TWI681675B - 基於動態範圍壓縮的對比增強方法及其電子裝置 - Google Patents

基於動態範圍壓縮的對比增強方法及其電子裝置 Download PDF

Info

Publication number
TWI681675B
TWI681675B TW107123131A TW107123131A TWI681675B TW I681675 B TWI681675 B TW I681675B TW 107123131 A TW107123131 A TW 107123131A TW 107123131 A TW107123131 A TW 107123131A TW I681675 B TWI681675 B TW I681675B
Authority
TW
Taiwan
Prior art keywords
brightness value
brightness
input
dynamic range
value
Prior art date
Application number
TW107123131A
Other languages
English (en)
Other versions
TW202007141A (zh
Inventor
周暘庭
姜昊天
陳世澤
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Priority to TW107123131A priority Critical patent/TWI681675B/zh
Application granted granted Critical
Publication of TWI681675B publication Critical patent/TWI681675B/zh
Publication of TW202007141A publication Critical patent/TW202007141A/zh

Links

Images

Abstract

本發明提供一種基於動態範圍壓縮的對比增強方法及其電子裝置,其透過一輸入影像中每個像素位置的輸入亮度值的出現次數來決定合適的有效動態範圍,並據此估算全域映射曲線(Global Mapping Curve),接著再根據輸入影像中每個像素位置的區域特性來調整輸入亮度值映射的輸出亮度值,以適應性地提高輸入影像的對比度。據此,本發明的對比增強方法及其電子裝置可以降低計算複雜度且產生較佳的影像對比度。

