; (K) Titanium isopropoxide (TTIP) or tetrabutyl titanate (TBOT) is added to the optical layer coated with the inorganic ligand layer Core; and (L) immersing the optical core coated with the inorganic ligand layer in a water-alcohol solution to form a composite quantum dot material.

本發明還提出另一種複合量子點材料的製備方法,包含以下步驟:(M)提供一光學核心定錨於無機氧化物上;(N)添加一非極性溶劑於至少含一量子點成長於無機氧化物;(O)添加一含矽化合物,使得該光學核心表面形成一無機配體層;(P)混合一醋酸鋅水合物和乙醇,並添加至包覆有該無機配體層的該光學核心;以及(Q)將包覆有該無機配體層的該光學核心浸泡於氫氧化鈉(NaOH)-乙醇(Ethanol)水溶液,形成一複合量子點材料。The present invention also proposes another method for preparing a composite quantum dot material, which includes the following steps: (M) providing an optical core anchored on an inorganic oxide; (N) adding a non-polar solvent to at least one quantum dot grown in inorganic Oxide; (O) adding a silicon-containing compound to form an inorganic ligand layer on the surface of the optical core; (P) mixing a zinc acetate hydrate and ethanol and adding to the optical layer coated with the inorganic ligand layer Core; and (Q) immersing the optical core coated with the inorganic ligand layer in an aqueous solution of sodium hydroxide (NaOH)-ethanol (Ethanol) to form a composite quantum dot material.

本發明還提出另一種複合量子點材料的製備方法,包含以下步驟:(R)提供一光學核心定錨於無機氧化物上;(S)添加一非極性溶劑於至少含一量子點成長於無機氧化物;(T)添加一含矽化合物,使得該光學核心表面形成一無機配體層;(U)添加異丙醇鈦(Titanium isopropoxide, TTIP)或鈦酸四丁酯(TBOT)至包覆有該無機配體層的該光學核心;以及(V)將包覆有該無機配體層的該光學核心浸泡於水-醇溶液,形成一複合量子點材料。The present invention also proposes another method for preparing a composite quantum dot material, which includes the following steps: (R) providing an optical core anchored on an inorganic oxide; (S) adding a non-polar solvent to at least one quantum dot grown in inorganic Oxide; (T) adding a silicon-containing compound to form an inorganic ligand layer on the surface of the optical core; (U) adding titanium isopropoxide (TTIP) or tetrabutyl titanate (TBOT) to the coating The optical core with the inorganic ligand layer; and (V) immersing the optical core with the inorganic ligand layer in a water-alcohol solution to form a composite quantum dot material.

再者,本發明更提出一種複合量子點顯示裝置,包含:一背光源;至少一複合量子點材料,設於該背光源;以及一液晶顯示模組,設置於含有至少一複合量子點材料之背光源上。Furthermore, the present invention further proposes a composite quantum dot display device, comprising: a backlight; at least one composite quantum dot material, which is provided on the backlight; and a liquid crystal display module, which is disposed on a material containing at least one composite quantum dot material On the backlight.

其中,該至少一複合量子點材料包含:一光學核心;一無機配體層,包覆於該光學核心的表面上,該無機配體層包含至少一氧化矽(SiO x)材料;以及一水氧阻障層,包覆於該無機配體層的表面上。其中,該水氧阻障層係由包含有至少一金屬氧化物的層積結構堆疊而成。 Wherein, the at least one composite quantum dot material includes: an optical core; an inorganic ligand layer coated on the surface of the optical core, the inorganic ligand layer including at least silicon oxide (SiO x ) material; and a water The oxygen barrier layer is coated on the surface of the inorganic ligand layer. Wherein, the water-oxygen barrier layer is formed by stacking at least one metal oxide layered structure.

本發明更提出另一種複合量子點顯示裝置,包含:一微發光源,為主動式微LED晶粒或被動式微LED晶粒;以及至少一複合量子點材料,置放於該微發光源上。其中,該至少一複合量子點材料包含:一光學核心;一無機配體層,包覆於該光學核心的表面上,該無機配體層包含至少一氧化矽(SiO x)材料;以及一水氧阻障層,包覆於該無機配體層的表面上。其中,該水氧阻障層係由包含有至少一金屬氧化物的層積結構堆疊而成。 The present invention further proposes another composite quantum dot display device, including: a micro-luminescence source, which is an active micro LED die or a passive micro LED die; and at least one composite quantum dot material, which is placed on the micro-luminescence source. Wherein, the at least one composite quantum dot material includes: an optical core; an inorganic ligand layer coated on the surface of the optical core, the inorganic ligand layer including at least silicon oxide (SiO x ) material; and a water The oxygen barrier layer is coated on the surface of the inorganic ligand layer. Wherein, the water-oxygen barrier layer is formed by stacking at least one metal oxide layered structure.

以上對本發明的簡述,目的在於對本發明之數種面向和技術特徵作一基本說明。發明簡述並非對本發明的詳細表述,因此其目的不在特別列舉本發明的關鍵性或重要元件,也不是用來界定本發明的範圍,僅為以簡明的方式呈現本發明的數種概念而已。The above brief description of the present invention aims to provide a basic description of several aspects and technical features of the present invention. The brief description of the invention is not a detailed description of the invention, so its purpose is not to specifically list the key or important elements of the invention, nor to define the scope of the invention, but to present several concepts of the invention in a concise manner.

為能瞭解本發明的技術特徵及實用功效,並可依照說明書的內容來實施,茲進一步以如圖式所示的較佳實施例,詳細說明如後:In order to understand the technical features and practical effects of the present invention, and to implement it in accordance with the contents of the specification, the preferred embodiments as shown in the drawings are further described in detail below:

實施例:複合量子點材料Example: Composite quantum dot material

首先,請參考第一圖,其為本發明較佳實施例之複合量子點材料的示意圖。如第一圖所示,本較佳實施例之複合量子點材料142包含:一光學核心421、一無機配體層1001以及一水氧阻障層2001。First, please refer to the first figure, which is a schematic diagram of a composite quantum dot material according to a preferred embodiment of the present invention. As shown in the first figure, the composite quantum dot material 142 of this preferred embodiment includes: an optical core 421, an inorganic ligand layer 1001, and a water-oxygen barrier layer 2001.

其中,該光學核心421可以是由半導體材料製成的量子點,例如:II-VI族量子點(CdSe 或 CdS)、III-V族量子點((Al, In, Ga)P、(Al, In, Ga)As或 (Al, In, Ga)N)、具有殼-核結構之II-VI族量子點(CdSe/ZnS)、具有殼-核結構之III-V族量子點(InP/ZnS)、具有合金結構之非球形II-VI量子點(ZnCdSeS)、上述任兩者之組合或上述任兩者以上之組合。Wherein, the optical core 421 may be quantum dots made of semiconductor materials, for example: Group II-VI quantum dots (CdSe or CdS), Group III-V quantum dots ((Al, In, Ga)P, (Al, In, Ga) As or (Al, In, Ga) N), Group II-VI quantum dots with shell-core structure (CdSe/ZnS), Group III-V quantum dots with shell-core structure (InP/ZnS ), non-spherical II-VI quantum dots (ZnCdSeS) with alloy structure, a combination of any two of the above, or a combination of any two or more of the above.

該光學核心421也可以是具有化學通式MAX 3的鈣鈦礦量子點,該鈣鈦礦量子點主要包含有機-無機雜化鈣鈦礦量子點、全無機鈣鈦礦量子點或其組合。其中,陽離子M為有機離子的甲胺離子、乙胺離子、甲脒離子或無機離子的銫離子(Cs +);金屬離子A 為二價的鉛離子(Pb 2+)、錫(Sn 2+)或鍺離子(Ge 2+);鹵素離子X 為屬於立方、正交或者四方晶系的氯離子(Cl -),溴離子(Br -)或碘離子(I -)。 The optical core 421 may also be a perovskite quantum dot having the chemical formula MAX 3 , and the perovskite quantum dot mainly includes an organic-inorganic hybrid perovskite quantum dot, an all-inorganic perovskite quantum dot, or a combination thereof. Among them, the cation M is an organic ion of methylamine ion, ethylamine ion, formamidine ion or inorganic ion of cesium ion (Cs + ); metal ion A is divalent lead ion (Pb 2+ ), tin (Sn 2+) ) or germanium ion (Ge 2+); X is a halogen ion belonging to a cubic, or orthogonal tetragonal system chloride (Cl -), bromide ion (Br -) or an iodide ion (I -).

進一步而言,該全無機鈣鈦礦量子點為具有化學通式CsPbCl 3的藍光全無機鈣鈦礦量子點、CsPbBr 3的綠光全無機鈣鈦礦量子點、具有化學通式CsPb(I/Br) 3的琥珀光全無機鈣鈦礦量子點、具有化學通式CsPbI 3的紅光全無機鈣鈦礦量子點或其組合。本較佳實施例之複合量子點材料142能受第一光線激發而發出不同於第一光線之波長的第二光線,並具有具優異的量子效率與光線波長轉換效率,能展現出半高寬窄的放光光譜及優異的純色性,使得光線波長轉換效果佳,且應用在發光裝置能提升其發光效率。 Further, the full quantum dot inorganic perovskite having the general chemical formula 3 CsPbCl blue full quantum dot inorganic perovskite, CsPbBr 3 whole green quantum dot inorganic perovskite having the general chemical formula CsPb (I / Br) 3 amber light all-inorganic perovskite quantum dots, red light all-inorganic perovskite quantum dots with the chemical formula CsPbI 3 or a combination thereof. The composite quantum dot material 142 of the preferred embodiment can be excited by the first light to emit a second light with a wavelength different from the first light, and has excellent quantum efficiency and light wavelength conversion efficiency, and can exhibit a half-height width The light emission spectrum and excellent pure color make the light wavelength conversion effect good, and the application in the light-emitting device can improve its luminous efficiency.

前述之量子點可藉由成分及/或尺寸之調整,依據能帶寬度之差異(Band Gap)改變發光顏色(第二光線波長),例如從藍色、綠色到紅色色域,能夠彈性運用;其中,該些量子點具有奈米級尺寸。在本較佳實施例中,光學核心421的粒徑大小介於1奈米(nm)至30奈米之間(例如20奈米)。然,使用者可先決定光學核心421之光激螢光的顏色,再依據所挑選的半導體材料決定適合的光學核心421尺寸大小,本發明不應依此為限。The aforementioned quantum dots can be flexibly used by adjusting the composition and/or size and changing the emission color (second light wavelength) according to the difference in band width (Band Gap), for example, from blue, green to red color gamut; Among them, the quantum dots have a nanometer size. In the preferred embodiment, the particle size of the optical core 421 is between 1 nanometer (nm) and 30 nanometers (for example, 20 nanometers). However, the user can first determine the color of the optical fluorescence of the optical core 421, and then determine the appropriate size of the optical core 421 according to the selected semiconductor material. The present invention should not be limited to this.

其中,該無機配體層1001係包覆於該光學核心421的表面上,且該無機配體層1001包含至少一氧化矽(SiO x)材料。在本較佳實施例中,該氧化矽(SiO x)材料的厚度介於1奈米(nm)至1000奈米之間,例如10奈米至100奈米。其中,該氧化矽(SiO x)材料可以是二氧化矽(SiO 2)或一氧化矽(SiO)。值得注意的是,二氧化矽(SiO 2)的透光度高,不會使來自至少一量子點的出光效率下降,且能減少量子點的配體(Ligand)損失並達到量子效率的提升,同時也可以防止量子點的光致氧化。 Wherein, the inorganic alignment layer 1001 based on the coated surface of the optical core 421, and the inorganic alignment layer 1001 comprises at least a silicon oxide (SiO x) material. In the preferred embodiment, the thickness of the silicon oxide (SiO x ) material is between 1 nanometer (nm) and 1000 nanometers, such as 10 nanometers to 100 nanometers. The silicon oxide (SiO x ) material may be silicon dioxide (SiO 2 ) or silicon monoxide (SiO). It is worth noting that the high transmittance of silicon dioxide (SiO 2 ) will not reduce the light extraction efficiency from at least one quantum dot, and can reduce the ligand loss (Ligand) of quantum dots and achieve the improvement of quantum efficiency. It also prevents photo-oxidation of quantum dots.

此外,本較佳實施例更在該無機配體層1001的表面上包覆一水氧阻障層2001,且該水氧阻障層2001係由包含有至少一金屬氧化物的層積結構201,以不規則的排列方式堆疊而成,可有效降低無機配體層1001可能會導致量子點(光學核心421)的奈米結構於固化高分子材料之中分散性表現不佳的影響。其中,該至少一金屬氧化物為氧化鈦(TiO 2)、氧化鋅(ZnO)、氧化鋁(AlO x)或其組合。 In addition, the preferred embodiment further coats a surface of the inorganic ligand layer 1001 with a water-oxygen barrier layer 2001, and the water-oxygen barrier layer 2001 is composed of a layered structure 201 including at least one metal oxide , Stacked in an irregular arrangement, can effectively reduce the effect of the inorganic ligand layer 1001 that may cause the poor performance of the quantum dot (optical core 421) nanostructure in the cured polymer material. Wherein, the at least one metal oxide is titanium oxide (TiO 2 ), zinc oxide (ZnO), aluminum oxide (AlO x ) or a combination thereof.

另一方面,請參考第二圖,其為本發明另一較佳實施例之複合量子點材料的示意圖。如第二圖所示,本另一較佳實施例之複合量子點材料142’包含:一定量前驅物431、一光學核心421、一無機配體層1001以及一水氧阻障層2001。On the other hand, please refer to the second figure, which is a schematic diagram of a composite quantum dot material according to another preferred embodiment of the present invention. As shown in the second figure, the composite quantum dot material 142' according to another preferred embodiment includes a certain amount of precursor 431, an optical core 421, an inorganic ligand layer 1001, and a water-oxygen barrier layer 2001.

