TWI675538B - Power source controll circuit - Google Patents
Power source controll circuit Download PDFInfo
- Publication number
- TWI675538B TWI675538B TW107129396A TW107129396A TWI675538B TW I675538 B TWI675538 B TW I675538B TW 107129396 A TW107129396 A TW 107129396A TW 107129396 A TW107129396 A TW 107129396A TW I675538 B TWI675538 B TW I675538B
- Authority
- TW
- Taiwan
- Prior art keywords
- terminal
- switching element
- inductor
- coupled
- current
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
Abstract
本發明公開一種電源控制電路,為電流控制的磁滯控制電路,包括有一直流輸入電源、一輸入電容、一第一切換元件、一第二切換元件、一電感、一電流偵測器、一二極體、一第三切換元件、一磁滯電流控制器以及一負載。該電感的第一端耦接於該第一切換元件的第二端與該第二切換元件的第一端,該電感的第二端耦接於該第三切換元件的第一端,且電感輸出一脈寬調變PWM形式的輸出電流,該輸出電流在流入該負載中以驅動負載動作。本發明能針對現有的定電壓磁滯控制的缺失做改善,有效達到提供高精準度、反應速度快且大功率高電壓的電源控制目的,並適用於程式化電流(Program Current)的應用中。 The invention discloses a power supply control circuit, which is a current-controlled hysteresis control circuit, including a DC input power supply, an input capacitor, a first switching element, a second switching element, an inductor, a current detector, and a two A pole body, a third switching element, a hysteresis current controller, and a load. The first terminal of the inductor is coupled to the second terminal of the first switching element and the first terminal of the second switching element. The second terminal of the inductor is coupled to the first terminal of the third switching element. An output current in the form of pulse width modulated PWM is output, and the output current flows into the load to drive the load to operate. The invention can improve the existing lack of constant-voltage hysteresis control, effectively achieve the purpose of providing high-precision, fast response, high-power and high-voltage power supply control, and is suitable for the application of program current.
Description
本發明涉及一種電源控制電路,特別是一種以PWM形式輸出電流的電流型磁滯控制的電源控制電路。 The invention relates to a power supply control circuit, in particular to a power supply control circuit of current-type hysteresis control that outputs current in a PWM form.
在現有技術中,尤其是針對雷射二極體驅動電路(Laser Diode Driver)的控制電路中,一般而言都是採用傳統的迴授控制或是電壓磁滯控制。但這些現有技術,會伴隨者下列所述之缺失:傳統的磁滯控制IC大都是以定電壓的控制方式為主,若是要修改為定電流時則大都會以並聯式電阻器(Shunt Resistor)作為偵測,但是對於使用大電流的負載應用做驅動時,則使用Shunt Resistor的功率損耗將會非常大。又,若要減低Shunt Resistor的功率損耗,就必須將電阻本身放得非常小,如此,則精準度容易被硬體規格限制住,且提升硬體規格的成本,將會大幅度的上升。再者,目前定電壓技術應用上,需考量用並聯,則Shunt Resistor必須放置在高壓端(High-side)端,然而一般的電流感應IC(Current Sense IC)大都有耐壓的限制,耐壓越高精準度與反應速度越慢,將不利於未來發展的高壓機種。因此,有待且必要加以改善。 In the prior art, especially for a control circuit of a laser diode driver, a conventional feedback control or a voltage hysteresis control is generally used. However, these existing technologies will be accompanied by the following shortcomings: Traditional hysteresis control ICs are mostly based on a constant voltage control method, and if they are to be modified to a constant current, they are mostly shunt resistors. As a detection, but when driving with a large current load application, the power loss using the Shunt Resistor will be very large. In addition, to reduce the power loss of the Shunt Resistor, the resistor itself must be kept very small. In this way, the accuracy is easily limited by the hardware specifications, and the cost of upgrading the hardware specifications will increase significantly. In addition, in the current application of constant voltage technology, it is necessary to consider the use of parallel connection. The shunt resistor must be placed on the high-side. However, the general current sense IC has a limit of withstand voltage. The higher the accuracy and the slower the reaction speed, the higher voltage models will not be conducive to future development. Therefore, improvement is needed and necessary.
本發明公開一種電源控制電路,透過本發明的技術能夠多方面廣泛的被應用,有效改善傳統定電壓形式的磁滯控制,本發明亦能夠運用於多方面廣泛負載及可程式化負載電流(Program Current)的電路應用中,使其控制線路的應用較為簡化,不僅反應速度快且能運用於高功率大電流的電路應用中。 The invention discloses a power supply control circuit. The technology of the invention can be widely applied in various aspects, effectively improving the hysteresis control of the traditional constant voltage form. The invention can also be applied to a wide range of loads and programmable load currents. In the current) circuit application, the application of its control circuit is simplified, which not only has fast response speed, but also can be used in high power and high current circuit applications.
本發明的一種電源控制電路,係用於驅動高功率大電流的負載,該電源控制電路包括有:一直流輸入電源Vin;一輸入電容C1,與該直流輸入電源Vin並聯:一第一切換元件Q1,該第一切換元件Q1的第一端耦接於該直流輸入電源Vin的正極端;一第二切換元件Q2,該第二切換元件Q2的第一端耦接於該第一切換元件Q1的第二端,該第二切換元件Q2的第二端耦接於該直流輸入電源Vin的負極端;一電感L1,該電感L1的第一端耦接於該第一切換元件Q1的第二端,該電感L1輸出一脈寬調變PWM形式的輸出電流Io;一電流偵測器,該電流偵測器與該電感L1串接,用以偵測該輸出電流Io,且輸出一電流偵測訊號CC;一二極體D1,該二極體D1的陽極端耦接於該電感L1的第二端,該二極體D1的陰極端耦接於該直流輸入電源Vin的正極端;一第三切換元件Q3,該第三切換元件Q3的第一端耦接於該二極體D1的陽極端,該第三切換元件Q3的第二端耦接於該直流輸入電源Vin的負極端;一負載,該負載耦接於該第三切換元件Q3的第一端與該第三切換元件Q3的第二端之間,並由該輸出電流Io所驅動;一磁滯電流控制器,該磁滯電流控制器是分別與該第一切換元件Q1、該第二切換元件Q2及該第三切換元件Q3的個別控制端相耦接,及輸入有該電流偵測訊號CC,且輸入有一脈波及一電流控制訊號PC,該磁滯電流控制器用以提供該第一~第三切換元件Q1~Q3所需要的驅動訊號;其中該輸出電流Io能依據該負載的需求做調整而具有一位移準位。 A power supply control circuit of the present invention is used to drive a high-power and high-current load. The power supply control circuit includes: a DC input power source Vin; an input capacitor C1 connected in parallel with the DC input power source Vin: a first switching element Q1, the first terminal of the first switching element Q1 is coupled to the positive terminal of the DC input power source Vin; a second switching element Q2, the first terminal of the second switching element Q2 is coupled to the first switching element Q1 The second terminal of the second switching element Q2 is coupled to the negative terminal of the DC input power source Vin; an inductor L1, the first terminal of the inductor L1 is coupled to the second terminal of the first switching element Q1 Terminal, the inductor L1 outputs an output current Io in the form of pulse width modulation PWM; a current detector, the current detector is connected in series with the inductor L1 to detect the output current Io, and outputs a current detection Measurement signal CC; a diode D1, the anode terminal of the diode D1 is coupled to the second terminal of the inductor L1, and the cathode terminal of the diode D1 is coupled to the positive terminal of the DC input power source Vin; A third switching element Q3, and a first terminal of the third switching element Q3 is coupled to the third switching element Q3; The anode terminal of the electrode body D1, the second terminal of the third switching element Q3 is coupled to the negative terminal of the DC input power source Vin, and a load, the load is coupled to the first terminal of the third switching element Q3 and the first terminal Between the second ends of the three switching elements Q3 and driven by the output current Io; a hysteresis current controller, the hysteresis current controller is connected to the first switching element Q1, the second switching element Q2 and Individual control terminals of the third switching element Q3 are coupled, and the current detection signal CC is input, and a pulse wave and a current control signal PC are input. The hysteresis current controller is used to provide the first to third switching. The driving signals required by the components Q1 to Q3; the output current Io can be adjusted according to the demand of the load to have a displacement level.
