TWI675644B - Optical lithography device and optical lithography method - Google Patents
Optical lithography device and optical lithography method Download PDFInfo
- Publication number
- TWI675644B TWI675644B TW107142799A TW107142799A TWI675644B TW I675644 B TWI675644 B TW I675644B TW 107142799 A TW107142799 A TW 107142799A TW 107142799 A TW107142799 A TW 107142799A TW I675644 B TWI675644 B TW I675644B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- processing unit
- unit
- camera unit
- blood vessel
- Prior art date
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本發明提出一種光學顯影裝置以及光學顯影方法。光學顯影裝置包括處理單元、紅外線光源、第一攝像單元、第二攝像單元以及投影單元。處理單元操作第一攝像單元取得生物組織的第一影像光束。當處理單元致能紅外光源來照明生物組織時,處理單元操作第二攝像單元取得第二影像光束。投影單元、第一攝像單元及第二攝像單元為同軸設置。處理單元依據第一影像光束以及第二影像光束來產生增強後的血管影像,並且藉由投影單元投射增強後的血管影像至生物組織。The invention provides an optical developing device and an optical developing method. The optical developing device includes a processing unit, an infrared light source, a first imaging unit, a second imaging unit, and a projection unit. The processing unit operates the first camera unit to obtain a first image beam of the biological tissue. When the processing unit enables the infrared light source to illuminate the biological tissue, the processing unit operates the second camera unit to obtain a second image light beam. The projection unit, the first camera unit and the second camera unit are arranged coaxially. The processing unit generates the enhanced blood vessel image according to the first image light beam and the second image light beam, and projects the enhanced blood vessel image to the biological tissue by the projection unit.
Description
本發明是有關於一種顯影技術,且特別是有關於一種光學顯影裝置以及光學顯影方法。The present invention relates to a developing technology, and more particularly, to an optical developing device and an optical developing method.
隨著現代醫療行為的需求增加,對於動靜脈注射或是外科手術來說,動靜脈血管位置的掌握是相當重要的。然而,傳統的動靜脈顯影技術通常是以侵入式的方式注射顯影劑來成像。並且,一般的臨床辨識血管的儀器也僅限於體外皮下靜脈,並且也須同時搭配靜脈注射。也就是說,傳統的血管顯影技術無法便利地且即時地運用在各式手術或醫療行為。有鑑於此,如何開發一種顯影裝置可便利且即時地提供血管分布的顯影影像,以下將提出幾個實施例的解決方案。With the increasing demand for modern medical behaviors, it is important to know the position of arteriovenous vessels for arteriovenous injection or surgery. However, traditional arteriovenous imaging techniques usually use invasive injection of a developer to image. In addition, the general clinical instruments for identifying blood vessels are also limited to external subcutaneous veins, and they must also be used with intravenous injections. In other words, conventional angiography techniques cannot be conveniently and immediately applied to various types of surgery or medical behaviors. In view of this, how to develop a developing device that can conveniently and immediately provide a developing image of blood vessel distribution, solutions of several embodiments will be proposed below.
本發明提供一種光學顯影裝置以及光學顯影方法,可便利且即時地提供血管分布的顯影影像。The invention provides an optical developing device and an optical developing method, which can conveniently and immediately provide a developing image of blood vessel distribution.
本發明的光學顯影裝置包括處理單元、紅外線光源、第一攝像單元、第二攝像單元以及投影單元。紅外線光源耦接處理單元。第一攝像單元耦接處理單元。處理單元用以操作第一攝像單元取得生物組織的第一影像光束。第二攝像單元耦接處理單元。當處理單元致能紅外光源來照明生物組織時,處理單元操作第二攝像單元取得第二影像光束。投影單元耦接處理單元。投影單元、第一攝像單元及第二攝像單元為同軸設置。處理單元依據第一影像光束以及第二影像光束來產生增強後的血管影像,並且藉由投影單元投射增強後的血管影像至生物組織。The optical developing device of the present invention includes a processing unit, an infrared light source, a first imaging unit, a second imaging unit, and a projection unit. The infrared light source is coupled to the processing unit. The first camera unit is coupled to the processing unit. The processing unit is configured to operate the first camera unit to obtain a first image beam of the biological tissue. The second camera unit is coupled to the processing unit. When the processing unit enables the infrared light source to illuminate the biological tissue, the processing unit operates the second camera unit to obtain a second image light beam. The projection unit is coupled to the processing unit. The projection unit, the first camera unit and the second camera unit are arranged coaxially. The processing unit generates the enhanced blood vessel image according to the first image light beam and the second image light beam, and projects the enhanced blood vessel image to the biological tissue by the projection unit.
在本發明的一實施例中,上述的第一影像光束的第一波長選自可見光波段。生物組織的動脈血管以及靜脈血管在第一波長具有不同消光係數。In an embodiment of the present invention, a first wavelength of the first image light beam is selected from a visible light band. Arterial blood vessels and venous blood vessels of biological tissues have different extinction coefficients at the first wavelength.
在本發明的一實施例中,上述的第二影像光束的第二波長選自紅外線波段。生物組織的動脈血管以及靜脈血管在第二波長具有相同消光係數。In an embodiment of the present invention, the second wavelength of the second image light beam is selected from the infrared band. Arterial blood vessels and venous blood vessels of biological tissues have the same extinction coefficient at the second wavelength.
在本發明的一實施例中,上述的處理單元將第一影像光束對應的第一影像資料與第二影像光束對應的第二影像資料相減後取得血管特徵影像資料。處理單元依據權重參數來調整血管特徵影像資料,以取得調整後的血管特徵影像資料。處理單元將調整後的血管特徵影像資料與第一影像資料合併,以取得增強後的血管影像。In an embodiment of the present invention, the processing unit obtains the blood vessel characteristic image data by subtracting the first image data corresponding to the first image light beam and the second image data corresponding to the second image light beam. The processing unit adjusts the blood vessel characteristic image data according to the weight parameter to obtain the adjusted blood vessel characteristic image data. The processing unit combines the adjusted blood vessel characteristic image data with the first image data to obtain an enhanced blood vessel image.
