TWI683362B - Method for trimming si fin structure - Google Patents

Method for trimming si fin structure Download PDF

Info

Publication number
TWI683362B
TWI683362B TW107145469A TW107145469A TWI683362B TW I683362 B TWI683362 B TW I683362B TW 107145469 A TW107145469 A TW 107145469A TW 107145469 A TW107145469 A TW 107145469A TW I683362 B TWI683362 B TW I683362B
Authority
TW
Taiwan
Prior art keywords
fin structure
silicon fin
trimming
crystal plane
etching rate
Prior art date
Application number
TW107145469A
Other languages
Chinese (zh)
Other versions
TW202025278A (en
Inventor
許富翔
宋建宏
Original Assignee
許富翔
宋建宏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 許富翔, 宋建宏 filed Critical 許富翔
Priority to TW107145469A priority Critical patent/TWI683362B/en
Priority to CN201911301030.5A priority patent/CN111326411A/en
Application granted granted Critical
Publication of TWI683362B publication Critical patent/TWI683362B/en
Publication of TW202025278A publication Critical patent/TW202025278A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30608Anisotropic liquid etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Abstract

A method for trimming Si fin structure, comprising the following steps: (a) forming a Si fin structure on a substrate; and (b) contacting said Si fin structure with a polar solution so that the ratio of the etching rate of the (100) crystal plane of said Si fin structure to the etching rate of the (111) crystal plane of said Si fin structure is not more than 2.5, and the ratio of the etching rate of the (110) crystal plane of said Si fin structure to the etching rate of the (111) crystal plane of said Si fin structure is not more than 2.5, and the ratio of the etching rate of the (100) crystal plane of said Si fin structure to the etching rate of the (110) crystal plane of said Si fin structure is in the range of 0.9 to 1.1,wherein said polar solution comprises quaternary ammonium hydroxide, water and a polar organic solvent, and said polar organic solvent is selected from DMSO, sulfolane, THF, NMP or a combination thereof.

Description

矽鰭片結構的修整方法Method for trimming silicon fin structure

本發明是關於一種鰭式場效電晶體的矽鰭片結構的修整方法,特別是關於一種利用濕蝕刻工藝修整鰭式場效電晶體的矽鰭片結構的修整方法。The invention relates to a method for trimming a silicon fin structure of a fin field effect transistor, in particular to a method for trimming a silicon fin structure of a fin field effect transistor using a wet etching process.

為了持續達到金屬氧化物半導體場效電晶體(MOSFET)的微縮,鰭式場效電晶體(FinFET)因應而生。In order to continue to achieve the miniaturization of metal oxide semiconductor field effect transistors (MOSFETs), fin field effect transistors (FinFETs) were born.

具有薄型鰭片結構的三閘極電晶體(Tri-gate)具有與現有工藝流程更兼容的優點,因此,三閘極電晶體可用作短通道高性能元件或低壓電路。三閘極電晶體的臨界電壓(threshold voltage,Vth)及漏電流(Off-current,Ioff)受到三閘極的拐角(corner)的頂面及側面的閘極電場(Gate electric fields)重疊的影響,因此需要透過修整鰭片及其拐角來抑制此種拐角效應(corner effect)。The tri-gate transistor with a thin fin structure has the advantage of being more compatible with the existing process flow. Therefore, the tri-gate transistor can be used as a short-channel high-performance component or a low-voltage circuit. The threshold voltage (Vth) and leakage current (Off-current, Ioff) of the triple gate transistor are affected by the overlap of the gate electric fields on the top and side of the corner of the triple gate Therefore, the corner effect needs to be suppressed by trimming the fins and their corners.

例如,現有的其中一種矽鰭片修整方法是使用多循環氧化加上稀釋的氫氟酸來修整矽鰭片11,然而,矽基材12的淺溝槽隔離結構13或其他結構上的二氧化矽可能也會連帶被蝕刻(參閱圖1),並且會導致其他可靠性問題。For example, one of the existing methods for trimming silicon fins is to use multi-cycle oxidation plus diluted hydrofluoric acid to trim silicon fins 11, however, the shallow trench isolation structure 13 of the silicon substrate 12 or other structures Silicon may also be etched together (see Figure 1), and can cause other reliability problems.

現有的另一種矽鰭片修整方法是利用鹼性物質,例如NH 4OH、TMAH等濕蝕刻矽鰭片21,形成修整後的矽鰭片21a。但是,上述鹼性物質對矽鰭片21的 (100)、(110)及(111) 晶面有很高的各向異性(anisotropic),而導致修整後的矽鰭片21a有頂點問題(tip-top issue)(參閱圖2)。 Another existing method for trimming silicon fins is to use an alkaline substance, such as NH 4 OH, TMAH, etc., to wet-etch the silicon fins 21 to form the trimmed silicon fins 21a. However, the above-mentioned alkaline substances have a high anisotropic effect on the (100), (110) and (111) crystal planes of the silicon fin 21, resulting in a vertex problem in the silicon fin 21a after trimming (tip) -top issue) (see Figure 2).