本發明在一實施例中,所述電源控制電路之中的該磁滯電流控制器包括有:一迴授比較器,該迴授比較器的非反向輸入端是輸入該電流偵測訊號CC,該迴授比較器的反向輸入端是耦接一電阻RCC1後接地,並經由一電阻RCC2連接到該迴授比較器的輸出端;一磁滯放大器,該磁滯放大器的非反向輸入端耦接該電流控制訊號PC,該磁滯放大器的反向輸入端耦接於該迴授比較器 的輸出端;一延時電路,該延時電路的輸入端耦接於該磁滯放大器的輸出端,該延時電路並輸出一第一延時訊號Hin及一第二延時訊號Lin;一第一驅動電路,是輸入該第一延時訊號Hin及該第二延時訊號Lin,並輸出一第一H驅動訊號及一第一L驅動訊號,該第一H驅動訊號耦接於該第一切換元件Q1的控制端,該第一L驅動訊號耦接於該第二切換元件Q2的控制端;及一第二驅動電路,是輸入該脈波,並輸出一第二OUT驅動訊號,該第二OUT驅動訊號耦接於該第三切換元件Q3的控制端。 According to an embodiment of the present invention, the hysteresis current controller in the power control circuit includes: a feedback comparator, and a non-inverting input terminal of the feedback comparator inputs the current detection signal CC. The inverting input of the feedback comparator is coupled to a resistor RCC1 and grounded, and is connected to the output of the feedback comparator via a resistor RCC2; a hysteresis amplifier, a non-inverting input of the hysteresis amplifier Terminal is coupled to the current control signal PC, and the inverting input terminal of the hysteresis amplifier is coupled to the feedback comparator An output terminal of the delay circuit, the input terminal of the delay circuit is coupled to the output of the hysteresis amplifier, and the delay circuit outputs a first delay signal Hin and a second delay signal Lin; a first drive circuit, The first delay signal Hin and the second delay signal Lin are input, and a first H driving signal and a first L driving signal are output. The first H driving signal is coupled to the control terminal of the first switching element Q1. The first L driving signal is coupled to the control terminal of the second switching element Q2; and a second driving circuit is for inputting the pulse wave and outputting a second OUT driving signal, and the second OUT driving signal is coupled At the control terminal of the third switching element Q3.
10‧‧‧磁滯電流控制器 10‧‧‧ Hysteresis Current Controller
20‧‧‧迴授比較器 20‧‧‧Feedback comparator
22‧‧‧第一放大器 22‧‧‧The first amplifier
25‧‧‧濾波電路 25‧‧‧filter circuit
30‧‧‧磁滯放大器 30‧‧‧ Hysteresis Amplifier
32‧‧‧第二放大器 32‧‧‧Second Amplifier
40‧‧‧延時電路 40‧‧‧ Delay circuit
41‧‧‧第一反向器 41‧‧‧First inverter
42‧‧‧第二反向器 42‧‧‧Second Inverter
43‧‧‧第三反向器 43‧‧‧third inverter
50‧‧‧第一驅動電路 50‧‧‧first drive circuit
52‧‧‧放大器 52‧‧‧amplifier
60‧‧‧保護電路 60‧‧‧Protection circuit
70‧‧‧第二驅動電路 70‧‧‧Second driving circuit
72‧‧‧脈波轉換器 72‧‧‧ Pulse Converter
80‧‧‧電流偵測器 80‧‧‧Current Detector
90‧‧‧負載 90‧‧‧ load
Vin‧‧‧直流輸入電源 Vin‧‧‧DC input power
C1‧‧‧輸入電容 C1‧‧‧ input capacitor
Io‧‧‧輸出電流 Io‧‧‧Output current
L1‧‧‧電感 L1‧‧‧Inductance
Q1~Q3‧‧‧第一~第三切換元件 Q1 ~ Q3‧‧‧‧1st ~ 3rd switching element
D1、DL1~DLN‧‧‧二極體 D1, DL1 ~ DLN‧‧‧diodes
RCC1、RCC2‧‧‧電阻 RCC1, RCC2‧‧‧ resistance
C1a、C1b、CZ1、CZ2‧‧‧電容 C1a, C1b, CZ1, CZ2‧‧‧Capacitors
RZ1、RZ2‧‧‧電阻 RZ1, RZ2‧‧‧ resistance
DZ1~DZ4‧‧‧二極體 DZ1 ~ DZ4‧‧‧Diode
Q101~Q106、Q108~Q110、Q200‧‧‧切換開關 Q101 ~ Q106, Q108 ~ Q110, Q200‧‧‧Switch
L11‧‧‧第一電感 L11‧‧‧First inductor
L12‧‧‧第二電感 L12‧‧‧Second inductor
D11、D12、D25、D26‧‧‧二極體 D11, D12, D25, D26‧‧‧ diodes
R11~R13、R25、R26‧‧‧電阻 R11 ~ R13, R25, R26‧‧‧ resistance
S1‧‧‧開關元件 S1‧‧‧Switching element
PULSE‧‧‧脈波 PULSE‧‧‧pulse
PC‧‧‧電流控制訊號 PC‧‧‧Current control signal
CC‧‧‧電流偵測訊號 CC‧‧‧Current detection signal
IPWM‧‧‧電流脈波控制訊號 IPWM‧‧‧Current pulse control signal
ISET‧‧‧電流設定訊號 ISET‧‧‧Current setting signal
ISIM‧‧‧電流位移控制訊號 ISIM‧‧‧Current displacement control signal
Hin‧‧‧第一延時訊號 Hin‧‧‧First Delay Signal
Lin‧‧‧第二延時訊號 Lin‧‧‧Second Delay Signal
HO‧‧‧第一HO驅動訊號 HO‧‧‧The first HO drive signal
HS‧‧‧第一HS驅動訊號 HS‧‧‧First HS driving signal
LO‧‧‧第一LO驅動訊號 LO‧‧‧The first LO drive signal
LS‧‧‧第一LO驅動訊號 LS‧‧‧The first LO drive signal
OUTH‧‧‧第二OUTH驅動訊號 OUTH‧‧‧Second OUTH driving signal
OUTL‧‧‧第二OUTL驅動訊號 OUTL‧‧‧Second OUTL drive signal
SH‧‧‧電流位移 SH‧‧‧Current displacement
SP‧‧‧突波 SP‧‧‧Surge
圖1為本發明實施例之電路及電路方塊連接示意圖;圖2為圖2A及圖2B相組合連接之示意圖;圖2A為本發明實施例中之主電路架構一部分實施示意圖;圖2B為本發明實施例中之主電路架構另一部分實施示意圖;圖3為本發明實施例之部分的磁滯電流控制器內部實施示意圖;圖4為本發明實施例之第一驅動電路輸出/輸入訊號的實施示意圖;圖5為本發明實施例之第二驅動電路輸出/輸入訊號的實施示意圖;圖6為本發明實施例之電流控制訊號實施示意圖;圖7為本發明實施例之電流脈波控制訊號實施示意圖;圖8為本發明實施例之輸出電流波形示意圖;圖9為本發明實施例之電感實施示意圖;圖10為本發明實施例之電感特性示意圖;圖11為本發明中電感L1的實施例示意圖;圖12為本發明中電感L1的另一實施例示意圖。 FIG. 1 is a schematic diagram of a circuit and a circuit block connection according to an embodiment of the present invention; FIG. 2 is a schematic diagram of a combination connection of FIG. 2A and FIG. 2B; FIG. 2A is a schematic diagram of a part of an implementation of a main circuit architecture in an embodiment of the present invention; Another embodiment of the main circuit architecture in the embodiment is implemented diagram; FIG. 3 is a schematic diagram of the internal implementation of a hysteresis current controller in part of the embodiment of the present invention; FIG. 4 is an implementation diagram of the first drive circuit output / input signal in the embodiment of the present invention ; Figure 5 is a schematic diagram of the implementation of the second drive circuit output / input signal according to the embodiment of the present invention; Figure 6 is a schematic diagram of the implementation of the current control signal of the embodiment of the present invention; Figure 7 is a schematic diagram of the implementation of the current pulse control signal of the embodiment of the present invention Figure 8 is a schematic diagram of an output current waveform according to an embodiment of the present invention; Figure 9 is a schematic diagram of an inductor implementation according to an embodiment of the present invention; Figure 10 is a schematic diagram of an inductor characteristic according to an embodiment of the present invention; 12 is a schematic diagram of another embodiment of the inductor L1 in the present invention.