在本發明的一實施例中,上述的光學顯影裝置更包括第一分光器。第一分光器設置在同軸光路上。第一分光器用以使波長為600奈米以上的第一影像光束以及第二影像光束通過,並且反射波長低於600奈米的其他光束。第一分光器更用以反射投影單元投射的增強後的血管影像至生物組織。In an embodiment of the present invention, the optical developing device further includes a first beam splitter. The first beam splitter is disposed on the coaxial optical path. The first beam splitter is used for passing the first image light beam and the second image light beam with a wavelength of 600 nm or more, and reflecting other light beams with a wavelength less than 600 nm. The first beam splitter is further used to reflect the enhanced blood vessel image projected by the projection unit to the biological tissue.
在本發明的一實施例中,上述的光學顯影裝置更包括第二分光器以及第一光濾波器。第二分光器設置在同軸光路上。第二分光器用以使波長為700奈米以上的第二影像光束通過,並且反射波長低於700奈米的其他光束。第一光濾波器設置在第二分光器以及第一攝像單元之間。第一光濾波器用以使波長為680奈米的第一影像光束通過,並且濾除掉波長非680奈米的其他光束。In an embodiment of the present invention, the optical developing device further includes a second beam splitter and a first optical filter. The second beam splitter is disposed on the coaxial optical path. The second beam splitter is used for passing a second image light beam with a wavelength of more than 700 nm, and reflecting other light beams with a wavelength of less than 700 nm. The first optical filter is disposed between the second beam splitter and the first imaging unit. The first optical filter is used to pass a first image light beam with a wavelength of 680 nanometers, and filter out other light beams with a wavelength other than 680 nanometers.
在本發明的一實施例中,上述的光學顯影裝置更包括光反射器以及第二光濾波器。光反射器設置在同軸光路上。光反射器用以反射波長為700奈米以上的第二影像光束。第二光濾波器設置在光反射器以及第二攝像單元之間。第二光濾波器用以使波長為808奈米的第二影像光束通過,並且濾除掉波長非808奈米的其他光束。In an embodiment of the present invention, the optical developing device further includes a light reflector and a second optical filter. The light reflector is disposed on the coaxial light path. The light reflector is used to reflect the second image light beam with a wavelength of more than 700 nm. The second optical filter is disposed between the light reflector and the second imaging unit. The second optical filter is used to pass a second image light beam with a wavelength of 808 nm, and filter out other light beams with a wavelength other than 808 nm.
在本發明的一實施例中,上述的處理單元預先操作投影單元來投射網格參考影像,並且透過第一攝像單元以及第二攝像單元分別擷取該網格參考影像,以使處理單元比對第一攝像單元以及第二攝像單元的網格參考影像擷取結果,以進行第一攝像單元以及第二攝像單元的同軸校正操作。In an embodiment of the present invention, the processing unit previously operates the projection unit to project a grid reference image, and captures the grid reference image through the first camera unit and the second camera unit, respectively, so that the processing units are compared. The grid reference image capture results of the first camera unit and the second camera unit are used to perform the coaxial correction operation of the first camera unit and the second camera unit.
在本發明的一實施例中,上述的處理單元預先操作投影單元來投射矩形參考影像,並且透過第一攝像單元以及第二攝像單元分別擷取矩形參考影像,以使處理單元比對第一攝像單元以及第二攝像單元的矩形參考影像擷取結果,以進行投影單元、第一攝像單元以及第二攝像單元的梯形校正操作。In an embodiment of the present invention, the processing unit previously operates the projection unit to project a rectangular reference image, and captures the rectangular reference image through the first camera unit and the second camera unit, respectively, so that the processing unit compares with the first camera. The rectangular reference image capture results of the unit and the second camera unit to perform the keystone correction operation of the projection unit, the first camera unit and the second camera unit.
在本發明的一實施例中,上述的處理單元預先操作投影單元來投射多邊形參考影像至多邊形校正片,並且透過第一攝像單元以及第二攝像單元分別擷取多邊形參考影像,以使處理單元藉由判斷多邊形參考影像與多邊形校正片是否完整重疊來進行投影單元、第一攝像單元以及第二攝像單元的偏移校正操作。In an embodiment of the present invention, the processing unit previously operates the projection unit to project the polygon reference image onto the polygon correction sheet, and separately captures the polygon reference image through the first camera unit and the second camera unit, so that the processing unit borrows The offset correction operation of the projection unit, the first camera unit, and the second camera unit is performed by determining whether the polygon reference image and the polygon correction sheet completely overlap.
本發明的光學顯影方法,包括以下步驟:藉由處理單元操作第一攝像單元取得生物組織的第一影像光束;藉由處理單元致能紅外光源來照明生物組織,並且操作第二攝像單元取得第二影像光束;藉由處理單元依據第一影像光束以及第二影像光束來產生增強後的血管影像;以及藉由投影單元投射增強後的血管影像至生物組織。The optical development method of the present invention includes the following steps: obtaining a first image beam of biological tissue by operating a first imaging unit by a processing unit; illuminating biological tissue by enabling an infrared light source by the processing unit; and operating a second imaging unit to obtain a first Two image light beams; generating an enhanced blood vessel image by the processing unit according to the first image light beam and a second image light beam; and projecting the enhanced blood vessel image to a biological tissue by a projection unit.
在本發明的一實施例中,上述的第一影像光束的第一波長選自可見光波段,並且生物組織的動脈血管以及靜脈血管在第一波長具有不同消光係數。In an embodiment of the present invention, the first wavelength of the first image light beam is selected from the visible light band, and the arterial vessels and venous vessels of biological tissues have different extinction coefficients at the first wavelength.
在本發明的一實施例中,上述的第二影像光束的第二波長選自紅外線波段。生物組織的動脈血管以及靜脈血管在第二波長具有相同消光係數。In an embodiment of the present invention, the second wavelength of the second image light beam is selected from the infrared band. Arterial blood vessels and venous blood vessels of biological tissues have the same extinction coefficient at the second wavelength.
在本發明的一實施例中,上述的藉由處理單元依據第一影像光束以及第二影像光束來產生增強後的血管影像的步驟包括:藉由處理單元將第一影像光束對應的第一影像資料與第二影像光束對應的第二影像資料相減後取得血管特徵影像資料;藉由處理單元依據權重參數來調整血管特徵影像資料,以取得調整後的血管特徵影像資料;以及藉由處理單元將調整後的血管特徵影像資料與第一影像資料合併,以取得增強後的血管影像。In an embodiment of the present invention, the step of generating an enhanced blood vessel image by the processing unit according to the first image light beam and the second image light beam includes: processing the first image corresponding to the first image light beam by the processing unit. The blood vessel characteristic image data is obtained by subtracting the data from the second image data corresponding to the second image beam; the blood vessel characteristic image data is adjusted by the processing unit according to the weight parameter to obtain the adjusted blood vessel characteristic image data; and by the processing unit The adjusted blood vessel characteristic image data is combined with the first image data to obtain an enhanced blood vessel image.