例如中國專利CN106206314A的矽鰭片修整方法,是在矽鰭片31上形成外延結構32,以補償矽鰭片31的(100)及(111)晶面上的較快蝕刻速率來解決上述的頂點問題,並形成具有特定形狀的修整後的矽鰭片31a(參閱圖3)。然而,該方法的控制非常複雜,而導致製造過程中的再現性差。For example, the silicon fin trimming method of Chinese Patent CN106206314A is to form an epitaxial structure 32 on the silicon fin 31 to compensate for the faster etching rate on the (100) and (111) crystal planes of the silicon fin 31 to solve the above vertices Problem and form a trimmed silicon fin 31a with a specific shape (see FIG. 3). However, the control of this method is very complicated, resulting in poor reproducibility in the manufacturing process.

因此,本發明的目的,即在提供一種可以改善先前技術的至少一個缺點的矽鰭片結構的修整方法。Therefore, an object of the present invention is to provide a method for trimming a silicon fin structure that can improve at least one disadvantage of the prior art.

於是,本發明矽鰭片結構的修整方法,包含以下步驟: (a) 在一基材上形成一矽鰭片結構;及 (b) 使該矽鰭片結構與一極性溶液接觸,以使該矽鰭片結構的(100)晶面的蝕刻速率與(111)晶面的蝕刻速率的比值範圍不大於2.5、(110)晶面的蝕刻速率與(111)晶面的蝕刻速率的比值範圍不大於2.5,以及(100)晶面的蝕刻速率與(110)晶面的蝕刻速率的比值範圍介於0.9~1.1,該極性溶液包括四級銨氫氧化物、水及極性有機溶劑,該極性有機溶劑是選自於二甲基亞碸、環丁碸、四氫呋喃、N-甲基□咯烷酮或其組合。Therefore, the method for trimming the silicon fin structure of the present invention includes the following steps: (a) forming a silicon fin structure on a substrate; and (b) contacting the silicon fin structure with a polar solution to make the The ratio of the etching rate of the (100) crystal plane to the (111) crystal plane of the silicon fin structure is not more than 2.5, and the ratio range of the etching rate of the (110) crystal plane and the etching rate of the (111) crystal plane is not Greater than 2.5, and the ratio of (100) crystal plane etching rate to (110) crystal plane etching rate ranges from 0.9 to 1.1, the polar solution includes quaternary ammonium hydroxide, water and polar organic solvent, the polar organic The solvent is selected from dimethyl sulfoxide, cyclobutane, tetrahydrofuran, N-methyl-pyrrolidone or a combination thereof.

本發明的功效在於:本發明透過使用對該矽鰭片結構的(100)、(110)及(111) 晶面具有特定的蝕刻選擇比的該極性溶液,使修整後的該矽鰭片結構具有所希望的形狀,不會導致修整後的該矽鰭片結構有頂點問題。且本發明方法不需於該矽鰭片結構上形成外延結構,整體工藝流程較為簡易。The effect of the present invention is that the present invention uses the polar solution with a specific etching selectivity ratio to the (100), (110) and (111) crystal planes of the silicon fin structure to make the silicon fin structure after finishing Having the desired shape will not cause the vertex problem of the trimmed silicon fin structure. Moreover, the method of the present invention does not need to form an epitaxial structure on the silicon fin structure, and the overall process flow is relatively simple.

本發明的另一功效在於:本發明透過使用該極性溶液修整該矽鰭片結構,使修整後的該矽鰭片結構具有較平滑的表面。Another effect of the present invention is that the present invention uses the polar solution to trim the silicon fin structure, so that the trimmed silicon fin structure has a smoother surface.

以下就本發明矽鰭片結構的修整方法進行詳細說明。The method for trimming the silicon fin structure of the present invention will be described in detail below.

在該步驟(a), 在一基材上形成一矽鰭片結構(silicon fin structure)。在本發明的一些實施態樣中,該基材為塊體矽晶圓(bulk silicon wafer)或絕緣層覆矽晶圓(SOI wafer)。該矽鰭片結構具有密勒指數(100)、(110)及(111)的晶面。在本發明的一些實施態樣中,該基材包括淺溝槽隔離結構(shallow trench isolation structure,STI structure)。在該基材上形成該矽鰭片結構及淺溝槽隔離結構的具體方式,可使用任何現有的鰭狀場效電晶體(FinFET)的製備工藝,於此不再贅述。In this step (a), a silicon fin structure is formed on a substrate. In some embodiments of the present invention, the substrate is a bulk silicon wafer or a SOI wafer. The silicon fin structure has crystal planes with Miller indices (100), (110) and (111). In some embodiments of the present invention, the substrate includes a shallow trench isolation structure (STI structure). For the specific method of forming the silicon fin structure and the shallow trench isolation structure on the substrate, any existing fin-shaped field effect transistor (FinFET) manufacturing process can be used, which will not be repeated here.