Description

基於動態範圍壓縮的對比增強方法及其電子裝置
本發明提供一種對比增強方法及其電子裝置,特別是關於一種基於動態範圍壓縮的對比增強方法及其電子裝置。
高動態範圍(如32位元)影像能夠捕捉如真實場景一般的影像,因為它能夠大量保留真實場景中的亮度、對比度、影像細節等等資訊。而一般顯示器能夠顯示的動態範圍例如是0~255(即8位元)。為了讓一般顯示器可以呈現高動態範圍影像,高動態範圍影像會透過一種壓縮方式並搭配合適的影像對比增強,以貼近人類視覺的感受。
影像對比增強主要可以分為全域性(global)對比增強及區域性(local)對比增強。全域性對比增強(如Gamma校正或直方圖均衡化)是估算一條具有動態範圍壓縮的全域性曲線,並對影像進行映射。雖然全域性對比增強可以對影像快速進行處理,但此類方法會對過亮像素過度壓縮或對過暗像素過度放大,這樣的缺點往往會損失結果影像的對比度。區域性對比增強(如適應性直方圖均衡化、曝光與遮光技術(Dodging-and-Burning))是根據每個像素及其鄰近像素的關係來產生非線性曲線條,以調整每個像素。雖然區域姓對比增強可以產生較佳的影像對比度,但此類方法的 計算複雜度非常高。
因此,若可以結合上述全域性對比增強與區域性對比增強的優點,將可以降低計算複雜度且產生較佳的影像對比度。
本發明提供了一種基於動態範圍壓縮的對比增強方法及其電子裝置,其透過一輸入影像中每個像素位置的輸入亮度值的出現次數來決定合適的有效動態範圍,並據此估算全域映射曲線(Global Mapping Curve),接著再根據輸入影像中每個像素位置的區域特性來調整輸入亮度值映射的輸出亮度值,以適應性地提高輸入影像的對比度。據此,本發明的對比增強方法及其電子裝置可以降低計算複雜度且產生較佳的影像對比度。
本發明實施例提供一種基於動態範圍壓縮的對比增強方法,適用於一電子裝置,且用以調整一輸入影像中的每一個像素位置的一輸入亮度,以增強輸入影像的對比度。對比增強方法包括如下步驟:(A)接收輸入影像中的每一個輸入亮度;(B)將每一個輸入亮度值的一出現次數對應到一直方圖上的多個亮度值,將這些出現次數進行平滑濾波,且根據平滑化的這些出現次數決定一有效動態範圍;(C)依序累加有效動態範圍中平滑化的每一個出現次數,以產生一累加曲線,其中累加曲線代表這些亮度值與累加後的這些出現次數的關係;(D)將累加後的這些出現次數正規化至有效動態範圍以產生一輸出亮度值,且這些亮度值與每一個亮度值對應的輸出亮度值形成一全域映射曲線;(E)於全域映射曲線中,依序根據每一個像素位置的輸入亮度值擷取對應的輸出亮度值;以及(F)於每一個像素位置中,根據對應的輸出亮度值與鄰近的這些輸出亮度值之間的一亮度關係調整對應的輸出亮度值,以產生一最後亮度值。
本發明實施例提供一種基於動態範圍壓縮的電子裝置,用以 調整一輸入影像中的每一個像素位置的一輸入亮度,以增強該輸入影像的對比度。電子裝置包括一影像擷取裝置與。影像擷取裝置接收輸入影像,並依序擷取輸入影像中的每一個輸入亮度。影像處理器電連接影像擷取裝置,且用以執行下列步驟:(A)接收輸入影像中的每一個輸入亮度值;(B)將每一個輸入亮度的一出現次數對應到一直方圖上的多個亮度值,將這些出現次數進行平滑濾波,且根據平滑化的這些出現次數決定一有效動態範圍;(C)依序累加有效動態範圍中平滑化的每一個出現次數,以產生一累加曲線,其中累加曲線代表這些亮度值與累加後的這些出現次數的關係;(D)將累加後的這些出現次數正規化至有效動態範圍以產生一輸出亮度值,且這些亮度值與每一個亮度值對應的輸出亮度值形成一全域映射曲線;(E)於全域映射曲線中,依序根據每一個像素位置的輸入亮度值擷取對應的輸出亮度值;以及(F)於每一個像素位置中,根據對應的輸出亮度值與鄰近的這些輸出亮度值之間的一亮度關係調整對應的輸出亮度值,以產生一最後亮度值。
為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅係用來說明本發明,而非對本發明的權利範圍作任何的限制。
100‧‧‧電子裝置
110‧‧‧影像擷取裝置
120‧‧‧影像處理器
Fr、Fr1‧‧‧輸入影像
P0-Pn‧‧‧輸入亮度值
P0’-Pn’‧‧‧最後亮度值
S210、S220、S230、S240、S250、S260、S270‧‧‧步驟
S231、S233、S235、S237、S238、S239‧‧‧步驟
S271、S273‧‧‧步驟
L0‧‧‧第一個亮度值