在下文中將參閱隨附圖式,藉以更充分地描述各種例示性實 施例,並在隨附圖式中展示一些例示性實施例。然而,本發明之概念可能以許多不同形式來加以體現,且不應解釋為僅限於本文中所闡述之例示性實施例。確切而言,提供此等例示性實施例使得本發明將為詳盡且完整,且將向熟習此項技術者充分傳達本發明概念的範疇。在諸圖式中,可為了清楚而誇示電路方塊與電路元件與各個裝置之相對應位置,其中對於類似英文標號或數字,始終指示類似元件。 In the following, reference is made to the accompanying drawings to describe more fully the various illustrative examples. Examples, and some exemplary embodiments are shown in the accompanying drawings. However, the concept of the invention may be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these exemplary embodiments are provided so that this invention will be thorough and complete, and will fully convey the scope of the inventive concept to those skilled in the art. In the drawings, the corresponding positions of circuit blocks and circuit elements and various devices may be exaggerated for the sake of clarity, and for similar English labels or numbers, similar elements are always indicated.
應理解,雖然在本文中可能使用術語開關元件係包括有切換元件、切換開關或開關元件,是指一種切換元件的表達術語,但並不限定是採用IGBT、BJT、MOS、CMOS、JFET或是MOSFET之N通道或P通道,即此等元件不應受此等電子元件實際產品術語之限制。以及本文所出現之第一、第二、第三…;或是第一切換元件Q1、第三切換元件Q3;或輸入電容C1、電容C10、電容CZ1;或是二極體D1、二極體D2…,此等術語乃用以清楚地區分一元件與另一元件,並非具有一定的元件的先後數字的順序關係,即有可能會有第一切換元件Q1、第三切換元件Q3而可能無第二切換元件Q2之實施態樣,亦即電路元件標示的號碼/數字,乃非一定具有連續之序號作為元件符號之標示關係。 It should be understood that although the term switching element may be used in this document to include a switching element, a switching switch, or a switching element, which is an expression term for a switching element, it is not limited to using IGBT, BJT, MOS, CMOS, JFET, The N-channel or P-channel of the MOSFET, that is, these components should not be limited by the actual product term of these electronic components. And the first, second, third ... appearing in this article; or the first switching element Q1, the third switching element Q3; or the input capacitor C1, the capacitor C10, the capacitor CZ1; or the diode D1, the diode D2 ..., these terms are used to clearly distinguish one element from another, and do not have a sequential relationship between the numbers of certain elements, that is, there may be a first switching element Q1 and a third switching element Q3 and there may be no The implementation aspect of the second switching element Q2, that is, the number / number marked by the circuit element, does not necessarily have a continuous serial number as the marking relationship of the component symbol.
如本文中所使用術語之第一端、第二端、上端或下端、左端或右端、左側(端)或右側(端)、一次側或二次側等等,此等術語乃用以清楚地區分一個元件的一端點與該元件的另一端點,或為區分一元件與另一元件之間的連接關係,或是一個端點與另一個端點之間係為不同,其並非用以限制該文字序號所呈現之順序關係或是位置關係,且非必然有數字上連續的關係。又,可能使用了術語「及/或」包括相關聯之列出項目中之任一者及一或多者之所有組合。再者,本文可能使用術語「複數個」或是「至少兩個」來描述具有多個元件,但此等複數個元件或至少兩個元件,乃不僅限於實施有二個、三個或四個及四個以上的元件數目表示所實 施的技術。 As used herein, the terms first, second, upper or lower, left or right, left (end) or right (end), primary or secondary, etc. are used for clarity. Dividing one end point of an element and the other end point of the element, or to distinguish the connection relationship between one element and another element, or the difference between one end point and the other end point, which is not intended to limit The sequence or positional relationship presented by the text serial number does not necessarily have a numerically continuous relationship. Also, the term "and / or" may be used to include all combinations of any one and one or more of the associated listed items. Furthermore, the term "plurality" or "at least two" may be used herein to describe having multiple elements, but such plural elements or at least two elements are not limited to two, three, or four implementations. And the number of components Applied technology.
本發明係用於驅動高功率大電流的負載,為了解決舊有的定電壓磁滯控制線路的缺失,提出一整套的電源控制電路的解決方案,是包含有主架構的SR-BUCK的降壓型電路,搭配霍爾元件(Hall CT)型態的電流偵測器,以及由申請人自行研發成功的電流型態的磁滯控制線路而加以實施。圖1所示,本發明之電源控制電路,包括有:一直流輸入電源Vin、一輸入電容C1、一第一切換元件Q1、一第二切換元件Q2、一電感L1、一電流偵測器80、一二極體D1、一第三切換元件Q3、一磁滯電流控制器10以及一負載90。其中,所述的直流輸入電源Vin可以是前端由另外的一個由交流AC轉換為直流DC的交流/直流轉換器所輸出的直流電源,來作為該直流輸入電源Vin。輸入電容C1是與直流輸入電源Vin並聯;第一切換元件Q1有第一端(如圖1中第一切換元件Q1的上端所示)、第二端(如圖1中第一切換元件Q1的下端所示)以及一控制端(即Q1的閘極端),該第一切換元件Q1的第一端耦接於該直流輸入電源Vin的正極端。在同樣切換元件各端名稱的定義下,第二切換元件Q2的第一端則是耦接於該第一切換元件Q1的第二端,第二切換元件Q2的第二端耦接於該直流輸入電源Vin的負極端。 The invention is used to drive a high-power and high-current load. In order to solve the lack of the conventional constant-voltage hysteresis control circuit, a solution for a complete set of power control circuits is proposed. The circuit is implemented with Hall current (Hall CT) type current detector and the current type hysteresis control circuit successfully developed by the applicant. As shown in FIG. 1, the power control circuit of the present invention includes a DC input power source Vin, an input capacitor C1, a first switching element Q1, a second switching element Q2, an inductor L1, and a current detector 80. , A diode D1, a third switching element Q3, a hysteresis current controller 10, and a load 90. The DC input power source Vin may be a DC power source outputted from another AC / DC converter that is converted from AC AC to DC DC at the front end, as the DC input power source Vin. The input capacitor C1 is connected in parallel with the DC input power source Vin; the first switching element Q1 has a first terminal (as shown in the upper end of the first switching element Q1 in FIG. 1) and a second terminal (as in the first switching element Q1 in FIG. 1). (Shown at the lower end) and a control terminal (ie, the gate terminal of Q1). The first terminal of the first switching element Q1 is coupled to the positive terminal of the DC input power source Vin. Under the same definition of the names of the terminals of the switching element, the first terminal of the second switching element Q2 is coupled to the second terminal of the first switching element Q1, and the second terminal of the second switching element Q2 is coupled to the DC The negative terminal of the input power Vin.
電感L1的第一端(如圖1中電感L1的左端)耦接於該第一切換元件Q1的第二端,且所述電感L1是輸出一脈寬調變PWM形式的輸出電流Io。所述電流偵測器80是與電感L1串接的連接方式,是用以偵測該輸出電流Io的電流狀態,且電流偵測器80是輸出一電流偵測訊號CC,以作為後續控制電流相關操作之用。在一實施例中,所述電流偵測器80於實際電路上,是以一霍爾電流偵測元件(Hall CT)而實施,但不限於現有市面上所販售的霍爾電流偵測元件。圖1的二極體D1的陽極端耦接於該電感L1的第二端,該二極體D1的陰極端耦接於該直流輸入電源Vin的正極端; 第三切換元件Q3的第一端耦接於該二極體D1的陽極端,第三切換元件Q3的第二端耦接於該直流輸入電源Vin的負極端。負載90乃是耦接於第三切換元件Q3的第一端與該第三切換元件Q3的第二端之間,並由該輸出電流Io所驅動。 The first end of the inductor L1 (such as the left end of the inductor L1 in FIG. 1) is coupled to the second end of the first switching element Q1, and the inductor L1 outputs an output current Io in the form of a PWM. The current detector 80 is connected in series with the inductor L1 to detect the current state of the output current Io, and the current detector 80 outputs a current detection signal CC as a subsequent control current. Related operations. In an embodiment, the current detector 80 is implemented by a Hall current detection element (Hall CT) on the actual circuit, but it is not limited to the Hall current detection element currently sold in the market. . The anode terminal of the diode D1 of FIG. 1 is coupled to the second terminal of the inductor L1, and the cathode terminal of the diode D1 is coupled to the positive terminal of the DC input power source Vin; The first terminal of the third switching element Q3 is coupled to the anode terminal of the diode D1, and the second terminal of the third switching element Q3 is coupled to the negative terminal of the DC input power source Vin. The load 90 is coupled between the first terminal of the third switching element Q3 and the second terminal of the third switching element Q3, and is driven by the output current Io.