在該步驟(b), 使該矽鰭片結構與一包括四級銨氫氧化物、水及極性有機溶劑的極性溶液接觸以修整該矽鰭片結構,形成修整後的矽鰭片結構。且該極性溶液在該矽鰭片結構的(100)晶面的蝕刻速率與在(111)晶面的蝕刻速率的比值範圍不大於2.5、在(110)晶面的蝕刻速率與在(111)晶面的蝕刻速率的比值範圍不大於2.5,以及在(100)晶面的蝕刻速率與在(110)晶面的蝕刻速率的比值範圍介於0.9~1.1,從而使該修整後的矽鰭片結構具有所希望的形狀,且該修整後的矽鰭片結構不會如同現有技術一樣存在著頂點問題(tip-top issue)。In this step (b), the silicon fin structure is brought into contact with a polar solution including quaternary ammonium hydroxide, water and a polar organic solvent to trim the silicon fin structure to form a trimmed silicon fin structure. And the ratio of the etching rate of the polar solution on the (100) crystal plane of the silicon fin structure to the (111) crystal plane is not more than 2.5, the etching rate on the (110) crystal plane and the (111) The ratio of the etching rate of the crystal plane is not more than 2.5, and the ratio of the etching rate of the (100) crystal plane to the etching rate of the (110) crystal plane is between 0.9~1.1, so that the trimmed silicon fin The structure has the desired shape, and the trimmed silicon fin structure does not have a tip-top issue like the prior art.

參閱圖4,為本發明的一種實施態樣,該基材41具有淺溝槽隔離結構411,該矽鰭片結構42形成在該基材41上,該矽鰭片結構42與該極性溶液接觸後,形成該修整後的矽鰭片結構42a。Referring to FIG. 4, according to an embodiment of the present invention, the substrate 41 has a shallow trench isolation structure 411, the silicon fin structure 42 is formed on the substrate 41, and the silicon fin structure 42 is in contact with the polar solution After that, the trimmed silicon fin structure 42a is formed.

其中,該四級銨氫氧化物的作用是提供氫氧基,以蝕刻該矽鰭片結構,蝕刻的化學反應如下所示: Si + 2OH -+ 2H 2O→SiO 2(OH) 2 2-+ 2H 2較佳地,該四級銨氫氧化物是選自於四甲基銨氫氧化物(TMAH)、四乙基銨氫氧化物(TEAH)、四丁基銨氫氧化物(TBAH)、苄基三甲基銨氫氧化物或其組合。在本發明的一些實施態樣中,以該極性溶液的總量為100 wt%,該四級銨氫氧化物的含量比例範圍為0.1~5 wt%,更有助於該極性溶液對該矽鰭片結構的(100)、(110)及(111)晶面的蝕刻速率在更佳的範圍。更佳地,以該極性溶液的總量為100 wt%,該四級銨氫氧化物的含量比例範圍為0.5~2 wt%。 Wherein the action of quaternary ammonium hydroxide to provide a hydroxyl group, to etch the silicon fin structure, a chemical etching reaction is shown below: Si + 2OH - + 2H 2 O → SiO 2 (OH) 2 2- + 2H 2 Preferably, the quaternary ammonium hydroxide is selected from tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetrabutylammonium hydroxide (TBAH) , Benzyltrimethylammonium hydroxide or a combination thereof. In some embodiments of the present invention, the total amount of the polar solution is 100 wt%, and the content ratio of the quaternary ammonium hydroxide ranges from 0.1 to 5 wt%, which is more helpful for the polar solution to the silicon The etching rate of the (100), (110) and (111) crystal planes of the fin structure is in a better range. More preferably, with the total amount of the polar solution being 100 wt%, the content ratio of the quaternary ammonium hydroxide ranges from 0.5 to 2 wt%.

該極性有機溶劑使得該極性溶液對該矽鰭片結構具有良好的濕潤能力,從而有利於蝕刻反應的擴散及輸送。該極性有機溶劑的另一個作用是保護鰭式場效電晶體中其他結構的介電質不被該極性溶液蝕刻,上述介電質例如但不限於二氧化矽(SiO 2)、氮化矽(SiN)、碳氮化矽(SiCN)、氮氧化矽(SiON)等。該極性有機溶劑是選自於二甲基亞碸(DMSO)、環丁碸(sulfolane)、四氫呋喃(THF)、N-甲基□咯烷酮(NMP)或其組合。在本發明的一些實施態樣中,以該極性溶液的總量為100 wt%,該極性有機溶劑的含量比例範圍為5~90 wt%,更有助於該極性溶液對矽鰭片結構的(100)、(110)及(111)晶面的蝕刻選擇比在更佳的範圍。更佳地,以該極性溶液的總量為100 wt%,該極性有機溶劑的含量比例範圍為10~85 wt%。 The polar organic solvent makes the polar solution have a good wetting ability to the silicon fin structure, thereby facilitating the diffusion and transportation of the etching reaction. Another function of the polar organic solvent is to protect the dielectrics of other structures in the fin field effect transistor from being etched by the polar solution, such as but not limited to silicon dioxide (SiO 2 ), silicon nitride (SiN) ), silicon carbon nitride (SiCN), silicon oxynitride (SiON), etc. The polar organic solvent is selected from dimethyl sulfite (DMSO), sulfolane, tetrahydrofuran (THF), N-methyl-pyrrolidone (NMP) or a combination thereof. In some embodiments of the present invention, the total amount of the polar solution is 100 wt%, and the content ratio of the polar organic solvent ranges from 5 to 90 wt%, which is more conducive to the polar solution’s effect on the silicon fin structure. The (100), (110), and (111) crystal planes have a better etching selection ratio. More preferably, the total amount of the polar solution is 100 wt%, and the content ratio of the polar organic solvent ranges from 10 to 85% by weight.

