TWI674320B - Method and kit for making prognosis on gitelman's syndrome - Google Patents

Method and kit for making prognosis on gitelman's syndrome Download PDF

Info

Publication number
TWI674320B
TWI674320B TW107105320A TW107105320A TWI674320B TW I674320 B TWI674320 B TW I674320B TW 107105320 A TW107105320 A TW 107105320A TW 107105320 A TW107105320 A TW 107105320A TW I674320 B TWI674320 B TW I674320B
Authority
TW
Taiwan
Prior art keywords
sequence
primer
sequence number
type probe
nucleotide
Prior art date
Application number
TW107105320A
Other languages
Chinese (zh)
Other versions
TW201934758A (en
Inventor
楊松昇
林石化
鄭智仁
黃哲群
Original Assignee
國防醫學院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國防醫學院 filed Critical 國防醫學院
Priority to TW107105320A priority Critical patent/TWI674320B/en
Publication of TW201934758A publication Critical patent/TW201934758A/en
Application granted granted Critical
Publication of TWI674320B publication Critical patent/TWI674320B/en

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本揭示內容關於一種用以預斷個體是否罹患吉特曼症候群(Gitelman's syndrome)或有罹患吉特曼症侯群之風險的方法。該方法包含:擴增一 SLC12A3基因片段;決定該 SLC12A3基因片段中是否存在一突變;以及基於該突變存在與否進行一預斷。本揭示內容亦提供一種用於透過前述方法預斷吉特曼症候群的套組。 The present disclosure relates to a method for predicting whether an individual is suffering from Gitelman's syndrome or at risk of suffering from Gitelman's syndrome. The method includes: amplifying an SLC12A3 gene fragment; determining whether a mutation exists in the SLC12A3 gene fragment; and performing a pre-judgment based on the existence of the mutation. The present disclosure also provides a kit for predicting Gitman syndrome by the aforementioned method.

Description

用以預斷吉特曼症候群的方法及套組Method and kit for predicting Gitman syndrome

本揭示內容是關於預斷疾病的領域。更具體來說,本揭示內容是關於一種用以預斷一個體是否患有吉特曼症候群(Gitelman's syndrome,GS)或有罹患吉特曼症候群之風險的方法及套組。This disclosure relates to the field of predictive disease. More specifically, the present disclosure relates to a method and kit for predicting whether an individual has Gitelman's syndrome (GS) or is at risk of developing Gitteman's syndrome.

吉特曼症候群是一種體染色體隱性腎小管遺傳性疾病,目前全球發病率約為1:40,000。罹患該疾病的生理表現包含低血鉀(hypokalemia)、代謝性鹼中毒(metabolic alkalosis)、低血鎂(hypomagnesemia)及低血鈣(hypocalciuria)。臨床上常見症狀包含嗜鹽(salt craving)、夜尿(nocturia)、強直發作(tetanic episodes)、感覺異常(paresthesias)及因麻痺導致的肌肉萎縮。Gitman syndrome is a somatic chromosomal recessive renal tubular disease that currently has a global incidence of approximately 1: 40,000. The physical manifestations of the disease include hypokalemia, metabolic alkalosis, hypomagnesemia, and hypocalciuria. Common clinical symptoms include salt craving, nocturia, tetanic episodes, paresthesias, and muscle atrophy due to paralysis.

吉特曼症候群主要是由 SLC12A3基因的多種突變類型所導致,且該些突變基因型在不同人種族群中具有高度遺傳異質性(heterogeneity),目前在華人族群中已被報導的突變位點已超過50種。然而,由於該些突變類型可能包含部分單對偶基因(uniallelic)突變或無法偵測的變異,再者,單一病患可能同時具有多個突變位點的組合,使得吉特曼症候群疾病的檢測具有一定難度,不僅增加誤診機率,亦導致確診的時間及金錢成本大幅增加。 Gitman syndrome is mainly caused by multiple mutation types of the SLC12A3 gene, and these mutation genotypes have a high degree of genetic heterogeneity in different ethnic groups. The mutation sites that have been reported in the Chinese ethnic group have been reported. More than 50 species. However, these types of mutations may include some uniallelic mutations or undetectable mutations. Furthermore, a single patient may have a combination of multiple mutation sites simultaneously, which makes the detection of Gitman syndrome Certain difficulties, not only increase the probability of misdiagnosis, but also lead to a substantial increase in the time and money of diagnosis.

因此,本發明所屬領域亟需發展一種檢測方法及套組,用以全面性快速地預斷罹患吉特曼症候群或是有罹患吉特曼症候群之風險的患者。Therefore, there is an urgent need in the field to which the present invention belongs to develop a detection method and kit for comprehensively and rapidly predicting patients suffering from Gitman syndrome or patients at risk for Gitman syndrome.

發明內容旨在提供本揭示內容的簡化摘要,以使閱讀者對本揭示內容具備基本的理解。此發明內容並非本揭示內容的完整概述,且其用意並非在指出本發明實施例的重要/關鍵元件或界定本發明的範圍。This summary is intended to provide a simplified summary of this disclosure so that readers may have a basic understanding of this disclosure. This summary is not a comprehensive overview of the disclosure, and it is not intended to indicate important / critical elements of the embodiments of the invention or to define the scope of the invention.

本發明之一態樣是關於一種吉特曼症候群的檢測方法。該方法係透過至少一引子對擴增 SLC12A3基因片段,加以篩出包含至少一突變的 SLC12A3基因片段,藉以快速準確地獲得吉特曼症候群的預斷及檢測結果。 One aspect of the present invention relates to a method for detecting Gitman syndrome. The method uses at least one primer pair to amplify the SLC12A3 gene fragment, and then screens out the SLC12A3 gene fragment containing at least one mutation, so as to quickly and accurately obtain the prediction and detection results of Gitman syndrome.

具體來說,該種利用一個體之離體樣本來預斷該個體是否罹患吉特曼症候群或有罹患吉特曼症候群之風險的方法包含以下步驟: (a) 萃取該離體樣本之DNA; (b) 以步驟(a)之DNA作為模版,利用一第一引子對來擴增一第一 SLC12A3基因片段,其中該第一引子對包含一第一正向引子及一第一反向引子; (c) 決定該經擴增之第一 SLC12A3基因片段中是否包含一c.2881-2delAG的第一突變;以及 (d) 根據步驟(c)之結果來評估該個體是否罹患吉特曼症候群或有罹患吉特曼症候群之風險,其中若該經擴增之第一 SLC12A3基因片段包含該第一突變,則該個體罹患吉特曼症候群或有罹患吉特曼症候群之風險。 Specifically, the method of using an in vitro sample to predict whether an individual has or is at risk of having Gitman syndrome includes the following steps: (a) extracting DNA from the isolated sample; ( b) using the DNA of step (a) as a template, using a first primer pair to amplify a first SLC12A3 gene fragment, wherein the first primer pair includes a first forward primer and a first reverse primer; c) determining whether the amplified first SLC12A3 gene fragment contains a first mutation of c.2881-2delAG; and (d) assessing whether the individual has Gitman syndrome or has Risk of suffering from Gitman syndrome, wherein if the amplified first SLC12A3 gene fragment contains the first mutation, the individual is at risk of developing Gitman syndrome or is at risk of developing Gitman syndrome.

依據本揭示內容一特定實施方式,該第一正向引子及該第一反向引子分別具有序列編號:1及2之核苷酸序列。According to a specific embodiment of the present disclosure, the first forward primer and the first reverse primer have nucleotide sequences of sequence numbers: 1 and 2, respectively.

依據本揭示內容一較佳實施方式,步驟(c)是利用一第一野生型探針及一第一突變型探針來決定該經擴增之第一 SLC12A3基因片段中是否包含該第一突變,其中該第一野生型探針及該第一突變型探針分別具有序列編號:35及36的核苷酸序列。 According to a preferred embodiment of the present disclosure, step (c) is to use a first wild-type probe and a first mutant probe to determine whether the amplified first SLC12A3 gene fragment contains the first mutation. The first wild-type probe and the first mutant-type probe have nucleotide sequences of sequence numbers: 35 and 36, respectively.

依據本揭示內容某些實施方式,在步驟(b)中,可更包含利用一第二引子對來擴增一第二 SLC12A3基因片段,藉以在步驟(c)中決定該經擴增之第二 SLC12A3基因片段中是否包含一選自由T60M、c.1670-191 C→T、S710X、T163M、c.2548+253 C→T、R871H、IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT、W844X、R83Q、H90Y、R642H、R642C、T649M、N442K、N640S及D486N所組成之群組的第二突變。其中該第二引子對包含一第二正向引子及一第二反向引子。 According to some embodiments of the present disclosure, in step (b), it may further include using a second primer pair to amplify a second SLC12A3 gene fragment, so as to determine the amplified second in step (c). Does the SLC12A3 gene fragment contain a member selected from T60M, c.1670-191 C → T, S710X, T163M, c.2548 + 253 C → T, R871H, IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT, W844X, R83Q, H90Y, R642H , R642C, T649M, N442K, N640S, and D486N. The second primer pair includes a second forward primer and a second reverse primer.

依據本揭示內容特定實施方式,當該第二突變是T60M時,則該第二正向引子及該第二反向引子分別具有序列編號:3及4之核苷酸序列;當該第二突變是c.1670-191 C→T時,則該第二正向引子及該第二反向引子分別具有序列編號:5及6之核苷酸序列;當該第二突變是S710X時,則該第二正向引子及該第二反向引子分別具有序列編號:7及8之核苷酸序列;當該第二突變是T163M時,則該第二正向引子及該第二反向引子分別具有序列編號:9及10之核苷酸序列;當該第二突變是c.2548+253 C→T時,則該第二正向引子及該第二反向引子分別具有序列編號:11及12之核苷酸序列;當該第二突變是R871H時,則該第二正向引子及該第二反向引子分別具有序列編號:13及14之核苷酸序列;當該第二突變是IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT時,則該第二正向引子及該第二反向引子分別具有序列編號:15及16之核苷酸序列;當該第二突變是W844X時,則該第二正向引子及該第二反向引子分別具有序列編號:17及18之核苷酸序列;當該第二突變是R83Q時,則該第二正向引子及該第二反向引子分別具有序列編號:19及20之核苷酸序列;當該第二突變是H90Y時,則該第二正向引子及該第二反向引子分別具有序列編號:21及22之核苷酸序列;當該第二突變是R642H時,則該第二正向引子及該第二反向引子分別具有序列編號:23及24之核苷酸序列;當該第二突變是R642C時,則該第二正向引子及該第二反向引子分別具有序列編號:25及26之核苷酸序列;當該第二突變是T649M時,則該第二正向引子及該第二反向引子分別具有序列編號:27及28之核苷酸序列;當該第二突變是N442K時,則該第二正向引子及該第二反向引子分別具有序列編號:29及30之核苷酸序列;當該第二突變是N640S時,則該第二正向引子及該第二反向引子分別具有序列編號:31及32之核苷酸序列;或是當該第二突變是D486N時,則該第二正向引子及該第二反向引子分別具有序列編號:33及34之核苷酸序列。According to a specific embodiment of the present disclosure, when the second mutation is T60M, the second forward primer and the second reverse primer have nucleotide sequences of sequence numbers: 3 and 4, respectively; when the second mutation When c.1670-191 C → T, the second forward primer and the second reverse primer have nucleotide sequences of sequence numbers: 5 and 6, respectively; when the second mutation is S710X, the The second forward primer and the second reverse primer have nucleotide sequences of sequence numbers: 7 and 8, respectively; when the second mutation is T163M, the second forward primer and the second reverse primer are respectively Nucleotide sequences with sequence numbers: 9 and 10; when the second mutation is c.2548 + 253 C → T, the second forward primer and the second reverse primer have sequence numbers: 11 and Nucleotide sequence of 12; when the second mutation is R871H, the second forward primer and the second reverse primer have nucleotide sequences of sequence numbers: 13 and 14, respectively; when the second mutation is When IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT, the second forward primer and the second reverse primer have sequence Column number: nucleotide sequences of 15 and 16; when the second mutation is W844X, the second forward primer and the second reverse primer have nucleotide sequences of sequence numbers: 17 and 18, respectively; when When the second mutation is R83Q, the second forward primer and the second reverse primer have nucleotide sequences of sequence numbers: 19 and 20, respectively; when the second mutation is H90Y, the second positive primer The forward primer and the second reverse primer each have a nucleotide sequence of sequence numbers: 21 and 22; when the second mutation is R642H, the second forward primer and the second reverse primer each have a sequence number : The nucleotide sequences of 23 and 24; when the second mutation is R642C, the second forward primer and the second reverse primer have nucleotide sequences of sequence numbers: 25 and 26, respectively; when the When the second mutation is T649M, the second forward primer and the second reverse primer have nucleotide sequences of sequence numbers: 27 and 28 respectively; when the second mutation is N442K, the second forward primer And the second reverse primer has nucleotide sequences of sequence numbers: 29 and 30, respectively; When it is N640S, the second forward primer and the second reverse primer have nucleotide sequences of sequence numbers: 31 and 32 respectively; or when the second mutation is D486N, the second forward primer And the second reverse primer has a nucleotide sequence of sequence numbers: 33 and 34, respectively.

依據本揭示內容較佳實施方式,步驟(c)是利用一第二野生型探針及一第二突變型探針來決定該經擴增之第二 SLC12A3基因片段中是否包含該第二突變。 According to a preferred embodiment of the present disclosure, step (c) is to use a second wild-type probe and a second mutant probe to determine whether the amplified second SLC12A3 gene fragment contains the second mutation.

在該些較佳實施方式中,當該第二突變是T60M時,則該第二野生型探針及該第二突變型探針分別具有序列編號:37及38之核苷酸序列;當該第二突變是c.1670-191 C→T時,則該第二野生型探針及該第二突變型探針分別具有序列編號:39及40之核苷酸序列;當該第二突變是S710X時,則該第二野生型探針及該第二突變型探針分別具有序列編號:41及42之核苷酸序列;當該第二突變是T163M時,則該第二野生型探針及該第二突變型探針分別具有序列編號:43及44之核苷酸序列;當該第二突變是c.2548+253 C→T時,則該第二野生型探針及該第二突變型探針分別具有序列編號:45及46之核苷酸序列;當該第二突變是R871H時,則該第二野生型探針及該第二突變型探針分別具有序列編號:47及48之核苷酸序列;當該第二突變是IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT時,則該第二野生型探針及該第二突變型探針分別具有序列編號:49及50之核苷酸序列;當該第二突變是W844X時,則該第二野生型探針及該第二突變型探針分別具有序列編號:51及52之核苷酸序列;當該第二突變是R83Q時,則該第二野生型探針及該第二突變型探針分別具有序列編號:53及54之核苷酸序列;當該第二突變是H90Y時,則該第二野生型探針及該第二突變型探針分別具有序列編號:55及56之核苷酸序列;當該第二突變是R642H時,則該第二野生型探針及該第二突變型探針分別具有序列編號:57及58之核苷酸序列;當該第二突變是R642C時,則該第二野生型探針及該第二突變型探針分別具有序列編號:59及60之核苷酸序列;當該第二突變是T649M時,則該第二野生型探針及該第二突變型探針分別具有序列編號:61及62之核苷酸序列;當該第二突變是N442K時,則該第二野生型探針及該第二突變型探針分別具有序列編號:63及64之核苷酸序列;當該第二突變是N640S時,則該第二野生型探針及該第二突變型探針分別具有序列編號:65及66之核苷酸序列;當該第二突變是D486N時,則該第二野生型探針及該第二突變型探針分別具有序列編號:67及68之核苷酸序列。In the preferred embodiments, when the second mutation is T60M, the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 37 and 38, respectively; when the When the second mutation is c.1670-191 C → T, the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 39 and 40, respectively; when the second mutation is In S710X, the second wild-type probe and the second mutant-type probe each have a nucleotide sequence of sequence numbers: 41 and 42; when the second mutation is T163M, the second wild-type probe And the second mutant probe has nucleotide sequences of sequence numbers: 43 and 44 respectively; when the second mutation is c. 2548 + 253 C → T, the second wild-type probe and the second The mutant probes have nucleotide sequences of sequence numbers: 45 and 46; when the second mutation is R871H, the second wild-type probe and the second mutant probe have sequence numbers: 47 and Nucleotide sequence of 48; when the second mutation is IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT, the second wild-type probe The second mutant probe has a nucleotide sequence of sequence numbers: 49 and 50; when the second mutation is W844X, the second wild-type probe and the second mutant probe each have a sequence number : The nucleotide sequences of 51 and 52; when the second mutation is R83Q, the second wild-type probe and the second mutant-type probe each have a nucleotide sequence of sequence numbers: 53 and 54; when When the second mutation is H90Y, the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 55 and 56, respectively; when the second mutation is R642H, the first mutation The two wild-type probes and the second mutant-type probe have nucleotide sequences of sequence numbers: 57 and 58, respectively; when the second mutation is R642C, the second wild-type probe and the second mutant-type probe The probe has a nucleotide sequence of sequence numbers: 59 and 60 respectively; when the second mutation is T649M, the second wild-type probe and the second mutant probe have sequence numbers of 61 and 62, respectively Nucleotide sequence; when the second mutation is N442K, the second wild-type probe and the second mutation Type probes have nucleotide sequences of sequence numbers: 63 and 64; when the second mutation is N640S, the second wild-type probe and the second mutant probe have sequence numbers: 65 and 66, respectively Nucleotide sequence; when the second mutation is D486N, the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 67 and 68, respectively.

依據本揭示內容的實施方式,本發明的離體樣本可選自由血液、血漿、組織液、唾液、淚液、眼球內液、尿液、淋巴液、脊髓液、宮頸液、陰道液及細胞組織所組成的群組。According to the embodiment of the present disclosure, the isolated sample of the present invention may be composed of free blood, plasma, interstitial fluid, saliva, tear fluid, intraocular fluid, urine, lymph fluid, spinal fluid, cervical fluid, vaginal fluid, and cell tissue Group.

本發明之另一態樣是關於一種吉特曼症候群的檢測套組。該套組包含至少一對可用以擴增 SLC12A3基因片段的引子對,以取得包含至少一突變的 SLC12A3基因片段,藉此可提高吉特曼症候群的檢測準確度及檢測效率。 Another aspect of the present invention relates to a detection kit for Gitman syndrome. The set includes at least one pair of primers that can be used to amplify the SLC12A3 gene fragment to obtain an SLC12A3 gene fragment containing at least one mutation, thereby improving the detection accuracy and detection efficiency of Gitman syndrome.

依據本揭示內容實施方式,所述套組包含一用以擴增一第一 SLC12A3基因片段的第一引子對,其包含一具有序列編號:1之核苷酸序列的第一正向引子,以及一具有序列編號:2之核苷酸序列的第一反向引子。 According to an embodiment of the present disclosure, the set includes a first primer pair for amplifying a first SLC12A3 gene fragment, which includes a first forward primer having a nucleotide sequence having a sequence number: 1, and A first reverse primer with a nucleotide sequence of sequence number: 2.

依據本揭示內容的一實施方式,該套組更包含一具有序列編號:35之核苷酸序列的第一野生型探針,以及一具有序列編號:36之核苷酸序列的第一突變型探針。According to an embodiment of the present disclosure, the set further includes a first wild-type probe having a nucleotide sequence having a sequence number: 35, and a first mutant type having a nucleotide sequence having a sequence number: 36. Probe.

依據本揭示內容的某些實施方式,該套組更包含一用以擴增一第二 SLC12A3基因片段的第二引子對,其包含: 一具有序列編號:3之核苷酸序列的第二正向引子,以及一具有序列編號:4之核苷酸序列的第二反向引子; 一具有序列編號:5之核苷酸序列的第二正向引子,以及一具有序列編號:6之核苷酸序列的第二反向引子; 一具有序列編號:7之核苷酸序列的第二正向引子,以及一具有序列編號:8之核苷酸序列的第二反向引子; 一具有序列編號:9之核苷酸序列的第二正向引子,以及一具有序列編號:10之核苷酸序列的第二反向引子; 一具有序列編號:11之核苷酸序列的第二正向引子,以及一具有序列編號:12之核苷酸序列的第二反向引子; 一具有序列編號:13之核苷酸序列的第二正向引子,以及一具有序列編號:14之核苷酸序列的第二反向引子; 一具有序列編號:15之核苷酸序列的第二正向引子,以及一具有序列編號:16之核苷酸序列的第二反向引子; 一具有序列編號:17之核苷酸序列的第二正向引子,以及一具有序列編號:18之核苷酸序列的第二反向引子; 一具有序列編號:19之核苷酸序列的第二正向引子,以及一具有序列編號:20之核苷酸序列的第二反向引子; 一具有序列編號:21之核苷酸序列的第二正向引子,以及一具有序列編號:22之核苷酸序列的第二反向引子; 一具有序列編號:23之核苷酸序列的第二正向引子,以及一具有序列編號:24之核苷酸序列的第二反向引子; 一具有序列編號:25之核苷酸序列的第二正向引子,以及一具有序列編號:26之核苷酸序列的第二反向引子; 一具有序列編號:27之核苷酸序列的第二正向引子,以及一具有序列編號:28之核苷酸序列的第二反向引子; 一具有序列編號:29之核苷酸序列的第二正向引子,以及一具有序列編號:30之核苷酸序列的第二反向引子; 一具有序列編號:31之核苷酸序列的第二正向引子,以及一具有序列編號:32之核苷酸序列的第二反向引子;或是 一具有序列編號:33之核苷酸序列的第二正向引子,以及一具有序列編號:34之核苷酸序列的第二反向引子。 According to some embodiments of the present disclosure, the set further includes a second primer pair for amplifying a second SLC12A3 gene fragment, which includes: a second positive sequence having a nucleotide sequence of sequence number: 3 A forward primer, and a second reverse primer having a nucleotide sequence of sequence number: 4; a second forward primer having a nucleotide sequence of sequence number: 5; and a nucleoside having sequence number: 6 A second reverse primer with an acid sequence; a second forward primer with a nucleotide sequence of sequence number: 7 and a second reverse primer with a nucleotide sequence of sequence number: 8; a sequence number : A second forward primer with a nucleotide sequence of 9 and a second reverse primer with a nucleotide sequence of sequence number: 10; a second forward primer with a nucleotide sequence of sequence number: 11 , And a second reverse primer with a nucleotide sequence of sequence number: 12; a second forward primer with a nucleotide sequence of sequence number: 13; and a nucleotide sequence with sequence number: 14 The second reverse primer; A second forward primer with a nucleotide sequence of sequence number 15 and a second reverse primer with a nucleotide sequence of sequence number 16; a second positive primer with a nucleotide sequence of sequence number 17 A forward primer, and a second reverse primer with a nucleotide sequence of sequence number: 18; a second forward primer with a nucleotide sequence of sequence number: 19; and a nucleoside with sequence number: 20 A second reverse primer with an acid sequence; a second forward primer with a nucleotide sequence of sequence number: 21; and a second reverse primer with a nucleotide sequence of sequence number: 22; a sequence number : A second forward primer with a nucleotide sequence of 23 and a second reverse primer with a nucleotide sequence of sequence number: 24; a second forward primer with a nucleotide sequence of sequence number: 25 , And a second reverse primer with a nucleotide sequence of sequence number: 26; a second forward primer with a nucleotide sequence of sequence number: 27; and a nucleotide sequence with sequence number: 28 Second reverse primer A second forward primer with a nucleotide sequence of sequence number 29 and a second reverse primer with a nucleotide sequence of sequence number 30; a second positive primer with a nucleotide sequence of sequence number 31 A forward primer, and a second reverse primer with a nucleotide sequence of sequence number: 32; or a second forward primer with a nucleotide sequence of sequence number: 33, and a second primer with sequence number: 34 The second reverse primer of the nucleotide sequence.

在本揭示內容較佳實施方式中,該套組更可包含一第二野生型探針及一第二突變型探針,其中, 當該第二引子對包含該具有序列編號:3之核苷酸序列的第二正向引子及該具有序列編號:4之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:37及38之核苷酸序列; 當該第二引子對包含該具有序列編號:5之核苷酸序列的第二正向引子及該具有序列編號:6之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:39及40之核苷酸序列; 當該第二引子對包含該具有序列編號:7之核苷酸序列的第二正向引子及該具有序列編號:8之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:41及42之核苷酸序列; 當該第二引子對包含該具有序列編號:9之核苷酸序列的第二正向引子及該具有序列編號:10之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:43及44之核苷酸序列; 當該第二引子對包含該具有序列編號:11之核苷酸序列的第二正向引子及該具有序列編號:12之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:45及46之核苷酸序列; 當該第二引子對包含該具有序列編號:13之核苷酸序列的第二正向引子及該具有序列編號:14之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:47及48之核苷酸序列; 當該第二引子對包含該具有序列編號:15之核苷酸序列的第二正向引子及該具有序列編號:16之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:49及50之核苷酸序列; 當該第二引子對包含該具有序列編號:17之核苷酸序列的第二正向引子及該具有序列編號:18之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:51及52之核苷酸序列; 當該第二引子對包含該具有序列編號:19之核苷酸序列的第二正向引子及該具有序列編號:20之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:53及54之核苷酸序列; 當該第二引子對包含該具有序列編號:21之核苷酸序列的第二正向引子及該具有序列編號:22之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:55及56之核苷酸序列; 當該第二引子對包含該具有序列編號:23之核苷酸序列的第二正向引子及該具有序列編號:24之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:57及58之核苷酸序列; 當該第二引子對包含該具有序列編號:25之核苷酸序列的第二正向引子及該具有序列編號:26之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:59及60之核苷酸序列; 當該第二引子對包含該具有序列編號:27之核苷酸序列的第二正向引子及該具有序列編號:28之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:61及62之核苷酸序列; 當該第二引子對包含該具有序列編號:29之核苷酸序列的第二正向引子及該具有序列編號:30之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:63及64之核苷酸序列; 當該第二引子對包含該具有序列編號:31之核苷酸序列的第二正向引子及該具有序列編號:32之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:65及66之核苷酸序列;或是 當該第二引子對包含該具有序列編號:33之核苷酸序列的第二正向引子及該具有序列編號:34之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:67及68之核苷酸序列。In a preferred embodiment of the present disclosure, the set may further include a second wild-type probe and a second mutant-type probe, wherein when the second primer pair includes the nucleoside having the sequence number: 3 For the second forward primer of the acid sequence and the second reverse primer of the nucleotide sequence having the sequence number: 4, the second wild-type probe and the second mutant-type probe each have a sequence number: 37 And the nucleotide sequence of 38; when the second primer pair includes the second forward primer having the nucleotide sequence of sequence number: 5 and the second reverse primer having the nucleotide sequence of sequence number: 6 When the second wild-type probe and the second mutant-type probe each have a nucleotide sequence of sequence number: 39 and 40; when the second primer pair includes the nucleotide sequence of sequence number: 7 When the second forward primer and the second reverse primer having the nucleotide sequence of sequence number: 8 are present, the second wild-type probe and the second mutant probe have sequence numbers: 41 and 42 respectively Nucleotide sequence; when the second primer pair contains the sequence number: When the second forward primer of the nucleotide sequence of 9 and the second reverse primer of the nucleotide sequence having the sequence number: 10, the second wild-type probe and the second mutant-type probe have SEQ ID NOS: 43 and 44 nucleotide sequences; when the second primer pair includes the second forward primer with the nucleotide sequence having the sequence number: 11 and the first nucleotide having the nucleotide sequence with the sequence number: 12 In the case of two reverse primers, the second wild-type probe and the second mutant-type probe each have a nucleotide sequence of sequence numbers: 45 and 46; when the second primer pair includes the sequence number: 13 When the second forward primer of the nucleotide sequence and the second reverse primer of the nucleotide sequence having the sequence number: 14 are obtained, the second wild-type probe and the second mutant-type probe each have a sequence number : The nucleotide sequences of 47 and 48; when the second primer pair includes the second forward primer having the nucleotide sequence having the sequence number: 15 and the second reverse primer having the nucleotide sequence having the sequence number: 16 When the primer is directed, the second wild-type probe and the second mutant-type probe are separated. A nucleotide sequence having a sequence number: 49 and 50; when the second primer pair includes the second forward primer having a nucleotide sequence having a sequence number: 17 and the nucleotide sequence having a nucleotide sequence having a sequence number: 18 When the second reverse primer is used, the second wild-type probe and the second mutant-type probe each have a nucleotide sequence of sequence numbers: 51 and 52; when the second primer pair includes the sequence number: 19 When the second forward primer of the nucleotide sequence and the second reverse primer of the nucleotide sequence having the sequence number: 20, the second wild-type probe and the second mutant-type probe each have a sequence No .: 53 and 54 nucleotide sequences; when the second primer pair includes the second forward primer having the nucleotide sequence of sequence number: 21 and the second forward primer having the nucleotide sequence of sequence number: 22 In the case of a reverse primer, the second wild-type probe and the second mutant-type probe each have a nucleotide sequence of sequence number: 55 and 56; when the second primer pair includes the core with sequence number: 23 Second forward primer of the nucleotide sequence and has the sequence number: 2 When the second reverse primer of the nucleotide sequence of 4, the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 57 and 58, respectively; when the second primer pair When the second forward primer with the nucleotide sequence of sequence number: 25 and the second reverse primer with the nucleotide sequence of sequence number: 26 are included, the second wild-type probe and the second The mutant probe has a nucleotide sequence of sequence number: 59 and 60 respectively; when the second primer pair includes the second forward primer of the nucleotide sequence of sequence number: 27 and the second forward primer of sequence number: 28 When the second reverse primer of the nucleotide sequence, the second wild-type probe and the second mutant-type probe respectively have a nucleotide sequence of sequence numbers: 61 and 62; when the second primer pair contains the When the second forward primer having the nucleotide sequence of sequence number: 29 and the second reverse primer having the nucleotide sequence of sequence number: 30, the second wild-type probe and the second mutant type The probes each have a nucleotide sequence of sequence numbers: 63 and 64; when the second primer When the second forward primer comprising the nucleotide sequence having the sequence number: 31 and the second reverse primer having the nucleotide sequence of the sequence number: 32, the second wild-type probe and the first The two mutant probes each have a nucleotide sequence of sequence numbers: 65 and 66; or when the second primer pair includes the second forward primer of the nucleotide sequence of sequence number: 33 and the sequence number of When the second reverse primer of the nucleotide sequence of: 34, the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 67 and 68, respectively.