L1‧‧‧第一有效亮度值
L2‧‧‧第二有效亮度值
DR1‧‧‧第一範圍
DR2‧‧‧第二範圍
Deff‧‧‧有效動態範圍
Cuv‧‧‧累加曲線
F1、F2、F3‧‧‧像素組
P22、P47、P102‧‧‧像素位置
圖1是本發明一實施例之基於動態範圍壓縮的電子裝置的示意圖。
圖2是本發明一實施例之基於動態範圍壓縮的對比增強方法的流程圖。
圖2A是圖2之步驟S230的細部流程圖。
圖2B是圖2之步驟S270的細部流程圖。
圖3是本發明一實施例之輸入影像的直方圖。
圖4是圖3之平滑化的直方圖。
圖5是本發明一實施例之累加曲線的示意圖。
圖6是本發明一實施例之全域映射曲線的示意圖。
圖7是本發明一實施例之目前像素位置的輸出亮度值與鄰近的輸出亮度值的示意圖。
圖8是本發明一實施例之調整目前像素位置的輸出亮度值的示意圖。
圖9是本發明另一實施例之調整目前像素位置的輸出亮度值的示意圖。
圖10是本發明另一實施例之調整目前像素位置的輸出亮度值的示意圖。
在下文中,將藉由圖式說明本發明之各種例示實施例來詳細描述本發明。然而,本發明概念可能以許多不同形式來實現,且不應解釋為限於本文中所闡述之例示性實施例。此外,圖式中相同參考數字可用以表示類似的元件。
首先,請參考圖1,其顯示本發明一實施例之基於動態範圍壓縮的電子裝置的示意圖。如圖1所示,電子裝置100為用來調整一輸入影像Fr中的每一個像素位置的輸入亮度值P0-Pn,以增強輸入影像Fr的對比度,並輸出調整後的最後亮度值P0’-Pn’。在本實施例中,電子裝置100可為智慧型手機、錄影機、平板電腦、筆記型電腦或其他需要執行影像對比增強的裝置,本發明對此不作限制。
電子裝置100包括一影像擷取裝置110與一影像處理器120。如圖1所示,影像擷取裝置110接收輸入影像Fr,並依序擷取輸入影像Fr中的每一個輸入亮度值P0-Pn。更進一步來說,影像擷取裝置110為擷取連續影像,且輸入影像Fr為連續影像 中的其中一張。而輸入影像Fr中的每一個像素位置分別具有輸入亮度值P0-Pn。
影像處理器120電連接影像擷取裝置110,且用以執行下列步驟,以調整輸入影像Fr中的每一個像素位置的輸入亮度值P0-Pn,進而增強輸入影像Fr的對比度。
請同時參考圖1-2。圖2顯示本發明一實施例之基於動態範圍壓縮的對比增強方法的流程圖。首先,影像處理器120接收輸入影像Fr中每個像素位置的輸入亮度值P0-Pn,以進一步分析輸入影像Fr中每一個輸入亮度值P0-Pn的特徵(步驟S210)。
接著,影像處理器120將每一個輸入亮度值P0-Pn的一出現次數對應到一直方圖上的多個亮度值(步驟S220)。如圖3所示,直方圖Histogram的亮度值的動態範圍為9位元(bit),即亮度值0-511。因此,影像處理器120將輸入影像Fr中的每個輸入亮度值P0-Pn的出現次數H(n)統計到直方圖Histogram的亮度值上。在本實施例中,亮度值0的出現次數為10次(以H(0)=10表示)。而在其他亮度值1-511中,H(1)=15;H(2)=12;H(3)=8;H(4)=15;H(5)-H(10)=10;H(11)-H(248)=0;H(249)=10;H(250)=10;H(251)=5;H(252)=0;H(253)=1;H(254)=0;H(255)=1;H(256)=1;H(257)=0;H(258)=1;H(259)=1;以及H(260)-H(511)=0。而直方圖Histogram的亮度值的動態範圍亦可依照實際狀況來做設計,本發明對此不作限制。
在取得直方圖Histogram後,影像處理器120將這些出現次數進行平滑濾波,且根據平滑化的這些出現次數來決定一有效動態範圍(步驟S230)。值得注意的是,若有效動態範圍取得太小,會使得輸入影像Fr較亮的地方在輸出結果圖上呈現過曝;反之,若有效動態範圍取得太大,會使得輸入影像Fr較暗的地方在輸出結果圖上呈現過暗。因此,適當的有效動態範圍會得到較佳的輸出結果圖。
更進一步來說,請同時參考圖2A,影像處理器120將在直方圖Histogram中,由最後一個亮度值往前搜尋第一個有出現次數的亮度值作為一第一有效亮度值,並將第一個亮度值至第一有效亮度值作為一第一範圍(步驟S231)。以圖3為例,影像處理器120由最後一個亮度值511往前搜尋第一個有出現次數的亮度值259,並將亮度值259作為第一有效亮度值L1。影像處理器120接著將第一個亮度值L0至第一有效亮度值L1作為一第一範圍DR1。