本實施例與第一圖之複合量子點材料142的差異在於,本實施例之複合量子點材料142’更包含一定量前驅物431,該定量前驅物431為一無機氧化物,且在可能的實施樣態中,該無機氧化物可為一奈米球結構,其材料可選用至少一無機氧化物,如二氧化矽(SiO 2)、一氧化矽(SiO)或其組合。另外,請同時參考第十A(其比例尺大小為15奈米)、十B圖(其比例尺大小為20奈米)及十C圖(其比例尺大小為50奈米),其為本發明另一較佳實施例(含有定量前驅物)之複合量子點材料的電顯圖。如第十A、十B圖及十C圖所示,首先,對該定量前驅物431進行一胺基化的步驟;完成後,該光學核心421可定錨並成長於該定量前驅物431上,而該無機配體層1001包覆於該定量前驅物431及該光學核心421的表面上。最後,該水氧阻障層2001又包覆於該無機配體層1001心的表面上,以形成本實施例之複合量子點材料142’。 The difference between the composite quantum dot material 142 of this embodiment and the first figure is that the composite quantum dot material 142' of this embodiment further includes a certain amount of precursor 431, and the quantitative precursor 431 is an inorganic oxide, and in the possible In an embodiment, the inorganic oxide may be a nanosphere structure, and the material may be at least one inorganic oxide, such as silicon dioxide (SiO 2 ), silicon monoxide (SiO), or a combination thereof. In addition, please refer to the tenth A (the scale of which is 15 nanometers), the tenth B (the scale of which is 20 nanometers), and the tenth C (the scale of which is 50 nanometers), which is another invention. Electron display of the composite quantum dot material of the preferred embodiment (containing quantitative precursors). As shown in Figures 10A, 10B, and 10C, first, the quantitative precursor 431 is subjected to an amination step; after completion, the optical core 421 can be anchored and grown on the quantitative precursor 431 The inorganic ligand layer 1001 is coated on the surface of the quantitative precursor 431 and the optical core 421. Finally, the water-oxygen barrier layer 2001 is coated on the surface of the core of the inorganic ligand layer 1001 to form the composite quantum dot material 142' of this embodiment.

實施例:複合量子點材料的製備方法Example: Preparation method of composite quantum dot material

請參考第三圖,其為本發明第一較佳實施例之複合量子點材料的製備方法流程圖。如第三圖所示,本發明之複合量子點材料可透過以下方式製備:(A)提供一光學核心,並對該光學核心進行矽烷化處理;(B)添加一表面活性劑和一非極性溶劑於經矽烷化處理後的該光學核心;(C)添加一含矽化合物,使得該光學核心表面具有至少一氧化矽(SiO x)材料;(D)添加一含水化合物,該含水化合物與該含矽化合物進行水解和縮合反應,以形成一無機配體層;(E)混合一醋酸鋅水合物和乙醇,並添加至包覆有該無機配體層的該光學核心;以及(F)將包覆有該無機配體層的該光學核心浸泡於氫氧化鈉(NaOH)-乙醇(Ethanol)水溶液,形成一複合量子點材料。 Please refer to the third figure, which is a flow chart of the preparation method of the composite quantum dot material according to the first preferred embodiment of the present invention. As shown in the third figure, the composite quantum dot material of the present invention can be prepared by: (A) providing an optical core and silanizing the optical core; (B) adding a surfactant and a non-polar Solvent in the optical core after silanization treatment; (C) Add a silicon-containing compound so that the surface of the optical core has at least silicon monoxide (SiO x ) material; (D) Add an aqueous compound, the aqueous compound and the The silicon-containing compound undergoes hydrolysis and condensation reactions to form an inorganic ligand layer; (E) a zinc acetate hydrate and ethanol are mixed and added to the optical core coated with the inorganic ligand layer; and (F) The optical core coated with the inorganic ligand layer is immersed in an aqueous solution of sodium hydroxide (NaOH)-ethanol (Ethanol) to form a composite quantum dot material.

在本實施例的步驟(A)中,該光學核心可以是由半導體材料製成的量子點,例如:II-VI族量子點(CdSe 或 CdS)、III-V族量子點((Al, In, Ga)P、(Al, In, Ga)As或 (Al, In, Ga)N)、具有殼-核結構之II-VI族量子點(CdSe/ZnS)、具有殼-核結構之III-V族量子點(InP/ZnS)、具有合金結構之非球形II-VI量子點(ZnCdSeS )、上述任兩者之組合或上述任兩者以上之組合。In step (A) of this embodiment, the optical core may be a quantum dot made of semiconductor material, for example: group II-VI quantum dots (CdSe or CdS), group III-V quantum dots ((Al, In , Ga) P, (Al, In, Ga) As or (Al, In, Ga) N), Group II-VI quantum dots with shell-core structure (CdSe/ZnS), III- with shell-core structure Group V quantum dots (InP/ZnS), non-spherical II-VI quantum dots with alloy structure (ZnCdSeS), a combination of any two of the above, or a combination of any two or more of the above.

該光學核心也可以是具有化學通式MAX 3的鈣鈦礦量子點,該鈣鈦礦量子點主要包含有機-無機雜化鈣鈦礦量子點、全無機鈣鈦礦量子點或其組合。其中,陽離子M為有機離子的甲胺離子、乙胺離子、甲脒離子或無機離子的銫離子(Cs +);金屬離子A 為二價的鉛離子(Pb 2+)、錫(Sn 2+)或鍺離子(Ge 2+);鹵素離子X 為屬於立方、正交或者四方晶系的氯離子(Cl -),溴離子(Br -)或碘離子(I -)。進一步而言,該全無機鈣鈦礦量子點為具有化學通式CsPbCl 3的藍光全無機鈣鈦礦量子點、具有化學通式CsPbBr 3的綠光全無機鈣鈦礦量子點、具有化學通式CsPb(I/Br) 3的琥珀光全無機鈣鈦礦量子點、具有化學通式CsPbI 3的紅光全無機鈣鈦礦量子點或其組合。 The optical core may also be a perovskite quantum dot with the chemical formula MAX 3 , the perovskite quantum dot mainly includes an organic-inorganic hybrid perovskite quantum dot, an all-inorganic perovskite quantum dot, or a combination thereof. Among them, the cation M is an organic ion of methylamine ion, ethylamine ion, formamidine ion or inorganic ion of cesium ion (Cs + ); metal ion A is divalent lead ion (Pb 2+ ), tin (Sn 2+) ) or germanium ion (Ge 2+); X is a halogen ion belonging to a cubic, or orthogonal tetragonal system chloride (Cl -), bromide ion (Br -) or an iodide ion (I -). Further, the full quantum dot inorganic perovskite having the general chemical formula CsPbCl full blue quantum dots 3-inorganic perovskite having the general chemical formula CsPbBr whole green quantum dot 3-inorganic perovskite having the general chemical formula Amber light all-inorganic perovskite quantum dots of CsPb(I/Br) 3 , red light all-inorganic perovskite quantum dots with the chemical formula CsPbI 3 , or a combination thereof.

在本實施例的步驟(B)中,該表面活性劑為曲拉通X-100(Triton X-100,C 14H 22O(C 2H 4O) n)或壬基酚聚醚-5(Igepal CO-520);該非極性溶劑為己烷(Hexane)、環己烷(Cyclohexane)、苯(Benzene)、甲苯(Toluene)、氯仿(Chloroform)或乙酸乙酯(Ethyl acetate)。 In step (B) of this embodiment, the surfactant is Triton X-100 (Triton X-100, C 14 H 22 O(C 2 H 4 O) n ) or nonylphenol polyether-5 (Igepal CO-520); the non-polar solvent is Hexane, Cyclohexane, Benzene, Toluene, Chloroform or Ethyl acetate.

在本實施例的步驟(C)中,該含矽化合物為四乙基矽酸鹽(TEOS)、四甲基矽酸鹽 (TMOS) 或3-氨基丙基三乙氧基矽烷(APTES)。該氧化矽(SiO x)材料可為二氧化矽(SiO 2)、一氧化矽(SiO)或其組合。 In step (C) of this embodiment, the silicon-containing compound is tetraethyl silicate (TEOS), tetramethyl silicate (TMOS), or 3-aminopropyltriethoxysilane (APTES). The silicon oxide (SiO x ) material may be silicon dioxide (SiO 2 ), silicon monoxide (SiO) or a combination thereof.

在本實施例的步驟(D)中,該含水化合物為純水(H 2O)或氨水(NH 4OH)溶液。 In step (D) of this embodiment, the aqueous compound is pure water (H 2 O) or ammonia (NH 4 OH) solution.

請參照第七A及七B圖,其為本發明較佳實施例之無機配體層包覆光學核心的電顯圖(其比例尺大小為20奈米),透過上述製備方法的步驟(A)至(D),即可完成無機配體層1001a包覆光學核心421a的製作。首先,如第七A圖所示,其比例尺大小為20奈米,由圖中可明顯看出該複合量子點材料的光學核心421a大小約為5奈米,無機配體層1001a的厚度約為3奈米,且複合量子點材料的無機配體層1001a包覆有單一顆光學核心421a;再者,如第七B圖所示,其比例尺大小同樣為20奈米,由圖中可明顯看出該複合量子點材料的光學核心421b大小約為7奈米,無機配體層1001b的厚度約為11.5奈米,且複合量子點材料的無機配體層100b同樣包覆有單一顆光學核心421b。由此可知,本發明可透過調配上述步驟(A)至(D)溶劑或化合物的濃度,來控制包覆光學核心的無機配體層的厚度。Please refer to Figures 7A and 7B, which are electrographic images of the optical core coated with the inorganic ligand layer according to the preferred embodiment of the present invention (the scale of which is 20 nanometers), through step (A) of the above preparation method To (D), the production of the inorganic ligand layer 1001a covering the optical core 421a can be completed. First, as shown in Figure 7A, the scale size is 20 nanometers. It is obvious from the figure that the size of the optical core 421a of the composite quantum dot material is about 5 nanometers, and the thickness of the inorganic ligand layer 1001a is about 3 nanometers, and the inorganic ligand layer 1001a of the composite quantum dot material is covered with a single optical core 421a; further, as shown in the seventh figure B, the scale bar size is also 20 nanometers, which can be clearly seen from the figure The size of the optical core 421b of the composite quantum dot material is about 7nm, the thickness of the inorganic ligand layer 1001b is about 11.5nm, and the inorganic ligand layer 100b of the composite quantum dot material is also covered with a single optical core 421b . From this, it can be seen that the present invention can control the thickness of the inorganic ligand layer covering the optical core by adjusting the concentration of the solvent or compound in the above steps (A) to (D).

同時參照第八A圖,其為本發明較佳實施例之複合量子點材料的水氧阻障層為氧化鈦的電顯圖。透過上述製備方法所製成的複合量子點材料142a,包含:一光學核心,一包覆於該光學核心表面上的無機配體層,以及一包覆於該無機配體層表面上的水氧阻障層,且該水氧阻障層係由包含有至少一金屬氧化物的層積結構,以不規則的排列方式堆疊而成(可參照第八A圖,其比例尺大小為100奈米)。其中,該光學核心為上述之半導體材料製成的量子點或具有化學通式MAX 3的鈣鈦礦量子點;該無機配體層為二氧化矽(SiO 2)、一氧化矽(SiO)或其組合;該至少一金屬氧化物為氧化鈦(TiO 2)。另外,第八B、八C圖為本發明較佳實施例之複合量子點材料的水氧阻障層為氧化鈦的金相圖,其中第八B圖中螢光黃色部分為複合量子點材料中含有矽(Si)的材料(其比例尺大小為15奈米),第八C圖中螢光綠色部分為複合量子點材料中含有鈦(Ti)的材料(其比例尺大小為15奈米)。 At the same time, refer to the eighth figure A, which is an electric display diagram in which the water and oxygen barrier layer of the composite quantum dot material of the preferred embodiment of the present invention is titanium oxide. The composite quantum dot material 142a made by the above preparation method includes: an optical core, an inorganic ligand layer coated on the surface of the optical core, and a water oxygen layer coated on the surface of the inorganic ligand layer A barrier layer, and the water-oxygen barrier layer is formed by stacking a layered structure containing at least one metal oxide in an irregular arrangement (refer to Figure 8A, the scale of which is 100 nm) . Among them, the optical core is a quantum dot made of the above semiconductor material or a perovskite quantum dot with the chemical formula MAX 3 ; the inorganic ligand layer is silicon dioxide (SiO 2 ), silicon monoxide (SiO) or A combination thereof; the at least one metal oxide is titanium oxide (TiO 2 ). In addition, the eighth B and C diagrams are metallographic diagrams of the water-oxygen barrier layer of the composite quantum dot material of the preferred embodiment of the present invention being titanium oxide, wherein the fluorescent yellow part in the eighth B diagram is the composite quantum dot material In the material containing silicon (Si) (the scale size is 15 nm), the fluorescent green part in Figure 8C is the material containing titanium (Ti) in the composite quantum dot material (the scale size is 15 nm).

除此之外,請參考第四圖,其為本發明第二較佳實施例之複合量子點材料的製備方法流程圖。如第四圖所示,本發明之複合量子點材料還可透過以下方式製備:(G)提供一光學核心,並對該光學核心進行矽烷化處理;(H)添加一表面活性劑和一非極性溶劑於經矽烷化處理後的該光學核心;(I)添加一含矽化合物,使得該光學核心表面具有至少一氧化矽(SiO x)材料;(J)添加一含水化合物,該含水化合物與該含矽化合物進行水解和縮合反應,以形成一無機配體層;(K)添加異丙醇鈦(Titanium isopropoxide, TTIP)或鈦酸四丁酯(TBOT)至包覆有該無機配體層的該光學核心;以及(L)將包覆有該無機配體層的該光學核心浸泡於水-醇溶液,形成一複合量子點材料。 In addition, please refer to the fourth figure, which is a flow chart of the preparation method of the composite quantum dot material according to the second preferred embodiment of the present invention. As shown in the fourth figure, the composite quantum dot material of the present invention can also be prepared by: (G) providing an optical core and silanizing the optical core; (H) adding a surfactant and a non- polar solvent in the warp Silane of the optical core after the treatment; (the I) adding a silicon-containing compound, such that the optical core surface having at least one silicon oxide (SiO x) material; (J) was added an aqueous compound, the aqueous compound The silicon-containing compound undergoes hydrolysis and condensation reactions to form an inorganic ligand layer; (K) Titanium isopropoxide (TTIP) or tetrabutyl titanate (TBOT) is added to the inorganic ligand layer The optical core; and (L) immersing the optical core coated with the inorganic ligand layer in a water-alcohol solution to form a composite quantum dot material.

在本實施例的步驟(G)中,該光學核心可以是由半導體材料製成的量子點,例如:II-VI族量子點(CdSe 或 CdS)、III-V族量子點((Al, In, Ga)P、(Al, In, Ga)As或 (Al, In, Ga)N)、具有殼-核結構之II-VI族量子點(CdSe/ZnS)、具有殼-核結構之III-V族量子點(InP/ZnS)、具有合金結構之非球形II-VI量子點(ZnCdSeS )、上述任兩者之組合或上述任兩者以上之組合。In step (G) of this embodiment, the optical core may be a quantum dot made of a semiconductor material, for example: group II-VI quantum dots (CdSe or CdS), group III-V quantum dots ((Al, In , Ga) P, (Al, In, Ga) As or (Al, In, Ga) N), Group II-VI quantum dots with shell-core structure (CdSe/ZnS), III- with shell-core structure Group V quantum dots (InP/ZnS), non-spherical II-VI quantum dots with alloy structure (ZnCdSeS), a combination of any two of the above, or a combination of any two or more of the above.

