TWI681188B - Actuator and manufacuring method thereof and acoustic transmitter - Google Patents
Actuator and manufacuring method thereof and acoustic transmitter Download PDFInfo
- Publication number
- TWI681188B TWI681188B TW107147135A TW107147135A TWI681188B TW I681188 B TWI681188 B TW I681188B TW 107147135 A TW107147135 A TW 107147135A TW 107147135 A TW107147135 A TW 107147135A TW I681188 B TWI681188 B TW I681188B
- Authority
- TW
- Taiwan
- Prior art keywords
- elastic metal
- axis direction
- long axis
- actuator
- patent application
- Prior art date
Links
Images
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
本發明係關於一種致動器及其製法與音波發射器,詳而言之,係關於利用壓電技術之致動器及其製法,以及包含致動器之低頻音波發射器。 The present invention relates to an actuator and its manufacturing method and sonic wave transmitter. Specifically, it relates to an actuator and its manufacturing method using piezoelectric technology, and a low-frequency sonic wave transmitter including the actuator.
一般而言,水管或其他管線可能洩漏之原因諸多,例如當管線受到過大的外力時,內壓力或不均勻的荷重可能引起管體的破裂或斷裂。此外,管與管間的接頭可能因使用時間久,導致塑膠墊圈材質老化,再加上侵蝕、震動移位等因素,造成接頭縫隙變大而發生洩漏。再者,管線亦可能因水質或土質的影響而被腐蝕,使得管材強度減弱而造成破管。另外,管路上的閥類閉鎖不全亦有可能造成的流量漏失。 Generally speaking, there are many reasons why a water pipe or other pipeline may leak. For example, when the pipeline is subjected to excessive external force, internal pressure or uneven load may cause the pipe body to rupture or break. In addition, the joint between the pipe and the pipe may cause the aging of the plastic gasket material due to long use time. In addition, due to corrosion, vibration displacement and other factors, the joint gap will become larger and leak. In addition, the pipeline may also be corroded due to the influence of water quality or soil quality, so that the strength of the pipe is weakened and the pipe is broken. In addition, incomplete blocking of valves on the pipeline may also cause flow loss.
傳統對於管線是否洩漏的偵測可在管線附近放置能發射特定頻路之發射器,再由人員手持接收器來接收反射的頻率。另外,亦可於閥件上打入聲波,藉由聲波在管件上的移動,讓地面上的接收器得知管路位置。 In the traditional detection of pipeline leakage, a transmitter capable of transmitting a specific frequency can be placed near the pipeline, and then the person can hold the receiver to receive the reflected frequency. In addition, the sound wave can also be injected into the valve, and the sound wave moves on the pipe to let the receiver on the ground know the position of the pipeline.
一般而言,待測管線通常達數百公尺至數公里長,因此發射器所發射之訊號需要傳遞得夠遠,才能偵測到管線的破口所在。對於這樣的發射 器,其導致音波發射之致動器的設計更為關鍵。是以,如何開發出一種能將聲波傳遞至遠方以主動偵測管線洩漏之發聲源,為目前業界極待解決之議題。 Generally speaking, the pipeline to be tested is usually hundreds of meters to several kilometers long, so the signal transmitted by the transmitter needs to be transmitted far enough to detect the breach of the pipeline. For such a launch The design of the actuator, which leads to the emission of sound waves, is more critical. Therefore, how to develop a sound source that can transmit sound waves to a distant place to actively detect pipeline leaks is currently an issue that the industry needs to solve.
本發明之一實施例揭示一種致動器,包括:彈性金屬件,具有複數個彎曲段和複數個連接段以構成具有長軸方向及短軸方向之環形結構;積層壓電件,設置於該彈性金屬件之環形結構內並具有沿著該長軸方向堆疊之複數個壓電單元;以及複數個耦合件,設置於該彈性金屬件之環形結構內以使該積層壓電件之在該長軸方向上的兩端分別與該彈性金屬件之在該長軸方向上的連接段耦合。 An embodiment of the present invention discloses an actuator, including: an elastic metal member having a plurality of bending sections and a plurality of connecting sections to form a ring structure having a long axis direction and a short axis direction; a laminated piezoelectric element is provided in the A plurality of piezoelectric elements stacked in the ring structure of the elastic metal member along the long axis direction; and a plurality of coupling members disposed in the ring structure of the elastic metal member so that the laminated piezoelectric member is in the long The two ends in the axial direction are respectively coupled with the connecting sections of the elastic metal part in the long axis direction.
本發明之一實施例揭示一種致動器之製法,包括:提供堆疊有複數個壓電單元之積層壓電件;一體形成彈性金屬件,所形成之彈性金屬件具有複數個彎曲段和複數個連接段以構成具有長軸方向及短軸方向之環形結構;賦予該彈性金屬件預應力;以及利用具有對應於該預應力的尺寸之複數個耦合件,將該積層壓電件在其堆疊方向上的兩端分別與該彈性金屬件在該長軸方向上的連接段耦合,以維持該預應力。 An embodiment of the present invention discloses a method for manufacturing an actuator, which includes: providing a laminated piezoelectric element stacked with a plurality of piezoelectric elements; forming an elastic metal piece integrally, the elastic metal piece formed has a plurality of bending segments and a plurality of The connecting segment forms a ring structure having a long axis direction and a short axis direction; prestresses the elastic metal member; and utilizes a plurality of coupling members having dimensions corresponding to the prestress to stack the laminated piezoelectric member in its stacking direction The two ends of the upper part are respectively coupled with the connecting section of the elastic metal piece in the direction of the long axis to maintain the prestress.
本發明之一實施例揭示一種音波發射器,包括:如上述之致動器,用以接收電壓而振動;振膜,設置於該致動器上並附接至該彈性金屬件之位於該短軸方向上的其中一連接段,以受該彈性金屬件之驅動而振動;以及承載件,設置於該致動器上並附接至該彈性金屬件之位於該短軸方向上的另一連接段,以支撐該致動器及該振膜。 An embodiment of the present invention discloses a sound wave transmitter including: an actuator as described above for receiving voltage and vibrating; a diaphragm disposed on the actuator and attached to the elastic metal member located in the short One of the connecting sections in the axis direction is vibrated by the elastic metal member; and the carrier is provided on the actuator and is attached to another connection of the elastic metal member in the short axis direction To support the actuator and the diaphragm.
1‧‧‧彈性金屬件 1‧‧‧Elastic metal parts
11a、11b、11c、11d‧‧‧彎曲段 11a, 11b, 11c, 11d bending section
12a、12b、12c、12d‧‧‧連接段 12a, 12b, 12c, 12d ‧‧‧ connection section
2‧‧‧積層壓電件 2‧‧‧Laminated piezoelectric
21‧‧‧壓電單元 21‧‧‧ Piezoelectric unit
221、222‧‧‧電極 221、222‧‧‧electrode
3‧‧‧耦合件 3‧‧‧Coupling
4‧‧‧振膜 4‧‧‧ diaphragm
5‧‧‧承載件 5‧‧‧Carrier
6‧‧‧固定件 6‧‧‧Fixed parts
A‧‧‧長軸方向 A‧‧‧Long axis direction
B‧‧‧短軸方向 B‧‧‧Short axis direction
2a、2b、c‧‧‧長度 2a, 2b, c‧‧‧ length
dx、dy‧‧‧位移量 dx, dy‧‧‧ displacement
S201~S203‧‧‧步驟 S201~S203‧‧‧Step
第1A圖為本發明之致動器之一實施例之結構示意圖。 FIG. 1A is a schematic structural view of an embodiment of the actuator of the present invention.
第1B圖為本發明之致動器之電極之一實施例之結構示意圖。 FIG. 1B is a schematic structural diagram of an embodiment of an electrode of an actuator of the present invention.
第2圖為本發明之音波發射器之一實施例之結構示意圖。 FIG. 2 is a schematic structural diagram of an embodiment of the sound wave transmitter of the present invention.