再來,於第一範圍中,影像處理器120將對應的這些出現次數進行平滑濾波,以產生一平滑化的直方圖(步驟S233)。在本實施例中,如圖3所示,影像處理器120利用線性濾波器(linear filter)來對第一範圍DR1中的這些出現次數H(0)-H(259)進行平滑濾波以產生平滑化的出現次數H’(n),且亦可利用其他方式來對這些出現次數H(0)-H(259)進行濾波以產生圖4所示的平滑化的直方圖Histogram1,本發明對此不作限制。
請同時參考圖4,承接上述例子,影像處理器120將根據亮度值的順序來平均相鄰的出現次數。因此,平滑化的出現次數H’(0)=(10+15)/2=13且H’(1)=(10+15+12)/3=12。而其他平滑化的出現次數H’(2)-H’(510)的計算方式大致上與H’(1)的計算方式相同,H’(511)的計算方式大致上與H’(0)的計算方式相同,且計算結果如圖4所示,故在此不再贅述。當然,目前亮度值前後N個(N為正整數)亮度值亦可視為目前亮度值相鄰的出現次數,本發明對此不作限制。
由圖3的直方圖Histogram與圖4的平滑化的直方圖Histogram1可知,影像處理器120可透過平滑濾波方式來消除雜訊所造成的統計量,即直方圖Histogram的亮度值253、255、256、258與259映射的出現次數H(253)、H(255)、H(256)、H(258)與H(259)是雜訊。
接著,在步驟S233後,影像處理器120將於平滑化的直方圖中,由第一有效亮度值往前搜尋第一個有出現次數的亮度值作為一第二有效亮度值,並將第一個亮度值至第二有效亮度值作為一第二範圍(步驟S235)。承接上述例子並請參考圖4,影像處理器120於平滑化的直方圖Histogram1中,由第一有效亮度值L1往前搜尋第一個有出現次數的亮度值252作為第二有效亮度值L2。影像處理器120接著將第一個亮度值L0至第二有效亮度值L2作為第二範圍DR2。
在步驟S235後,影像處理器120將在第二範圍DR2中進一步判斷第二有效亮度值L2是否小於等於一預設亮度值(步驟S237)。若第二有效亮度值L2小於等於預設亮度值,表示預設亮度值可以涵蓋第二範圍DR2中所有的亮度值。此時,影像處理器120將第一個亮度值L0至預設亮度值作為有效動態範圍(步驟S238)。
反之,若第二有效亮度值L2大於預設亮度值,表示預設亮度不足以涵蓋第二範圍DR2中所有的亮度值。此時,影像處理器120將第一個亮度值L0至第二有效亮度值作為有效動態範圍(步驟S239)。值得注意的是,預設亮度值可依照第二範圍DR2的解析度、輸入亮度值P0-Pn的解析度或其他關聯於平滑化的直方圖Histogram1的亮度值來設定,本發明對此不作限制。
在本實施例中,預設亮度值設定為255。因此,承接上述例子,影像處理器120將在第二範圍DR2中判斷出第二有效亮度值L2小於等於255。此時,影像處理器120將第一個亮度值L0至預設亮度值(即255)作為有效動態範圍Deff。藉此,影像處理器120可透過步驟S231-S39界定適當的有效動態範圍,以進行後續處理。
再請回到圖2,在決定有效動態範圍(即步驟S230)後,影像處理器120將依序累加有效動態範圍中平滑化的每一個出現次 數,以產生一累加曲線。而累加曲線將代表這些亮度值與累加後的這些出現次數的關係(步驟S240)。承接上述例子,影像處理器120將依序累加如圖4所示的有效動態範圍Deff中,每一個亮度值0-255對應的平滑化的出現次數H’(0)-H’(255),以產生累加後的出現次數Had(n)。因此,累加後的出現次數Had(0)=13,Had(1)=13+12=25,Had(2)=13+12+12=37。而其他累加後的出現次數Had(3)-Had(255)的計算方式大致上與Had(1)的計算方式相同,且計算結果如圖5的累加曲線Cuv所示,故在此不再贅述。
在步驟S240後,影像處理器120將累加後的這些出現次數正規化至有效動態範圍以產生一輸出亮度值,且這些亮度值與每一個亮度值對應的輸出亮度值形成一全域映射曲線(步驟S250)。更進一步來說,影像處理器120將依序計算累加後的出現次數Had(n)與有效動態範圍中的全部出現次數的比例關係,且分別將每一個比例關係乘上有效動態範圍中的一最高亮度值,以產生輸出亮度值Iout(n)。