非必要性地,該第一野生型探針、該第一突變型探針、該第二野生型探針及該第二突變型探針可分別與一第一、一第二、一第三及一第四偵測標記連接,且該第一、該第二、該第三及該第四偵測標記可發出彼此相異的光波長。Non-essentially, the first wild-type probe, the first mutant-type probe, the second wild-type probe, and the second mutant-type probe may be associated with a first, a second, and a third, respectively. And a fourth detection mark is connected, and the first, the second, the third and the fourth detection marks can emit light wavelengths different from each other.

在參閱下文實施方式後,本發明所屬技術領域中具有通常知識者當可輕易瞭解本發明之基本精神及其他發明目的,以及本發明所採用之技術手段與實施態樣。After referring to the following embodiments, those with ordinary knowledge in the technical field to which the present invention pertains can easily understand the basic spirit and other inventive objectives of the present invention, as well as the technical means and implementation aspects adopted by the present invention.

為了使本揭示內容的敘述更加詳盡與完備,下文針對了本發明的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本發明具體實施例的唯一形式。實施方式中涵蓋了多個具體實施例的特徵以及用以建構與操作這些具體實施例的方法步驟與其順序。然而,亦可利用其他具體實施例來達成相同或均等的功能與步驟順序。In order to make the description of this disclosure more detailed and complete, the following provides an illustrative description of the implementation mode and specific embodiments of the present invention; but this is not the only form of implementing or using the specific embodiments of the present invention. The embodiments include the features of a plurality of specific embodiments, as well as the method steps and their order for constructing and operating these specific embodiments. However, other specific embodiments can also be used to achieve the same or equal functions and sequence of steps.

1. 定義Definition

除非本說明書另有定義,此處所用的科學與技術詞彙之含義與本發明所屬技術領域中具有通常知識者所理解與慣用的意義相同。Unless otherwise defined in this specification, the meanings of scientific and technical terms used herein are the same as those understood and used by those having ordinary knowledge in the technical field to which the present invention pertains.

在不和上下文衝突的情形下,本說明書所用的單數名詞涵蓋該名詞的複數型;而所用的複數名詞時亦涵蓋該名詞的單數型。此外,在本說明書與申請專利範圍中,「至少一」與「一或更多」等表述方式的意義相同,兩者都代表包含了一、二、三或更多。更有甚者,在本說明書與申請專利範圍中,「A、B及C其中至少一者」、「A、B或C其中至少一者」以及「A、B和/或C其中至少一者」係指涵蓋了僅有A、僅有B、僅有C、A與B兩者、B與C兩者、與C兩者、以及A、B與C三者。Without conflict with the context, the singular noun used in this specification covers the plural form of the noun; and the plural noun used also covers the singular form of the noun. In addition, in this specification and the scope of patent application, the expressions "at least one" and "one or more" have the same meaning, and both represent one, two, three, or more. What is more, in the scope of this specification and the patent application, "at least one of A, B, and C", "at least one of A, B, or C", and "at least one of A, B, and / or C" "Means covering only A, B, C, A, and B, B and C, and C, and A, B, and C.

雖然在此處利用「第一」、「第二、「第三」等詞彙來描述多種元件、部件、區域和/或區段,這些元件(以及部件、區域和/或區段)不受上述修飾詞的限制。此外,除非上下文有明示的說明,使用這些序數並未隱含序列或順序。反之,這些詞彙僅是用來區分各元件。因此,亦可將下文所述的第一元件命名為第二元件,而不會悖離例示性實施方式所揭示的內容。Although the terms "first", "second," and "third" are used herein to describe various elements, parts, regions, and / or sections, these elements (and parts, regions, and / or sections) are not subject to the above Restrictions on modifiers. Furthermore, the use of these ordinal numbers does not imply a sequence or order, unless the context clearly indicates otherwise. Instead, these words are only used to distinguish the components. Therefore, the first element described below may also be named the second element without departing from what is disclosed in the exemplary embodiment.

雖然用以界定本發明較廣範圍的數值範圍與參數皆是約略的數值,此處已盡可能精確地呈現具體實施例中的相關數值。然而,任何數值本質上不可避免地含有因個別測試方法所致的標準偏差。在此處,「約」通常係指實際數值在一特定數值或範圍的正負10%、5%、1%或0.5%之內。或者是,「約」一詞代表實際數值落在平均值的可接受標準誤差之內,視本發明所屬技術領域中具有通常知識者的考量而定。除了實驗例之外,或除非另有明確的說明,當可理解此處所用的所有範圍、數量、數值與百分比(例如用以描述材料用量、時間長短、溫度、操作條件、數量比例及其他相似者)均經過「約」的修飾。因此,除非另有相反的說明,本說明書與附隨申請專利範圍所揭示的數值參數皆為約略的數值,且可視需求而更動。至少應將這些數值參數理解為所指出的有效位數與套用一般進位法所得到的數值。在此處,將數值範圍表示成由一端點至另一段點或介於二端點之間;除非另有說明,此處所述的數值範圍皆包含端點。Although the numerical ranges and parameters used to define the broader scope of the present invention are approximate values, the relevant values in the specific embodiments have been presented here as accurately as possible. However, any numerical value inherently contains standard deviations due to individual test methods. Here, "about" generally means that the actual value is within plus or minus 10%, 5%, 1%, or 0.5% of a specific value or range. Alternatively, the word "about" means that the actual value falls within the acceptable standard error of the average value, depending on the consideration of those with ordinary knowledge in the technical field to which the present invention belongs. In addition to the experimental examples, or unless explicitly stated otherwise, all ranges, quantities, values, and percentages used herein can be understood (for example, to describe the amount of materials used, length of time, temperature, operating conditions, quantity ratios, and other similar Or) are modified by "about". Therefore, unless otherwise stated to the contrary, the numerical parameters disclosed in this specification and the scope of the accompanying patent application are approximate values and may be changed as required. At a minimum, these numerical parameters should be understood as the number of significant digits indicated and the value obtained by applying the general round method. Here, the numerical range is expressed from one endpoint to another segment or between two endpoints; unless otherwise stated, the numerical ranges described herein include the endpoints.

於一些實施方式中,本案的範圍亦涵蓋和任何所述序列具有至少90%序列相似度的任何序列,上述序列相似度較佳為至少93%或95%、更佳為至少98%。In some embodiments, the scope of the present invention also covers any sequence having at least 90% sequence similarity to any of the described sequences. The sequence similarity is preferably at least 93% or 95%, more preferably at least 98%.

本文使用的「基因」(gene)一詞表示一段具有功能性、含特定遺傳訊息的核苷酸序列(包含去氧核醣核酸(deoxyribonucleic acid,DNA)及核醣核酸(Ribonucleic acid,RNA)),其不僅包含可編碼出基因產物(RNA及蛋白質)的DNA區域,也包含用以調控的區域。舉例來說,調控的區域包含啟動子(promoter)、終止子(terminator)、轉譯調控序列(例如:核醣體結合位(ribosome binding site)以及內部核醣體進入位(internal ribosome entry site,IRES))、強化子(enhancer)、緘默子(silencer)、絕緣子(insulator)、邊界元素(boundary element)、複製起點(origins of replication)、基質結合位(matrix binding sites)及基因座控制區(locus control region,LCR)等。「基因」一詞更可以包含從mRNA轉錄本剪接出,以及來自選擇式剪接位(alternative splicing site)的所有內含子(intron)及其他DNA序列,以及其各種變異型。本文使用的「基因」或「基因片段」(gene fragment)一詞可包含一基因的任何部分或全部,特別可以是前述各DNA區域的任何部分。The term “gene” as used herein refers to a functional nucleotide sequence (including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)) that contains specific genetic information, which It contains not only DNA regions that can encode gene products (RNA and proteins), but also regions for regulation. For example, regulatory regions include promoters, terminators, and translation regulatory sequences (eg, ribosome binding site and internal ribosome entry site (IRES)) , Enhancer, silencer, insulator, boundary element, origins of replication, matrix binding sites, and locus control region , LCR) and so on. The term "gene" may also include splicing from mRNA transcripts, as well as all introns and other DNA sequences from alternative splicing sites, as well as various variants thereof. As used herein, the term "gene" or "gene fragment" may include any part or all of a gene, in particular any part of each of the aforementioned DNA regions.

「突變」(mutations)一詞是指在基因序列和該基因序列編碼出的胺基酸序列上的任何分子層次及組織層次的變化。從分子層次上看,突變可以是基因在結構上發生鹼基對組成或排列順序的改變,該些改變包含點突變(point mutation)、沉默突變(silent mutation)、誤義突變(missense mutation)、無意義突變(nonsense mutation)、缺失突變(deletion mutation)、框移突變(frameshift mutation)、插入突變(insertion mutation)、剪接位突變(splicing-site mutation)等。在本說明書中,「突變」包含同型突變(homozygous mutation)、異型突變(heterozygous mutation)、單對偶基因突變( uniallelic或 monoallelic mutation)及雙對偶基因突變(biallelic mutation)。本文使用的「突變型」(mutant type)一詞係包含前述所有突變種類的基因及/或蛋白質,以及具有該些突變基因及/或蛋白質的有機體或生物檢體。The term "mutations" refers to any molecular or tissue-level change in the gene sequence and the amino acid sequence encoded by the gene sequence. At the molecular level, mutations can be changes in the base pair composition or arrangement of a gene. These changes include point mutations, silent mutations, missense mutations, Nonsense mutation, deletion mutation, frameshift mutation, insertion mutation, splicing-site mutation, etc. In the present specification, "mutation" includes homozygous mutations, heterozygous mutations, uniallelic or monoallelic mutations, and dualelic mutations. As used herein, the term "mutant type" refers to genes and / or proteins of all the aforementioned mutant species, as well as organisms or biological specimens having the mutant genes and / or proteins.

本文使用的「野生型」(wild type)一詞係為一相對性的詞彙,意指相較於前述突變型而言,沒有前述突變的基因及/或蛋白質的有機體或生物檢體。同時,「野生型」一詞也可表示具有如野生自然所見之形式的基因組組成(genome make-up)之有機體或生物檢體,更可應用於形容細胞株及特定個別基因。因此,「野生型」一詞可排除經人為使用重組方法(recombinant method)對基因序列作至少部分變更的基因、或含有前述變更的有機體及生物檢體。As used herein, the term "wild type" is a relative term meaning an organism or a biological specimen of a gene and / or protein without the aforementioned mutation compared to the aforementioned mutant type. At the same time, the term "wild type" can also refer to organisms or biological specimens that have a genome make-up as seen in the wild, and can be applied to cell lines and specific individual genes. Therefore, the term "wild type" excludes genes that have been artificially altered in genetic sequence by a recombinant method, or organisms and biological specimens containing the aforementioned alterations.

在本揭示內容中,「多核苷酸」(polynucleotide)「核苷酸序列」或「核酸序列」(nucleic acid sequence)是指RNA、DNA或其組合之單股或雙股聚合物,解讀方向是由5'到3'端。在本揭示內容中,「多核苷酸」可包含一或多經修飾的核苷酸殘基,且可作為引子或探針。In this disclosure, "polynucleotide", "nucleotide sequence" or "nucleic acid sequence" refers to single- or double-stranded polymers of RNA, DNA, or a combination thereof. The interpretation direction is From 5 'to 3' end. In the present disclosure, a "polynucleotide" may include one or more modified nucleotide residues and may serve as a primer or probe.

本文所使用的「引子」(primer) 一詞是指能夠與目標核酸序列(舉例來說,待擴增的DNA模板)雜合(hybridize)的寡核苷酸(oligonucleotide),並可作為聚合酶開始進行擴增的反應起點。「引子」可包括經修飾後的寡核苷酸,像是經生物素化(biotinylation)、磷酸化(phosphorylation)或添加鎖核酸(locked nucleic acids,LNA))修飾的寡核苷酸。「引子」可以是單股或雙股。本文使用的「引子對」(primer pair)是指一組或一對引子,其包含與待擴增序列之5’端上游序列(upstream sequence)互補且雜合的「正向引子」(forward primer)以及與待擴增序列之3’端下游序列(downstream sequence)互補並雜合的「反向引子」(reverse primer)。本發明所屬領域具有通常知識者應理解,本文使用「正向引子」及「反向引子」並非用以限制該引子,而僅是提供示例性的方向。The term "primer" as used herein refers to an oligonucleotide that can hybridize to a target nucleic acid sequence (for example, the DNA template to be amplified) and can be used as a polymerase The starting point of the reaction to start the amplification. A "primer" may include modified oligonucleotides, such as those modified with biotinylation, phosphorylation, or addition of locked nucleic acids (LNA). "Introduction" can be single or double. As used herein, a "primer pair" refers to a group or pair of primers that contains a "forward primer" (hybrid primer) that is complementary and hybrid to the upstream sequence of the 5 'end of the sequence to be amplified. ) And a "reverse primer" complementary to and hybridized with the downstream sequence of the 3 'end of the sequence to be amplified. Those with ordinary knowledge in the field to which the present invention pertains should understand that the use of the "forward primer" and "reverse primer" herein is not intended to limit the primer, but merely to provide exemplary directions.

本說明書中,「專一性引子」(specific primer)一詞是指能夠與待擴增序列特異性或專一性地結合或雜合的引子。在本揭示內容某些實施方式中,該些專一性引子的長度為約10-35個核苷酸的多核苷酸序列,較佳地為17-27個核苷酸的多核苷酸序列。In the present specification, the term "specific primer" refers to a primer capable of specifically or specifically binding or hybridizing to a sequence to be amplified. In certain embodiments of the present disclosure, the specific primers have a polynucleotide sequence of about 10-35 nucleotides in length, preferably a polynucleotide sequence of 17-27 nucleotides.

本文使用的「探針」(probe)一詞,是指一單股多核苷酸,其可與一互補的單股標的序列進行雜合,以形成一雙股分子(雜合體)。在本揭示內容的某些實施方式中,「探針」可與互補的單股經擴增之基因片段進行雜合。本說明書中,「專一性探針」(Specific probe)是指可以與單股標的序列特異性或專一性地互補結合或雜合的探針。在本揭示內容某些實施方式中,該些專一性探針的長度為約10-25個核苷酸的寡核苷酸片段,較佳地為12-20個核苷酸的多核苷酸序列。The term "probe" as used herein refers to a single-stranded polynucleotide that can hybridize with a complementary single-stranded target sequence to form a double-stranded molecule (hybrid). In certain embodiments of the present disclosure, a "probe" may hybridize to a complementary single-stranded amplified gene fragment. In the present specification, the "specific probe" refers to a probe that can specifically or specifically complement or hybridize to a single-stranded sequence. In certain embodiments of the present disclosure, the specific probes are about 10-25 nucleotides in length, preferably 12-20 nucleotides in length. .

本揭示內容中,「雜合」(hybridize或hybridization)一詞是指任何涉及核酸之一股藉由鹼基配對結合至一互補股的反應。一般來說,雜合及雜合強度(即核酸之間的結合強度)會受到以下因素影響:核酸之間的互補程度、反應條件、形成雜合體的Tm值及核酸內的G:C比例。「專一性地雜合」或「特異性地雜合」(hybridizing specifically)是指兩核酸分子之間,其核苷酸序列彼此具有高度準確的互補性(complementarity)的結合反應。高度準確的互補性可以為約90%以上的互補性,較佳為約95%以上的互補性,更佳為約99%以上的互補性。In the present disclosure, the term "hybridize" refers to any reaction involving a strand of nucleic acid bound to a complementary strand by base pairing. In general, heterozygosity and heterozygous strength (ie, the strength of binding between nucleic acids) are affected by the following factors: the degree of complementarity between nucleic acids, reaction conditions, the Tm value of forming a hybrid, and the G: C ratio in the nucleic acid. "Specific hybridization" or "specific hybridization specifically" refers to a binding reaction between two nucleic acid molecules whose nucleotide sequences have highly accurate complementarity with each other. The highly accurate complementarity may be about 90% or more, preferably about 95% or more, and more preferably about 99% or more.

本文使用的「模版」(template)一詞是指待擴增的任何類型之核酸分子,較佳為待擴增的DNA序列,亦可稱為DNA模版。本揭示內容的「核酸模版」或「DNA模版」至少包含部分或完整的單股核酸序列或單股DNA序列。在對核酸模版進行的雜合反應中,所得到的複合物可包括單股分子和雙股分子。The term "template" as used herein refers to any type of nucleic acid molecule to be amplified, preferably a DNA sequence to be amplified, and may also be referred to as a DNA template. The "nucleic acid template" or "DNA template" of the present disclosure includes at least a partial or complete single-stranded nucleic acid sequence or single-stranded DNA sequence. In a hybridization reaction performed on a nucleic acid template, the resulting complex may include single-stranded molecules and double-stranded molecules.

本文所使用的「偵測標記」(label) 一詞可包含能夠發出訊號的任何合適實體。在該情況下,該訊號可以是任何物理訊號、化學訊號或生物訊號。在本揭示內容中,較佳的訊號是電磁波。當被電磁波(特別是光)的激態激發時,可發射冷光(photoluminescence)的光致發光(photoluminescent)標記是較佳的偵測標記。具體而言,螢光標記及光致發光標記可包含螢光染劑、金屬及半導體奈米顆粒。依據本揭示內容的某些實施方式,較佳的螢光標記可包含螢光染劑。The term "label" as used herein may include any suitable entity capable of emitting a signal. In this case, the signal can be any physical, chemical, or biological signal. In this disclosure, the preferred signal is an electromagnetic wave. When excited by the excited state of electromagnetic waves (especially light), a photoluminescent mark that can emit photoluminescence is a better detection mark. Specifically, the fluorescent label and the photoluminescent label may include a fluorescent dye, a metal, and a semiconductor nanoparticle. According to some embodiments of the present disclosure, a preferred fluorescent label may include a fluorescent dye.

此外,被標記的雜合體數量並不受任何特定的限制,且可根據預期目的而適當的決定。被標記的數量至少為一個,且可以是兩個、三個或以上。同樣地,標記的位置也不受任何特定限制,可能的標記位置包括其末端。當雜合體為多核苷酸或寡核苷酸時,偵測標記的位置可以在例如5’端及/或3’端,但不排除其他位置的可能。在本揭示內容的某些實施方式中,偵測標記可以以共價結合或非共價結合的方式與雜合體連接。在本揭示內容的一實施方式中,偵測標記可透過聚合酶與寡核苷酸連接。In addition, the number of labeled heterozygotes is not subject to any particular limitation and may be appropriately determined according to the intended purpose. The number of marks is at least one, and may be two, three, or more. Likewise, the position of the marker is not subject to any particular limitation, and the possible marker positions include its ends. When the hybrid is a polynucleotide or an oligonucleotide, the position of the detection label may be, for example, the 5 'end and / or the 3' end, but the possibility of other positions is not excluded. In certain embodiments of the present disclosure, the detection label may be attached to the hybrid in a covalently or non-covalently binding manner. In one embodiment of the present disclosure, the detection label can be linked to the oligonucleotide through a polymerase.

本文使用的「預斷」(prognosis)一詞是表示,致力於獲得有助於評估,與平均值或比較個體(健康個體或有相似症狀的個體)相較,一病患不論於過去、診斷的當下或未來是否有可能或極有可能患有特定疾病或病症之資訊,藉此以找出疾病的發展情況或未來可能的發展情況,或用以評估 病患對特定療程的反饋,舉例來說,投予合適的藥物(例如可在病症發生前,對有罹患吉特曼症候群之風險的個體投予延緩或預防疾病發生之藥物;或可於吉特曼症候群之病症緩和之後仍持續投予以延緩或預防吉特曼症候群復發之藥物)。因此,在本揭示內容的實施方式中,「預斷」不僅僅包含一般所知的診斷,還包含監測疾病或病症的過程及/或預測患病風險。The term "prognosis" is used herein to indicate that it is committed to obtaining an assessment that is helpful, compared to an average or comparative individual (a healthy individual or an individual with similar symptoms). Information on whether there is or is likely to be a specific disease or condition now or in the future, to find out the development of the disease or possible development in the future, or to evaluate the patient's feedback on a specific course of treatment, for example Administer appropriate drugs (for example, drugs that delay or prevent the onset of disease in individuals at risk of developing Gitman syndrome before the onset of the disease; or continue to be administered after the symptoms of the Gitman syndrome have eased Drugs that delay or prevent the recurrence of Gitman syndrome). Therefore, in the embodiments of the present disclosure, "prejudging" includes not only a generally known diagnosis, but also monitoring the process of a disease or condition and / or predicting the risk of disease.

「病徵」(condition)、「疾病」(disease)及「病症」(disorder)在本揭示內容為可互換的詞彙。"Condition", "disease" and "disorder" are interchangeable words in this disclosure.

本文中「個體」(subject)與「病患」(patient)可交替使用。「個體」(subject)一詞泛指一人類個體(即任何年齡的男性或女性,例如嬰兒、幼兒或青少年之小兒科個體,或是青年、中年或老年的成人個體)。「病患」(patient)泛指有需要治療一疾病的人類個體。依據本揭示內容,「個體」或「病患」是指罹患吉特曼症候群、疑似罹患吉特曼症候群以及具有罹患吉特曼症候群之風險的人類個體。依據本發明較佳實施方式,個體可以是具有與臨床上吉特曼症候群之病徵表現相同的病患、該病患的親屬或是沒有任何病徵症狀的健康個體。"Subject" and "patient" are used interchangeably in this article. The term "subject" broadly refers to a human individual (ie, a male or female of any age, such as a pediatric individual of an infant, toddler, or adolescent, or an adult individual of young, middle, or old age). "Patient" refers broadly to a human individual in need of treatment for a disease. According to the present disclosure, "individual" or "patient" refers to a human individual suffering from Gitman syndrome, suspected of having Gitman syndrome, and at risk of having Gitman syndrome. According to a preferred embodiment of the present invention, the individual may be a patient with the same clinical manifestations as the Gitman syndrome, a relative of the patient, or a healthy individual without any symptoms.

本文使用的「離體樣本」(sample)一詞是從前述「個體」或「病患」分離出且經離體處理或培養的受測檢體。「離體樣本」可包含分離的體液、淋巴結樣本或組織樣本,特別是可能包含個體基因片段的生物樣本。依據本揭示內容的實施方式,離體樣本可包含血液、血漿、血球、組織液、唾液、淚液、眼球內液、尿液、淋巴液、脊髓液、宮頸液、陰道液、脊髓液樣本及細胞組織(例如:肌肉組織切片或腎臟組織切片)等檢體。The term "sample" as used herein refers to a test subject isolated from the aforementioned "individual" or "patient" and processed or cultured in vitro. "Ex vivo samples" may include isolated body fluids, lymph node samples or tissue samples, especially biological samples that may contain individual gene fragments. According to an embodiment of the present disclosure, the isolated sample may include blood, plasma, blood cells, interstitial fluid, saliva, tears, intraocular fluid, urine, lymph fluid, spinal fluid, cervical fluid, vaginal fluid, spinal fluid sample, and cell tissue (Eg, muscle tissue section or kidney tissue section).

本文使用的「套組」(kit)可包含本發明的至少一引子對以及一容器(例如微量離心管、小瓶、安瓶、瓶罐、注射器及/或分配器包裝,或是其他適當的容器)。在本揭示內容的某些實施方式中,本發明的套組是指實施方式中所必須的材料、試劑及操作說明的各種組合。A "kit" as used herein may contain at least one primer pair of the present invention and a container (e.g., a microcentrifuge tube, vial, ampoule, bottle, syringe, and / or dispenser package, or other suitable container) ). In some embodiments of the present disclosure, the kit of the present invention refers to various combinations of materials, reagents, and operating instructions necessary for the embodiments.

2. 預斷吉特曼症候群之方法2. Prediction of Gitman syndrome

吉特曼症候群的致病原因是 SLC12A3基因上的突變所導致。目前在全球已知超過400種 SLC12A3基因的突變,而該些突變基因型在不同人類組群中具有高度遺傳異質性。發明人針對華人族群的吉特曼症候群患者進行研究,發現在華人族群中,具有較高基因型頻率(genotype frequency)的突變基因型就超過50種,其中亦包含具族群特異性之突變型(即,該突變型僅存在於華人族群中)。 Gitman syndrome is caused by mutations in the SLC12A3 gene. Mutations in more than 400 SLC12A3 genes are currently known worldwide, and these mutant genotypes are highly genetically heterogeneous in different human populations. The inventors conducted research on patients with Gitman syndrome in the Chinese ethnic group, and found that in the Chinese ethnic group, there are more than 50 mutant genotypes with a high genotype frequency, which also includes ethnic-specific mutations ( That is, the mutant exists only in the Chinese ethnic group).

另一方面,發明人亦發現,大多數吉特曼症候群患者同時攜帶兩個不同等位基因的兩個不同突變,並呈現異型合子基因型。此外,有為數不少的(大約10%-15%)的病患甚至攜帶三種 SLC12A3基因突變的遺傳訊息;僅不到10%的病患是僅攜帶一個異型突變。由此可知, SLC12A3基因在族群中複雜的突變表現模式提高臨床上對於吉特曼症候群的檢測難度,導致增加確診的時間及金錢成本。因此,勢必需要發展出更具檢測效率及準確率的檢測技術,以解決前述問題。本發明提供可擴增 SLC12A3基因片段的至少一專一性引子對,以取得包含至少一突變的 SLC12A3基因片段,藉此可提高吉特曼症候群的檢測準確度及檢測效率。本發明提出的檢測方法亦提供了一種可靠的檢測方法,可以專一性地擴增 SLC12A3基因片段,加以篩出包含至少一突變的 SLC12A3基因片段,藉以快速準確地獲得吉特曼症候群的預斷及檢測結果。 On the other hand, the inventors also found that most patients with Gitman syndrome carry two different mutations of two different alleles simultaneously, and present heterozygous genotypes. In addition, a significant number (approximately 10% -15%) of patients even carry genetic information for three SLC12A3 gene mutations; less than 10% of patients carry only one atypical mutation. It can be seen that the complex mutational expression pattern of the SLC12A3 gene in ethnic groups makes clinical detection of Gitman syndrome difficult, resulting in increased time and money for diagnosis. Therefore, it is necessary to develop detection technology with more detection efficiency and accuracy to solve the aforementioned problems. The invention provides at least one specific primer pair capable of amplifying a SLC12A3 gene fragment to obtain an SLC12A3 gene fragment containing at least one mutation, thereby improving the detection accuracy and detection efficiency of Gitman syndrome. Detection method proposed in the present invention also provides a reliable detection method, specific amplification of SLC12A3 gene fragments to be screened out SLC12A3 gene fragment comprising at least one mutation, thereby quickly and accurately obtain detection and prognostic Jite Man Syndrome result.

有鑑於上述目的,本發明第一態樣提供一種吉特曼症候群的檢測方法。該方法主要是利用一個體之離體樣本,來預斷該個體是否罹患吉特曼症候群或有罹患吉特曼症候群之風險。本發明方法包含以下步驟: (a) 萃取該離體樣本之DNA; (b) 以步驟(a)之DNA作為模版,利用一第一引子對來擴增一第一 SLC12A3基因片段,其中該第一引子對包含一第一正向引子及一第一反向引子; (c) 決定該經擴增之第一 SLC12A3基因片段中是否包含一c.2881-2delAG的第一突變;以及 (d) 根據步驟(c)之結果來評估該個體是否罹患吉特曼症候群或有罹患吉特曼症候群之風險,其中若該經擴增之第一 SLC12A3基因片段包含該第一突變,則該個體罹患吉特曼症候群或有罹患吉特曼症候群之風險。其中,當該第一突變是c.2881-2delAG時,則第一正向引子及第一反向引子分別具有序列編號:1及2之核苷酸序列。 In view of the above object, a first aspect of the present invention provides a method for detecting Gitman syndrome. The method mainly uses an in vitro sample of a body to predict whether the individual is suffering from Gitman syndrome or is at risk of having Gitman syndrome. The method of the present invention comprises the following steps: (a) extracting the DNA of the ex vivo sample; (b) using the DNA of step (a) as a template, using a first primer pair to amplify a first SLC12A3 gene fragment, wherein the first A primer pair includes a first forward primer and a first reverse primer; (c) determines whether the amplified first SLC12A3 gene fragment contains a first mutation of c.2881-2delAG; and (d) Evaluate whether the individual has or is at risk of having Gitman syndrome based on the results of step (c), and if the amplified first SLC12A3 gene fragment contains the first mutation, the individual is suffering from Gitman syndrome Gatman syndrome may be at risk for Gitman syndrome. Wherein, when the first mutation is c.2881-2delAG, the first forward primer and the first reverse primer have nucleotide sequences of sequence numbers: 1 and 2, respectively.

在實施本發明方法時,首先須從一個體取得其離體樣本之DNA(步驟(a))。依據某些特定實施方式,是從一罹患或疑似罹患吉特曼症候群的病患身上取得離體樣本,如周邊血液之全血液樣本或血球樣本,較佳為白血球。依據其他特定實施方式,則是從健康的人類個體身上取得離體樣本。接著,可利用任何本領域具有通常知識者熟知的方法從所取得的離體樣本中(例如白血球)萃取該個體的基因體DNA(genomic DNA)。萃取DNA的方法可包含首先利用物理作用、化學作用或溫差方式使細胞膜裂解;接著加入有機溶劑以純化細胞內的核酸。前述物理作用實例包含但不限於,超聲波震盪或研磨。化學作用包含利用細胞裂解緩衝液來裂解細胞膜。一般而言,細胞裂解緩衝液可含有酸(如,HCl、乙二胺四乙酸(Ethylenediaminetetraacetic acid,EDTA))、界面活性劑(如,十二基硫酸鈉(Sodium dodecyl sulfate,SDS))、鹽類(如,NaCl)及蛋白酶等成分,用以使細胞膜裂解。前述溫差方式包括將細胞於20℃之溫度差的環境下反覆冰凍及解凍,藉以使細胞膜破裂。接著,可添加乙醇或異丙醇來純化從細胞中釋放出的核酸。另一方面,也可以藉由商業化套組來達到相同的DNA萃取目的。適用於本發明的商業化基因體DNA萃取套組包含但不限於:DNeasy 血液及組織套組(供應商:Qiagen)、Puregene血液套組(供應商:Qiagen)、DNAzol™ 試劑(供應商:Thermo Fisher)、PureLink™ 基因體DNA迷你套組(供應商:Thermo Fisher)、PureLink™ 前96 基因體DNA純化套組(供應商:Thermo Fisher)及InstaGene™ Matrix (供應商:Bio-Rad)。依據本揭示內容一實施方式,是利用Puregene血液套組(供應商:Qiagen)萃取白血球基因體DNA。In carrying out the method of the present invention, the DNA of an ex vivo sample must first be obtained from a body (step (a)). According to some specific embodiments, an ex vivo sample is obtained from a patient suffering from or suspected of having Gitman syndrome, such as a whole blood sample or a blood cell sample of peripheral blood, preferably white blood cells. According to other specific embodiments, an ex vivo sample is obtained from a healthy human individual. The individual's genomic DNA can then be extracted from the obtained ex vivo sample (eg, white blood cells) using any method well known to those skilled in the art. The method of extracting DNA may include firstly lysing the cell membrane by physical action, chemical action or temperature difference; and then adding an organic solvent to purify the nucleic acid in the cell. The aforementioned physical action examples include, but are not limited to, ultrasonic vibration or grinding. Chemical action involves the use of a cell lysis buffer to lyse the cell membrane. Generally speaking, the cell lysis buffer may contain an acid (e.g., HCl, Ethylenediaminetetraacetic acid (EDTA)), a surfactant (e.g., sodium dodecyl sulfate (SDS)), a salt Components (such as NaCl) and proteases are used to lyse cell membranes. The aforementioned temperature difference method includes repeatedly freezing and thawing the cells under a temperature difference environment of 20 ° C, thereby rupturing the cell membrane. Next, ethanol or isopropanol can be added to purify the nucleic acids released from the cells. On the other hand, the same DNA extraction can be achieved by commercial kits. Commercial genomic DNA extraction kits suitable for the present invention include, but are not limited to: DNeasy blood and tissue kit (supplier: Qiagen), Puregene blood kit (supplier: Qiagen), DNAzol ™ reagent (supplier: Thermo Fisher), PureLink ™ Genomic DNA Mini Kit (Supplier: Thermo Fisher), PureLink ™ Top 96 Genomic DNA Purification Kit (Supplier: Thermo Fisher), and InstaGene ™ Matrix (Supplier: Bio-Rad). According to one embodiment of the present disclosure, the white blood cell genome DNA is extracted using a Puregene blood kit (supplier: Qiagen).

接著,在步驟(b)中,以步驟(a)中萃取出的DNA作為擴增模版,並以至少一引子對來擴增至少一基因片段。在本揭示內容的某些實施方式中,步驟(b)是利用第一引子對來擴增第一 SLC12A3基因片段,其中第一引子對包含第一正向引子及第一反向引子。在此步驟中,擴增係指選擇性地增加特異蛋白質編碼基因的複製數量,而其他基因則未按比例增加的過程。本揭示內容的擴增是針對 SLC12A3基因或 SLC12A3基因片段進行複製放大。藉由第一引子對與作為模版的DNA互補雜合,以作為DNA聚合酶的核苷酸延伸起點。依據本揭示內容的實施方式,可根據任何本領域具有通常知識者熟知的方法執行擴增反應,例如:聚合酶連鎖反應(polymerase chain reaction,PCR)。依據本實施例的一實施方式,是以PCR對第一 SLC12A3基因片段進行擴增反應。 Next, in step (b), the DNA extracted in step (a) is used as an amplification template, and at least one gene fragment is amplified with at least one primer pair. In some embodiments of the present disclosure, step (b) is using a first primer pair to amplify the first SLC12A3 gene fragment, wherein the first primer pair includes a first forward primer and a first reverse primer. In this step, amplification refers to the process of selectively increasing the number of copies of a specific protein-encoding gene, while other genes are not increasing proportionally. The amplification of the present disclosure is to replicate and amplify the SLC12A3 gene or SLC12A3 gene fragment. The first primer pair is complementary hybridized with DNA as a template to serve as a starting point for nucleotide extension of DNA polymerase. According to the embodiments of the present disclosure, the amplification reaction can be performed according to any method well known to those having ordinary knowledge in the art, such as a polymerase chain reaction (PCR). According to an embodiment of the present embodiment, the first SLC12A3 gene fragment is amplified by PCR.

在步驟(c)中,判定步驟(b)中經擴增之至少一 SLC12A3基因片段是否包含至少一突變,例如 c.2881-2delAG之突變判定是否包含突變的方法包含以諸如凝膠電泳法、基因定序以或DNA雜合反應等方法分析步驟(b)中經擴增後的核苷酸產物,以確認該經擴增的 SLC12A3基因片段中是否包含特定突變型的資訊。舉例來說,可將經PCR擴增後的基因片段產物分離出來,並透過定序、核苷酸長度判定等序列分析,來確認從離體樣本取得之DNA模版是否帶有突變型基因片段。 In step (c), it is determined whether at least one SLC12A3 gene fragment amplified in step (b) contains at least one mutation. For example, the mutation of c.2881-2delAG includes a method such as gel electrophoresis, The sequence of the gene is analyzed by DNA hybridization or other methods to analyze the amplified nucleotide product in step (b) to confirm whether the amplified SLC12A3 gene fragment contains specific mutation type information. For example, the gene fragment product amplified by PCR can be isolated, and sequence analysis such as sequencing and nucleotide length determination can be used to confirm whether the DNA template obtained from the isolated sample contains the mutant gene fragment.

接著,在步驟(d)中,根據步驟(c)的結果來評估該個體是否罹患吉特曼症候群或有罹患吉特曼症候群之風險。具體而言,若經擴增的第一 SLC12A3基因片段包含至少一突變,則該個體可能罹患吉特曼症候群、或是具有罹患吉特曼症候群之風險。 Next, in step (d), according to the result of step (c), it is evaluated whether the individual has the Gitman syndrome or is at risk of having the Gitman syndrome. Specifically, if the amplified first SLC12A3 gene fragment contains at least one mutation, the individual may suffer from Gitman syndrome, or be at risk of developing Gitman syndrome.

依據本揭示內容的某些任選實施的實施方式,在步驟(c)中,亦可利用探針進行DNA雜合反應來決定經擴增之第一 SLC12A3基因片段中是否包含第一突變。在本揭示內容的一實施方式中,所述探針包含第一野生型探針以及第一突變型探針。所述探針可與目標第一 SLC12A3基因片段互補雜合形成雜合體。在本實施方式中,第一野生型探針是可以與不具有第一突變(即野生型)的第一 SLC12A3基因片段彼此互補結合的探針;第一突變型探針則是能夠與可能包含第一突變之第一 SLC12A3基因片段彼此互補結合的探針。透過野生型探針及突變型探針的設計,可以獲得經擴增的 SLC12A3基因片段中是否包含特定突變型的資訊。換句話說,當突變型探針與經擴增之一 SLC12A3基因片段專一性雜合時,即表示該 SLC12A3基因片段應包含對應的一突變。因此,當第一突變型探針與第一 SLC12A3基因片段形成雜合體時,即表示該第一 SLC12A3基因片段應包含對應的第一突變。如此一來,可根據雜合結果在後續步驟(d)中評估該個體是否罹患吉特曼症候群或有罹患吉特曼症候群之風險。 According to some optional implementations of the present disclosure, in step (c), a probe may also be used to perform a DNA hybridization reaction to determine whether the amplified first SLC12A3 gene fragment contains a first mutation. In one embodiment of the present disclosure, the probe includes a first wild-type probe and a first mutant-type probe. The probe may be hybridized with the target first SLC12A3 gene fragment to form a hybrid. In this embodiment, the first wild-type probe is a probe that can complementaryly bind to the first SLC12A3 gene fragment without the first mutation (ie, wild-type); the first mutant-type probe is capable of binding The first mutated probe of the first SLC12A3 gene fragment is complementary to each other. Through the design of wild-type probes and mutant probes, it is possible to obtain information on whether the amplified SLC12A3 gene fragment contains a specific mutant type. In other words, when the mutant probe specifically hybridizes with one of the amplified SLC12A3 gene fragments, it means that the SLC12A3 gene fragment should contain a corresponding mutation. Therefore, when the first mutant probe forms a hybrid with the first SLC12A3 gene fragment, it means that the first SLC12A3 gene fragment should contain the corresponding first mutation. In this way, based on the heterozygous results, in the subsequent step (d), it can be evaluated whether the individual has the Gitman syndrome or is at risk for the Gitman syndrome.

依據本揭示內容另一任選實施的實施方式,在步驟(b)中,更包含利用第二引子對來擴增第二 SLC12A3基因片段,藉以在步驟(c)中決定經擴增之第二 SLC12A3基因片段中是否包含第二突變,其中第二引子對包含第二正向引子及第二反向引子。相似地,藉由第二引子對與作為模版的DNA互補雜合,以作為DNA聚合酶的核苷酸延伸起點,以針對 SLC12A3基因或其基因片段進行DNA複製擴增。 According to another optional implementation of the present disclosure, in step (b), the method further includes using a second primer pair to amplify the second SLC12A3 gene fragment, thereby determining the amplified second in step (c). Whether the SLC12A3 gene fragment contains a second mutation, wherein the second primer pair includes a second forward primer and a second reverse primer. Similarly, the second primer pair is complementary hybridized with the DNA as a template to serve as a starting point for nucleotide extension of the DNA polymerase to perform DNA replication amplification on the SLC12A3 gene or a gene fragment thereof.

依據本揭示內容另一任選實施的實施方式,步驟(c)可更包含利用一第二野生型探針及一第二突變型探針來決定經擴增的第二 SLC12A3基因片段中是否包含第二突變。同樣地,第二野生型探針是可以與不具有第二突變(即野生型)的第二 SLC12A3基因片段互補結合的探針;第二突變型探針則是能夠與包含第二突變之第二 SLC12A3基因片段互補結合的探針。透過第二野生型探針及第二突變型探針與第二 SLC12A3基因片段的專一性設計,可以獲得經擴增的 SLC12A3基因片段中是否包含特定突變型的資訊。總結來說,當第二突變型探針與經擴增之第二 SLC12A3基因片段呈現專一性雜合時,即表示該第二 SLC12A3基因片段應包含對應的一第二突變。如此一來可根據雜合結果在後續步驟(d)中評估該個體是否罹患吉特曼症候群或有罹患吉特曼症候群之風險。 According to another optional implementation of the present disclosure, step (c) may further include using a second wild-type probe and a second mutant probe to determine whether the amplified second SLC12A3 gene fragment contains The second mutation. Similarly, the second wild-type probe is a probe that can complement the second SLC12A3 gene fragment without the second mutation (ie, wild-type); the second mutant-type probe is capable of Two SLC12A3 gene fragments complementarily bind to the probe. Through the specific design of the second wild-type probe, the second mutant-type probe and the second SLC12A3 gene fragment, information on whether the amplified SLC12A3 gene fragment contains a specific mutation type can be obtained. In summary, when the second mutant probe is specifically heterozygous with the amplified second SLC12A3 gene fragment, it means that the second SLC12A3 gene fragment should contain a corresponding second mutation. In this way, according to the heterozygous result, in the subsequent step (d), whether the individual has the Gitman syndrome or is at risk of having the Gitman syndrome.

承前所述,適用於本發明的探針種類可包含但不限於:TaqMan®探針、分子信標探針(Molecular Beacon probe)、LNA ®探針及Scorpion® 探針等。本技術領域中具通常知識者可依據實際需求選擇適合的探針類型。在一較佳實施方中,探針是TaqMan®探針。According to the foregoing description, the types of probes suitable for the present invention may include, but are not limited to, TaqMan® probes, Molecular Beacon probes, LNA® probes, and Scorpion® probes. Those skilled in the art can select a suitable probe type according to actual needs. In a preferred embodiment, the probe is a TaqMan® probe.

依據本揭示內容之一實施方式,在步驟(c)中,為了便於決定探針與經擴增之 SLC12A3基因片段之間的雜合情形,所述探針更可與至少一偵測標記連接,透過該偵測標記所提供的訊號而得知探針與經擴增 SLC12A3基因片段之間是否成功形成雜合體。具體而言,在一實施方式中,第一野生型探針、第一突變型探針、第二野生型探針及第二突變型探針可分別與第一偵測標記、第二偵測標記、第三偵測標記及第四偵測標記連接。同時,第一偵測標記、第二偵測標記、第三偵測標記及第四偵測標記發出訊號可彼此相異,以便於區別不同雜合體。在一實施方式中,偵測標記可以是螢光標記,訊號可以是光訊號。在又一實施方式中,第一、第二、第三及第四偵測標記可分別發出不同波長的光。較佳地,該些光的波長可分別為介於550 nm至560 nm之間、575 nm至585 nm之間、610 nm 至620 nm之間,以及650 nm至660 nm之間。在一實施方式中,該些偵測標記可發出分別為517 nm、551 nm、580 nm及617 nm之光波長。同時,這裡所列舉之光波長僅為例示性非限制性者,光訊號之顏色不以此為限。適用於本發明方法的偵測標記包含,但不限於:VIC TM、FAM TM、JUN TM、ABY TM、HEX TM、NED TM、TAMRA TM、SYBR® Green、Texas Red®等。較佳地,該偵測標記為VIC TM、FAM TM、JUN TM及ABY TMAccording to one embodiment of the present disclosure, in step (c), in order to facilitate the determination of the hybridization situation between the probe and the amplified SLC12A3 gene fragment, the probe may be further connected to at least one detection label. The signal provided by the detection label is used to know whether a hybrid is successfully formed between the probe and the amplified SLC12A3 gene fragment. Specifically, in one embodiment, the first wild-type probe, the first mutant-type probe, the second wild-type probe, and the second mutant-type probe may be separately associated with the first detection marker and the second detection Mark, third detection mark and fourth detection mark are connected. At the same time, the signals sent by the first detection mark, the second detection mark, the third detection mark, and the fourth detection mark may be different from each other, so as to distinguish different hybrids. In one embodiment, the detection mark may be a fluorescent mark, and the signal may be a light signal. In yet another embodiment, the first, second, third and fourth detection marks can emit light with different wavelengths, respectively. Preferably, the wavelengths of these lights may be between 550 nm and 560 nm, between 575 nm and 585 nm, between 610 nm and 620 nm, and between 650 nm and 660 nm. In one embodiment, the detection marks can emit light wavelengths of 517 nm, 551 nm, 580 nm, and 617 nm, respectively. At the same time, the light wavelengths listed here are only exemplary and non-limiting, and the color of the optical signal is not limited to this. Detection markers suitable for use in the method of the present invention include, but are not limited to: VIC , FAM , JUN , ABY , HEX , NED , TAMRA , SYBR® Green, Texas Red®, and the like. Preferably, the detection marks are VIC , FAM , JUN ™, and ABY .

根據偵測標記提供的訊號,可確知第一突變型探針與經擴增之第一 SLC12A3基因片段,及第二突變型探針與經擴增之第二 SLC12A3基因片段是否各自呈現專一性雜合。當第一突變型探針及/或第二突變型探針分別與經擴增之第一 SLC12A3基因片段及/或第二 SLC12A3基因片段呈現專一性雜合時,即表示該第一 SLC12A3基因片段及/或第二 SLC12A3基因片段應包含對應的第一突變及/或第二突變。反之,若第一野生型探針與經擴增之第一 SLC12A3基因片段,以及/或是第二野生型探針與經擴增之第二 SLC12A3基因片段呈現專一性雜合反應,則表示該第一 SLC12A3基因片段及/或第二 SLC12A3基因片段不包含對應的第一突變及/或第二突變。藉此,在後續的步驟(d)中,即可利用偵測標記提供的訊號來評估該個體是否罹患吉特曼症候群或具有罹患吉特曼症候群之風險。 According to the signal provided by the detection marker, it can be ascertained whether the first mutant probe and the amplified first SLC12A3 gene fragment, and the second mutant probe and the amplified second SLC12A3 gene fragment each exhibit specific heterogeneity. Together. When the first mutant probe and / or the second mutant probe are specifically hybridized with the amplified first SLC12A3 gene fragment and / or the second SLC12A3 gene fragment, respectively, it means that the first SLC12A3 gene fragment And / or the second SLC12A3 gene fragment should contain a corresponding first mutation and / or a second mutation. Conversely, if the first wild-type probe and the amplified first SLC12A3 gene fragment and / or the second wild-type probe and the amplified second SLC12A3 gene fragment exhibit a specific heterozygous reaction, it indicates that the The first SLC12A3 gene fragment and / or the second SLC12A3 gene fragment do not contain a corresponding first mutation and / or a second mutation. In this way, in the subsequent step (d), the signal provided by the detection marker can be used to evaluate whether the individual is suffering from Gittmann syndrome or is at risk of suffering from Gittmann syndrome.

3. SLC12A3基因之突變的專一性引子對及探針 3. Specific primer pairs and probes for mutations in the SLC12A3 gene

依據本揭示內容的某些實施方式, SLC12A3基因片段所包含的突變可包含,但不限於:A13P、D26G、T60M、R83Q、H90Y、R145C、T163M、P213S、L215P、H234Q、L245P、IVS6-1G>A、c.835-836ins15bp、S283Y、T304M、IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT、R334W、G403E、N426K、N442K、N426Y、c.1421delT、D486N、A514V、S614L、N640S、IVS15+2 T>G、R642H、R642C、T649M、IVS16-1 G>A、L671R、S710X、c.2069delA、W844X、L858H、R871H、G876S、IVS22+1 G>A、L892P、R896X、c.2881-2delAG、P947S、R974W、R977X、R1011K、c.1670-191C→T及c.2548+253C→T。 According to some embodiments of the present disclosure, the mutation included in the SLC12A3 gene fragment may include, but is not limited to: A13P, D26G, T60M, R83Q, H90Y, R145C, T163M, P213S, L215P, H234Q, L245P, IVS6-1G> A, c.835-836ins15bp, S283Y, T304M, IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT, R334W, G403E, N426K, N442K, N426Y, c.1421delT, D486N, A514V, S614L, N640S, IVS15 + 2 T> G, R642H , R642C, T649M, IVS16-1 G> A, L671R, S710X, c.2069delA, W844X, L858H, R871H, G876S, IVS22 + 1 G> A, L892P, R896X, c.2881-2delAG, P947S, R974W, R977X , R1011K, c.1670-191C → T and c.2548 + 253C → T.

本發明 SLC12A3基因為一種蛋白質編碼基因,其位於人類第16條染色體上,基因體序列為NC_000016.10(56865207..56915850),其Gene ID為6559 (詳細內容請參閱GeneBank,https://www.ncbi.nlm.nih.gov/gene/6559,更新日期:2018年1月27日)。本發明 SLC12A3基因片段所包含的前述突變可以是點突變、誤義突變、無意義突變、缺失突變、框移突變、插入突變及剪接位突變等。具體而言,誤義突變係指由於某一鹼基對的改變,使編碼特定胺基酸的密碼子變成編碼另外一種胺基酸的密碼子,進而使整體蛋白質構型發生變化。舉例來說,本領域技術所述具有通常知識者可理解本發明之 SLC12A3基因片段所包含的突變A13P、D26G及T60M均為誤義突變,其中A13P即表示胺基酸序列第13個殘基之處的丙胺酸(Alanine,縮寫為A)突變成脯胺酸(Proline,縮寫為P);相似地,突變D26G即表示胺基酸序列第26個殘基之處的天冬胺酸(Aspartic acid,縮寫D)突變成甘胺酸(Glycine,縮寫G);而突變T60M表示胺基酸序列第60個殘基之處的酪胺酸(Tyrosine,縮寫T)突變成甲硫胺酸(Methionine,縮寫M)。所屬技術領域中具有通常知識者均可以此類推,以理解本發明的 SLC12A3基因片段的誤義突變位點,故不一一贅述。另一方面,本領域技術所述具有通常知識者可理解插入突變係指在原有正常核苷酸序列中插入一段長短不等的核苷酸序列,舉例來說,本發明 SLC12A3基因片段可能包含的突變c.835-836ins15bp,係表示從第835個密碼子至第836個密碼子之間有15個鹼基對(序列為:TTGGCGTGGTCTCGG)的插入突變。另外,本發明 SLC12A3基因片段包含的IVS6-1G>A、IVS15+2 T>G、IVS16-1 G>A、IVS22+1 G>A、c.1670-191C→T及c.2548+253C→T等點突變,在此例示性說明,突變IVS6-1G>A是在第6個內含子前1個鹼基對(-1)位置的核苷酸,從原本的鳥嘌呤突變為腺嘌呤;突變IVS15+2 T>G是在第15個內含子內,後2個鹼基對(+2)位置的核苷酸,由原本的胸腺嘧啶(Thymine,縮寫為T)的突變成鳥嘌呤。是以,本領域技術所述具有通常知識者可類比推理該些突變均係發生於內含子的特定鹼基對位置的點突變,故不一一贅述。另一方面,突變c.1670-191C→T,是指在第1670個密碼子之前第191個鹼基對(-191)的位置,發生胞嘧啶(Cytosine,縮寫C)變成胸腺嘧啶的突變。至於缺失突變,係指DNA上丟失一段鹼基對序列。以突變c.1421delT、c.2069delA及c.2881-2delAG為例,本領域技術所述具有通常知識者可藉由該記載方式理解,突變c.1421delT是指在第1421個密碼子丟失一個胸腺嘧啶;突變c.2069delA係指在第2069個密碼子丟失一個腺嘌呤;而是c.2881-2delAG係指第2881個密碼子之處,缺失腺嘌呤及鳥嘌呤兩個鹼基對。另外,以IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT而言,係表示該突變是在第7個內含子前1個位置(-1)的核苷酸,原本為鳥嘌呤(Guanine,縮寫為G)變成腺嘌呤(Adenine,簡稱A)之點突變,加上第971個核苷酸之處缺失一段CGGACATTTTT之核苷酸序列,並有一段ACCGAAAATTTT的插入序列。是以,前述突變的命名及記載方式均可被本領域具有通常知識者以邏輯類比推理得知,故不一一詳細贅述。 The SLC12A3 gene of the present invention is a protein-coding gene, which is located on the human chromosome 16 with a genome sequence of NC_000016.10 (56865207..56915850) and a Gene ID of 6559 (for details, see GeneBank, https: // www .ncbi.nlm.nih.gov / gene / 6559, updated: January 27, 2018). The aforementioned mutation contained in the SLC12A3 gene fragment of the present invention may be a point mutation, a mis-sense mutation, a meaningless mutation, a deletion mutation, a frame shift mutation, an insertion mutation, a splice mutation, and the like. Specifically, a missense mutation refers to a change in a base pair that causes a codon encoding a particular amino acid to become a codon encoding another amino acid, thereby changing the overall protein configuration. For example, those skilled in the art with ordinary knowledge can understand that the mutations A13P, D26G, and T60M included in the SLC12A3 gene fragment of the present invention are all missense mutations, where A13P represents the 13th residue of the amino acid sequence Alanine (abbreviated A) is mutated to Proline (abbreviated P); similarly, the mutation D26G represents the aspartic acid at the 26th residue of the amino acid sequence. , Abbreviation D) is mutated to glycine (Glycine, abbreviated G); and the mutation T60M represents the tyrosine (Tyrosine, abbreviated T) at the 60th residue of the amino acid sequence is mutated to methionine Abbreviation M). Those with ordinary knowledge in the technical field may similarly understand the misidentified mutation sites of the SLC12A3 gene fragment of the present invention, and therefore will not repeat them one by one. On the other hand, those skilled in the art can understand that insertion mutation refers to the insertion of a nucleotide sequence of varying length in the original normal nucleotide sequence. For example, the SLC12A3 gene fragment of the present invention may contain The mutation c.835-836ins15bp is an insertion mutation of 15 base pairs (sequence: TTGGCGTGGTCTCGG) from the 835th codon to the 836th codon. In addition, the SLC12A3 gene fragment of the present invention contains IVS6-1G> A, IVS15 + 2 T> G, IVS16-1 G> A, IVS22 + 1 G> A, c.1670-191C → T and c.2548 + 253C → A point mutation such as T, which is exemplified here. The mutation IVS6-1G> A is a nucleotide at the position (-1) 1 base pair before the 6th intron, which is mutated from the original guanine to adenine. ; Mutation IVS15 + 2 T> G is the nucleotide in the 15th intron and the last 2 base pairs (+2) position, and the original thymine (Thymine, abbreviated as T) is mutated into guanine . Therefore, those skilled in the art with ordinary knowledge can reason by analogy that these mutations are all point mutations that occur at specific base pair positions of introns, so they will not be described in detail. On the other hand, the mutation c.1670-191C → T refers to a mutation in which Cytosine (abbreviation C) becomes thymine at the position of the 191th base pair (-191) before the 1670th codon. By deletion mutation, it is meant that a base pair sequence is missing from the DNA. Taking the mutations c.1421delT, c.2069delA, and c.2881-2delAG as examples, those with ordinary knowledge in the art can understand this record. The mutation c.1421delT refers to the loss of a thymus at the 1421th codon Pyrimidine; mutation c.2069delA refers to the loss of an adenine at the 2069th codon; but c.2881-2delAG refers to the 2881th codon, the deletion of adenine and guanine two base pairs. In addition, in the case of IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT, it means that the mutation is a nucleotide at a position (-1) before the 7th intron, which was originally guanine (Guanine) Adenine (Adenine, A for short) point mutation, plus a CGGACATTTTT nucleotide sequence deleted at the 971th nucleotide, and an ACCGAAAATTTT insertion sequence. Therefore, the method of naming and recording the aforementioned mutations can be known by those with ordinary knowledge in the art by logical analogy, so they will not be described in detail.

本發明 SLC12A3基因片段包含之突變與其對應之引子對及探針之序列請參閱表1。 表1:本發明之 SLC12A3基因片段包含之突變及其對應之引子對與探針之核苷酸序列 突變 核苷酸序列 序列編號 核苷酸序列 序列編號 核苷酸序列 序列編號 核苷酸序列 序列編號 正向引子 反向引子 野生型探針 突變型探針 c.2881-2delAG GACTGCCCCTGGAAGATCTCA 1 TGTCCCTGACCCAGTGATGT 2 AAGAACAGAGTCAAGGTG 35 ACAGTCAAGGTGCAGAGA 36 T60M CATGCGCACCTTTGGCTA 3 TTGCTGTTGGCATAGTGCT 4 TTGGCTACAACAcGAT 37 CTACAACAtGATCGATGTG 38 c.1670-191 C→T TGGATGCTCCTGGTGAAATG 5 TCCTGGGCTGGGTCTACAG 6 CCAAAGCAGGcGTGT 39 CAGGtGTGTGATTTG 40 S710X TGGCTGAACAAGAGGAAGATCAA 7 TGGCACCTGCATGAGGATCT 8 CCTTCTACTcGGATGTCAT 41 CTACTaGGATGTCATTGCC 42 T163M TCCAGATTCGTTGCATGCTC 9 CAAGCCCTCCCTCCTCTTC 10 CTGCCCTGGATTAcGG 43 CTGGATTAtGGCCCAGG 44 c.2548+253 C→T GTCGCCATGAGATGGAAACT 11 TCTTTCTATCTGTGACTCTATCAAAGG 12 CACAGGcAGGTGATAT 45 CACAGGtAGGTGATATAA 46 R871H AGAGGAGGTGGAGCAAATGC 13 TCTCCTGGTCCATCCTGTTACTC 14 AAATGCAAGATCCgTG 47 AAGATCCaTGTGTTCGTAGG 48 IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT CCTTACTCATCAGGCCTTGCTT 15 TCCAGTCAGGCACCAAGTTCT 16 GCGGACATTTTT 49 AACCGAAAATTTTTC 50 W844X TGGGATCGCCCTTCAGG 17 GATCGCCCTTGCAGGAG 18 ATCTACTGgCTCTTTG 51 CTACTGaCTCTTTGACG 52 R83Q TCGCACCTTTGGCTACAACAC 19 CTTCTGAGACAGCACTTACCTTGAG 20 TGGTGAGCCCCgGA 53 CCCCaGAAGGTC 54 H90Y GTGAGCCCCGGAAGGTGA 21 CAGGGAAGTGGCCAGTCTT 22 AAGGTGACCTGcACTC 55 ACCTGtACTCCTTCCT 56 R642H GGATCGCCCTTGGTACAGGC 23 TGGGATCGCCCTTCAGG 24 TCAAGAACTACcGGTGAG 57 ACTACtGGTGAGCAGAG 58 R642C GGATCGCCCTTGGTACAGGC 25 TGGGATCGCCCTTCAGG 26 TCAAGAACTACcGGTGAG 59 ACTACtGGTGAGCAGAG 60 T649M TGGCTCCTGCCCTTTTCC 27 TGCCGGGCGGAAGTTG 28 CCTGGTGCTCAcGC 61 CTGGTGCTCAtGCG 62 N442K CAGCACAGCTGCCACTACG 29 TTGCAGGCCTGGAAGTTTGT 30 CCTCATCAAcTATTACC 63 CCTCATCAAgTATTACC 64 N640S TCTGGCCCTCAGCTACTCG 31 AGGGTGGAGCCATCACTGG 32 CACATCAAGAaCTAC 65 ACATCAAGAgCTACCGG 66 D486N TTCCCAGCCTAAGGGTGAGTG 33 GAAGCCGATCAGTGGGTACAG 34 CGAGgACCAGCTGTA 67 CCTTTGCGAGaACC 68 Please refer to Table 1 for the mutations contained in the SLC12A3 gene fragment of the present invention and the corresponding primer pair and probe sequences. Table 1: Mutations contained in the SLC12A3 gene fragment of the present invention and the nucleotide sequences of the corresponding primer pairs and probes mutation Nucleotide sequence Serial number Nucleotide sequence Serial number Nucleotide sequence Serial number Nucleotide sequence Serial number Forward primer Reverse primer Wild-type probe Mutant probe c.2881-2delAG GACTGCCCCTGGAAGATCTCA 1 TGTCCCTGACCCAGTGATGT 2 AAGAACAGAGTCAAGGTG 35 ACAGTCAAGGTGCAGAGA 36 T60M CATGCGCACCTTTGGCTA 3 TTGCTGTTGGCATAGTGCT 4 TTGGCTACAACAcGAT 37 CTACAACAtGATCGATGTG 38 c.1670-191 C → T TGGATGCTCCTGGTGAAATG 5 TCCTGGGCTGGGTCTACAG 6 CCAAAGCAGGcGTGT 39 CAGGtGTGTGATTTG 40 S710X TGGCTGAACAAGAGGAAGATCAA 7 TGGCACCTGCATGAGGATCT 8 CCTTCTACTcGGATGTCAT 41 CTACTaGGATGTCATTGCC 42 T163M TCCAGATTCGTTGCATGCTC 9 CAAGCCCTCCCTCCTCTTC 10 CTGCCCTGGATTAcGG 43 CTGGATTAtGGCCCAGG 44 c. 2548 + 253 C → T GTCGCCATGAGATGGAAACT 11 TCTTTCTATCTGTGACTCTATCAAAGG 12 CACAGGcAGGTGATAT 45 CACAGGtAGGTGATATAA 46 R871H AGAGGAGGTGGAGCAAATGC 13 TCTCCTGGTCCATCCTGTTACTC 14 AAATGCAAGATCCgTG 47 AAGATCCaTGTGTTCGTAGG 48 IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT CCTTACTCATCAGGCCTTGCTT 15 TCCAGTCAGGCACCAAGTTCT 16 GCGGACATTTTT 49 AACCGAAAATTTTTC 50 W844X TGGGATCGCCCTTCAGG 17 GATCGCCCTTGCAGGAG 18 ATCTACTGgCTCTTTG 51 CTACTGaCTCTTTGACG 52 R83Q TCGCACCTTTGGCTACAACAC 19 CTTCTGAGACAGCACTTACCTTGAG 20 TGGTGAGCCCCgGA 53 CCCCaGAAGGTC 54 H90Y GTGAGCCCCGGAAGGTGA twenty one CAGGGAAGTGGCCAGTCTT twenty two AAGGTGACCTGcACTC 55 ACCTGtACTCCTTCCT 56 R642H GGATCGCCCTTGGTACAGGC twenty three TGGGATCGCCCTTCAGG twenty four TCAAGAACTACcGGTGAG 57 ACTACtGGTGAGCAGAG 58 R642C GGATCGCCCTTGGTACAGGC 25 TGGGATCGCCCTTCAGG 26 TCAAGAACTACcGGTGAG 59 ACTACtGGTGAGCAGAG 60 T649M TGGCTCCTGCCCTTTTCC 27 TGCCGGGCGGAAGTTG 28 CCTGGTGCTCAcGC 61 CTGGTGCTCAtGCG 62 N442K CAGCACAGCTGCCACTACG 29 TTGCAGGCCTGGAAGTTTGT 30 CCTCATCAAcTATTACC 63 CCTCATCAAgTATTACC 64 N640S TCTGGCCCTCAGCTACTCG 31 AGGGTGGAGCCATCACTGG 32 CACATCAAGAaCTAC 65 ACATCAAGAgCTACCGG 66 D486N TTCCCAGCCTAAGGGTGAGTG 33 GAAGCCGATCAGTGGGTACAG 34 CGAGgACCAGCTGTA 67 CCTTTGCGAGaACC 68

依據本揭示內容的某些實施方式,第一突變以及第二突變分別選自由c.2881-2delAG、T60M、c.1670-191C→T、S710X、T163M、c.2548+253 C→T、R871H、IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT、W844X、R83Q、H90Y、R642H、R642C、T649M、N442K、N640S及D486N所組成之群組。According to some embodiments of the present disclosure, the first mutation and the second mutation are selected from c.2881-2delAG, T60M, c.1670-191C → T, S710X, T163M, c.2548 + 253 C → T, R871H, respectively. , IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT, W844X, R83Q, H90Y, R642H, R642C, T649M, N442K, N640S and D486N.

本揭示內容的某些實施方式中,第一突變係選自由c.2881-2delAG、c.1670-191C→T以及 IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT所組成之群組;第二突變係選自由T60M、S710X、T163M、c.2548+253C→T、R871H、W844X、R83Q、H90Y、R642H、R642C、T649M、N442K、N640S及D486N所組成之群組。In some embodiments of the present disclosure, the first mutation is selected from the group consisting of c.2881-2delAG, c.1670-191C → T and IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT; the second mutation is selected from T60M , S710X, T163M, c.2548 + 253C → T, R871H, W844X, R83Q, H90Y, R642H, R642C, T649M, N442K, N640S and D486N.

在本揭示內容的某些實施方式中,第一突變為c.2881-2delAG;第二突變係選自由T60M、c.1670-191C→T、S710X、T163M、c.2548+253 C→T、R871H、IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT、W844X、R83Q、H90Y、R642H、R642C、T649M、N442K、N640S及D486N所組成之群組。In certain embodiments of the present disclosure, the first mutation is c.2881-2delAG; the second mutation is selected from the group consisting of T60M, c.1670-191C → T, S710X, T163M, c.2548 + 253 C → T, A group of R871H, IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT, W844X, R83Q, H90Y, R642H, R642C, T649M, N442K, N640S and D486N.

依據本揭示內容的一實施方式,當第一突變為c.2881-2delAG時,前述步驟(b)中使用的第一正向引子具有序列編號:1之核苷酸序列;第一反向引子具有序列編號:2之核苷酸序列。在另一實施方式中,步驟(c)使用的第一野生型探針具有序列編號:35之核苷酸序列;而第一突變型探針具有序列編號:36之核苷酸序列。According to an embodiment of the present disclosure, when the first mutation is c.2881-2delAG, the first forward primer used in the aforementioned step (b) has a nucleotide sequence of sequence number: 1; the first reverse primer Nucleotide sequence with sequence number: 2. In another embodiment, the first wild-type probe used in step (c) has a nucleotide sequence of sequence number: 35; and the first mutant-type probe has a nucleotide sequence of sequence number: 36.

詳言之,具有序列編號:1之核苷酸序列的第一正向引子及具有序列編號:2之核苷酸序列的第一反向引子所組成的第一引子對,可專一性結合至DNA模版上的一 SLC12A3基因片段,且該 SLC12A3基因片段涵蓋第24個外顯子中第2881密碼子之區域。經擴增後,該 SLC12A3基因片段被選擇性地複製放大。可於擴增同時或之後,利用具有序列編號:35之核苷酸序列的第一野生型探針以及具有序列編號:36之核苷酸序列的第一突變型探針對經擴增之該 SLC12A3基因片段進行雜合。若第一突變型探針可與該 SLC12A3基因片段進行專一性雜合,則表示該 SLC12A3基因片段包含第一突變c.2881-2delAG。藉此,可根據該雜合結果來評估個體已罹患吉特曼症候群或極可能未來有罹患吉特曼症候群之風險。 In detail, a first primer pair consisting of a first forward primer having a nucleotide sequence having the sequence number: 1 and a first reverse primer having a nucleotide sequence having the sequence number: 2 can be specifically bound to A SLC12A3 gene fragment on the DNA template, and the SLC12A3 gene fragment covers the region of codon 2881 in the 24th exon. After amplification, the SLC12A3 gene fragment was selectively replicated and amplified. The SLC12A3 amplified by the first wild-type probe having a nucleotide sequence of sequence number: 35 and the first mutant probe having a nucleotide sequence of sequence number: 36 can be used simultaneously or after amplification. Gene fragments are heterozygous. If the first mutant probe can specifically hybridize with the SLC12A3 gene fragment, it means that the SLC12A3 gene fragment contains the first mutation c.2881-2delAG. In this way, based on the heterozygous results, it is possible to evaluate the individual's risk of having Gitman syndrome or the possibility of developing Gitman syndrome in the future.

依據本揭示內容的某些實施方式,在相同個體之DNA模版的第二 SLC12A3基因片段可額外地或選擇性地更包含第二突變。第二突變可包含T60M、c.1670-191C→T、S710X、T163M、c.2548+253 C→T、R871H、IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT、W844X、R83Q、H90Y、R642H、R642C、T649M、N442K、N640S及D486N其中至少一者。可利用第二引子對針對第二 SLC12A3基因片段進行擴增,以在步驟(c)中以第二野生型探針及第二突變型探針決定經擴增之第二 SLC12A3基因片段是否包含具有前述的第二突變。 According to some embodiments of the present disclosure, the second SLC12A3 gene fragment in the DNA template of the same individual may additionally or alternatively further include a second mutation. The second mutation may include T60M, c.1670-191C → T, S710X, T163M, c.2548 + 253 C → T, R871H, IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT, W844X, R83Q, H90Y, R642H, R642C, T649M, At least one of N442K, N640S and D486N. A second primer can be used to amplify the second SLC12A3 gene fragment, and in step (c), the second wild-type probe and the second mutant probe are used to determine whether the amplified second SLC12A3 gene fragment contains The aforementioned second mutation.

依據本揭示內容之實施方式,當第二突變是T60M時,第二正向引子具有序列編號:3之核苷酸序列,第二反向引子具有序列編號:4之核苷酸序列;同時,第二野生型探針具有序列編號:37之核苷酸序列,且第二突變型探針具有序列編號:38之核苷酸序列。具體而言,第二正向引子(序列編號:3)及第二反向引子(序列編號:4)所組成的第二引子對,可專一性結合至DNA模版上的第二 SLC12A3基因片段,且該 SLC12A3基因片段涵蓋位於第1個外顯子的T60M之區域。經擴增後,該 SLC12A3基因片段被選擇性地複製放大。可於擴增同時或之後,利用第二野生型探針(序列編號:37)以及第二突變型探針(序列編號:38)對經擴增之該 SLC12A3基因片段進行雜合。若第二突變型探針可與該 SLC12A3基因片段進行專一性雜合,則表示該 SLC12A3基因片段包含第二突變T60M。當可想見,可根據該雜合結果來評估個體已罹患吉特曼症候群或極可能未來有罹患吉特曼症候群之風險。 According to an embodiment of the present disclosure, when the second mutation is T60M, the second forward primer has a nucleotide sequence of sequence number: 3, and the second reverse primer has a nucleotide sequence of sequence number: 4; meanwhile, The second wild-type probe has a nucleotide sequence of sequence number: 37, and the second mutant-type probe has a nucleotide sequence of sequence number: 38. Specifically, the second primer pair consisting of the second forward primer (sequence number: 3) and the second reverse primer (sequence number: 4) can specifically bind to the second SLC12A3 gene fragment on the DNA template. And the SLC12A3 gene fragment covers the region of T60M located in the first exon. After amplification, the SLC12A3 gene fragment was selectively replicated and amplified. The amplified SLC12A3 gene fragment can be hybridized with the second wild-type probe (SEQ ID: 37) and the second mutant-type probe (SEQ ID: 38) at the same time or after the amplification. If the second mutant probe can specifically hybridize with the SLC12A3 gene fragment, it means that the SLC12A3 gene fragment contains the second mutation T60M. When conceivable, the heterozygous results can be used to assess whether an individual has already developed Gitman syndrome or is likely to be at risk for Gitman syndrome in the future.

在本揭示內容之一實施方式,當第二突變是c.1670-191 C→T時,第二正向引子具有序列編號:5之核苷酸序列,第二反向引子具有序列編號:6之核苷酸序列;同時,第二野生型探針具有序列編號:39之核苷酸序列,且第二突變型探針具有序列編號:40之核苷酸序列。具體而言,第二正向引子(序列編號:5)及第二反向引子(序列編號:6)所組成的第二引子對,可專一性結合至DNA模版上的第二 SLC12A3基因片段,且該 SLC12A3基因片段涵蓋位於第13個內含子的c.1670-191 C→T之區域。經擴增後,該 SLC12A3基因片段被選擇性地複製放大。可於擴增同時或之後,利用第二野生型探針(序列編號:39)以及第二突變型探針(序列編號:40)對經擴增之該 SLC12A3基因片段進行雜合。若第二突變型探針可與該 SLC12A3基因片段進行專一性雜合,則表示該 SLC12A3基因片段包含第二突變c.1670-191 C→T。藉此,可根據該雜合結果來評估個體已罹患吉特曼症候群或極可能未來有罹患吉特曼症候群之風險。 In one embodiment of the present disclosure, when the second mutation is c.1670-191 C → T, the second forward primer has a nucleotide sequence of sequence number: 5 and the second reverse primer has a sequence number: 6 At the same time, the second wild-type probe has a nucleotide sequence of sequence number: 39, and the second mutant-type probe has a nucleotide sequence of sequence number: 40. Specifically, the second primer pair consisting of the second forward primer (sequence number: 5) and the second reverse primer (sequence number: 6) can specifically bind to the second SLC12A3 gene fragment on the DNA template. And the SLC12A3 gene fragment covers the region c.1670-191 C → T located at the 13th intron. After amplification, the SLC12A3 gene fragment was selectively replicated and amplified. The amplified SLC12A3 gene fragment can be hybridized with a second wild-type probe (sequence number: 39) and a second mutant-type probe (sequence number: 40) at the same time or after the amplification. If the second mutant probe can specifically hybridize with the SLC12A3 gene fragment, it means that the SLC12A3 gene fragment contains the second mutation c.1670-191 C → T. In this way, based on the heterozygous results, it is possible to evaluate the individual's risk of having Gitman syndrome or the possibility of developing Gitman syndrome in the future.

在本揭示內容之一實施方式,當第二突變是S710X時,第二正向引子具有序列編號:7之核苷酸序列,第二反向引子具有序列編號:8之核苷酸序列;同時,第二野生型探針具有序列編號:41之核苷酸序列,而第二突變型探針則具有序列編號:42之核苷酸序列。具體而言,第二正向引子(序列編號:7)及第二反向引子(序列編號:8)所組成的第二引子對,可專一性結合至DNA模版上的第二 SLC12A3基因片段,且該 SLC12A3基因片段涵蓋位於第17個外顯子的S710X之區域。經擴增後,該 SLC12A3基因片段被選擇性地複製放大。可於擴增同時或之後,利用第二野生型探針(序列編號:41)以及第二突變型探針對(序列編號:42)經擴增之該 SLC12A3基因片段進行雜合。若第二突變型探針可與該 SLC12A3基因片段進行專一性雜合,則表示該 SLC12A3基因片段包含第二突變S710X。藉此,可根據該雜合結果來評估個體已罹患吉特曼症候群或極可能未來有罹患吉特曼症候群之風險。 In one embodiment of the present disclosure, when the second mutation is S710X, the second forward primer has a nucleotide sequence of sequence number: 7 and the second reverse primer has a nucleotide sequence of sequence number: 8; The second wild-type probe has a nucleotide sequence of sequence number: 41, and the second mutant-type probe has a nucleotide sequence of sequence number: 42. Specifically, the second primer pair consisting of the second forward primer (sequence number: 7) and the second reverse primer (sequence number: 8) can specifically bind to the second SLC12A3 gene fragment on the DNA template. And the SLC12A3 gene fragment covers the region of S710X located in the 17th exon. After amplification, the SLC12A3 gene fragment was selectively replicated and amplified. The second wild-type probe (SEQ ID: 41) and the second mutant-type probe (SEQ ID: 42) can be used to hybridize the amplified SLC12A3 gene fragment at the same time or after the amplification. If the second mutant probe can specifically hybridize with the SLC12A3 gene fragment, it means that the SLC12A3 gene fragment contains the second mutation S710X. In this way, based on the heterozygous results, it is possible to evaluate the individual's risk of having Gitman syndrome or the possibility of developing Gitman syndrome in the future.

在本揭示內容之一實施方式,當第二突變是T163M時,第二正向引子具有序列編號:9之核苷酸序列,第二反向引子具有序列編號:10之核苷酸序列;同時,第二野生型探針具有序列編號:43之核苷酸序列,而第二突變型探針具有序列編號:44之核苷酸序列。具體而言,第二正向引子(序列編號:9)及第二反向引子(序列編號:10)所組成的第二引子對,可專一性結合至DNA模版上的第二 SLC12A3基因片段,且該 SLC12A3基因片段涵蓋位於第3個外顯子的T163M之區域。經擴增後,該 SLC12A3基因片段被選擇性地複製放大。可於擴增同時或之後,利用第二野生型探針(序列編號:43)以及第二突變型探針(序列編號:44)對經擴增之該 SLC12A3基因片段進行雜合。若第二突變型探針可與該 SLC12A3基因片段進行專一性雜合,則表示該 SLC12A3基因片段包含第二突變T163M。當可想見,可根據前述雜合結果以評估個體已罹患吉特曼症候群或極可能未來有罹患吉特曼症候群之風險。 In one embodiment of the present disclosure, when the second mutation is T163M, the second forward primer has a nucleotide sequence of sequence number: 9 and the second reverse primer has a nucleotide sequence of sequence number: 10; The second wild-type probe has a nucleotide sequence of sequence number: 43 and the second mutant-type probe has a nucleotide sequence of sequence number: 44. Specifically, the second primer pair consisting of the second forward primer (sequence number: 9) and the second reverse primer (sequence number: 10) can specifically bind to the second SLC12A3 gene fragment on the DNA template. And the SLC12A3 gene fragment covers the region of T163M located in the third exon. After amplification, the SLC12A3 gene fragment was selectively replicated and amplified. The amplified SLC12A3 gene fragment can be hybridized with a second wild-type probe (sequence number: 43) and a second mutant-type probe (sequence number: 44) at the same time or after the amplification. If the second mutant probe can specifically hybridize with the SLC12A3 gene fragment, it means that the SLC12A3 gene fragment contains the second mutation T163M. When conceivable, the aforementioned heterozygous results can be used to assess whether an individual has already developed Gitman syndrome or is likely to be at risk for Gitman syndrome in the future.

在本揭示內容之一實施方式,當第二突變是c.2548+253 C→T時,則第二正向引子具有序列編號:11之核苷酸序列,且第二反向引子具有序列編號:12之核苷酸序列;同時,第二野生型探針具有序列編號:45之核苷酸序列,而第二突變型探針則具有序列編號:46之核苷酸序列。具體而言,由第二正向引子(序列編號:11)及第二反向引子(序列編號:12)所組成的第二引子對,可專一性結合至DNA模版上的第二 SLC12A3基因片段,且該 SLC12A3基因片段涵蓋位於第21個內含子的c.2548+253 C→T之區域。經擴增後,該 SLC12A3基因片段被選擇性地複製放大。可於擴增同時或之後,第二野生型探針(序列編號:45)以及第二突變型探針(序列編號:46)對經擴增之該 SLC12A3基因片段進行雜合。若第二突變型探針可與該 SLC12A3基因片段進行專一性雜合,則表示該 SLC12A3基因片段包含第二突變c.2548+253 C→T。當可想見,可根據前述雜合結果以評估個體已罹患吉特曼症候群或極可能未來有罹患吉特曼症候群之風險。 In one embodiment of the present disclosure, when the second mutation is c.2548 + 253 C → T, the second forward primer has a nucleotide sequence of sequence number: 11 and the second reverse primer has a sequence number : The nucleotide sequence of 12; meanwhile, the second wild-type probe has a nucleotide sequence of sequence number: 45, and the second mutant-type probe has a nucleotide sequence of sequence number: 46. Specifically, a second primer pair consisting of a second forward primer (sequence number: 11) and a second reverse primer (sequence number: 12) can specifically bind to the second SLC12A3 gene fragment on the DNA template The SLC12A3 gene fragment covers the region c.2548 + 253 C → T located at the 21st intron. After amplification, the SLC12A3 gene fragment was selectively replicated and amplified. A second wild-type probe (sequence number: 45) and a second mutant-type probe (sequence number: 46) can be used to hybridize the amplified SLC12A3 gene fragment at the same time or after the amplification. If the second mutant probe can specifically hybridize with the SLC12A3 gene fragment, it means that the SLC12A3 gene fragment contains the second mutation c.2548 + 253 C → T. When conceivable, the aforementioned heterozygous results can be used to assess whether an individual has already developed Gitman syndrome or is likely to be at risk for Gitman syndrome in the future.

在本揭示內容之一實施方式,當第二突變是R871H時,則第二正向引子具有序列編號:13之核苷酸序列,且及第二反向引子具有序列編號:14之核苷酸序列;同時,第二野生型探針具有序列編號:47之核苷酸序列,且第二突變型探針具有序列編號:48之核苷酸序列。具體而言,第二正向引子(序列編號:13)及第二反向引子(序列編號:14)所組成的第二引子對,可專一性結合至DNA模版上的第二 SLC12A3基因片段,且該 SLC12A3基因片段涵蓋位於第22個外顯子的R871H之區域。經擴增後,該 SLC12A3基因片段被選擇性地複製放大。可於擴增同時或之後,利用第二野生型探針(序列編號:47)以及第二突變型探針(序列編號:48)對經擴增之該 SLC12A3基因片段進行雜合。若第二突變型探針可與該 SLC12A3基因片段進行專一性雜合,則表示該 SLC12A3基因片段包含第二突變R871H。當可想見,可根據前述雜合結果以評估個體已罹患吉特曼症候群或極可能未來有罹患吉特曼症候群之風險。 In one embodiment of the present disclosure, when the second mutation is R871H, the second forward primer has a nucleotide sequence of sequence number: 13 and the second reverse primer has a nucleotide sequence of sequence number: 14 At the same time, the second wild-type probe has a nucleotide sequence of sequence number: 47, and the second mutant-type probe has a nucleotide sequence of sequence number: 48. Specifically, the second primer pair composed of the second forward primer (sequence number: 13) and the second reverse primer (sequence number: 14) can specifically bind to the second SLC12A3 gene fragment on the DNA template. And the SLC12A3 gene fragment covers the region of R871H in the 22nd exon. After amplification, the SLC12A3 gene fragment was selectively replicated and amplified. The amplified SLC12A3 gene fragment can be hybridized with a second wild-type probe (sequence number: 47) and a second mutant-type probe (sequence number: 48) at the same time or after the amplification. If the second mutant probe can specifically hybridize with the SLC12A3 gene fragment, it means that the SLC12A3 gene fragment contains the second mutation R871H. When conceivable, the aforementioned heterozygous results can be used to assess whether an individual has already developed Gitman syndrome or is likely to be at risk for Gitman syndrome in the future.

在本揭示內容之一實施方式,當第二突變是IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT時,則第二正向引子具有序列編號:15之核苷酸序列,第二反向引子具有序列編號:16之核苷酸序列;同時,第二野生型探針具有序列編號:49之核苷酸序列,且第二突變型探針具有序列編號:50之核苷酸序列。具體而言,第二正向引子(序列編號:15)及第二反向引子(序列編號:16)所組成的第二引子對,可專一性結合至DNA模版上的第二 SLC12A3基因片段,且該 SLC12A3基因片段涵蓋位於第8個外顯子的IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT之區域。經擴增後,該 SLC12A3基因片段被選擇性地複製放大。可於擴增同時或之後,利用第二野生型探針(序列編號:49)以及第二突變型探針(序列編號:50)對經擴增之該 SLC12A3基因片段進行雜合。若第二突變型探針可與該 SLC12A3基因片段進行專一性雜合,則表示該 SLC12A3基因片段包含第二突變IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT。當可想見,可根據前述雜合結果以評估個體已罹患吉特曼症候群或極可能未來有罹患吉特曼症候群之風險。 In one embodiment of the present disclosure, when the second mutation is IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT, the second forward primer has a nucleotide sequence of sequence number: 15 and the second reverse primer has a sequence number: 16 At the same time, the second wild-type probe has a nucleotide sequence of sequence number: 49, and the second mutant-type probe has a nucleotide sequence of sequence number: 50. Specifically, the second primer pair consisting of the second forward primer (sequence number: 15) and the second reverse primer (sequence number: 16) can specifically bind to the second SLC12A3 gene fragment on the DNA template. And the SLC12A3 gene fragment covers the region of IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT located in the eighth exon. After amplification, the SLC12A3 gene fragment was selectively replicated and amplified. The amplified SLC12A3 gene fragment can be hybridized with a second wild-type probe (sequence number: 49) and a second mutant-type probe (sequence number: 50) at the same time or after the amplification. If the second mutant probe can specifically hybridize with the SLC12A3 gene fragment, it means that the SLC12A3 gene fragment contains the second mutation IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT. When conceivable, the aforementioned heterozygous results can be used to assess whether an individual has already developed Gitman syndrome or is likely to be at risk for Gitman syndrome in the future.

在本揭示內容之一實施方式,當第二突變是W844X時,則該第二正向引子具有序列編號:17之核苷酸序列,第二反向引子具有序列編號:18之核苷酸序列;同時,第二野生型探針有序列編號:51之核苷酸序列,且第二突變型探針具有序列編號:52之核苷酸序列。具體而言,第二正向引子(序列編號:17)及第二反向引子(序列編號:18)所組成的第二引子對,可專一性結合至DNA模版上的第二 SLC12A3基因片段,且該 SLC12A3基因片段涵蓋位於第21個外顯子的W844X之區域。經擴增後,該 SLC12A3基因片段被選擇性地複製放大。可於擴增同時或之後,利用第二野生型探針(序列編號:51)以及第二突變型探針(序列編號:52)對經擴增之該 SLC12A3基因片段進行雜合。若第二突變型探針可與該 SLC12A3基因片段進行專一性雜合,則表示該 SLC12A3基因片段包含第二突變W844X。當可想見,可根據前述雜合結果以評估個體已罹患吉特曼症候群或極可能未來有罹患吉特曼症候群之風險。 In one embodiment of the present disclosure, when the second mutation is W844X, the second forward primer has a nucleotide sequence of sequence number: 17 and the second reverse primer has a nucleotide sequence of sequence number: 18 At the same time, the second wild-type probe has a nucleotide sequence of sequence number: 51, and the second mutant-type probe has a nucleotide sequence of sequence number: 52. Specifically, the second primer pair consisting of the second forward primer (sequence number: 17) and the second reverse primer (sequence number: 18) can specifically bind to the second SLC12A3 gene fragment on the DNA template. And the SLC12A3 gene fragment covers the region of W844X located at the 21st exon. After amplification, the SLC12A3 gene fragment was selectively replicated and amplified. The amplified SLC12A3 gene fragment can be hybridized with a second wild-type probe (sequence number: 51) and a second mutant-type probe (sequence number: 52) simultaneously or after amplification. If the second mutant probe can specifically hybridize with the SLC12A3 gene fragment, it means that the SLC12A3 gene fragment contains the second mutation W844X. When conceivable, the aforementioned heterozygous results can be used to assess whether an individual has already developed Gitman syndrome or is likely to be at risk for Gitman syndrome in the future.

在本揭示內容之一實施方式,當第二突變是R83Q時,則第二正向引子具有序列編號:19之核苷酸序列,第二反向引子具有序列編號:20之核苷酸序列;同時,第二野生型探針具有序列編號:53之核苷酸序列,而第二突變型探針具有序列編號:54之核苷酸序列。具體而言,第二正向引子(序列編號:19)及第二反向引子(序列編號:20)所組成的第二引子對,可專一性結合至DNA模版上的第二 SLC12A3基因片段,且該 SLC12A3基因片段涵蓋位於第1個外顯子的R83Q之區域。經擴增後,該 SLC12A3基因片段被選擇性地複製放大。可於擴增同時或之後,利用第二野生型探針(序列編號:53)以及第二突變型探針(序列編號:54)對經擴增之該 SLC12A3基因片段進行雜合。若第二突變型探針可與該 SLC12A3基因片段進行專一性雜合,則表示該 SLC12A3基因片段包含第二突變R83Q。當可想見,可根據前述雜合結果以評估個體已罹患吉特曼症候群或極可能未來有罹患吉特曼症候群之風險。 In one embodiment of the present disclosure, when the second mutation is R83Q, the second forward primer has a nucleotide sequence of sequence number: 19, and the second reverse primer has a nucleotide sequence of sequence number: 20; Meanwhile, the second wild-type probe has a nucleotide sequence of sequence number: 53 and the second mutant-type probe has a nucleotide sequence of sequence number: 54. Specifically, the second primer pair consisting of the second forward primer (sequence number: 19) and the second reverse primer (sequence number: 20) can specifically bind to the second SLC12A3 gene fragment on the DNA template. And the SLC12A3 gene fragment covers the region of R83Q located in the first exon. After amplification, the SLC12A3 gene fragment was selectively replicated and amplified. The amplified SLC12A3 gene fragment can be hybridized with a second wild-type probe (sequence number: 53) and a second mutant-type probe (sequence number: 54) at the same time or after the amplification. If the second mutant probe can specifically hybridize with the SLC12A3 gene fragment, it means that the SLC12A3 gene fragment contains a second mutation R83Q. When conceivable, the aforementioned heterozygous results can be used to assess whether an individual has already developed Gitman syndrome or is likely to be at risk for Gitman syndrome in the future.

在本揭示內容之一實施方式,當第二突變是H90Y時,則第二正向引子具有序列編號:21之核苷酸序列,第二反向引子具有序列編號:22之核苷酸序列;同時,第二野生型探針具有序列編號:55之核苷酸序列,而第二突變型探針具有序列編號:56之核苷酸序列。具體而言,第二正向引子(序列編號:21)及第二反向引子(序列編號:22)所組成的第二引子對,可專一性結合至DNA模版上的第二 SLC12A3基因片段,且該 SLC12A3基因片段涵蓋位於第1個外顯子的H90Y之區域。經擴增後,該 SLC12A3基因片段被選擇性地複製放大。可於擴增同時或之後,利用第二野生型探針(序列編號:55)以及第二突變型探針(序列編號:56)對經擴增之該 SLC12A3基因片段進行雜合。若第二突變型探針可與該 SLC12A3基因片段進行專一性雜合,則表示該 SLC12A3基因片段包含第二突變H90Y。當可想見,可根據前述雜合結果以評估個體已罹患吉特曼症候群或極可能未來有罹患吉特曼症候群之風險。 In one embodiment of the present disclosure, when the second mutation is H90Y, the second forward primer has a nucleotide sequence of sequence number: 21, and the second reverse primer has a nucleotide sequence of sequence number: 22; Meanwhile, the second wild-type probe has a nucleotide sequence of sequence number: 55, and the second mutant-type probe has a nucleotide sequence of sequence number: 56. Specifically, the second primer pair composed of the second forward primer (sequence number: 21) and the second reverse primer (sequence number: 22) can specifically bind to the second SLC12A3 gene fragment on the DNA template. And the SLC12A3 gene fragment covers the region of H90Y located in the first exon. After amplification, the SLC12A3 gene fragment was selectively replicated and amplified. The amplified SLC12A3 gene fragment can be hybridized with a second wild-type probe (sequence number: 55) and a second mutant-type probe (sequence number: 56) at the same time or after the amplification. If the second mutant probe can specifically hybridize with the SLC12A3 gene fragment, it means that the SLC12A3 gene fragment contains the second mutation H90Y. When conceivable, the aforementioned heterozygous results can be used to assess whether an individual has already developed Gitman syndrome or is likely to be at risk for Gitman syndrome in the future.

在本揭示內容之一實施方式,當第二突變是R642H時,則第二正向引子具有序列編號:23之核苷酸序列,而第二反向引子具有序列編號:24之核苷酸序列;同時,第二野生型探針具有序列編號:57之核苷酸序列,而第二突變型探針具有序列編號:58之核苷酸序列。具體而言,第二正向引子(序列編號:23)及第二反向引子(序列編號:24)所組成的第二引子對,可專一性結合至DNA模版上的第二 SLC12A3基因片段,且該 SLC12A3基因片段涵蓋位於第15個外顯子的R642H之區域。經擴增後,該 SLC12A3基因片段被選擇性地複製放大。可於擴增同時或之後,利用第二野生型探針(序列編號:57)以及第二突變型探針(序列編號:58)對經擴增之該 SLC12A3基因片段進行雜合。若第二突變型探針可與該 SLC12A3基因片段進行專一性雜合,則表示該 SLC12A3基因片段包含第二突變R642H。當可想見,可根據前述雜合結果以評估個體已罹患吉特曼症候群或極可能未來有罹患吉特曼症候群之風險。 In one embodiment of the present disclosure, when the second mutation is R642H, the second forward primer has a nucleotide sequence of sequence number: 23 and the second reverse primer has a nucleotide sequence of sequence number: 24 At the same time, the second wild-type probe has a nucleotide sequence of sequence number: 57 and the second mutant-type probe has a nucleotide sequence of sequence number: 58. Specifically, the second primer pair consisting of the second forward primer (sequence number: 23) and the second reverse primer (sequence number: 24) can specifically bind to the second SLC12A3 gene fragment on the DNA template. And the SLC12A3 gene fragment covers the region of R642H located in the 15th exon. After amplification, the SLC12A3 gene fragment was selectively replicated and amplified. The amplified SLC12A3 gene fragment can be hybridized with a second wild-type probe (sequence number: 57) and a second mutant-type probe (sequence number: 58) at the same time or after the amplification. If the second mutant probe can specifically hybridize with the SLC12A3 gene fragment, it means that the SLC12A3 gene fragment contains the second mutation R642H. When conceivable, the aforementioned heterozygous results can be used to assess whether an individual has already developed Gitman syndrome or is likely to be at risk for Gitman syndrome in the future.

在本揭示內容之一實施方式,當第二突變是R642C時,則第二正向引子具有序列編號:25之核苷酸序列,而第二反向引子具有序列編號:26之核苷酸序列;同時,第二野生型探針具有序列編號:59之核苷酸序列,第二突變型探針具有序列編號:60之核苷酸序列。具體而言,第二正向引子(序列編號:25)及第二反向引子(序列編號:26)所組成的第二引子對,可專一性結合至DNA模版上的第二 SLC12A3基因片段,且該 SLC12A3基因片段涵蓋位於第15個外顯子的R642C之區域。經擴增後,該 SLC12A3基因片段被選擇性地複製放大。可於擴增同時或之後,利用第二野生型探針(序列編號:59)以及第二突變型探針(序列編號:60)對經擴增之該 SLC12A3基因片段進行雜合。若第二突變型探針可與該 SLC12A3基因片段進行專一性雜合,則表示該 SLC12A3基因片段包含第二突變R642C。藉此,可根據前述雜合結果以評估個體已罹患吉特曼症候群或極可能未來有罹患吉特曼症候群之風險。 In one embodiment of the present disclosure, when the second mutation is R642C, the second forward primer has a nucleotide sequence of sequence number: 25 and the second reverse primer has a nucleotide sequence of sequence number: 26 At the same time, the second wild-type probe has a nucleotide sequence of sequence number: 59, and the second mutant-type probe has a nucleotide sequence of sequence number: 60. Specifically, the second primer pair consisting of the second forward primer (sequence number: 25) and the second reverse primer (sequence number: 26) can specifically bind to the second SLC12A3 gene fragment on the DNA template. And the SLC12A3 gene fragment covers the region of R642C located in the 15th exon. After amplification, the SLC12A3 gene fragment was selectively replicated and amplified. The amplified SLC12A3 gene fragment can be hybridized with a second wild-type probe (sequence number: 59) and a second mutant-type probe (sequence number: 60) at the same time or after the amplification. If the second mutant probe can specifically hybridize with the SLC12A3 gene fragment, it means that the SLC12A3 gene fragment contains the second mutation R642C. In this way, based on the aforementioned heterozygosity results, it is possible to assess whether an individual is already suffering from Gitman syndrome or is likely to be at risk for Gitman syndrome in the future.

在本揭示內容之一實施方式,當該第二突變是T649M時,則第二正向引子具有序列編號:27之核苷酸序列,而第二反向引子具有序列編號:28之核苷酸序列;同時,第二野生型探針具有序列編號:61之核苷酸序列,第二突變型探針具有序列編號:62之核苷酸序列。具體而言,第二正向引子(序列編號:27)及第二反向引子(序列編號:28)所組成的第二引子對,可專一性結合至DNA模版上的第二 SLC12A3基因片段,且該 SLC12A3基因片段涵蓋位於第16個外顯子的T649M之區域。經擴增後,該 SLC12A3基因片段被選擇性地複製放大。可於擴增同時或之後,利用第二野生型探針(序列編號:61)以及第二突變型探針(序列編號:62)對經擴增之該 SLC12A3基因片段進行雜合。若第二突變型探針可與該 SLC12A3基因片段進行專一性雜合,則表示該 SLC12A3基因片段包含第二突變T649M。藉此,可根據前述雜合結果以評估個體已罹患吉特曼症候群或極可能未來有罹患吉特曼症候群之風險。 In one embodiment of the present disclosure, when the second mutation is T649M, the second forward primer has a nucleotide sequence of sequence number: 27 and the second reverse primer has a nucleotide sequence of sequence number: 28 At the same time, the second wild-type probe has a nucleotide sequence of sequence number: 61, and the second mutant-type probe has a nucleotide sequence of sequence number: 62. Specifically, the second primer pair consisting of the second forward primer (sequence number: 27) and the second reverse primer (sequence number: 28) can specifically bind to the second SLC12A3 gene fragment on the DNA template. And the SLC12A3 gene fragment covers the region of T649M located in the 16th exon. After amplification, the SLC12A3 gene fragment was selectively replicated and amplified. The amplified SLC12A3 gene fragment can be hybridized with a second wild-type probe (sequence number: 61) and a second mutant-type probe (sequence number: 62) at the same time or after the amplification. If the second mutant probe can specifically hybridize with the SLC12A3 gene fragment, it means that the SLC12A3 gene fragment contains the second mutation T649M. In this way, based on the aforementioned heterozygosity results, it is possible to assess whether an individual is already suffering from Gitman syndrome or is likely to be at risk for Gitman syndrome in the future.

在本揭示內容之一實施方式,當該第二突變是N442K時,則該第二正向引子具有序列編號:29之核苷酸序列,而第二反向引子具有序列編號:30之核苷酸序列;同時,第二野生型探針具有序列編號:63之核苷酸序列,第二突變型探針具有序列編號:64之核苷酸序列。具體而言,第二正向引子(序列編號:29)及第二反向引子(序列編號:30)所組成的第二引子對,可專一性結合至DNA模版上的第二 SLC12A3基因片段,且該 SLC12A3基因片段涵蓋位於第10個外顯子的N442K之區域。經擴增後,該 SLC12A3基因片段被選擇性地複製放大。可於擴增同時或之後,利用第二野生型探針(序列編號:63)以及第二突變型探針(序列編號:64)對經擴增之該 SLC12A3基因片段進行雜合。若第二突變型探針可與該 SLC12A3基因片段進行專一性雜合,則表示該 SLC12A3基因片段包含第二突變N442K。藉此,可根據前述雜合結果以評估個體已罹患吉特曼症候群或極可能未來有罹患吉特曼症候群之風險。 In one embodiment of the present disclosure, when the second mutation is N442K, the second forward primer has a nucleotide sequence of sequence number: 29, and the second reverse primer has a nucleoside of sequence number: 30. Acid sequence; meanwhile, the second wild-type probe has a nucleotide sequence of sequence number: 63, and the second mutant-type probe has a nucleotide sequence of sequence number: 64. Specifically, the second primer pair composed of the second forward primer (sequence number: 29) and the second reverse primer (sequence number: 30) can specifically bind to the second SLC12A3 gene fragment on the DNA template. And the SLC12A3 gene fragment covers the region of N442K located in the 10th exon. After amplification, the SLC12A3 gene fragment was selectively replicated and amplified. The amplified SLC12A3 gene fragment can be hybridized with a second wild-type probe (sequence number: 63) and a second mutant-type probe (sequence number: 64) at the same time or after the amplification. If the second mutant probe can specifically hybridize with the SLC12A3 gene fragment, it means that the SLC12A3 gene fragment contains the second mutation N442K. In this way, based on the aforementioned heterozygosity results, it is possible to assess whether an individual is already suffering from Gitman syndrome or is likely to be at risk for Gitman syndrome in the future.

在本揭示內容之一實施方式,當該第二突變是N640S時,則該第二正向引子具有序列編號:31之核苷酸序列,而第二反向引子具有序列編號:32之核苷酸序列;同時,第二野生型探針具有序列編號:65之核苷酸序列,且第二突變型探針具有序列編號:66之核苷酸序列。具體而言,第二正向引子(序列編號:31)及第二反向引子(序列編號:32)所組成的第二引子對,可專一性結合至DNA模版上的第二 SLC12A3基因片段,且該 SLC12A3基因片段涵蓋位於第15個外顯子的N640S之區域。經擴增後,該 SLC12A3基因片段被選擇性地複製放大。可於擴增同時或之後,利用第二野生型探針(序列編號:65)以及第二突變型探針(序列編號:66)對經擴增之該 SLC12A3基因片段進行雜合。若第二突變型探針可與該 SLC12A3基因片段進行專一性雜合,則表示該 SLC12A3基因片段包含第二突變N640S。藉此,可根據前述雜合結果以評估個體已罹患吉特曼症候群或極可能未來有罹患吉特曼症候群之風險。 In one embodiment of the present disclosure, when the second mutation is N640S, the second forward primer has a nucleotide sequence of sequence number: 31, and the second reverse primer has a nucleoside of sequence number: 32. Acid sequence; meanwhile, the second wild-type probe has a nucleotide sequence of sequence number: 65, and the second mutant-type probe has a nucleotide sequence of sequence number: 66. Specifically, the second primer pair consisting of the second forward primer (sequence number: 31) and the second reverse primer (sequence number: 32) can specifically bind to the second SLC12A3 gene fragment on the DNA template. And the SLC12A3 gene fragment covers the region of N640S in the 15th exon. After amplification, the SLC12A3 gene fragment was selectively replicated and amplified. The amplified SLC12A3 gene fragment can be hybridized with a second wild-type probe (sequence number: 65) and a second mutant-type probe (sequence number: 66) at the same time or after the amplification. If the second mutant probe can specifically hybridize with the SLC12A3 gene fragment, it means that the SLC12A3 gene fragment contains the second mutation N640S. In this way, based on the aforementioned heterozygosity results, it is possible to assess whether an individual is already suffering from Gitman syndrome or is likely to be at risk for Gitman syndrome in the future.

在本揭示內容之一實施方式,當該第二突變是D486N時,則該第二正向引子具有序列編號:33之核苷酸序列,第二反向引子具有序列編號:34之核苷酸序列;同時,第二野生型探針具有序列編號:67之核苷酸序列,而第二突變型探針則具有序列編號:68之核苷酸序列。具體而言,第二正向引子(序列編號:33)及第二反向引子(序列編號:34)所組成的第二引子對,可專一性結合至DNA模版上的第二 SLC12A3基因片段,且該 SLC12A3基因片段涵蓋位於第12個外顯子的D486N之區域。經擴增後,該 SLC12A3基因片段被選擇性地複製放大。可於擴增同時或之後,利用第二野生型探針(序列編號:67)以及第二突變型探針(序列編號:68)對經擴增之該 SLC12A3基因片段進行雜合。若第二突變型探針可與該 SLC12A3基因片段進行專一性雜合,則表示該 SLC12A3基因片段包含第二突變D486N。當可想見,可根據前述探針與基因片段之間的雜合結果以評估個體已罹患吉特曼症候群或極可能未來有罹患吉特曼症候群之風險。 In one embodiment of the present disclosure, when the second mutation is D486N, the second forward primer has a nucleotide sequence of sequence number: 33, and the second reverse primer has a nucleotide sequence of sequence number: 34. At the same time, the second wild-type probe has a nucleotide sequence of sequence number: 67, and the second mutant-type probe has a nucleotide sequence of sequence number: 68. Specifically, the second primer pair consisting of the second forward primer (sequence number: 33) and the second reverse primer (sequence number: 34) can specifically bind to the second SLC12A3 gene fragment on the DNA template. And the SLC12A3 gene fragment covers the region of D486N located in the 12th exon. After amplification, the SLC12A3 gene fragment was selectively replicated and amplified. The amplified SLC12A3 gene fragment can be hybridized with a second wild-type probe (sequence number: 67) and a second mutant-type probe (sequence number: 68) at the same time or after the amplification. If the second mutant probe can specifically hybridize with the SLC12A3 gene fragment, it means that the SLC12A3 gene fragment contains the second mutation D486N. When it is conceivable, the hybridization results between the aforementioned probes and gene fragments can be used to assess whether an individual has already developed Gitman syndrome or is likely to be at risk for Gitman syndrome in the future.

總體而言,本發明提供利用一個體之離體樣本來預斷該個體是否罹患吉特曼症候群或有罹患吉特曼症候群之風險的方法,可透過專一性引子對擴增至少一特定 SLC12A3基因片段,再利用突變型探針與該擴增之特定 SLC12A3基因片段專一性雜合以獲得特定 SLC12A3基因片段是否包含任何突變的資訊,透過雜合結果以評估該個體是否罹患吉特曼症候群或有罹患吉特曼症候群之風險。據此,本發明之方法可大幅增加預斷準確率及檢測效率。 In general, the present invention provides a method for using an in vitro sample of a body to predict whether an individual has or is at risk of having Gitman syndrome. A specific primer pair can be used to amplify at least one specific SLC12A3 gene fragment. Then, the mutant probe is specifically hybridized with the amplified specific SLC12A3 gene fragment to obtain information on whether the specific SLC12A3 gene fragment contains any mutations. The hybridization results are used to evaluate whether the individual is suffering from Gitman syndrome or is suffering from the disease. Risk of Gitman syndrome. According to this, the method of the present invention can greatly increase the pre-break accuracy and detection efficiency.

另,為解決習知問題並達成本發明之目的,本發明第二態樣提供一種檢測套組。在本揭示內容的某些實施方式中,是關於一種用於檢測一個體是否罹患吉特曼症候群或有罹患吉特曼症候群之風險的套組。該套組包含第一引子對,用以擴增第一 SLC12A3基因片段。其中該第一引子對包含一具有序列編號:1之核苷酸序列的第一正向引子,以及一具有序列編號:2之核苷酸序列的第一反向引子。 In addition, in order to solve the conventional problems and achieve the purpose of the present invention, a second aspect of the present invention provides a detection kit. In some embodiments of the present disclosure, it is related to a kit for detecting whether an individual has or is at risk of having Gitman syndrome. The set includes a first primer pair for amplifying a first SLC12A3 gene fragment. The first primer pair includes a first forward primer having a nucleotide sequence having a sequence number: 1 and a first reverse primer having a nucleotide sequence having a sequence number: 2.

依據本揭示內容的某些實施方式,該套組更包含一具有序列編號:35之核苷酸序列的第一野生型探針,以及一具有序列編號:36之核苷酸序列的第一突變型探針。According to some embodiments of the present disclosure, the set further includes a first wild-type probe having a nucleotide sequence of sequence number: 35, and a first mutation having a nucleotide sequence of sequence number: 36 Type probe.

具體而言,第一引子對包含第一正向引子(序列編號:1)及第一反向引子(序列編號:2),其用以擴增含有對應特定突變位點的第一 SLC12A3基因片段。同時,可額外包含第一野生型探針(序列編號:35)及第一突變型探針(序列編號:36),用以決定經擴增後的第一 SLC12A3基因片段是否含有該特定突變。 Specifically, the first primer pair includes a first forward primer (sequence number: 1) and a first reverse primer (sequence number: 2), which are used to amplify the first SLC12A3 gene fragment containing the corresponding specific mutation site. . At the same time, a first wild-type probe (sequence number: 35) and a first mutant-type probe (sequence number: 36) may be additionally included to determine whether the amplified first SLC12A3 gene fragment contains the specific mutation.

依據本揭示內容的某些實施方式,該套組更包含一第二引子對,其用以擴增第二 SLC12A3基因片段。其中,該第二引子對包含:一具有序列編號:3之核苷酸序列的第二正向引子,以及一具有序列編號:4之核苷酸序列的第二反向引子;一具有序列編號:5之核苷酸序列的第二正向引子,以及一具有序列編號:6之核苷酸序列的第二反向引子;一具有序列編號:7之核苷酸序列的第二正向引子,以及一具有序列編號:8之核苷酸序列的第二反向引子;一具有序列編號:9之核苷酸序列的第二正向引子,以及一具有序列編號:10之核苷酸序列的第二反向引子;一具有序列編號:11之核苷酸序列的第二正向引子,以及一具有序列編號:12之核苷酸序列的第二反向引子;一具有序列編號:13之核苷酸序列的第二正向引子,以及一具有序列編號:14之核苷酸序列的第二反向引子;一具有序列編號:15之核苷酸序列的第二正向引子,以及一具有序列編號:16之核苷酸序列的第二反向引子;一具有序列編號:17之核苷酸序列的第二正向引子,以及一具有序列編號:18之核苷酸序列的第二反向引子;一具有序列編號:19之核苷酸序列的第二正向引子,以及一具有序列編號:20之核苷酸序列的第二反向引子;一具有序列編號:21之核苷酸序列的第二正向引子,以及一具有序列編號:22之核苷酸序列的第二反向引子;一具有序列編號:23之核苷酸序列的第二正向引子,以及一具有序列編號:24之核苷酸序列的第二反向引子;一具有序列編號:25之核苷酸序列的第二正向引子,以及一具有序列編號:26之核苷酸序列的第二反向引子;一具有序列編號:27之核苷酸序列的第二正向引子,以及一具有序列編號:28之核苷酸序列的第二反向引子;一具有序列編號:29之核苷酸序列的第二正向引子,以及一具有序列編號:30之核苷酸序列的第二反向引子;一具有序列編號:31之核苷酸序列的第二正向引子,以及一具有序列編號:32之核苷酸序列的第二反向引子;或是一具有序列編號:33之核苷酸序列的第二正向引子,以及一具有序列編號:34之核苷酸序列的第二反向引子。 According to some embodiments of the present disclosure, the set further includes a second primer pair for amplifying the second SLC12A3 gene fragment. The second primer pair includes: a second forward primer having a nucleotide sequence having a sequence number: 3, and a second reverse primer having a nucleotide sequence having a sequence number: 4; a second primer having a sequence number; : A second forward primer with a nucleotide sequence of 5 and a second reverse primer with a nucleotide sequence of sequence number: 6; a second forward primer with a nucleotide sequence of sequence number: 7 , And a second reverse primer with a nucleotide sequence of sequence number: 8; a second forward primer with a nucleotide sequence of sequence number: 9; and a nucleotide sequence with sequence number: 10 A second reverse primer with a nucleotide sequence of sequence number: 11 and a second reverse primer with a nucleotide sequence of sequence number: 12; a second reverse primer with sequence number: 13 A second forward primer with a nucleotide sequence of sequence number: 14 and a second reverse primer with a nucleotide sequence of sequence number: 14; a second forward primer with a nucleotide sequence of sequence number: 15; and A nucleotide sequence with sequence number: 16 A second reverse primer; a second forward primer with a nucleotide sequence of sequence number: 17 and a second reverse primer with a nucleotide sequence of sequence number: 18; A second forward primer having a nucleotide sequence and a second reverse primer having a nucleotide sequence having a sequence number: 20; a second forward primer having a nucleotide sequence having a sequence number: 21; and a A second reverse primer with a nucleotide sequence of sequence number: 22; a second forward primer with a nucleotide sequence of sequence number: 23; and a second forward primer with a nucleotide sequence of sequence number: 24 Reverse primer; a second forward primer with a nucleotide sequence of sequence number: 25 and a second reverse primer with a nucleotide sequence of sequence number: 26; a nucleoside with sequence number: 27 A second forward primer with an acid sequence, and a second reverse primer with a nucleotide sequence of sequence number: 28; a second forward primer with a nucleotide sequence of sequence number: 29, and a sequence with a sequence Number: 30th of the nucleotide sequence A reverse primer; a second forward primer with a nucleotide sequence of sequence number: 31 and a second reverse primer with a nucleotide sequence of sequence number: 32; or a second primer with sequence number: 33 A second forward primer of the nucleotide sequence and a second reverse primer having a nucleotide sequence of SEQ ID NO: 34.

在本揭示內容的某些實施方式中,本發明之套組更包含一第二野生型探針及一第二突變型探針。In some embodiments of the present disclosure, the kit of the present invention further includes a second wild-type probe and a second mutant-type probe.

承前所述,在一實施方式中,當該第二引子對包含第二正向引子(具有序列編號:3之核苷酸序列)及第二反向引子(具有序列編號:4之核苷酸序列)時,則第二野生型探針及第二突變型探針分別具有序列編號:37及38之核苷酸序列。According to the foregoing description, in one embodiment, when the second primer pair includes a second forward primer (having a nucleotide sequence with a sequence number: 3) and a second reverse primer (having a nucleotide with a sequence number: 4) Sequence), the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 37 and 38, respectively.

在另一實施方式中,當該第二引子對包含第二正向引子(具有序列編號:5之核苷酸序列)以及第二反向引子(具有序列編號:6之核苷酸序列)時,則第二野生型探針及第二突變型探針分別具有序列編號:39及40之核苷酸序列。In another embodiment, when the second primer pair includes a second forward primer (having a nucleotide sequence of sequence number: 5) and a second reverse primer (having a nucleotide sequence of sequence number: 6) , The second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 39 and 40, respectively.

在另一實施方式中,當該第二引子對包含第二正向引子(具有序列編號:7之核苷酸序列)以及第二反向引子(具有序列編號:8之核苷酸序列)時,則第二野生型探針及第二突變型探針分別具有序列編號:41及42之核苷酸序列。In another embodiment, when the second primer pair includes a second forward primer (having a nucleotide sequence of sequence number: 7) and a second reverse primer (having a nucleotide sequence of sequence number: 8) , The second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 41 and 42, respectively.

在另一實施方式中,當該第二引子對包含第二正向引子(具有序列編號:9之核苷酸序列)及第二反向引子(具有序列編號:10之核苷酸序列)時,則第二野生型探針及第二突變型探針分別具有序列編號:43及44之核苷酸序列。In another embodiment, when the second primer pair includes a second forward primer (having a nucleotide sequence of sequence number: 9) and a second reverse primer (having a nucleotide sequence of sequence number: 10) , The second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 43 and 44, respectively.

在另一實施方式中,當該第二引子對包含第二正向引子(具有序列編號:11之核苷酸序列)及第二反向引子(具有序列編號:12之核苷酸序列)時,則第二野生型探針及第二突變型探針分別具有序列編號:45及46之核苷酸序列。In another embodiment, when the second primer pair includes a second forward primer (having a nucleotide sequence of sequence number: 11) and a second reverse primer (having a nucleotide sequence of sequence number: 12) , The second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 45 and 46, respectively.

在另一實施方式中,當第二引子對包含第二正向引子(具有序列編號:13之核苷酸序列)以及第二反向引子(具有序列編號:14之核苷酸序列)時,則第二野生型探針及第二突變型探針分別具有序列編號:47及48之核苷酸序列。In another embodiment, when the second primer pair includes a second forward primer (having a nucleotide sequence of sequence number: 13) and a second reverse primer (having a nucleotide sequence of sequence number: 14), Then the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 47 and 48, respectively.

在另一實施方式中,當第二引子對包含第二正向引子(具有序列編號:15之核苷酸序列)以及第二反向引子(具有序列編號:16之核苷酸序列)時,則第二野生型探針及第二突變型探針分別具有序列編號:49及50之核苷酸序列。In another embodiment, when the second primer pair includes a second forward primer (having a nucleotide sequence of sequence number: 15) and a second reverse primer (having a nucleotide sequence of sequence number: 16), Then the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 49 and 50, respectively.

在另一實施方式中,當第二引子對包含第二正向引子(具有序列編號:17之核苷酸序列)以及第二反向引子 (具有序列編號:18之核苷酸序列)時,則第二野生型探針及第二突變型探針分別具有序列編號:51及52之核苷酸序列。In another embodiment, when the second primer pair includes a second forward primer (having a nucleotide sequence of sequence number: 17) and a second reverse primer (having a nucleotide sequence of sequence number: 18), Then the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 51 and 52, respectively.

在另一實施方式中,當第二引子對包含第二正向引子(具有序列編號:19之核苷酸序列)以及第二反向引子(具有序列編號:20之核苷酸序列)時,則第二野生型探針及第二突變型探針分別具有序列編號:53及54之核苷酸序列。In another embodiment, when the second primer pair includes a second forward primer (having a nucleotide sequence of sequence number: 19) and a second reverse primer (having a nucleotide sequence of sequence number: 20), Then the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 53 and 54, respectively.

在另一實施方式中,當第二引子對包含第二正向引子(具有序列編號:21之核苷酸序列)以及第二反向引子(具有序列編號:22之核苷酸序列)時,則第二野生型探針及第二突變型探針分別具有序列編號:55及56之核苷酸序列。In another embodiment, when the second primer pair includes a second forward primer (having a nucleotide sequence of sequence number: 21) and a second reverse primer (having a nucleotide sequence of sequence number: 22), Then the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 55 and 56, respectively.

在另一實施方式中,當第二引子對包含第二正向引子(具有序列編號:23之核苷酸序列)以及第二反向引子(具有序列編號:24之核苷酸序列)時,則第二野生型探針及第二突變型探針分別具有序列編號:57及58之核苷酸序列。In another embodiment, when the second primer pair includes a second forward primer (having a nucleotide sequence of sequence number: 23) and a second reverse primer (having a nucleotide sequence of sequence number: 24), Then the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 57 and 58, respectively.

在另一實施方式中,當第二引子對包含第二正向引子(具有序列編號:25之核苷酸序列)以及第二反向引子(具有序列編號:26之核苷酸序列)時,則第二野生型探針及第二突變型探針分別具有序列編號:59及60之核苷酸序列。In another embodiment, when the second primer pair includes a second forward primer (having a nucleotide sequence of sequence number: 25) and a second reverse primer (having a nucleotide sequence of sequence number: 26), Then the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 59 and 60, respectively.

在另一實施方式中,當第二引子對包含第二正向引子(具有序列編號:27之核苷酸序列)以及第二反向引子(具有序列編號:28之核苷酸序列)時,則第二野生型探針及第二突變型探針分別具有序列編號:61及62之核苷酸序列。In another embodiment, when the second primer pair includes a second forward primer (having a nucleotide sequence of sequence number: 27) and a second reverse primer (having a nucleotide sequence of sequence number: 28), Then the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 61 and 62, respectively.

在另一實施方式中,當第二引子對包含第二正向引子(具有序列編號:29之核苷酸序列)以及第二反向引子(具有序列編號:30之核苷酸序列)時,則第二野生型探針及第二突變型探針分別具有序列編號:63及64之核苷酸序列。In another embodiment, when the second primer pair includes a second forward primer (having a nucleotide sequence of sequence number: 29) and a second reverse primer (having a nucleotide sequence of sequence number: 30), Then the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 63 and 64, respectively.

在另一實施方式中,當第二引子對包含第二正向引子(具有序列編號:31之核苷酸序列)以及第二反向引子(具有序列編號:32之核苷酸序列)時,則第二野生型探針及第二突變型探針分別具有序列編號:65及66之核苷酸序列。In another embodiment, when the second primer pair includes a second forward primer (having a nucleotide sequence of sequence number: 31) and a second reverse primer (having a nucleotide sequence of sequence number: 32), Then the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 65 and 66, respectively.

在又一實施方式中,當第二引子對包含第二正向引子(具有序列編號:33之核苷酸序列)以及第二反向引子(具有序列編號:34之核苷酸序列)時,則第二野生型探針及第二突變型探針分別具有序列編號:67及68之核苷酸序列。In yet another embodiment, when the second primer pair includes a second forward primer (having a nucleotide sequence of sequence number: 33) and a second reverse primer (having a nucleotide sequence of sequence number: 34), Then, the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 67 and 68, respectively.

須說明的是,依據本揭示內容的實施方式,本發明之套組並不以兩對引子對為限,可依據實際需求包含第三引子對、第四引子對或更多引子對。其中該些對可包含本發明表1表列的任一引子核苷酸序列,也可以包含其餘不同的核苷酸序列。同時,當本發明套組具有第三引子對或更多引子對時,可更包含具有本發明表1表列的探針核苷酸序列之第三野生型探針及/或第三突變型探針,也可以包含不同的核苷酸序列。It should be noted that according to the embodiments of the present disclosure, the set of the present invention is not limited to two primer pairs, and may include a third primer pair, a fourth primer pair, or more primer pairs according to actual needs. These pairs may include any of the primer nucleotide sequences listed in Table 1 of the present invention, and may also include other different nucleotide sequences. Meanwhile, when the set of the present invention has a third primer pair or more primer pairs, it may further include a third wild-type probe and / or a third mutant having the probe nucleotide sequence listed in Table 1 of the present invention. Probes may also contain different nucleotide sequences.

依據本揭示內容的某些實施方式,前述第一野生型探針、第一突變型探針、第二野生型探針及該第二突變型探針可分別與第一偵測標記、第二偵測標記、第三偵測標記及第四偵測標記連接,用以呈現探針與目標DNA雜合資訊。具體而言,第一偵測標記、第二偵測標記、第三偵測標記及第四偵測標記發出訊號可彼此相異,以便於區別不同雜合體。在一實施方式中,偵測標記可以是螢光標記,訊號可以是光訊號。在又一實施方式中,第一、第二、第三及第四偵測標記分別發出不同波長的光。較佳地,該些光之波長可分別為介於510 nm與520 nm之間、550 nm至560 nm之間、575 nm至585 nm之間,以及610 nm 至620 nm之間。在一實施方式中,該些偵測標記可發出分別為517 nm、551 nm、580 nm及617 nm波長之光。同時,這裡所列舉之光波長僅為例示性非限制性者,光訊號之顏色不以此為限。可適用於本發明的偵測標記包含但不限於:VIC TM、FAM TM、JUN TM、ABY TM、HEX TM、NED TM、TAMRA TM、SYBR® Green、Texas Red®等。較佳地為VIC TM、FAM TM、JUN TM及ABY TMAccording to some embodiments of the present disclosure, the first wild-type probe, the first mutant-type probe, the second wild-type probe, and the second mutant-type probe may be separately associated with the first detection label and the second The detection tag, the third detection tag, and the fourth detection tag are connected to present hybridization information between the probe and the target DNA. Specifically, the signals sent by the first detection mark, the second detection mark, the third detection mark, and the fourth detection mark may be different from each other, so as to distinguish different hybrids. In one embodiment, the detection mark may be a fluorescent mark, and the signal may be a light signal. In yet another embodiment, the first, second, third, and fourth detection marks emit light of different wavelengths, respectively. Preferably, the wavelengths of these lights may be between 510 nm and 520 nm, between 550 nm and 560 nm, between 575 nm and 585 nm, and between 610 nm and 620 nm. In one embodiment, the detection marks can emit light at wavelengths of 517 nm, 551 nm, 580 nm, and 617 nm, respectively. At the same time, the light wavelengths listed here are only exemplary and non-limiting, and the color of the optical signal is not limited to this. Detection tags applicable to the present invention include, but are not limited to, VIC , FAM , JUN , ABY , HEX , NED , TAMRA , SYBR® Green, Texas Red®, and the like. Preferred are VIC , FAM , JUN ™, and ABY .

下文提出多個實驗例來說明本發明的某些態樣,以利本發明所屬技術領域中具有通常知識者實作本發明,且不應將這些實驗例視為對本發明範圍的限制。據信本發明所屬技術領域的通常知識者在閱讀了此處提出的說明後,可在不需過度解讀的情形下,完整利用並實踐本發明。此處所引用的所有公開文獻,其全文皆視為本說明書的一部分。A number of experimental examples are provided below to illustrate some aspects of the present invention, so that those with ordinary knowledge in the technical field to which the present invention pertains can implement the present invention, and these experimental examples should not be regarded as limiting the scope of the present invention. It is believed that a person having ordinary knowledge in the technical field to which the present invention pertains may fully utilize and practice the present invention without undue interpretation after reading the description provided herein. All publications cited herein are considered as part of this specification in their entirety.

實驗例Experimental example

材料與方法Materials and Methods

1. 收集個體離體樣本Collect individual isolated samples

於醫療單位(國防醫學中心,臺灣)對176名疑似患有吉特曼症侯群的病患進行採血。該些病患均表現出低血鉀、代謝性鹼中毒以及高尿鹽的臨床症狀。後續實驗均取得該些病患同意。經採血後,以Puregene血液套組(供應商:Qiagen)取得病患之基因體DNA,並於適當環境下保存。Blood was collected from 176 patients suspected of having Gitman's syndrome in a medical unit (National Defense Medical Center, Taiwan). These patients all showed clinical symptoms of hypokalemia, metabolic alkalosis, and high urine salt. Subsequent experiments have obtained the consent of these patients. After blood collection, the patient's genomic DNA was obtained with a Puregene blood kit (supplier: Qiagen) and stored in an appropriate environment.

2. 突變檢測Mutation detection

將基因體DNA溶液(體積為1 μl或重量50 ng)加入已含有專一性引子對(體積:2.5 μl)、TaqMan TM專一性探針(包含專一性野生型探針及專一性突變型探針(體積各2.5 μl))的96孔反應盤(96-well plate)中。加入反應試劑(master mix)使每孔總反應體積為10 μl之後,利用即時PCR反應機器(型號:QuantStudio 5 Real-Time PCR System,供應商:AppliedBiosytems)於適當條件下進行即時聚合酶連鎖反應。 Add the genomic DNA solution (1 μl in volume or 50 ng in weight) to the specific primer pair (volume: 2.5 μl), TaqMan TM specific probes (including specific wild-type probes and specific mutant probes) (2.5 μl each) in a 96-well plate. After adding a master mix to a total reaction volume of 10 μl per well, a real-time polymerase chain reaction was performed using a real-time PCR reaction machine (model: QuantStudio 5 Real-Time PCR System, supplier: Applied Biosytems) under appropriate conditions.

前述專一性引子對包含如序列編號:1至序列編號:34所示的核苷酸序列的至少一者,前述專一性野生型探針包含以及如序列編號:35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65及67所示的核苷酸序列的至少一者,而前述專一性突變型探針則包含如序列編號:36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66及68所示的核苷酸序列的至少一者(請參閱表1)。專一性野生型探針的5’端與綠色螢光標記VIC TM或紅色JUN TM連接;專一性突變型探針的5’端與藍色螢光標記FAM TM或黃色螢光標記ABY TM連接。 The aforementioned specific primer pair includes at least one of the nucleotide sequences shown in SEQ ID NO: 1 to SEQ ID NO: 34, the aforementioned specific wild-type probe includes and SEQ ID NO: 35, 37, 39, 41, 43 , 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65 and 67 at least one of the nucleotide sequences shown, and the aforementioned specific mutant probes include, for example, a sequence number: At least one of the nucleotide sequences shown in 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, and 68 (see Table 1) . The 5 'end of the specific wild-type probe is connected to the green fluorescent label VIC TM or red JUN TM ; the 5' end of the specific mutant probe is connected to the blue fluorescent label FAM TM or yellow fluorescent label ABY TM .

識別特定突變的專一性引子對與專一性探針可組合成一個測試組合,放置在相同的反應孔(well)中,其專一性探針分別與不同顏色之螢光標記連接,便於區分(表2)。總共有五個測試組。其餘的專一性引子對及專一性探針個別放置於獨立的反應孔中。96孔反應盤的縱向12列分別對應不同的突變基因型,橫向8行分別對應不同個體樣本。 表2:可形成測試組合的突變種類 組合 突變I 專一性野生型探針 螢光偵測標記 突變II 專一性野生型探針 螢光偵測標記 專一性突變型探針 專一性突變型探針 1 c.2881-2delAG 序列編號:35 JUNTM IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT 序列編號:49 VICTM 序列編號:36 ABYTM 序列編號:50 FAMTM 2 c.1670-191 C→T 序列編號:39 JUNTM W844X 序列編號:51 VICTM 序列編號:40 ABYTM 序列編號:52 FAMTM 3 N640S 序列編號:65 JUNTM S710X 序列編號:41 VICTM 序列編號:66 ABYTM 序列編號:42 FAMTM 4 R83Q 序列編號:53 JUNTM R871H 序列編號:47 VICTM 序列編號:54 ABYTM 序列編號:48 FAMTM 5 T649M 序列編號:61 VICTM T163M 序列編號:43 VICTM 序列編號:62 FAMTM 序列編號:44 FAMTM The specific primer pairs and specific probes that identify specific mutations can be combined into a test combination and placed in the same well, and the specific probes are connected to fluorescent labels of different colors for easy differentiation (Table 2). There are a total of five test groups. The remaining specific primer pairs and specific probes are individually placed in independent reaction wells. The 12 vertical columns of the 96-well reaction plate correspond to different mutant genotypes, and the 8 horizontal rows correspond to different individual samples. Table 2: Types of mutations that can form test combinations combination Mutation I Specific wild-type probe Fluorescent detection mark Mutation II Specific wild-type probe Fluorescent detection mark Specific mutant probe Specific mutant probe 1 c.2881-2delAG Sequence Number: 35 JUN TM IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT Sequence Number: 49 VIC TM Sequence Number: 36 ABY TM Sequence Number: 50 FAM TM 2 c.1670-191 C → T Sequence Number: 39 JUN TM W844X Sequence Number: 51 VIC TM Sequence Number: 40 ABY TM Sequence Number: 52 FAM TM 3 N640S Sequence Number: 65 JUN TM S710X Sequence Number: 41 VIC TM Sequence Number: 66 ABY TM Sequence Number: 42 FAM TM 4 R83Q Sequence Number: 53 JUN TM R871H Sequence Number: 47 VIC TM Sequence Number: 54 ABY TM Sequence Number: 48 FAM TM 5 T649M Sequence Number: 61 VIC TM T163M Sequence Number: 43 VIC TM Sequence Number: 62 FAM TM Sequence Number: 44 FAM TM

即時PCR的反應條件設定如下: 階段1:初始階段60℃維持30秒; 階段2:升溫至95℃,5分鐘; 階段3:於95℃下分開DNA兩股,30秒; 階段4:以60℃,1分鐘進行DNA延展;返回階段3,重複40個循環; 階段5:至60℃冷卻30秒,完成反應。The reaction conditions of real-time PCR are set as follows: Stage 1: Initial stage maintains 60 ° C for 30 seconds; Stage 2: Warm up to 95 ° C for 5 minutes; Stage 3: Separate two strands of DNA at 95 ° C for 30 seconds; Stage 4: Take 60 DNA extension at 1 ° C for 1 minute; return to stage 3 and repeat 40 cycles; stage 5: cool to 60 ° C for 30 seconds to complete the reaction.

3. 結果分析3. Results analysis

對該些病患檢測其血液樣本之結果如第1圖至第4圖所示。圖上每個點可表示每一樣本的基因型,該些個體的基因型分佈可以將圖面以象限區域來表示。位於第一象限的點(淺灰色圓點)表示異型合子突變;第二象限(黑色圓點):同型合子突變型;第三象限:無訊號區;第四象限(灰色圓點):同型合子野生型。第1圖呈現疑似患有吉特曼症侯群的病患針對c.2881-2delAG突變的檢測結果,且根據專一性引子對及專一性探針,可區分出同型突變(第二象限)及異型突變(第一象限),是以可判定該病患具有c.2881-2delAG突變。第2圖則呈現該些個體具有IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT的突變,且根據專一性引子對及專一性探針,可區分出同型突變(第二象限)及異型突變(第一象限)。第3圖則呈現針對c.1670-191 C→T突變的檢測結果,其顯現在該測試族群中,大多數個體攜帶同型合子的c.1670-191 C→T突變型(第二象限)。第4圖亦呈現該些病患的檢測結果,其顯示在該些測試個體中,均攜帶異型合子的突變N442K(第一象限)。The blood test results for these patients are shown in Figures 1 to 4. Each point on the graph can represent the genotype of each sample, and the genotype distribution of these individuals can be represented in the quadrant area of the graph. The dots in the first quadrant (light gray dots) indicate heterozygous mutations; the second quadrant (black dots): homozygous mutants; the third quadrant: no signal area; the fourth quadrant (grey dots): homozygous Wild type. Figure 1 presents the results of detection of c.2881-2delAG mutations in patients suspected of having Gitman syndrome. Based on specific primer pairs and specific probes, homomorphic mutations (second quadrant) and heterotypes can be distinguished. The mutation (first quadrant) is to determine that the patient has a c.2881-2delAG mutation. Figure 2 shows that these individuals have a mutation of IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT. Based on the specific primer pair and the specific probe, they can distinguish between the homotype mutation (second quadrant) and the heterotype mutation (first quadrant). Figure 3 presents the detection results for the c.1670-191 C → T mutation, which appears in this test group. Most individuals carry the homozygous c.1670-191 C → T mutation (second quadrant). Figure 4 also presents the test results of these patients, which shows that all of these test individuals carry the heterozygous mutation N442K (first quadrant).

4. 比較例Comparative example

以突變T163M以及R871H為例,以該些突變的專一性引子對及專一性探針與比較引子對及比較探針兩者之間進行功效測試。請參閱表3,其列出突變T163M以及R871H之專一性引子對及專一性探針的序列,以及比較引子對及比較探針之序列。 表3:突變T163M以及R871H之專一性引子對、專一性探針、比較引子對及比較探針之序列 突變 正向引子 反向引子 野生型探針 突變型探針 T163M 實驗例 TCCAGATTCGTTGCATGCTC CAAGCCCTCCCTCCTCTTC CTGCCCTGGATTAcGG CTGGATTAtGGCCCAGG 比較例 TTCGTTGCATGCTCAACATTT GCTGGGAAGAATGGGATTCA A+TT+A+CG+G+CC +CA AT+T+A+T+GG+CC+CA R871H 實驗例 AGAGGAGGTGGAGCAAATG TCTCCTGGTCCATCCTGTTA AAATGCAAGATCCg AAGATCCaTGTGTTCGTAGG 比較例 ACCCTCCTCATTCCCTATC CTCCTGGTCCATCCTGTTAATC AGA+TC+CG+TG+T+GT AGAT+C+C+A+TG +T+GT Taking mutations T163M and R871H as examples, the specificity primer pairs and specificity probes of the mutations and the comparison primer pairs and comparison probes were tested for efficacy. Please refer to Table 3, which lists the sequences of specific primer pairs and specific probes for mutations T163M and R871H, and the sequences of comparison primer pairs and comparison probes. Table 3: Sequences of specific primer pairs, specific probes, comparison primer pairs, and comparison probes for mutations T163M and R871H mutation Forward primer Reverse primer Wild-type probe Mutant probe T163M Experimental example TCCAGATTCGTTGCATGCTC CAAGCCCTCCCTCCTCTTC CTGCCCTGGATTAcGG CTGGATTAtGGCCCAGG Comparative example TTC GTTG CATGCT CAAC ATTT GCTGGGAA GAA TGGGA TTC A A + TT + A + C G + G + CC + CA AT + T + A + T + GG + CC + CA R871H Experimental example AGAGGAGGTGGAGCAAATG TCTCCTGGTCCATCCTGTTA AAATGCAAGATCCg AAGATCCaTGTGTTCGTAGG Comparative example ACCCTCCTCATTCCCTATC CTCCTGGTCCATCCTGTTAATC A GA + TC + CG + TG + T + GT A GAT + C + C + A + TG + T + GT

第5圖繪示針對突變T163M,以專一性引子對及專一性探針與比較引子對及比較探針兩者之間的檢測結果。挑選具有突變T163M且經確診為吉特曼症候群的病患,取其離體樣本,分別以比較引子對及比較探針與專一性引子對及專一性探針對突變T163M進行雜合效率檢測。A小圖呈現以突變T163M的專一性引子對(序列編號:9及10)及專一性探針(序列編號:43及44)的檢測結果。其中,經過一定擴增循環,可得到目標基因片段的複製數明顯增加的結果(螢光訊號增加),同時可藉由野生型探針及突變型探針得到該等位基因的突變狀態(野生型探針與突變型探針的訊號均隨著循環數上升,表示該個體攜帶異型合子之突變基因型)。B小圖呈現比較引子對及探針之結果。其中,可明顯看出該些引子對未能有效地對目標基因片段進行擴增,同時,野生型探針及突變型探針兩者亦無法彼此區分。FIG. 5 shows the detection results of the specific primer pair and the specific probe pair with the comparison primer pair and the comparison probe for the mutation T163M. Patients with mutation T163M and confirmed diagnosis of Gitman syndrome were selected from the isolated samples, and the heterozygous efficiency of mutant T163M was detected by comparing primer pairs and comparing probes with specific primer pairs and specific probes, respectively. Panel A shows the results of specific primer pairs (sequence numbers: 9 and 10) and specific probes (sequence numbers: 43 and 44) with mutation T163M. Among them, after a certain amplification cycle, a significant increase in the number of copies of the target gene fragment can be obtained (increased fluorescence signal), and the mutation status of the allele (wild) can be obtained by wild-type probes and mutant probes. The signals of both the type probe and the mutant probe increase with the number of cycles, indicating that the individual carries the heterozygous mutant genotype). Panel B shows the results of comparing primer pairs and probes. It can be clearly seen that these primer pairs fail to effectively amplify the target gene fragment, and at the same time, the wild-type probe and the mutant-type probe cannot be distinguished from each other.

第6圖繪示針對以突變R871H,以專一性引子對及專一性探針與比較引子對及比較探針兩者之間的檢測結果。挑選具有突變R871H且經確診為吉特曼症候群之病患,取其離體樣本,分別以專一性引子對及專一性探針與比較引子對及比較探針對該突變R871H進行雜合效率檢測。A小圖呈現以突變R871H的專一性引子對(序列編號:13及14)及專一性探針(序列編號:47及48)的檢測結果。其中,經過一定擴增循環,可得到目標基因片段的複製數明顯增加的結果(螢光訊號增加),同時可藉由野生型探針及突變型探針得到該等位基因的突變狀態(野生型探針與突變型探針的訊號均隨著循環數上升,表示該個體攜帶異型合子之突變基因型)。B小圖呈現比較引子對及探針之結果。其中,可明顯看出該些引子對未能有效地對含有突變R871H之目標基因片段進行擴增,同時,野生型探針及突變型探針兩者亦無法彼此區分。FIG. 6 shows the detection results for the mutant R871H with a specific primer pair and a specific probe and a comparison primer pair and a comparison probe. Patients with mutation R871H and confirmed diagnosis of Gitman syndrome were selected, and isolated samples were taken, and the heterozygous efficiency of the mutant R871H was detected by specific primer pairs, specific probe pairs, comparison primer pairs, and comparison probes, respectively. Panel A shows the detection results of the specific primer pair (sequence numbers: 13 and 14) and the specific probe (sequence numbers: 47 and 48) with mutation R871H. Among them, after a certain amplification cycle, a significant increase in the number of copies of the target gene fragment can be obtained (increased fluorescence signal), and the mutation status of the allele (wild type) can be obtained through wild-type probes and mutant probes. The signals of both the type probe and the mutant probe increase with the number of cycles, indicating that the individual carries the heterozygous mutant genotype). Panel B shows the results of comparing primer pairs and probes. Among them, it can be clearly seen that the primer pairs failed to effectively amplify the target gene fragment containing the mutation R871H, and at the same time, the wild-type probe and the mutant probe could not be distinguished from each other.

總結來說,本發明提供一種利用一個體之離體樣本來預斷該個體是否罹患吉特曼症候群或有罹患吉特曼症候群之風險的方法及套組,藉由至少一專一性引子對,以擴增至少一特定 SLC12A3基因片段,同時以對應該經擴增 SLC12A3基因片段的專一性探針,以獲得該經擴增的 SLC12A3基因片段是否包含至少一突變。藉此,可提高與吉特曼症候群相關之突變基因的檢測準確度及檢測效率,以快速準確地獲得吉特曼症候群的預斷及檢測結果。 In summary, the present invention provides a method and kit for using an in vitro sample of a body to predict whether an individual is suffering from or at risk of having Gitman syndrome. By using at least one specific primer pair, Amplify at least one specific SLC12A3 gene fragment, and at the same time, use a specific probe corresponding to the amplified SLC12A3 gene fragment to obtain whether the amplified SLC12A3 gene fragment contains at least one mutation. This can improve the detection accuracy and detection efficiency of the mutant genes associated with Gitman syndrome, so as to quickly and accurately obtain the prediction and detection results of Gitman syndrome.

同時,相較於非專一性引子對及探針(比較例),本發明提供的專一性引子對及專一性探針與目標 SLC12A3基因片段之間具有較佳的雜合程度,提升基因檢測的準確性,具有顯著功效。 At the same time, compared with non-specific primer pairs and probes (comparative example), the specific primer pairs and specific probes provided by the present invention have a better degree of heterozygosity with the target SLC12A3 gene fragment, which improves the genetic detection Accuracy and significant effect.

no

為讓本發明的上述與其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:In order to make the above and other objects, features, advantages, and embodiments of the present invention more comprehensible, the description of the drawings is as follows:

第1圖繪示以本發明方法及套組對疑似患有吉特曼症候群之個體離體樣本的檢測結果,其顯示該樣本是否包含c.2881-2delAG的突變。每一點表示一個樣本單位值,第一象限:攜帶異型合子突變基因型之個體;第二象限:攜帶同型合子突變基因型之個體;第四象限:攜帶野生型(正常)基因型之個體。FIG. 1 shows the test results of isolated samples of individuals suspected of having Gitman syndrome using the method and kit of the present invention, which shows whether the sample contains the mutation of c.2881-2delAG. Each point represents a sample unit value. The first quadrant: individuals carrying heterozygous mutation genotypes; the second quadrant: individuals carrying homozygous mutation genotypes; the fourth quadrant: individuals carrying wild-type (normal) genotypes.

第2圖繪示以本發明方法及套組對疑似患有吉特曼症候群之個體離體樣本的檢測結果,其顯示該樣本是否包含IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT (簡稱為IVS 7-1)的突變。每一點表示一個樣本單位值,第一象限:攜帶異型合子突變基因型之個體;第二象限:攜帶同型合子突變基因型之個體;第四象限:攜帶野生型(正常)基因型之個體。Figure 2 shows the test results of an individual sample of an individual suspected of having Gittman syndrome using the method and kit of the present invention, which shows whether the sample contains IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT (referred to as IVS 7-1) mutation. Each point represents a sample unit value. The first quadrant: individuals carrying heterozygous mutation genotypes; the second quadrant: individuals carrying homozygous mutation genotypes; the fourth quadrant: individuals carrying wild-type (normal) genotypes.

第3圖繪示以本發明之方法及套組對疑似患有吉特曼症候群之個體離體樣本的檢測結果,其顯示該樣本是否包含c.1670-191C→T的突變。每一點表示一個樣本單位值,第一象限:攜帶異型合子突變基因型之個體;第二象限:攜帶同型合子突變基因型之個體;第四象限:攜帶野生型(正常)基因型之個體。FIG. 3 shows the test results of isolated samples of individuals suspected of having Gitman syndrome using the method and kit of the present invention, which shows whether the sample contains a mutation of c.1670-191C → T. Each point represents a sample unit value. The first quadrant: individuals carrying heterozygous mutation genotypes; the second quadrant: individuals carrying homozygous mutation genotypes; the fourth quadrant: individuals carrying wild-type (normal) genotypes.

第4圖繪示以本發明之方法及套組對疑似患有吉特曼症候群之個體離體樣本的檢測結果,其顯示該樣本是否包含N442K的突變。每一點表示一個樣本單位值,第一象限:攜帶異型合子突變基因型之個體;第二象限:攜帶同型合子突變基因型之個體;第四象限:攜帶野生型(正常)基因型之個體。FIG. 4 shows the test results of isolated samples of individuals suspected of having Gitman syndrome using the method and kit of the present invention, which shows whether the samples contain a mutation of N442K. Each point represents a sample unit value. The first quadrant: individuals carrying heterozygous mutation genotypes; the second quadrant: individuals carrying homozygous mutation genotypes; the fourth quadrant: individuals carrying wild-type (normal) genotypes.

第5圖繪示針對突變T163M,以專一性引子對及專一性探針與比較引子對及比較探針兩者之間的檢測結果。A小圖:以專一性引子對(序列編號:9及10)及專一性探針(序列編號:43及44)的檢測結果。B小圖:以比較引子對及比較探針的檢測結果。FIG. 5 shows the detection results of the specific primer pair and the specific probe pair with the comparison primer pair and the comparison probe for the mutation T163M. Panel A: detection results using specific primer pairs (sequence numbers: 9 and 10) and specific probes (sequence numbers: 43 and 44). Panel B: the results of comparing primer pairs and comparing probes.

第6圖繪示針對以突變R871H,以專一性引子對及專一性探針與比較引子對及比較探針兩者之間的檢測結果。A小圖:以專一性引子對(序列編號:13及14)及專一性探針(序列編號:47及48)的檢測結果。B小圖:以比較引子對及比較探針的檢測結果。FIG. 6 shows the detection results for the mutant R871H with a specific primer pair and a specific probe and a comparison primer pair and a comparison probe. Panel A: detection results using specific primer pairs (sequence numbers: 13 and 14) and specific probes (sequence numbers: 47 and 48). Panel B: the results of comparing primer pairs and comparing probes.

序列表<110> 國防醫學院 <120> 用以預斷吉特曼症候群的方法及套組<130> P3083-TW<160> 68 <170> PatentIn version 3.5<210> 1<211> 21<212> DNA<213> 人工序列<400> 1gactgcccct ggaagatctc a 21<210> 2<211> 20<212> DNA<213> 人工序列<400> 2tgtccctgac ccagtgatgt 20<210> 3<211> 18<212> DNA<213> 人工序列<400> 3catgcgcacc tttggcta 18<210> 4<211> 19<212> DNA<213> 人工序列<400> 4ttgctgttgg catagtgct 19<210> 5<211> 20<212> DNA<213> 人工序列<400> 5tggatgctcc tggtgaaatg 20<210> 6<211> 19<212> DNA<213> 人工序列<400> 6tcctgggctg ggtctacag 19<210> 7<211> 23<212> DNA<213> 人工序列<400> 7tggctgaaca agaggaagat caa 23<210> 8<211> 20<212> DNA<213> 人工序列<400> 8tggcacctgc atgaggatct 20<210> 9<211> 20<212> DNA<213> 人工序列<400> 9tccagattcg ttgcatgctc 20<210> 10<211> 19<212> DNA<213> 人工序列<400> 10caagccctcc ctcctcttc 19<210> 11<211> 20<212> DNA<213> 人工序列<400> 11gtcgccatga gatggaaact 20<210> 12<211> 27<212> DNA<213> 人工序列<400> 12tctttctatc tgtgactcta tcaaagg 27<210> 13<211> 20<212> DNA<213> 人工序列<400> 13agaggaggtg gagcaaatgc 20<210> 14<211> 23<212> DNA<213> 人工序列<400> 14tctcctggtc catcctgtta ctc 23<210> 15<211> 22<212> DNA<213> 人工序列<400> 15ccttactcat caggccttgc tt 22<210> 16<211> 21<212> DNA<213> 人工序列<400> 16tccagtcagg caccaagttc t 21<210> 17<211> 17<212> DNA<213> 人工序列<400> 17tgggatcgcc cttcagg 17<210> 18<211> 17<212> DNA<213> 人工序列<400> 18gatcgccctt gcaggag 17<210> 19<211> 21<212> DNA<213> 人工序列<400> 19tcgcaccttt ggctacaaca c 21<210> 20<211> 25<212> DNA<213> 人工序列<400> 20cttctgagac agcacttacc ttgag 25<210> 21<211> 18<212> DNA<213> 人工序列<400> 21gtgagccccg gaaggtga 18<210> 22<211> 19<212> DNA<213> 人工序列<400> 22cagggaagtg gccagtctt 19<210> 23<211> 20<212> DNA<213> 人工序列<400> 23ggatcgccct tggtacaggc 20<210> 24<211> 17<212> DNA<213> 人工序列<400> 24tgggatcgcc cttcagg 17<210> 25<211> 20<212> DNA<213> 人工序列<400> 25ggatcgccct tggtacaggc 20<210> 26<211> 17<212> DNA<213> 人工序列<400> 26tgggatcgcc cttcagg 17<210> 27<211> 18<212> DNA<213> 人工序列<400> 27tggctcctgc ccttttcc 18<210> 28<211> 16<212> DNA<213> 人工序列<400> 28tgccgggcgg aagttg 16<210> 29<211> 19<212> DNA<213> 人工序列<400> 29cagcacagct gccactacg 19<210> 30<211> 20<212> DNA<213> 人工序列<400> 30ttgcaggcct ggaagtttgt 20<210> 31<211> 19<212> DNA<213> 人工序列<400> 31tctggccctc agctactcg 19<210> 32<211> 19<212> DNA<213> 人工序列<400> 32agggtggagc catcactgg 19<210> 33<211> 21<212> DNA<213> 人工序列<400> 33ttcccagcct aagggtgagt g 21<210> 34<211> 21<212> DNA<213> 人工序列<400> 34gaagccgatc agtgggtaca g 21<210> 35<211> 18<212> DNA<213> 人工序列<400> 35aagaacagag tcaaggtg 18<210> 36<211> 18<212> DNA<213> 人工序列<400> 36acagtcaagg tgcagaga 18<210> 37<211> 16<212> DNA<213> 人工序列<400> 37ttggctacaa cacgat 16<210> 38<211> 19<212> DNA<213> 人工序列<400> 38ctacaacatg atcgatgtg 19<210> 39<211> 15<212> DNA<213> 人工序列<400> 39ccaaagcagg cgtgt 15<210> 40<211> 15<212> DNA<213> 人工序列<400> 40caggtgtgtg atttg 15<210> 41<211> 19<212> DNA<213> 人工序列<400> 41ccttctactc ggatgtcat 19<210> 42<211> 19<212> DNA<213> 人工序列<400> 42ctactaggat gtcattgcc 19<210> 43<211> 16<212> DNA<213> 人工序列<400> 43ctgccctgga ttacgg 16<210> 44<211> 17<212> DNA<213> 人工序列<400> 44ctggattatg gcccagg 17<210> 45<211> 16<212> DNA<213> 人工序列<400> 45cacaggcagg tgatat 16<210> 46<211> 18<212> DNA<213> 人工序列<400> 46cacaggtagg tgatataa 18<210> 47<211> 16<212> DNA<213> 人工序列<400> 47aaatgcaaga tccgtg 16<210> 48<211> 20<212> DNA<213> 人工序列<400> 48aagatccatg tgttcgtagg 20<210> 49<211> 12<212> DNA<213> 人工序列<400> 49gcggacattt tt 12<210> 50<211> 15<212> DNA<213> 人工序列<400> 50aaccgaaaat ttttc 15<210> 51<211> 16<212> DNA<213> 人工序列<400> 51atctactggc tctttg 16<210> 52<211> 17<212> DNA<213> 人工序列<400> 52ctactgactc tttgacg 17<210> 53<211> 14<212> DNA<213> 人工序列<400> 53tggtgagccc cgga 14<210> 54<211> 12<212> DNA<213> 人工序列<400> 54ccccagaagg tc 12<210> 55<211> 16<212> DNA<213> 人工序列<400> 55aaggtgacct gcactc 16<210> 56<211> 16<212> DNA<213> 人工序列<400> 56acctgtactc cttcct 16<210> 57<211> 18<212> DNA<213> 人工序列<400> 57tcaagaacta ccggtgag 18<210> 58<211> 17<212> DNA<213> 人工序列<400> 58actactggtg agcagag 17<210> 59<211> 18<212> DNA<213> 人工序列<400> 59tcaagaacta ccggtgag 18<210> 60<211> 17<212> DNA<213> 人工序列<400> 60actactggtg agcagag 17<210> 61<211> 14<212> DNA<213> 人工序列<400> 61cctggtgctc acgc 14<210> 62<211> 14<212> DNA<213> 人工序列<400> 62ctggtgctca tgcg 14<210> 63<211> 17<212> DNA<213> 人工序列<400> 63cctcatcaac tattacc 17<210> 64<211> 17<212> DNA<213> 人工序列<400> 64cctcatcaag tattacc 17<210> 65<211> 15<212> DNA<213> 人工序列<400> 65cacatcaaga actac 15<210> 66<211> 17<212> DNA<213> 人工序列<400> 66acatcaagag ctaccgg 17<210> 67<211> 15<212> DNA<213> 人工序列<400> 67cgaggaccag ctgta 15<210> 68<211> 14<212> DNA<213> 人工序列<400> 68cctttgcgag aacc 14Sequence List <110> National Defense Medical College <120> Method and Kit for Predicting Gitman Syndrome <130> P3083-TW <160> 68 <170> PatentIn version 3.5 <210> 1 <211> 21 <212> DNA <213> artificial sequence <400> 1gactgcccct ggaagatctc a 21 <210> 2 <211> 20 <212> DNA <213> artificial sequence <400> 2tgtccctgac ccagtgatgt 20 <210> 3 <211> 18 <212> DNA <213 > Artificial Sequence <400> 3catgcgcacc tttggcta 18 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <400> 4ttgctgttgg catagtgct 19 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence < 400> 5tggatgctcc tggtgaaatg 20 <210> 6 <211> 19 <212> DNA <213> artificial sequence <400> 6tcctgggctg ggtctacag 19 <210> 7 <211> 23 <212> DNA <213> artificial sequence <400> 7tggctgaaca agaggaagat caa 23 <210> 8 <211> 20 <212> DNA <213> artificial sequence <400> 8tggcacctgc atgaggatct 20 <210> 9 <211> 20 <212> DNA <213> artificial sequence <400> 9tccagattcg ttgcatgctc 20 <210 > 10 <211> 19 <212> DNA <213> artificial sequence <400> 10caagccctcc ctcctcttc 19 <210> 11 <211> 20 <212> DNA <213> artificial sequence <400> 11gtcgccatga gatggaaact 20 <210> 12 <211 > 27 <212> DNA <213> Artificial sequence <400> 12tctttct atc tgtgactcta tcaaagg 27 <210> 13 <211> 20 <212> DNA <213> artificial sequence <400> 13agaggaggtg gagcaaatgc 20 <210> 14 <211> 23 <212> DNA <213> artificial sequence <400> 14tctcctggtc catcctgtta ctc 23 <210> 15 <211> 22 <212> DNA <213> artificial sequence <400> 15ccttactcat caggccttgc tt 22 <210> 16 <211> 21 <212> DNA <213> artificial sequence <400> 16tccagtcagg caccaagttc t 21 < 210> 17 <211> 17 <212> DNA <213> artificial sequence <400> 17tgggatcgcc cttcagg 17 <210> 18 <211> 17 <212> DNA <213> artificial sequence <400> 18gatcgccctt gcaggag 17 <210> 19 < 211> 21 <212> DNA <213> Artificial sequence <400> 19tcgcaccttt ggctacaaca c 21 <210> 20 <211> 25 <212> DNA <213> Artificial sequence <400> 20cttctgagac agcacttacc ttgag 25 <210> 21 <211> 18 <212> DNA <213> artificial sequence <400> 21gtgagccccg gaaggtga 18 <210> 22 <211> 19 <212> DNA <213> artificial sequence <400> 22cagggaagtg gccagtctt 19 <210> 23 <211> 20 <212> DNA <213> artificial sequence <400> 23ggatcgccct tggtacaggc 20 <210> 24 <211> 17 <212> DNA <213> artificial sequence <400> 24tgggatcgcc cttcagg 17 <210> 25 <211> 20 <212> DNA <213> Artificial sequence <400> 25ggatcgccct tggtacag gc 20 <210> 26 <211> 17 <212> DNA <213> artificial sequence <400> 26tgggatcgcc cttcagg 17 <210> 27 <211> 18 <212> DNA <213> artificial sequence <400> 27tggctcctgc ccttttcc 18 <210 > 28 <211> 16 <212> DNA <213> artificial sequence <400> 28tgccgggcgg aagttg 16 <210> 29 <211> 19 <212> DNA <213> artificial sequence <400> 29cagcacagct gccactacg 19 <210> 30 <211 > 20 <212> DNA <213> artificial sequence <400> 30ttgcaggcct ggaagtttgt 20 <210> 31 <211> 19 <212> DNA <213> artificial sequence <400> 31tctggccctc agctactcg 19 <210> 32 <211> 19 <212 > DNA <213> artificial sequence <400> 32agggtggagc catcactgg 19 <210> 33 <211> 21 <212> DNA <213> artificial sequence <400> 33ttcccagcct aagggtgagt g 21 <210> 34 <211> 21 <212> DNA < 213> artificial sequence <400> 34gaagccgatc agtgggtaca g 21 <210> 35 <211> 18 <212> DNA <213> artificial sequence <400> 35aagaacagag tcaaggtg 18 <210> 36 <211> 18 <212> DNA <213> artificial Sequence <400> 36acagtcaagg tgcagaga 18 <210> 37 <211> 16 <212> DNA <213> artificial sequence <400> 37ttggctacaa cacgat 16 <210> 38 <211> 19 <212> DNA <213> artificial sequence <400> 38ctacaacatg atcgatgtg 19 <210> 39 <211> 15 <212> DNA <213> artificial Sequence <400> 39ccaaagcagg cgtgt 15 <210> 40 <211> 15 <212> DNA <213> artificial sequence <400> 40caggtgtgtg atttg 15 <210> 41 <211> 19 <212> DNA <213> artificial sequence <400> 41ccttctactc ggatgtcat 19 <210> 42 <211> 19 <212> DNA <213> artificial sequence <400> 42ctactaggat gtcattgcc 19 <210> 43 <211> 16 <212> DNA <213> artificial sequence <400> 43ctgccctgga ttacgg 16 < 210> 44 <211> 17 <212> DNA <213> artificial sequence <400> 44ctggattatg gcccagg 17 <210> 45 <211> 16 <212> DNA <213> artificial sequence <400> 45cacaggcagg tgatat 16 <210> 46 < 211> 18 <212> DNA <213> Artificial sequence <400> 46cacaggtagg tgatataa 18 <210> 47 <211> 16 <212> DNA <213> Artificial sequence <400> 47aaatgcaaga tccgtg 16 <210> 48 <211> 20 < 212> DNA <213> artificial sequence <400> 48aagatccatg tgttcgtagg 20 <210> 49 <211> 12 <212> DNA <213> artificial sequence <400> 49gcggacattt tt 12 <210> 50 <211> 15 <212> DNA < 213> artificial sequence <400> 50aaccgaaaat ttttc 15 <210> 51 <211> 16 <212> DNA <213> artificial sequence <400> 51atctactggc tctttg 16 <210> 52 <211> 17 <212> DNA <213> artificial sequence <400> 52ctactgactc tttgacg 17 <210> 53 <211> 14 <212> DNA <213> people Sequence <400> 53tggtgagccc cgga 14 <210> 54 <211> 12 <212> DNA <213> artificial sequence <400> 54ccccagaagg tc 12 <210> 55 <211> 16 <212> DNA <213> artificial sequence <400> 55aaggtgacct gcactc 16 <210> 56 <211> 16 <212> DNA <213> artificial sequence <400> 56acctgtactc cttcct 16 <210> 57 <211> 18 <212> DNA <213> artificial sequence <400> 57tcaagaacta ccggtgag 18 < 210> 58 <211> 17 <212> DNA <213> artificial sequence <400> 58actactggtg agcagag 17 <210> 59 <211> 18 <212> DNA <213> artificial sequence <400> 59tcaagaacta ccggtgag 18 <210> 60 < 211> 17 <212> DNA <213> artificial sequence <400> 60actactggtg agcagag 17 <210> 61 <211> 14 <212> DNA <213> artificial sequence <400> 61cctggtgctc acgc 14 <210> 62 <211> 14 < 212> DNA <213> artificial sequence <400> 62ctggtgctca tgcg 14 <210> 63 <211> 17 <212> DNA <213> artificial sequence <400> 63cctcatcaac tattacc 17 <210> 64 <211> 17 <212> DNA < 213> artificial sequence <400> 64cctcatcaag tattacc 17 <210> 65 <211> 15 <212> DNA <213> artificial sequence <400> 65cacatcaaga actac 15 <210> 66 <211> 17 <212> DNA <213> artificial sequence <400> 66acatcaagag ctaccgg 17 <210> 67 <211> 15 <212> DNA <213> Artificial sequence < 400> 67cgaggaccag ctgta 15 <210> 68 <211> 14 <212> DNA <213> Artificial sequence <400> 68cctttgcgag aacc 14

Claims (10)

一種利用一個體之離體樣本來預斷該個體是否罹患吉特曼症候群(Gitelman's syndrome)或有罹患吉特曼症候群之風險的方法,包含: (a) 萃取該離體樣本之DNA; (b) 以步驟(a)之DNA作為模版,利用一第一引子對來擴增一第一 SLC12A3基因片段,其中該第一引子對包含一第一正向引子及一第一反向引子; (c) 決定該經擴增之第一 SLC12A3基因片段中是否包含一c.2881-2delAG的第一突變;以及 (d) 根據步驟(c)之結果來評估該個體是否罹患吉特曼症候群或有罹患吉特曼症候群之風險,其中若該經擴增之第一 SLC12A3基因片段包含該第一突變,則該個體罹患吉特曼症候群或有罹患吉特曼症候群之風險;其中, 當該第一突變是c.2881-2delAG時,則該第一正向引子及該第一反向引子分別具有序列編號:1及2之核苷酸序列。 A method for predicting whether an individual has Gitelman's syndrome or is at risk of developing Gitman's syndrome using an in vitro sample of an individual, comprising: (a) extracting DNA from the isolated sample; (b) Using the DNA of step (a) as a template, a first primer pair is used to amplify a first SLC12A3 gene fragment, wherein the first primer pair includes a first forward primer and a first reverse primer; (c) Determine whether the amplified first SLC12A3 gene fragment contains a first mutation of c.2881-2delAG; and (d) evaluate whether the individual has a Gitman syndrome or has a gyratory disease based on the result of step (c) The risk of Gatman syndrome, wherein if the amplified first SLC12A3 gene fragment contains the first mutation, the individual is suffering from Gatman syndrome or is at risk of Gitman syndrome; wherein when the first mutation is c. 2881-2delAG, the first forward primer and the first reverse primer have nucleotide sequences of sequence numbers: 1 and 2, respectively. 如請求項1所述之方法,其中步驟(c)是利用一第一野生型探針及一第一突變型探針來決定該經擴增之第一 SLC12A3基因片段中是否包含該第一突變,其中該第一野生型探針及該第一突變型探針分別具有序列編號:35及36的核苷酸序列。 The method according to claim 1, wherein step (c) is to use a first wild-type probe and a first mutant probe to determine whether the amplified first SLC12A3 gene fragment contains the first mutation. The first wild-type probe and the first mutant-type probe have nucleotide sequences of sequence numbers: 35 and 36, respectively. 如請求項1所述之方法,其中在步驟(b)中更包含利用一第二引子對來擴增一第二 SLC12A3基因片段,藉以在步驟(c)中決定該經擴增之第二 SLC12A3基因片段中是否包含一選自由T60M、c.1670-191C→T、S710X、T163M、c.2548+253C→T、R871H、IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT、W844X、R83Q、H90Y、R642H、R642C、T649M、N442K、N640S及D486N所組成之群組的第二突變,其中該第二引子對包含一第二正向引子及一第二反向引子,其中 當該第二突變是T60M時,則該第二正向引子及該第二反向引子分別具有序列編號:3及4之核苷酸序列; 當該第二突變是c.1670-191 C→T時,則該第二正向引子及該第二反向引子分別具有序列編號:5及6之核苷酸序列; 當該第二突變是S710X時,則該第二正向引子及該第二反向引子分別具有序列編號:7及8之核苷酸序列; 當該第二突變是T163M時,則該第二正向引子及該第二反向引子分別具有序列編號:9及10之核苷酸序列; 當該第二突變是c.2548+253 C→T時,則該第二正向引子及該第二反向引子分別具有序列編號:11及12之核苷酸序列; 當該第二突變是R871H時,則該第二正向引子及該第二反向引子分別具有序列編號:13及14之核苷酸序列; 當該第二突變是IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT時,則該第二正向引子及該第二反向引子分別具有序列編號:15及16之核苷酸序列; 當該第二突變是W844X時,則該第二正向引子及該第二反向引子分別具有序列編號:17及18之核苷酸序列; 當該第二突變是R83Q時,則該第二正向引子及該第二反向引子分別具有序列編號:19及20之核苷酸序列; 當該第二突變是H90Y時,則該第二正向引子及該第二反向引子分別具有序列編號:21及22之核苷酸序列; 當該第二突變是R642H時,則該第二正向引子及該第二反向引子分別具有序列編號:23及24之核苷酸序列; 當該第二突變是R642C時,則該第二正向引子及該第二反向引子分別具有序列編號:25及26之核苷酸序列; 當該第二突變是T649M時,則該第二正向引子及該第二反向引子分別具有序列編號:27及28之核苷酸序列; 當該第二突變是N442K時,則該第二正向引子及該第二反向引子分別具有序列編號:29及30之核苷酸序列; 當該第二突變是N640S時,則該第二正向引子及該第二反向引子分別具有序列編號:31及32之核苷酸序列;或是 當該第二突變是D486N時,則該第二正向引子及該第二反向引子分別具有序列編號:33及34之核苷酸序列。 The method according to claim 1, wherein step (b) further comprises using a second primer pair to amplify a second SLC12A3 gene fragment, thereby determining the amplified second SLC12A3 in step (c). Whether the gene fragment contains one selected from T60M, c.1670-191C → T, S710X, T163M, c.2548 + 253C → T, R871H, IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT, W844X, R83Q, H90Y, R642H, R642C, The second mutation of the group consisting of T649M, N442K, N640S and D486N, wherein the second primer pair includes a second forward primer and a second reverse primer, and when the second mutation is T60M, the The second forward primer and the second reverse primer have nucleotide sequences of sequence numbers: 3 and 4, respectively; when the second mutation is c.1670-191 C → T, the second forward primer and The second reverse primer has nucleotide sequences of sequence numbers: 5 and 6, respectively; when the second mutation is S710X, the second forward primer and the second reverse primer have sequence numbers: 7 and Nucleotide sequence of 8; when the second mutation is T163M, the second forward primer and the second The reverse primers have nucleotide sequences of sequence numbers: 9 and 10 respectively; when the second mutation is c.2548 + 253 C → T, the second forward primer and the second reverse primer each have sequences Numbers: 11 and 12 nucleotide sequences; when the second mutation is R871H, the second forward primer and the second reverse primer have nucleotide sequences of sequence numbers: 13 and 14, respectively; when the When the second mutation is IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT, the second forward primer and the second reverse primer have nucleotide sequences of sequence numbers: 15 and 16, respectively; when the second mutation is W844X, Then the second forward primer and the second reverse primer have nucleotide sequences of sequence numbers: 17 and 18 respectively; when the second mutation is R83Q, the second forward primer and the second reverse primer The primers have nucleotide sequences of sequence numbers: 19 and 20 respectively; when the second mutation is H90Y, the second forward primer and the second reverse primer have nucleotides of sequence numbers: 21 and 22, respectively Sequence; when the second mutation is R642H, the second forward primer and the second The forward primer has nucleotide sequences of sequence numbers: 23 and 24 respectively; when the second mutation is R642C, the second forward primer and the second reverse primer have nucleosides of sequence numbers: 25 and 26, respectively Acid sequence; when the second mutation is T649M, the second forward primer and the second reverse primer have nucleotide sequences of sequence numbers: 27 and 28, respectively; when the second mutation is N442K, then The second forward primer and the second reverse primer have nucleotide sequences of sequence numbers: 29 and 30, respectively; when the second mutation is N640S, the second forward primer and the second reverse primer Nucleotide sequences with sequence numbers: 31 and 32 respectively; or when the second mutation is D486N, the second forward primer and the second reverse primer have nucleosides of sequence numbers: 33 and 34 Acid sequence. 如請求項3所述之方法,其中步驟(c)是利用一第二野生型探針及一第二突變型探針來決定該經擴增之第二 SLC12A3基因片段中是否包含該第二突變,其中 當該第二突變是T60M時,則該第二野生型探針及該第二突變型探針分別具有序列編號:37及38之核苷酸序列; 當該第二突變是c.1670-191 C→T時,則該第二野生型探針及該第二突變型探針分別具有序列編號:39及40之核苷酸序列; 當該第二突變是S710X時,則該第二野生型探針及該第二突變型探針分別具有序列編號:41及42之核苷酸序列; 當該第二突變是T163M時,則該第二野生型探針及該第二突變型探針分別具有序列編號:43及44之核苷酸序列; 當該第二突變是c.2548+253 C→T時,則該第二野生型探針及該第二突變型探針分別具有序列編號:45及46之核苷酸序列; 當該第二突變是R871H時,則該第二野生型探針及該第二突變型探針分別具有序列編號:47及48之核苷酸序列; 當該第二突變是IVS7-1G→A+971delCGGACATTTTTInsACCGAAAATTTT時,則該第二野生型探針及該第二突變型探針分別具有序列編號:49及50之核苷酸序列; 當該第二突變是W844X時,則該第二野生型探針及該第二突變型探針分別具有序列編號:51及52之核苷酸序列; 當該第二突變是R83Q時,則該第二野生型探針及該第二突變型探針分別具有序列編號:53及54之核苷酸序列; 當該第二突變是H90Y時,則該第二野生型探針及該第二突變型探針分別具有序列編號:55及56之核苷酸序列; 當該第二突變是R642H時,則該第二野生型探針及該第二突變型探針分別具有序列編號:57及58之核苷酸序列; 當該第二突變是R642C時,則該第二野生型探針及該第二突變型探針分別具有序列編號:59及60之核苷酸序列; 當該第二突變是T649M時,則該第二野生型探針及該第二突變型探針分別具有序列編號:61及62之核苷酸序列; 當該第二突變是N442K時,則該第二野生型探針及該第二突變型探針分別具有序列編號:63及64之核苷酸序列; 當該第二突變是N640S時,則該第二野生型探針及該第二突變型探針分別具有序列編號:65及66之核苷酸序列;或是 當該第二突變是D486N時,則該第二野生型探針及該第二突變型探針分別具有序列編號:67及68之核苷酸序列。 The method according to claim 3, wherein step (c) is to use a second wild-type probe and a second mutant probe to determine whether the amplified second SLC12A3 gene fragment contains the second mutation. Wherein, when the second mutation is T60M, the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 37 and 38, respectively; when the second mutation is c.1670 -191 C → T, the second wild-type probe and the second mutant probe have nucleotide sequences of sequence numbers: 39 and 40, respectively; when the second mutation is S710X, the second The wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 41 and 42, respectively; when the second mutation is T163M, the second wild-type probe and the second mutant-type probe The needles each have a nucleotide sequence of sequence numbers: 43 and 44; when the second mutation is c. 2548 + 253 C → T, the second wild-type probe and the second mutant probe each have a sequence No .: 45 and 46 nucleotide sequences; when the second mutation is R871H, the second wild-type probe and the second mutation Type probes each have a nucleotide sequence of sequence numbers: 47 and 48; when the second mutation is IVS7-1G → A + 971delCGGACATTTTTInsACCGAAAATTTT, the second wild-type probe and the second mutant-type probe have SEQ ID NOs: 49 and 50 nucleotide sequences; when the second mutation is W844X, the second wild-type probe and the second mutant probe have nucleotide sequences of sequence numbers: 51 and 52, respectively ; When the second mutation is R83Q, the second wild-type probe and the second mutant probe have nucleotide sequences of sequence numbers: 53 and 54, respectively; when the second mutation is H90Y, then The second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 55 and 56, respectively; when the second mutation is R642H, the second wild-type probe and the second mutant-type probe The mutant probe has a nucleotide sequence of sequence numbers: 57 and 58 respectively; when the second mutation is R642C, the second wild-type probe and the second mutant probe have sequence numbers: 59 and Nucleotide sequence 60; when the second mutation is T649M, the second mutation The wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 61 and 62, respectively; when the second mutation is N442K, the second wild-type probe and the second mutant-type probe The needles have nucleotide sequences of sequence numbers: 63 and 64 respectively; when the second mutation is N640S, the second wild-type probe and the second mutant probe have cores of sequence numbers: 65 and 66, respectively Nucleotide sequence; or when the second mutation is D486N, the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 67 and 68, respectively. 如請求項1所述之方法,其中該離體樣本係選自由血液、血漿、組織液、唾液、淚液、眼球內液、尿液、淋巴液、脊髓液、宮頸液及陰道液所組成的群組。The method of claim 1, wherein the isolated sample is selected from the group consisting of blood, plasma, interstitial fluid, saliva, tear fluid, intraocular fluid, urine, lymph fluid, spinal fluid, cervical fluid, and vaginal fluid . 一種用於檢測一個體是否罹患吉特曼症候群或有罹患吉特曼症候群之風險的套組,包含: 一用以擴增一第一 SLC12A3基因片段的第一引子對,其包含 一具有序列編號:1之核苷酸序列的第一正向引子,以及一具有序列編號:2之核苷酸序列的第一反向引子。 A kit for detecting whether an individual has or is at risk of having Gitman syndrome, comprising: a first primer pair for amplifying a first SLC12A3 gene fragment, which comprises a sequence number A first forward primer of the nucleotide sequence of: 1 and a first reverse primer of the nucleotide sequence of sequence number: 2. 如請求項6所述之套組,更包含一具有序列編號:35之核苷酸序列的第一野生型探針,以及一具有序列編號:36之核苷酸序列的第一突變型探針。The kit according to claim 6, further comprising a first wild-type probe having a nucleotide sequence of sequence number: 35, and a first mutant-type probe having a nucleotide sequence of sequence number: 36 . 如請求項6所述之套組,更包含一用以擴增一第二 SLC12A3基因片段的第二引子對,其包含 一具有序列編號:3之核苷酸序列的第二正向引子,以及一具有序列編號:4之核苷酸序列的第二反向引子; 一具有序列編號:5之核苷酸序列的第二正向引子,以及一具有序列編號:6之核苷酸序列的第二反向引子; 一具有序列編號:7之核苷酸序列的第二正向引子,以及一具有序列編號:8之核苷酸序列的第二反向引子; 一具有序列編號:9之核苷酸序列的第二正向引子,以及一具有序列編號:10之核苷酸序列的第二反向引子; 一具有序列編號:11之核苷酸序列的第二正向引子,以及一具有序列編號:12之核苷酸序列的第二反向引子; 一具有序列編號:13之核苷酸序列的第二正向引子,以及一具有序列編號:14之核苷酸序列的第二反向引子; 一具有序列編號:15之核苷酸序列的第二正向引子,以及一具有序列編號:16之核苷酸序列的第二反向引子; 一具有序列編號:17之核苷酸序列的第二正向引子,以及一具有序列編號:18之核苷酸序列的第二反向引子; 一具有序列編號:19之核苷酸序列的第二正向引子,以及一具有序列編號:20之核苷酸序列的第二反向引子; 一具有序列編號:21之核苷酸序列的第二正向引子,以及一具有序列編號:22之核苷酸序列的第二反向引子; 一具有序列編號:23之核苷酸序列的第二正向引子,以及一具有序列編號:24之核苷酸序列的第二反向引子; 一具有序列編號:25之核苷酸序列的第二正向引子,以及一具有序列編號:26之核苷酸序列的第二反向引子; 一具有序列編號:27之核苷酸序列的第二正向引子,以及一具有序列編號:28之核苷酸序列的第二反向引子; 一具有序列編號:29之核苷酸序列的第二正向引子,以及一具有序列編號:30之核苷酸序列的第二反向引子; 一具有序列編號:31之核苷酸序列的第二正向引子,以及一具有序列編號:32之核苷酸序列的第二反向引子;或是 一具有序列編號:33之核苷酸序列的第二正向引子,以及一具有序列編號:34之核苷酸序列的第二反向引子。 The kit according to claim 6, further comprising a second primer pair for amplifying a second SLC12A3 gene fragment, which includes a second forward primer having a nucleotide sequence having a sequence number: 3, and A second reverse primer with a nucleotide sequence of sequence number: 4; a second forward primer with a nucleotide sequence of sequence number: 5; and a second forward primer with a nucleotide sequence of sequence number: 6 Two reverse primers; a second forward primer with a nucleotide sequence of sequence number: 7 and a second reverse primer with a nucleotide sequence of sequence number: 8; a core with sequence number: 9 A second forward primer with a nucleotide sequence of SEQ ID NO: 10; a second forward primer with a nucleotide sequence of SEQ ID: 11; and a second forward primer with a nucleotide sequence of SEQ ID: 11 Sequence number: second reverse primer with a nucleotide sequence of 12; a second forward primer with a nucleotide sequence of sequence number: 13; and a second reverse primer with a nucleotide sequence of sequence number: 14 Forward primer; a nucleoside with sequence number: 15 A second forward primer of the sequence, and a second reverse primer having a nucleotide sequence of sequence number: 16; a second forward primer of a nucleotide sequence of sequence number: 17; and a sequence number : A second reverse primer with a nucleotide sequence of 18; a second forward primer with a nucleotide sequence of sequence number: 19; and a second reverse primer with a nucleotide sequence of sequence number: 20 A second forward primer with a nucleotide sequence of sequence number: 21 and a second reverse primer with a nucleotide sequence of sequence number: 22; a second primer with a nucleotide sequence of sequence number: 23 A second forward primer and a second reverse primer having a nucleotide sequence of sequence number: 24; a second forward primer having a nucleotide sequence of sequence number: 25; and a second forward primer of sequence number: 26 A second reverse primer with a nucleotide sequence of sequence number: 27, and a second reverse primer with a nucleotide sequence of sequence number: 28; a Nucleoside with sequence number: 29 A second forward primer with an acid sequence, and a second reverse primer with a nucleotide sequence of sequence number: 30; a second forward primer with a nucleotide sequence of sequence number: 31, and a sequence with a sequence Number: the second reverse primer of the nucleotide sequence of 32; or a second forward primer of the nucleotide sequence of sequence number: 33, and a second of the second nucleotide sequence of sequence number: 34 Back primer. 如請求項8所述之套組,更包含一第二野生型探針及一第二突變型探針,其中 當該第二引子對包含該具有序列編號:3之核苷酸序列的第二正向引子及該具有序列編號:4之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:37及38之核苷酸序列; 當該第二引子對包含該具有序列編號:5之核苷酸序列的第二正向引子及該具有序列編號:6之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:39及40之核苷酸序列; 當該第二引子對包含該具有序列編號:7之核苷酸序列的第二正向引子及該具有序列編號:8之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:41及42之核苷酸序列; 當該第二引子對包含該具有序列編號:9之核苷酸序列的第二正向引子及該具有序列編號:10之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:43及44之核苷酸序列; 當該第二引子對包含該具有序列編號:11之核苷酸序列的第二正向引子及該具有序列編號:12之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:45及46之核苷酸序列; 當該第二引子對包含該具有序列編號:13之核苷酸序列的第二正向引子及該具有序列編號:14之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:47及48之核苷酸序列; 當該第二引子對包含該具有序列編號:15之核苷酸序列的第二正向引子及該具有序列編號:16之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:49及50之核苷酸序列; 當該第二引子對包含該具有序列編號:17之核苷酸序列的第二正向引子及該具有序列編號:18之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:51及52之核苷酸序列; 當該第二引子對包含該具有序列編號:19之核苷酸序列的第二正向引子及該具有序列編號:20之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:53及54之核苷酸序列; 當該第二引子對包含該具有序列編號:21之核苷酸序列的第二正向引子及該具有序列編號:22之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:55及56之核苷酸序列; 當該第二引子對包含該具有序列編號:23之核苷酸序列的第二正向引子及該具有序列編號:24之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:57及58之核苷酸序列; 當該第二引子對包含該具有序列編號:25之核苷酸序列的第二正向引子及該具有序列編號:26之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:59及60之核苷酸序列; 當該第二引子對包含該具有序列編號:27之核苷酸序列的第二正向引子及該具有序列編號:28之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:61及62之核苷酸序列; 當該第二引子對包含該具有序列編號:29之核苷酸序列的第二正向引子及該具有序列編號:30之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:63及64之核苷酸序列; 當該第二引子對包含該具有序列編號:31之核苷酸序列的第二正向引子及該具有序列編號:32之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:65及66之核苷酸序列;或是 當該第二引子對包含該具有序列編號:33之核苷酸序列的第二正向引子及該具有序列編號:34之核苷酸序列的第二反向引子時,則該第二野生型探針及該第二突變型探針分別具有序列編號:67及68之核苷酸序列。The kit according to claim 8, further comprising a second wild-type probe and a second mutant-type probe, wherein when the second primer pair includes the second nucleotide sequence having the sequence number: 3 When the forward primer and the second reverse primer having the nucleotide sequence of sequence number 4 are used, the second wild-type probe and the second mutant probe have nucleosides of sequence numbers 37 and 38, respectively. Acid sequence; when the second primer pair includes the second forward primer with the nucleotide sequence of sequence number: 5 and the second reverse primer with the nucleotide sequence of sequence number: 6, the first The two wild-type probes and the second mutant-type probe have nucleotide sequences of sequence numbers: 39 and 40, respectively; when the second primer pair includes the second forward direction of the nucleotide sequence of sequence number: 7 When the primer and the second reverse primer having a nucleotide sequence of sequence number: 8 are used, the second wild-type probe and the second mutant probe have nucleotide sequences of sequence numbers: 41 and 42 respectively ; When the second primer pair includes the first nucleotide sequence having the nucleotide sequence having the sequence number: 9 When the forward primer and the second reverse primer having the nucleotide sequence of sequence number: 10, the second wild-type probe and the second mutant-type probe have nucleosides of sequence numbers: 43 and 44 respectively Acid sequence; when the second primer pair includes the second forward primer having the nucleotide sequence of sequence number: 11 and the second reverse primer having the nucleotide sequence of sequence number: 12, the first The two wild-type probes and the second mutant-type probe have nucleotide sequences of sequence numbers: 45 and 46, respectively; when the second primer pair includes the second forward direction of the nucleotide sequence of sequence number: 13 When the primer and the second reverse primer having the nucleotide sequence of sequence number 14 are used, the second wild-type probe and the second mutant probe have nucleotide sequences of sequence numbers 47 and 48, respectively ; When the second primer pair includes the second forward primer having the nucleotide sequence of sequence number: 15 and the second reverse primer having the nucleotide sequence of sequence number: 16, the second wild primer Type probe and the second mutant probe have sequence numbers: 49 A nucleotide sequence of 50; when the second primer pair includes the second forward primer having the nucleotide sequence of sequence number: 17 and the second reverse primer having the nucleotide sequence of sequence number: 18 , The second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 51 and 52, respectively; when the second primer pair includes the nucleotide sequence of sequence numbers: 19 When the second forward primer and the second reverse primer having a nucleotide sequence having a sequence number: 20, the second wild-type probe and the second mutant type probe have sequence numbers: 53 and 54 respectively. Nucleotide sequence; when the second primer pair includes the second forward primer having the nucleotide sequence of sequence number: 21 and the second reverse primer having the nucleotide sequence of sequence number: 22, then The second wild-type probe and the second mutant-type probe each have a nucleotide sequence of sequence numbers: 55 and 56; when the second primer pair includes the second nucleotide sequence of the sequence number: 23 Forward primer and the first nucleotide sequence of the nucleotide sequence having the sequence number: 24 In the case of a reverse primer, the second wild-type probe and the second mutant-type probe each have a nucleotide sequence of sequence number: 57 and 58; when the second primer pair includes the core with sequence number: 25 When the second forward primer of the nucleotide sequence and the second reverse primer of the nucleotide sequence having the sequence number: 26, the second wild-type probe and the second mutant probe each have a sequence number: Nucleotide sequences of 59 and 60; when the second primer pair includes the second forward primer having the nucleotide sequence having the sequence number: 27 and the second reverse primer having the nucleotide sequence having the sequence number: 28 In the case of a primer, the second wild-type probe and the second mutant-type probe each have a nucleotide sequence of sequence number: 61 and 62; when the second primer pair includes the nucleotide of sequence number: 29 When the second forward primer of the sequence and the second reverse primer of the nucleotide sequence having the sequence number: 30, the second wild-type probe and the second mutant-type probe have sequence numbers: 63 and A nucleotide sequence of 64; when the second primer pair contains the possessing sequence When the second forward primer with the nucleotide sequence of 31 and the second reverse primer with the nucleotide sequence of 32 are, the second wild-type probe and the second mutant probe Respectively having a nucleotide sequence of sequence number: 65 and 66; or when the second primer pair includes the second forward primer of the nucleotide sequence of sequence number: 33 and the nucleoside of sequence number: 34 When the second reverse primer of the acid sequence is used, the second wild-type probe and the second mutant-type probe have nucleotide sequences of sequence numbers: 67 and 68, respectively. 如請求項9所述之套組,其中該第一野生型探針、該第一突變型探針、該第二野生型探針及該第二突變型探針分別與一第一、一第二、一第三及一第四偵測標記連接,且該第一、該第二、該第三及該第四偵測標記可發出彼此相異的光波長。The kit according to claim 9, wherein the first wild-type probe, the first mutant-type probe, the second wild-type probe, and the second mutant-type probe are respectively connected to a first and a first The second, third, and fourth detection marks are connected, and the first, second, third, and fourth detection marks can emit light wavelengths different from each other.
TW107105320A 2018-02-13 2018-02-13 Method and kit for making prognosis on gitelman's syndrome TWI674320B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107105320A TWI674320B (en) 2018-02-13 2018-02-13 Method and kit for making prognosis on gitelman's syndrome

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107105320A TWI674320B (en) 2018-02-13 2018-02-13 Method and kit for making prognosis on gitelman's syndrome

Publications (2)

Publication Number Publication Date
TW201934758A TW201934758A (en) 2019-09-01
TWI674320B true TWI674320B (en) 2019-10-11

Family

ID=68618306

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107105320A TWI674320B (en) 2018-02-13 2018-02-13 Method and kit for making prognosis on gitelman's syndrome

Country Status (1)

Country Link
TW (1) TWI674320B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063700A (en) * 2020-09-10 2020-12-11 长沙金域医学检验实验室有限公司 Kit and method for identifying SLC12A3 gene simultaneously containing two mutation site positions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105861514A (en) * 2016-05-27 2016-08-17 山东省立医院 New mutant pathogenic gene SLC12A3 of Gitelman syndrome as well as encoded protein and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105861514A (en) * 2016-05-27 2016-08-17 山东省立医院 New mutant pathogenic gene SLC12A3 of Gitelman syndrome as well as encoded protein and application thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Coto, Eliecer, et al. "A new mutation (intron 9+ 1 G> T) in the SLC12A3 gene is linked to Gitelman syndrome in Gypsies." Kidney international 65.1 (2004): 25-29.
Lin, Shih-Hua, et al. "Phenotype and genotype analysis in Chinese patients with Gitelman’s syndrome." The Journal of Clinical Endocrinology & Metabolism 90.5 (2005): 2500-2507
Lin, Shih-Hua, et al. "Phenotype and genotype analysis in Chinese patients with Gitelman’s syndrome." The Journal of Clinical Endocrinology & Metabolism 90.5 (2005): 2500-2507 Lo, Yi-Fen, et al. "Recurrent deep intronic mutations in the SLC12A3 gene responsible for Gitelman's syndrome." Clinical Journal of the American Society of Nephrology 6.3 (2011): 630-639. Mastroianni, Nadia, et al. "Novel molecular variants of the Na-Cl cotransporter gene are responsible for Gitelman syndrome." American journal of human genetics 59.5 (1996): 1019. Coto, Eliecer, et al. "A new mutation (intron 9+ 1 G> T) in the SLC12A3 gene is linked to Gitelman syndrome in Gypsies." Kidney international 65.1 (2004): 25-29. *
Lo, Yi-Fen, et al. "Recurrent deep intronic mutations in the SLC12A3 gene responsible for Gitelman's syndrome." Clinical Journal of the American Society of Nephrology 6.3 (2011): 630-639.
Mastroianni, Nadia, et al. "Novel molecular variants of the Na-Cl cotransporter gene are responsible for Gitelman syndrome." American journal of human genetics 59.5 (1996): 1019.

Also Published As

Publication number Publication date
TW201934758A (en) 2019-09-01

Similar Documents

Publication Publication Date Title
CN101679971A (en) The decision method of progression risk of glaucoma
WO2010039931A2 (en) Methods of using il17rd and il23-il17 pathway genes to diagnose crohn&#39;s disease
JP2021513858A (en) Improved detection of microsatellite instability
CN110484621B (en) Early warning method for liver cancer
US9305137B1 (en) Methods of identifying the genetic basis of a disease by a combinatorial genomics approach, biological pathway approach, and sequential approach
US11535897B2 (en) Composite epigenetic biomarkers for accurate screening, diagnosis and prognosis of colorectal cancer
US20100297633A1 (en) Method of amplifying nucleic acid
TWI674320B (en) Method and kit for making prognosis on gitelman&#39;s syndrome
US8828662B2 (en) Method and kit for detection of microsatellite instability-positive cell
US10770183B2 (en) Methods of assessing a risk of developing necrotizing meningoencephalitis
US9139881B2 (en) Method for assessing breast cancer susceptibility
KR101598327B1 (en) Composition for Ankylosing spondylitis risk prediction using DNA copy number variants and use thereof
CN113166810A (en) SNP marker for diagnosing cerebral aneurysm including single base polymorphism of GBA gene
JP2020534817A (en) Multiple detection of short nucleic acids
LU102676B1 (en) A Biomarker for Severe Asthma and Application Thereof
TWI707864B (en) Oligonucleotide microarray for detection of canine mdr1 gene mutations and determination method thereof and method for determination of the risk of chemotherapy side effects to a subject
KR101100323B1 (en) Polynucleotides derived from PCMT1 gene comprising single nucleotide polymorphism, microarrays and diagnostic kits comprising the same, and analytic methods using the same
KR102409336B1 (en) SNP markers for Immunoglobulin A (IgA) nephropathy and IgA vasculitis diagnosis and diagnosis method using the same
KR101167945B1 (en) Polynucleotides derived from ATG16L1 gene comprising single nucleotide polymorphisms, microarrays and diagnostic kits comprising the same, and analytic methods for autism spectrum disorders using the same
WO2011084178A1 (en) Methods for identifying the presence of a bicuspid aortic valve
US20100144545A1 (en) Arrays, Systems, and Methods of Using Genetic Predictors of Polycystic Diseases
KR20230036927A (en) Method for providing the information for predicting or diagnosing risk of atopy dermatitis
WO2016015194A1 (en) Glaucoma screening kit
KR101071081B1 (en) Polynucleotides comprising single nucleotide polymorphism derived from DEFA4 gene, microarrays and diagnostic kits comprising the same, and detection methods using the same
KR101075392B1 (en) Polynucleotides comprising single nucleotide polymorphism derived from FGA gene, microarrays and diagnostic kits comprising the same, and detection methods using the same