該光學核心也可以是具有化學通式MAX 3的鈣鈦礦量子點,該鈣鈦礦量子點主要包含有機-無機雜化鈣鈦礦量子點、全無機鈣鈦礦量子點或其組合。其中,陽離子M為有機離子的甲胺離子、乙胺離子、甲脒離子或無機離子的銫離子(Cs +);金屬離子A 為二價的鉛離子(Pb 2+)、錫(Sn 2+)或鍺離子(Ge 2+);鹵素離子X 為屬於立方、正交或者四方晶系的氯離子(Cl -),溴離子(Br -)或碘離子(I -)。進一步而言,該全無機鈣鈦礦量子點為具有化學通式CsPbCl 3的藍光全無機鈣鈦礦量子點、具有化學通式CsPbBr 3的綠光全無機鈣鈦礦量子點、具有化學通式CsPb(I/Br) 3的琥珀光全無機鈣鈦礦量子點、具有化學通式CsPbI 3的紅光全無機鈣鈦礦量子點或其組合。 The optical core may also be a perovskite quantum dot with the chemical formula MAX 3 , the perovskite quantum dot mainly includes an organic-inorganic hybrid perovskite quantum dot, an all-inorganic perovskite quantum dot, or a combination thereof. Among them, the cation M is an organic ion of methylamine ion, ethylamine ion, formamidine ion or inorganic ion of cesium ion (Cs + ); metal ion A is divalent lead ion (Pb 2+ ), tin (Sn 2+) ) or germanium ion (Ge 2+); X is a halogen ion belonging to a cubic, or orthogonal tetragonal system chloride (Cl -), bromide ion (Br -) or an iodide ion (I -). Further, the full quantum dot inorganic perovskite having the general chemical formula CsPbCl full blue quantum dots 3-inorganic perovskite having the general chemical formula CsPbBr whole green quantum dot 3-inorganic perovskite having the general chemical formula Amber light all-inorganic perovskite quantum dots of CsPb(I/Br) 3 , red light all-inorganic perovskite quantum dots with the chemical formula CsPbI 3 , or a combination thereof.

在本實施例的步驟(H)中,該表面活性劑為曲拉通X-100(Triton X-100,C 14H 22O(C 2H 4O) n)或壬基酚聚醚-5(Igepal CO-520);該非極性溶劑為己烷(Hexane)、環己烷(Cyclohexane)、苯(Benzene)、甲苯(Toluene)、氯仿(Chloroform)或乙酸乙酯(Ethyl acetate)。 In step (H) of this embodiment, the surfactant is Triton X-100 (Triton X-100, C 14 H 22 O(C 2 H 4 O) n ) or nonylphenol polyether-5 (Igepal CO-520); the non-polar solvent is Hexane, Cyclohexane, Benzene, Toluene, Chloroform or Ethyl acetate.

在本實施例的步驟(I)中,該含矽化合物為四乙基矽酸鹽(TEOS)、四甲基矽酸鹽 (TMOS) 或3-氨基丙基三乙氧基矽烷(APTES)。該氧化矽(SiO x)材料可為二氧化矽(SiO 2)、一氧化矽(SiO)或其組合。 In step (I) of this embodiment, the silicon-containing compound is tetraethyl silicate (TEOS), tetramethyl silicate (TMOS), or 3-aminopropyltriethoxysilane (APTES). The silicon oxide (SiO x ) material may be silicon dioxide (SiO 2 ), silicon monoxide (SiO) or a combination thereof.

在本實施例的步驟(J)中,該含水化合物為純水(H 2O)或氨水(NH 4OH)溶液。 In step (J) of this embodiment, the aqueous compound is pure water (H 2 O) or ammonia (NH 4 OH) solution.

可同時參照第九A圖,其為本發明較佳實施例之複合量子點材料的水氧阻障層為氧化鋅的電顯圖(其比例尺大小為100奈米)。透過上述製備方法所製成的複合量子點材料142b,包含:一光學核心,一包覆於該光學核心表面上的無機配體層,以及一包覆於該無機配體層表面上的水氧阻障層,且該水氧阻障層係由包含有至少一金屬氧化物的層積結構,以不規則的排列方式堆疊而成(可參照第九A圖,其比例尺大小為100奈米)。其中,該光學核心為上述之半導體材料製成的量子點或具有化學通式MAX 3的鈣鈦礦量子點;該無機配體層為二氧化矽(SiO 2)、一氧化矽(SiO)或其組合;該至少一金屬氧化物為氧化鋅(ZnO)。另外,第九B、九C圖為本發明較佳實施例之複合量子點材料的水氧阻障層為氧化鋅的金相圖,其中第九B圖中螢光藍色部分為複合量子點材料中含有矽(Si)的材料(其比例尺大小為250奈米),第九C圖中螢光黃色部分為複合量子點材料中含有鋅(Zn)的材料(其比例尺大小為250奈米)。 Reference can also be made to the ninth graph A, which is an electrical display diagram of the water-oxygen barrier layer of the composite quantum dot material of the preferred embodiment of the present invention being zinc oxide (the scale of which is 100 nanometers). The composite quantum dot material 142b made by the above preparation method includes: an optical core, an inorganic ligand layer coated on the surface of the optical core, and a water oxygen layer coated on the surface of the inorganic ligand layer A barrier layer, and the water-oxygen barrier layer is formed of a layered structure containing at least one metal oxide, stacked in an irregular arrangement (refer to Figure 9A, the scale of which is 100 nm) . Among them, the optical core is a quantum dot made of the above semiconductor material or a perovskite quantum dot with the chemical formula MAX 3 ; the inorganic ligand layer is silicon dioxide (SiO 2 ), silicon monoxide (SiO) or A combination thereof; the at least one metal oxide is zinc oxide (ZnO). In addition, figures 9B and 9C are metallographic diagrams of the water-oxygen barrier layer of the composite quantum dot material of the preferred embodiment of the present invention being zinc oxide, wherein the fluorescent blue part in figure 9B is the composite quantum dot The material contains silicon (Si) (the scale of which is 250 nanometers). The fluorescent yellow part in Figure 9C is the material containing zinc (Zn) in the composite quantum dot material (the scale of which is 250 nanometers). .

最後,關於含有定量前驅物之複合量子點材料的製備方法如下。首先,請參考第五圖,其為本發明第三較佳實施例之複合量子點材料(含有定量前驅物)的製備方法流程圖。如第五圖所示,該製備方法步驟包含:(a)提供一光學核心定錨於一無機氧化物上,且在可能的實施樣態中,該無機氧化物可為一奈米球結構;(b)添加一非極性溶劑於至少含一量子點成長於該無機氧化物;(c)添加一含矽化合物,使得該光學核心表面具有至少一氧化矽(SiO x)材料;以及(d)形成外表包覆有該至少一氧化矽(SiO x)材料一複合量子點材料。 Finally, the preparation method of composite quantum dot materials containing quantitative precursors is as follows. First, please refer to the fifth figure, which is a flowchart of a method for preparing a composite quantum dot material (containing a quantitative precursor) according to a third preferred embodiment of the present invention. As shown in the fifth figure, the steps of the preparation method include: (a) providing an optical core anchored on an inorganic oxide, and in a possible implementation form, the inorganic oxide may be a nanosphere structure; (B) adding a non-polar solvent to at least one quantum dot grown on the inorganic oxide; (c) adding a silicon-containing compound so that the optical core surface has at least silicon oxide (SiO x ) material; and (d) formed on the outer coated with at least a silicon oxide (SiO x) composite material of a quantum dot material.

其中,該表面活性劑為曲拉通X-100(Triton X-100,C 14H 22O(C 2H 4O) n)或壬基酚聚醚-5(Igepal CO-520)。其中,該含矽化合物為四乙基矽酸鹽(TEOS)、四甲基矽酸鹽(TMOS) 或3-氨基丙基三乙氧基矽烷(APTES)。 Among them, the surfactant is Triton X-100 (Triton X-100, C 14 H 22 O (C 2 H 4 O) n ) or nonylphenol polyether-5 (Igepal CO-520). Wherein, the silicon-containing compound is tetraethyl silicate (TEOS), tetramethyl silicate (TMOS) or 3-aminopropyltriethoxysilane (APTES).

除此之外,再參考第六圖,其為本發明第四較佳實施例之複合量子點材料(含有定量前驅物)的製備方法流程圖。如第六圖所示,該製備方法步驟包含:(a’)提供至少一定量前驅物,並對該至少一定量前驅物進行胺基化處理,該至少一定量前驅物為一無機氧化物,且該無機氧化物為一奈米球結構;(b’)提供至少一光學核心;(c’)添加一表面活性劑或一非極性溶劑,使得該至少一光學核心形成於該至少一定量前驅物的表面上;(d’)添加一含矽化合物,使得該光學核心表面具有至少一氧化矽(SiO x)材料;以及(e’)形成外表包覆有該至少一氧化矽(SiO x)材料一複合量子點材料。 In addition, refer to the sixth figure again, which is a flow chart of a method for preparing a composite quantum dot material (containing a quantitative precursor) according to a fourth preferred embodiment of the invention. As shown in the sixth figure, the steps of the preparation method include: (a') providing at least a certain amount of precursor, and subjecting the at least certain amount of precursor to amination treatment, the at least certain amount of precursor is an inorganic oxide, And the inorganic oxide has a nanosphere structure; (b') provides at least one optical core; (c') adds a surfactant or a non-polar solvent so that the at least one optical core is formed on the at least a certain amount of precursor an upper surface thereof; (d ') a silicon-containing compound is added so that the optical surface of the core having at least one silicon oxide (SiO x) material; and (e') formed in the outer coated with at least a silicon oxide (SiO x) Material-composite quantum dot material.

其中,該胺基化處理是在有機化合物分子中引入胺基的一種化工單元過程,胺基化不僅可以在有機化合物中引入一個胺基,還可以置換兩個或三個胺基,而胺基化處理的方法主要分為兩種:還原,對含有硝基的化合物進行還原;以及氨解,用有機鹵化物和氨直接反應,用胺基取代鹵素原子。其中,該表面活性劑為曲拉通X-100(Triton X-100,C 14H 22O(C 2H 4O) n)或壬基酚聚醚-5(Igepal CO-520)。其中,該含矽化合物為四乙基矽酸鹽(TEOS)、四甲基矽酸鹽(TMOS) 或3-氨基丙基三乙氧基矽烷(APTES)。 Among them, the amination treatment is a chemical unit process in which amine groups are introduced into organic compound molecules. Amination can not only introduce one amine group into the organic compound, but also replace two or three amine groups. The chemical treatment methods are mainly divided into two types: reduction, reduction of compounds containing nitro; and ammonolysis, direct reaction with organic halides and ammonia, and replacement of halogen atoms with amine groups. Among them, the surfactant is Triton X-100 (Triton X-100, C 14 H 22 O (C 2 H 4 O) n ) or nonylphenol polyether-5 (Igepal CO-520). Wherein, the silicon-containing compound is tetraethyl silicate (TEOS), tetramethyl silicate (TMOS) or 3-aminopropyltriethoxysilane (APTES).

而依據上述方法所製備含有定量前驅物的複合量子點材料,可參考前述之第十A、十B圖及十C圖的電顯圖。For the composite quantum dot materials containing quantitative precursors prepared according to the above method, please refer to the aforementioned tenth A, ten B and ten C electrical display diagrams.

實施例:複合量子點材料的顯示裝置Embodiment: display device of composite quantum dot material

本發明之複合量子點材料可應用於各種發光裝置例如照明燈具,用於手機螢幕、電視螢幕等之顯示裝置的發光模組(前光模組、背光模組)或用於顯示裝置之面板畫素或次畫素。再者,當使用越多種不同成分的複合量子點材料,亦即使用越多種不同發光波之量子點時,光源的放射光譜越寬,甚至能達到全(full spectrum)的需求。因此,使用本發明之複合量子點材料能提高顯示裝置的色域,亦能有效提升顯示裝置色純度與色彩真實性。The composite quantum dot material of the present invention can be applied to various light-emitting devices such as lighting fixtures, light-emitting modules (front light modules, backlight modules) for display devices such as mobile phone screens and TV screens, or panel paintings for display devices Prime or sub-pixel. Furthermore, when using more kinds of composite quantum dot materials with different compositions, that is, using more kinds of quantum dots with different luminous waves, the wider the emission spectrum of the light source, the full spectrum can be even achieved. Therefore, the use of the composite quantum dot material of the present invention can improve the color gamut of the display device, and can also effectively improve the color purity and color authenticity of the display device.

首先,請參考第十一圖,其為本發明第一實施例之複合量子點發光二極體(QD-LED)封裝結構示意圖。如第十一圖所示,該複合量子點發光二極體100a採晶片封裝形式,並包含有一基板120、一金屬電極122、一發光二極體晶片130、一波長轉換薄膜140以及一阻擋層150(barrier layer),而金屬電極122、發光二極體晶片130、波長轉換薄膜140以及阻擋層150(barrier layer)的兩側還可分別設有一含矽材質(如矽氧樹脂(Silicone resin))的保護層160,用以阻隔水氣與氧氣的滲入。其中,所述阻擋層150(barrier layer)最佳可選自玻璃及矽膠;其中又以玻璃為最佳選擇。而整體複合量子點發光二極體100a外圍更可用原子層沉積系統(ALD)鍍上一氧化金屬層151,該氧化金屬層151的構成可以是原子級氧化鋁材料。First, please refer to the eleventh figure, which is a schematic diagram of a composite quantum dot light emitting diode (QD-LED) package structure according to the first embodiment of the present invention. As shown in FIG. 11, the composite quantum dot light-emitting diode 100a adopts a chip package and includes a substrate 120, a metal electrode 122, a light-emitting diode chip 130, a wavelength conversion film 140, and a barrier layer 150 (barrier layer), and on both sides of the metal electrode 122, the light-emitting diode chip 130, the wavelength conversion film 140 and the barrier layer 150, a silicon-containing material (such as silicone resin) )'S protective layer 160 is used to block the penetration of moisture and oxygen. Wherein, the barrier layer 150 (barrier layer) is preferably selected from glass and silicone; among which glass is the best choice. The periphery of the overall composite quantum dot light-emitting diode 100a can be further coated with a metal oxide layer 151 by an atomic layer deposition system (ALD). The composition of the metal oxide layer 151 may be atomic-grade alumina material.