以圖5的累加後的出現次數Had(0)=13為例作說明,有效動態範圍Deff中的全部出現次數為147,且有效動態範圍Deff中的最高亮度值為255。故累加後的出現次數Had(0)與全部出現次數的比例關係為(13/147)。輸出亮度值Iout(0)為比例關係乘上最高亮度值=(13/147)*255=23。再以圖5的累加後的出現次數Had(1)=25為例作說明,有效動態範圍Deff中的全部出現次數為147,且有效動態範圍Deff中的最高亮度值為255。故累加後的出現次數Had(1)與全部出現次數的比例關係為(25/147)。輸出亮度值Iout(1)為比例關係乘上最高亮度值=(25/147)*255=43。
而其他輸出亮度值Iout(2)-Iout(255)的計算方式大致上與Iout(1)的計算方式相同,且計算結果如圖6的累加曲線Cuv所示,故在此不再贅述。據此,這些亮度值0-255與每一個亮度值0-255對應的輸出亮度值Iout(0)-Iout(255)將形成全域映射曲線 Cgb。
在取得全域映射曲線後,接著,影像處理器120將依序根據每一個像素位置的輸入亮度值擷取對應的輸出亮度值(步驟S260)。舉例來說,請同時參考圖6-7,輸入影像Fr1具有10*15個像素位置P0-P149,且每一個像素位置P0-P149具有一輸入亮度值,如像素位置P22的輸入亮度值為3,像素位置P47的輸入亮度值為250,以及像素位置P102的輸入亮度值為4。
因此,影像處理器120將像素位置P22的輸入亮度值3對應到全域映射曲線Cgb中的亮度值3,且擷取亮度值3對應的輸出亮度值Iout(3)=85。影像處理器120將像素位置P47的輸入亮度值250對應到全域映射曲線Cgb中的亮度值250,且擷取亮度值250對應的輸出亮度值Iout(250)=243。影像處理器120將像素位置P102的輸入亮度值4對應到全域映射曲線Cgb中的亮度值4,且擷取亮度值4對應的輸出亮度值Iout(4)=104。而其他像素位置的輸入亮度值同樣以此方式找到對應的輸出亮度值,故在此不再贅述。
在步驟260後,影像處理器120將在每一個像素位置中,根據對應的輸入亮度值與多個鄰近輸入亮度值之間的一亮度關係來調整對應的輸出亮度值,以產生一最後亮度值(步驟S270)。更進一步來說,由於輸入亮度值是由入射光(舉例輸入亮度值的低頻部分)與反射光(舉例輸入亮度值的高頻部分)合成,且在本實施例為輸入亮度值=入射光*反射光。若影像處理器120可將低頻部分移除,將可以針對高頻部分來進行加強。
因此,請同時參考圖2B,影像處理器120將根據對應的輸入亮度值與鄰近輸入亮度值計算至少一高頻像素比例,並將至少一高頻像素比例作為亮度關係(步驟S271)。而至少一高頻像素比例係關聯於對應的像素位置的輸入亮度值與至少一低頻像素值。
在本實施例中,由於影響入射光的因素很多,故影像處理器 120利用至少一個低頻率波器來模擬影不同的入射光。因此,影像處理器120將根據對應的輸入亮度值與鄰近輸入亮度值來計算至少一低頻像素值,並計算對應的輸入亮度值與至少一低頻像素值的比例關係,以產生至少一高頻像素比例。
以圖7的輸入影像Fr1的像素位置P22以及影像處理器120透過具有3*3遮罩與5*5遮罩的平均濾波器計算二個低頻像素值來作說明。像素位置P22的輸入亮度值及其鄰近輸入亮度值組成像素組F1且表示於圖8。影像處理器120將透過具有5*5遮罩的平均濾波器計算一低頻像素值(即(1+2+3+4+5+1+2+3+4+5+1+2+3+4+5+1+2+3+4+5+1+2+3+4+5)/25=3)。接著,影像處理器120將計算對應的輸入亮度值與低頻像素值的比例關係以產生一高頻像素比例(即3/3=1)。
類似地,影像處理器120將透過具有3*3遮罩的平均濾波器計算另一低頻像素值(即(2+3+4+2+3+4+2+3+4)/9=3)。接著,影像處理器120將計算對應的輸入亮度值與另一低頻像素值的比例關係以產生另一高頻像素比例(即3/3=1)。影像處理器120接著將上述兩個高頻像素比例相乘(即1*1=1)來作為亮度關係。
在取得亮度關係(即步驟S271)後,影像處理器120將根據亮度關係調整對應的輸出亮度值,以產生最後亮度值(步驟S273)。在本實施例中,最後亮度值=亮度關係*輸出亮度值=1*3=3,以表示影像處理器120根據亮度關係(=1)調整對應的輸出亮度值(=3)以產生最後亮度值(=3)。而當最後亮度值大於有效動態範圍中的一最高亮度值(本實施例為255)時,影像處理器120將最高亮度值作為最後亮度值。當然影像處理器120亦可以其他計算方式與亮度關係來調整對應的輸出亮度值以產生最後亮度值,本發明對此不作限制。