在本發明的一實施例中,上述的光學顯影方法更包括:藉由處理單元預先操作投影單元來投射網格參考影像;透過第一攝像單元以及第二攝像單元分別擷取網格參考影像;以及藉由處理單元比對第一攝像單元以及第二攝像單元的網格參考影像擷取結果,以進行第一攝像單元以及第二攝像單元的同軸校正操作。In an embodiment of the present invention, the above-mentioned optical development method further includes: projecting the grid reference image by operating the projection unit in advance by the processing unit; capturing the grid reference image through the first camera unit and the second camera unit, respectively; And the processing unit compares the grid reference image capture results of the first camera unit and the second camera unit to perform the coaxial correction operation of the first camera unit and the second camera unit.
在本發明的一實施例中,上述的光學顯影方法更包括:藉由處理單元預先操作投影單元來投射矩形參考影像;透過第一攝像單元以及第二攝像單元分別擷取矩形參考影像;以及藉由處理單元比對第一攝像單元以及第二攝像單元的矩形參考影像擷取結果,以進行投影單元、第一攝像單元以及第二攝像單元的梯形校正操作。In an embodiment of the present invention, the above-mentioned optical development method further includes: projecting a rectangular reference image by operating the projection unit in advance by the processing unit; capturing the rectangular reference image through the first camera unit and the second camera unit respectively; and borrowing The processing unit compares the rectangular reference image capture results of the first camera unit and the second camera unit to perform the keystone correction operation of the projection unit, the first camera unit, and the second camera unit.
在本發明的一實施例中,上述的光學顯影方法,更包括:藉由處理單元預先操作投影單元來投射多邊形參考影像至多邊形校正片;透過第一攝像單元以及第二攝像單元分別擷取多邊形參考影像;以及藉由處理單元判斷多邊形參考影像與多邊形校正片是否完整重疊來進行投影單元、第一攝像單元以及第二攝像單元的偏移校正操作。In an embodiment of the present invention, the above-mentioned optical development method further includes: projecting the polygon reference image onto the polygon correction sheet by operating the projection unit in advance by the processing unit; and respectively acquiring the polygon through the first camera unit and the second camera unit A reference image; and determining, by the processing unit, whether the polygon reference image and the polygon correction sheet completely overlap to perform the offset correction operation of the projection unit, the first camera unit, and the second camera unit.
基於上述,本發明的光學顯影裝置以及光學顯影方法,可藉由多個攝像單元來即時擷取對應於不同波長的多個生物組織影像,並且對不同波長的所述多個生物組織影像進行影像處理,以即時取得血管影像。因此,本發明的光學顯影裝置以及光學顯影方法可即時地將血管影像投影至生物組織上,以提供便利的血管顯影效果。Based on the above, the optical developing device and the optical developing method of the present invention can capture multiple biological tissue images corresponding to different wavelengths in real time by using multiple camera units, and image the multiple biological tissue images of different wavelengths. Processing to obtain blood vessel images in real time. Therefore, the optical developing device and the optical developing method of the present invention can instantly project a blood vessel image onto a biological tissue to provide a convenient blood vessel developing effect.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.
為了使本發明之內容可以被更容易明瞭,以下特舉實施例做為本發明確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。In order to make the content of the present invention easier to understand, the following specific embodiments are examples based on which the present invention can be implemented. In addition, wherever possible, the same reference numbers are used in the drawings and embodiments to refer to the same or similar components.
圖1是依照本發明的一實施例的光學顯影裝置的功能電路圖。參考圖1,光學顯影裝置100包括處理單元110、第一攝像單元120、第二攝像單元130、投影單元140以及紅外線光源150。處理單元110耦接第一攝像單元120、第二攝像單元130、投影單元140以及紅外線光源150。在本實施例中,光學顯影裝置100用以對生物組織進行影像取樣,並且依據影像取樣結果來投射對應於此生物組織的血管影像至此生物組織的表面。換言之,本實施例的光學顯影裝置100可用以即時取樣生物組織的表面影像,並且對應地將例如是生物組織的表面至5毫米(mm)深度之間的血管分布以投影的方式顯影出來,以讓醫療人員可即時地獲得生物組織表面的血管分布資訊。並且,本發明各實施例所述的生物組織可例如指人體的體內器官或皮膚表面,本發明並不加以限制。本發明的光學顯影裝置100可適用於手術時的各器官的表面血管的顯影或是一般動、靜脈注射的顯影。FIG. 1 is a functional circuit diagram of an optical developing device according to an embodiment of the present invention. 1, the optical developing device 100 includes a processing unit 110, a first imaging unit 120, a second imaging unit 130, a projection unit 140, and an infrared light source 150. The processing unit 110 is coupled to the first camera unit 120, the second camera unit 130, the projection unit 140, and the infrared light source 150. In this embodiment, the optical developing device 100 is configured to sample an image of a biological tissue, and project a blood vessel image corresponding to the biological tissue to a surface of the biological tissue according to the image sampling result. In other words, the optical developing device 100 of this embodiment can be used to instantaneously sample the surface image of biological tissue, and correspondingly develop, for example, the blood vessel distribution between the surface of the biological tissue and a depth of 5 millimeters (mm) to project It allows medical personnel to obtain the blood vessel distribution information on the surface of biological tissues in real time. In addition, the biological tissues described in the embodiments of the present invention may refer to, for example, an internal organ of a human body or a skin surface, and the present invention is not limited thereto. The optical developing device 100 of the present invention can be applied to the development of surface blood vessels of various organs during surgery or the development of general arterial and intravenous injections.
詳細而言,首先,光學顯影裝置100透過第一攝像單元120來取得生物組織的第一影像光束,並且透過處理單元110依據第一影像光束來取得第一血管影像。接著,光學顯影裝置100致能紅外線光源150,以藉由紅外線來照明生物組織,並且透過第二攝像單元130來取得生物組織的第二影像光束。光學顯影裝置100透過處理單元110依據第二影像光束來取得第二血管影像。在本實施例中,第一血管影像是指生物組織表面經由可見光照射後的第一血管影像,並且第二血管影像是指生物組織表面經由紅外線照射後的第二血管影像。在本實施例中,光學顯影裝置100藉由處理單元110對第一血管影像以及第二血管影像進行影像處理與運算,以對應產生增強後的血管影像,並且藉由投影單元140投射此增強後的血管影像至生物組織。In detail, first, the optical developing device 100 obtains a first image beam of biological tissue through the first imaging unit 120, and obtains a first blood vessel image according to the first image beam through the processing unit 110. Next, the optical developing device 100 enables the infrared light source 150 to illuminate the biological tissue by infrared rays, and obtains the second image light beam of the biological tissue through the second camera unit 130. The optical developing device 100 obtains a second blood vessel image through the processing unit 110 according to the second image light beam. In this embodiment, the first blood vessel image refers to the first blood vessel image after the surface of the biological tissue is irradiated with visible light, and the second blood vessel image refers to the second blood vessel image after the surface of the biological tissue is irradiated with infrared light. In this embodiment, the optical developing device 100 performs image processing and calculations on the first blood vessel image and the second blood vessel image by the processing unit 110 to generate an enhanced blood vessel image correspondingly, and projects the enhanced image by the projection unit 140. Image of blood vessels to biological tissue.
在本實施例中,處理單元110例如包括中央處理單元(Central Processing Unit, CPU)、影像信號處理器(Image Signal Processor, ISP)、系統單晶片(System on Chip, SOC)或是其他可程式化之一般用途或特殊用途的微處理器(microprocessor)、數位訊號處理器(Digital Signal Processor, DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits, ASIC)、可程式化邏輯裝置(Programmable Logic Device, PLD)、其他類似處理裝置或這些裝置的組合。並且,在一實施例中,處理單元110可進一步耦接記憶模組(memory)。所述記憶模組可例如儲存用於實現本發明的影像分析的相關運算模組以及影像資料等,本發明並不加以限制。In this embodiment, the processing unit 110 includes, for example, a central processing unit (CPU), an image signal processor (ISP), a system on chip (SOC), or other programmable General purpose or special purpose microprocessor (microprocessor), digital signal processor (DSP), programmable controller, application specific integrated circuit (ASIC), programmable logic Programmable Logic Device (PLD), other similar processing devices, or a combination of these devices. Moreover, in an embodiment, the processing unit 110 may be further coupled to a memory module. The memory module may store, for example, a related operation module and image data used to implement the image analysis of the present invention, and the present invention is not limited thereto.
此外,在本實施例中,第一攝像單元120以及第二攝像單元130例如包括感光耦合元件(Charge Coupled Device, CCD)感測器或互補式金屬氧化物半導體(Complementary Metal Oxide Semiconductor, CMOS)感測器等諸如此類的影像擷取元件。在本實施例中,投影單元140例如包括投影機(projector)。在本實施例中,紅外線光源150例如用以投射波長為800奈米(nm)至950奈米的紅外線。In addition, in this embodiment, the first camera unit 120 and the second camera unit 130 include, for example, a Charge Coupled Device (CCD) sensor or a Complementary Metal Oxide Semiconductor (CMOS) sensor. Image capture components such as measuring devices. In this embodiment, the projection unit 140 includes, for example, a projector. In this embodiment, the infrared light source 150 is used to project infrared light having a wavelength of 800 nanometers (nm) to 950 nanometers, for example.
圖2是依照本發明的一實施例的光學顯影裝置的架構示意圖。圖3是依照本發明的一實施例的動脈及靜脈的消光係數與波長的關係曲線圖。圖4是依照本發明的一實施例的血管影像強度與空間頻率的關係曲線圖。圖5A至圖5D是分別依照本發明的一實施例的多個血管影像的示意圖。參考圖2至圖5D,光學顯影裝置200包括處理單元210、第一攝像單元220、第二攝像單元230、投影單元240、紅外線光源250、第一分光器261、第二分光器262、光反射器263、第一光濾波器264以及第二光濾波器265。處理單元210耦接第一攝像單元220、第二攝像單元230、投影單元240以及紅外線光源250。值得注意的是,在本實施例中,投影單元240、第一攝像單元220及第二攝像單元230為同軸設置,以有效減少攝像距離以及投影距離的差異,而降低投射的血管影像的尺寸與真實血管尺寸之間的誤差。FIG. 2 is a schematic structural diagram of an optical developing device according to an embodiment of the invention. FIG. 3 is a graph showing the relationship between extinction coefficients and wavelengths of arteries and veins according to an embodiment of the present invention. FIG. 4 is a graph showing a relationship between an intensity of a blood vessel image and a spatial frequency according to an embodiment of the present invention. 5A to 5D are schematic diagrams of multiple blood vessel images according to an embodiment of the present invention, respectively. 2 to 5D, the optical developing device 200 includes a processing unit 210, a first camera unit 220, a second camera unit 230, a projection unit 240, an infrared light source 250, a first beam splitter 261, a second beam splitter 262, and light reflection. Filter 263, first optical filter 264, and second optical filter 265. The processing unit 210 is coupled to the first camera unit 220, the second camera unit 230, the projection unit 240, and the infrared light source 250. It is worth noting that, in this embodiment, the projection unit 240, the first camera unit 220, and the second camera unit 230 are coaxially arranged to effectively reduce the difference between the imaging distance and the projection distance, and reduce the size of the projected blood vessel image and Error between true vessel size.
在本實施例中,第一分光器261、第二分光器262以及光反射器263設置在同軸光路上。第一分光器261用以使波長為600奈米以上的光束通過,並且反射波長低於600奈米的其他光束。第二分光器262用以使波長為700奈米以上的光束通過,並且反射波長低於700奈米的其他光束。第一光濾波器264設置在第二分光器262以及第一攝像單元220之間。第一光濾波器264用以使波長為680奈米的第一影像光束通過,並且濾除掉波長非680奈米的其他光束。光反射器263用以反射波長為700奈米以上的光束。第二光濾波器265設置在光反射器263以及第二攝像單元230之間。第二光濾波器265用以使波長為808奈米的第二影像光束通過,並且濾除掉波長非808奈米的其他光束。In this embodiment, the first beam splitter 261, the second beam splitter 262, and the light reflector 263 are disposed on a coaxial optical path. The first beam splitter 261 is used to pass a light beam having a wavelength of 600 nm or more and reflect other light beams having a wavelength of less than 600 nm. The second beam splitter 262 is used to pass a light beam having a wavelength of more than 700 nm and to reflect other light beams having a wavelength of less than 700 nm. The first optical filter 264 is disposed between the second beam splitter 262 and the first imaging unit 220. The first optical filter 264 is used to pass a first image light beam with a wavelength of 680 nanometers, and filter out other light beams with a wavelength other than 680 nanometers. The light reflector 263 is used to reflect a light beam having a wavelength of 700 nm or more. The second optical filter 265 is provided between the light reflector 263 and the second imaging unit 230. The second optical filter 265 is used to pass a second image light beam with a wavelength of 808 nm, and filter out other light beams with a wavelength other than 808 nm.