該複合量子點發光二極體100a的相對位置是將該基板120設置於底部。該金屬電極122設置於該基板120上方。該發光二極體晶片130設置於該金屬電極122上方,並與該金屬電極122做電性連接。該波長轉換薄膜140及該阻擋層150(barrier layer)皆設置於該發光二極體晶片130之上,且該阻擋層150包覆該波長轉換薄膜140,以避免該波長轉換薄膜140受到發光二極體晶片130發光時所產生的熱能而影響波長轉換的效率,甚至破壞該波長轉換薄膜140。其中,該阻擋層150的材料為聚甲基丙烯酸甲酯(PMMA)、光學玻璃、環氧塑酯、或矽氧樹脂(Silicone resin)等。The relative position of the composite quantum dot light emitting diode 100a is to place the substrate 120 at the bottom. The metal electrode 122 is disposed above the substrate 120. The light emitting diode chip 130 is disposed above the metal electrode 122 and electrically connected to the metal electrode 122. The wavelength conversion film 140 and the barrier layer 150 are both disposed on the light emitting diode chip 130, and the barrier layer 150 covers the wavelength conversion film 140 to prevent the wavelength conversion film 140 from being subjected to light emission. The heat energy generated when the polar body wafer 130 emits light affects the efficiency of wavelength conversion, and even destroys the wavelength conversion film 140. The material of the barrier layer 150 is polymethyl methacrylate (PMMA), optical glass, epoxy plastic ester, silicone resin (Silicone resin), or the like.

其中,該波長轉換薄膜140為具有前述之複合量子點材料142、142’(請同時參照第一圖或第二圖)的波長轉換薄膜140,該波長轉換薄膜140也可以是具有前述之複合量子點材料142、142’與一透明膠體材料(圖未示)混合後形成複合波長轉換薄膜140,該透明膠體材料可以是聚甲基丙烯酸甲脂(polymathic methacrylate, PMMA)、乙烯對苯二甲酸酯(polyethylene terephthalate, PET)、聚苯乙烯(polystyrene, PS)、聚乙烯(polypropylene, PP)、尼龍(polyamide, PA)、聚碳酸酯(polycarbonate, PC)、環氧樹脂(epoxy)、矽氧樹脂(Silicone resin)、矽膠(silicone)或其組合。The wavelength conversion film 140 is a wavelength conversion film 140 having the aforementioned composite quantum dot materials 142, 142' (please also refer to the first figure or the second figure). The wavelength conversion film 140 may also have the aforementioned composite quantum The dot materials 142, 142' are mixed with a transparent colloid material (not shown) to form a composite wavelength conversion film 140. The transparent colloid material may be polymathic methacrylate (PMMA), ethylene terephthalic acid Ester (polyethylene terephthalate, PET), polystyrene (PS), polyethylene (polypropylene, PP), nylon (polyamide, PA), polycarbonate (polycarbonate, PC), epoxy (epoxy), silicone Silicone resin, silicone, or a combination thereof.

該複合式的波長轉換薄膜140還可包含其他螢光材料(圖未示),如無機螢光材料或有機螢光材料與前述之量子點材料142、142’混合使用,無機螢光材料如鋁酸鹽螢光粉(如LuYAG、GaYAG、YAG等)、矽酸物螢光粉、硫化物螢光粉、氮化物螢光粉、氟化物螢光粉、、含四價錳離子的氟矽酸鉀(KSF)等。有機螢光材料包括包含單分子結構、多分子結構、寡聚物(Oligomer)以及聚合物(Polymer)。該螢光材料由主晶體、助活化劑(敏感劑)與活化劑組成。該螢光材料可以為黃色、藍色、綠色、橙色、紅色或其組合,如黃橙色和紅黃色之氮化物螢光粉,該螢光材料之材質是選自於有機螢光粉、螢光顏料、無機螢光粉、放射性元素或其組合。The composite wavelength conversion film 140 may further include other fluorescent materials (not shown), such as inorganic fluorescent materials or organic fluorescent materials mixed with the foregoing quantum dot materials 142, 142', and inorganic fluorescent materials such as aluminum Salt phosphor powder (such as LuYAG, GaYAG, YAG, etc.), silicate phosphor powder, sulfide phosphor powder, nitride phosphor powder, fluoride phosphor powder, fluorosilicic acid containing tetravalent manganese ion Potassium (KSF), etc. Organic fluorescent materials include single molecular structure, multi-molecular structure, oligomer (Oligomer) and polymer (Polymer). The fluorescent material is composed of a main crystal, a co-activator (sensitizer) and an activator. The fluorescent material may be yellow, blue, green, orange, red, or a combination thereof, such as yellow-orange and red-yellow nitride phosphors. The material of the fluorescent material is selected from organic phosphors and fluorescents Pigments, inorganic phosphors, radioactive elements or combinations thereof.

在本實施例中,該波長轉換薄膜140的製作方法如下:首先,執行步驟(A),將複合量子點材料透過極性或非極性溶劑進行分散。接著,執行步驟(B),將含有複合量子點材料的分散液與透明膠材進行均勻混合,並放置烤箱烘乾形成複合量子點膠材。再者,執行步驟(C),將複合量子點膠材透過刮刀塗佈法塗佈於透明基板上,或透過滲透法將複合量子點膠材滲入兩片透明基板的間隙中。最後,執行步驟(D),進行膠材UV固化或熱固化成型,完成該波長轉換薄膜140的製作。In this embodiment, the manufacturing method of the wavelength conversion film 140 is as follows: First, step (A) is performed to disperse the composite quantum dot material through a polar or non-polar solvent. Next, step (B) is performed, the dispersion liquid containing the composite quantum dot material and the transparent glue material are uniformly mixed, and placed in an oven to form a composite quantum dot glue material. Furthermore, step (C) is performed to apply the composite quantum dot glue material on the transparent substrate by a doctor blade coating method, or infiltrate the composite quantum dot glue material into the gap between the two transparent substrates by the infiltration method. Finally, step (D) is performed to perform UV curing or thermal curing molding of the glue material to complete the fabrication of the wavelength conversion film 140.

在本實施例中,該波長轉換薄膜140的另一製作方法如下:首先,執行步驟(a),將複數個奈米球堆疊為週期性或非週期性之一堆疊結構。接著,執行步驟(b),以一骨架膠體滲入該堆疊結構的縫隙間,且該骨架膠體混有前述之複合量子點材料。再者,執行步驟(c),固化該骨架膠體,並以一去球劑去除該堆疊結構中的該複數個奈米球。最後,執行步驟(d),製作完成該波長轉換薄膜140,該波長轉換薄膜140中包含週期性或非週期性的一奈米球狀孔洞結構。In this embodiment, another manufacturing method of the wavelength conversion film 140 is as follows: First, step (a) is performed to stack a plurality of nanospheres into a periodic or non-periodic stack structure. Next, step (b) is performed, a skeleton colloid is infiltrated into the gap of the stacked structure, and the skeleton colloid is mixed with the aforementioned composite quantum dot material. Furthermore, step (c) is performed to cure the skeleton colloid and remove the plurality of nanospheres in the stacked structure with a deballing agent. Finally, step (d) is performed to complete the wavelength conversion film 140. The wavelength conversion film 140 includes a periodic or aperiodic nano-spherical hole structure.

在執行完步驟(d)之後,如對於更多波長的光譜具有提高其光強度之需求,更可執行步驟(e),在該波長轉換薄膜140中之奈米球狀孔洞結構滲入前述之複合量子點材料。After step (d) is performed, if there is a demand for increasing the light intensity for a spectrum of more wavelengths, step (e) can be further performed, in which the nano-spherical hole structure in the wavelength conversion film 140 penetrates into the aforementioned compound Quantum dot material.

該波長轉換薄膜的製作方法還可透過以下方法:首先,執行步驟(f),將複數個前述之複合量子點材料為週期性或非週期性之一堆疊結構。接著,執行步驟(g),以一骨架膠體滲入該堆疊結構的縫隙間。再者,執行步驟(h),固化該骨架膠體。最後,執行步驟(i),製作完成該波長轉換薄膜140,該波長轉換薄膜中包含週期性或非週期性的複數個複合量子點材料。The manufacturing method of the wavelength conversion film can also be carried out through the following methods: first, step (f) is performed, and a plurality of the aforementioned composite quantum dot materials are stacked in a periodic or non-periodic one. Next, step (g) is performed, and a skeleton colloid penetrates into the gaps of the stacked structure. Furthermore, step (h) is performed to cure the skeleton colloid. Finally, step (i) is performed, and the wavelength conversion film 140 is completed, and the wavelength conversion film includes periodic or aperiodic complex quantum dot materials.

在另一實施例中,該複合波長轉換薄膜140的製作方法如下:首先,執行步驟(a1),將複數個奈米球堆疊為週期性或非週期性之一堆疊結構。接著,執行步驟(b1),以一骨架膠體滲入該堆疊結構的縫隙間,且該骨架膠體混有前述之複合量子點材料,以及前述之螢光材料、透明膠體材料或其組合。再者,執行步驟(c1),固化該骨架膠體,並以一去球劑去除該堆疊結構中的該複數個奈米球。最後,執行步驟(d1),製作完成該複合波長轉換薄膜140,該複合波長轉換薄膜140中包含週期性或非週期性的一奈米球狀孔洞結構。In another embodiment, the manufacturing method of the composite wavelength conversion film 140 is as follows: First, step (a1) is performed to stack a plurality of nanospheres into a periodic or non-periodic stack structure. Next, step (b1) is performed, a skeleton colloid is infiltrated into the gap of the stacked structure, and the skeleton colloid is mixed with the aforementioned composite quantum dot material, and the aforementioned fluorescent material, transparent colloid material or a combination thereof. Furthermore, step (c1) is performed to cure the skeleton colloid, and remove the plurality of nanospheres in the stacked structure with a deballing agent. Finally, step (d1) is performed to complete the composite wavelength conversion film 140. The composite wavelength conversion film 140 includes a periodic or aperiodic nano-spherical hole structure.

在執行完步驟(d1)之後,如對於更多波長的光譜具有提高其光強度之需求,更可執行步驟(e1),在該複合波長轉換薄膜140中之奈米球狀孔洞結構滲入前述之複合量子點材料。After performing step (d1), if there is a need to increase the light intensity for a spectrum of more wavelengths, step (e1) can be performed, and the nanospherical hole structure in the composite wavelength conversion film 140 penetrates into the aforementioned Composite quantum dot material.

在上述二實施例中,複數個奈米球可選用二氧化矽(SiO 2)、聚苯乙烯(Polystyrene, PS)、聚二甲基矽氧烷(Polydimethylsiloxane)、聚甲基丙烯酸甲酯(Polymethylmethacrylate)所形成之直徑10奈米至1000奈米粒徑大小的奈米球。 In the above two embodiments, the plurality of nanospheres can be selected from silicon dioxide (SiO 2 ), polystyrene (Polystyrene, PS), polydimethylsiloxane (Polydimethylsiloxane), polymethylmethacrylate (Polymethylmethacrylate) ) Nanospheres with diameters ranging from 10 nanometers to 1000 nanometers.

液態骨架膠體可以為混合螢光材料的光固化膠或熱固化膠,或者純光固化膠或熱固化膠。更進一步來說光固化膠的的材料包含丙烯酸酯單體、丙烯酸酯寡聚合物單體,或其組合。本實施方式中採用丙烯酸酯單體實施之。主因丙烯酸酯具有優良的耐候性、透明性、保色性和力學強度,而丙烯酸酯單體可選自二縮三丙二醇二丙烯酸酯(Tripropylene glycol diacrylate, TPGDA)、新戊二醇二丙烯酸酯(Neopropylene glycol diacrylate, NPGDA)、丙氧基化新戊二醇二丙烯酸酯(Propoxylated neopropylene glycol diacrylate, PO-NPGDA)、三羥甲基丙烷三丙烯酸酯(Trimethyloipropane triacrylate, TMPTA)、乙氧基化三羥甲基丙烷三丙烯酸酯(Ethoxylated trimethyloipropane triacrylate, EO-TMPTA)、丙氧基化三羥甲基丙烷三丙烯酸酯(Propoxylated trimethyloipropane triacrylate, PO-TMPTA)、丙氧基化甘油三丙烯酸酯(Propoxylated glyceryl triacrylate, GPTA)、二-(三羥甲基丙烷)四丙烯酸酯(Di-trimethyloipropane tetraacrylate, di-TMPTA)、乙氧基化季戊四醇四丙烯酸酯(Ethoxylated pentaerythritol tetraacrylate, EO-PETA)、二季戊四醇六丙烯酸酯(Dipentaerythritol hexaacrylate, DPHA)或其組合。The liquid skeleton colloid may be a light-curing glue or a heat-curing glue mixed with fluorescent materials, or a pure light-curing glue or a heat-curing glue. Furthermore, the material of the photocurable adhesive includes acrylate monomers, acrylate oligomer monomers, or a combination thereof. In this embodiment, it is implemented using an acrylate monomer. The main reason is that acrylates have excellent weather resistance, transparency, color retention and mechanical strength, and acrylate monomers can be selected from tripropylene glycol diacrylate (TPGDA) and neopentyl glycol diacrylate ( Neopropylene glycol diacrylate (NPGDA), Propoxylated neopropylene glycol diacrylate (PO-NPGDA), Trimethyloipropane triacrylate (TMPTA), ethoxylated trihydroxy Ethoxylated trimethyloipropane triacrylate (EO-TMPTA), Propoxylated trimethyloipropane triacrylate (PO-TMPTA), Propoxylated glyceryl triacrylate , GPTA), di-(trimethylolpropane) tetraacrylate (Di-trimethyloipropane tetraacrylate, di-TMPTA), ethoxylated pentaerythritol tetraacrylate (EO-PETA), dipentaerythritol hexaacrylate (Dipentaerythritol hexaacrylate, DPHA) or a combination thereof.

固化骨架膠體之方式係依照骨架膠體之種類不同而選用不同的方式。如骨架膠體為含有光硬化劑的光固化膠,則施以如紫外線等外部環境因素予以固化;反之如為熱固化膠時,則施以如烤箱加熱等方式予以固化之。The method of curing the skeleton colloid is based on the type of skeleton colloid and different methods are used. If the skeleton colloid is a photo-curable adhesive containing a photo-hardening agent, external environmental factors such as ultraviolet rays will be used for curing; otherwise, if it is a thermo-curable adhesive, it will be cured by means such as oven heating.

當複數個奈米球的材質選用為矽化合物時,去球劑選用為氫氟酸(HF)。可以在不腐蝕骨架膠體的前提下去除堆疊結構中的複數個奈米球。而當複數個奈米球為高分子聚合物時,去球劑選用有機溶劑來達成目的。When the material of the plurality of nanospheres is silicon compound, the deballing agent is hydrofluoric acid (HF). The plurality of nanospheres in the stacked structure can be removed without corroding the skeleton colloid. When a plurality of nanospheres are high-molecular polymers, the organic solvent is used to achieve the goal.

在本實施例中,該發光二極體晶片130製程步驟可分為上游、中游及下游,上游包括形成基板(如藍寶石基板、陶瓷基板、金屬基板等)、單晶棒(如GaN、GaAs、GaP等)、單晶片、結構設計、磊晶片,中游包括金屬蒸鍍、光照蝕刻、熱處理、切割,下游封裝則包括覆晶式(Flip-chip)、晶片黏著式(surface mount device, SMD)與晶片封裝式(chip sale package, CSP)。In this embodiment, the process steps of the light emitting diode wafer 130 can be divided into upstream, midstream, and downstream. The upstream includes forming substrates (such as sapphire substrates, ceramic substrates, metal substrates, etc.), single crystal rods (such as GaN, GaAs, GaP, etc.), single wafer, structural design, epitaxial wafer, midstream includes metal evaporation, photoetching, heat treatment, cutting, downstream package includes flip-chip, surface mount device (SMD) and Chip package (CSP).