由上述可知,像素組F1中像素位置P22的輸入亮度值與這些鄰近輸入亮度值差距很小(即平均分布)。因此,影像處理器120 不需要調整輸出亮度值,使得像素位置P22的最後亮度值等於輸出亮度值。
再以圖7的輸入影像Fr1的像素位置P47以及影像處理器120透過具有3*3遮罩與5*5遮罩的平均濾波器計算二個低頻像素值來作說明。像素位置P47的輸入亮度值及其鄰近輸入亮度值組成像素組F2且表示於圖9。其中一個低頻像素值=(6+6+7+8+8+6+6+250+7+8+6+6+250+10+7+9+9+250+10+10+9+9+10+10+10)/25=37.08,且對應的高頻像素比例=250/37.08=6.74。另一個低頻像素值=(6+250+7+6+250+10+9+250+10)/9=88.67,且對應的高頻像素比例=250/88.67=2.82。而亮度關係=6.74*2.82=19。最後亮度值=亮度關係*輸出亮度值=19*250=4752。而最後亮度值係大於有效動態範圍Deff中的一最高亮度值255,故影像處理器120將最高亮度值255作為最後亮度值。
由上述可知,像素組F2中像素位置P47的輸入亮度值與這些鄰近輸入亮度值差距很大,且像素位置P47的輸入亮度值高於這些鄰近輸入亮度值。因此,影像處理器120將調亮輸出亮度值,使得像素位置P47的最後亮度值與鄰近輸入亮度值差距更大,以更提高像素位置P47的對比度。
再以圖7的輸入影像Fr1的像素位置P102以及影像處理器120透過具有3*3遮罩與5*5遮罩的平均濾波器計算二個低頻像素值來作說明。像素位置P102的輸入亮度值及其鄰近輸入亮度值組成像素組F3且表示於圖10。其中一個低頻像素值=(249+249+249+249+249+249+249+249+249+249+1+4+4+4+1+250+250+250+250+250+251+251+251+253+255)/25=200.6,且對應的高頻像素比例=4/200.6=0.02。另一個低頻像素值=(249+249+249+4+4+4+250+250+250)/9=167.7,且對應的高頻像素比例=4/167.7=0.02。而亮度關係=0.02*0.02=0。最後亮度值= 亮度關係*輸出亮度值=0*4=0。
由上述可知,像素組F3中像素位置P102的輸入亮度值與這些鄰近輸入亮度值差距很大,且像素位置P102的輸入亮度值低於這些鄰近輸入亮度值。因此,影像處理器120將調暗輸出亮度值,使得像素位置P102的最後亮度值與鄰近輸入亮度值差距更大,以更提高像素位置P102的對比度。
因此,由上述輸入影像Fr1的像素組F1-F3可知,當像素組中的輸入亮度值差距很小(如像素組F1)時,代表目前像素位置(如像素位置P22)不是輸入影像Fr1中的邊緣部分,影像處理器120不會調整目前像素位置的輸出亮度值,或根據差距的數值些微調整目前像素位置的輸出亮度值。
而當像素組中的輸入亮度值差距很大(如像素組F2與F3)時,代表目前像素位置(如像素位置P47與102)是輸入影像Fr1中的邊緣部分,影像處理器120將會根據差距的數值、目前輸入亮度與鄰近輸入亮度值的數值大小來調整目前像素位置的輸出亮度值。如上述像素位置P47的輸入亮度值與鄰近輸入亮度值差距很大,且像素位置P47的輸入亮度值高於這些鄰近輸入亮度。又例如上述像素位置P102的輸入亮度值與鄰近輸入亮度值差距很大,且像素位置P102的輸入亮度值低於這些鄰近輸入亮度。
藉此,影像處理器120可以根據目前像素位置的輸入亮度值及其鄰近輸入亮度值之間的亮度關係來適應性地調整目前像素位置的輸出亮度值,以據此產生最後亮度值。
綜上所述,本發明實施例所提供的一種基於動態範圍壓縮的對比增強方法及其電子裝置,其透過一輸入影像中每個像素位置的輸入亮度值的出現次數來決定合適的有效動態範圍,並據此估算全域映射曲線(Global Mapping Curve),接著再根據輸入影像中每個像素位置的區域特性來調整輸入亮度值映射的輸出亮度值,以適應性地提高輸入影像的對比度。據此,本發明的對比增 強方法及其電子裝置可以降低計算複雜度且產生較佳的影像對比度。
以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。
100‧‧‧電子裝置
110‧‧‧影像擷取裝置
120‧‧‧影像處理器
Fr‧‧‧輸入影像
P0-Pn‧‧‧輸入亮度值
P0’-Pn’‧‧‧最後亮度值