第3圖為本發明之致動器之製法之一實施例之流程示意圖。 FIG. 3 is a schematic flowchart of an embodiment of the method for manufacturing an actuator of the present invention.
第4圖為本發明之致動器之實驗例1的彈性金屬件之平面示意圖。 Fig. 4 is a schematic plan view of the elastic metal member of Experimental Example 1 of the actuator of the present invention.
第5圖為本發明之致動器之比較例與各實驗例之長短軸比-衝程曲線圖。 FIG. 5 is a graph showing the ratio of long to short axis vs. stroke of the comparative example and the experimental example of the actuator of the present invention.
第6圖為本發明之致動器之比較例與外拉的各實驗例之頻率-振幅曲線圖。 Fig. 6 is a frequency-amplitude graph of the comparative example of the actuator of the present invention and the experimental examples of external pull.
第7圖為本發明之致動器之比較例與內壓的各實驗例之頻率-振幅曲線圖。 Fig. 7 is a frequency-amplitude graph of the comparative example of the actuator of the present invention and the experimental examples of the internal pressure.
以下藉由特定的實施例說明本發明之實施方式,熟習此項技藝之人士可由本文所揭示之內容輕易地瞭解本發明之其他優點及功效。本說明書所附圖式所繪示之結構、比例、大小等均僅用於配合說明書所揭示之內容,以供熟悉此技藝之人士之瞭解與閱讀,非用於限定本發明可實施之限定條件,故任何修飾、改變或調整,在不影響本發明所能產生之功效及所能達成之目的下,均應仍落在本發明所揭示之技術內容能涵蓋之範圍內。 The following describes the implementation of the present invention through specific examples. Those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed herein. The structure, ratio, size, etc. shown in the drawings of this specification are only used to match the contents disclosed in the specification, for those who are familiar with this skill to understand and read, and are not used to limit the limitations of the invention. Therefore, any modifications, changes or adjustments should still fall within the scope of the technical content disclosed in the present invention without affecting the efficacy and the purpose of the present invention.
請參閱第1A圖,本發明之致動器包括彈性金屬件1、積層壓電件2及耦合件3。
Referring to FIG. 1A, the actuator of the present invention includes an
彈性金屬件1可具有複數個彎曲段11a~11d和複數個連接段12a~12d,以構成具有長軸方向A以及短軸方向B之環形結構,其中這些相連的彎
曲段11a~11d和連接段12a~12d一體形成為該環形結構,此在機械上可視為串聯結構。彎曲段11a~11d和連接段12a~12d一體形成該環型結構僅為一種實施方式,並不以此為限。如第1A圖所示,連接段12b和12d位在長軸方向A上,連接段12a和12c位在短軸方向B上,彎曲段11a位在連接段12d和12a之間並與位在連接段12d和12c之間的彎曲段11d以長軸方向A鏡像對稱,彎曲段11b位在連接段12b和12a之間並與位在連接段12b和12c之間的彎曲段11c以長軸方向A鏡像對稱。
The
此外,彎曲段11a~11d各者構成橢圓的部分周長,而連接段12a~12d各者可為直線段。另外,本發明可省略連接段12a和12c而僅保留連接段12b和12d,並使彎曲段11a和11b成為連續以共同為橢圓的部分周長,而彎曲段11c和11d亦成為連續以共同為同一橢圓的部分周長,使得由彎曲段11a和11b構成的橢圓部分周長與彎曲段11c和11d構成的橢圓部分周長能以長軸方向A鏡像對稱。
In addition, each of the
本發明之具有環形結構的彈性金屬件1可視為類橢圓,本發明之具有環形結構的彈性金屬件1可具有在長軸方向A上的兩個連接段12b和12d以及以長軸方向A對稱設置之兩個彎曲段(連續的彎曲段11a和11b以及連續的彎曲段11c和11d)、或可具有在長軸方向A上的兩個連接段12b和12d、在短軸方向B上的兩個連接段12a和12c、以及以長軸方向A兩兩對稱設置之四個彎曲段11a~11d(其中彎曲段11a與11d對稱而彎曲段11b與11c對稱)、更可依致動器所需的振動頻率或衝程而設計更多的彎曲段和連接段。
The
再者,具有環形結構之彈性金屬件1可被賦予有預應力,例如在長軸方向上提供外拉力或內壓力以使彈性金屬件1具有預應力,將於後詳述
之。另一般而言,彈性金屬件1之材料可例如彈性鋼、或彈性鋼合金、或其他具有彈性之金屬或合金。
Furthermore, the
積層壓電件2可包括堆疊之複數個壓電單元21以及形成於其上之電極221和222,其中壓電單元21可為壓電片,如第1B圖所示。堆疊之壓電單元21以堆疊方向平行於彈性金屬件1的長軸方向A之方式設置於彈性金屬件1之環狀結構內。此外,電極221和222之設置如第1B圖所示,對照著第1A圖,電極221設置於壓電單元21之上及之間,電極222設置於壓電單元21之下及之間,即每個壓電單元21的左右兩側(長軸方向A)分別為電極221和222,每個壓電單元21的上下兩側(短軸方向B)分別為電極221和222,其中電極222可接地而電極221可施予電壓,此對於堆疊之壓電單元21而言為電性並聯,使得各壓電單元21在厚度上(長軸方向A)產生伸張現象,即在長軸方向A上產生位移,進而帶動彈性金屬件1在短軸方向B上的位移。
The laminated
此外,壓電單元21的材料可為如石英之單晶類材料、如氧化鋅之薄膜類材料、如聚偏二氟乙烯(polyvinylidene difluoride;PVDF)之聚合物類材料、如鋯鈦酸鉛(Pb(ZrTi)O3;PZT)之陶瓷類材料、或如PZT與矽、玻璃或橡膠結合之複合壓電類材料。
In addition, the material of the
複數個耦合件3可設置於彈性金屬件1的環狀結構內。如第1A圖所示,兩個耦合件3可位在長軸方向A上以將積層壓電件2的兩端分別與彈性金屬1件的連接段12b和12d耦合。耦合件3的厚度可依據預應力的大小來決定,舉例來說,當賦予彈性金屬件1預外拉力時,可使用厚度(長軸方向A)較大的耦合件3來耦接積層壓電件2與彈性金屬件1,藉此維持預外拉力;當賦予彈性金屬件
1預內壓力時,可使用厚度(長軸方向A)較小的耦合件3來耦接積層壓電件2與彈性金屬件1。
A plurality of
此外,積層壓電件2、耦合件3和彈性金屬件1之間的耦合可透過固定件6來固定。如第1A圖所示,固定件6可例如鐵釘、鉚釘、螺絲或螺栓之類的鎖附元件、或可為塗佈於積層壓電件2、耦合件3、和彈性金屬件1的連接段12b和12d之間的黏著劑、更可為設計在耦合件3、積層壓電件2、和彈性金屬件1的連接段12b和12d上之卡合設計,藉此強化該預應力的維持,以避免因致動器振動一段時間之後積層壓電件2、耦合件3和彈性金屬件1之間彼此鬆脫而導致預應力消失。
In addition, the coupling between the laminated
據此,本發明之彈性金屬件可將積層壓電件在其堆疊方向(即彈性金屬件的長軸方向)上的變形轉換為彈性金屬件在短軸方向上的振動,故具有較大的衝程。此外,藉由在複數個彎曲段之間設置與其一體形成之連接段以構成類橢圓設計之彈性金屬件,相較於橢圓設計的彈性金屬件,在衝程及頻率上有更佳的表現。再者,彈性金屬件可賦予有預應力,並藉由調整耦合件的厚度來維持預外拉力或預內壓力,具有預應力之彈性金屬件能使得致動器在相對低頻範圍有相對高的振福。 According to this, the elastic metal member of the present invention can convert the deformation of the laminated piezoelectric member in the stacking direction (ie, the long axis direction of the elastic metal member) into the vibration of the elastic metal member in the short axis direction, so it has a large stroke. In addition, an ellipse-like elastic metal part is formed by providing integrally formed connecting segments between a plurality of bending segments. Compared with an ellipse-like elastic metal part, it has better performance in stroke and frequency. Furthermore, the elastic metal part can be given prestress, and by adjusting the thickness of the coupling member to maintain the pre-external tension or pre-internal pressure, the pre-stressed elastic metal part can enable the actuator to have a relatively high Zhenfu.
請參閱第2圖,本發明之音波發射器包括彈性金屬件1、積層壓電件2、耦合件3、振膜4、承載件5、及固定件6。彈性金屬件1、積層壓電件2、耦合件3和固定件6如上文及第1A圖所示,故在此不予贅述。
Referring to FIG. 2, the sound wave transmitter of the present invention includes an
如第2圖所示,振膜4可設置於致動器上並附接至彈性金屬件1之位於短軸方向B上的連接段12a,以受彈性金屬件1之驅動而振動。承載件5可設置於該致動器上並附接至彈性金屬件1之位於短軸方向B上的連接段12c,以支
撐該致動器及該振膜4,此外承載件5於第2圖中僅以板件示意,其具體實施時可能為以基座或框架。本發明之音波發射器之發射頻率為10Hz~500Hz,衝程可大於0.5mm。
As shown in FIG. 2, the
因此,本發明之音波發射器由於頻率較低、故音波能傳遞較遠,可作為主動偵測管線洩漏之發聲源,藉以偵測管線是否劣化而影響駐波的形成。 Therefore, the sound wave transmitter of the present invention has a lower frequency, so the sound wave can be transmitted farther, and can be used as a sound source for actively detecting pipeline leakage, thereby detecting whether the pipeline is deteriorated and affecting the formation of standing waves.
請參閱第3圖,其概略繪示本發明致動器之製法的流程。 Please refer to FIG. 3, which schematically illustrates the manufacturing process of the actuator of the present invention.
如步驟S201所示,一體形成彈性金屬件。所形成之彈性金屬件具有複數個彎曲段和複數個連接段以構成具有長軸方向及短軸方向之環形結構。此外,各彎曲段可為一橢圓的部分周長而各連接段可為一直線的部分線段。再者,複數個連接段可為在長軸方向上之兩個連接段,而複數個彎曲段可為以長軸方向對稱之兩個彎曲段;或者,複數個連接段可為在長軸方向上之兩個連接段以及在短軸方向上之另兩個連接段,而複數個彎曲段可為兩兩以長軸方向對稱之四個彎曲段。 As shown in step S201, an elastic metal piece is integrally formed. The formed elastic metal piece has a plurality of bending sections and a plurality of connecting sections to form a ring structure having a long axis direction and a short axis direction. In addition, each curved section may be a partial circumference of an ellipse and each connecting section may be a straight partial section. Furthermore, the plurality of connecting segments may be two connecting segments in the direction of the long axis, and the plurality of bending segments may be two bending segments symmetrical in the direction of the long axis; or, the plurality of connecting segments may be in the direction of the long axis The two connecting sections on the upper side and the other two connecting sections on the short axis direction, and the plurality of bending sections may be four bending sections symmetrical in the long axis direction.
如步驟S202所示,賦予彈性金屬件預應力。可對彈性金屬件提供在長軸方向上的外拉力或內壓力以使彈性金屬件具備所述預應力。 As shown in step S202, the elastic metal piece is prestressed. The elastic metal member may be provided with an external pulling force or an internal pressure in the direction of the long axis to provide the elastic metal member with the prestress.
如步驟S203所示,利用具有對應於預應力的尺寸之複數個耦合件將彈性金屬件與積層壓電件耦合。所述積層壓電件之形成可例如堆疊複數個壓電單元以形成積層壓電件,並於積層壓電件之上形成電極。此外,所述積層壓電件與彈性金屬件之耦合的方式為,耦合件將積層壓電件之在其堆疊方向上的兩端分別與彈性金屬件之在長軸方向上的連接段耦合,以維持預應力。耦合件的尺寸可依據預應力的大小來決定,當賦予彈性金屬件預外拉力時,可使用厚度較大的耦合件來耦接積層壓電件與彈性金屬件,藉此維持預外拉力;當賦予 彈性金屬件預內壓力時,可使用厚度較小的耦合件來耦接積層壓電件與彈性金屬件。此外,更可包括利用複數個固定件,在長軸方向上連接積層壓電件、複數個耦合件及彈性金屬件,以強化預應力的維持性。 As shown in step S203, the elastic metal member and the laminated piezoelectric member are coupled using a plurality of coupling members having a size corresponding to the prestress. For the formation of the laminated piezoelectric member, for example, a plurality of piezoelectric cells can be stacked to form a laminated piezoelectric member, and an electrode can be formed on the laminated piezoelectric member. In addition, the method of coupling the laminated piezoelectric member and the elastic metal member is that the coupling member couples both ends of the laminated piezoelectric member in the stacking direction to the connecting sections of the elastic metal member in the long axis direction, To maintain prestress. The size of the coupling member can be determined according to the size of the prestress. When the elastic metal member is given a pre-external pulling force, a thicker coupling member can be used to couple the laminated piezoelectric member and the elastic metal member, thereby maintaining the pre-external pulling force; When given When the elastic metal member is pre-internally pressured, a coupling member with a smaller thickness can be used to couple the laminated piezoelectric member and the elastic metal member. In addition, it may include using a plurality of fixing members to connect the laminated piezoelectric member, a plurality of coupling members, and an elastic metal member in the long axis direction to enhance the maintenance of the prestress.
接著參閱第4-7圖及表一,在此提供比較例和各實驗例來說明本發明致動器之振動表現。 Next, referring to FIGS. 4-7 and Table 1, comparative examples and experimental examples are provided here to illustrate the vibration performance of the actuator of the present invention.
實驗例1如第4圖所示,致動器的彈性金屬件具有長度為2a的長軸、長度為2b的短軸、長度為c的四個連接段及在連接段之間的四個彎曲段,其中兩個連接段在長軸上兩個連接段在短軸上,而各連接段為直線段且各彎曲段屬於同一個橢圓周長,實驗例1之彈性金屬件於本文稱為具有類橢圓的環形結構之彈性金屬件,實驗例1並無預應力,且在長軸方向有位移量dx而短軸方向有位移量dy。此外,本發明所採用之比較例為:具有長軸長度2a和短軸長度2b之橢圓的彈性金屬件,比較例並無連接段更無預應力。其次,實驗例2~7的彈性金屬件在結構上與實驗例1相同,僅增加分別為外拉0.014mm、外拉0.035mm、
外拉0.35mm、內壓0.014mm、內壓0.035mm、內壓0.35mm之預應力,其中外拉或內壓之施力方向為長軸方向。
Experimental example 1 As shown in Figure 4, the elastic metal part of the actuator has a long axis of
於第5圖中,橫座標為長軸與短軸之比值(a/b),縱座標dy/dx為致動器之衝程,即彈性金屬件短軸方向的位移量與長軸方向的位移量之比值。根據第5圖可發現,實驗例1相較於比較例具有較大的衝程。此外,在a/b為2.5的情況下,實驗例4和實驗例7相較於比較例具有較大的衝程。另外,當a/b值越大,亦具有較大的衝程,例如為1.5~10、1.5~8或2~6。因此可知,採用類橢圓環形結構的彈性金屬件之致動器,相較於具有橢圓的彈性金屬件之致動器具有更大的衝程,若再賦予彈性金屬件外拉或內壓之預應力,則具有更大的衝程。 In Figure 5, the horizontal axis is the ratio of the long axis to the short axis (a/b), and the vertical axis dy/dx is the stroke of the actuator, that is, the displacement of the elastic metal member in the short axis direction and the displacement in the long axis direction The ratio of the amount. According to FIG. 5, it can be found that Experimental Example 1 has a larger stroke than the Comparative Example. In addition, in the case where a/b is 2.5, Experimental Example 4 and Experimental Example 7 have a larger stroke than the Comparative Example. In addition, the larger the a/b value, the larger the stroke, for example, 1.5 to 10, 1.5 to 8, or 2 to 6. Therefore, it can be seen that actuators using elastic metal parts with an ellipse-like ring structure have a larger stroke than actuators with elastic metal parts having an ellipse. , It has a larger stroke.
接著參閱第6和7圖,第6圖為預應力為外拉之實驗例2-4與無預應力之實驗例1的之振幅-頻率曲線圖,第7圖為預應力為內壓之實驗例5-7與無預應力之實驗例1的之振幅-頻率曲線圖。根據第6和7圖可發現,在相對低頻,如1000Hz甚或500Hz以下,有預應力的實驗例2-7之彈性金屬件相較於無預應力的實驗例1之彈性金屬件,具有較大的振福。 Next, please refer to Figures 6 and 7. Figure 6 is the amplitude-frequency curve of Experimental Example 2-4 where the prestress is externally pulled and Experimental Example 1 without prestress, and Figure 7 is the experiment where the prestress is internal pressure The amplitude-frequency curve of Example 5-7 and Experimental Example 1 without prestress. According to Figures 6 and 7, it can be found that at relatively low frequencies, such as 1000 Hz or even below 500 Hz, the elastic metal parts of the pre-stressed experimental example 2-7 have a larger size than the elastic metal parts of the non-pre-stressing experimental example 1. Zhenfu.
綜上所述,本發明之致動器包括具有類橢圓環形結構之彈性金屬件、設置於彈性金屬件內具有沿長軸方向堆疊的複數個壓電單元之積層壓電件、設置於積層壓電件兩端以在長軸方向將積層壓電件與彈性金屬件耦接之複數個耦合件,本發明之音波發射器包括前述致動器及受致動器驅動之振膜,藉由將具有對應於預應力的尺寸之複數個耦合件設置在積層壓電件之堆疊方向的兩端與彈性金屬件之間,俾維持賦予至彈性金屬件之預應力。因此,本發明之致動器在相對低頻範圍有相對高的振福,本發明之音波發射器因其頻率較低、故能將音波傳遞較遠。 In summary, the actuator of the present invention includes an elastic metal member having an ellipse-like ring structure, a laminated piezoelectric member provided with a plurality of piezoelectric units stacked along the long axis direction in the elastic metal member, and provided in a laminate At both ends of the electrical component, a plurality of coupling members coupling the laminated piezoelectric component and the elastic metal component in the long axis direction. The sound wave transmitter of the present invention includes the aforementioned actuator and the diaphragm driven by the actuator. A plurality of coupling members having a size corresponding to the prestress is provided between both ends of the stacked piezoelectric member in the stacking direction and the elastic metal member so as to maintain the prestress given to the elastic metal member. Therefore, the actuator of the present invention has a relatively high vibration in a relatively low frequency range, and the sound wave transmitter of the present invention can transmit sound waves farther because of its lower frequency.
上述實施例僅例示性說明本發明之功效,而非用於限制本發明,任何熟習此項技藝之人士均可在不違背本發明之精神及範疇下對上述該些實施態樣進行修飾與改變。因此本發明之權利保護範圍,應如後述之申請專利範圍所列。 The above-mentioned embodiments are only illustrative of the effects of the present invention, not used to limit the present invention. Anyone who is familiar with this skill can modify and change the above-mentioned embodiments without departing from the spirit and scope of the present invention. . Therefore, the scope of protection of the rights of the present invention should be as listed in the scope of patent application mentioned later.
1‧‧‧彈性金屬件 1‧‧‧Elastic metal parts
11a、11b、11c、11d‧‧‧彎曲段 11a, 11b, 11c, 11d bending section
12a、12b、12c、12d‧‧‧連接段 12a, 12b, 12c, 12d ‧‧‧ connection section
2‧‧‧積層壓電件 2‧‧‧Laminated piezoelectric
21‧‧‧壓電單元 21‧‧‧ Piezoelectric unit
3‧‧‧耦合件 3‧‧‧Coupling
6‧‧‧固定件 6‧‧‧Fixed parts
A‧‧‧長軸方向 A‧‧‧Long axis direction
B‧‧‧短軸方向 B‧‧‧Short axis direction
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107147135A TWI681188B (en) | 2018-12-26 | 2018-12-26 | Actuator and manufacuring method thereof and acoustic transmitter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107147135A TWI681188B (en) | 2018-12-26 | 2018-12-26 | Actuator and manufacuring method thereof and acoustic transmitter |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI681188B true TWI681188B (en) | 2020-01-01 |
TW202024631A TW202024631A (en) | 2020-07-01 |
Family
ID=69942650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107147135A TWI681188B (en) | 2018-12-26 | 2018-12-26 | Actuator and manufacuring method thereof and acoustic transmitter |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI681188B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1769759B1 (en) * | 1999-05-11 | 2008-08-13 | Atrionix, Inc. | Apparatus for ultrasound ablation |
TW201239393A (en) * | 2011-03-24 | 2012-10-01 | Seiko Epson Corp | Actuator, optical scanner, and image forming apparatus |
US20160299050A1 (en) * | 2013-12-04 | 2016-10-13 | Baker Hughes Incorporated | Measuring formation porosity and permeability |
-
2018
- 2018-12-26 TW TW107147135A patent/TWI681188B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1769759B1 (en) * | 1999-05-11 | 2008-08-13 | Atrionix, Inc. | Apparatus for ultrasound ablation |
TW201239393A (en) * | 2011-03-24 | 2012-10-01 | Seiko Epson Corp | Actuator, optical scanner, and image forming apparatus |
US20160299050A1 (en) * | 2013-12-04 | 2016-10-13 | Baker Hughes Incorporated | Measuring formation porosity and permeability |
Also Published As
Publication number | Publication date |
---|---|
TW202024631A (en) | 2020-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6837135B2 (en) | Manufacturing method of axial displacement piezoelectric actuator, underwater acoustic transducer and axial displacement piezoelectric actuator | |
US8358049B2 (en) | Energy converters and associated methods | |
US20130043766A1 (en) | Actuator, piezoelectric actuator, electronic device, and method for attenuating vibration and converting vibration direction | |
US8712079B2 (en) | Piezoelectric speaker and method of manufacturing the same | |
Arnold et al. | The resonance frequencies on mechanically pre-stressed ultrasonic piezotransducers | |
US20130278111A1 (en) | Piezoelectric micromachined ultrasound transducer with patterned electrodes | |
US8717849B1 (en) | Slotted cylinder acoustic transducer | |
US20160146680A1 (en) | Pressure sensor using piezoelectric bending resonators | |
US9070355B2 (en) | Acoustic generator, acoustic generation device, and electronic device | |
EP3507794A1 (en) | Piezoelectric actuator and low frequency underwater projector | |
TWI681188B (en) | Actuator and manufacuring method thereof and acoustic transmitter | |
CN111365621B (en) | Actuator and its manufacturing method and sonic wave transmitter | |
CN110944274B (en) | Tunable MEMS piezoelectric transducer with mass load based on Pitton-mode | |
US11931776B2 (en) | Actuator, method for manufacturing the actuator, and acoustic transmitter | |
US20230223871A1 (en) | Strain-Relieved Compliant Structures for Flextensional Transduction | |
JP2015149368A (en) | Vibrator and piezoelectric pump | |
KR100729152B1 (en) | Piezoelectric vibrator for plate-type speaker | |
WO2021240205A1 (en) | Strain-relieved compliant structures for flextensional transduction | |
US7969073B2 (en) | Tangentially poled single crystal ring resonator | |
CN115232937A (en) | Inner hole strengthening device with longitudinal and bending matched vibration | |
JP2019114953A (en) | Ultrasonic transducer | |
RU2636255C2 (en) | Bending type piezoactuator | |
KR200366318Y1 (en) | A ultra sonic transducer and assembly thereof | |
JP2015177407A (en) | Bending type wave transmitter | |
Rjafallah et al. | Flexible bridge transducer based on the lead zirconate titanate/polyurethane composite |