在本實施例中,該複合量子點發光二極體100a的該波長轉換薄膜140與該複合波長轉換薄膜140所包含的複合量子點材料142、142’能受發光二極體晶片130所發出的第一光線激發,而發出不同於第一光線之波長的第二光線,並具有具優異的量子效率,能展現出半高寬窄的放光光譜及優異的純色性,因此光線波長轉換效果佳,且應用在背光源能提升發光效果。其中,發出第一光線的發光二極體晶片130是由藍光發光二極體晶片或紫外光發光二極體晶片所發射出來。In this embodiment, the wavelength conversion film 140 of the composite quantum dot light-emitting diode 100 a and the composite quantum dot materials 142 and 142 ′ included in the composite wavelength conversion film 140 can be emitted by the light-emitting diode chip 130 The first light is excited and emits a second light with a wavelength different from that of the first light, and has excellent quantum efficiency, can exhibit a half-height wide and narrow light emission spectrum and excellent pure color, so the light wavelength conversion effect is good, And applied to the backlight can improve the luminous effect. The light-emitting diode chip 130 emitting the first light is emitted from the blue light-emitting diode chip or the ultraviolet light-emitting diode chip.

請參考第十二圖,其為本發明第二實施例之複合量子點發光二極體(QD-LED)封裝結構示意圖。如第十二圖所示,複合量子點發光二極體100b的塑料電極晶片載體180(透過金屬導線190連接)上設有發光二極體晶片130。並透過保護層160圍繞形成杯狀結構,以阻隔水氣與氧氣的滲入;並在其中填充透明膠體材料170。前述透明膠體材料170可以是聚甲基丙烯酸甲脂(polymathic methacrylate, PMMA)、乙烯對苯二甲酸酯(polyethylene terephthalate, PET)、聚苯乙烯(polystyrene, PS)、聚乙烯(polypropylene, PP)、尼龍(polyamide, PA)、聚碳酸酯(polycarbonate, PC)、環氧樹脂(epoxy)、矽氧樹脂(Silicone resin)、矽膠(silicone)或其組合。在第十二圖的實施例中,透明膠體材料170採用矽氧樹脂(Silicone resin);而在保護層160及透明膠體材料170之上設有被阻擋層150包夾的波長轉換薄膜140或複合波長轉換薄膜140。而整體複合量子點發光二極體100a外圍更可用原子層沉積系統(ALD)鍍上一氧化金屬層151,該氧化金屬層151的構成可以是原子級氧化鋁材料。Please refer to the twelfth figure, which is a schematic diagram of a composite quantum dot light emitting diode (QD-LED) package structure according to a second embodiment of the present invention. As shown in FIG. 12, a light-emitting diode chip 130 is provided on the plastic electrode wafer carrier 180 (connected through metal wires 190) of the composite quantum dot light-emitting diode 100 b. The protective layer 160 is surrounded to form a cup-shaped structure to block the penetration of moisture and oxygen; and a transparent colloidal material 170 is filled therein. The transparent colloid material 170 may be polymathic methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene (PS), and polypropylene (PP) , Nylon (polyamide, PA), polycarbonate (polycarbonate, PC), epoxy (epoxy), silicone resin (silicone resin), silicone (silicone) or a combination thereof. In the embodiment of FIG. 12, the transparent colloidal material 170 is made of silicone resin; the protective layer 160 and the transparent colloidal material 170 are provided with a wavelength conversion film 140 or a compound sandwiched by a barrier layer 150 Wavelength conversion film 140. The periphery of the overall composite quantum dot light-emitting diode 100a can be further coated with a metal oxide layer 151 by an atomic layer deposition system (ALD). The composition of the metal oxide layer 151 may be atomic-grade alumina material.

請參考第十三圖,其為本發明第三實施例之複合量子點發光二極體(QD-LED)封裝結構示意圖。如第十三圖所示,複合量子點發光二極體100c的塑料電極晶片載體180上設有發光二極體晶片130(透過金屬導線190連接)。並透過保護層160圍繞形成杯狀結構,以阻隔水氣與氧氣的滲入;並在其中填充混有複合量子點材料142、142’的透明膠體材料170。其中,該透明膠體材料170可以是聚甲基丙烯酸甲脂(polymathic methacrylate, PMMA)、乙烯對苯二甲酸酯(polyethylene terephthalate, PET)、聚苯乙烯(polystyrene, PS)、聚乙烯(polypropylene, PP)、尼龍(polyamide, PA)、聚碳酸酯(polycarbonate, PC)、環氧樹脂(epoxy)、矽氧樹脂(Silicone resin)、矽膠(silicone)或其組合。而整體複合量子點發光二極體100a外圍更可用原子層沉積系統(ALD)鍍上一氧化金屬層151,該氧化金屬層151的構成可以是原子級氧化鋁材料。Please refer to FIG. 13, which is a schematic diagram of a composite quantum dot light emitting diode (QD-LED) package structure according to a third embodiment of the present invention. As shown in FIG. 13, the plastic electrode wafer carrier 180 of the composite quantum dot light-emitting diode 100c is provided with a light-emitting diode wafer 130 (connected through a metal wire 190). And pass through the protective layer 160 to form a cup-shaped structure to block the penetration of moisture and oxygen; and filled with a transparent colloidal material 170 mixed with composite quantum dot materials 142, 142'. The transparent colloid material 170 may be polymathic methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene (PS), or polyethylene (polypropylene, PP), nylon (polyamide, PA), polycarbonate (polycarbonate, PC), epoxy (epoxy), silicone resin (silicone resin), silicone (silicone) or a combination thereof. The periphery of the overall composite quantum dot light-emitting diode 100a can be further coated with a metal oxide layer 151 by an atomic layer deposition system (ALD). The composition of the metal oxide layer 151 may be atomic-grade alumina material.

請參考第十四圖,其為本發明一實施例之複合量子點液晶顯示裝置示意圖。如第十四圖所示,該複合量子點液晶顯示裝置52包含一側光式背光模組32及一液晶顯示模組42,側光式背光模組32包含框架380、背光源100及導光板320。在本實施例中,背光源100為第十一至十三圖中任一複合量子點發光二極體(QD-LED)100a、100b或100c,且背光源100的出光方向為面向導光板320的入光方面,且背光模組32更具有至少一反射片322藉以將背光源100射出的光線能集中往導光板320,光線再經由導光板320的出光面往上方的液晶顯示模組42射出。Please refer to FIG. 14, which is a schematic diagram of a composite quantum dot liquid crystal display device according to an embodiment of the invention. As shown in FIG. 14, the composite quantum dot liquid crystal display device 52 includes a side light type backlight module 32 and a liquid crystal display module 42. The side light type backlight module 32 includes a frame 380, a backlight 100 and a light guide plate 320. In this embodiment, the backlight 100 is any composite quantum dot light emitting diode (QD-LED) 100a, 100b, or 100c in the eleventh to thirteenth figures, and the light exit direction of the backlight 100 is the surface light guide plate 320 In terms of light incidence, and the backlight module 32 further has at least one reflective sheet 322 to concentrate the light emitted from the backlight 100 to the light guide plate 320, and then the light is emitted to the upper liquid crystal display module 42 through the light exit surface of the light guide plate 320 .

請參考第十五A圖,其為本發明另一實施例之複合量子點液晶顯示裝置示意圖。如第十五A圖所示,該複合量子點液晶顯示裝置54包含一直下是背光模組34及一液晶顯示模組42,直下式背光模組34包含框架380及背光源100。在本實施例中,背光源100為第十一至十三圖中任一複合量子點發光二極體100a、100b或100c,或藍光發光二極體(LED),且背光源100的出光方向為面向液晶顯示模組42,且框架380更具有至少一反射片322藉以將背光源100射出的光線能集中往液晶顯示模組42,光線再由液晶顯示模組42射出。Please refer to FIG. 15A, which is a schematic diagram of a composite quantum dot liquid crystal display device according to another embodiment of the present invention. As shown in FIG. 15A, the composite quantum dot liquid crystal display device 54 includes a backlight module 34 and a liquid crystal display module 42 all the way down. The direct backlight module 34 includes a frame 380 and a backlight 100. In this embodiment, the backlight 100 is any composite quantum dot light-emitting diode 100a, 100b, or 100c in the eleventh to thirteenth figures, or a blue light-emitting diode (LED), and the light exit direction of the backlight 100 To face the liquid crystal display module 42, the frame 380 further has at least one reflective sheet 322 to concentrate the light emitted from the backlight 100 to the liquid crystal display module 42, and the light is then emitted by the liquid crystal display module 42.

其中,該液晶顯示模組42包含一玻璃基板420,設於該側光式背光模組32或該直下是背光模組34上方,一薄膜電晶體層424,設於該玻璃基板420與該側光式背光模組32或該直下是背光模組34之間,以及一液晶分子層422,設於該玻璃基板420與該薄膜電晶體層424之間。The liquid crystal display module 42 includes a glass substrate 420 disposed above the edge-lit backlight module 32 or directly below the backlight module 34, and a thin film transistor layer 424 disposed between the glass substrate 420 and the side The optical backlight module 32 or the direct backlight module 34 is between the backlight module 34, and a liquid crystal molecular layer 422 is disposed between the glass substrate 420 and the thin film transistor layer 424.

另外,請參考第十五B圖,其為本發明再一實施例之複合量子點液晶顯示裝置示意圖。如第十五B圖所示,該複合量子點液晶顯示裝置54包含一直下是背光模組34、一液晶顯示模組42以及一波長轉換層140或一複合波長轉換層140,直下式背光模組34包含框架380及背光源100。在本實施例中,背光源100同樣可為第十一至十三圖中任一複合量子點發光二極體(QD-LED)100a、100b或100c,或藍光發光二極體(LED),且背光源100的出光方向為面向液晶顯示模組42,且框架380更具有至少一反射片322藉以將背光源100射出的光線能集中後,經由波長轉換層140或複合波長轉換層140射往液晶顯示模組42,光線再由液晶顯示模組42射出。本實施例與第15a圖的差異在於,該直下式背光模組34中背光源100上還可放置有前述之波長轉換層140或複合波長轉換層140(可參照第十一及十二圖)。In addition, please refer to FIG. 15B, which is a schematic diagram of a composite quantum dot liquid crystal display device according to still another embodiment of the present invention. As shown in FIG. 15B, the composite quantum dot liquid crystal display device 54 includes a backlight module 34, a liquid crystal display module 42, a wavelength conversion layer 140 or a composite wavelength conversion layer 140, and a direct type backlight mode. Group 34 includes frame 380 and backlight 100. In this embodiment, the backlight source 100 may also be any composite quantum dot light emitting diode (QD-LED) 100a, 100b, or 100c in Figures 11 to 13, or a blue light emitting diode (LED), The light exit direction of the backlight source 100 faces the liquid crystal display module 42, and the frame 380 further has at least one reflective sheet 322 to concentrate the light emitted by the backlight source 100, and then to the wavelength conversion layer 140 or the composite wavelength conversion layer 140. The liquid crystal display module 42 emits light from the liquid crystal display module 42 again. The difference between this embodiment and FIG. 15a is that in the direct backlight module 34, the aforementioned wavelength conversion layer 140 or the composite wavelength conversion layer 140 can also be placed on the backlight 100 (refer to FIGS. 11 and 12) .

其中,該液晶顯示模組42包含一玻璃基板420,設於該側光式背光模組32或該直下是背光模組34上方,一薄膜電晶體層424,設於該玻璃基板420與該側光式背光模組32或該直下是背光模組34之間,以及一液晶分子層422,設於該玻璃基板420與該薄膜電晶體層424之間。The liquid crystal display module 42 includes a glass substrate 420 disposed above the edge-lit backlight module 32 or directly below the backlight module 34, and a thin film transistor layer 424 disposed between the glass substrate 420 and the side The optical backlight module 32 or the direct backlight module 34 is between the backlight module 34, and a liquid crystal molecular layer 422 is disposed between the glass substrate 420 and the thin film transistor layer 424.

除此之外,請參考第十六圖,其為本發明第一實施例之複合量子點微發光二極體(Micro LED)顯示裝置示意圖。如第十六圖所示,複合量子點微發光二極體(Micro LED)顯示裝置200a包含一微發光源240,該微發光源240為主動式為發光二極體晶粒或被動式為發光二極體晶粒,以及至少一複合量子點材料142,塗佈於該微發光源的表面上。其中,該至少一複合量子點材料142包含一光學核心;一無機配體層,包覆於該光學核心的表面上(可參照第一圖),該無機配體層包含至少一氧化矽(SiO x)材料;以及一水氧阻障層,包覆於該無機配體層的表面上。其中,該水氧阻障層係由包含有至少一金屬氧化物的層積結構堆疊而成。 In addition, please refer to FIG. 16, which is a schematic diagram of a composite quantum dot micro LED display device according to the first embodiment of the present invention. As shown in FIG. 16, the composite quantum dot micro LED display device 200a includes a micro light source 240 which is an active type light emitting diode die or a passive type light emitting diode The polar body grains and at least one composite quantum dot material 142 are coated on the surface of the micro-luminescence source. Wherein, the at least one composite quantum dot material 142 includes an optical core; an inorganic ligand layer is coated on the surface of the optical core (refer to the first figure), and the inorganic ligand layer includes at least silicon oxide (SiO x ) Material; and a water-oxygen barrier layer, coated on the surface of the inorganic ligand layer. Wherein, the water-oxygen barrier layer is formed by stacking at least one metal oxide layered structure.

其中,該光學核心可以是由半導體材料製成的量子點,例如:II-VI族量子點(CdSe 或 CdS)、III-V族量子點((Al, In, Ga)P、(Al, In, Ga)As或 (Al, In, Ga)N)、具有殼-核結構之II-VI族量子點(CdSe/ZnS)、具有殼-核結構之III-V族量子點(InP/ZnS)、具有合金結構之非球形II-VI量子點(ZnCdSeS )、上述任兩者之組合或上述任兩者以上之組合。The optical core may be quantum dots made of semiconductor materials, for example: Group II-VI quantum dots (CdSe or CdS), Group III-V quantum dots ((Al, In, Ga) P, (Al, In , Ga) As or (Al, In, Ga) N), group II-VI quantum dots with shell-core structure (CdSe/ZnS), group III-V quantum dots with shell-core structure (InP/ZnS) , Non-spherical II-VI quantum dots (ZnCdSeS) with alloy structure, a combination of any two of the above, or a combination of any two or more of the above.

該光學核心也可以是具有化學通式MAX 3的鈣鈦礦量子點,該鈣鈦礦量子點主要包含有機-無機雜化鈣鈦礦量子點、全無機鈣鈦礦量子點或其組合。其中,陽離子M為有機離子的甲胺離子、乙胺離子、甲脒離子或無機離子的銫離子(Cs +);金屬離子A 為二價的鉛離子(Pb 2+)、錫(Sn 2+)或鍺離子(Ge 2+);鹵素離子X 為屬於立方、正交或者四方晶系的氯離子(Cl -),溴離子(Br -)或碘離子(I -)。 The optical core may also be a perovskite quantum dot with the chemical formula MAX 3 , the perovskite quantum dot mainly includes an organic-inorganic hybrid perovskite quantum dot, an all-inorganic perovskite quantum dot, or a combination thereof. Among them, the cation M is an organic ion of methylamine ion, ethylamine ion, formamidine ion or inorganic ion of cesium ion (Cs + ); metal ion A is divalent lead ion (Pb 2+ ), tin (Sn 2+) ) or germanium ion (Ge 2+); X is a halogen ion belonging to a cubic, or orthogonal tetragonal system chloride (Cl -), bromide ion (Br -) or an iodide ion (I -).

其中,該氧化矽(SiO x)材料可以是二氧化矽(SiO 2)或一氧化矽(SiO)。該至少一金屬氧化物為氧化鈦(TiO 2)、氧化鋅(ZnO)、氧化鋁(AlO x)或其組合。 The silicon oxide (SiO x ) material may be silicon dioxide (SiO 2 ) or silicon monoxide (SiO). The at least one metal oxide is titanium oxide (TiO 2 ), zinc oxide (ZnO), aluminum oxide (AlO x ), or a combination thereof.

在本實施例中,微發光源220包含一發光二極體晶片220以及複數個間隔層260,該至少一複合量子點材料142設於發光二極體晶片220的出光側,更詳細地說,該至少一複合量子點材料142間隔塗佈於發光二極體晶片220之出光側表面,該複數個間隔層260且間隔配置在該發光二極體晶片220與該至少一複合量子點材料142之間。其中,該發光二極體晶片220為垂直式發光二極體晶片,包含一第一電極222、一第二電極224,以及設於該第一電極222與該第二電極224之間依序的P型半導體層、發光層226與N型半導體層,而發光二極體晶片220的出光測與該第一電極222位在相同側。In this embodiment, the micro light emitting source 220 includes a light emitting diode chip 220 and a plurality of spacer layers 260, and the at least one composite quantum dot material 142 is disposed on the light emitting side of the light emitting diode chip 220. More specifically, The at least one composite quantum dot material 142 is coated on the light emitting side surface of the light emitting diode chip 220 at intervals, and the plurality of spacer layers 260 are spaced between the light emitting diode chip 220 and the at least one composite quantum dot material 142 between. Wherein, the light-emitting diode chip 220 is a vertical type light-emitting diode chip, which includes a first electrode 222, a second electrode 224, and sequentially disposed between the first electrode 222 and the second electrode 224 The P-type semiconductor layer, the light-emitting layer 226, and the N-type semiconductor layer, and the light-emitting diode wafer 220 has the light output measured on the same side as the first electrode 222.

在本實施例中,採用霧化噴塗的方式將至少一複合量子點材料142塗佈於微發光源的表面上,霧化噴塗的方法是將至少一複合量子點材料142混和膠材(如矽膠)後均勻噴塗在微發光源240的表面,將單顆發光二極體晶片220所需的顏色利用霧化噴塗機台,自動對位並噴塗複合量子點材料142於發光二極體晶片220上,進而達到全彩型的微發光二極體(Micro LED)顯示裝置。In this embodiment, at least one composite quantum dot material 142 is coated on the surface of the microluminescence source by atomizing spraying. The method of atomizing spraying is to mix at least one composite quantum dot material 142 with a glue material (such as silicone glue) ) After uniformly spraying on the surface of the micro-luminescence source 240, the color required for a single light-emitting diode wafer 220 is automatically aligned and sprayed on the light-emitting diode wafer 220 using an atomizing spraying machine , And then to achieve a full-color micro LED display device (Micro LED).

請參考第十七圖,其為本發明第二實施例之量子點微發光二極體(Micro LED)顯示裝置示意圖。如第十七圖所示,複合量子點微發光二極體(Micro LED)顯示裝置220b包含一微發光源240,該微發光源240為主動式為發光二極體晶粒或被動式為發光二極體晶粒,以及至少一複合量子點材料142,塗佈於該微發光源240的表面上。其中,該至少一複合量子點材料包含一光學核心;一無機配體層,包覆於該光學核心的表面上,該無機配體層包含至少一氧化矽(SiO x)材料;以及一水氧阻障層,包覆於該無機配體層的表面上。其中,該水氧阻障層係由包含有至少一金屬氧化物的層積結構堆疊而成(可參照第一圖)。 Please refer to Figure 17, which is a schematic diagram of a quantum dot micro LED display device according to a second embodiment of the present invention. As shown in FIG. 17, the composite quantum dot micro LED display device 220b includes a micro light source 240 which is an active light emitting diode die or a passive light emitting diode The polar body grains and at least one composite quantum dot material 142 are coated on the surface of the micro-luminescence source 240. Wherein the at least one composite material includes a quantum dot optical core; a ligand of the inorganic layer, coated on the surface of the optical core, the inorganic alignment layer comprises at least a silicon oxide (SiO x) material; and a water oxygen The barrier layer is coated on the surface of the inorganic ligand layer. Wherein, the water-oxygen barrier layer is formed by stacking a laminated structure containing at least one metal oxide (refer to the first figure).

本實施例與第十六圖之複合量子點微發光二極體(Micro LED)顯示裝置200a的差異在於,該微發光源240與該至少一複合量子點材料142間更設有一光阻層144,如光阻遮罩層(Photoresist Mask, PRM)、屏障層(barrier layer)或其組合。其中,該光阻層144的材料為聚甲基丙烯酸甲酯(PMMA),或其他光阻材料如正型光阻劑酚醛樹脂(phenol-formaldehyde resin)或環氧樹脂(epoxy resin)、負型光阻劑聚異戊二烯橡膠 (polyisoprene rubber)以及反轉型光阻劑等;又,光阻層144還可以是圖式第九及第十圖中所述的波長轉換薄膜140或複合波長轉換薄膜140。The difference between this embodiment and the composite quantum dot micro LED display device 200a of FIG. 16 is that a photoresist layer 144 is further provided between the micro light source 240 and the at least one composite quantum dot material 142 , Such as photoresist mask (PRM), barrier layer (barrier layer) or a combination thereof. Wherein, the material of the photoresist layer 144 is polymethyl methacrylate (PMMA), or other photoresist materials such as positive photoresist phenol-formaldehyde resin (phenol-formaldehyde resin) or epoxy resin (epoxy resin), negative type Photoresist polyisoprene rubber and inverted photoresist; etc. In addition, the photoresist layer 144 may also be the wavelength conversion film 140 or the composite wavelength described in the ninth and tenth drawings Conversion film 140.

在本實施例中,採用霧化噴塗加上黃光微影製程方式,製作光阻層144於微發光源240與該至少一複合量子點材料142之間,並透過綠光和紅光兩道波長轉換之噴塗製程,來達到全彩型的微發光二極體(Micro LED)顯示裝置。In this embodiment, a photoresist layer 144 is formed between the micro-luminescence source 240 and the at least one composite quantum dot material 142 by atomizing spraying and yellow light lithography process, and transmits two wavelength conversions of green light and red light The spraying process to achieve a full-color Micro LED display device.

請參考第十八圖,其為本發明第三實施例之複合量子點微發光二極體(Micro LED)顯示裝置示意圖。如第十八圖所示,複合量子點微發光二極體(Micro LED)顯示裝置200c包含一微發光源240,該微發光源240為主動式為發光二極體晶粒或被動式為發光二極體晶粒,以及至少一複合量子點材料142,塗佈於該微發光源240的表面上。其中,該至少一複合量子點材料包含一光學核心;一無機配體層,包覆於該光學核心的表面上,該無機配體層包含至少一氧化矽(SiO x)材料;以及一水氧阻障層,包覆於該無機配體層的表面上。其中,該水氧阻障層係由包含有至少一金屬氧化物的層積結構堆疊而成。 Please refer to Figure 18, which is a schematic diagram of a composite quantum dot micro LED display device according to a third embodiment of the present invention. As shown in FIG. 18, the composite quantum dot micro LED display device 200c includes a micro light source 240 which is an active light emitting diode die or a passive light emitting diode The polar body grains and at least one composite quantum dot material 142 are coated on the surface of the micro-luminescence source 240. Wherein the at least one composite material includes a quantum dot optical core; a ligand of the inorganic layer, coated on the surface of the optical core, the inorganic alignment layer comprises at least a silicon oxide (SiO x) material; and a water oxygen The barrier layer is coated on the surface of the inorganic ligand layer. Wherein, the water-oxygen barrier layer is formed by stacking at least one metal oxide layered structure.

本實施例與第十七圖之複合量子點微發光二極體(Micro LED)顯示裝置200b的差異在於,該至少一複合量子點材料142更可與一光阻材料形成一複合光阻層146。其中該光阻材料為聚甲基丙烯酸甲酯(PMMA),或其他光阻材料如正型光阻劑酚醛樹脂(phenol-formaldehyde resin)或環氧樹脂(epoxy resin)、負型光阻劑聚異戊二烯橡膠 (polyisoprene rubber)以及反轉型光阻劑等;又,複合光阻層146還可以是圖式第九及第十圖中所述的波長轉換薄膜140或複合波長轉換薄膜140。The difference between this embodiment and the composite quantum dot micro-LED display device 200b of FIG. 17 is that the at least one composite quantum dot material 142 can further form a composite photoresist layer 146 with a photoresist material . Wherein the photoresist material is polymethyl methacrylate (PMMA), or other photoresist materials such as positive type photoresist phenol-formaldehyde resin (phenol-formaldehyde resin) or epoxy resin (epoxy resin), negative type photoresist polymer Isoprene rubber (polyisoprene rubber) and inversion type photoresist; etc. In addition, the composite photoresist layer 146 may also be the wavelength conversion film 140 or the composite wavelength conversion film 140 described in the ninth and tenth figures of the drawings .

在本實施例中,採用旋轉塗佈製程和黃光微影製程的方式達到全彩型的微發光二極體(Micro LED)顯示裝置,由於本發明之複合量子點材料142可以與無極性溶液互溶,透過甲基丙烯酸甲酯(PMMA)電子光阻可以將甲苯溶解的特性進行不同溶度的調配,此方法可以調配出複合量子點材料混合甲基丙烯酸甲酯(PMMA)的複合光阻層146,以提升黏著度。再利用旋轉塗佈方式將複合光阻層146覆蓋於微發光源240上,並配合黃光微影的方式形成定址的量子點材料沉積。In this embodiment, a full-color micro LED display device is achieved by a spin coating process and a yellow light lithography process. Since the composite quantum dot material 142 of the present invention can be miscible with a non-polar solution, Through the methyl methacrylate (PMMA) electron photoresist, the solubility characteristics of toluene can be adjusted with different solubility. This method can prepare a composite photoresist layer 146 of composite quantum dot material mixed with methyl methacrylate (PMMA). To improve adhesion. Then, the composite photoresist layer 146 is covered on the micro-luminescence source 240 by spin coating, and the addressed quantum dot material deposition is formed in conjunction with the yellow light lithography.

實驗結果Experimental results

最後,將本發明之複合量子點材料封裝於發光二極體元件中(如第十一至十三圖),並對其進行耐熱及耐水氧的實驗。首先,請參照第十九圖,其為本發明較佳實施例之複合量子點材料的溫度測試圖。如第十九圖所示,在加熱過程中(圖中實線部分),封裝有本發明之複合量子點材料的發光二極體元件與習知的發光二極體元件,其發光強度皆會隨著溫度的增加而下降。另一方面,在冷卻過程中(圖中虛線部分),習知的發光二極體元件在溫度由攝氏約150度降低至20度,其發光強度僅能恢復至原先強度的百分之二十;然而,封裝有本發明之複合量子點材料的發光二極體元件,在溫度同樣由攝氏約150度降低至20度的條件下,其發光強度可恢復至原先強度的百分之八十。由此可知,本發明之複合量子點即使在高溫環境下仍不會被破壞,可有效維持發光元件的發光強度。Finally, the composite quantum dot material of the present invention is encapsulated in a light emitting diode element (as shown in Figures 11 to 13), and subjected to heat resistance, water and oxygen resistance experiments. First, please refer to Figure 19, which is a temperature test chart of the composite quantum dot material of the preferred embodiment of the present invention. As shown in Figure 19, during the heating process (solid line in the figure), the light emitting diode element encapsulated with the composite quantum dot material of the present invention and the conventional light emitting diode element will have both luminous intensity It decreases with increasing temperature. On the other hand, during the cooling process (the dotted line in the figure), the temperature of the conventional light-emitting diode element is reduced from about 150 degrees Celsius to 20 degrees, and its luminous intensity can only be restored to 20% of the original intensity. However, under the condition that the temperature of the light-emitting diode element encapsulated with the composite quantum dot material of the present invention is also reduced from about 150 degrees Celsius to 20 degrees Celsius, the luminous intensity can be restored to 80% of the original intensity. From this, it can be seen that the composite quantum dots of the present invention will not be destroyed even in a high-temperature environment, and the luminous intensity of the light-emitting element can be effectively maintained.

再者,請參照第二十、二十一圖,其為本發明較佳實施例之複合量子點材料的阻水氧測試圖。如第二十圖所示,實驗分別針對習知發光二極體元件、封裝有本發明之無機配體層包覆光學核心的發光二極體元件、以及封裝有本發明複合量子點材料(包含材料為量子點的光學核心、材料為氧化矽的無機配體層以及材料為氧化鈦的水氧阻障層)的發光二極體元件進行燒測,其中燒測的環境為攝氏60度,且相對溼度為90%的高溫高濕環境。從圖中可明顯看出,習知發光二極體元件約在實驗第50小時,其發光強度的維持率僅剩下原先強度的百分之十;而裝有本發明之無機配體層包覆光學核心的發光二極體元件,約在實驗第100小時的發光強度維持率還保持在原先強度的百分之五十;讓人驚豔的是,封裝有本發明複合量子點材料的發光二極體元件,即使在此高溫高濕的環境之下實驗100小時後,其發光強度的維持率仍具有原先強度的百分之九十五,實具有阻水氧及耐高溫之功效。Furthermore, please refer to the twentieth and twenty-first figures, which are the water-blocking oxygen test charts of the composite quantum dot material according to the preferred embodiment of the present invention. As shown in the twentieth figure, experiments were conducted on conventional light-emitting diode elements, light-emitting diode elements encapsulated with the inorganic ligand layer of the present invention and optical cores, and composite quantum dot materials encapsulated with the present invention (including (The optical core of the quantum dot, the inorganic ligand layer of silicon oxide, and the water-oxygen barrier layer of titanium oxide) are used for firing. The firing environment is 60 degrees Celsius, and High temperature and high humidity environment with a relative humidity of 90%. It can be clearly seen from the figure that the conventional light-emitting diode element has a luminous intensity maintenance rate of only 10% of the original intensity around the 50th hour of the experiment; and the inorganic ligand layer package of the present invention The light-emitting diode element covered with the optical core maintains the luminous intensity maintenance rate at about 100% of the original intensity at the first 100 hours of the experiment; amazingly, the luminous diode encapsulated with the composite quantum dot material of the present invention Even after 100 hours of experiment in this high-temperature and high-humidity environment, the polar body's luminous intensity maintenance rate is still 95% of the original intensity, which has the effect of blocking water, oxygen and high temperature.

而第二十一圖同樣針對習知發光二極體元件、封裝有本發明之無機配體層包覆光學核心的發光二極體元件、以及封裝有本發明複合量子點材料(包含材料為量子點的光學核心、材料為氧化矽的無機配體層以及材料為氧化鈦的水氧阻障層)的發光二極體元件進行燒測,並將燒測的環境改為攝氏25度,且相對溼度為50%的一般環境。從圖中可明顯看出,習知發光二極體元件約在實驗第1000小時,其發光強度的維持率僅剩下原先強度的百分之二十五;而裝有本發明之無機配體層包覆光學核心的發光二極體元件,約在實驗第1000小時的發光強度維持率還保持在原先強度的百分之五十;同樣讓人驚豔的是,封裝有本發明複合量子點材料的發光二極體元件,即使在此高溫高濕的環境之下實驗1000小時後,其發光強度的維持率仍具有原先強度的百分之九十五。The twenty-first figure is also directed to the conventional light-emitting diode element, the light-emitting diode element encapsulated with the inorganic ligand layer of the present invention covering the optical core, and the composite quantum dot material encapsulated with the present invention (including the material as quantum The optical core of the dot, the inorganic ligand layer made of silicon oxide and the water-oxygen barrier layer made of titanium oxide) are burned, and the burning environment is changed to 25 degrees Celsius, and the relative General environment with 50% humidity. It can be clearly seen from the figure that the conventional light-emitting diode element is about 1000 hours after the experiment, and its luminous intensity maintenance rate is only 25% of the original intensity; and the inorganic ligand of the present invention is installed The light-emitting diode element with the optical core covered by the layer maintains the luminous intensity maintenance rate at the first 1000 hours of the experiment at 50% of the original intensity; it is also amazing that the composite quantum dot material of the present invention is encapsulated Even after 1000 hours of experiment in this high-temperature and high-humidity environment, the luminous intensity of the LED device remains 95% of the original intensity.

最後,請參照第二十二圖,其為本發明較佳實施例之複合量子點顯示裝置色域比較圖。本發明更進一步將前述之封裝有本發明複合量子點材料的發光二極體元件應用於液晶顯示裝置(可參照第十四及十五A、十五B圖),如第二十二圖所示,將本發明之複合量子點(液晶)顯示裝置的光譜更進一步進行Rec. 2020色域計算,得知本發明之複合量子點(液晶)顯示裝置的色域範圍約為90% (NTSC > 130%)(第二十圖中實線三角形區域),相較於習知廣色域顯示裝置的Rec. 2020色域範圍約為70% (NTSC > 90%)(第二十圖中虛線三角形區域),由此可知本發明之量子點顯示裝置的Rec. 2020色域提升將近1.3倍。Finally, please refer to Figure 22, which is a comparison diagram of the color gamut of the composite quantum dot display device according to the preferred embodiment of the present invention. The present invention further applies the aforementioned light emitting diode element encapsulated with the composite quantum dot material of the present invention to a liquid crystal display device (refer to Figures 14 and 15A and 15B), as shown in Figure 22 It is shown that the spectrum of the composite quantum dot (liquid crystal) display device of the present invention is further subjected to Rec. 2020 color gamut calculation, and it is known that the color gamut range of the composite quantum dot (liquid crystal) display device of the present invention is about 90% (NTSC> 130%) (solid triangle area in the twentieth figure), compared with the Rec. 2020 color gamut range of the conventional wide color gamut display device is about 70% (NTSC> 90%) (dotted triangle area in the twentieth figure) From this, it can be seen that the Rec. 2020 color gamut of the quantum dot display device of the present invention is improved by nearly 1.3 times.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即依本發明申請專利範圍及說明內容所作之簡單變化與修飾,皆仍屬本發明涵蓋之範圍內。However, the above are only preferred embodiments of the present invention, and the scope of implementation of the present invention cannot be limited by this, that is, simple changes and modifications made according to the patent application scope and description of the present invention are still within the present invention. Covered.

142、142a、142b、142’‧‧‧複合量子點材料 421、421a、421b‧‧‧光學核心 431‧‧‧定量前驅物 1001、1001a、1001b‧‧‧無機配體層 2001‧‧‧水氧阻障層 201‧‧‧層積結構 52、54‧‧‧量子點液晶顯示裝置 42‧‧‧液晶顯示模組 420‧‧‧玻璃基板 422‧‧‧液晶分子層 424‧‧‧薄膜電晶體層 32‧‧‧側光式背光模組 34‧‧‧直下式背光模組 320‧‧‧導光板 322‧‧‧反射片 380‧‧‧框架 100‧‧‧背光源 100a、100b、100c‧‧‧量子點發光二極體 120‧‧‧基板 122‧‧‧金屬電極 130‧‧‧發光二極體晶片 140‧‧‧波長轉換薄膜 144‧‧‧光阻層 146‧‧‧複合光阻層 150‧‧‧阻擋層 151‧‧‧氧化金屬層 160‧‧‧保護層 170‧‧‧透明膠體材料 180‧‧‧塑料電極晶片載體 190‧‧‧金屬導線 200a、200b、200c‧‧‧量子點微發光二極體顯示裝置 220‧‧‧發光二極體晶片 222‧‧‧第一電極 224‧‧‧第二電極 226‧‧‧發光層 240‧‧‧微發光源 260‧‧‧間隔層 A - F‧‧‧步驟 G - L‧‧‧步驟142, 142a, 142b, 142’‧‧‧ composite quantum dot materials 421, 421a, 421b ‧‧‧ optical core 431‧‧‧ Quantitative precursors 1001, 1001a, 1001b ‧‧‧ inorganic ligand layer 2001‧‧‧Water Oxygen Barrier 201‧‧‧Layered structure 52, 54‧‧‧ quantum dot liquid crystal display device 42‧‧‧LCD display module 420‧‧‧Glass substrate 422‧‧‧Liquid crystal molecular layer 424‧‧‧thin film transistor layer 32‧‧‧sidelight backlight module 34‧‧‧Direct type backlight module 320‧‧‧Light guide plate 322‧‧‧Reflective film 380‧‧‧frame 100‧‧‧Backlight 100a, 100b, 100c ‧‧‧ quantum dot light emitting diode 120‧‧‧ substrate 122‧‧‧Metal electrode 130‧‧‧ LED chip 140‧‧‧ wavelength conversion film 144‧‧‧Photoresist layer 146‧‧‧composite photoresist layer 150‧‧‧ barrier 151‧‧‧Metal oxide layer 160‧‧‧Protective layer 170‧‧‧ Transparent colloidal material 180‧‧‧Plastic electrode chip carrier 190‧‧‧Metal wire 200a, 200b, 200c ‧‧‧ quantum dot micro-luminescence diode display device 220‧‧‧ LED chip 222‧‧‧First electrode 224‧‧‧Second electrode 226‧‧‧luminous layer 240‧‧‧Microluminescence source 260‧‧‧Spacer A-F‧‧‧Step G-L‧‧‧Step

第一圖為本發明較佳實施例之複合量子點材料的示意圖。The first figure is a schematic diagram of a composite quantum dot material according to a preferred embodiment of the present invention.

第二圖為本發明另一較佳實施例之複合量子點材料的示意圖。The second figure is a schematic diagram of a composite quantum dot material according to another preferred embodiment of the present invention.

第三圖為本發明第一較佳實施例之複合量子點材料的製備方法流程圖。The third figure is a flow chart of the preparation method of the composite quantum dot material according to the first preferred embodiment of the present invention.

第四圖為本發明第二較佳實施例之複合量子點材料的製備方法流程圖。The fourth figure is a flow chart of the preparation method of the composite quantum dot material according to the second preferred embodiment of the present invention.

第五圖為本發明第三較佳實施例之複合量子點材料的製備方法流程圖。The fifth figure is a flow chart of the preparation method of the composite quantum dot material according to the third preferred embodiment of the present invention.

第六圖為本發明第四較佳實施例之複合量子點材料的製備方法流程圖。The sixth figure is a flow chart of the preparation method of the composite quantum dot material according to the fourth preferred embodiment of the present invention.

第七A圖為本發明較佳實施例之無機配體層包覆光學核心的電顯圖。FIG. 7A is an electrical display diagram of an inorganic ligand layer covering an optical core according to a preferred embodiment of the present invention.

第七B圖為本發明較佳實施例之無機配體層包覆光學核心的電顯圖。FIG. 7B is an electrical display diagram of an inorganic ligand layer covering an optical core according to a preferred embodiment of the present invention.

第八A圖為本發明較佳實施例之複合量子點材料的水氧阻障層為氧化鈦的電顯圖。The eighth figure A is an electro-display image of the composite quantum dot material in which the water-oxygen barrier layer is titanium oxide.

第八B圖為本發明較佳實施例之複合量子點材料的水氧阻障層為氧化鈦的金相圖。Figure 8B is a metallographic diagram of a composite quantum dot material in which the water-oxygen barrier layer is titanium oxide.

第八C圖為本發明較佳實施例之複合量子點材料的水氧阻障層為氧化鈦的金相圖。Figure 8C is a metallographic diagram of a composite quantum dot material in which the water-oxygen barrier layer is titanium oxide.

第九A圖為本發明較佳實施例之複合量子點材料的水氧阻障層為氧化鋅的電顯圖。FIG. 9A is an electrographic display diagram of the water-oxygen barrier layer of the composite quantum dot material of the preferred embodiment of the present invention being zinc oxide.

第九B圖為本發明較佳實施例之複合量子點材料的水氧阻障層為氧化鋅的金相圖。Figure 9B is a metallographic diagram of the composite quantum dot material in which the water-oxygen barrier layer is zinc oxide.

第九C圖為本發明較佳實施例之複合量子點材料的水氧阻障層為氧化鋅的金相圖。Figure 9C is a metallographic diagram of the composite quantum dot material in which the water-oxygen barrier layer is zinc oxide.

第十A圖為本發明另一較佳實施例之複合量子點材料的電顯圖。Figure 10A is an electrical display diagram of a composite quantum dot material according to another preferred embodiment of the present invention.

第十B圖為本發明另一較佳實施例之複合量子點材料的電顯圖。Figure 10B is an electrical display diagram of a composite quantum dot material according to another preferred embodiment of the present invention.

第十C圖為本發明另一較佳實施例之複合量子點材料的電顯圖。Figure 10C is an electrical display diagram of a composite quantum dot material according to another preferred embodiment of the present invention.

第十一圖為本發明第一實施例之複合量子點發光二極體(QD-LED)封裝結構示意圖。FIG. 11 is a schematic diagram of a composite quantum dot light emitting diode (QD-LED) package structure according to the first embodiment of the present invention.

第十二圖為本發明第二實施例之複合量子點發光二極體(QD-LED)封裝結構示意圖。FIG. 12 is a schematic diagram of a composite quantum dot light emitting diode (QD-LED) package structure according to a second embodiment of the present invention.

第十三圖為本發明第三實施例之複合量子點發光二極體(QD-LED)封裝結構示意圖。FIG. 13 is a schematic diagram of a composite quantum dot light emitting diode (QD-LED) package structure according to a third embodiment of the present invention.

第十四圖為本發明一實施例之複合量子點液晶顯示裝置示意圖。FIG. 14 is a schematic diagram of a composite quantum dot liquid crystal display device according to an embodiment of the invention.

第十五A圖為本發明另一實施例之複合量子點液晶顯示裝置示意圖。FIG. 15A is a schematic diagram of a composite quantum dot liquid crystal display device according to another embodiment of the invention.

第十五B圖為本發明再一實施例之複合量子點液晶顯示裝置示意圖。Fig. 15B is a schematic diagram of a composite quantum dot liquid crystal display device according to still another embodiment of the present invention.

第十六圖為本發明第一實施例之複合量子點微發光二極體(Micro LED)顯示裝置示意圖。FIG. 16 is a schematic diagram of a composite quantum dot micro LED display device according to the first embodiment of the present invention.

第十七圖為本發明第二實施例之複合量子點微發光二極體(Micro LED)顯示裝置示意圖。FIG. 17 is a schematic diagram of a composite quantum dot micro LED display device according to a second embodiment of the present invention.

第十八圖為本發明第三實施例之複合量子點微發光二極體(Micro LED)顯示裝置示意圖。Figure 18 is a schematic diagram of a composite quantum dot micro LED display device according to a third embodiment of the present invention.

第十九圖為本發明較佳實施例之複合量子點材料的溫度測試圖。Figure 19 is a temperature test chart of a composite quantum dot material according to a preferred embodiment of the present invention.

第二十圖為本發明較佳實施例之複合量子點材料的阻水氧測試圖。Figure 20 is a water-blocking oxygen test chart of a composite quantum dot material according to a preferred embodiment of the present invention.

第二十一圖為本發明較佳實施例之複合量子點材料的阻水氧測試圖。Figure 21 is a water-blocking oxygen test chart of a composite quantum dot material according to a preferred embodiment of the present invention.

第二十二圖為本發明較佳實施例之複合量子點顯示裝置色域比較圖。Figure 22 is a comparison diagram of the color gamut of a composite quantum dot display device according to a preferred embodiment of the present invention.