較佳地,該極性溶液還包括陽離子界面活性劑。該陽離子界面活性劑會附著在該矽鰭片結構,形成能減緩該四級銨氫氧化物擴散的擴散阻擋層,進而減緩蝕刻反應的擴散。且該陽離子界面活性劑對該矽鰭片結構的(100)、(110)及(111)晶面有不同的親和力,從而更顯著地改變蝕刻選擇比(etching selectivity)。更佳地,該陽離子界面活性劑是選自於四級鏻氯化物、聚乙二醇的銨鹽[cationic ammonium salt of poly(ethylene glycol), 簡稱ASPEG]或其組合。在本發明的一些實施態樣中,以該極性溶液的總量為100 wt%,該陽離子界面活性劑的含量比例範圍為0.01~2wt%,能夠避免該極性溶液具有過多泡沫,以及更有助於該極性溶液對矽鰭片結構的(100)、(110)及(111)晶面的蝕刻選擇比在更佳的範圍。更佳地,以該極性溶液的總量為100 wt%,該陽離子界面活性劑的含量比例範圍為0.05~1 wt%。Preferably, the polar solution further includes a cationic surfactant. The cationic surfactant will adhere to the silicon fin structure, forming a diffusion barrier layer that can slow the diffusion of the quaternary ammonium hydroxide, thereby slowing the diffusion of the etching reaction. Moreover, the cationic surfactant has different affinity to the (100), (110) and (111) crystal planes of the silicon fin structure, thereby significantly changing the etching selectivity. More preferably, the cationic surfactant is selected from quaternary phosphonium chloride, ammonium salt of polyethylene glycol [cationic ammonium salt of poly(ethylene glycol), ASPEG for short] or a combination thereof. In some embodiments of the present invention, the total amount of the polar solution is 100 wt%, and the content ratio of the cationic surfactant is in the range of 0.01 to 2 wt%, which can prevent the polar solution from having too much foam and is more helpful In this polar solution, the (100), (110), and (111) crystal planes of the silicon fin structure are etched in a better selection range. More preferably, the total amount of the polar solution is 100 wt%, and the content ratio of the cationic surfactant ranges from 0.05 to 1 wt%.

本發明將就以下實施例來作進一步說明,但應瞭解的是,該實施例僅為例示說明之用,而不應被解釋為本發明實施之限制。The present invention will be further described in the following embodiments, but it should be understood that this embodiment is for illustrative purposes only, and should not be construed as a limitation of the implementation of the present invention.

[實施例1]矽鰭片結構的修整方法 (a)利用黃光顯影搭配乾蝕刻, 在一個矽晶圓基材上形成一個矽鰭片結構。該矽鰭片結構具有(100) 、(110)及(111)的晶面。 (b) 在30℃的環境,使該矽鰭片結構與一極性溶液接觸3分鐘以修整該矽鰭片結構。該極性溶液包括0.8wt%的四甲基銨氫氧化物、35wt%的環丁碸、0.1wt%的聚乙二醇的銨鹽,以及64.1wt%的水。[Example 1] Method for trimming silicon fin structure (a) Using yellow light development and dry etching, a silicon fin structure is formed on a silicon wafer substrate. The silicon fin structure has (100), (110) and (111) crystal planes. (b) The silicon fin structure was brought into contact with a polar solution for 3 minutes at 30°C to trim the silicon fin structure. The polar solution includes 0.8 wt% of tetramethylammonium hydroxide, 35 wt% of ciprool, 0.1 wt% of ammonium salt of polyethylene glycol, and 64.1 wt% of water.

[實施例2及比較例1]矽鰭片結構的修整方法 實施例2及比較例1的矽鰭片結構的修整方法是與實施例1的矽鰭片結構的修整方法相似,不同在於:在該實施例2及比較例1中,依據表1改變極性溶液的組成。[Example 2 and Comparative Example 1] The method for trimming the silicon fin structure of Example 2 and Comparative Example 1 is the same as the method for trimming the silicon fin structure of Example 1, except that: In Example 2 and Comparative Example 1, the composition of the polar solution was changed according to Table 1.