在一實施例中,本發明所述的負載90是能由複數個二極體DL1~DLN的串聯連接所組成,所述的二極體DL1~DLN中,每一二極體DL1~DLN能夠是雷射發光二極體,亦即在實際電路實施時,負載90是由多個雷射發光二極體所串接而組成的負載90。此外,本發明所提出的電源控制電路亦能夠運用於LED PWM Dimming的LED脈寬調變調光照明的電路中,此時負載90即為LED PWM的調光照明負載;又能運用於UV Coating的紫外線塗層機台的電源供應來源,此時負載90為紫外線塗層機台;還能運用於各種高速電流脈波的應用場合。顯見本發明極具有未來高壓大功率機種的應用潛力。 In one embodiment, the load 90 according to the present invention can be composed of a plurality of diodes DL1 to DLN connected in series. Among the diodes DL1 to DLN, each diode DL1 to DLN can It is a laser light emitting diode, that is, in the actual circuit implementation, the load 90 is a load 90 composed of a plurality of laser light emitting diodes connected in series. In addition, the power supply control circuit proposed by the present invention can also be applied to the LED pulse width modulation dimming circuit of LED PWM Dimming. At this time, the load 90 is the dimming lighting load of the LED PWM; and it can also be applied to UV coating. The source of power supply for the UV coating machine. At this time, the load 90 is the UV coating machine. It can also be used in various high-speed current pulse applications. It is obvious that the present invention has great application potential for future high voltage and high power models.
圖1的磁滯電流控制器10為發明人自行設計的電路,其中磁滯電流控制器10是分別與第一切換元件Q1、第二切換元件Q2及第三切換元件Q3的控制端相耦接;且磁滯電流控制器10是輸入有該電流偵測訊號CC,另外輸入有一脈波PULSE及一電流控制訊號PC,磁滯電流控制器10用以提供該第一~第三切換元件Q1~Q3所需要的驅動訊號,亦即為磁滯電流控制器10為驅動第一~第三切換元件Q1~Q3執行高頻切換操作的主要驅動電路。 The hysteresis current controller 10 of FIG. 1 is a circuit designed by the inventor. The hysteresis current controller 10 is coupled to the control terminals of the first switching element Q1, the second switching element Q2, and the third switching element Q3, respectively. ; And the hysteresis current controller 10 is inputted with the current detection signal CC, and a pulse PULSE and a current control signal PC are input, and the hysteresis current controller 10 is used to provide the first to third switching elements Q1 to The driving signal required by Q3 is the main driving circuit for the hysteresis current controller 10 to drive the first to third switching elements Q1 to Q3 to perform high-frequency switching operations.
有關磁滯電流控制器10的內部電路包括有一迴授比較器20、一磁滯放大器30、一延時電路40、一第一驅動電路50、一保護電路60以及一第二驅動電路70。其中迴授比較器20的非反向輸入端(+)是輸入該電流偵測訊號CC,迴授比較器20的反向輸入端(-)是耦接一電阻RCC1後接地,並經由一電阻RCC2連接到該迴授比較器20的輸出端。磁滯放大器30的非反向輸入端(+)耦接該電流控制訊號PC,磁滯放大器30的反向輸入端(-)耦接於迴授 比較器20的輸出端。延時電路40的輸入端耦接於磁滯放大器30的輸出端,且延時電路40並輸出一第一延時訊號Hin及一第二延時訊號Lin(如圖3所示)。第一驅動電路50是輸入該第一延時訊號Hin及該第二延時訊號Lin,並輸出一第一H驅動訊號及一第一L驅動訊號,該第一H驅動訊號耦接於該第一切換元件Q1的控制端,該第一L驅動訊號耦接於該第二切換元件Q2的控制端,關於第一H驅動訊號及第一L驅動訊號的進一步說明於圖2A中再述。另外,第二驅動電路70是輸入該脈波(PULSE),並輸出一第二OUT驅動訊號,該第二OUT驅動訊號耦接於該第三切換元件Q3的控制端,進一步說明於圖2B中再述。 The internal circuit of the hysteresis current controller 10 includes a feedback comparator 20, a hysteresis amplifier 30, a delay circuit 40, a first driving circuit 50, a protection circuit 60, and a second driving circuit 70. The non-inverting input terminal (+) of the feedback comparator 20 is used to input the current detection signal CC. The inverting input terminal (-) of the feedback comparator 20 is coupled to a resistor RCC1 and grounded. RCC2 is connected to the output terminal of the feedback comparator 20. The non-inverting input terminal (+) of the hysteresis amplifier 30 is coupled to the current control signal PC, and the inverting input terminal (-) of the hysteresis amplifier 30 is coupled to the feedback Comparator 20 output. An input terminal of the delay circuit 40 is coupled to an output terminal of the hysteresis amplifier 30, and the delay circuit 40 also outputs a first delay signal Hin and a second delay signal Lin (as shown in FIG. 3). The first driving circuit 50 inputs the first delayed signal Hin and the second delayed signal Lin, and outputs a first H driving signal and a first L driving signal. The first H driving signal is coupled to the first switch. The control terminal of the element Q1. The first L driving signal is coupled to the control terminal of the second switching element Q2. Further description of the first H driving signal and the first L driving signal is described in FIG. 2A. In addition, the second driving circuit 70 inputs the pulse wave (PULSE) and outputs a second OUT driving signal. The second OUT driving signal is coupled to the control terminal of the third switching element Q3, which is further described in FIG. 2B. Again.
保護電路60的輸出是耦接於第一驅動電路50,用以執行電路保護的作用。保護電路60再實際電路運用上,為一關閉栓鎖(OFF-Latch)的邏輯或閘(Logic OR Gate),該邏輯或閘輸入有一過電流訊號OCP與一過溫度訊號OTP,並輸出一關閉訊號,該關閉訊號連接到該第一驅動電路50;當發生過電流或是過溫度之情形時,會切斷該第一驅動電路50的驅動訊號輸出,使整個電源控制電路停止電路運作。 The output of the protection circuit 60 is coupled to the first driving circuit 50 to perform a circuit protection function. The protection circuit 60 is an OFF-Latch logic OR gate. The logic OR gate has an over-current signal OCP and an over-temperature signal OTP, and outputs a shutdown signal. The shutdown signal is connected to the first driving circuit 50; when an over-current or over-temperature situation occurs, the driving signal output of the first driving circuit 50 is cut off, so that the entire power control circuit stops the circuit operation.
上述本發明案的圖1所示的主要架構電路中,在輸出端部分沒有接上大電容;一般而言,降壓型的Buck Converter線路的輸出端都還是會有設置一個大電容,一方面是接續傳遞能量,另一方面則有助於削減鏈波(ripple)。但,本發明案並沒有設置大電容,此乃因為應用在雷射相關的負載90時,輸出是以脈寬調變PWM的形式,並不需要接續傳遞能量,故,削減鏈波(ripple)的工作就完全放在主電感L1上面。在一實際運用實施例上,本發明輸出頻率的應用為5k Hz,輸出電流為0-50安培(A)。 In the main architecture circuit shown in FIG. 1 of the present invention, a large capacitor is not connected to the output terminal. Generally, a large capacitor is still provided at the output terminal of the buck converter circuit. It transfers energy successively, and on the other hand, it helps to reduce ripples. However, the present invention does not provide a large capacitor. This is because the output is in the form of pulse width modulation PWM when applied to a laser-related load 90, and does not need to continuously transfer energy, so the ripple is reduced. The work is completely placed on the main inductor L1. In a practical embodiment, the application of the output frequency of the present invention is 5k Hz, and the output current is 0-50 amps (A).
圖2為圖2A及圖2B為相連接的電路,乃是進一步對應於圖1中的主電路架構的一實施例說明,前述的第一切換元件Q1是由圖2A的一切換開關Q101、一切換開關Q102及一切換開關Q103 等三個元件所並聯接組成;該第二切換元件Q2是由一切換開關Q104、一切換開關Q105及一切換開關Q106三個元件所並聯接組成;該第三切換元件Q3是由一切換開關Q108、一切換開關Q109及一切換開關Q110三個元件所並聯接組成。 FIG. 2 is a circuit diagram connected to FIG. 2A and FIG. 2B, which is an embodiment description further corresponding to the main circuit architecture in FIG. 1. The aforementioned first switching element Q1 is a switching switch Q101, a Switch Q102 and a switch Q103 The third switching element Q2 is composed of a switching switch Q104, a switching switch Q105, and a switching switch Q106. The third switching element Q3 is composed of a switching switch. The three elements Q108, a changeover switch Q109 and a changeover switch Q110 are connected in parallel.
另外所述的第一H驅動訊號包括有一第一HO驅動訊號及一第一HS驅動訊號,以及所述的第一L驅動訊號包括有一第一LO驅動訊號及一第一LS驅動訊號。該第一HO驅動訊號連接到切換開關Q101的控制端,同時連接到切換開關Q102的控制端且連接到切換關Q103的控制端。該第一HS驅動訊號則是連接到該切換開關Q101的控制端且耦接於該切換開關Q101的第二端,同時連接到該切換開關Q102的控制端且耦接於該切換開關Q102的第二端,以及連接到該切換開關Q103的控制端且耦接於該切換開關Q103的第二端。此外,該第一LO驅動訊號連接到該切換開關Q104的控制端,同時連接到該切換開關Q105的控制端,以及連接到該切換開關Q106的控制端。又,第一LS驅動訊號連接於直流輸入電源Vin的負極端,且該第一LS驅動訊號連接到該切換開關Q104的控制端且耦接於該切換開關Q104的第二端,同時連接到該切換開關Q105的控制端且耦接於該切換開關Q105的第二端,以及連接到該切換開關Q106的控制端且耦接於該切換開關Q106的第二端。 In addition, the first H driving signal includes a first HO driving signal and a first HS driving signal, and the first L driving signal includes a first LO driving signal and a first LS driving signal. The first HO driving signal is connected to the control terminal of the switch Q101, and is also connected to the control terminal of the switch Q102 and to the control terminal of the switch Q103. The first HS driving signal is connected to the control end of the changeover switch Q101 and is coupled to the second end of the changeover switch Q101, and is also connected to the control end of the changeover switch Q102 and coupled to the first end of the changeover switch Q102. Two terminals, and a control terminal connected to the switch Q103 and coupled to a second terminal of the switch Q103. In addition, the first LO driving signal is connected to a control terminal of the changeover switch Q104, at the same time connected to a control terminal of the changeover switch Q105, and a control terminal of the changeover switch Q106. In addition, a first LS driving signal is connected to a negative terminal of the DC input power source Vin, and the first LS driving signal is connected to a control terminal of the changeover switch Q104 and coupled to a second end of the changeover switch Q104, and is also connected to the A control terminal of the changeover switch Q105 is coupled to the second terminal of the changeover switch Q105, and a control terminal of the changeover switch Q106 is coupled to the second terminal of the changeover switch Q106.
在一實施例中,若是僅有一個第一切換元件Q1(如圖1所示)則該第一HO驅動訊號連接到該第一切換元件Q1的控制端;該第一HS驅動訊號連接到該第一切換元件Q1的控制端且耦接於該第一切換元件Q1的第二端。同樣的,若是僅有一第二切換元件Q2,則該第一LO驅動訊號連接到該第二切換元件Q2的控制端;該第一LS驅動訊號連接到該第二切換元件Q2的控制端且耦接於該第二切換元件Q2的第二端。 In one embodiment, if there is only one first switching element Q1 (as shown in FIG. 1), the first HO driving signal is connected to the control end of the first switching element Q1; the first HS driving signal is connected to the first switching element Q1. The control terminal of the first switching element Q1 is coupled to the second terminal of the first switching element Q1. Similarly, if there is only a second switching element Q2, the first LO driving signal is connected to the control terminal of the second switching element Q2; the first LS driving signal is connected to the control terminal of the second switching element Q2 and is coupled Connected to the second terminal of the second switching element Q2.
在圖2A中,切換開關Q103的第一端及第二端之間並聯有一 二極體DZ1,實際電路運用上為一嵌位二極體,使切換開關Q103的第一、二端之間能嵌位在一電壓準位中,該二極體DZ1並且與一電阻RZ1與一電容CZ1的串聯接線路所並聯而連接;同樣的,切換開關Q106的第一端及第二端之間並聯有一二極體DZ2,在運用上為一嵌位二極體,使切換開關Q106的第一、二端之間能嵌位在一電壓準位中,該二極體DZ2是與一電阻RZ2與一電容CZ2的串聯接線路所並聯連接。 In FIG. 2A, a first end and a second end of the switch Q103 are connected in parallel. Diode DZ1, the actual circuit is an embedded diode, so that the first and second ends of the switch Q103 can be embedded in a voltage level, the diode DZ1 and a resistor RZ1 and A series connection of a capacitor CZ1 is connected in parallel; similarly, a diode DZ2 is connected in parallel between the first end and the second end of the changeover switch Q106, which is an embedded diode in operation to make the changeover switch The first and second terminals of Q106 can be embedded in a voltage level. The diode DZ2 is connected in parallel with a series connection line of a resistor RZ2 and a capacitor CZ2.
圖2B中顯示了電感L1的第二種實施例,亦即電感L1是透過一第一電感L11及一第二電感L12所組成,且是由第一電感L11及第二電感L12兩者串聯所組成,也就是說流經電感L1上的電流,也同時是為流經過第一電感L11的電流,並再流經過第二電感L12之後輸出。其中第一電感L11的一端是先耦接於電流偵測器80的一端,再由電流偵測器80的另一端(亦即電流輸出端)而連接該第二電感L12的一端,將輸出電流Io輸出至負載90,如此連接方式使得電流偵測器80得以偵測該輸出電流Io的電流狀態,作為後續電流控制之依據。二極體D1則是由二極體D11與二極體D12並聯連接所組成。需聲明者,本發明在實際運用時,有關電感元件的實際元件繞線製作時,能夠是如圖1所述的做成單一電感L1,亦可為如圖2B所示的由第一電感L11以及第二電感L12兩個電感串聯所組成的電感元件,本發明並不加以限制。 FIG. 2B shows a second embodiment of the inductor L1, that is, the inductor L1 is composed of a first inductor L11 and a second inductor L12, and is formed by connecting the first inductor L11 and the second inductor L12 in series. The composition, that is to say, the current flowing through the inductor L1 is also the current flowing through the first inductor L11 and then flows through the second inductor L12 to be output. One end of the first inductor L11 is firstly coupled to one end of the current detector 80, and then the other end of the current detector 80 (ie, the current output end) is connected to one end of the second inductor L12 to output current. Io is output to the load 90. In this connection, the current detector 80 can detect the current state of the output current Io as a basis for subsequent current control. Diode D1 is composed of diode D11 and diode D12 connected in parallel. It needs to be stated that in actual application of the present invention, when the actual element winding of the inductive element is manufactured, it can be made as a single inductor L1 as described in FIG. 1, or it can be a first inductor L11 as shown in FIG. 2B. And the inductor element composed of two inductors L12 in series is not limited in the present invention.
關於第三切換元件Q3是由切換開關Q108、切換開關Q109及切換開關Q110所並聯接組成,所述的第二OUT驅動訊號包括有一第二OUTH驅動訊號及一第二OUTL驅動訊號。該第二OUTH驅動訊號連接到該切換開關Q108的控制端,同時連接到該切換開關Q109的控制端,以及連接到該切換開關Q110的控制端。該第二OUTL驅動訊號連接到該切換開關Q108的控制端,同時連接到該切換開關Q109的控制端,以及連接到該切換開關Q110的控制端。 The third switching element Q3 is composed of a switching switch Q108, a switching switch Q109, and a switching switch Q110 connected in parallel. The second OUT driving signal includes a second OUTH driving signal and a second OUTL driving signal. The second OUTH driving signal is connected to the control terminal of the changeover switch Q108, at the same time to the control terminal of the changeover switch Q109, and to the control terminal of the changeover switch Q110. The second OUTL driving signal is connected to the control terminal of the changeover switch Q108, at the same time to the control terminal of the changeover switch Q109, and to the control terminal of the changeover switch Q110.
在一實施例中,若是僅有一個第三切換元件Q3,則該第二OUTH驅動訊號連接到該第三切換元件Q3的控制端;該第二OUTL驅動訊號連接到該第三切換元件Q3的控制端。另外,圖2B中負載90的兩端之間並聯接有一二極體DZ3與一二極體DZ4兩者的串聯接線路,使得負載90的兩端電壓能夠被嵌位於由二極體DZ3與DZ4串聯接所形成的電壓準位。 In one embodiment, if there is only one third switching element Q3, the second OUTH driving signal is connected to the control terminal of the third switching element Q3; the second OUTL driving signal is connected to the third switching element Q3. Control terminal. In addition, in FIG. 2B, a series connection line of a diode DZ3 and a diode DZ4 is connected between both ends of the load 90, so that the voltage across the load 90 can be embedded between the diode DZ3 and The voltage level formed by DZ4 connected in series.
圖3進一步揭示迴授比較器20、磁滯放大器30以及延時電路40的相關電路構成。其中迴授比較器20的非反向輸入端(+)連接電流控制訊號CC;迴授比較器20的反向輸入端(-)連接DC 5V的電壓源。在一實施例中,迴授比較器20與磁滯放大器30之間,包括連接有一第一放大器22,該第一放大器22是用來將迴授比較器20的輸出訊號加以放大。第一放大器22的輸出端是再連接到磁滯放大器30的相關電路中。 FIG. 3 further discloses related circuit configurations of the feedback comparator 20, the hysteresis amplifier 30, and the delay circuit 40. The non-inverting input terminal (+) of the feedback comparator 20 is connected to the current control signal CC; the inverting input terminal (-) of the feedback comparator 20 is connected to a DC 5V voltage source. In one embodiment, the feedback comparator 20 and the hysteresis amplifier 30 include a first amplifier 22 connected to the output amplifier 20 to amplify the output signal. The output of the first amplifier 22 is connected to the relevant circuit of the hysteresis amplifier 30.
磁滯放大器30的非反向入端(+)耦接有一濾波電路25。濾波電路25包括有一電阻R11、一電阻R12、一電阻R13以及一切換開關Q200;該電阻R11的第一端(如圖3中電阻R11的上端)連接該電流控制訊號PC;該電阻R12的第一端(如圖3中電阻R12的左端)耦接於該電阻R11的第二端(如圖3中電阻R11的下端);該電阻R13的第一端(如圖3中電阻R13的上端)耦接於該電阻R11的第二端,該電阻R13的第二端(如圖3中電阻R13的下端)耦接於磁滯放大器30的非反向輸入端(+);該切換開關Q200的第一端耦接於該電阻R12的第二端,該切換開關Q200的第二端接地,該切換開關Q200的控制端連接一電流脈波控制訊號IPWM。 A non-inverting input (+) of the hysteresis amplifier 30 is coupled to a filter circuit 25. The filter circuit 25 includes a resistor R11, a resistor R12, a resistor R13, and a switch Q200. The first end of the resistor R11 (such as the upper end of the resistor R11 in FIG. 3) is connected to the current control signal PC. One end (as the left end of the resistor R12 in FIG. 3) is coupled to the second end of the resistor R11 (as the lower end of the resistor R11 in FIG. 3); the first end of the resistor R13 (as the upper end of the resistor R13 in FIG. 3) Is coupled to the second terminal of the resistor R11, and the second terminal of the resistor R13 (as shown in the lower end of the resistor R13 in FIG. 3) is coupled to the non-inverting input terminal (+) of the hysteresis amplifier 30; The first terminal is coupled to the second terminal of the resistor R12, the second terminal of the changeover switch Q200 is grounded, and the control terminal of the changeover switch Q200 is connected to a current pulse wave control signal IPWM.
此外,圖3所示,當在脈波(PULSE)的PWM調變情形時,各個切換開關的輸出執行並聯(Shunt)的ON/OFF切換時會產生電流脈波,由於輸出短路的時候該電感L1中仍然儲存有電能量,當輸出開路時送出去電流脈波的時候,因為高速di/dt的關係,會有些微的電流突波(Current Spike)及過切換(Overshoot),為了避免這個 現象,本發明案的電路控制中包括在輸出短路時,同時降低電流控制訊號PC的準位,進而降低了電感L1的儲能能量,同時降低電流突波(Current Spike)及過切換(Overshoot)的現象。 In addition, as shown in Fig. 3, when the PWM of the pulse wave (PULSE) is modulated, when the output of each switch is switched on / off in parallel (Shunt), a current pulse wave will be generated. Electrical energy is still stored in L1. When the current pulse is sent out when the output is open, due to the high-speed di / dt relationship, there will be a slight current surge and overshoot. In order to avoid this, Phenomenon, the circuit control of the present invention includes reducing the level of the current control signal PC at the same time when the output is short-circuited, thereby reducing the energy storage energy of the inductor L1, and reducing the current surge and overshoot. The phenomenon.
上述關於濾波電路25能消除突波的電路作用,主要是關於切換開關Q200的開關作用可以解決突波(Spike)的問題,請配合參閱圖2A、圖2B的主線路圖;本案的主架構線路有兩種狀態: The above-mentioned circuit function of the filter circuit 25 that can eliminate the surge is mainly related to the switching effect of the switch Q200 to solve the problem of spikes. Please refer to the main circuit diagrams of FIG. 2A and FIG. 2B for the main architecture circuit of this case. There are two states:
(1)、在傳遞能量的狀態,能量經過切換開關Q101、Q102、103到第一電感L11即第二電感L12而輸出。 (1) In the state of transmitting energy, the energy is output through the switches Q101, Q102, 103 to the first inductor L11, that is, the second inductor L12.
(2)、在能量無輸出狀態,切換開關Q104、Q105、106以及切換開關Q108、Q109、110導通,輸出短路。 (2) In the state of no energy output, the switch Q104, Q105, 106 and the switch Q108, Q109, 110 are turned on, and the output is short-circuited.
由於第(2)種狀態,電感元件仍存有能量(continue mode),所以當切換到另外的狀態時,會有突波(Spike),如圖8輸出電流Io的狀態圖中標號SP所示,SP即為所述的突波。因此,解決方式的原理是在第(2)種狀態時,改變迴授(即導通切換開關Q200就會改變迴授的電阻分壓)的電壓值,進而降低電感元件中的儲存能量,解決突波(Spike)的問題;其中,標號PC的訊號是電流控制訊號,是作為電流控制用。 Because the inductive element still has energy (continue mode) in the second state, when switching to another state, there will be a spike (Spike), as shown by the reference symbol SP in the state diagram of the output current Io in Figure 8 , SP is the surge. Therefore, the principle of the solution is to change the voltage value of the feedback (that is, turning on the switch Q200 will change the divided resistance of the feedback) in the second state, thereby reducing the stored energy in the inductive element and solving the problem. The problem of Spike; among them, the signal labeled PC is a current control signal, which is used for current control.
圖3的磁滯放大器30的反向入端(-)耦接於第一放大器22的輸出端。在一實施例中,磁滯放大器30與延時電路40之間是另耦接有一第二放大器32,第二放大器32是用來將該磁滯放大器30的輸出訊號加以放大。之後該第二放大器32的輸出端連接到該延時電路40。 The reverse input terminal (-) of the hysteresis amplifier 30 of FIG. 3 is coupled to the output terminal of the first amplifier 22. In one embodiment, a second amplifier 32 is coupled between the hysteresis amplifier 30 and the delay circuit 40. The second amplifier 32 is used to amplify the output signal of the hysteresis amplifier 30. The output of the second amplifier 32 is then connected to the delay circuit 40.
圖3所示的延時電路40中包括有一第一反向器41與一第二反向器42。第一反向器41的輸入端是與電阻24相耦接,第一反向器的輸出端耦接於第二反向器42的輸入端。第二反向器42的輸出端耦接一電阻R26,該電阻R26的另一端(如圖3所示電阻R26的左端)即為輸出該第一延時訊號Hin,該電阻R26同時與一二極體D26並聯接,二極體D26的陰極端耦接該第二反向器42的輸 出端。第一反向器41的輸出端也有耦接一電阻R25,該電阻R25的另一端(如圖3所示電阻R25的左端)即為輸出該第二延時訊號Lin,該電阻R25同時與一二極體D25並聯接,二極體D25的陰極端耦接該第一反向器41的輸出端。如此,圖3輸出該第一延時訊號Hin以及第二延時訊號Lin,之後再傳送到第一驅動電路50中,進一步的驅動第一切換元件Q1及第二切換元件Q2執行開關切換的運作。 The delay circuit 40 shown in FIG. 3 includes a first inverter 41 and a second inverter 42. The input terminal of the first inverter 41 is coupled to the resistor 24, and the output terminal of the first inverter is coupled to the input terminal of the second inverter 42. The output terminal of the second inverter 42 is coupled to a resistor R26, and the other end of the resistor R26 (the left end of the resistor R26 as shown in FIG. 3) is used to output the first delay signal Hin. The body D26 is connected in parallel, and the cathode terminal of the diode D26 is coupled to the output of the second inverter 42. Out. The output of the first inverter 41 is also coupled to a resistor R25, and the other end of the resistor R25 (the left end of the resistor R25 as shown in FIG. 3) is used to output the second delay signal Lin. The pole body D25 is connected in parallel, and the cathode terminal of the diode body D25 is coupled to the output terminal of the first inverter 41. In this way, FIG. 3 outputs the first delay signal Hin and the second delay signal Lin, and then transmits them to the first driving circuit 50 to further drive the first switching element Q1 and the second switching element Q2 to perform the switching operation.