基於上述光學架構,當光學顯影裝置200執行顯影操作時,首先,光學顯影裝置200透過第一攝像單元220取得經由可見光照射的生物組織BS表面的影像的第一影像光束。第一影像光束的波長選自可見光波段(380奈米至780奈米),其中可例如是680奈米。在圖3中,曲線301為表示靜脈的消光係數變化,並且曲線302為表示動脈的消光係數變化。對此,如圖3所示的曲線301、302,由於生物組織BS的動脈血管以及靜脈血管在波長為680奈米(如指標303的位置)的條件下具有不同消光係數,因此取得如圖5A的血管影像510。需注意的是,在波長為680奈米的條件下,靜脈血管的影像強度高於動脈血管的影像強度。Based on the above-mentioned optical architecture, when the optical developing device 200 performs a developing operation, first, the optical developing device 200 acquires a first image light beam of an image of the surface of the biological tissue BS illuminated by visible light through the first imaging unit 220. The wavelength of the first image light beam is selected from the visible light band (380 nm to 780 nm), which may be, for example, 680 nm. In FIG. 3, a curve 301 is a change indicating the extinction coefficient of a vein, and a curve 302 is a change indicating the extinction coefficient of an artery. In this regard, as shown in the curves 301 and 302 shown in FIG. 3, the arterial blood vessels and venous blood vessels of the biological tissue BS have different extinction coefficients at a wavelength of 680 nanometers (such as the position of the index 303), so as shown in FIG. 5A Vascular image 510. It should be noted that the image intensity of venous vessels is higher than that of arterial vessels at a wavelength of 680 nm.
接著,光學顯影裝置200致能紅外線光源250來投射紅外線至生物組織BS,並且透過第二攝像單元230取得經由紅外線照射的生物組織BS表面的影像的第二影像光束。第二影像光束的波長選自紅外線波段(800奈米至950奈米),其中可例如是808奈米。對此,如圖3所示的曲線301、302,由於生物組織BS的動脈血管以及靜脈血管在波長為808奈米(如指標304的位置)的條件下具有相同消光係數,因此取得如圖5B的血管影像520。需注意的是,在波長為808奈米的條件下,靜脈血管的影像強度等於或相近於動脈血管的影像強度。Next, the optical developing device 200 enables the infrared light source 250 to project infrared light to the biological tissue BS, and obtains a second image light beam of the image of the surface of the biological tissue BS irradiated with infrared light through the second camera unit 230. The wavelength of the second image beam is selected from the infrared band (800 nm to 950 nm), which may be, for example, 808 nm. In this regard, as shown in the curves 301 and 302 shown in FIG. 3, since the arterial blood vessels and venous blood vessels of the biological tissue BS have the same extinction coefficient at a wavelength of 808 nanometers (such as the position of the index 304), FIG. Vascular image 520. It should be noted that the image intensity of venous blood vessels is equal to or similar to that of arterial blood vessels at a wavelength of 808 nm.
再接著,光學顯影裝置200透過處理單元210來進行影像處理及運算。參考圖4,光學顯影裝置200透過處理單元210將第一攝像單元220接收的第一影像光束對應的第一影像資料S D與第二攝像單元230接收的第二影像光束對應的第二影像資料S us’相減後取得血管特徵影像資料S D-S us’,其中血管特徵影像資料S D-S us’可對應如圖5C所示的血管影像530。處理單元210可依據預設的權重參數來調整血管特徵影像資料S D-S us’,以取得調整後的血管特徵影像資料。並且,處理單元210將調整後的血管特徵影像資料與第一影像資料合併,以取得如圖5D所示的增強後的血管影像540。因此,光學顯影裝置200可透過投影單元140投射增強後的血管影像540至生物組織BS。投影單元140所投射的增強後的血管影像540的影像光束可例如是低於波長600奈米的可見光光束。 Then, the optical developing device 200 performs image processing and calculation through the processing unit 210. Referring to FIG. 4, the optical developing device 200 transmits the first image data S D corresponding to the first image beam received by the first camera unit 220 and the second image data corresponding to the second image beam received by the second camera unit 230 through the processing unit 210. S us' to obtain the blood vessel characteristics after subtraction image data S D -S us', wherein the blood vessel characteristics image data S D -S us' may correspond to the blood vessel image 530 as shown in FIG. 5C. The processing unit 210 may adjust the blood vessel characteristic image data S D -S us' according to a preset weight parameter to obtain the adjusted blood vessel characteristic image data. Furthermore, the processing unit 210 combines the adjusted blood vessel characteristic image data with the first image data to obtain an enhanced blood vessel image 540 as shown in FIG. 5D. Therefore, the optical developing device 200 can project the enhanced blood vessel image 540 to the biological tissue BS through the projection unit 140. The image light beam of the enhanced blood vessel image 540 projected by the projection unit 140 may be, for example, a visible light beam having a wavelength of less than 600 nm.
也就是說,本實施例的光學顯影裝置200是將原始影像(第一影像資料S D)以及非銳化影像(第二影像資料S us ’)之間取得差分影像(血管特徵影像資料S D-S us ’),並且將差分影像經由強調係數加強後來合併至原始影像(第一影像資料S D),即產生增強後的血管影像S F。從另一角度而言,由於原始影像(第一影像資料S D)當中的靜脈血管的影像較於動脈血管的影像清楚,故本實施例的光學顯影裝置200藉由上述影像處理後,可明顯地將動脈血管的影像強度提升。並且,本實施例的光學顯影裝置200將調整後的影像與原始影像(第一影像資料S D)合併,以獲得動、靜脈血管的影像皆清楚的增強後的血管影像S F。據此,本實施例的光學顯影裝置200可有效地對生物組織BS的表面血管分布進行顯影。 That is, the optical embodiment of the developing device 200 according to the present embodiment is to obtain a difference image between the original image (first image data S D) and the unsharp image (second image data S us') (wherein the blood vessel image data S D -S us ' ), and the difference image is enhanced by the enhancement coefficient and then merged into the original image (the first image data S D ) to generate an enhanced blood vessel image S F. From another point of view, since the vein image of an original image (a first image data S D) is compared to the image among the arteries clear, it is 200 after the image processing by the above-described developing apparatus according to the present embodiment of the optical embodiment, can be significantly To increase the image intensity of arterial blood vessels. Further, the image and the original image (first image data S D) merging the adjusted optical developing device 200 of this embodiment, in order to obtain the movement, all of the clear vein image enhancement angiographic S F. According to this, the optical developing device 200 of this embodiment can effectively develop the surface blood vessel distribution of the biological tissue BS.
圖6是依照本發明的一實施例的光學顯影方法的流程圖。參考圖1以及圖6,本實施例的光學顯影方法可至少適用於圖1實施例的光學顯影裝置100,以使光學顯影裝置100可執行以下步驟S610~S660。在步驟S610中,處理單元110操作第一攝像單元120取得生物組織的第一影像光束。在步驟S620中,處理單元110致能紅外光源來照明生物組織,並且操作第二攝像單元130取得第二影像光束。在步驟S630中。處理單元110將第一影像光束對應的第一影像資料與第二影像光束對應的第二影像資料相減後取得血管特徵影像資料。在步驟S640中,處理單元110依據權重參數來調整血管特徵影像資料,以取得調整後的血管特徵影像資料。步驟S650中,處理單元110將調整後的血管特徵影像資料與第一影像資料合併,以取得增強後的血管影像。在步驟S660中,投影單元140投射增強後的血管影像至生物組織。因此,本實施例的光學顯影方法可有效地對生物組織的表面血管分布進行準確的顯影。FIG. 6 is a flowchart of an optical developing method according to an embodiment of the present invention. Referring to FIG. 1 and FIG. 6, the optical developing method of this embodiment can be applied to at least the optical developing device 100 of the embodiment of FIG. 1, so that the optical developing device 100 can perform the following steps S610 to S660. In step S610, the processing unit 110 operates the first camera unit 120 to obtain a first image beam of the biological tissue. In step S620, the processing unit 110 enables the infrared light source to illuminate the biological tissue, and operates the second camera unit 130 to obtain a second image light beam. In step S630. The processing unit 110 subtracts the first image data corresponding to the first image beam and the second image data corresponding to the second image beam to obtain blood vessel characteristic image data. In step S640, the processing unit 110 adjusts the blood vessel characteristic image data according to the weight parameter to obtain the adjusted blood vessel characteristic image data. In step S650, the processing unit 110 combines the adjusted blood vessel characteristic image data with the first image data to obtain an enhanced blood vessel image. In step S660, the projection unit 140 projects the enhanced blood vessel image onto the biological tissue. Therefore, the optical development method of this embodiment can effectively perform accurate development of the surface blood vessel distribution of the biological tissue.
另外,關於本實施例的光學顯影裝置100的其他電路元件特徵、具體技術細節以及相關實施方式可參考上述圖1至圖5D實施例的內容,而獲致足夠的教示、建議以及實施說明,因此不再贅述。In addition, regarding other circuit element features, specific technical details, and related implementations of the optical developing device 100 of this embodiment, reference may be made to the content of the embodiments of FIG. 1 to FIG. 5D described above, and sufficient teachings, suggestions, and implementation descriptions are obtained. More details.
圖7A至圖7C是分別依照本發明的一實施例的多個網格參考影像的示意圖。參考圖1以及圖7A至圖7C,處理單元110可預先操作投影單元140來投射如圖7A所示的網格參考影像710,並且透過第一攝像單元120以及第二攝像單元130分別擷取網格參考影像710。在本實施例中,處理單元110可比對第一攝像單元120以及第二攝像單元130的網格參考影像擷取結果,以進行第一攝像單元120以及第二攝像單元130的同軸校正操作。7A to 7C are schematic diagrams of a plurality of grid reference images according to an embodiment of the present invention, respectively. Referring to FIG. 1 and FIGS. 7A to 7C, the processing unit 110 may operate the projection unit 140 in advance to project a grid reference image 710 as shown in FIG. 7A, and capture the network through the first camera unit 120 and the second camera unit 130, respectively. Grid reference image 710. In this embodiment, the processing unit 110 may compare the grid reference image capture results of the first camera unit 120 and the second camera unit 130 to perform the coaxial calibration operation of the first camera unit 120 and the second camera unit 130.
舉例而言,若第一攝像單元120或第二攝像單元130所取得的結果如圖7B的網格參考影像720,則表示第一攝像單元120或第二攝像單元130具有負徑向形變(negative radial distortion)。因此,第一攝像單元120或第二攝像單元130可據此進行相對應的攝像鏡頭調校。相對地,若第一攝像單元120或第二攝像單元130所取得的結果如圖7C的網格參考影像730,則表示第一攝像單元120或第二攝像單元130具有正徑向形變(positive radial distortion)。同理,第一攝像單元120或第二攝像單元130可據此進行相對應的攝像鏡頭調校。For example, if the result obtained by the first camera unit 120 or the second camera unit 130 is as shown in the grid reference image 720 of FIG. 7B, it means that the first camera unit 120 or the second camera unit 130 has a negative radial deformation (negative radial distortion). Therefore, the first camera unit 120 or the second camera unit 130 can perform corresponding camera lens adjustment accordingly. In contrast, if the result obtained by the first camera unit 120 or the second camera unit 130 is as shown in the grid reference image 730 of FIG. 7C, it means that the first camera unit 120 or the second camera unit 130 has positive radial deformation. distortion). Similarly, the first camera unit 120 or the second camera unit 130 can perform corresponding camera lens adjustment accordingly.
圖8A至圖8E是分別依照本發明的一實施例的多個矩形參考影像的示意圖。參考圖1以及圖8A至圖8E,處理單元110可預先操作投影單元140來投射矩形參考影像810,並且透過第一攝像單元120以及第二攝像單元130分別擷取矩形參考影像810。在本實施例中,處理單元110可比對第一攝像單元120以及第二攝像單元130的矩形參考影像擷取結果,以進行投影單元140、第一攝像單元110以及第二攝像單元120的梯形校正操作。8A to 8E are schematic diagrams of a plurality of rectangular reference images according to an embodiment of the present invention, respectively. Referring to FIG. 1 and FIGS. 8A to 8E, the processing unit 110 may operate the projection unit 140 in advance to project a rectangular reference image 810, and capture the rectangular reference image 810 through the first camera unit 120 and the second camera unit 130, respectively. In this embodiment, the processing unit 110 may compare the rectangular reference image capture results of the first camera unit 120 and the second camera unit 130 to perform keystone correction of the projection unit 140, the first camera unit 110, and the second camera unit 120. operating.