[測試例1] 在30℃的環境,使用實施例1中的該極性溶液,將表2所列的介電質薄膜與實施例1的極性溶液分別接觸20分鐘。[Test Example 1] Using the polar solution in Example 1 in a 30°C environment, the dielectric thin films listed in Table 2 and the polar solution in Example 1 were respectively contacted for 20 minutes.

[測試例2] 測試例2是與測試例1相似,不同在於:在該測試例2,使用實施例2中的該極性溶液。[Test Example 2] Test Example 2 is similar to Test Example 1, except that in Test Example 2, the polar solution in Example 2 is used.

[性質評價][Nature evaluation]

1. 蝕刻速率: 以下用實施例1的該矽鰭片結構的(100)晶面以及比較例1的介電質薄膜,示例說明蝕刻速率的測量方式。實施例1的該矽鰭片結構的其他晶面、實施例2、比較例1及測試例2是根據同樣的測量方式得到蝕刻速率。 利用橢圓儀(廠商型號:J.A.woollam M-2000)量測實施例1的該矽鰭片結構的(100)晶面於修整前的厚度以及修整後的厚度[單位:埃(angstrom)]。並將修整前的厚度與修整後的厚度的差值除以該矽鰭片結構接觸該極性溶液的接觸時間,得到該矽鰭片結構的(100)晶面的蝕刻速率。 使用相似的測量方式,利用橢圓儀量測測試例1的介電質薄膜於修整前的厚度以及修整後的厚度[單位:埃(angstrom)]。並將修整前的厚度與修整後的厚度的差值除以該介電質薄膜接觸該極性溶液的接觸時間,得到該介電質薄膜的蝕刻速率。1. Etching rate: The (100) crystal plane of the silicon fin structure of Example 1 and the dielectric thin film of Comparative Example 1 are used below to illustrate the measurement method of the etching rate. The other crystal planes of the silicon fin structure of Example 1, Example 2, Comparative Example 1, and Test Example 2 obtained the etching rate according to the same measurement method. The thickness of the (100) crystal plane of the silicon fin structure of Example 1 before trimming and the thickness after trimming [unit: angstrom] were measured using an ellipsometer (manufacturer model: J.A. woollam M-2000). The difference between the thickness before trimming and the thickness after trimming is divided by the contact time of the silicon fin structure in contact with the polar solution to obtain the etching rate of the (100) crystal plane of the silicon fin structure. Using a similar measurement method, the thickness of the dielectric film of Test Example 1 before trimming and the thickness after trimming [unit: angstrom] were measured using an ellipsometer. The difference between the thickness before trimming and the thickness after trimming is divided by the contact time of the dielectric thin film in contact with the polar solution to obtain the etching rate of the dielectric thin film.

2. 均方根表面粗糙度(RMS roughness): 利用原子力電子顯微鏡(atomic force microscope,簡稱 AFM;廠商為Bruker),量測實施例1至2及比較例1的矽鰭片結構的(100)晶面及(110)晶面於修整前及修整後的均方根粗糙度。2. The root mean square surface roughness (RMS roughness): using an atomic force microscope (atomic force microscope, AFM for short; the manufacturer is Bruker), measure the silicon fin structures of Examples 1 to 2 and Comparative Example 1 (100) The root-mean-square roughness of the crystal plane and (110) crystal plane before and after trimming.

表1   實施例1 實施例2 比較例1 極性溶液 四級銨氫氧化物 TMAH 0.8wt% TMAH 1.6wt% TMAH 2.38wt% 極性有機溶劑 sulfolane 35wt% sulfolane 75wt% 0 wt% 陽離子界面活性劑 ASPEG 0.1wt% ASPEG 0.1wt% 0 wt% 64.1wt% 23.3wt% 97.62wt% 蝕刻速率 (單位:埃/min) (100)晶面 14.3 19.3 100 (110)晶面 13 18 87.9 (111)晶面 7 8 16 蝕刻速率的比值 (100)/(111) 2.0 2.4 6.25 (110)/(111) 1.9 2.3 5.5 (100)/(110) 1.1 1.1 1.1 均分根粗糙度 (單位: nm) (100) 修整前 1.9 1.9 1.9 修整後 3.3 2.8 18.2 (110) 修整前 1.8 1.8 1.8 修整後 2.2 2.4 13.5 Table 1 Example 1 Example 2 Comparative example 1 Polar solution Quaternary ammonium hydroxide TMAH 0.8wt% TMAH 1.6wt% TMAH 2.38wt% Polar organic solvent sulfolane 35wt% sulfolane 75wt% 0 wt% Cationic surfactant ASPEG 0.1wt% ASPEG 0.1wt% 0 wt% water 64.1wt% 23.3wt% 97.62wt% Etching rate (unit: A/min) (100) crystal face 14.3 19.3 100 (110) Crystal plane 13 18 87.9 (111) Crystal plane 7 8 16 Etch rate ratio (100)/(111) 2.0 2.4 6.25 (110)/(111) 1.9 2.3 5.5 (100)/(110) 1.1 1.1 1.1 Root roughness (unit: nm) (100) Before trimming 1.9 1.9 1.9 After trimming 3.3 2.8 18.2 (110) Before trimming 1.8 1.8 1.8 After trimming 2.2 2.4 13.5