Claims (8)

  1. 一種基於動態範圍壓縮的對比增強方法,適用於一電子裝置,用以調整一輸入影像中的每一個像素位置的一輸入亮度值,以增強該輸入影像的對比度,且該對比增強方法包括:接收該輸入影像中的每一該輸入亮度值;將每一該輸入亮度值的一出現次數對應到一直方圖上的複數個亮度值,將該些出現次數進行平滑濾波,且根據平滑化的該些出現次數決定一有效動態範圍;依序累加該有效動態範圍中平滑化的每一該出現次數,以產生一累加曲線,其中該累加曲線代表該些亮度值與累加後的該些出現次數的關係;將累加後的該些出現次數正規化至該有效動態範圍以產生一輸出亮度值,其中包括依序計算累加後的該些出現次數與該有效動態範圍中的全部該些出現次數的比例關係,再分別將每一該比例關係乘上該有效動態範圍中的一最高亮度值以產生該輸出亮度值,使得該些亮度值與每一該亮度值對應的該輸出亮度值形成一全域映射曲線;於該全域映射曲線中,依序根據每一該像素位置的該輸入亮度值擷取對應的該輸出亮度值;以及於每一該像素位置中,根據對應的該輸入亮度值與複數個鄰近輸入亮度值之間的一亮度關係調整對應的該輸出亮度值,以產生一最後亮度值。
  2. 如請求項1之基於動態範圍壓縮的對比增強方法,其中,於決定該有效動態範圍的步驟中,更包括:於該直方圖中,由最後一個亮度值往前搜尋第一個有出現次數的亮度值作為一第一有效亮度值,並將第一個亮度值至該第一有效亮度值作為一第一範圍; 於該第一範圍中,將對應的該些出現次數進行平滑濾波,以產生一平滑化的直方圖;於該平滑化的直方圖中,由該第一有效亮度值往前搜尋第一個有出現次數的亮度值作為一第二有效亮度值,並將該第一個亮度值至該第二有效亮度值作為一第二範圍;以及於該第二範圍中,判斷該第二有效亮度值是否小於等於一預設亮度值,若該第二有效亮度值小於等於該預設亮度值,將該第一個亮度值至該預設亮度值作為該有效動態範圍,且若該第二有效亮度值大於該預設亮度值,將該第一個亮度值至該第二有效亮度值作為該有效動態範圍。
  3. 如請求項1之基於動態範圍壓縮的對比增強方法,其中,於每一該像素位置中,調整對應的該輸出亮度值以產生該最後亮度值的步驟中,更包括:根據對應的該輸入亮度值與該些鄰近輸入亮度值計算至少一高頻像素比例,並將該至少一高頻像素比例作為該亮度關係,其中該至少一高頻像素比例關聯於對應的該像素位置的該輸入亮度值與至少一低頻像素值;以及根據該亮度關係調整對應的該輸出亮度值,以產生該最後亮度值。
  4. 如請求項3之基於動態範圍壓縮的對比增強方法,其中,於計算對應的該像素位置的該至少一高頻像素比例的步驟中,更包括:根據對應的該輸入亮度值與該些鄰近輸入亮度值計算該至少一低頻像素值;以及計算對應的該輸入亮度值與該至少一低頻像素值的比例關係,以產生該至少一高頻像素比例。
  5. 如請求項3之基於動態範圍壓縮的對比增強方法,其中,根據該亮度關係調整對應的該輸出亮度值的步驟中,更包括:將對應的該輸出亮度值乘上對應的該亮度關係,以產生該最後亮度值,且當該最後亮度值大於該有效動態範圍中的一最高亮度值時,將該最高亮度值作為該最後亮度值。
  6. 一種基於動態範圍壓縮的電子裝置,用以調整一輸入影像中的每一個像素位置的一輸入亮度值,以增強該輸入影像的對比度,且該電子裝置包括:一影像擷取裝置,接收該輸入影像,並依序擷取該輸入影像中的每一該輸入亮度值;以及一影像處理器,電連接該影像擷取裝置,且用以執行下列步驟:接收該輸入影像中的每一該輸入亮度值;將每一該輸入亮度值的一出現次數對應到一直方圖上的複數個亮度值,將該些出現次數進行平滑濾波,且根據平滑化的該些出現次數決定一有效動態範圍;依序累加該有效動態範圍中平滑化的每一該出現次數,以產生一累加曲線,其中該累加曲線代表該些亮度值與累加後的該些出現次數的關係;將累加後的該些出現次數正規化至該有效動態範圍以產生一輸出亮度值,於正規化累加後的該些出現次數時,該影像處理器依序計算累加後的該些出現次數與該有效動態範圍中的全部該些出現次數的比例關係,再分別將每一該比例關係乘上該有效動態範圍中的一最高亮度值,以產生該輸出亮度值,使得該些亮度值與每一該亮度值對應的該輸出亮度值形成一全域映射曲線;於該全域映射曲線中,依序根據每一該像素位置的該輸入亮度值擷取對應的該輸出亮度值;以及 於每一該像素位置中,根據對應的該輸入亮度值與複數個鄰近輸入亮度值之間的一亮度關係調整對應的該輸出亮度值,以產生一最後亮度值。
  7. 如請求項6之基於動態範圍壓縮的電子裝置,其中,於每一該像素位置中,調整對應的該輸出亮度值以產生該最後亮度值時,該影像處理器根據對應的該輸入亮度值與該些鄰近輸入亮度值計算至少一高頻像素比例,將該至少一高頻像素比例作為該亮度關係,且根據該亮度關係調整對應的該輸出亮度值,以產生該最後亮度值,其中該至少一高頻像素比例關聯於對應的該像素位置的該輸入亮度值與至少一低頻像素值。
  8. 如請求項7之基於動態範圍壓縮的電子裝置,其中,該影像處理器根據對應的該輸入亮度值與該些鄰近輸入亮度值計算該至少一低頻像素值,計算對應的該輸入亮度值與該至少一低頻像素值的比例關係以產生該至少一高頻像素比例作為該亮度關係,且將對應的該輸出亮度值乘上該亮度關係以產生該最後亮度值,其中當該最後亮度值大於該有效動態範圍中的一最高亮度值時,該影像處理器將該最高亮度值作為該最後亮度值。
TW107123131A 2018-07-04 2018-07-04 基於動態範圍壓縮的對比增強方法及其電子裝置 TWI681675B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107123131A TWI681675B (zh) 2018-07-04 2018-07-04 基於動態範圍壓縮的對比增強方法及其電子裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107123131A TWI681675B (zh) 2018-07-04 2018-07-04 基於動態範圍壓縮的對比增強方法及其電子裝置