舉例而言,若第一攝像單元120或第二攝像單元130所取得的結果如圖8B或圖8C的矩形參考影像820、830,則經由比對矩形參考影像810中的矩形圖形811與矩形參考影像820的矩形圖形821或矩形參考影像830的矩形圖形831,表示第一攝像單元120或第二攝像單元130具有垂直梯形失真(vertical trapezium distortion)。因此,第一攝像單元120、第二攝像單元130以及投影單元140可據此進行相對應的攝像鏡頭調校或投影鏡頭調校。相對地,若第一攝像單元120或第二攝像單元130所取得的結果如圖8D或圖8E的矩形參考影像840、850,則經由比對矩形參考影像810中的矩形圖形811與矩形參考影像840的矩形圖形841或矩形參考影像850的矩形圖形851,表示第一攝像單元120或第二攝像單元130具有水平梯形失真(horizontal trapezium distortion)。同理,第一攝像單元120、第二攝像單元130以及投影單元140可據此進行相對應的攝像鏡頭調校或投影鏡頭調校。For example, if the results obtained by the first camera unit 120 or the second camera unit 130 are rectangular reference images 820 and 830 shown in FIG. 8B or FIG. 8C, the rectangular reference image 811 and the rectangular reference in the rectangular reference image 810 are compared. The rectangular figure 821 of the image 820 or the rectangular figure 831 of the rectangular reference image 830 indicates that the first camera unit 120 or the second camera unit 130 has vertical trapezium distortion. Therefore, the first camera unit 120, the second camera unit 130, and the projection unit 140 can perform corresponding camera lens adjustment or projection lens adjustment accordingly. In contrast, if the results obtained by the first camera unit 120 or the second camera unit 130 are rectangular reference images 840 and 850 shown in FIG. 8D or FIG. 8E, the rectangular figure 811 and the rectangular reference image in the rectangular reference image 810 are compared by comparison. A rectangular figure 841 of 840 or a rectangular figure 851 of a rectangular reference image 850 indicates that the first camera unit 120 or the second camera unit 130 has horizontal trapezium distortion. Similarly, the first camera unit 120, the second camera unit 130, and the projection unit 140 can perform corresponding camera lens adjustment or projection lens adjustment accordingly.
圖9是依照本發明的一實施例的投射多邊形參考影像至多邊形校正片的示意圖。參考圖1以及圖9,處理單元110可預先操作投影單元140來投射多邊形參考影像920至多邊形校正片910。在本實施例中,處理單元110可透過第一攝像單元120以及第二攝像單元130分別擷取多邊形參考影像920。處理單元110可藉由判斷此多邊形參考影像920與多邊形校正片910是否完整重疊來判斷第一攝像單元120以及第二攝像單元130的攝像範圍是否與投影單元140的投影區域一致。因此,第一攝像單元120、第二攝像單元130以及投影單元140可據此進行相對應的攝像鏡頭調校或投影鏡頭調校。FIG. 9 is a schematic diagram of projecting a polygon reference image onto a polygon correction sheet according to an embodiment of the present invention. Referring to FIGS. 1 and 9, the processing unit 110 may operate the projection unit 140 in advance to project the polygon reference image 920 onto the polygon correction sheet 910. In this embodiment, the processing unit 110 can capture the polygon reference image 920 through the first camera unit 120 and the second camera unit 130, respectively. The processing unit 110 can determine whether the imaging range of the first camera unit 120 and the second camera unit 130 is consistent with the projection area of the projection unit 140 by determining whether the polygon reference image 920 and the polygon correction sheet 910 completely overlap. Therefore, the first camera unit 120, the second camera unit 130, and the projection unit 140 can perform corresponding camera lens adjustment or projection lens adjustment accordingly.
綜上所述,本發明的光學顯影裝置以及光學顯影方法,可即時地取得具有不同消光係數的波長的第一血管影像以及具有相同消光係數的波長的第二血管影像,並且對第一血管影像與第二血管影像進行影像處理,來取得增強後的血管影像並即時投影至生物組織。此外,光學顯影裝置還可預先進行攝像鏡頭以及投影鏡頭的校正操作。因此,本發明的光學顯影裝置以及光學顯影方法可提供即時且準確的血管顯影效果。In summary, the optical developing device and the optical developing method of the present invention can obtain a first blood vessel image with a different extinction coefficient wavelength and a second blood vessel image with the same extinction coefficient in real time, and the first blood vessel image Perform image processing with the second blood vessel image to obtain the enhanced blood vessel image and project it to the biological tissue in real time. In addition, the optical developing device can perform a calibration operation of the imaging lens and the projection lens in advance. Therefore, the optical developing device and the optical developing method of the present invention can provide an immediate and accurate blood vessel developing effect.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.