表2   測試例1 測試例2 極性溶液 種類 實施例1 實施例2 四級銨氫氧化物 TMAH 0.8wt% TMAH 1.6wt% 極性有機溶劑 sulfolane 35wt% sulfolane 75wt% 陽離子界面活性劑 ASPEG 0.1wt% ASPEG 0.1wt% 64.1wt% 23.3wt% 蝕刻速率 (單位:埃/min) 介電質薄膜 SiO2 小於1 小於1 SiN 小於1 小於1 SiON 小於1 小於1 SiC 小於1 小於1 SiCN 小於1 小於1 註:「TMAH」表示四甲基銨氫氧化物;「sulfolane」表示環丁碸;「ASPEG」表示聚乙二醇的銨鹽。 Table 2 Test Example 1 Test Example 2 Polar solution species Example 1 Example 2 Quaternary ammonium hydroxide TMAH 0.8wt% TMAH 1.6wt% Polar organic solvent sulfolane 35wt% sulfolane 75wt% Cationic surfactant ASPEG 0.1wt% ASPEG 0.1wt% water 64.1wt% 23.3wt% Etching rate (unit: A/min) Dielectric film SiO 2 less than 1 less than 1 SiN less than 1 less than 1 SiON less than 1 less than 1 SiC less than 1 less than 1 SiCN less than 1 less than 1 Note: "TMAH" stands for tetramethylammonium hydroxide; "sulfolane" stands for cyclobutadiene; "ASPEG" stands for the ammonium salt of polyethylene glycol.

由表1的結果可知,實施例1及2矽鰭片結構的修整方法,透過使用包括四級銨氫氧化物、極性有機溶劑、陽離子界面活性劑及水的極性溶液,使該矽鰭片結構的(100)晶面的蝕刻速率與(111)晶面的蝕刻速率的比值不大於2.5,(110)晶面的蝕刻速率與(111)晶面的蝕刻速率的比值範圍不大於2.5,(100)晶面的蝕刻速率與(110)晶面的蝕刻速率的比值在0.9~1.1,進而使修整後的矽鰭片結構具有所希望的形狀。且相較於比較例1,實施例1及2矽鰭片結構的修整方法,透過使用該極性溶液,使修整後的矽鰭片具有較平滑的表面。It can be seen from the results in Table 1 that the silicon fin structure of Examples 1 and 2 was modified by using a polar solution including quaternary ammonium hydroxide, polar organic solvent, cationic surfactant and water. The ratio of the etching rate of the (100) crystal plane to the etching rate of the (111) crystal plane is not more than 2.5, and the ratio of the etching rate of the (110) crystal plane to the etching rate of the (111) crystal plane is not more than 2.5, (100 ) The ratio of the etching rate of the crystal plane to the etching rate of the (110) crystal plane is between 0.9 and 1.1, so that the trimmed silicon fin structure has the desired shape. Compared with Comparative Example 1, the method for trimming the silicon fin structure of Examples 1 and 2 uses the polar solution to make the trimmed silicon fin have a smoother surface.

並由表2可知,實施例1及2矽鰭片結構的修整方法所使用的極性溶液幾乎不會蝕刻上述介電質薄膜。It can be seen from Table 2 that the polar solutions used in the trimming methods of the silicon fin structures in Examples 1 and 2 hardly etch the above dielectric thin film.

綜上所述,本發明透過使用包括四級銨氫氧化物、水及極性有機溶劑的該極性溶液修整該矽鰭片結構,該極性溶液對該矽鰭片結構的(100)、(110)及(111) 晶面具有特定的蝕刻選擇比,因此本發明不需於該矽鰭片結構上形成外延結構,也能夠使修整後的該矽鰭片結構具有所希望的形狀,不會導致修整後的該矽鰭片結構有頂點問題,且本發明還能使修整後的該矽鰭片結構具有較平滑的表面。此外,本發明所使用的極性溶液幾乎不會蝕刻例如二氧化矽、氮化矽、碳氮化矽、氮氧化矽等介電質材料。故確實能達成本發明的目的。In summary, the present invention trims the silicon fin structure by using the polar solution including quaternary ammonium hydroxide, water and polar organic solvent, the polar solution (100), (110) of the silicon fin structure The (111) crystal plane has a specific etching selectivity, so the present invention does not need to form an epitaxial structure on the silicon fin structure, and can also make the silicon fin structure after trimming to have a desired shape without causing trimming The silicon fin structure afterwards has a vertex problem, and the invention can also make the silicon fin structure after finishing have a smoother surface. In addition, the polar solution used in the present invention hardly etch dielectric materials such as silicon dioxide, silicon nitride, silicon carbonitride, silicon oxynitride and the like. Therefore, the purpose of cost invention can indeed be achieved.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above are only examples of the present invention, and the scope of implementation of the present invention cannot be limited by this, any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still classified as Within the scope of the invention patent.