圖4說明第一驅動電路50是輸入該第一延時訊號Hin以及第二延時訊號Lin,之後輸出第一HO驅動訊號、第一HS驅動訊號、第一LO驅動訊號及第一LS驅動訊號。在實務上,第一驅動電路50是以一單晶片的IC元件所完成,經由對該IC輸入電源及相關的線路連接規格,即能將輸入的第一延時訊號Hin及第二延時訊號Lin,之後輸出第一HO驅動訊號、第一HS驅動訊號、第一LO驅動訊號及第一LS驅動訊號。 FIG. 4 illustrates that the first driving circuit 50 inputs the first delayed signal Hin and the second delayed signal Lin, and then outputs a first HO driving signal, a first HS driving signal, a first LO driving signal, and a first LS driving signal. In practice, the first driving circuit 50 is completed by a single-chip IC component. By inputting power to the IC and related line connection specifications, the first delayed signal Hin and the second delayed signal Lin can be input. After that, the first HO driving signal, the first HS driving signal, the first LO driving signal, and the first LS driving signal are output.
同樣的,圖5所示為第二驅動電路70的示意圖;在實務上,第二驅動電路70也是以一顆單晶片的IC元件所完成,經由對該第二驅動電路70的IC元件輸入電源及相關的線路連接規格,即能將輸入的電流脈波控制訊號IPWM轉換為輸出第二OUTH驅動訊號已及第二OUTL驅動訊號。 Similarly, FIG. 5 is a schematic diagram of the second driving circuit 70. In practice, the second driving circuit 70 is also completed by a single-chip IC element, and the power is inputted to the IC element of the second driving circuit 70. And related line connection specifications, that is, it can convert the input current pulse control signal IPWM into outputting the second OUTH driving signal and the second OUTL driving signal.
然而,對照於圖1的由脈波(PULSE)輸入至第二驅動電路70的方式,在一實施例中請配合參閱圖6所示,則是如何將脈波(PULSE)轉換為電流脈波控制訊號IPWM的實施說明,主要是經過一脈波轉換器72的連接方式所完成。圖6中該脈波(PULSE)訊號耦接至一第三反向器43的輸入端,第三反向器43的輸出端連接到一開關元件S1的控制端,開關元件S1的第一端(如圖6所示開關元件S1的上端)是作為脈波轉換器72的輸入端,開關元件S1的第二端則接地。 However, in contrast to the way in which the pulse wave (PULSE) is input to the second driving circuit 70 in FIG. 1, in an embodiment, please refer to FIG. 6 to see how the pulse wave (PULSE) is converted into a current pulse wave. The description of the implementation of the control signal IPWM is mainly completed through the connection mode of a pulse wave converter 72. In FIG. 6, the pulse signal (PULSE) signal is coupled to an input terminal of a third inverter 43, and an output terminal of the third inverter 43 is connected to a control terminal of a switching element S1 and a first terminal of the switching element S1. (The upper end of the switching element S1 as shown in FIG. 6) is an input terminal of the pulse wave converter 72, and the second terminal of the switching element S1 is grounded.
另一方面,脈波轉換器72的輸入端還包括有一電流位移控制 訊號ISIM,其中電流位移控制訊號ISIM的ON及OFF再配合所述的脈波(PULSE)的ON及OFF可以控制不同的電流控制模式,藉以產生不同電流脈波型態的輸出電流Io。如此,本發明實施例能夠配合不同的負載需求而調整不同的電流控制模式,可為程式化電流Program Current的應用,運用範圍極為廣泛。在實際運用上,該脈波轉換器72為一單晶片IC,而該脈波轉換器72的IC是輸出包括有該電流脈波控制訊號IPWM以及有一電流設定訊號ISET。 On the other hand, the input of the pulse wave converter 72 also includes a current displacement control. The signal ISIM, wherein the ON and OFF of the current displacement control signal ISIM and the ON and OFF of the pulse wave (PULSE) described above can control different current control modes, thereby generating output currents Io of different current pulse wave patterns. In this way, the embodiments of the present invention can adjust different current control modes according to different load requirements, and can be used for programming current Program Current, which has a very wide application range. In practice, the pulse wave converter 72 is a single-chip IC, and the IC of the pulse wave converter 72 includes the current pulse wave control signal IPWM and a current setting signal ISET.
圖7是將所述的電流設定訊號ISET經過放大器52的作用,產生該電流控制訊號PC。其中電流設定訊號ISET耦接到放大器52的非反向輸入端(+),放大器52的反向輸入端(-)與放大器52的輸出端耦接,放大器52的輸出端是輸出該電流控制訊號PC。 FIG. 7 shows the current setting signal ISET passing through the amplifier 52 to generate the current control signal PC. The current setting signal ISET is coupled to the non-inverting input terminal (+) of the amplifier 52, the inverting input terminal (-) of the amplifier 52 is coupled to the output terminal of the amplifier 52, and the output terminal of the amplifier 52 outputs the current control signal PC.
圖8所示為輸出電流Io的波形示意圖,其中顯示輸出電流Io為一脈寬調變PWM的形式,並且該輸出電流Io能夠依據使用者對於負載90調變的需求,而能夠具有一個電流位移SH的準位調整,而非一定從0準位開始,且在後續調變之中,也能配合使用者的需求,將電流準位調變為0準位,進一步而言,本發明的輸出電流Io能夠依據該負載的需求做調整而具有一位移準位,此位移準位即為圖8中的電流位移SH。顯見,本發明之電源控制電路極具有依據不同的負載特性的需求,能執行輸出電流Io的不同調變,有效改善現有技術之缺失。圖8中標號SP為突波,是由圖3所示的濾波電路25加以濾波。 FIG. 8 is a waveform diagram of the output current Io, which shows that the output current Io is in the form of a pulse width modulation PWM, and the output current Io can have a current displacement according to the user's demand for the load 90 modulation. The level adjustment of SH does not necessarily start from the 0 level, and in subsequent adjustments, it can also meet the needs of the user to adjust the current level to the 0 level. Further, the output of the present invention The current Io can be adjusted according to the demand of the load and has a displacement level. This displacement level is the current displacement SH in FIG. 8. It is obvious that the power supply control circuit of the present invention has extremely different requirements according to different load characteristics, can perform different modulations of the output current Io, and effectively improves the defects of the prior art. The reference numeral SP in FIG. 8 is a surge, and is filtered by the filter circuit 25 shown in FIG. 3.
圖9中揭示所述的實施例可以是由第一電感L11串聯第二電感L12組成電感L1,所述電感L1的鐵芯材質在一實施例中是由軟磁金屬磁粉芯所組成,其材質例如包括有鐵與矽的合成物,鐵芯並以環氧樹脂整體加以包覆,且結構上為一同心圓的扁圓柱體,該鐵芯有兩組繞線,形成有一第一電感L11及一第二電感L12,該電感L1即由該第一電感L11及該第二電感L12兩者串聯 所組成,亦即第一電感L11即第二電感L12的鐵芯材質也是由軟磁金屬磁粉芯所組成,同樣其材質例如包括有鐵與矽的合成物,鐵芯並以環氧樹脂整體加以包覆;其中第一電感L11的一端是耦接於該電流偵測器80的一端,再由該電流偵測器80的另一端而連接該第二電感L12的一端,用以偵測該輸出電流Io。所述的電流偵測器80在電路實際製作上,能為霍爾電流轉換元件所完成。 The embodiment disclosed in FIG. 9 may be an inductor L1 composed of a first inductor L11 in series with a second inductor L12. The core material of the inductor L1 is composed of a soft magnetic metal magnetic powder core in an embodiment, and the material is, for example, It consists of a composite of iron and silicon, the core is covered with epoxy resin as a whole, and the structure is a concentric circular cylinder. The core has two sets of windings, forming a first inductor L11 and a The second inductor L12, and the inductor L1 is connected in series by the first inductor L11 and the second inductor L12. The core material of the first inductor L11 and the second inductor L12 is also composed of a soft magnetic metal magnetic powder core. The same material includes, for example, a composite of iron and silicon, and the core is covered with epoxy resin as a whole. One end of the first inductor L11 is coupled to one end of the current detector 80, and the other end of the current detector 80 is connected to one end of the second inductor L12 to detect the output current. Io. The actual circuit of the current detector 80 can be completed by a Hall current conversion element.
圖10所示為電感L1的導磁技術特徵的曲線示意圖,是當該電感L1的直流磁化力Oe(DC Magnetizing Force Oe,如橫軸所示)超過一個臨界值之後,會使得該電感L1的初始導磁率(Percent of Initial Permeability%,如縱軸所示)會呈現緩和下降的非線性導磁特性。如此特性,將會使得本發明的電源控制電路整體對於負載端的鏈波(ripple)現象,具有良好的鏈波消除作用,同時本發明案電路架構所能控制的頻寬較大,暫態響應快速,在緩和下降區間易於控制。 FIG. 10 is a schematic diagram showing the magnetic permeability technical characteristics of the inductor L1. When the DC magnetization force Oe (shown on the horizontal axis) of the inductor L1 exceeds a critical value, the inductance L1 will be The initial permeability (Percent of Initial Permeability%, as shown on the vertical axis) will exhibit a gently decreasing non-linear permeability characteristic. Such characteristics will make the power supply control circuit of the present invention as a whole have a good ripple elimination effect on the ripple phenomenon at the load end. At the same time, the frequency bandwidth that the circuit architecture of the present invention can control is large and the transient response is fast. It is easy to control in the declining interval.
圖11是本發明中電感L1的實施例,由圖11中所示,該單一的電感L1是由多匝數的圓柱狀繞線,以纏繞或疊繞方式繞於該軟磁金屬磁粉芯的鐵芯所組成。圖12是本發明中電感L1的另一實施例,由圖12中可知,單一電感L1則另外透過多匝數的扁平狀繞線以纏繞或疊繞方式繞於該軟磁金屬磁粉芯的鐵芯所組成。在一實施例中,本發明中的電感L1的鐵芯重量是介於290g-330g之間者,其中該輸出電流Io可大於50安培。另外,在電感L1由第一電感L11與第二電感L12所串連的實施例中,第一電感L11的鐵芯重量是介於145g-165g之間,以及第二電感L12的鐵芯重量是介於145g-165g之間;同樣地,該輸出電流Io可大於50安培。此外,第一電感L11和第二電感L12的鐵芯重量可以不同,在電路板上布局可以隨之調整,但總重需大於250g。 FIG. 11 is an embodiment of the inductor L1 in the present invention. As shown in FIG. 11, the single inductor L1 is a multi-turn cylindrical winding, and is wound around the soft magnetic metal powder core by winding or stacking. Composed of cores. FIG. 12 is another embodiment of the inductor L1 in the present invention. As can be seen from FIG. 12, a single inductor L1 is wound around the core of the soft magnetic metal powder core in a winding or stacking manner through multiple turns of flat windings. Composed of. In an embodiment, the core weight of the inductor L1 in the present invention is between 290g and 330g, wherein the output current Io may be greater than 50 amps. In addition, in the embodiment where the inductor L1 is connected in series by the first inductor L11 and the second inductor L12, the core weight of the first inductor L11 is between 145g and 165g, and the core weight of the second inductor L12 is Between 145g-165g; similarly, the output current Io can be greater than 50 amps. In addition, the cores of the first inductor L11 and the second inductor L12 may have different weights, and the layout on the circuit board may be adjusted accordingly, but the total weight needs to be greater than 250g.
綜上所述,本發明提出一種電源控制電路,能針對現有的定電壓磁滯控制的缺失做改善,有效達到提供高精準度、反應速度 快且大功率高電壓的電源控制目的。另外也可以進一步實現多方面的廣泛負載與程式化電流Program Current應用的技術效果,且能簡化線路應用的控制,有效改善現有技術之缺失,顯見本發明案具備申請專利之要件。 In summary, the present invention provides a power supply control circuit, which can improve the existing lack of constant voltage hysteresis control and effectively achieve high accuracy and response speed. Fast and high power high voltage power control purpose. In addition, the technical effects of a wide range of loads and program current applications can be further realized, and the control of line applications can be simplified, and the shortcomings of the existing technology can be effectively improved. It is obvious that the present invention has the requirements for patent application.
然,本發明說明內容所述,僅為較佳實施例之舉例說明,當不能以之限定本發明所保護之範圍,任何局部變動、修正或增加之技術,仍不脫離本發明所保護之範圍中。 However, what is described in the description of the present invention is only an example of a preferred embodiment. When the scope of protection of the present invention cannot be limited by it, any local changes, modifications or additions of technology still do not depart from the scope of protection of the present invention. in.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107129396A TWI675538B (en) | 2018-08-23 | 2018-08-23 | Power source controll circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107129396A TWI675538B (en) | 2018-08-23 | 2018-08-23 | Power source controll circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI675538B true TWI675538B (en) | 2019-10-21 |
TW202010235A TW202010235A (en) | 2020-03-01 |
Family
ID=69023961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107129396A TWI675538B (en) | 2018-08-23 | 2018-08-23 | Power source controll circuit |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI675538B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103248230A (en) * | 2012-02-09 | 2013-08-14 | 富士通半导体股份有限公司 | Switching regulator |
TW201603061A (en) * | 2014-06-06 | 2016-01-16 | Alps Green Devices Co Ltd | Compressed iron-core, manufacturing method of the compressed iron-core, electronic/electric element with the compressed iron-core, and electronic/electric machine installed with the electronic/electric element |
US9538601B1 (en) * | 2015-10-08 | 2017-01-03 | Allegro Microsystems, Llc | Method and apparatus for driving loads using a DC-DC converter |
US9615415B2 (en) * | 2014-09-01 | 2017-04-04 | Silergy Semiconductor Technology (Hangzhou) Ltd. | LED driving circuit and method using single inductor |
TW201815045A (en) * | 2016-10-09 | 2018-04-16 | 昂寶電子(上海)有限公司 | BUCK converter and control method therefor |
TW201824724A (en) * | 2016-12-30 | 2018-07-01 | 台達電子工業股份有限公司 | Power circuit and driving circuit |
-
2018
- 2018-08-23 TW TW107129396A patent/TWI675538B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103248230A (en) * | 2012-02-09 | 2013-08-14 | 富士通半导体股份有限公司 | Switching regulator |
TW201603061A (en) * | 2014-06-06 | 2016-01-16 | Alps Green Devices Co Ltd | Compressed iron-core, manufacturing method of the compressed iron-core, electronic/electric element with the compressed iron-core, and electronic/electric machine installed with the electronic/electric element |
US9615415B2 (en) * | 2014-09-01 | 2017-04-04 | Silergy Semiconductor Technology (Hangzhou) Ltd. | LED driving circuit and method using single inductor |
US9538601B1 (en) * | 2015-10-08 | 2017-01-03 | Allegro Microsystems, Llc | Method and apparatus for driving loads using a DC-DC converter |
TW201815045A (en) * | 2016-10-09 | 2018-04-16 | 昂寶電子(上海)有限公司 | BUCK converter and control method therefor |
TW201824724A (en) * | 2016-12-30 | 2018-07-01 | 台達電子工業股份有限公司 | Power circuit and driving circuit |
Also Published As
Publication number | Publication date |
---|---|
TW202010235A (en) | 2020-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI608690B (en) | Boost inductor demagnetization detection for bridgeless boost pfc converter operating in boundary-conduction mode | |
EP2493063B1 (en) | Multiple use of a current transformer | |
Dayal et al. | A direct AC LED driver with high power factor without the use of passive components | |
Wong et al. | Independent control of multicolor-multistring LED lighting systems with fully switched-capacitor-controlled $ LCC $ resonant network | |
CN1988071A (en) | Transformer with current sensing means | |
US20160134193A1 (en) | Power control apparatus with dynamic adjustment of driving capability | |
EP3043625A1 (en) | Dimmable LED driver, and method for producing a dimming signal | |
Hwu et al. | Nonisolated two-phase interleaved LED driver with capacitive current sharing | |
EP1783788A2 (en) | Transformer with current sensing means | |
TWI675538B (en) | Power source controll circuit | |
Zelnik et al. | Multiple output flyback converter design | |
TW201424450A (en) | A lighting system and controlling method thereof | |
US11116058B2 (en) | LED dimming control circuit, dimming control method and LED power system thereof | |
CN109194121B (en) | Power supply control circuit | |
TWM591640U (en) | Power conversion circuit with single-stage double-switch wide input range | |
EP3016478B1 (en) | Joint control of output power in a multichannel LED driver | |
US10468961B1 (en) | Power source control circuit | |
US9577521B2 (en) | Average current control for a switched power converter | |
CN104737087B (en) | Digital voltage controller of rectification | |
US9370061B1 (en) | High power factor constant current buck-boost power converter with floating IC driver control | |
KR101637762B1 (en) | Current sensing circuit | |
TWI714355B (en) | Single-stage double-cut wide input range power conversion circuit | |
US20120212147A1 (en) | Flyback Energy Converter | |
US11777393B2 (en) | Current detection circuit and current detection method | |
Sreekumar et al. | Design, Implementation and Analysis of Isopower Modules |