100、200‧‧‧光學顯影裝置100, 200‧‧‧ optical developing device
110、210‧‧‧處理單元 110, 210‧‧‧ processing units
120、220‧‧‧第一攝像單元 120, 220‧‧‧ the first camera unit
130、230‧‧‧第二攝像單元 130, 230‧‧‧Second camera unit
140、240‧‧‧投影單元 140, 240‧‧‧ projection unit
150、250‧‧‧紅外線光源 150, 250‧‧‧ infrared light source
261、262‧‧‧分光器 261, 262‧‧‧ splitter
263‧‧‧光反射器 263‧‧‧light reflector
264、265‧‧‧光濾波器 264, 265‧‧‧Optical Filter
301、302‧‧‧曲線 301, 302‧‧‧ curves
303、304‧‧‧指標 303, 304‧‧‧ indicators
BS‧‧‧生物組織 BS‧‧‧Biological Tissue
SF、SD、Sus’、SD-Sus’‧‧‧影像資料S F 、 S D 、 S us ' 、 S D -S us' ‧‧‧Image data
510、520、530、540‧‧‧血管影像 510, 520, 530, 540‧‧‧ vascular images
S610~S660‧‧‧步驟 S610 ~ S660‧‧‧step
710、720、730‧‧‧網格參考影像 710, 720, 730‧‧‧Grid reference images
810、820、830、840、850‧‧‧矩形參考影像 810, 820, 830, 840, 850‧‧‧ rectangular reference images
811、821、831、841、851‧‧‧矩形圖形 811, 821, 831, 841, 851‧‧‧ rectangular shape
910‧‧‧多邊形校正片 910‧‧‧Polygon Correction Sheet
920‧‧‧多邊形參考影像 920‧‧‧Polygonal reference image
圖1是依照本發明的一實施例的光學顯影裝置的功能電路圖。 圖2是依照本發明的一實施例的光學顯影裝置的架構示意圖。 圖3是依照本發明的一實施例的動脈及靜脈的消光係數與波長的關係曲線圖。 圖4是依照本發明的一實施例的血管影像強度與空間頻率的關係曲線圖。 圖5A至圖5D是分別依照本發明的一實施例的多個血管影像的示意圖。 圖6是依照本發明的一實施例的光學顯影方法的流程圖。 圖7A至圖7C是分別依照本發明的一實施例的多個網格參考影像的示意圖。 圖8A至圖8E是分別依照本發明的一實施例的多個矩形參考影像的示意圖。 圖9是依照本發明的一實施例的投射多邊形參考影像至多邊形校正片的示意圖。FIG. 1 is a functional circuit diagram of an optical developing device according to an embodiment of the present invention. FIG. 2 is a schematic structural diagram of an optical developing device according to an embodiment of the invention. FIG. 3 is a graph showing the relationship between extinction coefficients and wavelengths of arteries and veins according to an embodiment of the present invention. FIG. 4 is a graph showing a relationship between an intensity of a blood vessel image and a spatial frequency according to an embodiment of the present invention. 5A to 5D are schematic diagrams of multiple blood vessel images according to an embodiment of the present invention, respectively. FIG. 6 is a flowchart of an optical developing method according to an embodiment of the present invention. 7A to 7C are schematic diagrams of a plurality of grid reference images according to an embodiment of the present invention, respectively. 8A to 8E are schematic diagrams of a plurality of rectangular reference images according to an embodiment of the present invention, respectively. FIG. 9 is a schematic diagram of projecting a polygon reference image onto a polygon correction sheet according to an embodiment of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107142799A TWI675644B (en) | 2018-11-29 | 2018-11-29 | Optical lithography device and optical lithography method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107142799A TWI675644B (en) | 2018-11-29 | 2018-11-29 | Optical lithography device and optical lithography method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI675644B true TWI675644B (en) | 2019-11-01 |
TW202019341A TW202019341A (en) | 2020-06-01 |
Family
ID=69189070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107142799A TWI675644B (en) | 2018-11-29 | 2018-11-29 | Optical lithography device and optical lithography method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI675644B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105266822A (en) * | 2014-05-27 | 2016-01-27 | 普林斯顿医疗科技(珠海)有限公司 | No-injury blood glucose detector based on blood raman scattering of blood vessels of eyes and detection method |
JP2016043161A (en) * | 2014-08-26 | 2016-04-04 | セイコーエプソン株式会社 | Biological information acquisition device and electronic apparatus |
US20180133411A1 (en) * | 2016-11-14 | 2018-05-17 | Xiang Yu | Systems and Methods for Detecting and Visualizing Blood Vessels |
JP2018143260A (en) * | 2015-07-30 | 2018-09-20 | アルプス電気株式会社 | Sensor module and living body-related information display system |
US20180317822A1 (en) * | 2015-11-20 | 2018-11-08 | Nirlus Engineering Ag | Noninvasive optical in-vivo determining of glucose concentration in flowing blood |
-
2018
- 2018-11-29 TW TW107142799A patent/TWI675644B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105266822A (en) * | 2014-05-27 | 2016-01-27 | 普林斯顿医疗科技(珠海)有限公司 | No-injury blood glucose detector based on blood raman scattering of blood vessels of eyes and detection method |
JP2016043161A (en) * | 2014-08-26 | 2016-04-04 | セイコーエプソン株式会社 | Biological information acquisition device and electronic apparatus |
JP2018143260A (en) * | 2015-07-30 | 2018-09-20 | アルプス電気株式会社 | Sensor module and living body-related information display system |
US20180317822A1 (en) * | 2015-11-20 | 2018-11-08 | Nirlus Engineering Ag | Noninvasive optical in-vivo determining of glucose concentration in flowing blood |
US20180133411A1 (en) * | 2016-11-14 | 2018-05-17 | Xiang Yu | Systems and Methods for Detecting and Visualizing Blood Vessels |
Also Published As
Publication number | Publication date |
---|---|
TW202019341A (en) | 2020-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106037674B (en) | A kind of vein imaging system based on high light spectrum image-forming | |
US9232887B2 (en) | Ophthalmic apparatus and ophthalmic method | |
US6175750B1 (en) | System and method for calibrating a reflection imaging spectrophotometer | |
EP1391176A1 (en) | Method and arrangement for performing measurements of the topography of a corneal surface | |
JP2009285447A (en) | Meibomian gland observing device | |
JP5928844B2 (en) | Corneal confocal microscope (CCM) | |
JP7219323B2 (en) | Apparatus and method for measuring tear film thickness | |
JP7053469B2 (en) | Systems and equipment for eye tracking | |
JPWO2017141524A1 (en) | Imaging apparatus, imaging method, and imaging system | |
JP2017104381A (en) | Information acquisition device, imaging device and information acquisition method | |
JP5996959B2 (en) | Fundus analyzer | |
KR101999224B1 (en) | Polarization beam splitter for prevention from internal reflection and ofnone-mydriatic fundus camera with linear polarization filter | |
TWI675644B (en) | Optical lithography device and optical lithography method | |
US10533838B2 (en) | Visualization systems and methods for optimized optical coherence tomography | |
CN111248855A (en) | Optical developing device and optical developing method | |
WO2019240300A1 (en) | Ophthalmic photography apparatus and ophthalmic photography system | |
WO2010113459A1 (en) | Ophthalmological observation device | |
EP3849396A1 (en) | Apparatus and methods for calibrating optical measurements | |
JP6771968B2 (en) | Information acquisition device, imaging device and information acquisition method | |
JP2011250976A (en) | Image processor, image processing method, and program | |
JP6898712B2 (en) | Ophthalmic equipment | |
JP7430082B2 (en) | Ophthalmological equipment and its operating method | |
JP3821720B2 (en) | Ophthalmic optical characteristic measuring device | |
TWI544897B (en) | Image detecting apparatus and image detecting method | |
JPS59105436A (en) | Medical endoscope |