41‧‧‧基材 411‧‧‧淺溝槽隔離結構 42‧‧‧矽鰭片結構 42a‧‧‧修整後的矽鰭片結構41‧‧‧ Base material 411‧‧‧Shallow trench isolation structure 42‧‧‧Silicon fin structure 42a‧‧‧Finished silicon fin structure

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:  圖1是一種現有技術的矽鰭片修整方法的一示意圖;  圖2是一種現有技術的矽鰭片修整方法的一示意圖;  圖3是一種現有技術的矽鰭片修整方法的一示意圖;及  圖4是本發明矽鰭片結構的修整方法的一示意圖。Other features and functions of the present invention will be clearly presented in the embodiments with reference to the drawings, in which:   FIG. 1 is a schematic diagram of a prior art silicon fin trimming method;   FIG. 2 is a prior art silicon fin A schematic diagram of the trimming method;   FIG. 3 is a schematic diagram of a conventional silicon fin trimming method; and FIG. 4 is a schematic diagram of the trimming method of the silicon fin structure of the present invention.

41‧‧‧基材 41‧‧‧ Base material

411‧‧‧淺溝槽隔離結構 411‧‧‧Shallow trench isolation structure

42‧‧‧矽鰭片結構 42‧‧‧Silicon fin structure

42a‧‧‧修整後的矽鰭片結構 42a‧‧‧Finished silicon fin structure

Claims (7)

一種矽鰭片結構的修整方法,包含以下步驟: (a) 在一基材上形成一矽鰭片結構;及 ( b) 使該矽鰭片結構與一極性溶液接觸,以使該矽鰭片結構的(100)晶面的蝕刻速率與(111)晶面的蝕刻速率的比值範圍不大於2.5、(110)晶面的蝕刻速率與(111)晶面的蝕刻速率的比值範圍不大於2.5,以及(100)晶面的蝕刻速率與(110)晶面的蝕刻速率的比值範圍介於0.9~1.1,該極性溶液包括四級銨氫氧化物、水及極性有機溶劑,該極性有機溶劑是選自於二甲基亞碸、環丁碸、四氫呋喃、N-甲基□咯烷酮或其組合。A method for trimming a silicon fin structure includes the following steps: (a) forming a silicon fin structure on a substrate; and (b) contacting the silicon fin structure with a polar solution to make the silicon fin The ratio of the etching rate of the (100) crystal plane to the (111) crystal plane of the structure is not more than 2.5, and the ratio of the etching rate of the (110) crystal plane to the (111) crystal plane is not more than 2.5, And the ratio of the etching rate of the (100) crystal plane to the etching rate of the (110) crystal plane ranges from 0.9 to 1.1. The polar solution includes quaternary ammonium hydroxide, water and a polar organic solvent. The polar organic solvent is selected From dimethyl sulfoxide, cyclobutane, tetrahydrofuran, N-methyl-pyrrolidone or a combination thereof. 如請求項1所述的矽鰭片結構的修整方法,其中,該四級銨氫氧化物是選自於四甲基銨氫氧化物、四乙基銨氫氧化物、四丁基銨氫氧化物、苄基三甲基銨氫氧化物或其組合。The method for trimming the silicon fin structure according to claim 1, wherein the quaternary ammonium hydroxide is selected from tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide Compound, benzyltrimethylammonium hydroxide or a combination thereof. 如請求項1所述的矽鰭片結構的修整方法,其中,該極性溶液還包括陽離子界面活性劑。The method for trimming a silicon fin structure according to claim 1, wherein the polar solution further includes a cationic surfactant. 如請求項3所述的矽鰭片結構的修整方法,其中,該陽離子界面活性劑是選自於四級鏻氯化物、聚乙二醇的銨鹽或其組合。The method for trimming a silicon fin structure according to claim 3, wherein the cationic surfactant is selected from the group consisting of quaternary phosphonium chloride, ammonium salt of polyethylene glycol, or a combination thereof. 如請求項3所述的矽鰭片結構的修整方法,其中,以該極性溶液的總量為100 wt%,該陽離子界面活性劑的含量比例範圍為0.01~2wt%。The method for trimming a silicon fin structure according to claim 3, wherein the total proportion of the polar solution is 100 wt%, and the content ratio of the cationic surfactant ranges from 0.01 to 2 wt%. 如請求項1所述的矽鰭片結構的修整方法,其中,以該極性溶液的總量為100 wt%,該四級銨氫氧化物的含量比例範圍為0.1~5wt%。The method for trimming a silicon fin structure according to claim 1, wherein the content ratio of the quaternary ammonium hydroxide ranges from 0.1 to 5 wt% with the total amount of the polar solution being 100 wt%. 如請求項1所述的矽鰭片結構的修整方法,其中,以該極性溶液的總量為100 wt%,該極性有機溶劑的含量比例範圍為5~90 wt%。The method for trimming the silicon fin structure according to claim 1, wherein the total ratio of the polar solution is 100 wt%, and the content ratio of the polar organic solvent ranges from 5 to 90 wt%.
TW107145469A 2018-12-17 2018-12-17 Method for trimming si fin structure TWI683362B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107145469A TWI683362B (en) 2018-12-17 2018-12-17 Method for trimming si fin structure
CN201911301030.5A CN111326411A (en) 2018-12-17 2019-12-17 Trimming method of silicon fin structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107145469A TWI683362B (en) 2018-12-17 2018-12-17 Method for trimming si fin structure

Publications (2)

Publication Number Publication Date
TWI683362B true TWI683362B (en) 2020-01-21
TW202025278A TW202025278A (en) 2020-07-01

Family

ID=69942605

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107145469A TWI683362B (en) 2018-12-17 2018-12-17 Method for trimming si fin structure

Country Status (2)

Country Link
CN (1) CN111326411A (en)
TW (1) TWI683362B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201517128A (en) * 2013-06-28 2015-05-01 Intel Corp Nanostructures and nanofeatures with Si (111) planes on Si (100) wafers for III-N epitaxy
TW201616580A (en) * 2014-10-24 2016-05-01 格羅方德半導體公司 New Fin structures and multi-VT scheme based on tapered Fin and method to form
US20160211352A1 (en) * 2015-01-15 2016-07-21 Taiwan Semiconductor Manufacturing Co., Ltd. Method of trimming fin structure
TW201631217A (en) * 2014-12-26 2016-09-01 Fujifilm Corp Etchant, etching method using the same, and method of manufacturing semiconductor substrate product

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354863B2 (en) * 2004-03-19 2008-04-08 Micron Technology, Inc. Methods of selectively removing silicon
JP4826846B2 (en) * 2009-02-12 2011-11-30 信越化学工業株式会社 Pattern formation method
WO2012161790A1 (en) * 2011-02-24 2012-11-29 John Moore Concentrated chemical composition and method for removing photoresist during microelectric fabrication
CN103107072B (en) * 2011-11-11 2015-11-25 中芯国际集成电路制造(上海)有限公司 A kind of manufacture method of multiple gate field effect transistor device
US9873833B2 (en) * 2014-12-29 2018-01-23 Versum Materials Us, Llc Etchant solutions and method of use thereof
US10400167B2 (en) * 2015-11-25 2019-09-03 Versum Materials Us, Llc Etching compositions and methods for using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201517128A (en) * 2013-06-28 2015-05-01 Intel Corp Nanostructures and nanofeatures with Si (111) planes on Si (100) wafers for III-N epitaxy
TW201616580A (en) * 2014-10-24 2016-05-01 格羅方德半導體公司 New Fin structures and multi-VT scheme based on tapered Fin and method to form
TW201631217A (en) * 2014-12-26 2016-09-01 Fujifilm Corp Etchant, etching method using the same, and method of manufacturing semiconductor substrate product
US20160211352A1 (en) * 2015-01-15 2016-07-21 Taiwan Semiconductor Manufacturing Co., Ltd. Method of trimming fin structure
CN106206314A (en) * 2015-01-15 2016-12-07 台湾积体电路制造股份有限公司 The method of finishing fin structure

Also Published As

Publication number Publication date
CN111326411A (en) 2020-06-23
TW202025278A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
US20190122939A1 (en) FinFET Devices with Unique Shape and the Fabrication Thereof
US9123773B1 (en) T-shaped single diffusion barrier with single mask approach process flow
US9508609B2 (en) Fin field effect transistor and method for forming the same
CN105280498B (en) The forming method of semiconductor structure
CN106206314A (en) The method of finishing fin structure
EP1538664A1 (en) Etchant and etching method
TWI388006B (en) Conformal etch material and process
KR20170046078A (en) Semiconductor structure and method for forming the same
TWI683362B (en) Method for trimming si fin structure
CN104681424B (en) The forming method of transistor
US9859125B2 (en) Block patterning method enabling merged space in SRAM with heterogeneous mandrel
US9356147B2 (en) FinFET spacer etch for eSiGe improvement
CN110739212A (en) Hard mask preparation method and semiconductor device manufacturing method
CN108878292B (en) FINFET device and method of forming the same
TWI689100B (en) Method for forming polysilicon in trench
CN108122843A (en) The forming method and semiconductor structure of fin field effect pipe
TW200525647A (en) Method and structure for ultra narrow gate
WO2013000190A1 (en) Method for integrating substitute gate of semiconductor device
CN106935503B (en) The forming method of semiconductor devices
US20070037371A1 (en) Method of forming gate electrode structures
CN104332408A (en) Method of manufacturing fin part of fin-type field effect transistor
CN104752221B (en) The forming method of fin formula field effect transistor
CN209210916U (en) Wafer filming equipment
CN108630611A (en) Semiconductor structure and forming method thereof
CN104078362A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees