TWI675229B - Optical module including silicon photonics chip and coupler chip - Google Patents

Optical module including silicon photonics chip and coupler chip Download PDF

Info

Publication number
TWI675229B
TWI675229B TW107111907A TW107111907A TWI675229B TW I675229 B TWI675229 B TW I675229B TW 107111907 A TW107111907 A TW 107111907A TW 107111907 A TW107111907 A TW 107111907A TW I675229 B TWI675229 B TW I675229B
Authority
TW
Taiwan
Prior art keywords
waveguide
chip
coupler
optical
silicon
Prior art date
Application number
TW107111907A
Other languages
Chinese (zh)
Other versions
TW201827874A (en
Inventor
馬克 伊皮踏克斯
周舒瓦 拉及福 闊爾內魯
喬L 奈特安格勒
Original Assignee
美商山姆科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商山姆科技公司 filed Critical 美商山姆科技公司
Publication of TW201827874A publication Critical patent/TW201827874A/en
Application granted granted Critical
Publication of TWI675229B publication Critical patent/TWI675229B/en

Links

Abstract

一種光學模組,其包含:一互連波導管,其會傳輸光信號;一矽光晶片,其會調變該些光信號、偵測該些光信號、或是調變與偵測該些光信號;一耦合器晶片,其被附接至該矽光晶片及該互連波導管,俾使得該些光信號會沿著一介於該矽光晶片與該互連波導管之間的光路徑被傳輸;以及該矽光晶片與該耦合器晶片中的其中一者包含第一對齊突出部、第二對齊突出部、第三對齊突出部。該耦合器晶片與該矽光晶片中的另一者包含一點接點、一線接點、以及一平面接點。該點接點不提供該第一對齊突出部任何移動。該線接點提供該第二對齊突出部線性移動。該平面接點提供該第三對齊突出部平面移動。 An optical module includes: an interconnected waveguide that transmits optical signals; a silicon optical chip that modulates the optical signals, detects the optical signals, or modulates and detects the optical signals Optical signal; a coupler chip that is attached to the silicon optical chip and the interconnecting waveguide so that the optical signals will follow an optical path between the silicon optical chip and the interconnecting waveguide Being transmitted; and one of the silicon optical chip and the coupler chip includes a first alignment protrusion, a second alignment protrusion, and a third alignment protrusion. The other of the coupler chip and the silicon optical chip includes a point contact, a line contact, and a planar contact. The point contact does not provide any movement of the first alignment protrusion. The line contact provides linear movement of the second alignment protrusion. The planar contact provides planar movement of the third alignment protrusion.

Description

包含矽光晶片和耦合器晶片的光學模組    Optical module containing silicon light chip and coupler chip   

本發明和光學模組有關。更明確的說,本發明和具有矽光裝置的光學模組有關。 The invention relates to an optical module. More specifically, the present invention relates to an optical module having a silicon light device.

相關申請案     Related applications    

本申請案於35 U.S.C.§119(e)的規範下主張下面申請案的權利:2015年3月12日提申的美國申請案第62/131,971號;2015年3月12日提申的美國申請案第62/131,989號;2015年3月13日提申的美國申請案第62/132,739號;2015年3月17日提申的美國申請案第62/134,166號;2015年3月17日提申的美國申請案第62/134,173號;2015年3月17日提申的美國申請案第62/134,229號;2015年5月7日提申的美國申請案第62/158,029號;以及2015年9月9日提申的美國申請案第62/215,932號。本文以引用的方式將美國申請案第62/131,971號、第62/131,989號、第62/131,739號、第62/134,166號、第62/134,173號、第62/134,229號、第62/158,029號、以及第62/215,932號中每一案的完整內容併入。 This application claims the right of the following applications under the specification of 35 USC§119 (e): US Application No. 62 / 131,971 filed on March 12, 2015; US Application filed on March 12, 2015 No. 62 / 131,989; U.S. Application No. 62 / 132,739 filed on March 13, 2015; U.S. Application No. 62 / 134,166 filed on March 17, 2015; Filed on March 17, 2015 U.S. Application No. 62 / 134,173 filed; U.S. Application No. 62 / 134,229 filed on March 17, 2015; U.S. Application No. 62 / 158,029 filed on May 7, 2015; and 2015 US Application No. 62 / 215,932 filed on September 9. This article refers to U.S. Application Nos. 62 / 131,971, 62 / 131,989, 62 / 131,739, 62 / 134,166, 62 / 134,173, 62 / 134,229, 62 / 158,029 by reference , And the full content of each case in 62 / 215,932.

使用光學互連取代電氣互連雖然可以達成顯著的增益頻寬以及頻寬密度(被傳收器佔用的表面積的Gb/s/m2);不過,光學互連已經存在於電信網路(跨海網路、大都會網路、...等)的心臟中,它們並未達到整合的程度,而且成本以及能量效率並不足以取代短程鏈路上的電氣互連。舉例來說,以垂直空 腔表面發射雷射(Vertical Cavity Surface Emitting Laser,VCSEL)為基礎的光學互連的價格仍然比電氣互連貴了十倍。應用大量製造技術以及低成本電子製程的概念已經可以將光功能整合至矽基板之中。被用來製造電子積體電路的基礎架構以及訣竅亦能夠套用於光積體電路,大幅地降低它們的成本。 The use of optical interconnects instead of electrical interconnects can achieve significant gain bandwidth and bandwidth density (Gb / s / m 2 of surface area occupied by the transceiver); however, optical interconnects already exist in telecommunication networks (across In the heart of maritime networks, metropolitan networks, etc.), they have not reached the level of integration, and the cost and energy efficiency are not sufficient to replace the electrical interconnection on short-range links. For example, optical interconnects based on Vertical Cavity Surface Emitting Laser (VCSEL) are still ten times more expensive than electrical interconnects. The application of a large number of manufacturing technologies and the concept of low-cost electronic processes can already integrate optical functions into the silicon substrate. The infrastructure and know-how used to make electronic integrated circuits can also be applied to optical integrated circuits, significantly reducing their costs.

大量的開發努力被聚焦在整合光功能於矽之中,但卻較少致力於將光從矽光元件處耦合至光纖。許多利用離散器件或積體電路的先前技術光學模組皆配備光纖尾纖(fiber pigtail)並且使用一主動對齊過程來對齊該光纖與雷射源或光偵測器。但是,該主動對齊過程經常依賴於利用多軸機器人來進行動態式或主動式對齊(舉例來說,利用電力或光電流回授)。一旦取得最佳的耦合信號便會利用雷射熔接或是UV(紫外光誘發)固化來固定該光纖。該光纖會被端點耦合(butt coupled)至一裝置或是被固定在一具有微透鏡的聚焦平面之中,該些微透鏡被用來將光耦合至該光纖之中/外面。 A great deal of development effort has been focused on integrating optical functions into silicon, but less has been devoted to coupling light from silicon optical elements to optical fibers. Many prior art optical modules using discrete devices or integrated circuits are equipped with fiber pigtail and use an active alignment process to align the fiber with a laser source or photodetector. However, this active alignment process often relies on the use of a multi-axis robot for dynamic or active alignment (for example, using power or photocurrent feedback). Once the best coupling signal is obtained, the fiber is fixed by laser fusion or UV (ultraviolet induced) curing. The fiber is either end-coupled to a device or fixed in a focusing plane with microlenses that are used to couple light into / outside the fiber.

主動式動齊有數項缺點。其為製程時間約1分鐘/部件(minute/part)的整體式製程,而且無法擴大至大量的光學埠。和將光耦合至矽光元件之中以及外面相關聯的費用對於以光為基礎的短程鏈路來說,商業存活性有限。因此,需要一種耐用、低成本的方法,用以將光耦合至矽光元件之中以及外面。 There are several disadvantages to active movement. It is a monolithic process with a processing time of about 1 minute / part, and cannot be expanded to a large number of optical ports. The costs associated with coupling light into and out of silicon optical components are limited to commercial viability for short-range links based on light. Therefore, there is a need for a durable, low-cost method for coupling light into and out of silicon light elements.

和長途電信中的情形雷同,用於光學互連的波長分工器(Wavelength Division Multiplexing,WDM)非常引人注目,因為其可減少光纖的數量、減少光纖對齊、並且降低和進行光纖佈線相關聯的成本。WDM技術會在單一光纖上多工處理位於不同波長處的數個光學信號。舉例來說,在O頻帶(O-band)中的寬鬆式WDM系統會使用波長為約1271nm、1291nm、1311nm、以及1331nm的四條通道。WDM可以讓此四條通道中的每一條通道在一束光纖上被同步傳輸,從而提高可利用的每條光纖頻寬。為使用WDM,必須在該光學鏈路的末端處提供多工/解多工,用以結合/分離該些不同波長的通道。因此,需要一 種耐用、低成本的方法,用以整合多工/解多工功能和矽光元件。 Similar to the situation in long-distance telecommunications, Wavelength Division Multiplexing (WDM) for optical interconnection is very attractive because it can reduce the number of fibers, reduce fiber alignment, and reduce cost. WDM technology multiplexes several optical signals at different wavelengths on a single fiber. For example, a loose WDM system in an O-band uses four channels with wavelengths of about 1271 nm, 1291 nm, 1311 nm, and 1331 nm. WDM allows each of these four channels to be transmitted simultaneously on a bundle of fibers, thereby increasing the bandwidth of each fiber available. To use WDM, multiplexing / demultiplexing must be provided at the end of the optical link to combine / separate the different wavelength channels. Therefore, a rugged, low-cost method is needed to integrate multiplexing / demultiplexing functions and silicon-optic components.

為克服上面所述的問題,本發明的較佳實施例提供一種光學模組,其包含下面中的一或更多者:(1)動力對齊(kinematic alignment),其包含第一對齊突出部、第二對齊突出部、第三對齊突出部,以及對應的點接點、線接點、以及平面接點;(2)一耦合器晶片,其會改變由該些光信號所定義的一射束的剖面尺寸;(3)一耦合器晶片,其包含一多工器、一解多工器、或是一多工器以及一解多工器;(4)一分隔體,其被附接至一矽光晶片,其中,該分隔體會被陽極焊接至該矽光晶片;(5)一排列,其中,由該些光信號所定義的一射束的剖面尺寸較佳的係在位於該矽光晶片與該耦合器晶片之間的介面處為最大;(6)一排列,其中,由該些光信號所定義的一射束的剖面尺寸在該耦合器晶片的第一表面及第二表面處並不相同;(7)一互連波導管,其包含一光點尺寸轉換器區;(8)一互連波導管,其會與該矽光晶片形成斜角;(9)一耦合器晶片與一矽光晶片,它們被陽極焊接在一起;以及(10)一光偵測器,其被表面鑲嵌至該矽光晶片。本發明的較佳實施例還提供一種傳收器,其具有一鎖存器,用以讓該互連波導管可以脫離;本發明的較佳實施例還提供一種利用位在沒有彼此相向的兩塊基板的表面中的基準點來對齊該兩塊基板的方法;以及本發明的較佳實施例還提供製造光學模組的方法。 In order to overcome the problems described above, a preferred embodiment of the present invention provides an optical module including one or more of the following: (1) kinematic alignment, which includes a first alignment protrusion, A second alignment protrusion, a third alignment protrusion, and corresponding point contacts, line contacts, and planar contacts; (2) a coupler chip, which changes a beam defined by the optical signals (3) a coupler chip that includes a multiplexer, a demultiplexer, or a multiplexer and a demultiplexer; (4) a separator that is attached to A silicon light chip, wherein the separator is anode-welded to the silicon light chip; (5) an arrangement in which a cross-sectional size of a beam defined by the light signals is preferably located in the silicon light The interface between the wafer and the coupler wafer is the largest; (6) an arrangement in which the cross-sectional size of a beam defined by the optical signals is at the first surface and the second surface of the coupler wafer Not the same; (7) an interconnected waveguide that includes a spot size converter region; (8) a A waveguide, which forms an oblique angle with the silicon light chip; (9) a coupler chip and a silicon light chip, which are anode-welded together; and (10) a light detector, which is surface-mounted to The silicon light chip. A preferred embodiment of the present invention also provides a receiver having a latch for allowing the interconnected waveguide to be detached. The preferred embodiment of the present invention also provides a method of using two A method for aligning the two substrates with reference points in a surface of the substrate; and a preferred embodiment of the present invention also provides a method for manufacturing an optical module.

根據本發明的一較佳實施例提供一種光學模組,其包含:一互連 波導管,其會傳輸光信號;一矽光晶片,其會調變該些光信號、偵測該些光信號、或是調變與偵測該些光信號;一耦合器晶片,其被附接至該矽光晶片及該互連波導管,俾使得該些光信號會沿著一介於該矽光晶片與該互連波導管之間的光路徑被傳輸;以及該矽光晶片與該耦合器晶片中的其中一者包含第一對齊突出部、第二對齊突出部、第三對齊突出部。該耦合器晶片與該矽光晶片中的另一者包含一點接點、一線接點、以及一平面接點。該點接點不提供該第一對齊突出部任何移動。該線接點提供該第二對齊突出部線性移動。該平面接點提供該第三對齊突出部平面移動。 According to a preferred embodiment of the present invention, an optical module is provided, which includes: an interconnected waveguide that transmits optical signals; and a silicon optical chip that modulates the optical signals and detects the optical signals. Or modulate and detect the optical signals; a coupler chip, which is attached to the silicon optical chip and the interconnecting waveguide, so that the optical signals will follow a path between the silicon optical chip and An optical path between the interconnecting waveguides is transmitted; and one of the silicon optical chip and the coupler chip includes a first alignment protrusion, a second alignment protrusion, and a third alignment protrusion. The other of the coupler chip and the silicon optical chip includes a point contact, a line contact, and a planar contact. The point contact does not provide any movement of the first alignment protrusion. The line contact provides linear movement of the second alignment protrusion. The planar contact provides planar movement of the third alignment protrusion.

較佳的係,該些第一對齊突出部、第二對齊突出部、第三對齊突出部為由玻璃製成球體,它們位於被提供在該矽光晶片與該耦合器晶片中的其中一者之中的倒角錐體之中。該光學模組較佳的係進一步包含一分隔體,其被附接至該矽光晶片。該分隔體與該矽光晶片較佳的係被陽極焊接在一起。 Preferably, the first alignment protrusion, the second alignment protrusion, and the third alignment protrusion are made of glass, and they are located in one of the silicon light chip and the coupler chip. Among the chamfers. The optical module preferably further includes a separator, which is attached to the silicon light chip. The separator and the silicon light chip are preferably anodically welded together.

由該些光信號所定義的一射束的剖面尺寸較佳的係在位於該矽光晶片與該耦合器晶片之間的介面處為最大。由該些光信號所定義的一射束的剖面尺寸較佳的係一開始沿著該光路徑遞增並且接著沿著該光路徑遞減。 The cross-sectional size of a beam defined by the optical signals is preferably the largest at the interface between the silicon optical chip and the coupler chip. A cross-sectional size of a beam defined by the optical signals is better that it initially increases along the optical path and then decreases along the optical path.

該矽光晶片與該耦合器晶片中的至少其中一者較佳的係包含一聚焦元件。該聚焦元件較佳的係一準直透鏡。該互連波導管較佳的係可以脫離該光學模組。該互連波導管包含一光點尺寸轉換器區。該矽光晶片較佳的係包含一光偵測器,其被鑲嵌至該矽光晶片的表面。該矽光晶片與該耦合器晶片較佳的係包含位於沒有彼此相向的表面上的多個基準點。 At least one of the silicon light chip and the coupler chip preferably includes a focusing element. The focusing element is preferably a collimating lens. The interconnecting waveguide is preferably detachable from the optical module. The interconnected waveguide includes a spot size converter region. The silicon light chip preferably includes a light detector which is embedded on the surface of the silicon light chip. The silicon light chip and the coupler chip preferably include a plurality of reference points located on surfaces that do not face each other.

根據本發明的一較佳實施例提供一種傳收器,其包含一根據本發明各種較佳實施例的光學模組以及一印刷電路板。該矽光晶片被連接至該印刷電路板。 According to a preferred embodiment of the present invention, a transceiver is provided, which includes an optical module and a printed circuit board according to various preferred embodiments of the present invention. The silicon optical chip is connected to the printed circuit board.

該傳收器較佳的係進一步包含一殼體,用以封入該矽光晶片以及 該耦合器晶片。該傳收器較佳的係進一步包含一鎖存器,其會將該耦合器晶片固定在該殼體之中,其中,該耦合器晶片可以藉由解鎖該鎖存器而脫離該殼體。 The receiver further includes a housing for encapsulating the silicon optical chip and the coupler chip. The preferred system of the receiver further comprises a latch, which fixes the coupler chip in the housing, wherein the coupler chip can be released from the housing by unlocking the latch.

根據本發明的一較佳實施例提供一種光學模組,其包含:一矽光晶片,其包含一波導管,該波導管會傳輸光信號;以及一耦合器晶片,其被附接至該矽光晶片,俾使得該些光信號會沿著一介於該矽光晶片與該耦合器晶片之間的光路徑被傳輸。該耦合器晶片會改變由該些光信號所定義的一射束的剖面尺寸,而且該耦合器晶片包含一多工器、一解多工器、或是一多工器以及一解多工器。 According to a preferred embodiment of the present invention, an optical module is provided, which includes: a silicon optical chip including a waveguide that transmits optical signals; and a coupler chip that is attached to the silicon Optical chip, so that the optical signals are transmitted along an optical path between the silicon optical chip and the coupler chip. The coupler chip changes the cross-sectional size of a beam defined by the optical signals, and the coupler chip includes a multiplexer, a demultiplexer, or a multiplexer and a demultiplexer. .

該多工器、該解多工器、或是該多工器以及該解多工器較佳的係包含一埃謝勒格柵(Echelle Grating)、一陣列式波導管格柵、一方向耦合器、一分色濾光器,或是一共振干涉濾波器。該射束的剖面尺寸較佳的係在位於該矽光晶片與該耦合器晶片之間的介面處為最大。該射束的剖面尺寸較佳的係一開始沿著該光路徑遞增並且接著沿著該光路徑遞減。較佳的係,一光偵測器被表面鑲嵌至該矽光晶片或者被併入於該矽光晶片裡面。一光源較佳的係被併入於該矽光晶片裡面。該光學模組較佳的係進一步包含一位於該矽光晶片外面的光源,其中,來自該光源的光會被供應至該矽光晶片。該矽光晶片較佳的係包含一位於該光路徑之中的通孔。該矽光晶片與該耦合器晶片較佳的係彼此陽極焊接。 The multiplexer, the demultiplexer, or the multiplexer and the demultiplexer preferably include an Echelle Grating, an array waveguide grid, and a directional coupling. Filter, a dichroic filter, or a resonant interference filter. The cross-sectional size of the beam is preferably the largest at the interface between the silicon optical chip and the coupler chip. The cross-sectional size of the beam is preferably increased initially along the light path and then decreased along the light path. Preferably, a photodetector is surface embedded into the silicon light chip or incorporated into the silicon light chip. A light source is preferably incorporated into the silicon light chip. The optical module preferably further includes a light source located outside the silicon light chip, wherein light from the light source is supplied to the silicon light chip. The silicon optical chip preferably includes a through hole in the optical path. The silicon light chip and the coupler chip are preferably anodically bonded to each other.

根據本發明的一較佳實施例提供一種光學模組,其包含:一矽光晶片,其包含一波導管,該波導管會傳輸光信號;以及一耦合器晶片,其被附接至該矽光晶片,俾使得該些光信號會沿著一介於該矽光晶片與該耦合器晶片之間的光路徑被傳輸。該光路徑包含該耦合器晶片的一第一表面以及該耦合器晶片的一第二表面。由該些光信號所定義的一射束的剖面尺寸在該第一表面及該第二表面處並不相同。 According to a preferred embodiment of the present invention, an optical module is provided, which includes: a silicon optical chip including a waveguide that transmits optical signals; and a coupler chip that is attached to the silicon Optical chip, so that the optical signals are transmitted along an optical path between the silicon optical chip and the coupler chip. The optical path includes a first surface of the coupler wafer and a second surface of the coupler wafer. The cross-sectional dimensions of a beam defined by the optical signals are different at the first surface and the second surface.

該矽光晶片與該耦合器晶片中的至少其中一者較佳的係包含一聚焦元件。該聚焦元件較佳的係一準直透鏡。 At least one of the silicon light chip and the coupler chip preferably includes a focusing element. The focusing element is preferably a collimating lens.

根據本發明的一較佳實施例提供一種對齊兩塊基板的方法,其包含:提供一具有一第一基準點的第一基板以及一具有一第二基準點的第二基板,該些第一基準點與第二基準點位在彼此不相向的第一基板的表面與第二基板的表面;提供彼此反向的第一相機與第二相機,俾使得該第一相機看見該第一基準點並且該第二相機看見該第二基準點;以及藉由利用該些第一相機與第二相機來對齊該些第一基準點與第二基準點而對齊該些第一基板與第二基板。 According to a preferred embodiment of the present invention, a method for aligning two substrates is provided. The method includes: providing a first substrate having a first reference point and a second substrate having a second reference point. The reference point and the second reference point are located on the surface of the first substrate and the surface of the second substrate that are not opposite to each other; and the first camera and the second camera opposite to each other are provided so that the first camera sees the first reference point And the second camera sees the second reference point; and aligns the first substrate and the second substrate by using the first camera and the second camera to align the first reference point and the second reference point.

根據本發明的一較佳實施例提供一種光學模組,其包含:一矽光晶片,其包含一波導管,該波導管會傳輸光信號;以及一耦合器晶片,其被附接至該矽光晶片,俾使得該些光信號會沿著一介於該矽光晶片與該耦合器晶片之間的光路徑被傳輸。該耦合器晶片會改變由該些光信號所定義的一射束的剖面尺寸。該射束的剖面尺寸在位於該矽光晶片與該耦合器晶片之間的介面處為最大。 According to a preferred embodiment of the present invention, an optical module is provided, which includes: a silicon optical chip including a waveguide that transmits optical signals; and a coupler chip that is attached to the silicon Optical chip, so that the optical signals are transmitted along an optical path between the silicon optical chip and the coupler chip. The coupler chip changes the cross-sectional size of a beam defined by the optical signals. The cross-sectional size of the beam is largest at the interface between the silicon optical chip and the coupler chip.

根據本發明的一較佳實施例提供一種光學模組,其包含:一互連波導管,其會傳輸光信號;一矽光晶片,其會調變該些光信號、偵測該些光信號、或是調變與偵測該些光信號;以及一耦合器晶片,其被附接至該矽光晶片及該互連波導管,俾使得該些光信號會沿著一介於該矽光晶片與與該互連波導管之間的光路徑被傳輸。該互連波導管包含一光點尺寸轉換器區,其中,由該些光信號所定義的一射束的剖面尺寸會改變。 According to a preferred embodiment of the present invention, an optical module is provided, which includes: an interconnected waveguide that transmits optical signals; and a silicon optical chip that modulates the optical signals and detects the optical signals. Or modulate and detect the optical signals; and a coupler chip, which is attached to the silicon optical chip and the interconnecting waveguide, so that the optical signals will follow The optical path to and from the interconnecting waveguide is transmitted. The interconnected waveguide includes a spot size converter region, wherein a cross-sectional size of a beam defined by the optical signals changes.

根據本發明的一較佳實施例提供一種光學模組,其包含:一矽光晶片,其包含一波導管,該波導管會傳輸光信號;以及一耦合器晶片,其被附接至該矽光晶片,俾使得該些光信號會沿著一介於該矽光晶片與該耦合器晶片之間的光路徑被傳輸。該耦合器晶片會改變由該些光信號所定義的一射束的剖 面尺寸。該耦合器晶片與該矽光晶片會被陽極焊接在一起。 According to a preferred embodiment of the present invention, an optical module is provided, which includes: a silicon optical chip including a waveguide that transmits optical signals; and a coupler chip that is attached to the silicon Optical chip, so that the optical signals are transmitted along an optical path between the silicon optical chip and the coupler chip. The coupler chip changes the cross-sectional size of a beam defined by the optical signals. The coupler chip and the silicon light chip are anode-bonded together.

根據本發明的一較佳實施例提供一種光學模組,其包含:一互連波導管,其會傳輸光信號;一矽光晶片,其會調變該些光信號、偵測該些光信號、或是調變與偵測該些光信號;以及一耦合器晶片,其被附接至該矽光晶片及該互連波導管,俾使得該些光信號會沿著一介於該矽光晶片與與該互連波導管之間的光路徑被傳輸。該互連波導管會與該矽光晶片形成斜角。 According to a preferred embodiment of the present invention, an optical module is provided, which includes: an interconnected waveguide that transmits optical signals; and a silicon optical chip that modulates the optical signals and detects the optical signals. Or modulate and detect the optical signals; and a coupler chip, which is attached to the silicon optical chip and the interconnecting waveguide, so that the optical signals will follow The optical path to and from the interconnecting waveguide is transmitted. The interconnecting waveguide forms an oblique angle with the silicon optical chip.

根據本發明的一較佳實施例提供一種傳收器,其包含:一印刷電路板;一光學模組,其包含一互連波導管,該互連波導管會傳輸光信號;一矽光晶片,其被連接至該印刷電路板並且會調變該些光信號、偵測該些光信號、或是調變與偵測該些光信號;一耦合器晶片,其被附接至該矽光晶片及該互連波導管,俾使得該些光信號會沿著一介於該矽光晶片與與該互連波導管之間的光路徑被傳輸;以及一殼體,用以封入該矽光晶片以及該耦合器晶片。該耦合器晶片會利用一鎖存器被固定在該殼體之中。該耦合器晶片可以藉由解鎖該鎖存器而脫離該殼體。 According to a preferred embodiment of the present invention, a transceiver is provided, which includes: a printed circuit board; an optical module including an interconnecting waveguide that transmits optical signals; and a silicon optical chip. , Which is connected to the printed circuit board and will modulate the optical signals, detect the optical signals, or modulate and detect the optical signals; a coupler chip, which is attached to the silicon light The chip and the interconnecting waveguide, so that the optical signals are transmitted along an optical path between the silicon optical chip and the interconnecting waveguide; and a casing for sealing the silicon optical chip And the coupler chip. The coupler chip is fixed in the housing by a latch. The coupler chip can be released from the housing by unlocking the latch.

根據本發明的一較佳實施例提供一種光學模組,其包含:一矽光晶片,其包含一波導管,該波導管會傳輸光信號;一耦合器晶片,其被附接至該矽光晶片,俾使得該些光信號會沿著一介於該矽光晶片與該耦合器晶片之間的光路徑被傳輸;以及一光偵測器,其被表面鑲嵌至該矽光晶片。 According to a preferred embodiment of the present invention, an optical module is provided, which includes: a silicon light chip including a waveguide that transmits optical signals; a coupler chip that is attached to the silicon A chip, so that the optical signals are transmitted along an optical path between the silicon optical chip and the coupler chip; and a light detector, which is surface-mounted into the silicon optical chip.

根據本發明的一較佳實施例提供一種製造光學模組的方法,其包含:提供一具有一光層的晶圓;裁切該晶圓,用以形成一矽光晶片;配接該矽光晶片與一印刷電路板;配接一耦合器晶片與該矽光晶片;以及將一互連波導管鑲嵌至該耦合器晶片。 According to a preferred embodiment of the present invention, a method for manufacturing an optical module is provided. The method includes: providing a wafer having an optical layer; cutting the wafer to form a silicon light wafer; and connecting the silicon light A chip and a printed circuit board; a coupler chip and the silicon optical chip are connected; and an interconnecting waveguide is embedded in the coupler chip.

根據本發明的一較佳實施例提供一種製造光學模組的方法,其包含:提供一由多個矽光晶片組成的晶圓;配接多個耦合器晶片與該晶圓上的該 些矽光晶片;裁切該晶圓,用以形成多個矽光晶片/耦合器晶片組裝件;配接該些矽光晶片/耦合器晶片組裝件與多個印刷電路板;以及將多條互連波導管鑲嵌至該些耦合器晶片。 According to a preferred embodiment of the present invention, a method for manufacturing an optical module is provided, which includes: providing a wafer composed of a plurality of silicon optical wafers; and matching a plurality of coupler wafers with the silicon on the wafer Optical wafer; cutting the wafer to form multiple silicon optical wafer / coupler wafer assemblies; mating the silicon optical wafer / coupler wafer assemblies with multiple printed circuit boards; and interconnecting multiple A waveguide is embedded in the coupler wafers.

參考隨附的圖式,可以從本發明的較佳實施例的下面詳細說明中更明白本發明的上面以及其它特點、元件、特徵、步驟、以及優點。 The above and other features, elements, characteristics, steps, and advantages of the present invention can be more clearly understood from the following detailed description of the preferred embodiments of the present invention with reference to the accompanying drawings.

10‧‧‧傳收器 10‧‧‧Transceiver

11‧‧‧微控制器 11‧‧‧Microcontroller

12‧‧‧雷射驅動器 12‧‧‧laser driver

13‧‧‧調變器驅動器 13‧‧‧Modulator driver

14‧‧‧轉阻放大器(TIA) 14‧‧‧ Transimpedance Amplifier (TIA)

15‧‧‧矽光晶片 15‧‧‧ Silicon Optical Chip

16‧‧‧調變器1至4 16‧‧‧ Modulators 1 to 4

17‧‧‧接收器1至4 17‧‧‧ Receivers 1 to 4

18‧‧‧雷射A、B 18‧‧‧Laser A, B

19‧‧‧耦合器晶片 19‧‧‧ coupler chip

20‧‧‧模態轉換器 20‧‧‧ Modal Converter

21‧‧‧傳送(Tx)互連波導管 21‧‧‧Transmission (Tx) Interconnected Waveguide

22‧‧‧接收(Rx)互連波導管 22‧‧‧Receiving (Rx) interconnected waveguide

23‧‧‧傳送(Tx)輸入 23‧‧‧Tx input

24‧‧‧接收(Rx)輸出 24‧‧‧Receive (Rx) output

25‧‧‧連接器 25‧‧‧ Connector

26‧‧‧多工器(MUX) 26‧‧‧ Multiplexer (MUX)

27‧‧‧解多工器(DEMUX) 27‧‧‧Demultiplexer (DEMUX)

28‧‧‧傳送(Tx)轉向結構 28‧‧‧Tx Steering Structure

29‧‧‧接收(Rx)轉向結構 29‧‧‧Receiving (Rx) steering structure

30‧‧‧纖殼 30‧‧‧ fiber shell

31‧‧‧核心 31‧‧‧core

32‧‧‧通道波導管 32‧‧‧channel waveguide

33‧‧‧通道格柵 33‧‧‧Aisle grille

34‧‧‧通道偵測器 34‧‧‧channel detector

35‧‧‧通道射束 35‧‧‧ channel beam

36‧‧‧方向耦合器 36‧‧‧ Directional Coupler

37‧‧‧格柵耦合器 37‧‧‧ Grille Coupler

38‧‧‧耦合器光層 38‧‧‧Coupler Optical Layer

39‧‧‧矽光光層 39‧‧‧ Silicon Light Layer

40‧‧‧印刷電路板(PCB) 40‧‧‧Printed Circuit Board (PCB)

41‧‧‧球柵陣列(BGA) 41‧‧‧ Ball Grid Array (BGA)

42‧‧‧耦合器透鏡 42‧‧‧ coupler lens

43‧‧‧矽光透鏡 43‧‧‧Silicone lens

44‧‧‧凹口 44‧‧‧ notch

45‧‧‧熱化合物 45‧‧‧ thermal compounds

46‧‧‧陸地部 46‧‧‧Land Department

51‧‧‧點接點 51‧‧‧point contact

52‧‧‧線接點 52‧‧‧line contact

53‧‧‧平面接點 53‧‧‧Plane contact

54‧‧‧通道雷射 54‧‧‧ channel laser

55‧‧‧對齊球體 55‧‧‧ aligned sphere

56‧‧‧分隔體 56‧‧‧ divider

57‧‧‧混合式矽光晶片 57‧‧‧ Hybrid Silicon Optical Chip

58‧‧‧通孔 58‧‧‧through hole

59‧‧‧直通孔 59‧‧‧through hole

60‧‧‧第一波導管 60‧‧‧First Waveguide

61‧‧‧第一漸細部 61‧‧‧First taper

62‧‧‧第二波導管 62‧‧‧Second Waveguide

63‧‧‧第二漸細部 63‧‧‧Second taper

64‧‧‧基板 64‧‧‧ substrate

65‧‧‧中間層 65‧‧‧ middle layer

66‧‧‧頂端層 66‧‧‧ Top layer

70‧‧‧殼體 70‧‧‧shell

71‧‧‧散熱片 71‧‧‧ heat sink

72‧‧‧鎖存器 72‧‧‧ Latch

73‧‧‧凹口 73‧‧‧notch

74‧‧‧溝槽 74‧‧‧Groove

75‧‧‧孔洞 75‧‧‧ Hole

76‧‧‧凹槽 76‧‧‧Groove

77‧‧‧電子層 77‧‧‧Electronic layer

78‧‧‧光點尺寸轉換器區 78‧‧‧Spot size converter area

79‧‧‧散熱片 79‧‧‧ heat sink

81‧‧‧第一連接器 81‧‧‧first connector

82‧‧‧第二連接器 82‧‧‧Second connector

100‧‧‧耦合器基準點 100‧‧‧ coupler reference point

101‧‧‧矽光基準點 101‧‧‧ silicon light reference point

102‧‧‧底部相機 102‧‧‧ bottom camera

103‧‧‧頂端相機 103‧‧‧Top Camera

104‧‧‧平台 104‧‧‧platform

105‧‧‧夾盤 105‧‧‧Chuck

圖1所示的係根據本發明一較佳實施例的矽光系統的方塊圖。 FIG. 1 is a block diagram of a silicon light system according to a preferred embodiment of the present invention.

圖2所示的係根據本發明一較佳實施例的另一矽光系統的方塊圖。 FIG. 2 is a block diagram of another silicon light system according to a preferred embodiment of the present invention.

圖3與4所示的係具有能夠用於圖2中所示之矽光系統的耦合器晶片,其具有埃謝勒格柵。 The system shown in FIGS. 3 and 4 has a coupler chip that can be used in the silicon light system shown in FIG. 2, which has an Echeler grid.

圖5所示的係具有能夠用於圖2中所示之矽光系統的耦合器晶片,其具有陣列式波導管格柵。 The system shown in FIG. 5 has a coupler chip that can be used in the silicon light system shown in FIG. 2 and has an arrayed waveguide grid.

圖6所示的係具有能夠用於圖2中所示之矽光系統的耦合器晶片,其具有有表面格柵與方向耦合器的分色濾光器。 The system shown in FIG. 6 has a coupler chip which can be used in the silicon light system shown in FIG.

圖7所示的係被連接至一矽光晶片的耦合器晶片。 The coupler chip shown in FIG. 7 is connected to a silicon optical chip.

圖8至10、32、以及33所示的係用於該耦合器晶片與矽光晶片的各種可能的光學排列。 Figures 8 to 10, 32, and 33 show various possible optical arrangements for the coupler chip and the silicon optical chip.

圖11以及12所示的係具有一分隔體的混合式矽光晶片。 11 and 12 show a hybrid silicon optical chip having a separator.

圖13所示的係具有一通孔的矽光晶片。 The silicon light chip shown in FIG. 13 has a through hole.

圖14以及15所示的係具有兩個波導管層的耦合器晶片。 The coupler wafer shown in Figs. 14 and 15 has two waveguide layers.

圖16所示的係用於該混合式矽光晶片與該耦合器晶片的傳送側射束模型的範例。 FIG. 16 shows an example of a transmission-side beam model for the hybrid silicon optical chip and the coupler chip.

圖17以及18所示的係一種動力對齊排列。 Figures 17 and 18 show a dynamic alignment arrangement.

圖19以及20所示的係一種視覺輔助對齊排列。 19 and 20 show a visually assisted alignment arrangement.

圖21以及22所示的係傳收器的一範例。 An example of the system receiver shown in FIGS. 21 and 22.

圖23以及24所示的係傳收器的另一範例。 Another example of the system receiver shown in Figs.

圖25以及26所示的係耦合器晶片的一範例。 An example of the tying coupler chip shown in FIGS. 25 and 26.

圖27所示的係矽光晶片的一範例。 An example of a silicon-based silicon wafer shown in FIG. 27.

圖28以及29所示的係製造傳收器的步驟。 28 and 29 are steps for manufacturing a receiver.

圖30所示的係具有光點尺寸轉換器區的光纖。 The optical fiber shown in FIG. 30 has a spot size converter region.

圖31所示的係被一連接至兩個連接器的傳收器。 The system shown in Figure 31 is a transceiver connected to two connectors.

圖34所示的係傳收器的另一範例。 Another example of the system receiver shown in FIG.

圖1所示的係根據本發明一較佳實施例的矽光系統。傳收器10包含一微控制器11,其被連接至雷射驅動器12、調變器驅動器13、以及轉阻放大器(Transimpedance Amplifier,TIA)14。微控制器11會如微控制器11的右手邊的箭頭所示般地從位於該矽光系統外部的一或更多個裝置處接收電氣輔助信號以及發送電氣輔助信號至該矽光系統外部的一或更多個裝置,舉例來說,該些電氣輔助信號包含控制與監視信號。該調變器驅動器13會經由傳送(Tx)輸入23接收電氣資料信號,而TIA 14則經由接收(Rx)輸出24來輸出電氣資料信號。該些Tx輸入23以及該些Rx輸出24較佳的係被併入於連接器25之中。雷射A、B(圖中標示為元件符號18)被連接至雷射驅動器12。該傳收器10還包含一矽光晶片15以及一耦合器晶片19。該耦合器晶片19被連接至Tx互連波導管21以及Rx互連波導管22。 FIG. 1 shows a silicon light system according to a preferred embodiment of the present invention. The transceiver 10 includes a microcontroller 11, which is connected to a laser driver 12, a modulator driver 13, and a transimpedance amplifier (TIA) 14. The microcontroller 11 receives electrical auxiliary signals from one or more devices located outside the silicon optical system as shown by arrows on the right-hand side of the microcontroller 11 and sends electrical auxiliary signals to external devices of the silicon optical system. One or more devices, for example, the electrical auxiliary signals include control and monitoring signals. The modulator driver 13 receives electrical data signals via a transmit (Tx) input 23, and the TIA 14 outputs electrical data signals via a receive (Rx) output 24. The Tx input 23 and the Rx output 24 are preferably incorporated into the connector 25. The lasers A, B (labeled as 18 in the figure) are connected to the laser driver 12. The transceiver 10 further includes a silicon optical chip 15 and a coupler chip 19. The coupler wafer 19 is connected to the Tx interconnect waveguide 21 and the Rx interconnect waveguide 22.

一通道係由單一路徑來定義,信號會沿著該單一路徑被傳輸,也就是,傳送及/或接收。舉例來說,其中一條傳送通道係由該調變器驅動器13從最頂端的Tx輸入23處所收到的電氣資料信號所定義,其會讓調變器4調變來自雷射B的光,並且來自該調變器4之經調變的光會經由耦合器晶片19進入最頂端的 Tx互連波導管21。於此傳送通道的範例中,該傳送通道包含電氣資料信號以及光學資料信號兩者。一對應的接收通道係由最底部Rx互連波導管22上被該耦合器晶片19收到的光學資料信號所定義,其會讓底部接收器1產生一電氣資料信號,並且來自該最底部接收器1的一對應電氣資料信號會由TIA 14供應至最底部的Rx輸出24,其中,該對應的電氣資料信號係以被該TIA 14收到的該已產生的電氣資料信號為基礎。 A channel is defined by a single path along which signals are transmitted, that is, transmitted and / or received. For example, one of the transmission channels is defined by the electrical data signal received by the modulator driver 13 from the top Tx input 23, which will cause the modulator 4 to modulate the light from the laser B, and The modulated light from the modulator 4 enters the topmost Tx interconnect waveguide 21 via the coupler wafer 19. In the example of the transmission channel, the transmission channel includes both electrical data signals and optical data signals. A corresponding receiving channel is defined by the optical data signal received by the coupler chip 19 on the bottommost Rx interconnecting waveguide 22, which will cause the bottom receiver 1 to generate an electrical data signal and receive from the bottommost receiving A corresponding electrical data signal of the device 1 will be supplied by the TIA 14 to the bottom Rx output 24, wherein the corresponding electrical data signal is based on the generated electrical data signal received by the TIA 14.

微控制器11能夠為任何合宜的微控制器、微處理器、中央處理單元、可場程式化閘極陣列、特定應用積體電路、...等。一個以上的微控制器11會被使用。該微控制器11能夠為一離散部件,或者,其亦能夠和該矽光晶片15整合。整合微控制器11和該矽光晶片15可能會增加該矽光晶片15的成本、複雜度、以及尺寸。 The microcontroller 11 can be any suitable microcontroller, microprocessor, central processing unit, field-programmable gate array, application-specific integrated circuits, etc. More than one microcontroller 11 will be used. The microcontroller 11 can be a discrete component, or it can be integrated with the silicon optical chip 15. Integrating the microcontroller 11 and the silicon-optic chip 15 may increase the cost, complexity, and size of the silicon-optic chip 15.

圖1中雖然顯示兩個雷射18;不過,任何合宜數量的雷射皆能夠被使用。在圖1中,雷射A被連接至調變器1、2(為清楚起見,僅有調變器1被標示為元件符號16),而雷射B則被連接至調變器3、4。然而,倘若一雷射18有足夠的電力供該些通道中的每一條通道使用的話該雷射18亦能夠被連接至該些調變器中的每一者;或者,四個雷射18可以被連接至該些調變器1至4,俾使得每一條通道皆有一個雷射可以使用。倘若使用一個以上的雷射18的話,該些雷射18能夠提供不同波長的光,俾使得不同的通道使用不同波長的光。 Although two lasers 18 are shown in Figure 1; any suitable number of lasers can be used. In Figure 1, laser A is connected to modulators 1, 2 (for clarity, only modulator 1 is labeled as component symbol 16), while laser B is connected to modulator 3, 4. However, if a laser 18 has sufficient power for each of the channels, the laser 18 can also be connected to each of the modulators; or, four lasers 18 can Connected to these modulators 1 to 4, 俾 makes a laser available for each channel. If more than one laser 18 is used, the lasers 18 can provide light of different wavelengths, so that different channels use different wavelengths of light.

舉例來說,雷射18能夠為邊緣發射器或者垂直空腔表面發射雷射(VCSEL)。該些雷射18能夠:1)被鑲嵌在傳收器10外部,其中,來自該雷射的光能夠利用一互連波導管並且可能利用耦合器晶片19而被供應至該矽光晶片15;2)被鑲嵌在一具有該傳收器10之其它器件的印刷電路板(PCB)上,舉例來說,該些其它器件包含微控制器11、雷射驅動器12、調變器驅動器13、 TIA 14、矽光晶片15、耦合器晶片19、...等,其中,來自該些雷射18的光會藉由該PCB之中的埋置有機波導管被耦合至該矽光晶片15;或者3)與該矽光晶片15整合,其範例包含:一微型封裝雷射,其通常係由一MEMS矽外殼所製成,該MEMS矽外殼含有一分散式回授雷射(Distributed FeedBack Laser,DFB雷射)、一光學球透鏡、以及一隔離器;一覆晶式p-down,其為能夠利用覆晶技術來鑲嵌的SOA(半導體光學放大器)、DFB、或是Fabry-Perot半導體雷射晶片;或是一異質整合雷射,其經常包含一III-V量子增益結構,其會創造被耦合至並且被侷限至底下之矽波導管的光。因為雷射18的效能有溫度敏感性,所以,於某些應用中,有利的方式係將雷射18被鑲嵌在矽光晶片15的外部,其可以被鑲嵌在具有其它器件的PCB上或是被鑲嵌在傳收器10外部。 For example, the laser 18 can be an edge emitter or a vertical cavity surface emitting laser (VCSEL). The lasers 18 can: 1) be embedded outside the receiver 10, wherein the light from the laser can be supplied to the silicon optical chip 15 using an interconnected waveguide and possibly a coupler chip 19; 2) It is embedded on a printed circuit board (PCB) with other devices of the transceiver 10, for example, the other devices include a microcontroller 11, a laser driver 12, a modulator driver 13, and a TIA. 14. Silicon optical chip 15, coupler chip 19, ..., etc., wherein the light from the lasers 18 is coupled to the silicon optical chip 15 through the embedded organic waveguide in the PCB; or 3) Integrate with the silicon optical chip 15. Examples include: a miniature package laser, which is usually made of a MEMS silicon shell, which contains a distributed feed back laser (DFB). Laser), an optical ball lens, and an isolator; a flip-chip p-down, which is an SOA (semiconductor optical amplifier), DFB, or Fabry-Perot semiconductor laser chip that can be embedded using flip-chip technology Or a heterogeneous integrated laser, which often includes a III-V quantum gain junction , Which creates and is coupled to the bottom is confined to silicon light waveguide. Because the performance of the laser 18 is temperature sensitive, in some applications, it is advantageous to embed the laser 18 on the outside of the silicon wafer 15, which can be embedded on a PCB with other devices or It is embedded outside the receiver 10.

雷射驅動器12會被鑲嵌在傳收器10裡面,舉例來說,其包含被鑲嵌在矽光晶片15附近或被鑲嵌在矽光晶片15上;或者,雷射驅動器12亦能夠被鑲嵌在傳收器10外面,舉例來說,被鑲嵌在一主PCB(圖1中並未顯示)上。 The laser driver 12 is embedded in the receiver 10, for example, it includes being embedded near or on the silicon optical chip 15; or, the laser driver 12 can also be embedded in the transmitting device 10. The receiver 10 is, for example, embedded on a main PCB (not shown in FIG. 1).

調變器驅動器13會從Tx輸入23處接收電氣資料信號並且藉由關閉與開啟一對應的調變器16而產生一對應的放大電氣信號,其會產生一具有高位準信號與低位準信號的光學資料信號。該調變器驅動器13能夠為如圖1中所示的單一裝置,其被提供用於供所有通道使用;或者,該調變器驅動器13亦能夠為一組裝置,每一條通道皆有一個裝置可以使用。因為該些調變器16被關閉與開啟的速度會快過雷射被開啟與關閉的速度,所以,利用該些調變器16能夠達到高頻的目的。 The modulator driver 13 receives electrical data signals from the Tx input 23 and generates a corresponding amplified electrical signal by closing and opening a corresponding modulator 16, which generates a signal having a high level signal and a low level signal. Optical data signals. The modulator driver 13 can be a single device as shown in FIG. 1, which is provided for use by all channels; or, the modulator driver 13 can also be a group of devices, and each channel has a device can use. Because the speeds at which the modulators 16 are turned on and off are faster than the speed at which the lasers are turned on and off, the use of the modulators 16 can achieve a high-frequency purpose.

TIA 14係受控於微控制器11並且從光偵測器1至4處接收信號(為 清楚起見,接收器1至4以元件符號17來標示)。一般來說,該信號為一電流信號,其大小係以被該些接收器17偵測到的光的數額為基礎,並且TIA 14會將該電流信號轉換成一電壓信號。該TIA 14能夠為如圖1中所示的單一裝置,其被提供用於供所有通道使用;或者,該TIA 14亦能夠為一組裝置,每一條通道皆有一個裝置可以使用。 TIA 14 is controlled by microcontroller 11 and receives signals from photodetectors 1 to 4 (for clarity, receivers 1 to 4 are identified by component symbol 17). Generally, the signal is a current signal, the magnitude of which is based on the amount of light detected by the receivers 17, and the TIA 14 converts the current signal into a voltage signal. The TIA 14 can be a single device as shown in FIG. 1, which is provided for use by all channels; alternatively, the TIA 14 can also be a group of devices, one device for each channel can be used.

矽光晶片15雖然較佳的係一由矽所製成的光學裝置;然而,亦能夠使用其它合宜的材料,舉例來說,InP或是鈮酸鋰。矽光晶片15包含一矽晶圓中能夠傳送光、控制光、及/或偵測光的任何部分。矽光晶片15的此些功能包含調變、偵測、引導、MUX/DEMUX...等。矽光晶片15亦能夠為如圖11與12中所示般由被焊接在一起的矽與玻璃所製成的混合式晶片。矽光晶片15通常包含操縱光的波導管(圖中並未顯示)以及被用來產生光信號的驅動器16。矽光晶片15之中的典型波導管的剖面維度目前雖然為約0.3μmx0.3μm;不過,亦可以使用其它合宜的尺寸。於本發明的某些較佳實施例中,矽光晶片15會包含被形成在埋置於一二氧化矽基質中的氮化矽條紋之中的波導管。由於氮化矽與二氧化矽之間的較小折射率差異的關係,此些波導管通常會有較大的模態尺寸(mode size)。 Although the silicon light chip 15 is preferably an optical device made of silicon; however, other suitable materials can also be used, such as InP or lithium niobate. The silicon light chip 15 includes any portion of a silicon wafer capable of transmitting light, controlling light, and / or detecting light. These functions of the silicon light chip 15 include modulation, detection, guidance, MUX / DEMUX, etc. The silicon wafer 15 can also be a hybrid wafer made of silicon and glass soldered together as shown in FIGS. 11 and 12. The silicon optical chip 15 usually includes a waveguide (not shown) for manipulating light and a driver 16 for generating an optical signal. Although the cross-sectional dimension of a typical waveguide in the silicon optical chip 15 is currently about 0.3 μm × 0.3 μm; however, other suitable sizes can also be used. In some preferred embodiments of the present invention, the silicon wafer 15 includes a waveguide formed in a silicon nitride stripe embedded in a silicon dioxide matrix. Due to the small refractive index difference between silicon nitride and silicon dioxide, these waveguides usually have a larger mode size.

耦合器晶片19為一在該矽光晶片15與該些互連波導管21、22之間傳輸光學信號的裝置。該耦合器晶片19能夠為在該矽光晶片15與該(些)互連波導管21、22之間提供一光學路徑的任何裝置。該耦合器晶片19會具有被動式光學功能,舉例來說,其包含MUX/DEMUX。該耦合器晶片19能夠改變光的方向並且能夠改變光的模態尺寸。舉例來說,倘若矽光晶片15以垂直方式或是接近垂直方式發光的話,那麼,耦合器晶片19便會重新引導該垂直光,俾使得其會在水平方向或是接近水平方向中傳導。模態轉換器20會改變光的模態尺寸,其能夠在各種光學介面處提供有效的耦合,同時保持該些介面處的對齊容限值。舉例來說,從矽光晶片15處發出的光會具有約0.3μmx0.3μm的剖面模態尺寸,並且 該互連波導管的剖面模態尺寸的直徑在單模態光纖中能夠為9μm。模態轉換器20會改變該已發射的光剖面尺寸,以便匹配或是接近匹配互連波導管21、22的剖面尺寸。在Rx通道中可能未必需要模態轉換器20,因為光並不需要被模態匹配至該光偵測器之中,也就是,即使光的剖面尺寸小於該光偵測器,該光偵測器仍然能夠有效地偵測該光。耦合器晶片19能夠由矽、玻璃、或是矽與玻璃兩者來製成,其中,矽與玻璃被陽極焊接在一起。耦合器晶片19較佳的係由熱膨脹係數和矽光晶片15的熱膨脹係數雷同的材料所製成,俾使得在操作期間,當傳收器10的溫度提高時,該兩個裝置仍會保持對齊並且不會彎折或扭轉(或者,彎折與扭轉大幅地降低或最小化)。 The coupler chip 19 is a device for transmitting optical signals between the silicon optical chip 15 and the interconnected waveguides 21 and 22. The coupler chip 19 can be any device that provides an optical path between the silicon optical chip 15 and the interconnecting waveguides 21, 22. The coupler chip 19 may have a passive optical function, for example, it includes MUX / DEMUX. The coupler wafer 19 can change the direction of light and can change the modal size of the light. For example, if the silicon light chip 15 emits light in a vertical or near-vertical manner, the coupler chip 19 will redirect the vertical light, so that it will conduct in the horizontal direction or near the horizontal direction. The modal converter 20 changes the modal size of the light, which can provide effective coupling at various optical interfaces while maintaining the alignment tolerances at these interfaces. For example, the light emitted from the silicon optical chip 15 will have a cross-sectional modal size of about 0.3 mx 0.3 m, and the diameter of the cross-sectional modal size of the interconnected waveguide can be 9 m in a single-mode fiber. The modal converter 20 changes the cross-sectional size of the emitted light so as to match or closely match the cross-sectional size of the interconnected waveguides 21, 22. The modal converter 20 may not be necessary in the Rx channel, because light does not need to be modally matched to the light detector, that is, the light detection is performed even if the cross-sectional size of the light is smaller than the light detector. The device is still able to effectively detect the light. The coupler chip 19 can be made of silicon, glass, or both silicon and glass, wherein silicon and glass are anode welded together. The coupler chip 19 is preferably made of a material with the same thermal expansion coefficient as the thermal expansion coefficient of the silicon-optic wafer 15, so that during operation, when the temperature of the receiver 10 increases, the two devices will remain aligned. And does not bend or twist (or, bends and twists are greatly reduced or minimized).

在圖1中,傳收器10雖然包含具有四條對應Tx互連波導管21的四條傳送通道以及具有四條對應Rx互連波導管22的四條接收通道;然而,亦能夠包含任何合宜數量的通道。舉例來說,傳收器10能夠包含一條、六條、八條、或是十二條Tx互連波導管21以及對應的一條、六條、八條、或是十二條Rx互連波導管22。除了傳收器10之外,取而代之的係,亦能夠使用僅具有一條或是更多條Tx互連波導管21的傳送器,或者,亦能夠使用僅具有一條或是更多條Rx互連波導管22的接收器。 In FIG. 1, although the receiver 10 includes four transmission channels with four corresponding Tx interconnecting waveguides 21 and four receiving channels with four corresponding Rx interconnecting waveguides 22, it can also include any suitable number of channels. For example, the receiver 10 can include one, six, eight, or twelve Tx interconnecting waveguides 21 and a corresponding one, six, eight, or twelve Rx interconnecting waveguides. twenty two. In addition to the receiver 10, a transmitter having only one or more Tx interconnecting waveguides 21 can be used instead, or a receiver having only one or more Rx interconnecting waves can be used. The receiver of the catheter 22.

互連波導管21、22較佳的係光纖。該些光纖能夠為單獨的光纖或者能夠為被排列成束狀或帶狀的一光纖陣列。該些互連波導管21、22亦能夠為一以撓性聚合物為基礎的波導管帶或是一由矽或特定其它合宜材料所製成的中介片晶片。光纖通常包含一被纖殼30包圍的核心31,舉例來說,如圖5中所示。該些光纖能夠為單模態或是多模態。舉例來說,單模態光纖的核心會具有約9μm的剖面尺寸,而多模態光纖的核心則會具有約50μm或是約62.5μm的剖面尺寸。該些光纖能夠如圖21與22中所示般地被永久地附接至該傳收器10(也就是,尾纖式光纖),或者能夠如圖23與24中所示般地可脫離該傳收器(也就是,連接器式光 纖)。 The interconnecting waveguides 21, 22 are preferably optical fibers. These optical fibers can be individual optical fibers or can be an optical fiber array arranged in a bundle or ribbon shape. The interconnected waveguides 21, 22 can also be a flexible polymer-based waveguide tape or an interposer wafer made of silicon or some other suitable material. An optical fiber typically includes a core 31 surrounded by a fiber housing 30, as shown in FIG. 5, for example. These fibers can be single-mode or multi-mode. For example, the core of a single-mode fiber will have a cross-sectional size of about 9 μm, while the core of a multi-mode fiber will have a cross-sectional size of about 50 μm or 62.5 μm. The optical fibers can be permanently attached to the receiver 10 (that is, pigtail fiber) as shown in FIGS. 21 and 22, or can be detached from the optical fiber as shown in FIGS. 23 and 24. Receiver (ie, connector-type fiber).

連接器25能夠為任何合宜的連接器,舉例來說,其包含由位於美國印第安納州的新奧爾巴尼市的Samtec,Inc.所販售的UEC5連接器。可能會使用一個以上的連接器25。單一連接器25能夠被用來收納該些Tx輸入23以及Rx輸出24;或者,其中一個連接器能夠用於Tx輸入23以及另一個連接器能夠用於Rx輸出24。 The connector 25 can be any suitable connector, including, for example, a UEC5 connector sold by Samtec, Inc. of New Albany, Indiana, USA. More than one connector 25 may be used. A single connector 25 can be used to accommodate the Tx input 23 and Rx output 24; or one of the connectors can be used for Tx input 23 and the other connector can be used for Rx output 24.

本發明較佳實施例的傳收器10能夠被施行為雷同於在美國申請案第13/539,173號、第13/758,464號、第13/895,571號、第13/950,628號、以及第14/295,367號中所揭示之傳收器的傳收器,本文以引用的方式將該些申請案的完整內容併入。除了使用此些申請案中所揭示的光學引擎之外,取而代之的係,傳收器10亦可以使用以矽光為基礎的光學引擎,其可以有較小的尺寸、較高的速度、較大的頻寬、較高的效率、以及較長的信號行進距離。圖1中雖然並未顯示;不過,傳收器10會包含被連接至該傳收器10之各種器件的一或更多個散熱片,用以散熱。 The receiver 10 of the preferred embodiment of the present invention can be implemented similarly to U.S. applications Nos. 13 / 539,173, 13 / 758,464, 13 / 895,571, 13 / 950,628, and 14 / 295,367 The receiver of the receiver disclosed in the No., the entire contents of these applications are incorporated herein by reference. In addition to using the optical engines disclosed in these applications, instead, the transceiver 10 can also use a silicon light-based optical engine, which can have a smaller size, higher speed, and larger Bandwidth, higher efficiency, and longer signal travel distance. Although not shown in FIG. 1, the receiver 10 may include one or more heat sinks for various devices connected to the receiver 10 for heat dissipation.

圖2所示的係根據本發明一較佳實施例的另一矽光系統的方塊圖。圖2中的矽光系統雷同於圖1中的矽光系統,雷同的元件係以相同的元件符號來標示。圖2中的傳收器10包含四個雷射1至4(為清楚起見,僅有雷射1以元件符號18來標示),每一個雷射18有不同的波長。圖2中的耦合器晶片19較佳的係利用多工器(MUX)26以及解多工器(DEMUX)27來提供波長分工。圖2中的耦合器晶片19雖然並未顯示模態轉換器20;不過,該些模態轉換器20會被放置在該耦合器晶片19之中,可能位於該些不同通道中的MUX 26以及DEMUX 27的前面或後面。MUX 26及/或DEMUX 27較佳的係被形成在具有低熱膨脹係數的玻璃上,而且該玻璃的折射率不會隨著溫度大幅地改變。 FIG. 2 is a block diagram of another silicon light system according to a preferred embodiment of the present invention. The silicon light system in FIG. 2 is similar to the silicon light system in FIG. 1, and the same components are marked with the same component symbols. The transceiver 10 in FIG. 2 includes four lasers 1 to 4 (for clarity, only the laser 1 is designated by the component symbol 18), and each laser 18 has a different wavelength. The coupler chip 19 in FIG. 2 preferably uses a multiplexer (MUX) 26 and a demultiplexer (DEMUX) 27 to provide wavelength division of labor. Although the coupler chip 19 in FIG. 2 does not show the modal converter 20; however, the modal converters 20 will be placed in the coupler chip 19, and may be located in the MUX 26 in the different channels and Front or back of DEMUX 27. MUX 26 and / or DEMUX 27 are preferably formed on glass having a low coefficient of thermal expansion, and the refractive index of the glass does not change significantly with temperature.

MUX 26會結合該些傳送通道的光學信號,俾使得所有該些傳送 通道的光學信號會在相同的Tx互連波導管21中往下傳送。DEMUX 27會分離所有接收通道中接收自單一互連波導管22的光學信號。因為該些通道對應於不同波長的光的關係,所以,可以對光學信號進行此結合與分離。圖2中的結合比例為4:1而分離比例為1:4;不過,亦可以使用其它比例。舉例來說,倘若傳收器10有12條傳送通道以及12條接收通道的話,那麼,結合比例可以為12:3或12:1,而分離比例可以為3:12或1:12。12:3或3:12的比例需要三條互連波導管,而非一條。 The MUX 26 will combine the optical signals of the transmission channels so that the optical signals of all the transmission channels will be transmitted downward in the same Tx interconnecting waveguide 21. The DEMUX 27 separates the optical signals received from a single interconnected waveguide 22 in all receiving channels. Because these channels correspond to the relationship of light of different wavelengths, this combination and separation of optical signals can be performed. The binding ratio in FIG. 2 is 4: 1 and the separation ratio is 1: 4; however, other ratios may be used. For example, if the transceiver 10 has 12 transmission channels and 12 reception channels, the combination ratio can be 12: 3 or 12: 1, and the separation ratio can be 3:12 or 1:12. 12: A 3 or 3:12 ratio requires three interconnected waveguides instead of one.

在圖2中,該些通道較佳的係操作於在通道之間有20nm波長間隔的O頻帶之中;不過,亦可以採用不同的頻帶以及不同的波長間隔。 In FIG. 2, the channels are preferably operated in the O band with a 20 nm wavelength interval between the channels; however, different frequency bands and different wavelength intervals can also be used.

圖3與4所示的係能夠用於圖2中所示的矽光系統中的耦合器晶片19。如圖3中所示,該耦合器晶片19會被鑲嵌在矽光晶片15的頂端。該耦合器晶片19以及該矽光晶片15的典型維度為約0.5mm至約1mm的厚度,約5mm的寬度,以及約5mm的長度。亦可以採用其它尺寸。 The system shown in FIGS. 3 and 4 can be used for the coupler chip 19 in the silicon optical system shown in FIG. 2. As shown in FIG. 3, the coupler chip 19 is embedded on the top of the silicon optical chip 15. Typical dimensions of the coupler chip 19 and the silicon optical chip 15 are a thickness of about 0.5 mm to about 1 mm, a width of about 5 mm, and a length of about 5 mm. Other sizes can also be used.

圖3與4中所示的耦合器晶片19包含一MUX 26以及一DEMUX 27。單一Tx互連波導管21以及單一Rx互連波導管22會被連接至該些耦合器晶片19。該些耦合器晶片19可以包含一條以上的互連波導管21、22以及一個以上的對應MUX 26與DEMUX 27。在圖3與4中,該些耦合器晶片19包含六個Tx轉向結構28以及六個Rx轉向結構29,該些Tx轉向結構28會轉向接收自矽光晶片15的垂直光,而該些Rx轉向結構29會轉向接收自DEMUX 27的水平光。該些六個轉向結構28、29中的每一者係用於一對應波長λ16中。圖3中的耦合器晶片19雖然包含六條傳送通道以及六條接收通道;不過,可以使用任何數量的傳送通道以及接收通道。該些Tx轉向結構28被連接至MUX 26,俾使得該些光學信號會被結合並且經由Tx互連波導管21被傳送。Rx互連波導管22被連接至DEMUX 27,俾使該些光學信號會被分離並且經由Rx轉向結構29被傳送。在圖3中所示的MUX 26以及DEMUX 27為一埃謝勒格柵的一部分。使用埃謝勒格柵為較佳係因為其體型 小並且溫度敏感性小於其它MUX/DEMUX元件。 The coupler chip 19 shown in FIGS. 3 and 4 includes a MUX 26 and a DEMUX 27. A single Tx interconnect waveguide 21 and a single Rx interconnect waveguide 22 are connected to the coupler wafers 19. The coupler chips 19 may include more than one interconnecting waveguide 21, 22 and more than one corresponding MUX 26 and DEMUX 27. In FIGS. 3 and 4, the coupler wafers 19 include six Tx turning structures 28 and six Rx turning structures 29. The Tx turning structures 28 turn the vertical light received from the silicon light chip 15, and the Rx The steering structure 29 turns to horizontal light received from the DEMUX 27. Each of the six turning structures 28, 29 is used in a corresponding wavelength λ 16 . Although the coupler chip 19 in FIG. 3 includes six transmission channels and six reception channels; any number of transmission channels and reception channels may be used. The Tx steering structures 28 are connected to the MUX 26 so that the optical signals are combined and transmitted via the Tx interconnecting waveguide 21. The Rx interconnect waveguide 22 is connected to the DEMUX 27, so that these optical signals are separated and transmitted via the Rx steering structure 29. MUX 26 and DEMUX 27 shown in FIG. 3 are part of an Echelle grid. The use of an Echeler grid is preferred because of its small size and lower temperature sensitivity than other MUX / DEMUX components.

倘若耦合器晶片19要被使用在傳送器之中而非被使用在傳收器10之中的話,那麼,便僅需要MUX 26以及Tx互連波導管21。倘若該耦合器晶片19要被使用在接收器之中而非被使用在傳收器10之中的話,那麼,便僅需要DEMUX 27以及Rx互連波導管22。 If the coupler chip 19 is to be used in the transmitter instead of the receiver 10, then only the MUX 26 and the Tx interconnect waveguide 21 are required. If the coupler chip 19 is to be used in the receiver instead of the receiver 10, then only the DEMUX 27 and the Rx interconnect waveguide 22 are required.

圖5所示的係一波長選擇格柵,其被作為DEMUX 27。圖5中的波長選擇格柵雖然提供四條通道;不過,亦可以使用任何其它數量的通道。該波長選擇格柵在耦合器晶片19的通道波導管32中包含四條通道格柵。為清楚起見,該些通道格柵中僅有其中一條被標示為33。在該波長選擇格柵中的其中一條通道包含Rx互連波導管22、通道格柵33、以及通道偵測器34。通道射束35(其包含該些光學信號)會被傳輸經過Rx互連波導管22、通道格柵33、以及通道偵測器34。該通道射束35較佳的係在耦合器晶片19與矽光晶片15之間的間隙之中垂直於該耦合器晶片19與該矽光晶片15的表面。圖5所示的係用於DEMUX 27的排列。雷同的排列亦能夠當作MUX 26。 The system shown in FIG. 5 is a wavelength selective grid, which is used as the DEMUX 27. Although the wavelength selection grid in FIG. 5 provides four channels; any other number of channels may be used. The wavelength selection grid includes four channel grids in the channel waveguide 32 of the coupler wafer 19. For clarity, only one of these channel grids is labeled 33. One of the channels in the wavelength selection grid includes an Rx interconnecting waveguide 22, a channel grid 33, and a channel detector 34. The channel beam 35 (which contains the optical signals) is transmitted through the Rx interconnecting waveguide 22, the channel grid 33, and the channel detector 34. The channel beam 35 is preferably in a gap between the coupler chip 19 and the silicon optical chip 15 perpendicular to the surfaces of the coupler chip 19 and the silicon optical chip 15. The system shown in FIG. 5 is used for the arrangement of the DEMUX 27. The same arrangement can also be used as MUX 26.

圖6所示的係具有能夠當作DEMUX 27之具有方向耦合器36與格柵耦合器37的分色濾光器。方向耦合器36與格柵耦合器37具有波長敏感性,其會減少通道串訊。方向耦合器36較佳的係一能夠將光學功率分割成兩個光學通道的無損失裝置。該些格柵耦合器37能夠由微型加工面鏡來取代。方向耦合器36與格柵耦合器37通常有極化敏感性。每一條通道皆包含一分離的方向耦合器36與一格柵耦合器37用於橫向電氣(Tranverse Electrical,TE)極化以及用於橫向磁性(Tranverse Magnetic,TM)極化。兩種極化會在一光偵測器(圖6中並未顯示)處進行空間結合,俾使得能夠在每一條通道中使用單一光偵測器。或者,該些極化亦能夠進行角度結合,或是使用一極化射束結合結構。圖6雖然顯示用於DEMUX 27的排列;不過,雷同的排列亦能夠當作MUX 26,但是,並不需要考 量不同的極化,因為雷射源的極化通常有良好的定義。 The system shown in FIG. 6 has a dichroic filter having a directional coupler 36 and a grid coupler 37 that can be used as the DEMUX 27. The directional coupler 36 and the grid coupler 37 have wavelength sensitivity, which can reduce channel crosstalk. The directional coupler 36 is preferably a lossless device capable of dividing optical power into two optical channels. These grid couplers 37 can be replaced by micro-machined mirrors. The directional coupler 36 and the grid coupler 37 are usually polarization sensitive. Each channel includes a separate directional coupler 36 and a grid coupler 37 for Tranverse Electrical (TE) polarization and for Tranverse Magnetic (TM) polarization. The two polarizations are spatially combined at a photodetector (not shown in Figure 6), which makes it possible to use a single photodetector in each channel. Alternatively, the polarizations can be combined angularly, or a polarized beam combining structure can be used. Figure 6 shows the arrangement for DEMUX 27; however, the same arrangement can be used as MUX 26, but it is not necessary to consider different polarizations because the polarization of laser sources is usually well defined.

可以不使用圖3至6中所示的埃謝勒格柵、波長選擇格柵、以及分色濾光器,取而代之的係,可以使用陣列式波導管格柵、其它分色濾光器、或是共振干涉濾波器作為MUX 26及/或DEMUX 27。 The Echelle grid, wavelength selective grid, and dichroic filter shown in FIGS. 3 to 6 may not be used, and instead, an arrayed waveguide grid, other dichroic filter, or It is a resonance interference filter as MUX 26 and / or DEMUX 27.

圖7所示的係被連接至矽光晶片15的耦合器晶片19。該接收通道包含Rx互連波導管22以及通道偵測器34。在一傳送通道中會使用Tx互連波導管21取代Rx互連波導管22,並且使用一通道雷射54而並非通道偵測器34。該接收通道會在該Rx互連波導管22與該通道偵測器34之間提供一光路徑,而該傳送通道則會在該Tx互連波導管21與該通道雷射54之間提供一光路徑。該耦合器晶片19以及該矽光晶片15會包含用於操控通道射束35的各種結構。耦合器晶片19會包含透鏡42,而矽光晶片15則會包含透鏡43。該耦合器晶片19包含一包含被動式波導管的光層38,其包含Rx轉向結構29。該Rx轉向結構29會包含一微型加工表面或是一表面格柵。該微型加工表面會使用完全內反射或者會包含一反射塗層。該微型加工表面能夠為平坦狀或者能夠為彎曲用以如圖8至10、32、以及33中所示般地聚焦該通道射束35。互連波導管21、22的末端表面亦能夠被彎折用以取代轉向結構29。在傳送通道中,該矽光晶片15包含一包含主動式波導管的光層39,圖7中雖然並未顯示;但是,其包含調變器16。在接收通道中,該矽光晶片15的光層39並不需要有主動式波導管。在圖7中,該耦合器晶片19的光層38雖然位於頂端表面;但是,該光層38亦能夠位於該耦合器晶片19的底部表面。同樣地,該矽光晶片15的光層39雖然位於底部表面;但是,該光層39亦能夠位於該矽光晶片15的頂端表面。該耦合器晶片19與該矽光晶片15皆會包含一塗層(舉例來說,介電質,例如,氮化矽或氧化矽),用以減少傳送通道與接收通道中的反向反射。 The coupler chip 19 shown in FIG. 7 is connected to a silicon optical chip 15. The receiving channel includes an Rx interconnect waveguide 22 and a channel detector 34. Instead of the Rx interconnect waveguide 22, a Tx interconnect waveguide 21 is used in a transmission channel, and a channel laser 54 is used instead of the channel detector 34. The receiving channel provides an optical path between the Rx interconnecting waveguide 22 and the channel detector 34, and the transmitting channel provides an optical path between the Tx interconnecting waveguide 21 and the channel laser 54. Light path. The coupler chip 19 and the silicon optical chip 15 include various structures for controlling the channel beam 35. The coupler chip 19 will include a lens 42 and the silicon optical chip 15 will include a lens 43. The coupler wafer 19 includes a light layer 38 including a passive waveguide, which includes an Rx turning structure 29. The Rx turning structure 29 may include a micro-machined surface or a surface grid. The micromachined surface will use total internal reflection or will include a reflective coating. The micro-machined surface can be flat or curved to focus the channel beam 35 as shown in FIGS. 8 to 10, 32, and 33. The end surfaces of the interconnecting waveguides 21, 22 can also be bent to replace the steering structure 29. In the transmission channel, the silicon optical chip 15 includes an optical layer 39 including an active waveguide. Although not shown in FIG. 7, it includes a modulator 16. In the receiving channel, the optical layer 39 of the silicon optical chip 15 does not need to have an active waveguide. In FIG. 7, although the optical layer 38 of the coupler wafer 19 is located on the top surface; however, the optical layer 38 can also be located on the bottom surface of the coupler wafer 19. Similarly, the light layer 39 of the silicon optical chip 15 is located on the bottom surface; however, the light layer 39 can also be located on the top surface of the silicon optical chip 15. The coupler chip 19 and the silicon optical chip 15 both include a coating (for example, a dielectric such as silicon nitride or silicon oxide) to reduce back reflection in the transmission channel and the reception channel.

圖8至10、32、以及33所示的係用於耦合器晶片19以及矽光晶片 15的各種可能的光學排列。圖8顯示一種具有單一彎曲表面的排列並且包含平坦的Rx轉向結構29、沒有透鏡43的平坦矽光晶片15、以及耦合器晶片19上的透鏡42,其優點係僅需要一個彎曲表面。圖9顯示一種具有三個彎曲表面的排列並且包含彎曲的Rx轉向結構29、矽光晶片15上的透鏡43、以及耦合器晶片19上的透鏡42,其在矽光晶片15與耦合器晶片19之間的間隙中提供一準直射束。圖10顯示一種具有兩個彎曲表面以及一個平坦表面的排列並且包含彎曲的Rx轉向結構29、沒有透鏡43的平坦矽光晶片15、以及耦合器晶片19上的透鏡42,其好處係在該矽光晶片15的頂端提供一平坦表面,俾使得在對矽光晶片15的此表面上不需要任何處理或是僅需要最少的處理。在圖32與33中,彼此相向的矽光晶片15的表面以及耦合器晶片19的表面為平坦,並且在該矽光晶片15與該耦合器晶片19之間沒有任何空間。圖32顯示一種具有單一彎曲表面的排列並且包含一平坦的Rx轉向結構29、沒有透鏡43的平坦矽光晶片15、以及位在耦合器晶片19上但是沒有面向該矽光晶片15的透鏡42,其優點係僅需要一個彎曲表面。圖33顯示一種具有單一彎曲表面的排列並且包含一彎曲的Rx轉向結構29、平坦矽光晶片15、以及平坦的耦合器晶片19,其優點係僅需要一個彎曲表面。 Various possible optical arrangements for the coupler chip 19 and the silicon optical chip 15 shown in FIGS. 8 to 10, 32, and 33 are shown. FIG. 8 shows an arrangement with a single curved surface and including a flat Rx turning structure 29, a flat silicon wafer 15 without a lens 43, and a lens 42 on the coupler wafer 19, which has the advantage that only one curved surface is required. FIG. 9 shows an arrangement with three curved surfaces and including a curved Rx turning structure 29, a lens 43 on a silicon wafer 15, and a lens 42 on a coupler wafer 19 on the silicon wafer 15 and the coupler wafer 19 A gap between them provides a collimated beam. FIG. 10 shows an arrangement with two curved surfaces and a flat surface and including a curved Rx steering structure 29, a flat silicon optical wafer 15 without a lens 43, and a lens 42 on a coupler wafer 19, the benefits of which are based on the silicon The top of the optical wafer 15 provides a flat surface, so that no processing or minimal processing is required on this surface of the silicon optical wafer 15. In FIGS. 32 and 33, the surface of the silicon optical wafer 15 and the surface of the coupler wafer 19 facing each other are flat, and there is no space between the silicon optical wafer 15 and the coupler wafer 19. FIG. 32 shows an arrangement having a single curved surface and including a flat Rx turning structure 29, a flat silicon wafer 15 without a lens 43, and a lens 42 located on the coupler wafer 19 but not facing the silicon wafer 15, The advantage is that only one curved surface is required. FIG. 33 shows an arrangement having a single curved surface and including a curved Rx turning structure 29, a flat silicon wafer 15, and a flat coupler wafer 19, which has the advantage that only one curved surface is required.

通道射束35會被準直(圖9)或者沒有被準直(圖8、10、32、以及33)。該通道射束35可能位在一傾斜角度處,也就是,沒有垂直,如圖8至10、32、以及33中所示。較佳的係,該通道射束35在該矽光晶片15與該耦合器晶片19之間的間隙區域中會被準直或者接近準直。此區域中相對大的射束尺寸(也就是,約20μm至約100μm)會放鬆該矽光晶片15與該耦合器晶片19之間的對齊容限值。有一平坦矽光晶片15的圖8、10、32、以及33不需要在矽光晶片15的其中一側提供表面特徵元件。端視光學佈局而定,舉例來說,位在該矽光晶片15的頂端表面的特徵元件以及位在該矽光晶片15的底部表面的特徵元件之間的必要對齊為±1μm。要達成此精確程度會非常困難並且昂貴。於一具有準直射束的理想 系統中,矽光晶片15與耦合器晶片19之間的位置對齊誤差不會在聚焦處造成任何位移。雖然可能會有角度偏移;但是,互連波導管21、22以及通道偵測器34的角度敏感性小於位置敏感性。 The channel beam 35 will be collimated (Figure 9) or not (Figures 8, 10, 32, and 33). The channel beam 35 may be positioned at an oblique angle, that is, not perpendicular, as shown in FIGS. 8 to 10, 32, and 33. Preferably, the channel beam 35 is collimated or nearly collimated in the gap region between the silicon optical chip 15 and the coupler chip 19. The relatively large beam size (ie, about 20 μm to about 100 μm) in this region relaxes the alignment tolerance between the silicon optical chip 15 and the coupler chip 19. 8, 10, 32, and 33 with a flat silicon wafer 15 do not need to provide surface feature elements on one side of the silicon wafer 15. The end depends on the optical layout. For example, the necessary alignment between the feature elements located on the top surface of the silicon optical chip 15 and the feature elements located on the bottom surface of the silicon optical chip 15 is ± 1 μm. Achieving this level of precision can be very difficult and expensive. In an ideal system with a collimated beam, the positional alignment error between the silicon optical chip 15 and the coupler chip 19 will not cause any displacement at the focus. Although there may be an angular offset; the angular sensitivity of the interconnected waveguides 21, 22 and the channel detector 34 is less than the position sensitivity.

圖8至10、32、以及33中所示的各種彎曲表面以及圖7中所示的透鏡能夠利用雷射加工來製造,其中,一超快速的雷射(舉例來說,皮秒(pico second)或是飛秒(femto second)脈衝寬度)會在一表面上方移動,用以產生該彎曲表面。利用雷射加工所進行的燒蝕性材料移除會留下在某些應用中需要進行後置處理的光學粗糙表面。雷射加工會在耦合器晶片19及/或分隔體56(下面會作討論)的表面底下進行,用以顯著地減少或最小化需要被燒蝕移除的材料的數額。雷射加工雖然僅會移除該雷射被聚焦的位置處的材料;但是,雷射加工卻會下切廣大的材料部分,該些部分接著能夠藉由另一製程來移除。雷射加工在形成結構時提供很大的自由度,舉例來說,其包含具有不同曲率及配向的透鏡以及面鏡。可以使用熱研磨製程來磨平雷射加工中的任何殘餘粗糙。亦可以使用一超快速雷射藉由局部性修正耦合器晶片19裡面的折射率而形成該耦合器晶片之中的波導管。 The various curved surfaces shown in FIGS. 8 to 10, 32, and 33 and the lens shown in FIG. 7 can be manufactured using laser processing, where an ultra-fast laser (for example, pico second ) Or femto second pulse width) will move over a surface to create the curved surface. Ablation material removal using laser processing can leave optically rough surfaces that require post-processing in some applications. Laser processing is performed under the surface of the coupler wafer 19 and / or the spacer 56 (discussed below) to significantly reduce or minimize the amount of material that needs to be removed by ablation. Although the laser processing only removes the material at the position where the laser is focused, the laser processing cuts down a large portion of the material, which can then be removed by another process. Laser processing provides a large degree of freedom in forming structures. For example, it includes lenses and mirrors with different curvatures and alignments. Any residual roughness during laser processing can be smoothed using a thermal grinding process. An ultra-fast laser can also be used to form the waveguide in the coupler wafer 19 by locally modifying the refractive index in the coupler wafer 19.

矽光晶片15包含一或更多個通道偵測器34及/或一或更多個通道雷射54。該些通道偵測器34會以一體成形的方式被整合至該矽光晶片15之中,或者會被表面鑲嵌至該矽光晶片15。一體成形整合的通道偵測器34會包含具有約0.4A/W(@1310nm處)響應值的Ge/Si裝置;而表面鑲嵌的通道偵測器34則會包含具有約0.9A/W(@1310nm處)響應值的InGaAs裝置,其響應值約為一體成形整合通道偵測器的兩倍。該通道偵測器34能夠為一提供波長過濾的共振凹腔增強偵測器,或者能夠為一環形共振器。圖27所示的係矽光晶片15的一範例,其中,該通道偵測器34以及該TAI 14被表面鑲嵌至光層39,較佳的係,彼此靠近。該通道偵測器34的直徑會相依於所需要的頻寬而改變。較高頻寬的系統會有小直徑 的通道偵測器34。舉例來說,10Gbps的系統可以有約70μm的偵測器直徑,而28Gbps的系統可以有約22μm的偵測器直徑。 The silicon optical chip 15 includes one or more channel detectors 34 and / or one or more channel lasers 54. The channel detectors 34 are integrated into the silicon optical chip 15 in an integrated manner, or they are surface-mounted into the silicon optical chip 15. The integrated channel detector 34 will include a Ge / Si device with a response value of about 0.4A / W (@ 1310nm); and the surface-embedded channel detector 34 will include a 0.9 / A (W (@ At 1310nm), the response value of the InGaAs device is about twice that of the integrated channel detector. The channel detector 34 can be a resonant cavity enhanced detector that provides wavelength filtering, or can be a ring resonator. An example of the system silicon optical chip 15 shown in FIG. 27, wherein the channel detector 34 and the TAI 14 are surface embedded into the light layer 39, and the preferred system is close to each other. The diameter of the channel detector 34 will vary depending on the required bandwidth. Higher bandwidth systems will have a small diameter channel detector34. For example, a 10 Gbps system can have a detector diameter of about 70 μm, and a 28 Gbps system can have a detector diameter of about 22 μm.

矽光晶片15較佳的係利用覆晶技術(舉例來說,其包含球柵陣列(Ball Grid Array,BGA)41)被連接至PCB 40。其它器件(舉例來說,其包含雷射驅動器12、調變器驅動器13、以及TIA 14、...等)亦能夠使用短柱凸塊覆晶技術。PCB 40較佳的係包含一凹口44,其包含一熱化合物45,該熱化合物45會接觸通道偵測器34或通道雷射54。 The silicon light chip 15 is preferably connected to the PCB 40 by using flip-chip technology (for example, it includes a Ball Grid Array (BGA) 41). Other devices (for example, which include a laser driver 12, a modulator driver 13, and a TIA 14, etc.) can also use stub bump flip chip technology. The PCB 40 preferably includes a notch 44 that includes a thermal compound 45 that will contact the channel detector 34 or the channel laser 54.

耦合器晶片19與矽光晶片15會分隔一間隙,俾使得由該矽光晶片15所產生的熱從該矽光晶片15至該耦合器晶片19有不良的熱路徑。倘若UV光能夠被傳送穿過該耦合器晶片19的話,該間隙則會被UV固化黏著劑填充。舉例來說,該間隙能夠為約20μm至約50μm。利用該耦合器晶片19與該矽光晶片15之間的間隙,該耦合器晶片19與該矽光晶片15會彼此對齊,用以確保所有通道的正確操作。該些對齊特徵元件會有不同的自由度。舉例來說,矽光晶片15上的固定式對齊球體55會扣接耦合器晶片19之中的點接點51、線接點52、以及平面接點53,如圖17與18中所示。此排列能夠倒置,俾使得該些對齊球體55位於耦合器晶片19上,而接點51、52、53則位於矽光晶片15上。該些接點51、52、53會被微型加工、能夠藉由光微影術以及各向異性蝕刻來形成、或者能夠藉由雷射加工製程來形成。該些對齊球體55會被固定於凹部之中。或者,該些對齊球體55亦能夠利用被形成在矽光晶片15(或是耦合器晶片19)的表面上的對齊突出部來取代。該些對齊球體能夠由玻璃製成。 The coupler chip 19 and the silicon optical chip 15 are separated by a gap, so that the heat generated by the silicon optical chip 15 has a poor thermal path from the silicon optical chip 15 to the coupler chip 19. If UV light can be transmitted through the coupler wafer 19, the gap will be filled with a UV curing adhesive. For example, the gap can be about 20 μm to about 50 μm. By using the gap between the coupler chip 19 and the silicon optical chip 15, the coupler chip 19 and the silicon optical chip 15 are aligned with each other to ensure correct operation of all channels. These alignment features have different degrees of freedom. For example, the fixed alignment sphere 55 on the silicon optical chip 15 is fastened to the point contact 51, the line contact 52, and the plane contact 53 in the coupler chip 19, as shown in FIGS. 17 and 18. This arrangement can be inverted so that the alignment spheres 55 are located on the coupler wafer 19, and the contacts 51, 52, and 53 are located on the silicon wafer 15. The contacts 51, 52, and 53 can be microfabricated, can be formed by photolithography and anisotropic etching, or can be formed by laser processing. The alignment spheres 55 are fixed in the recesses. Alternatively, the alignment spheres 55 can be replaced by alignment protrusions formed on the surface of the silicon optical chip 15 (or the coupler chip 19). The alignment spheres can be made of glass.

在圖17中,該矽光晶片15包含各向異性蝕刻的倒角錐體,該些對齊球體55會被固定於其中。在圖18中,該耦合器晶片19包含多個匹配凹口,它們會定義接點51、52、53。該些對齊球體55提供一剛性連接,而該些接點51、52、53則被排列成用以防止因為該矽光晶片15與該耦合器晶片19的熱膨脹係數 差異所造成的彎折與扭轉。本技術領域希望避免或最小化彎折與扭轉,因為彎折與扭轉會導致耦合效率下降並且導致傳收器10無法操作。避免或最小化熱誘發的彎折與扭轉會提高傳收器10的操作溫度範圍。 In FIG. 17, the silicon wafer 15 includes an anisotropically etched chamfered cone, and the alignment spheres 55 are fixed therein. In FIG. 18, the coupler wafer 19 includes a plurality of matching notches, which define the contacts 51, 52, 53. The alignment spheres 55 provide a rigid connection, and the contacts 51, 52, 53 are arranged to prevent bending and twisting caused by the difference in thermal expansion coefficients between the silicon optical chip 15 and the coupler chip 19 . It is desirable in the art to avoid or minimize bending and torsion, as bending and torsion can result in reduced coupling efficiency and render the receiver 10 inoperable. Avoiding or minimizing heat-induced bending and twisting increases the operating temperature range of the receiver 10.

矽光晶片15與耦合器晶片19會藉由在固化期間收縮的順從性黏著劑而被固定在一起。該順從性黏著劑能夠藉由將該順從性黏著劑注入於該耦合器晶片19上的直通孔59之中來供應。該順從性黏著劑雖然能夠被UV固化;不過,這必非係必要條件。 The silicon wafer 15 and the coupler wafer 19 are fixed together by a compliant adhesive that shrinks during curing. The compliant adhesive can be supplied by injecting the compliant adhesive into the through-hole 59 on the coupler wafer 19. Although this compliant adhesive can be cured by UV; this is not necessarily a requirement.

除了圖8至10、32、以及33中所示的透鏡排列之外,亦能夠如圖11至15中所示般地使用各種其它技術來修正該通道射束的尺寸。此些技術以及透鏡排列能夠分開使用以及組合使用。 In addition to the lens arrangements shown in FIGS. 8 to 10, 32, and 33, various other techniques can be used to modify the channel beam size as shown in FIGS. 11 to 15. These techniques and lens arrangements can be used separately and in combination.

圖11以及12所示的係一種混合式矽光晶片57,其包含一被附接至矽光晶片15的分隔體56。該分隔體56的厚度能夠為約0.5mm至數個mm。該分隔體56可以允許在該混合式矽光晶片57與該耦合器晶片19之間有更大的射束擴張,其會放鬆對齊容限值並且允許進行被動式對齊。分隔體56會包含基準標記或是微型加工結構,用以幫助對齊該耦合器晶片19與該混合式矽光晶片57。 11 and 12 show a hybrid silicon optical chip 57 including a spacer 56 attached to the silicon optical chip 15. The thickness of the separator 56 can be about 0.5 mm to several mm. The spacer 56 may allow greater beam expansion between the hybrid silicon light chip 57 and the coupler chip 19, which would relax the alignment tolerances and allow passive alignment. The spacer 56 may include fiducial marks or micro-machined structures to help align the coupler chip 19 and the hybrid silicon light chip 57.

分隔體56能夠由玻璃或矽製成,和矽光晶片15為相同的材料。該分隔體56與該矽光晶片15的熱膨脹係數會匹配或是實質上匹配,用以避免超額應力累積。該分隔體56會被陽極焊接至該矽光晶片15。該分隔體56會先被焊接至一由多個矽光晶片所組成的晶圓,舉例來說,8英吋或12英吋晶圓,並且接著在焊接之後被裁切。假設75%的晶圓利用率以及5mmx5mm的晶片,那麼,從8英吋的晶圓中會取得972個裝置以及從12英吋的晶圓中會取得2188個裝置。該耦合器晶片19會在晶圓級處被附接,或者會在裁切之後才被附接。 The spacer 56 can be made of glass or silicon, and is the same material as the silicon light chip 15. The thermal expansion coefficients of the spacer 56 and the silicon optical chip 15 are matched or substantially matched to avoid the accumulation of excess stress. The spacer 56 is anodically soldered to the silicon wafer 15. The spacer 56 is first soldered to a wafer made of a plurality of silicon wafers, for example, an 8-inch or 12-inch wafer, and then cut after soldering. Assuming 75% wafer utilization and 5mm x 5mm wafers, 972 devices will be obtained from 8-inch wafers and 2188 devices will be obtained from 12-inch wafers. The coupler wafer 19 may be attached at the wafer level or may be attached after cutting.

圖11顯示介於該混合式矽光晶片57與該耦合器晶片19之間的間隙;而圖12則顯示該混合式矽光晶片57與該耦合器晶片19被陽極焊接在一起, 其能夠在晶圓級處被實施並且能夠減少部件數。 FIG. 11 shows the gap between the hybrid silicon light chip 57 and the coupler chip 19; and FIG. 12 shows that the hybrid silicon light chip 57 and the coupler chip 19 are anode welded together, which can be It is implemented at the wafer level and can reduce the number of parts.

圖13所示的係具有通孔58的矽光晶片15。通孔58會如圖13中所示般地具有漸細的壁部,或者會具有筆直的壁部(圖中並未顯示)。通孔58的尺寸超大,以便放鬆對齊容限值,只要通道偵測器34完全露出即可。尺寸超大的通孔58在背側矽光處理中並不需要很高的位置容限值。通孔58會被金屬化,用以提供一反射表面,其在該通道中可以不需要有任何透鏡或者可以放鬆對齊容限值。如圖13中所示,倘若使用一整合式通道偵測器34的話,該通孔58會終止於光層39處。或者,通孔58亦能夠延伸穿過該光層39。 The silicon optical chip 15 shown in FIG. 13 has a through hole 58. The through hole 58 may have a tapered wall portion as shown in FIG. 13, or may have a straight wall portion (not shown in the figure). The size of the through hole 58 is too large to relax the alignment tolerance, as long as the channel detector 34 is fully exposed. The over-sized through hole 58 does not require a high position tolerance value in the backside silicon light processing. The through hole 58 is metalized to provide a reflective surface, which may not need any lens in the channel or relax the alignment tolerance. As shown in FIG. 13, if an integrated channel detector 34 is used, the through hole 58 will terminate at the optical layer 39. Alternatively, the through hole 58 can also extend through the light layer 39.

圖14以及15所示的係在光層38之中具有第一波導管60與第二波導管62的耦合器晶片19。第一波導管60位於基板64(其較佳的係玻璃上)並且包含第一漸細部61。第二波導管62位於該第一波導管60的上方並且包含第二漸細部63。第一波導管60與第二波導管62被排列成使得光學能量會被消逝場(evanescent field)耦合通過第一漸細部61與第二漸細部63。 The coupler wafer 19 shown in FIGS. 14 and 15 includes a first waveguide 60 and a second waveguide 62 in the optical layer 38. The first waveguide 60 is located on a substrate 64 (which is preferably on a glass) and includes a first tapered portion 61. The second waveguide 62 is located above the first waveguide 60 and includes a second tapered portion 63. The first waveguide 60 and the second waveguide 62 are arranged such that optical energy is coupled through the first tapered portion 61 and the second tapered portion 63 by an evanescent field.

較佳的係,第一波導管60與第二波導管62具有不同的光學及物理特性。舉例來說,第一波導管60與第二波導管62具有不同的尺寸,用以支援不同的模態尺寸。較大的模態尺寸能夠幫助將來自一通道雷射54的光耦合至互連波導管21,而較小的模態尺寸則能夠幫助進行MUX/DEMUX操作以及調變。 Preferably, the first waveguide 60 and the second waveguide 62 have different optical and physical characteristics. For example, the first waveguide 60 and the second waveguide 62 have different sizes to support different modal sizes. A larger modal size can help couple light from a channel laser 54 to the interconnected waveguide 21, while a smaller modal size can help MUX / DEMUX operation and modulation.

光層38較佳的係包含下面之中的至少其中一者:PMMA(聚甲基丙烯酸甲酯)、SU8光阻、矽、二氧化矽、以及氮化矽。第一波導管60與第二波導管62能夠由彼此不相同的材料製成。第一波導管60能夠由SiN製成,因為SiN波導管通常較小;而第二波導管62則能夠由SiO2製成,因為SiO2波導管的維度會妥適地匹配單模態光纖的模態尺寸。這可以讓第一波導管60被連接至MUX 26並且讓第二波導管62被連接至Tx互連波導管21。 The optical layer 38 preferably includes at least one of the following: PMMA (polymethyl methacrylate), SU8 photoresist, silicon, silicon dioxide, and silicon nitride. The first waveguide 60 and the second waveguide 62 can be made of materials different from each other. The first waveguide 60 can be made of SiN because the SiN waveguide is usually smaller; the second waveguide 62 can be made of SiO 2 because the dimensions of the SiO 2 waveguide will properly match the mode of the single-mode fiber. State size. This may allow the first waveguide 60 to be connected to the MUX 26 and the second waveguide 62 to be connected to the Tx interconnecting waveguide 21.

第一波導管60與第二波導管62能夠由不同的製程來製造,其包含 結合摻雜、蝕刻、或是材料沉積與雷射加工的光微影術,其藉由材料移除或是藉由修正的材料特性來改變材料的折射率及/或密度。雷射加工會藉由將短脈衝波長的雷射光聚焦於一材料之中而稠化及/或提高折射率。被聚焦的光點會局部性地改變一小體積(舉例來說,大小為10至100μm3)中的折射率。被聚焦的光點會高速地(舉例來說,100mm/sec)沿著一材料被掃描。 The first waveguide 60 and the second waveguide 62 can be manufactured by different processes, including photolithography combining doping, etching, or material deposition and laser processing, which are performed by material removal or borrowing. The refractive index and / or density of the material is changed by the modified material characteristics. Laser processing thickens and / or increases the refractive index by focusing laser light of short pulse wavelengths into a material. The focused light spot locally changes the refractive index in a small volume (for example, a size of 10 to 100 μm 3 ). The focused light spot is scanned along a material at high speed (for example, 100 mm / sec).

如圖14中所示,光層38從上至下包含:1)一具有折射率n2的頂端層66;2)一具有折射率n1的第二波導管62;3)一具有折射率n2的中間層65;以及4)一具有折射率n3的第一波導管60。光層38位於具有折射率nsub的基板64的頂端。第一波導管60與第二波導管62具有不同的光學特性,因此,n1≠n3。第二波導管62的折射率n1大於頂端層66以及中間層65的折射率n2,也就是,n1>n2。第一波導管60的折射率n3大於中間層65的折射率n2以及基板64的折射率nsub,也就是,n3>n2並且n3>nsub。亦可以採用其它排列,只要波導管的折射率高於包圍該波導管的材料的折射率即可。 As shown in FIG. 14, the optical layer 38 includes, from top to bottom: 1) a top layer 66 having a refractive index n 2 ; 2) a second waveguide 62 having a refractive index n 1 ; 3) a having a refractive index an intermediate layer 65 of n 2 ; and 4) a first waveguide 60 having a refractive index n 3 . The optical layer 38 is located on the top of the substrate 64 having a refractive index n sub . Since the first waveguide 60 and the second waveguide 62 have different optical characteristics, n 1 ≠ n 3 . Refractive index n 1 of the second waveguide 62 is greater than the top layer 66 and an intermediate layer 65 of refractive index n 2, i.e., n 1> n 2. The refractive index n 3 of the first waveguide 60 is larger than the refractive index n 2 of the intermediate layer 65 and the refractive index n sub of the substrate 64, that is, n 3 > n 2 and n 3 > n sub . Other arrangements may be used as long as the refractive index of the waveguide is higher than the refractive index of the material surrounding the waveguide.

圖14以及15雖然顯示一耦合器晶片19;不過,雷同的結構同樣能夠被形成在矽光晶片15的光層39之中。 14 and 15 show a coupler wafer 19; however, the same structure can also be formed in the light layer 39 of the silicon optical wafer 15.

除了圖8至15、32、以及33中所示的排列與技術之外,亦可以使用包含如圖30中所示的光點尺寸轉換器區的互連波導管21、22。耦合器晶片19中的通道波導管32的模態尺寸會匹配或是實質上匹配(落在製造容限值裡面)該些互連波導管21、22的光點尺寸轉換器區78的末端處的模態尺寸。具有光點尺寸轉換器區78的互連波導管21、22能夠被用來取代圖8至15、32、以及33中所示的排列與技術;或者,除了圖8至15、32、以及33中所示的排列與技術之外,還可以額外使用具有光點尺寸轉換器區78的互連波導管21、22。 In addition to the arrangements and techniques shown in FIGS. 8 to 15, 32, and 33, interconnected waveguides 21, 22 including a spot size converter region as shown in FIG. 30 can also be used. The modal dimensions of the channel waveguides 32 in the coupler wafer 19 will match or substantially match (fall within manufacturing tolerances) at the ends of the spot size converter regions 78 of these interconnected waveguides 21, Modal dimensions. Interconnected waveguides 21, 22 having a spot size converter region 78 can be used in place of the arrangements and techniques shown in FIGS. 8 to 15, 32, and 33; or, in addition to FIGS. 8 to 15, 32, and 33 In addition to the arrangements and techniques shown in the figures, interconnected waveguides 21, 22 having a spot size converter region 78 may be used in addition.

該光點尺寸轉換器區78能夠由互連波導管21、22的末端處的一絕熱漸細部來提供。提高模態尺寸會降低介於耦合器晶片19中的通道波導管32以及該些互連波導管21、22的核心31之間的對齊容限值。倘若互連波導管21、22為一光纖的話,那麼,該光點尺寸轉換器區78便能夠藉由局部加熱該些互連波導管21、22來創造,從而導致形成該核心31的摻雜物的擴散。超短雷射處理能夠被用來局部加熱該光纖。該超短雷射處理會藉由將該雷射聚焦在該光纖中的一3維圖樣之中而改變該光纖的折射率,從而創造該光點尺寸轉換器區78。單模態光纖的模態尺寸會從約9μm增加至約20微米。標準單模態光纖在核心31與通道波導管32之間的1μm對齊誤差中會有1dB的光學損失。倍增該模態尺寸則會將1dB的對齊容限值提高至大於2μm。 The spot size converter region 78 can be provided by an adiabatic taper at the ends of the interconnecting waveguides 21,22. Increasing the modal size will reduce the alignment tolerance between the channel waveguide 32 in the coupler wafer 19 and the cores 31 of the interconnecting waveguides 21 and 22. If the interconnecting waveguides 21, 22 are an optical fiber, the spot size converter region 78 can be created by locally heating the interconnecting waveguides 21, 22, resulting in a doping that forms the core 31 Diffusion of things. Ultra-short laser processing can be used to locally heat the fiber. The ultra-short laser processing changes the refractive index of the optical fiber by focusing the laser into a 3-dimensional pattern in the optical fiber, thereby creating the spot size converter region 78. The modal size of a single-mode fiber will increase from about 9 μm to about 20 microns. The standard single-mode fiber has an optical loss of 1 dB in a 1 μm alignment error between the core 31 and the channel waveguide 32. Multiplying this modal size will increase the 1dB alignment tolerance to greater than 2μm.

圖16所示的係用於混合式矽光晶片57與耦合器晶片19的傳送側射束模型的範例。圖16在光路徑中並沒有包含或顯示任何轉向結構並且沒有包含或顯示圖11至15中所示的任何技術。圖16包含如圖9中所示的兩個彎曲表面。首先,假設通道射束35為0.5μm大小的高斯射束。該混合式矽光晶片57包含一0.7mm厚的矽光晶片用以作為矽光晶片15,其折射率n=3.5;並且包含一0.5mm厚的矽酸硼玻璃層用以作為分隔體56,其折射率n=1.45。該矽酸硼玻璃層能夠為Borofloat®,其係由微浮製程(microfloat process)所製成,其會產生一具有低熱膨脹係數的玻璃,並且具有良好的表面品質、可見光透射特徵、以及機械強度。分隔體56中的透鏡43具有351μm的曲率半徑。在混合式矽光晶片57與耦合器晶片19之間有15μm的間隙。耦合器晶片19中的透鏡42具有343μm的曲率半徑。該耦合器晶片19包含一厚度為0.7mm的Borofloat®玻璃層,其折射率n=1.45。於此範例中,通道射束35會以66μm的射束尺寸被準直在該間隙之中並且以85%的耦合效率被耦合至一標準的單模態光纖之中。 An example of a transmission-side beam model for the hybrid silicon optical chip 57 and the coupler chip 19 shown in FIG. 16 is shown. FIG. 16 does not include or show any steering structures in the light path and does not include or show any of the techniques shown in FIGS. 11 to 15. FIG. 16 contains two curved surfaces as shown in FIG. 9. First, it is assumed that the channel beam 35 is a Gaussian beam having a size of 0.5 μm. The hybrid silicon-optic chip 57 includes a 0.7-mm-thick silicon-optic chip as the silicon-optic chip 15 with a refractive index n = 3.5; and a 0.5-mm-thick borosilicate glass layer as the separator 56. Its refractive index n = 1.45. The boron silicate glass layer can be Borofloat®, which is made by a microfloat process, which produces a glass with a low thermal expansion coefficient, and has good surface quality, visible light transmission characteristics, and mechanical strength. . The lens 43 in the separator 56 has a radius of curvature of 351 μm. There is a gap of 15 μm between the hybrid silicon optical chip 57 and the coupler chip 19. The lens 42 in the coupler wafer 19 has a radius of curvature of 343 μm. The coupler wafer 19 includes a layer of Borofloat® glass having a thickness of 0.7 mm and a refractive index n = 1.45. In this example, the channel beam 35 is collimated in the gap with a beam size of 66 μm and is coupled into a standard single-mode fiber with a coupling efficiency of 85%.

圖19以及20所示的係一種視覺輔助對齊排列,其能夠被用來取代 圖17以及18中所示的動力對齊排列。於該視覺輔助排列中,該耦合器晶片19包含一基準點100,而該矽光晶片15包含一基準點101。基準點100、101會如圖20中所示般地被對齊。如圖19中所示,為對齊矽光晶片15以及耦合器晶片19,該矽光晶片15會被放置在平台104上,並且夾盤105被用來以該矽光晶片15為基準移動該耦合器晶片19。夾盤105會在x方向、y方向、以及z方向之中被移動並且亦可能被旋轉。平台104會在x方向以及y方向之中被移動並且亦可能被旋轉。頂端相機103係被用來觀看耦合器晶片19上的基準點100,而底部相機102則係被用來觀看矽光晶片15上的基準點101。耦合器晶片19以及矽光晶片15會相互對齊,直到相機102、103(它們會在x方向以及y方向之中被精確地對齊)能夠被用來視覺確認基準點100、101如圖20中所示般地被對齊為止。因為使用兩部相機102、103並且該些相機102、103會看見位於面向該些相機102、103的表面上的基準點100、101的關係,所以,該些相機102、103並不需要看穿該矽光晶片15或是耦合器晶片19。然而,亦可以使用一透射穿過該耦合器晶片19及/或該矽光晶片15的光波長,其可以讓該視覺輔助對齊系統對齊耦合器晶片19及/或矽光晶片15中位在該相機102或103的反向側上的標記。耦合器晶片19及/或該矽光晶片15之中的波導管會傳輸該視覺輔助對齊系統可以看見的光學輻射,以便進行主動式對齊。 19 and 20 are visually assisted alignment arrangements that can be used in place of the dynamic alignment arrangements shown in FIGS. 17 and 18. In the visually assisted arrangement, the coupler chip 19 includes a reference point 100, and the silicon optical chip 15 includes a reference point 101. The fiducials 100, 101 are aligned as shown in FIG. As shown in FIG. 19, in order to align the silicon optical chip 15 and the coupler chip 19, the silicon optical chip 15 is placed on the platform 104, and the chuck 105 is used to move the coupling with the silicon optical chip 15 as a reference.器 片 19。 The wafer 19. The chuck 105 is moved among the x direction, the y direction, and the z direction and may also be rotated. The platform 104 is moved in the x direction and the y direction and may also be rotated. The top camera 103 is used to view the reference point 100 on the coupler wafer 19, and the bottom camera 102 is used to view the reference point 101 on the silicon wafer 15. The coupler chip 19 and the silicon optical chip 15 will be aligned with each other until the cameras 102, 103 (which will be accurately aligned in the x and y directions) can be used to visually confirm the reference points 100, 101 as shown in FIG. 20 Aligned as shown. Because two cameras 102, 103 are used and the cameras 102, 103 see the relationship of the reference points 100, 101 on the surface facing the cameras 102, 103, the cameras 102, 103 do not need to see through the The silicon light chip 15 or the coupler chip 19. However, a wavelength of light transmitted through the coupler chip 19 and / or the silicon optical chip 15 may also be used, which may allow the vision assisted alignment system to align the coupler chip 19 and / or the silicon optical chip 15 in the Marking on the opposite side of the camera 102 or 103. The waveguides in the coupler chip 19 and / or the silicon optical chip 15 transmit optical radiation that can be seen by the vision-assisted alignment system for active alignment.

該耦合器晶片19以及該矽光晶片15使用接點51、52、53作為零個至三個對齊特徵元件。在零個對齊特徵元件中(也就是,沒有使用接點51、52、53中的任一者),該耦合器晶片19以及該矽光晶片15的對齊僅有使用基準點100、101。在三個對齊特徵元件中(也就是,使用全部的接點51、52、53),雖然使用視覺輔助對齊會有幫助,不過,亦可以不使用視覺輔助對齊。在一或兩個對齊特徵元件中,該耦合器晶片19以及該矽光晶片15之間的某些自由度會取決於該些對齊特徵元件,而某些自由度則會取決於使用具有基準點100、101的視覺輔 助對齊。 The coupler chip 19 and the silicon optical chip 15 use contacts 51, 52, and 53 as zero to three alignment feature elements. Among the zero alignment features (ie, none of the contacts 51, 52, and 53 are used), the alignment of the coupler wafer 19 and the silicon-optic wafer 15 uses only the reference points 100, 101. Among the three alignment feature elements (that is, using all of the contacts 51, 52, 53), although it is helpful to use visually assisted alignment, it is also possible not to use visually assisted alignment. In one or two alignment features, some degrees of freedom between the coupler chip 19 and the silicon-optic chip 15 will depend on the alignment features, and some degrees of freedom will depend on the use of a reference point. 100, 101 visually assisted alignment.

在圖17至20中,該些對齊特徵元件係被用來對齊該耦合器晶片19以及該矽光晶片15。除此之外,雷同的對齊特徵元件亦能夠被用來對齊矽光晶片15以及分隔體56。 In FIGS. 17 to 20, the alignment features are used to align the coupler chip 19 and the silicon optical chip 15. In addition, similar alignment features can also be used to align the silicon wafer 15 and the spacer 56.

圖21、22、以及34所示的係傳收器10的範例。圖21以及22中所示的傳收器10包含一PCB 40。微控制器11以及矽光晶片15會被鑲嵌至該PCB 40。該耦合器晶片19以及該矽光晶片15被封入在一殼體70之中。散熱片71為非必要並且會被用來消散來自該矽光晶片15的熱能或是來自被鑲嵌在該矽光晶片15上的器件的熱能。如圖21中所示,散熱片71會被連接至該矽光晶片15的底部。如圖34中所示,除了被附接至該矽光晶片15之底部的散熱片71之外,散熱片79亦能夠被連接至該矽光晶片15的頂端。互連波導管21、22會被永久地附接至該傳收器10。也就是,互連波導管21、22會係尾纖式光纖。PCB 40在能夠被插入於一連接器(圖21與22中並未顯示)之中的其中一個邊緣中包含多個陸地部46。該連接器能夠位於一IC封裝之中、位於一主PCB(圖21與22中並未顯示)的中間、或是一中介片。圖31顯示被插入於第一連接器81之中的PCB 40。如圖31中所示,PCB 40亦能夠同步於該第一連接器81被連接至一第二連接器82;不過,這並非必要條件。倘若傳收器10如圖31中所示般被連接至第一連接器81與第二連接器82的話,那麼,高速信號便能夠經由第一連接器81被傳輸,而低速信號則能夠經由第二連接器82被傳輸。較佳的係,互連波導管21、22相對於該傳收器10形成某個角度,俾使得,當該傳收器10被插入於位在一PCB中間的連接器之中時,該些互連波導管21、22會延伸在該PCB上的任何其它裝置上方而不會干擾該些裝置。圖21與22之中雖然顯示多條互連線21、22;不過,亦可以使用單一互連波導管21或22。 Examples of the system receiver 10 shown in FIGS. 21, 22, and 34. The transceiver 10 shown in FIGS. 21 and 22 includes a PCB 40. The microcontroller 11 and the silicon optical chip 15 are embedded in the PCB 40. The coupler chip 19 and the silicon optical chip 15 are enclosed in a casing 70. The heat sink 71 is unnecessary and will be used to dissipate thermal energy from the silicon optical chip 15 or thermal energy from a device embedded on the silicon optical chip 15. As shown in FIG. 21, a heat sink 71 is connected to the bottom of the silicon optical chip 15. As shown in FIG. 34, in addition to the heat sink 71 attached to the bottom of the silicon optical chip 15, the heat sink 79 can also be connected to the top of the silicon optical chip 15. The interconnecting waveguides 21, 22 are permanently attached to the receiver 10. That is, the interconnecting waveguides 21, 22 will be pigtailed optical fibers. The PCB 40 includes a plurality of land portions 46 at one edge that can be inserted into a connector (not shown in FIGS. 21 and 22). The connector can be located in an IC package, in the middle of a main PCB (not shown in FIGS. 21 and 22), or an interposer. FIG. 31 shows the PCB 40 inserted in the first connector 81. As shown in FIG. 31, the PCB 40 can also be connected to a second connector 82 in synchronization with the first connector 81; however, this is not a necessary condition. If the transceiver 10 is connected to the first connector 81 and the second connector 82 as shown in FIG. 31, a high-speed signal can be transmitted through the first connector 81, and a low-speed signal can be transmitted through the first connector 81. The two connectors 82 are transmitted. Preferably, the interconnecting waveguides 21, 22 form an angle with respect to the receiver 10, so that when the receiver 10 is inserted into a connector located in the middle of a PCB, the The interconnecting waveguides 21, 22 will extend above any other device on the PCB without disturbing the devices. Although a plurality of interconnection lines 21 and 22 are shown in FIGS. 21 and 22, a single interconnection waveguide 21 or 22 may be used.

圖23以及24所示的係具有一鎖存器72的傳收器10的範例。圖21 與22之中的傳收器10以及圖23與24之中的傳收器10雷同;不同的係,圖23與24之中的傳收器10包含鎖存器72。因為該些互連波導管21、22可以脫離該傳收器10,所以,該些互連波導管21、22能夠為連接器式光纖。在圖23與24中的傳收器10中,該矽光晶片15以及具有鎖存器72的殼體70係被排列成使得在該耦合器晶片19被插入於該殼體70之中以後,該耦合器晶片19會被固定於該殼體70裡面並且對齊該矽光晶片15。該傳收器10會包含粗略對齊特徵元件,其會大體上對齊該耦合器晶片19以及該矽光晶片15。對齊球體55以及接點51、52、53會精確地對齊該耦合器晶片19以及該矽光晶片15。該些粗略對齊特徵元件會被放置在任何合宜的位置中,其包含被放置在該耦合器晶片19、該矽光晶片15、殼體70、或是散熱片中的任何一者上。舉例來說,粗略對齊特徵元件能夠包含位於該耦合器晶片19或是該矽光晶片15上之經蝕刻的導引柱,其會對齊位於該矽光晶片15或是該耦合器晶片19上之經蝕刻的導引孔。一散熱片(圖中並未顯示)會被整合於該鎖存器72之中或者被放置在該殼體70上,其具有一不會覆蓋該鎖存器72的削切部。 Examples of the transceiver 10 having a latch 72 are shown in Figs. The transmitter 10 in FIGS. 21 and 22 is the same as the transmitter 10 in FIGS. 23 and 24. In different systems, the transmitter 10 in FIGS. 23 and 24 includes a latch 72. Because the interconnected waveguides 21 and 22 can be separated from the receiver 10, the interconnected waveguides 21 and 22 can be connector-type optical fibers. In the receiver 10 in FIGS. 23 and 24, the silicon optical chip 15 and the case 70 having the latch 72 are arranged so that after the coupler chip 19 is inserted into the case 70, The coupler chip 19 is fixed in the casing 70 and aligned with the silicon light chip 15. The transceiver 10 may include a coarse alignment feature, which substantially aligns the coupler chip 19 and the silicon optical chip 15. The alignment sphere 55 and the contacts 51, 52, 53 will accurately align the coupler chip 19 and the silicon optical chip 15. The roughly aligned feature elements may be placed in any suitable location, including being placed on any of the coupler wafer 19, the silicon-optic wafer 15, the housing 70, or a heat sink. For example, the coarse alignment feature can include an etched guide post on the coupler wafer 19 or the silicon-optical wafer 15, which is aligned on the silicon-optical wafer 15 or the coupler wafer 19. Etched pilot holes. A heat sink (not shown) is integrated into the latch 72 or placed on the housing 70, and has a cutout portion that does not cover the latch 72.

圖25與26所示的係耦合器晶片19的一範例。該耦合器晶片19包含用於該些互連波導管21、22的一溝槽74陣列以及一凹口73。該些互連波導管21、22中的每一者會被插入於一對應孔洞75之中,其會精確地對齊耦合器晶片19裡面的互連波導管21、22。孔洞75能夠以一利用超短雷射脈衝的雷射來製造。該耦合器晶片19包含一凹槽76,其會被一黏著劑填充,用以將該些互連波導管21、22永久性地固定在正確位置中。黏著劑亦會被塗敷於該凹口73之中,用以提供應變消除劑。在圖25以及26之中,轉向結構28、29在相鄰的互連波導管21、22的側邊上提供一完全內反射表面,俾使得來自該些互連波導管21、22的光會被引導向下。 An example of the tethered coupler wafer 19 shown in Figs. The coupler chip 19 includes an array of grooves 74 and a recess 73 for the interconnecting waveguides 21, 22. Each of the interconnecting waveguides 21 and 22 will be inserted into a corresponding hole 75, which will accurately align the interconnecting waveguides 21 and 22 inside the coupler wafer 19. The hole 75 can be made by a laser using an ultra-short laser pulse. The coupler wafer 19 includes a recess 76 which is filled with an adhesive to permanently fix the interconnecting waveguides 21, 22 in the correct position. An adhesive is also applied in the notch 73 to provide a strain relief agent. In Figures 25 and 26, the turning structures 28, 29 provide a fully internal reflecting surface on the sides of adjacent interconnecting waveguides 21, 22, so that light from these interconnecting waveguides 21, 22 will Be guided down.

圖28以及29所示的係製造傳收器的步驟。在圖28中所示的方法 中,一矽光晶片會被附接至一PCB。一耦合器晶片接著會被配接至該矽光晶片。接著,多條光纖便會被附接至該耦合器晶片1。 28 and 29 are steps for manufacturing a receiver. In the method shown in FIG. 28, a silicon optical chip is attached to a PCB. A coupler chip is then mated to the silicon optical chip. Then, a plurality of optical fibers are attached to the coupler chip 1.

在步驟S10中,該矽光晶片會被製造。該矽光晶片在第一側包含一光層。該矽光晶片在第二側包含透鏡及/或對齊特徵元件。該些透鏡及/或對齊特徵元件會直接被蝕刻在該矽光晶片的第二側;或者會先被蝕刻在一不同的晶圓(其可以為矽或是玻璃)上,並且接著被焊接至該矽光晶片(晶圓至晶圓或是晶片至晶圓)。在步驟S11中,該些主動式裝置(舉例來說,其包含覆晶光偵測器、覆晶TIA、以及覆晶調變器驅動器)會被附接至該矽光晶片。該矽光晶片接著會在步驟S12中被測試。在步驟S13中,具有矽光晶片的晶圓會被裁切。在步驟S14中,該PCB會被組裝。在步驟S15中,該耦合器晶片會被製造。該耦合器晶片在第一側包含一光層以及多條溝槽。該耦合器晶片在第二側會包含透鏡及/或對齊特徵元件。在步驟S16中,具有耦合器晶片的晶圓會被裁切。 In step S10, the silicon optical wafer is manufactured. The silicon light chip includes a light layer on a first side. The silicon light chip includes a lens and / or an alignment feature on a second side. The lenses and / or alignment features are directly etched on the second side of the silicon wafer; or they are first etched on a different wafer (which can be silicon or glass) and then soldered to The silicon optical wafer (wafer-to-wafer or wafer-to-wafer). In step S11, the active devices (for example, they include a flip-chip photodetector, a flip-chip TIA, and a flip-chip modulator driver) are attached to the silicon optical chip. The silicon optical chip is then tested in step S12. In step S13, the wafer with a silicon optical wafer is cut. In step S14, the PCB is assembled. In step S15, the coupler wafer is manufactured. The coupler wafer includes a light layer and a plurality of grooves on a first side. The coupler wafer may include lenses and / or alignment features on the second side. In step S16, the wafer with the coupler wafer is cut.

在步驟S17中,該矽光晶片會被連接至該PCB。在步驟S18中,分離的對齊特徵元件會視情況被加入。在步驟S19中,該矽光晶片與耦合器晶片會被配接。在步驟S20中,該矽光晶片與耦合器晶片會利用黏著劑被焊接在一起。在步驟S21中,該些光纖會被鑲嵌至耦合器晶片之中的溝槽。在步驟S22中,散熱片、光纖應變消除劑、...等會視情況被加入。在步驟S23中會對該傳收器進行最終測試。 In step S17, the silicon optical chip is connected to the PCB. In step S18, separate alignment feature elements are added as appropriate. In step S19, the silicon optical chip and the coupler chip are mated. In step S20, the silicon optical chip and the coupler chip are soldered together using an adhesive. In step S21, the optical fibers are embedded in grooves in the coupler wafer. In step S22, heat sinks, fiber strain relief agents, etc. are added as appropriate. A final test is performed on the transceiver in step S23.

圖29中所示的方法依賴於以晶圓級製造的方式在該矽光晶圓上製造該些耦合器晶片。多個單獨的耦合器晶片會被鑲嵌至該矽光晶圓上的矽光晶片。該矽光/耦合器晶圓接著會被裁切。接著,光纖會被附接至耦合器晶片。 The method shown in FIG. 29 relies on manufacturing the coupler wafers on the silicon optical wafer in a wafer-level manufacturing manner. A plurality of individual coupler chips are embedded in the silicon light chip on the silicon light wafer. The silicon photo / coupler wafer is then cut. The fiber is then attached to the coupler wafer.

在步驟S30中,該矽光晶片會被製造。該矽光晶片在第一側包含一光層。該矽光晶片在第二側會包含透鏡及/或對齊特徵元件。該些透鏡及/或對齊特徵元件會直接被蝕刻在該矽光晶片的第二側;或者會先被蝕刻在一不同的 晶圓(其可以為矽或是玻璃)上,並且接著被焊接至該矽光晶片(晶圓至晶圓或是晶片至晶圓)。在步驟S31中,該些主動式裝置(舉例來說,其包含覆晶光偵測器、覆晶TIA、以及覆晶調變器驅動器)會被附接至該矽光晶片。該矽光晶片接著會在步驟S32中被測試。在步驟S34中,該耦合器晶片會被製造。該耦合器晶片在第一側包含一光層以及多條溝槽。該耦合器晶片在第二側會包含透鏡及/或對齊特徵元件。在步驟S35中,具有耦合器晶片的晶圓會被裁切。 In step S30, the silicon optical chip is manufactured. The silicon light chip includes a light layer on a first side. The silicon optical chip may include a lens and / or an alignment feature on the second side. The lenses and / or alignment features are directly etched on the second side of the silicon wafer; or they are first etched on a different wafer (which can be silicon or glass) and then soldered The silicon optical wafer (wafer-to-wafer or wafer-to-wafer). In step S31, the active devices (for example, they include a flip-chip photodetector, a flip-chip TIA, and a flip-chip modulator driver) are attached to the silicon optical chip. The silicon optical chip is then tested in step S32. In step S34, the coupler wafer is manufactured. The coupler wafer includes a light layer and a plurality of grooves on a first side. The coupler wafer may include lenses and / or alignment features on the second side. In step S35, the wafer with the coupler wafer is cut.

在步驟S36中,分離的對齊特徵元件會視情況被加入。在步驟S37中,該些矽光晶片與該些耦合器晶片會被配接至該晶圓上的矽光晶片。在步驟S38中,該矽光晶片與耦合器晶片會被焊接。在步驟S39中,具有該些矽光晶片與該些耦合器晶片的晶圓會被裁切。在步驟S40中,該PCB會被組裝。在步驟S41中,該矽光晶片會被連接至該PCB。在步驟S42中,該些光纖會被鑲嵌至耦合器晶片之中的溝槽。在步驟S43中,散熱片、光纖應變消除劑、...等會視情況被加入。在步驟S44中會對該傳收器進行最終測試。 In step S36, separate alignment feature elements are added as appropriate. In step S37, the silicon optical chips and the coupler chips are mated to the silicon optical chips on the wafer. In step S38, the silicon optical chip and the coupler chip are soldered. In step S39, the wafers with the silicon optical wafers and the coupler wafers are cut. In step S40, the PCB is assembled. In step S41, the silicon optical chip is connected to the PCB. In step S42, the optical fibers are embedded in grooves in the coupler wafer. In step S43, heat sinks, fiber strain relief agents, etc. are added as appropriate. A final test is performed on the receiver in step S44.

應該瞭解的係,前面的說明僅係解釋本發明。熟習本技術的人士便會明白便能夠設計各種替代例與修正例,其並不會脫離本發明。據此,本發明希望涵蓋落在隨附申請專利範圍的範疇裡面的所有此些替代例、修正例、以及變化例。 It should be understood that the foregoing description merely explains the present invention. Those skilled in the art will understand that various alternatives and modifications can be designed without departing from the present invention. Accordingly, the invention is intended to cover all such alternatives, modifications, and variations that fall within the scope of the appended patent applications.

Claims (22)

一種用於光學連接一矽光晶片的一光學通道至一互連波導管的耦合器晶片,該耦合器晶片包括一光學波導管,其傳輸經由該耦合器晶片的光信號;其中該光學波導管係由一雷射處理材料製成,該雷射處理材料用超短雷射脈衝生產。 A coupler chip for optically connecting an optical channel of a silicon optical chip to an interconnected waveguide. The coupler chip includes an optical waveguide that transmits optical signals passing through the coupler chip; wherein the optical waveguide It is made of a laser-treated material, which is produced with ultra-short laser pulses. 根據申請專利範圍第1項的耦合器晶片,其進一步包括一光層,該光層在該耦合器晶片的一第一側上。 According to the coupler wafer of the first patent application scope, it further comprises a light layer on a first side of the coupler wafer. 根據申請專利範圍第2項的耦合器晶片,其進一步包括一溝槽,該溝槽在該耦合器晶片的相鄰該光層該第一側上;其中該溝槽係被建造以接收該互連波導管。 The coupler wafer according to item 2 of the patent application scope, further comprising a groove on the first side of the coupler wafer adjacent to the optical layer; wherein the groove is constructed to receive the mutual Linked waveguide. 根據申請專利範圍第3項的耦合器晶片,其進一步包括一凹口,該溝槽在該耦合器晶片的相鄰該溝槽該第一側上;其中該凹口係被建造以接收該互連波導管。 According to the coupler wafer of claim 3, it further comprises a notch on the first side of the coupler wafer adjacent to the groove; wherein the notch is constructed to receive the mutual Linked waveguide. 根據申請專利範圍第3項的耦合器晶片,其進一步包括一孔洞,該孔洞在該耦合器晶片的相鄰該溝槽該第一側上;其中該孔洞係被建造以接收該互連波導管。 According to the coupler wafer of claim 3, it further comprises a hole on the first side of the coupler wafer adjacent to the trench; wherein the hole is constructed to receive the interconnected waveguide . 根據申請專利範圍第2項的耦合器晶片,其進一步包括一透鏡,該透鏡在反向於該第一側之該耦合器晶片的一第二側上。 The coupler wafer according to item 2 of the patent application scope, further comprising a lens on a second side of the coupler wafer opposite to the first side. 根據申請專利範圍第2項的耦合器晶片,其中該光學波導管包含一第一波導管和一第二波導管,該第一波導管在該光層的一第一層上,該第二波導管在該光層的一第二層上。 The coupler chip according to item 2 of the patent application scope, wherein the optical waveguide includes a first waveguide and a second waveguide, the first waveguide is on a first layer of the optical layer, and the second wave The conduit is on a second layer of the light layer. 根據申請專利範圍第7項的耦合器晶片,其中:該第一波導管包含一第一漸細部; 該第二波導管包含一第二漸細部;以及該第一波導管和第二波導管被建造,使得光能藉著消逝場而耦合。 The coupler chip according to claim 7 of the scope of patent application, wherein: the first waveguide includes a first tapered portion; The second waveguide includes a second tapered portion; and the first waveguide and the second waveguide are constructed so that light energy is coupled by an evanescent field. 根據申請專利範圍第7項的耦合器晶片,其中該第一波導管包含SiN,以及該第二波導管包含SiO2The coupler wafer according to item 7 of the application, wherein the first waveguide comprises SiN and the second waveguide comprises SiO 2 . 根據申請專利範圍第1項的耦合器晶片,其進一步包括一光層,該光層從上至下包含:一頂端層,其具有一折射率n2;一第二波導管,其具有一折射率n1;一中間層,其具有該折射率n2;以及一第一波導管,其具有折射率n3;其中該第二波導管的該折射率n1不同於該第一波導管的該折射率n3(n1≠n3);以及該第二波導管的該折射率n1大於該頂端層和該中間層的該折射率n2(n1>n2);以及該第一波導管的該折射率n3大於該中間層的該折射率n2(n3>n2)。 According to the coupler wafer of the first patent application scope, it further includes an optical layer, which includes from top to bottom: a top layer having a refractive index n 2 ; a second waveguide having a refraction n 1 ratio; an intermediate layer having the refractive index n 2; and a first waveguide having a refractive index n 3; wherein the refractive index n 1 of the second waveguide is different from the first waveguide The refractive index n 3 (n 1 ≠ n 3 ); and the refractive index n 1 of the second waveguide is greater than the refractive index n 2 (n 1 > n 2 ) of the top layer and the intermediate layer; and the first The refractive index n 3 of a waveguide is larger than the refractive index n 2 (n 3 > n 2 ) of the intermediate layer. 一種製造一耦合器晶片的方法,該耦合器晶片用於光學連接一矽光晶片的一光學通道至一互連波導管,該方法包括用超短雷射脈衝去雷射處理該耦合器晶片,以在該耦合器晶片中生產一光學波導管,其中該光學波導管提供介於該矽光晶片的該光學通道和該互連波導管之間的一光學路徑。 A method of manufacturing a coupler chip for optically connecting an optical channel of a silicon optical chip to an interconnecting waveguide, the method comprising processing the coupler chip with an ultra-short laser pulse, An optical waveguide is produced in the coupler wafer, wherein the optical waveguide provides an optical path between the optical channel of the silicon optical wafer and the interconnecting waveguide. 根據申請專利範圍第11項的方法,其中該雷射處理之步驟包括局部性修正該耦合器晶片裡面的一折射率。 The method according to item 11 of the application, wherein the laser processing step includes locally correcting a refractive index inside the coupler wafer. 根據申請專利範圍第12項的方法,其中該局部性修正一折射率之步驟,其修正在大約10μm3至100μm3之一體積的一區域中的該折射率。 The method according to item 12 of the patent application scope, wherein the step of locally correcting a refractive index corrects the refractive index in a region of a volume of about 10 μm 3 to 100 μm 3 . 根據申請專利範圍第12項的方法,其中該局部性修正一折射率之步驟,其以大約100mm/sec的速率修正在一區域中的該折射率。 The method according to item 12 of the patent application scope, wherein the step of locally correcting a refractive index corrects the refractive index in a region at a rate of about 100 mm / sec. 根據申請專利範圍第11項的方法,其中該雷射處理之步驟包括 局部性修正該耦合器晶片裡面的一密度。 The method according to item 11 of the patent application scope, wherein the step of laser processing includes Locally correct a density inside the coupler wafer. 根據申請專利範圍第11項的方法,其進一步包括熱研磨該耦合器晶片以磨平該雷射處理步驟後的殘餘粗糙。 The method according to item 11 of the patent application scope, further comprising thermally grinding the coupler wafer to smooth the residual roughness after the laser processing step. 根據申請專利範圍第11項的方法,其進一步包括額外雷射處理以生產在該耦合器晶片中的一彎曲表面或透鏡。 The method according to claim 11 of the patent application scope, further comprising additional laser processing to produce a curved surface or lens in the coupler wafer. 根據申請專利範圍第11項的方法,其進一步包括額外雷射處理以生產在該耦合器晶片中的一孔洞,該互連波導管於該孔洞中被接收。 The method of claim 11 further includes additional laser processing to produce a hole in the coupler wafer, and the interconnecting waveguide is received in the hole. 根據申請專利範圍第11項的方法,其中該雷射處理之步驟使用具有皮秒(pico second)或飛秒(femto second)脈衝寬度之一雷射。 The method according to item 11 of the application, wherein the laser processing step uses a laser having one of a pico second or a femto second pulse width. 一種互連波導管,其包括在使用超短雷射脈衝生產之一雷射處理材料中的一三維圖樣所定義的一光點尺寸轉換器區域,其中該光點尺寸轉換器區域包含一絕熱漸細部,該絕熱漸細部改變在該互連波導管中傳輸之一光射束的一剖面尺寸。 An interconnected waveguide includes a spot size converter region defined by a three-dimensional pattern in a laser-treated material produced using ultrashort laser pulses, wherein the spot size converter region includes an adiabatic gradient Detail, the adiabatic tapering changes the size of a cross section of a light beam transmitted in the interconnected waveguide. 根據申請專利範圍第20項的互連波導管,其中該光點尺寸轉換器區域增加該互連波導管的一域模態尺寸從大約9μm至大約20微米。 The interconnecting waveguide according to claim 20, wherein the spot size converter region increases a domain modal size of the interconnecting waveguide from about 9 μm to about 20 microns. 一種製造一互連波導管的方法,該方法包括藉著聚焦超短雷射脈衝在一三維圖樣以形成一光點尺寸轉換器區域而雷射處理一互連波導管,其中該光點尺寸轉換器區域包含一絕熱漸細部,該絕熱漸細部改變在該互連波導管中傳輸之一光射束的一剖面尺寸。 A method of manufacturing an interconnected waveguide, the method comprising laser processing an interconnected waveguide by focusing an ultrashort laser pulse in a three-dimensional pattern to form a spot size converter region, wherein the spot size conversion The device region includes an adiabatic taper that changes a cross-sectional size of a light beam transmitted in the interconnected waveguide.
TW107111907A 2015-03-12 2016-03-11 Optical module including silicon photonics chip and coupler chip TWI675229B (en)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
US201562131989P 2015-03-12 2015-03-12
US201562131971P 2015-03-12 2015-03-12
US62/131,971 2015-03-12
US62/131,989 2015-03-12
US201562132739P 2015-03-13 2015-03-13
US62/132,739 2015-03-13
US201562134173P 2015-03-17 2015-03-17
US201562134166P 2015-03-17 2015-03-17
US201562134229P 2015-03-17 2015-03-17
US62/134,166 2015-03-17
US62/134,229 2015-03-17
US62/134,173 2015-03-17
US201562158029P 2015-05-07 2015-05-07
US62/158,029 2015-05-07
US201562215932P 2015-09-09 2015-09-09
US62/215,932 2015-09-09

Publications (2)

Publication Number Publication Date
TW201827874A TW201827874A (en) 2018-08-01
TWI675229B true TWI675229B (en) 2019-10-21

Family

ID=57847638

Family Applications (3)

Application Number Title Priority Date Filing Date
TW105203401U TWM536364U (en) 2015-03-12 2016-03-11 Optical module including silicon photonics chip and coupler chip
TW105107527A TWI624705B (en) 2015-03-12 2016-03-11 Optical module including silicon photonics chip and coupler chip
TW107111907A TWI675229B (en) 2015-03-12 2016-03-11 Optical module including silicon photonics chip and coupler chip

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW105203401U TWM536364U (en) 2015-03-12 2016-03-11 Optical module including silicon photonics chip and coupler chip
TW105107527A TWI624705B (en) 2015-03-12 2016-03-11 Optical module including silicon photonics chip and coupler chip

Country Status (1)

Country Link
TW (3) TWM536364U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI773248B (en) * 2020-05-13 2022-08-01 美商格芯(美國)集成電路科技有限公司 Semiconductor structures and methods of forming the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM536364U (en) * 2015-03-12 2017-02-01 山姆科技公司 Optical module including silicon photonics chip and coupler chip
US10641976B2 (en) * 2017-02-23 2020-05-05 Ayar Labs, Inc. Apparatus for optical fiber-to-photonic chip connection and associated methods
TWI672480B (en) 2018-12-03 2019-09-21 財團法人工業技術研究院 Optical measurement apparatus and method
US10473858B1 (en) * 2019-02-08 2019-11-12 Finisar Corporation Waveguide routing configurations and methods
CN110308521B (en) * 2019-06-21 2021-01-08 武汉光迅科技股份有限公司 Modulation chip and light emitting module
KR102435768B1 (en) * 2019-10-30 2022-08-23 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 A heater structure configured to improve thermal efficiency in a modulator device
TWI730571B (en) * 2019-12-30 2021-06-11 國立清華大學 Optical probing instrument
TWI733618B (en) 2020-11-12 2021-07-11 佳必琪國際股份有限公司 Coupling method of optical transceiver
CN115407463A (en) * 2021-05-26 2022-11-29 索尔思光电股份有限公司 Optical device and assembling method thereof
TWI819549B (en) * 2021-07-20 2023-10-21 宏達國際電子股份有限公司 Device and method for detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046881B2 (en) * 2001-07-30 2006-05-16 Fujikura, Ltd. Manufacturing method for optical coupler/splitter and method for adjusting optical characteristics of planar lightwave circuit device
US7627213B2 (en) * 2006-10-20 2009-12-01 Fujitsu Limited Optical modulator and transmitter
TW201030402A (en) * 2008-09-17 2010-08-16 Intel Corp Method and apparatus for efficient coupling between silicon photonic chip and optical fiber
TWI395978B (en) * 2004-12-03 2013-05-11 Ohara Kk Optical component and method of manufacture of optical component

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8877616B2 (en) * 2008-09-08 2014-11-04 Luxtera, Inc. Method and system for monolithic integration of photonics and electronics in CMOS processes
US8220140B1 (en) * 2010-09-13 2012-07-17 Western Digital (Fremont), Llc System for performing bonding a first substrate to a second substrate
US8428404B1 (en) * 2011-12-20 2013-04-23 Oracle America, Inc. Optical device on inverted, substrateless chip
KR102025196B1 (en) * 2012-12-03 2019-09-25 한국전자통신연구원 optical coupling module for silicon photonics chip
US9613886B2 (en) * 2013-08-29 2017-04-04 Industrial Technology Research Institute Optical coupling module
TWM536364U (en) * 2015-03-12 2017-02-01 山姆科技公司 Optical module including silicon photonics chip and coupler chip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046881B2 (en) * 2001-07-30 2006-05-16 Fujikura, Ltd. Manufacturing method for optical coupler/splitter and method for adjusting optical characteristics of planar lightwave circuit device
TWI395978B (en) * 2004-12-03 2013-05-11 Ohara Kk Optical component and method of manufacture of optical component
US7627213B2 (en) * 2006-10-20 2009-12-01 Fujitsu Limited Optical modulator and transmitter
TW201030402A (en) * 2008-09-17 2010-08-16 Intel Corp Method and apparatus for efficient coupling between silicon photonic chip and optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI773248B (en) * 2020-05-13 2022-08-01 美商格芯(美國)集成電路科技有限公司 Semiconductor structures and methods of forming the same
US11531172B2 (en) 2020-05-13 2022-12-20 Globalfoundries U.S. Inc. Wafer-level testing of lasers attached to photonics chips

Also Published As

Publication number Publication date
TW201636667A (en) 2016-10-16
TW201827874A (en) 2018-08-01
TWI624705B (en) 2018-05-21
TWM536364U (en) 2017-02-01

Similar Documents

Publication Publication Date Title
US10466433B2 (en) Optical module including silicon photonics chip and coupler chip
TWI675229B (en) Optical module including silicon photonics chip and coupler chip
US10429597B2 (en) Interposer assemblies and arrangements for coupling at least one optical fiber to at least one optoelectronic device
US10439720B2 (en) FPC-based optical interconnect module on glass interposer
JP6029115B2 (en) Optical device, optical connector assembly, and optical connection method
KR101644225B1 (en) Optical frame attached with alignment features microfabricated in die
KR101584923B1 (en) Multi-channel transceiver
US10012809B2 (en) Printed circuit board assembly with a photonic integrated circuit for an electro-optical interface
US20060088246A1 (en) Multi-wavelength optical transceiver module, and multiplexer/demultiplexer using thin film filter
JP2007108751A (en) Micro-optical device
JP2020520476A (en) Photonic chip with integrated collimation structure
US20220276452A1 (en) Backside fiber attachment to silicon photonics chip
TW201937223A (en) Hybrid fiber integrated SOI/III-V module
US20130004118A1 (en) Optical interposer with common angled surface
US8821040B2 (en) Interposer
US9651749B1 (en) Interposer with opaque substrate
JP4288604B2 (en) Optical coupling device
US7177506B2 (en) Method for forming an aligned optical sub-assembly
JP2008020721A (en) Parallel optical transmitter-receiver
CN108345065B (en) Optical signal processing device and preparation method
KR100937246B1 (en) Passive aligned optical sub-assembly using optical bench and method for manufacturing thereof
US20150212267A1 (en) Optical Assembly
WO2023184014A1 (en) Wavelength locker integration methods and processes exploiting printed photonic structures
CN117581136A (en) Dense photonic integrated circuit optical coupling
JP2014191245A (en) Optical waveguide circuit device