Publications (2)

Publication Number Publication Date
TWI681675B true TWI681675B (zh) 2020-01-01
TW202007141A TW202007141A (zh) 2020-02-01

Family

ID=69942729

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107123131A TWI681675B (zh) 2018-07-04 2018-07-04 基於動態範圍壓縮的對比增強方法及其電子裝置

Country Status (1)

Country Link
TW (1) TWI681675B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070268534A1 (en) * 2006-05-17 2007-11-22 Xerox Corporation Histogram adjustment for high dynamic range image mapping
TW201737205A (zh) * 2016-04-13 2017-10-16 瑞昱半導體股份有限公司 影像對比增強方法及其裝置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070268534A1 (en) * 2006-05-17 2007-11-22 Xerox Corporation Histogram adjustment for high dynamic range image mapping
TW201737205A (zh) * 2016-04-13 2017-10-16 瑞昱半導體股份有限公司 影像對比增強方法及其裝置

Also Published As

Publication number Publication date
TW202007141A (zh) 2020-02-01

Similar Documents

Publication Publication Date Title
Lin et al. Multi-scale retinex improvement for nighttime image enhancement
Lai et al. A quantitative measure based infrared image enhancement algorithm using plateau histogram
US11113795B2 (en) Image edge processing method, electronic device, and computer readable storage medium
Poddar et al. Non‐parametric modified histogram equalisation for contrast enhancement
JP5123210B2 (ja) 画像コントラストの調整方法及び装置
Zhang et al. A naturalness preserved fast dehazing algorithm using HSV color space
KR101499461B1 (ko) 히스토그램 압축을 이용한 히스토그램 평활화 장치
Liu et al. Contrast enhancement using non-overlapped sub-blocks and local histogram projection
US20130039577A1 (en) Method for improving image quality
CN107993189B (zh) 一种基于局部分块的图像色调动态调节方法和装置
Wang et al. Enhancement for dust-sand storm images
Sandoub et al. A low‐light image enhancement method based on bright channel prior and maximum colour channel
CN102196153B (zh) 图像场景亮度差判断装置及亮度差判断方法
Rao et al. Illumination-based nighttime video contrast enhancement using genetic algorithm
Wen et al. Autonomous robot navigation using Retinex algorithm for multiscale image adaptability in low-light environment
Park et al. Single image haze removal using novel estimation of atmospheric light and transmission
CN110766622A (zh) 基于亮度区分和Gamma平滑的水下图像增强方法
KR101516632B1 (ko) 동영상의 평균 밝기 변화율을 유지하는 시각적 임계치를 이용한 이분할 히스토그램 평활화 장치
Wang et al. A new single image dehazing method with MSRCR algorithm
TWI681675B (zh) 基於動態範圍壓縮的對比增強方法及其電子裝置
Goel et al. An efficient approach to restore naturalness of non-uniform illumination images
KR101499463B1 (ko) 시각적 임계치를 이용한 히스토그램 평활화 장치
Jang et al. Adaptive contrast enhancement using edge-based lighting condition estimation
US20150271383A1 (en) Method for generating hdr images using modified weight functions
CN110717862B (zh) 基于动态范围压缩的对比增强方法及其电子装置