142‧‧‧複合量子點材料 142‧‧‧compound quantum dot material

201‧‧‧層積結構 201‧‧‧Layered structure

421‧‧‧光學核心 421‧‧‧Optical core

1001‧‧‧無機配體層 1001‧‧‧Inorganic ligand layer

2001‧‧‧水氧阻障層 2001‧‧‧Water Oxygen Barrier

Claims (19)

一種複合量子點材料,包含:一定量前驅物,為至少一無機氧化物;一光學核心,形成於該定量前驅物的表面上;一無機配體層,包覆於該光學核心的表面上,該無機配體層包含至少一氧化矽(SiOx)材料;以及一水氧阻障層,包覆於該無機配體層的表面上;其中,該水氧阻障層係由包含有至少一金屬氧化物的層積結構堆疊而成。 A composite quantum dot material, comprising: a certain amount of precursor, which is at least one inorganic oxide; an optical core, formed on the surface of the quantitative precursor; an inorganic ligand layer, coated on the surface of the optical core, The inorganic ligand layer includes at least silicon oxide (SiO x ) material; and a water-oxygen barrier layer, covering the surface of the inorganic ligand layer; wherein, the water-oxygen barrier layer includes at least one The stacked structure of metal oxides is stacked. 如請求項1所述之複合量子點材料,其中該光學核心為具有化學通式MAX3的一鈣鈦礦量子點,且該M為陽離子,該A為金屬離子,該X為鹵素離子。 The composite quantum dot material according to claim 1, wherein the optical core is a perovskite quantum dot having the chemical formula MAX 3 , and the M is a cation, the A is a metal ion, and the X is a halogen ion. 如請求項2所述之複合量子點材料,其中該鈣鈦礦量子點為有機-無機雜化鈣鈦礦量子點或全無機鈣鈦礦量子點。 The composite quantum dot material according to claim 2, wherein the perovskite quantum dot is an organic-inorganic hybrid perovskite quantum dot or an all-inorganic perovskite quantum dot. 如請求項1所述之複合量子點材料,其中該至少一氧化矽(SiOx)材料為二氧化矽(SiO2)、一氧化矽(SiO)或其組合。 The composite quantum dot material according to claim 1, wherein the at least silicon monoxide (SiO x ) material is silicon dioxide (SiO 2 ), silicon monoxide (SiO), or a combination thereof. 如請求項1所述之複合量子點材料,其中該至少一金屬氧化物為氧化鈦(TiO2)、氧化鋅(ZnO)、氧化鋁(AlOx)或其組合。 The composite quantum dot material according to claim 1, wherein the at least one metal oxide is titanium oxide (TiO 2 ), zinc oxide (ZnO), aluminum oxide (AlO x ), or a combination thereof. 如請求項1所述之複合量子點材料,其中該至少一無機氧化物為二氧化矽(SiO2)、一氧化矽(SiO)或其組合。 The composite quantum dot material according to claim 1, wherein the at least one inorganic oxide is silicon dioxide (SiO 2 ), silicon monoxide (SiO), or a combination thereof. 一種複合量子點材料的製備方法,包含: (A)提供至少一光學核心,並對該至少一光學核心進行矽烷化處理;(B)添加一表面活性劑和一非極性溶劑於經矽烷化處理後的該至少一光學核心;(C)添加一含矽化合物,使得該至少一光學核心表面具有至少一氧化矽(SiOx)材料;(D)添加一含水化合物,該含水化合物與該含矽化合物進行水解和縮合反應,以形成一無機配體層;以及(E)添加異丙醇鈦(Titanium isopropoxide,TTIP)或鈦酸四丁酯(TBOT),或混合一醋酸鋅水合物和乙醇至包覆有該無機配體層的該至少一光學核心。 A method for preparing a composite quantum dot material, comprising: (A) providing at least one optical core, and performing silanization treatment on the at least one optical core; (B) adding a surfactant and a non-polar solvent to the silanization treatment after the at least one optical core; (C) a silicon-containing compound is added, such that the at least one optical surface of the core having at least one silicon oxide (SiO x) material; (D) adding an aqueous compound, the compound with the silicon-containing aqueous The compound undergoes hydrolysis and condensation reactions to form an inorganic ligand layer; and (E) adding titanium isopropoxide (TTIP) or tetrabutyl titanate (TBOT), or mixing a zinc acetate hydrate and ethanol to The at least one optical core coated with the inorganic ligand layer. 如請求項7所述之複合量子點材料的製備方法,其中在該步驟(A)中,還可提供一定量前驅物與該至少一光學核心相鏈接。 The method for preparing a composite quantum dot material according to claim 7, wherein in this step (A), a certain amount of precursor can also be provided to link with the at least one optical core. 如請求項7所述之複合量子點材料的製備方法,其中該表面活性劑為曲拉通X-100(Triton X-100,C14H22O(C2H4O)n)或壬基酚聚醚-5(Igepal CO-520)。 The method for preparing a composite quantum dot material according to claim 7, wherein the surfactant is Triton X-100 (Triton X-100, C 14 H 22 O(C 2 H 4 O) n ) or nonyl Phenol-5 (Igepal CO-520). 如請求項7所述之複合量子點材料的製備方法,其中該含矽化合物為四乙基矽酸鹽(TEOS)、四甲基矽酸鹽(TMOS)或3-氨基丙基三乙氧基矽烷(APTES)。 The method for preparing a composite quantum dot material according to claim 7, wherein the silicon-containing compound is tetraethyl silicate (TEOS), tetramethyl silicate (TMOS) or 3-aminopropyltriethoxy Silane (APTES). 如請求項7所述之複合量子點材料的製備方法,其中在該步驟(E)中係添加異丙醇鈦(Titanium isopropoxide,TTIP)或鈦酸四丁酯(TBOT),則還可執行一步驟(F1)將包覆有該無機配體層的 該光學核心浸泡於氫氧化鈉(NaOH)-乙醇(Ethanol)水溶液,形成一複合量子點材料。 The method for preparing a composite quantum dot material according to claim 7, wherein in this step (E), titanium isopropoxide (TTIP) or tetrabutyl titanate (TBOT) is added, then a Step (F1) will cover the inorganic ligand layer The optical core is immersed in an aqueous solution of sodium hydroxide (NaOH)-ethanol (Ethanol) to form a composite quantum dot material. 如請求項7所述之複合量子點材料的製備方法,其中在該步驟(E)中係混合該醋酸鋅水合物和乙醇,則還可執行一步驟(F2)將包覆有該無機配體層的該光學核心浸泡於水-醇溶液,形成一複合量子點材料。 The method for preparing a composite quantum dot material as described in claim 7, wherein in this step (E) the zinc acetate hydrate and ethanol are mixed, then a step (F2) can also be performed to coat the inorganic ligand The optical core of the layer is immersed in a water-alcohol solution to form a composite quantum dot material. 一種複合量子點材料,包含:一光學核心;一無機配體層,包覆於該光學核心的表面上,該無機配體層包含至少一氧化矽(SiOx)材料;以及一水氧阻障層,包覆於該無機配體層的表面上;其中,該水氧阻障層係由包含有至少一金屬氧化物的層積結構堆疊而成。 A composite quantum dot material, comprising: an optical core; an inorganic ligand layer coated on the surface of the optical core, the inorganic ligand layer comprising at least silicon oxide (SiO x ) material; and a water-oxygen barrier A layer covering the surface of the inorganic ligand layer; wherein the water-oxygen barrier layer is formed by stacking a layered structure including at least one metal oxide. 如請求項13所述之複合量子點材料,其中該光學核心為具有化學通式MAX3的一鈣鈦礦量子點,且該M為陽離子,該A為金屬離子,該X為鹵素離子。 The composite quantum dot material according to claim 13, wherein the optical core is a perovskite quantum dot having the chemical formula MAX 3 , and the M is a cation, the A is a metal ion, and the X is a halogen ion. 如請求項14所述之複合量子點材料,其中該鈣鈦礦量子點為有機-無機雜化鈣鈦礦量子點或全無機鈣鈦礦量子點。 The composite quantum dot material according to claim 14, wherein the perovskite quantum dot is an organic-inorganic hybrid perovskite quantum dot or an all-inorganic perovskite quantum dot. 如請求項13所述之複合量子點材料,其中該至少一氧化矽(SiOx)材料為二氧化矽(SiO2)、一氧化矽(SiO)或其組合。 The composite quantum dot material according to claim 13, wherein the at least silicon monoxide (SiO x ) material is silicon dioxide (SiO 2 ), silicon monoxide (SiO), or a combination thereof. 如請求項13所述之複合量子點材料,其中該至少一金屬氧化物為氧化鈦(TiO2)、氧化鋅(ZnO)、氧化鋁(AlOx)或其組合。 The composite quantum dot material according to claim 13, wherein the at least one metal oxide is titanium oxide (TiO 2 ), zinc oxide (ZnO), aluminum oxide (AlO x ), or a combination thereof. 一種複合量子點顯示裝置,包含:一背光源;至少一複合量子點材料,設於該背光源;以及一液晶顯示模組,設置於該至少一複合量子點材料上;其中,該至少一複合量子點材料包含:一光學核心;一無機配體層,包覆於該光學核心的表面上,該無機配體層包含至少一氧化矽(SiOx)材料;以及一水氧阻障層,包覆於該無機配體層的表面上;其中,該水氧阻障層係由包含有至少一金屬氧化物的層積結構堆疊而成。 A composite quantum dot display device, comprising: a backlight; at least one composite quantum dot material, which is arranged on the backlight; and a liquid crystal display module, which is arranged on the at least one composite quantum dot material; wherein, the at least one compound The quantum dot material includes: an optical core; an inorganic ligand layer coated on the surface of the optical core, the inorganic ligand layer including at least silicon oxide (SiO x ) material; and a water-oxygen barrier layer, including Covering the surface of the inorganic ligand layer; wherein the water-oxygen barrier layer is formed by stacking at least one metal oxide layered structure. 一種複合量子點顯示裝置,包含:一微發光源,為主動式微LED晶粒或被動式微LED晶粒;以及至少一複合量子點材料,塗佈於該微發光源上;其中,該至少一複合量子點材料包含:一光學核心;一無機配體層,包覆於該光學核心的表面上,該無機配體層包含至少一氧化矽(SiOx)材料;以及一水氧阻障層,包覆於該無機配體層的表面上;其中,該水氧阻障層係由包含有至少一金屬氧化物的層積結構堆疊而成。 A composite quantum dot display device, comprising: a micro-luminescence source, which is an active micro LED die or a passive micro LED die; and at least one composite quantum dot material coated on the micro-luminescence source; wherein, the at least one compound The quantum dot material includes: an optical core; an inorganic ligand layer coated on the surface of the optical core, the inorganic ligand layer including at least silicon oxide (SiO x ) material; and a water-oxygen barrier layer, including Covering the surface of the inorganic ligand layer; wherein the water-oxygen barrier layer is formed by stacking at least one metal oxide layered structure.
TW107140478A 2018-11-14 2018-11-14 Quantum dot material, manufacturing method of the quantum dot material and display device of the quantum dot material TWI683449B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107140478A TWI683449B (en) 2018-11-14 2018-11-14 Quantum dot material, manufacturing method of the quantum dot material and display device of the quantum dot material
CN201811529365.8A CN111187610A (en) 2018-11-14 2018-12-14 Composite quantum dot material, preparation method and display device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107140478A TWI683449B (en) 2018-11-14 2018-11-14 Quantum dot material, manufacturing method of the quantum dot material and display device of the quantum dot material

Publications (2)

Publication Number Publication Date
TWI683449B true TWI683449B (en) 2020-01-21
TW202018968A TW202018968A (en) 2020-05-16

Family

ID=69942390

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107140478A TWI683449B (en) 2018-11-14 2018-11-14 Quantum dot material, manufacturing method of the quantum dot material and display device of the quantum dot material

Country Status (2)

Country Link
CN (1) CN111187610A (en)
TW (1) TWI683449B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509104A (en) * 2020-03-13 2020-08-07 联智电子科技有限公司 Area light source
CN114426841A (en) * 2020-10-29 2022-05-03 歆炽电气技术股份有限公司 Optical wavelength conversion composite material, preparation method thereof and optical wavelength conversion structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116554869A (en) * 2022-01-27 2023-08-08 虹亮材料有限公司 Quantum dot luminescent material and diffusion plate comprising same
WO2024163965A1 (en) * 2023-02-03 2024-08-08 Shoei Chemical Inc. Structure with luminescent nanostructures

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155803A (en) * 2014-08-19 2014-11-19 深圳市华星光电技术有限公司 Backlight module and liquid crystal display device
CN107017325B (en) * 2015-11-30 2020-06-23 隆达电子股份有限公司 Quantum dot composite material and manufacturing method and application thereof
CN106098697B (en) * 2016-06-15 2019-04-02 深圳市华星光电技术有限公司 Micro- LED display panel and preparation method thereof
CN106147749B (en) * 2016-06-27 2018-10-09 江门职业技术学院 Fluorescent microsphere be assembled into photonic crystal, and its preparation method and application
CN207958239U (en) * 2018-02-12 2018-10-12 厦门玻尔科技有限公司 A kind of water resistant antioxygen quantum dot nucleocapsid
CN108728077A (en) * 2018-05-08 2018-11-02 天津理工大学 The preparation method of synthetic silica coated inorganic perovskite quantum dot
CN108624317B (en) * 2018-07-12 2023-02-17 京东方科技集团股份有限公司 Core-shell quantum dot and preparation method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Zhang et al.,"A versatile synthesis route for metal@SiO2 core-shell nanoparticles using 11-mercaptoundecanoic acid as primer", J. Materials Chemistry C 1, pp.6355-6363, 2013 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509104A (en) * 2020-03-13 2020-08-07 联智电子科技有限公司 Area light source
CN114426841A (en) * 2020-10-29 2022-05-03 歆炽电气技术股份有限公司 Optical wavelength conversion composite material, preparation method thereof and optical wavelength conversion structure

Also Published As

Publication number Publication date
CN111187610A (en) 2020-05-22
TW202018968A (en) 2020-05-16

Similar Documents

Publication Publication Date Title
TWI683449B (en) Quantum dot material, manufacturing method of the quantum dot material and display device of the quantum dot material
TWI680178B (en) Quantum dot material and manufacturing method thereof
TWI690750B (en) Quantum dot display device
US9905724B2 (en) Optical materials, optical components, and methods
US10145539B2 (en) Solid state lighting devices including quantum confined semiconductor nanoparticles, an optical component for a solid state lighting device, and methods
TWI605619B (en) Multi-layer-coated quantum dot beads
KR101604339B1 (en) Light conversion film, baclight unit and display devive comprising the same
Kim et al. Photo-patternable quantum dots/siloxane composite with long-term stability for quantum dot color filters
JP5940079B2 (en) Display backlight unit and method for forming display backlight unit
KR101869923B1 (en) Lighting devices, an optical component for a lighting device, and methods
CN106129228A (en) Quantum dot packaging body and preparation method thereof, light-emitting device and display device
US12040426B2 (en) Manufacturing process of light emitting device comprising quantum dot film and transparent adhesive layer
WO2021184914A1 (en) Array substrate and manufacturing method therefor, display panel, and display device
KR20150070667A (en) Nanohybrid composite of quantum dot nanoparticle and porous silica for fluorescent body, optical module using the same, and manufacturing method thereof
US20220235266A1 (en) Light emitting element with emissive semiconductor nanocrystal materials and projector light source based on these materials
KR101413660B1 (en) Quantum dot-polymer composite plate for light emitting diode and method for producing the same
Zhou et al. Quantum dots electrostatically adsorbed on the surface of SiO2 nanoparticle-decorated phosphor particles for white light-emitting diodes with a stable optical performance