TWI677099B - Graphene transistor for bone conduction devices - Google Patents

Graphene transistor for bone conduction devices Download PDF

Info

Publication number
TWI677099B
TWI677099B TW108117082A TW108117082A TWI677099B TW I677099 B TWI677099 B TW I677099B TW 108117082 A TW108117082 A TW 108117082A TW 108117082 A TW108117082 A TW 108117082A TW I677099 B TWI677099 B TW I677099B
Authority
TW
Taiwan
Prior art keywords
layer
indium
gradient
contained
emitter
Prior art date
Application number
TW108117082A
Other languages
Chinese (zh)
Other versions
TW202044591A (en
Inventor
曾憲正
Hsien-Cheng Tseng
林詩吟
Shih-Ying Lin
蘇韋仲
Wei Chung Sue
Original Assignee
崑山科技大學
Kun Shan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 崑山科技大學, Kun Shan University filed Critical 崑山科技大學
Priority to TW108117082A priority Critical patent/TWI677099B/en
Application granted granted Critical
Publication of TWI677099B publication Critical patent/TWI677099B/en
Publication of TW202044591A publication Critical patent/TW202044591A/en

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

一種用於骨傳導裝置的石墨烯電晶體,具有基板、次射極、射極、間隔層、漸變基極、第一漸變層、集極、第二漸變層、表面層及石墨稀層。基板的孔壁定義出穿孔。次射極疊設於基板的上表面上且具有封口段,封口段封閉穿孔之一端。射極疊設於次射極上。間隔層疊設於次射極上且與位於射極的一側。漸變基極疊設於射極及間隔層上。第一漸變層疊設於漸變基極上。集極疊設於第一漸變層上。第二漸變層疊設於集極上。表面層疊設於第二漸變層上。石墨稀層覆蓋於封口段及基板的下表面與孔壁上。骨傳導裝置的石墨烯電晶體具有良好的增益及附加功率效率。A graphene transistor for a bone conduction device includes a substrate, a sub-emitter, an emitter, a spacer layer, a gradient base, a first gradient layer, a collector, a second gradient layer, a surface layer, and a graphite thin layer. The hole wall of the substrate defines a perforation. The secondary emitter is stacked on the upper surface of the substrate and has a sealing section, and the sealing section closes one end of the perforation. The emitter is stacked on the secondary emitter. The interval is stacked on the secondary emitter and is located on one side of the emitter. The gradient base is stacked on the emitter and the spacer. The first gradation is stacked on the gradation base. The collector is stacked on the first gradient layer. The second gradient is stacked on the collector. The surface is stacked on the second gradient layer. The graphite thin layer covers the sealing section and the lower surface of the substrate and the hole wall. The graphene transistor of the bone conduction device has good gain and additional power efficiency.

Description

用於骨傳導裝置的石墨烯電晶體Graphene transistor for bone conduction device

本發明關於一種石墨烯電晶體,尤其是一種用於骨傳導裝置的石墨烯電晶體。The invention relates to a graphene transistor, in particular to a graphene transistor for a bone conduction device.

現有技術的骨傳導裝置,例如骨傳導耳機,是對頭顱骨發出聲波訊號使頭顱骨發生振動而直接傳遞到內耳淋巴,繼而傳遞到達大腦聽覺系統而產生聽覺。骨傳導裝置的優勢在於,聲音不透過耳朵傳遞到大腦聽覺系統,使得使用者於配戴骨傳導裝置時仍可接收到周遭環境的聲音,從而降低因聽不到外界的聲音而引發事故的機率。A bone conduction device in the prior art, such as a bone conduction headset, sends a sound wave signal to the skull to cause the skull to vibrate and directly transmit to the inner ear lymph, which in turn transmits to the brain hearing system to produce hearing. The advantage of the bone conduction device is that the sound is not transmitted to the brain's hearing system through the ears, so that users can still receive the sound of the surrounding environment when wearing the bone conduction device, thereby reducing the chance of accidents caused by the inability to hear outside sounds. .

現有技術的骨傳導裝置包括通信晶片、感測器及微型電機。通信晶片用於發送聲波至頭顱骨,以產生聽覺。然而,現有技術的通信晶片於增益(Gain)及附加功率效率(Power-Added Efficiency,PAE)的表現不佳,使得聲音訊號的強度不足,造成使用者難以清楚地接收到來自於骨傳導裝置發送的聲音訊號,則難以聽清楚骨傳導裝置所發出的聲音內容。The prior art bone conduction device includes a communication chip, a sensor, and a micromotor. The communication chip is used to send sound waves to the skull to produce hearing. However, the prior art communication chips have poor performance in Gain and Power-Added Efficiency (PAE), which makes the strength of the sound signal insufficient, making it difficult for users to clearly receive the transmission from the bone conduction device. Sound signal, it is difficult to hear the sound content of the bone conduction device.

本發明提供一種用於骨傳導裝置的石墨烯電晶體,可提升增益及附加功率效率。The invention provides a graphene transistor for a bone conduction device, which can improve gain and additional power efficiency.

本發明所提供的用於骨傳導裝置的石墨烯電晶體包括基板、次射極、射極、間隔層、漸變基極、第一漸變層、集極、第二漸變層、表面層及石墨稀層。基板包括上表面、相反於上表面的下表面以及連接於上表面與下表面之間的孔壁,孔壁定義出穿孔。次射極疊設於上表面上且具有封口段,封口段封閉穿孔之一端。射極疊設於次射極上。間隔層疊設於次射極上且與位於射極的一側。漸變基極疊設於射極及間隔層上。第一漸變層疊設於漸變基極上。集極疊設於第一漸變層上。第二漸變層疊設於集極上。表面層疊設於第二漸變層上。石墨烯層覆蓋於下表面、孔壁及封口段上。The graphene transistor for a bone conduction device provided by the present invention includes a substrate, a secondary emitter, an emitter, a spacer layer, a graded base, a first graded layer, a collector, a second graded layer, a surface layer, and graphite. Floor. The substrate includes an upper surface, a lower surface opposite to the upper surface, and a hole wall connected between the upper surface and the lower surface. The hole wall defines a perforation. The secondary emitter is stacked on the upper surface and has a sealing section, and the sealing section closes one end of the perforation. The emitter is stacked on the secondary emitter. The interval is stacked on the secondary emitter and is located on one side of the emitter. The gradient base is stacked on the emitter and the spacer. The first gradation is stacked on the gradation base. The collector is stacked on the first gradient layer. The second gradient is stacked on the collector. The surface is stacked on the second gradient layer. The graphene layer covers the lower surface, the hole wall and the sealing section.

在本發明的一實施例中,上述之基板、次射極、間隔層及集極包括砷化鎵,射極包括磷化銦鎵,漸變基極包括砷化銦鎵,且以漸變基極中所含有銦及鎵為基準,漸變基極中所含有的銦的莫耳分率由間隔層朝第一漸變層漸增。In an embodiment of the present invention, the above-mentioned substrate, sub-emitter, spacer layer and collector include gallium arsenide, the emitter includes indium gallium phosphide, the gradient base includes indium gallium arsenide, and the gradient base The contained indium and gallium are used as a reference, and the mole fraction of indium contained in the graded base is gradually increased from the spacer layer toward the first graded layer.

在本發明的一實施例中,上述之第一漸變層包括砷化銦鎵,且以第一漸變層中所含有銦及鎵為基準,第一漸變層中所含有的銦的莫耳分率由漸變基極朝集極漸減。In an embodiment of the present invention, the first gradient layer includes indium gallium arsenide, and based on the indium and gallium contained in the first gradient layer, the molar fraction of indium contained in the first gradient layer It gradually decreases from the gradient base to the collector.

在本發明的一實施例中,上述之第一漸變層中所含有的銦的最高莫耳分率不超過漸變基極中所含有的銦的最高莫耳分率;以漸變基極中所含有銦及鎵為基準,漸變基極中所含有的銦的最高莫耳分率為0.05至0.15。In an embodiment of the present invention, the highest mole fraction of indium contained in the first gradient layer is not more than the highest mole fraction of indium contained in the gradient base; Indium and gallium are used as the basis. The highest Molar fraction of indium contained in the gradient base is 0.05 to 0.15.

在本發明的一實施例中,上述之第二漸變層包括砷化銦鎵,且以第二漸變層中所含有銦及鎵為基準,第二漸變層中所含有的銦的莫耳分率由集極朝表面層漸增。In an embodiment of the present invention, the second gradient layer includes indium gallium arsenide, and based on the indium and gallium contained in the second gradient layer, the molar fraction of indium contained in the second gradient layer Increasing from collector to surface layer.

在本發明的一實施例中,上述之用於骨傳導裝置的石墨烯電晶體中,以射極中所含有的銦及磷為基準,射極中所含有的銦的莫耳分率為0.45至0.55。In an embodiment of the present invention, in the graphene transistor for a bone conduction device described above, based on the indium and phosphorus contained in the emitter, the molar fraction of indium contained in the emitter is 0.45. To 0.55.

在本發明的一實施例中,上述之表面層包括砷化銦鎵。In one embodiment of the present invention, the surface layer includes indium gallium arsenide.

在本發明的一實施例中,上述之第二漸變層中所含有的銦的最高莫耳分率不超過表面層中所含有的銦的莫耳分率;以表面層中所含有的銦及鎵為基準,表面層中所含有的銦的莫耳分率為0.45至0.55。In an embodiment of the present invention, the highest mole fraction of indium contained in the second gradient layer is not more than the mole fraction of indium contained in the surface layer; the indium contained in the surface layer and Based on gallium, the molar fraction of indium contained in the surface layer is 0.45 to 0.55.

在本發明的一實施例中,上述之用於骨傳導裝置的石墨烯電晶體更包括一阻蝕層,阻蝕層配置於次射極與上表面之間,且石墨烯層經由阻蝕層覆蓋於封口段上。In an embodiment of the present invention, the above-mentioned graphene transistor for a bone conduction device further includes a corrosion-resistant layer, the corrosion-resistant layer is disposed between the secondary emitter and the upper surface, and the graphene layer passes through the corrosion-resistant layer Cover the sealing section.

在本發明的一實施例中,上述之阻蝕層包括磷化銦鎵,以阻蝕層中所含有的銦及鎵為基準,阻蝕層中所含有的銦的莫耳分率為0.45至0.55。In an embodiment of the present invention, the above-mentioned corrosion-resistant layer includes indium gallium phosphide. Based on the indium and gallium contained in the corrosion-resistant layer, the molar fraction of indium contained in the corrosion-resistant layer is 0.45 to 0.55.

本發明的用於骨傳導裝置的石墨烯電晶體,具有良好的增益及附加功率效率,有利於提高骨傳導裝置的聲音訊號發送強度,使得使用者可更為清楚地接收到來自於骨傳導裝置發送的聲音訊號。The graphene transistor for the bone conduction device of the present invention has good gain and additional power efficiency, which is beneficial to improving the sound signal transmission intensity of the bone conduction device, so that the user can more clearly receive the signal from the bone conduction device. The sound signal sent.

圖1為本發明一實施例的用於骨傳導裝置的石墨烯電晶體的示意圖。請參考圖1,本實施例的用於骨傳導裝置的石墨烯電晶體100包括基板110、次射極120、射極125、間隔層130、漸變基極140、第一漸變層150、集極160、第二漸變層170、表面層180及石墨稀層190。基板110包括上表面111、下表面112及孔壁113,下表面112相反於上表面111,孔壁113連接上表面111及下表面112,孔壁113定義出穿孔,穿孔之兩端與上表面111及下表面112連接。次射極120疊設於上表面111上且具有封口段121,封口段121封閉穿孔與上表面111連接之一端。射極125疊設於次射極120上。間隔層130疊設於次射極120上且位於射極125的一側。漸變基極140疊設於間隔層130及射極125上。第一漸變層150疊設於漸變基極140上。集極160疊設於第一漸變層150上。第二漸變層170疊設於集極160上。表面層180疊設於第二漸變層170上。石墨稀層190覆蓋於下表面112、孔壁113及封口段121上。此外,石墨烯層190是由石墨烯(graphene)所製成。石墨烯層190上可形成透孔191以暴露出下表面112的局部,但本發明不以此為限。藉由石墨烯層190可提升散熱,避免熱蓄積所引起的電晶體效能下降問題。FIG. 1 is a schematic diagram of a graphene transistor for a bone conduction device according to an embodiment of the present invention. Please refer to FIG. 1. The graphene transistor 100 for a bone conduction device in this embodiment includes a substrate 110, a secondary emitter 120, an emitter 125, a spacer layer 130, a gradient base 140, a first gradient layer 150, and a collector. 160, a second gradation layer 170, a surface layer 180, and a graphite thin layer 190. The substrate 110 includes an upper surface 111, a lower surface 112, and a hole wall 113. The lower surface 112 is opposite to the upper surface 111. The hole wall 113 connects the upper surface 111 and the lower surface 112. The hole wall 113 defines a perforation. 111 and the lower surface 112 are connected. The sub-emitter 120 is stacked on the upper surface 111 and has a sealing section 121. The sealing section 121 closes one end of the perforation connected to the upper surface 111. The emitter 125 is stacked on the secondary emitter 120. The spacer layer 130 is stacked on the secondary emitter 120 and is located on one side of the emitter 125. The graded base 140 is stacked on the spacer layer 130 and the emitter 125. The first gradient layer 150 is stacked on the gradient base 140. The collector 160 is stacked on the first gradient layer 150. The second gradient layer 170 is stacked on the collector 160. The surface layer 180 is stacked on the second gradient layer 170. The graphite thin layer 190 covers the lower surface 112, the hole wall 113 and the sealing section 121. The graphene layer 190 is made of graphene. A through hole 191 may be formed in the graphene layer 190 to expose a part of the lower surface 112, but the invention is not limited thereto. The graphene layer 190 can improve heat dissipation and avoid the problem of transistor performance degradation caused by heat accumulation.

在本實施例中,基板110、次射極120、間隔層130及集極160可由砷化鎵(GaAs)所製成,射極125可由磷化銦鎵(InGaP)所製成,漸變基極140、第一漸變層150、第二漸變層170及表面層180可由砷化銦鎵(InGaAs)所製成,但本發明不侷限於此。此外,在本實施例中,以漸變基極140中所含有的銦及鎵為基準,漸變基極140中所含有的銦的莫耳分率由間隔層130朝第一漸變層150漸增;以第一漸變層150中所含有銦及鎵為基準,第一漸變層150中所含有的銦的莫耳分率由漸變基極140朝集極160漸減,並且,以第二漸變層170中所含有銦及鎵為基準,第二漸變層170中所含有的銦的莫耳分率由集極160朝表面層180漸增。In this embodiment, the substrate 110, the sub-emitter 120, the spacer 130, and the collector 160 may be made of gallium arsenide (GaAs), the emitter 125 may be made of indium gallium phosphide (InGaP), and a graded base 140. The first gradient layer 150, the second gradient layer 170, and the surface layer 180 may be made of indium gallium arsenide (InGaAs), but the present invention is not limited thereto. In addition, in this embodiment, based on the indium and gallium contained in the gradient base 140, the mole fraction of indium contained in the gradient base 140 gradually increases from the spacer layer 130 toward the first gradient layer 150; Based on the indium and gallium contained in the first gradient layer 150, the molar fraction of indium contained in the first gradient layer 150 gradually decreases from the gradient base 140 to the collector 160, and the second gradient layer 170 Based on the contained indium and gallium, the mole fraction of indium contained in the second graded layer 170 gradually increases from the collector 160 to the surface layer 180.

進一步來說,在漸變基極140與間隔層130交界處,漸變基極140中所含有的銦的莫耳分率可趨近間隔層130中所含有的銦的莫耳分率。在漸變基極140與第一漸變層150交界處,漸變基極140中所含有的銦在的莫耳分率可趨近或等於第一漸變層150所含有的銦的莫耳分率,也就是說,第一漸變層150中所含有的銦的莫耳分率不超過漸變基極140中所含有的銦的莫耳分率。在本實施例中,由於間隔層130由砷化鎵所製成而不含有銦,故在漸變基極140與間隔層130交界處,漸變基極140中所含有的銦的莫耳分率趨近為0。同時,在漸變基極140與第一漸變層150交界處,漸變基極140中所含有的銦的莫耳分率可為0.1,第一漸變層150中所含有的銦的莫耳分率可為0.1或小於0.1。再進一步來說,就第一漸變層150及漸變基極140整體而言,第一漸變層150中所含有的銦的最高莫耳分率不超過漸變基極140中所含有的銦的最高莫耳分率;以本實施例為例,在漸變基極140與第一漸變層150交界處,漸變基極140中所含有的銦的莫耳分率具有最高值,且第一漸變層150中所含有的銦的莫耳分率具有最高值;也就是說,漸變基極140中所含有的銦的最高莫耳分率可為0.1,第一漸變層150中所含有的銦的最高莫耳分率不超過0.1。Further, at the boundary between the gradient base 140 and the spacer layer 130, the Mohr fraction of the indium contained in the gradient base 140 may approach the Mohr fraction of the indium contained in the spacer layer 130. At the boundary between the gradient base 140 and the first gradient layer 150, the Mohr fraction of indium contained in the gradient base 140 may approach or be equal to the Mohr fraction of indium contained in the first gradient layer 150, and That is, the molar fraction of indium contained in the first graded layer 150 does not exceed the molar fraction of indium contained in the graded base 140. In this embodiment, since the spacer layer 130 is made of gallium arsenide and does not contain indium, the Mohr fraction of indium contained in the graduated base 140 tends to be at the boundary between the graduated base 140 and the spacer 130. Nearly 0. At the same time, at the interface between the gradient base 140 and the first gradient layer 150, the molar fraction of indium contained in the gradient base 140 may be 0.1, and the molar fraction of indium contained in the first gradient layer 150 may be It is 0.1 or less. Furthermore, for the first gradient layer 150 and the gradient base 140 as a whole, the highest mole fraction of indium contained in the first gradient layer 150 does not exceed the highest mole ratio of indium contained in the gradient base 140. Ear fraction; taking this embodiment as an example, at the junction of the gradient base 140 and the first gradient layer 150, the mole fraction of indium contained in the gradient base 140 has the highest value, and The mole fraction of indium contained has the highest value; that is, the highest mole fraction of indium contained in the graded base 140 may be 0.1, and the highest mole fraction of indium contained in the first graded layer 150 The fraction does not exceed 0.1.

另外,在第一漸變層150與集極160交界處,第一漸變層150中所含有的銦的莫耳分率可趨近於集極160中所含有的銦的莫耳分率;相似地,在第二漸變層170與集極160交界處,第二漸變層170中所含有的銦的莫耳分率可趨近於集極160中所含有的銦的莫耳分率。在本實施例中,由於集極160由砷化鎵所製成而不含有銦,因此,在第一漸變層150與集極160交界處,第一漸變層150中所含有的銦的莫耳分率趨近為0,並且,在第二漸變層170與集極160交界處,第二漸變層170中所含有的銦的莫耳分率趨近為0。In addition, at the boundary between the first gradient layer 150 and the collector 160, the Mohr fraction of the indium contained in the first gradient layer 150 may approach the Mohr fraction of the indium contained in the collector 160; similarly At the boundary between the second gradient layer 170 and the collector 160, the Mohr fraction of the indium contained in the second gradient layer 170 may approach the Mohr fraction of the indium contained in the collector 160. In this embodiment, since the collector 160 is made of gallium arsenide and does not contain indium, at the boundary between the first gradient layer 150 and the collector 160, the mole of indium contained in the first gradient layer 150 is The fraction ratio approaches 0, and at the boundary between the second gradient layer 170 and the collector 160, the Mohr fraction of indium contained in the second gradient layer 170 approaches 0.

此外,在第二漸變層170與表面層180的交界處,第二漸變層170中所含有的銦的莫耳分率可趨近或等於表面層180中所含有的銦的莫耳分率,也就是說,第二漸變層170中所含有的銦的莫耳分率不超過表面層180中所含有的銦的莫耳分率。在本實施例中,以表面層180中所含有的銦及鎵為基準,表面層180中所含有的銦的莫耳分率可例如為0.5,據此,在第二漸變層170與表面層180的交界處,第二漸變層170中所含有的銦的莫耳分率可為0.5或小於0.5。再進一步來說,就第二漸變層170整體而言,第二漸變層170中所含有的銦的最高莫耳分率不超過表面層180中所含有的銦的莫耳分率;以本實施例為例,在第二漸變層170與表面層180的交界處,第二漸變層170中所含有的銦的莫耳分率具有最高值;如前所述,表面層180中所含有的銦的莫耳分率可例如為0.5,故第二漸變層170中所含有的銦的最高莫耳分率不超過0.5。In addition, at the boundary between the second gradient layer 170 and the surface layer 180, the Mohr fraction of indium contained in the second gradient layer 170 may approach or be equal to the Mohr fraction of indium contained in the surface layer 180. That is, the molar fraction of indium contained in the second graded layer 170 does not exceed the molar fraction of indium contained in the surface layer 180. In this embodiment, based on the indium and gallium contained in the surface layer 180, the Mohr fraction of the indium contained in the surface layer 180 may be, for example, 0.5, and accordingly, the second gradient layer 170 and the surface layer At the junction of 180, the Mohr fraction of indium contained in the second gradient layer 170 may be 0.5 or less. Furthermore, for the second gradient layer 170 as a whole, the highest molar fraction of indium contained in the second gradient layer 170 does not exceed the molar fraction of indium contained in the surface layer 180; As an example, at the interface between the second gradient layer 170 and the surface layer 180, the Mohr fraction of the indium contained in the second gradient layer 170 has the highest value; as described above, the indium contained in the surface layer 180 has the highest value. The Mohr fraction may be, for example, 0.5, so the highest Mohr fraction of indium contained in the second gradient layer 170 does not exceed 0.5.

上述的用於骨傳導裝置的石墨烯電晶體100還可包括阻蝕層195,阻蝕層195配置於次射極120與上表面111之間,且石墨烯層190經由阻蝕層195覆蓋於封口段121上。據此,於以蝕刻製成形成穿孔時,次射極120可獲得保護避免損傷。本實施例中,基板110及次射極120是以砷化鎵所製成,可使用如鹽酸對基板110蝕刻以形成穿孔,並選用磷化銦鎵作為阻蝕層195保護次射極120。舉例而言,以阻蝕層195中所含有的銦及鎵為基準,阻蝕層195中所含有的銦的莫耳分率為0.5。The above-mentioned graphene transistor 100 for a bone conduction device may further include an etching resist layer 195, which is disposed between the sub-emitter 120 and the upper surface 111, and the graphene layer 190 is covered by the etching resist layer 195. Sealing section 121. Accordingly, when the through hole is formed by etching, the secondary emitter 120 can be protected from damage. In this embodiment, the substrate 110 and the secondary emitter 120 are made of gallium arsenide. The substrate 110 may be etched using hydrochloric acid to form a through hole, and indium gallium phosphide is used as the resist layer 195 to protect the secondary emitter 120. For example, based on the indium and gallium contained in the resist layer 195, the Mohr fraction of the indium contained in the resist layer 195 is 0.5.

在本實施例中,用於骨傳導裝置的石墨烯電晶體100所使用的砷化鎵/磷化銦鎵(GaAs/InGaP)材料系統應用了與砷化鎵晶格匹配的無序(disorderd)磷化銦鎵;亦即,於本實施例中,射極125之磷化銦鎵為無序。且於本實施例中,以射極125中所含有的銦及鎵為基準,射極125中所含有的銦的莫耳分率為0.5。In this embodiment, the gallium arsenide / indium gallium phosphide (GaAs / InGaP) material system used in the graphene transistor 100 for a bone conduction device applies disordered matching to the gallium arsenide lattice. Indium gallium phosphide; that is, in this embodiment, the indium gallium phosphide of the emitter 125 is disordered. And in this embodiment, based on the indium and gallium contained in the emitter 125 as a reference, the Mohr fraction of the indium contained in the emitter 125 is 0.5.

上述的次射極120的摻雜濃度例如可為3×10 18cm -3至5×10 18cm -3,射極125的摻雜濃度例如可為4×10 17cm -3至5×10 17cm -3,漸變基極140的摻雜濃度例如可為5×10 18cm -3至3×10 19cm -3,第一漸變層150的摻雜濃度例如可為1×10 16cm -3至4×10 16cm -3,集極160的摻雜濃度例如可為2×10 16cm -3至4×10 16cm -3,第二漸變層170的摻雜濃度例如可為1×10 19cm -3至2×10 19cm -3,表面層180的摻雜濃度例如可為1×10 19cm -3至2×10 19cm -3,且阻蝕層195的摻雜濃度例如可為2×10 18cm -3至4×10 18cm -3。在本實施例中,次射極120的摻雜濃度為5×10 18cm -3,射極125的摻雜濃度為5×10 17cm -3,漸變基極140的摻雜濃度為3×10 19cm -3,第一漸變層150的摻雜濃度為4×10 16cm -3,集極160的摻雜濃度為3×10 16cm -3,第二漸變層170的摻雜濃度為1×10 9cm -3,表面層180的摻雜濃度為1×10 19cm -3,且阻蝕層195的摻雜濃度為4×10 18cm -3,間隔層130的摻雜濃度則為0 cm -3,亦即間隔層130為本質半導體材料所製成,但本發明不侷限於此。此外,在本實施例中,用於骨傳導裝置的石墨烯電晶體100為NPN型電晶體,也就是說,射極125為N型,漸變基極140為P型,集極160為N型;但在其他實施例中,用於骨傳導裝置的石墨烯電晶體100也可以是PNP型電晶體,也就是說,射極125為P型,漸變基極140為N型,集極160為P型。 The doping concentration of the above-mentioned sub-emitter 120 may be, for example, 3 × 10 18 cm -3 to 5 × 10 18 cm -3 , and the doping concentration of the emitter 125 may be, for example, 4 × 10 17 cm -3 to 5 × 10 doping concentration of 17 cm -3, the gradient of the base 140 may be, for example, 5 × 10 18 cm -3 to 3 × 10 19 cm -3, the doping concentration of the first graded layer 150 may be, for example, 1 × 10 16 cm - 3 to 4 × 10 16 cm -3 , for example, the doping concentration of the collector 160 may be 2 × 10 16 cm -3 to 4 × 10 16 cm -3 , and the doping concentration of the second gradient layer 170 may be 1 × 10 19 cm -3 to 2 × 10 19 cm -3 , the doping concentration of the surface layer 180 may be, for example, 1 × 10 19 cm -3 to 2 × 10 19 cm -3 , and the doping concentration of the resist layer 195 is, for example, It can be from 2 × 10 18 cm -3 to 4 × 10 18 cm -3 . In this embodiment, the doping concentration of the secondary emitter 120 is 5 × 10 18 cm -3 , the doping concentration of the emitter 125 is 5 × 10 17 cm -3 , and the doping concentration of the graded base 140 is 3 × 10 19 cm -3 , the doping concentration of the first gradient layer 150 is 4 × 10 16 cm -3 , the doping concentration of the collector 160 is 3 × 10 16 cm -3 , and the doping concentration of the second gradient layer 170 is 1 × 10 9 cm -3 , the doping concentration of the surface layer 180 is 1 × 10 19 cm -3 , and the doping concentration of the resist layer 195 is 4 × 10 18 cm -3 , and the doping concentration of the spacer layer 130 is It is 0 cm -3 , that is, the spacer layer 130 is made of an intrinsic semiconductor material, but the present invention is not limited thereto. In addition, in this embodiment, the graphene transistor 100 used for the bone conduction device is an NPN type transistor, that is, the emitter 125 is an N type, the gradient base 140 is a P type, and the collector 160 is an N type. ; But in other embodiments, the graphene transistor 100 for a bone conduction device may also be a PNP type transistor, that is, the emitter 125 is a P type, the gradient base 140 is an N type, and the collector 160 is P type.

另外,次射極120的厚度例如可為550奈米(nm)至1000 nm,射極125的厚度例如可為25 nm至35 nm,間隔層130的厚度例如可為3 nm至7 nm,漸變基極140的厚度例如可為65 nm至75 nm,第一漸變層150的厚度例如可為15 nm至25 nm,集極160的厚度例如可為550 nm至650 nm,第二漸變層170的厚度例如可為45 nm至55 nm,表面層180的厚度例如可為45 nm至55 nm,基板110的厚度例如可為50 μm至100 μm。在本實施例中,次射極120的厚度為6000 nm,射極125的厚度為30 nm,間隔層130的厚度為5 nm,漸變基極140的厚度為60 nm,第一漸變層150的厚度為20 nm,集極160的厚度為600 nm,第二漸變層170的厚度為50 nm,表面層180的厚度為50 nm,基板110的厚度為50 μm ,但本發明不侷限於此。In addition, the thickness of the secondary emitter 120 may be, for example, 550 nanometers (nm) to 1000 nm, the thickness of the emitter 125 may be, for example, 25 nm to 35 nm, and the thickness of the spacer layer 130 may be, for example, 3 nm to 7 nm. The thickness of the base 140 may be, for example, 65 nm to 75 nm. The thickness of the first gradient layer 150 may be, for example, 15 nm to 25 nm. The thickness of the collector 160 may be, for example, 550 nm to 650 nm. The thickness may be, for example, 45 nm to 55 nm, the thickness of the surface layer 180 may be, for example, 45 nm to 55 nm, and the thickness of the substrate 110 may be, for example, 50 μm to 100 μm. In this embodiment, the thickness of the secondary emitter 120 is 6000 nm, the thickness of the emitter 125 is 30 nm, the thickness of the spacer layer 130 is 5 nm, the thickness of the gradient base 140 is 60 nm, and the thickness of the first gradient layer 150 The thickness is 20 nm, the thickness of the collector 160 is 600 nm, the thickness of the second gradient layer 170 is 50 nm, the thickness of the surface layer 180 is 50 nm, and the thickness of the substrate 110 is 50 μm, but the present invention is not limited thereto.

本實施例的用於骨傳導裝置的石墨烯電晶體100可應用於骨傳導裝置的通信晶片,以發送信號。為說明本實施例的用於骨傳導裝置的石墨烯電晶體100所能達到的優點,以下進一步對本實施例的用於骨傳導裝置的石墨烯電晶體100以及商用的用於骨傳導裝置的電晶體(比較例)進行增益(Gain)及附加功率效率(Power-Added Efficiency,PAE)測試。就結構上而言,有別於本實施例的用於骨傳導裝置的石墨烯電晶體100屬於雙極性接面電晶體(Bipolar Junction Transistor,BJT),商用的用於骨傳導裝置的電晶體是屬於場效電晶體(Field-Effect Transistor,FET)。The graphene transistor 100 for a bone conduction device of this embodiment can be applied to a communication chip of a bone conduction device to send a signal. In order to illustrate the advantages that the graphene transistor 100 for a bone conduction device of this embodiment can achieve, the graphene transistor 100 for a bone conduction device of this embodiment and a commercial electricity for a bone conduction device are further described below. The crystal (comparative example) was tested for gain (Gain) and power-added efficiency (PAE). In terms of structure, the graphene transistor 100 for the bone conduction device different from this embodiment belongs to the bipolar junction transistor (BJT). The commercially available transistor for the bone conduction device is Field-Effect Transistor (FET).

圖2為本發明一實施例的用於骨傳導裝置的石墨烯電晶體與商用的用於骨傳導裝置的電晶體的增益比較圖。請參考圖2,在相同輸入功率下,本實施例的用於骨傳導裝置的石墨烯電晶體100的增益大於商用的用於骨傳導裝置的電晶體的增益。舉例而言,例如輸入功率(Pin)為15 dBm時,本實施例的用於骨傳導裝置的石墨烯電晶體100的增益可達到約11 dB,商用的用於骨傳導裝置的電晶體的增益僅為約9 dB。FIG. 2 is a graph comparing the gain of a graphene transistor for a bone conduction device with a commercially available transistor for a bone conduction device according to an embodiment of the present invention. Please refer to FIG. 2. At the same input power, the gain of the graphene transistor 100 for a bone conduction device in this embodiment is greater than the gain of a commercially available transistor for a bone conduction device. For example, when the input power (Pin) is 15 dBm, the gain of the graphene transistor 100 for a bone conduction device in this embodiment can reach about 11 dB. The gain of a transistor for a bone conduction device is commercially available. Only about 9 dB.

圖3為本發明一實施例的用於骨傳導裝置的石墨烯電晶體與商用的用於骨傳導裝置的電晶體的附加功率效率比較圖。請參考圖3,在相同輸入功率下,本實施例的用於骨傳導裝置的石墨烯電晶體100的附加功率效率大於商用的用於骨傳導裝置的電晶體的附加功率效率。舉例而言,例如輸入功率(Pin)為15 dBm時,本實施例的用於骨傳導裝置的石墨烯電晶體100的附加功率效率可達到約31%,商用的用於骨傳導裝置的電晶體的附加功率效率僅為約28.5%。FIG. 3 is a comparison diagram of additional power efficiency of a graphene transistor for a bone conduction device and a commercially available transistor for a bone conduction device according to an embodiment of the present invention. Referring to FIG. 3, at the same input power, the additional power efficiency of the graphene transistor 100 for a bone conduction device of this embodiment is greater than the additional power efficiency of a commercially available transistor for a bone conduction device. For example, when the input power (Pin) is 15 dBm, the additional power efficiency of the graphene transistor 100 for a bone conduction device of this embodiment can reach about 31%. A commercially available transistor for a bone conduction device The additional power efficiency is only about 28.5%.

由上述測試可見,相較於商用的用於骨傳導裝置的電晶體,本實施例的用於骨傳導裝置的石墨烯電晶體100可達到更佳的增益及附加功率效率。據此,本實施例的用於骨傳導裝置的石墨烯電晶體100於應用於骨傳導裝置的通信晶片時,可進一步提升骨傳導裝置的聲音訊號發送強度,使得使用者可更為清楚地接收到來自於骨傳導裝置發送的聲音訊號。It can be seen from the above test that the graphene transistor 100 for a bone conduction device in this embodiment can achieve better gain and additional power efficiency than a commercially available transistor for a bone conduction device. According to this, when the graphene transistor 100 for the bone conduction device of this embodiment is applied to the communication chip of the bone conduction device, the sound signal transmission strength of the bone conduction device can be further improved, so that the user can receive more clearly. To the sound signal from the bone conduction device.

綜上所述,本發明實施例的用於骨傳導裝置的石墨烯電晶體,具有良好的增益及附加功率效率,有利於提高骨傳導裝置的聲音訊號發送強度,使得使用者可更為清楚地接收到來自於骨傳導裝置發送的聲音訊號。In summary, the graphene transistor for a bone conduction device according to the embodiment of the present invention has good gain and additional power efficiency, which is helpful to improve the sound signal transmission strength of the bone conduction device, so that the user can more clearly Received a sound signal from a bone conduction device.

100‧‧‧石墨烯電晶體100‧‧‧graphene transistor

110‧‧‧基板 110‧‧‧ substrate

111‧‧‧上表面 111‧‧‧ top surface

112‧‧‧下表面 112‧‧‧ lower surface

113‧‧‧孔壁 113‧‧‧hole wall

120‧‧‧次射極 120‧‧‧emitters

121‧‧‧封口段 121‧‧‧Sealed Section

125‧‧‧射極 125‧‧‧ Emitter

130‧‧‧間隔層 130‧‧‧ spacer

140‧‧‧漸變基極 140‧‧‧ gradient base

150‧‧‧第一漸變層 150‧‧‧ the first gradient layer

160‧‧‧集極 160‧‧‧collector

170‧‧‧第二漸變層 170‧‧‧Second Gradient Layer

180‧‧‧表面層 180‧‧‧ surface layer

190‧‧‧石墨烯層 190‧‧‧graphene layer

191‧‧‧透孔 191‧‧‧through hole

195‧‧‧阻蝕層 195‧‧‧Etching layer

圖1為本發明一實施例的用於骨傳導裝置的石墨烯電晶體的示意圖;
圖2為本發明一實施例的用於骨傳導裝置的石墨烯電晶體與商用的用於骨傳導裝置的電晶體的增益比較圖;以及
圖3為本發明一實施例的用於骨傳導裝置的石墨烯電晶體與商用的用於骨傳導裝置的電晶體的附加功率效率比較圖。
1 is a schematic diagram of a graphene transistor for a bone conduction device according to an embodiment of the present invention;
FIG. 2 is a graph comparing the gain of a graphene transistor for a bone conduction device with a commercially available transistor for a bone conduction device according to an embodiment of the present invention; and FIG. 3 is a diagram for a bone conduction device according to an embodiment of the present invention A graph comparing the additional power efficiency of a graphene transistor with a commercially available transistor for bone conduction devices.

Claims (10)

一種用於骨傳導裝置的石墨烯電晶體,包括:
一基板,包括一上表面、一相反於該上表面的下表面以及一連接於該上表面與該下表面之間的孔壁,該孔壁定義出一穿孔;
一次射極,疊設於該上表面上且具有一封口段,該封口段封閉該穿孔之一端;
一射極,疊設於該次射極上;
一間隔層,疊設於該次射極上且與位於該射極的一側;
一漸變基極,疊設於該射極及該間隔層上;
一第一漸變層,疊設於該漸變基極上;
一集極,疊設於該第一漸變層上;
一第二漸變層,疊設於該集極上;
一表面層,疊設於該第二漸變層上;以及
一石墨稀層,覆蓋於該下表面、該孔壁及該封口段上。
A graphene transistor for a bone conduction device includes:
A substrate including an upper surface, a lower surface opposite to the upper surface, and a hole wall connected between the upper surface and the lower surface, the hole wall defining a perforation;
A single emitter, which is stacked on the upper surface and has a mouth section which closes one end of the perforation;
One emitter is stacked on the secondary emitter;
A spacer layer stacked on the secondary emitter and located on one side of the emitter;
A graded base electrode stacked on the emitter electrode and the spacer layer;
A first gradient layer stacked on the gradient base;
A set of poles stacked on the first gradient layer;
A second gradient layer superposed on the collector;
A surface layer is stacked on the second gradient layer; and a graphite thin layer is covered on the lower surface, the hole wall and the sealing section.
如請求項1所述的用於骨傳導裝置的石墨烯電晶體,其中該基板、該次射極、該間隔層及該集極包括砷化鎵,該射極包括磷化銦鎵,該漸變基極包括砷化銦鎵,且以該漸變基極中所含有銦及鎵為基準,該漸變基極中所含有的銦的莫耳分率由該間隔層朝該第一漸變層漸增。The graphene transistor for a bone conduction device according to claim 1, wherein the substrate, the secondary emitter, the spacer layer, and the collector include gallium arsenide, the emitter includes indium gallium phosphide, and the gradient The base includes indium gallium arsenide, and based on the indium and gallium contained in the graded base, the mole fraction of indium contained in the graded base gradually increases from the spacer layer toward the first graded layer. 如請求項2所述的用於骨傳導裝置的石墨烯電晶體,其中該第一漸變層包括砷化銦鎵,且以該第一漸變層中所含有銦及鎵為基準,該第一漸變層中所含有的銦的莫耳分率由該漸變基極朝該集極漸減。The graphene transistor for a bone conduction device according to claim 2, wherein the first gradient layer includes indium gallium arsenide, and based on the indium and gallium contained in the first gradient layer, the first gradient layer The mole fraction of indium contained in the layer decreases from the graded base toward the collector. 如請求項3所述的用於骨傳導裝置的石墨烯電晶體,其中:
以該漸變基極中所含有銦及鎵為基準,該漸變基極中所含有的銦的最高莫耳分率為0.05至0.15;以及
該第一漸變層中所含有的銦的最高莫耳分率不超過該漸變基極中所含有的銦的最高莫耳分率。
The graphene transistor for a bone conduction device according to claim 3, wherein:
Based on the indium and gallium contained in the graded base, the highest mole fraction of indium contained in the graded base is 0.05 to 0.15; and the highest mole fraction of indium contained in the first graded layer. The ratio does not exceed the highest mole fraction of indium contained in the graded base.
如請求項2所述的用於骨傳導裝置的石墨烯電晶體,其中該第二漸變層包括砷化銦鎵,且以該第二漸變層中所含有銦及鎵為基準,該第二漸變層中所含有的銦的莫耳分率由該集極朝該表面層漸增。The graphene transistor for a bone conduction device according to claim 2, wherein the second gradient layer includes indium gallium arsenide, and based on the indium and gallium contained in the second gradient layer, the second gradient layer The mole fraction of indium contained in the layer gradually increases from the collector toward the surface layer. 如請求項2所述的用於骨傳導裝置的石墨烯電晶體,其中以該射極中所含有的銦及磷為基準,該射極中所含有的銦的莫耳分率為0.45至0.55。The graphene transistor for a bone conduction device according to claim 2, wherein the molar fraction of indium contained in the emitter is 0.45 to 0.55 based on indium and phosphorus contained in the emitter. . 如請求項2所述的用於骨傳導裝置的石墨烯電晶體,其中該表面層包括砷化銦鎵。The graphene transistor for a bone conduction device according to claim 2, wherein the surface layer includes indium gallium arsenide. 如請求項5所述的用於骨傳導裝置的石墨烯電晶體,其中:
該表面層包括砷化銦鎵,以該表面層中所含有的銦及鎵為基準,該表面層中所含有的銦的莫耳分率為0.45至0.55;以及
第二漸變層中所含有的銦的最高莫耳分率不超過該表面層中所含有的銦的莫耳分率。
The graphene transistor for a bone conduction device according to claim 5, wherein:
The surface layer includes indium gallium arsenide, and based on the indium and gallium contained in the surface layer, the molar fraction of indium contained in the surface layer is 0.45 to 0.55; and the second gradient layer contains The highest mole fraction of indium does not exceed the mole fraction of indium contained in the surface layer.
如請求項1所述的用於骨傳導裝置的石墨烯電晶體,其中更包括一阻蝕層,該阻蝕層配置於該次射極與該上表面之間,且該石墨烯層經由該阻蝕層覆蓋於該封口段上。The graphene transistor for a bone conduction device according to claim 1, further comprising an etching resist layer disposed between the secondary emitter and the upper surface, and the graphene layer is passed through the The corrosion-resistant layer covers the sealing section. 如請求項9所述的用於骨傳導裝置的石墨烯電晶體,其中該阻蝕層包括磷化銦鎵,以該阻蝕層中所含有的銦及鎵為基準,該阻蝕層中所含有的銦的莫耳分率為0.45至0.55。The graphene transistor for a bone conduction device according to claim 9, wherein the corrosion resistance layer includes indium gallium phosphide, and based on the indium and gallium contained in the corrosion resistance layer, the corrosion resistance layer contains The molar fraction of indium contained is 0.45 to 0.55.
TW108117082A 2019-05-17 2019-05-17 Graphene transistor for bone conduction devices TWI677099B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108117082A TWI677099B (en) 2019-05-17 2019-05-17 Graphene transistor for bone conduction devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108117082A TWI677099B (en) 2019-05-17 2019-05-17 Graphene transistor for bone conduction devices

Publications (2)

Publication Number Publication Date
TWI677099B true TWI677099B (en) 2019-11-11
TW202044591A TW202044591A (en) 2020-12-01

Family

ID=69188844

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108117082A TWI677099B (en) 2019-05-17 2019-05-17 Graphene transistor for bone conduction devices

Country Status (1)

Country Link
TW (1) TWI677099B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767695B (en) * 2021-05-11 2022-06-11 立錡科技股份有限公司 Chip package unit and chip packaging method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150299852A1 (en) * 2012-11-19 2015-10-22 The Regents Of The University Of California Graphene based electrodes and applications
TW201734245A (en) * 2016-03-24 2017-10-01 上海新昇半導體科技有限公司 A graphene field effect transistor and the manufacturing method thereof
TW201826322A (en) * 2016-06-29 2018-07-16 台灣積體電路製造股份有限公司 A method for forming a field effect transistor
TW201913090A (en) * 2017-06-28 2019-04-01 台灣積體電路製造股份有限公司 Semiconductor device for determining a biomolecule characteristic
TW201916385A (en) * 2017-10-05 2019-04-16 國立清華大學 Sensing device and biological detection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150299852A1 (en) * 2012-11-19 2015-10-22 The Regents Of The University Of California Graphene based electrodes and applications
TW201734245A (en) * 2016-03-24 2017-10-01 上海新昇半導體科技有限公司 A graphene field effect transistor and the manufacturing method thereof
TW201826322A (en) * 2016-06-29 2018-07-16 台灣積體電路製造股份有限公司 A method for forming a field effect transistor
TW201913090A (en) * 2017-06-28 2019-04-01 台灣積體電路製造股份有限公司 Semiconductor device for determining a biomolecule characteristic
TW201916385A (en) * 2017-10-05 2019-04-16 國立清華大學 Sensing device and biological detection method

Also Published As

Publication number Publication date
TW202044591A (en) 2020-12-01

Similar Documents

Publication Publication Date Title
US20160260827A1 (en) Semiconductor device, fabrication method for semiconductor device, power supply apparatus and high-frequency amplifier
JP2009514252A5 (en)
US10651115B2 (en) Cascode semiconductor package and related methods
TWI677099B (en) Graphene transistor for bone conduction devices
TW201839957A (en) Semiconductor device and power amplifier module
ATE492031T1 (en) BIFET WITH A FET WITH ENHANCED LINEARITY AND MANUFACTUREABILITY
TWI567983B (en) Bipolar transistor, semiconductor device, and bipolar transistor manufacturing method
JP3084541B2 (en) Vertical structure transistor
JP5280611B2 (en) Semiconductor device manufacturing method and device obtained
US10163829B2 (en) Compound semiconductor substrate and power amplifier module
JP4949650B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5646948B2 (en) Semiconductor device
WO2019208295A1 (en) Bipolar transistor and production method therefor
US6048777A (en) Fabrication of high power semiconductor devices with respective heat sinks for integration with planar microstrip circuitry
JP3522939B2 (en) Semiconductor device and manufacturing method thereof
JP2000349088A (en) Semiconductor device and its manufacture
JP2018120963A (en) Semiconductor device, heat dissipation structure, semiconductor integrated circuit, and method of manufacturing semiconductor device
JPWO2022014623A5 (en)
JP2953972B2 (en) Semiconductor device
TW201947764A (en) A heat-dissipating package having graphene for power amplifier chip
JP2003303827A (en) Semiconductor device and its manufacturing method
JPS6237540B2 (en)
JP2005101402A (en) Semiconductor device and method for manufacturing same
CN206272579U (en) A kind of AlN SAW integrated optoelectronic devices
KR100818418B1 (en) Heterojunction bipolar transistor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees